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CHAPTER ONE 

INTRODUCTION 

1.1  Background of the Study 

In the last, decade considerable research efforts have been spent on 

seeking systematic approaches to fault diagnosis on process control 

system. This dissertation analyzes the performance and practical 

implementation of Fuzzy Neural Network for intelligent process control 

system. The main goal of intelligent process control systems is the 

monitoring of the system during its normal working condition so as to 

detect the occurrences of failures (fault detection), recognize the location 

(fault isolation), the time evolution and indication (fault identification) 

hence suggests possible rectification procedures (fault rectification). 

Every intelligent technique has computational properties (e.g. ability to 

learn explanation of decisions) that make them suited for particular 

problems and not for others. Intelligent process control systems are 

widely used in modern industrial applications due to their reliability, low 

cost and high performance. Detection and diagnosis of systems faults are 

very essential for protection of such control systems against failures and 

permanent damage. In recent years, monitoring and fault detection in 

control systems have moved from traditional methods to artificial 

intelligence techniques (Mohamed, 2014) and (Chin-Teng and Lee, 

1991). 
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 Neural network are good at recognizing patterns, they are not good at 

explaining how they reach their decisions (Ding, 1992). Fuzzy logic 

systems can reason with imprecise information and are good at explaining 

their decisions but they cannot automatically acquire the rules they use to 

make those decisions. These limitations have been a central driving force 

behind the creation of intelligent hybrid systems where two or more 

techniques are combined in a manner that overcomes the limitations of 

individual techniques. Neural networks are used to tune membership 

functions of fuzzy systems that are employed as decision making systems 

for controlling equipment (De Bollivier and Gallinani,1990). Although 

fuzzy logic can encode expert knowledge directly using rules with 

linguistic labels, it usually takes a lot of time to design and tune the 

membership functions which quantitatively define these linguistic labels. 

Neural Network learning techniques can automate the process and 

substantially reduce development time and cost while improving 

performance (Abraham and Nath, 2001). 

1.2  Statement of the Problem 

Rigorous effort is required to obtain an appropriate transfer function for 

use in classical PID control systems. Also the computation of the 

constants Kp, Ki, Kd (constants of proportion) for a PID control system is 

difficult even for someone who is familiar with the system that is being 

modeled. 
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A new approach that would allow someone who is experienced in a 

system to model a control system without getting involved in any of the 

mathematical derivations highlighted above is required. This is the niche 

which the fuzzy logic based control is expected to fill. Often the result 

realized through the use of fuzzy logic may be coarse (not exact) for most 

control systems. It is hoped that neural network can be used to optimize 

(or fine–tune) the fuzzy process output thereby leading to the emergence 

of a Fuzzy Neural process control system. This is the direction this 

research work seeks to follow. 

1.3 Aim and Objectives 

The aim of this dissertation is to design Intelligent Process Control 

systems using Fuzzy Neural Network (FNN). 

To achieve this aim the following are the objectives. 

1. To design a process control system in PID mode using Fuzzy 

Logic. 

2. To optimize the performance of the Fuzzy control system using 

Neural Network. 

3. To simulate a prototype Fuzzy Neural process control system in 

PID mode. 

4. To evaluate the performance of the Fuzzy Logic, Neural Network, 

Fuzzy Neural Network and classical PID control systems using the 

results from the simulation. 
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5. To automate the fault diagnosis in Fuzzy Neural logic based 

process control system. 

1.4 Justification for the Project 

Components, machines and processes fail in varying ways depending 

upon their constituent materials, operating conditions, etc. Failure modes 

are typically monitored by a sensor which is intended for failure analysis 

purpose, to capture those failure symptoms that are characteristics of a 

particular failure mode. Using fuzzy neural network to analyze this is 

well suited to low cost implementation based on cheap sensors, low 

resolution analog to digital converters, and 4-bit or 8-bit one chip 

microcontroller chips (Gupta, 1992).  

Moreover such systems can be easily upgraded by adding new rules to 

improve performance or add new features. Also machine operators will 

have an idea of the fault and the rectification procedure (Huifang, Ren, 

Jizhu, and Benxian, 2011).  

1.5 Scope of the Dissertation 

Intelligent process control systems using fuzzy-neural logic has the 

advantage that the solution to the problem can be cast in terms that human 

operators can understand, so that their experiences can be used in the 

design of process controllers. This makes it easier to mechanize tasks that 

are already successfully performed by humans, hence assisting to improve 

substantially production cycle. The thesis will cover the followings: 
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a) Design of intelligent controllers based on Fuzzy Logic, Neural 

network, and hybrid of the two (Fuzzy Neural). 

b) The application of the designed controllers in terms of transient and 

steady state response of the process. 

c) Evaluation of the performance of the intelligent controllers in terms of 

transient and steady state response of the process. 

d) Comparing the result of the controller with a conventional PID 

controller. 

1.6  Organization of Dissertation Chapters 

In this work, Chapter introduced the dissertation topic, Chapter two 

handled the literature review, Chapter three discussed the methodology 

and system analysis, Chapter four covered the system design, Chapter 

five explained the System implementation and testing while finally 

Chapter six deals on Summary and Conclusion. 

1.7  Proportional Integral Derivative (PID) Controller 

 PID is a popular control method extensively used in an industrial set up. 

PID controllers are popular in industrial applications, as they are easy to 

install and reasonably robust. However, for highly nonlinear systems, the 

performance of PID controllers can deteriorate quite fast. It is necessary 

to develop nonlinear PID controllers for controlling nonlinear processes. 

The advantages of a PID controller include its simple structure along with 

robust performance in a wide range of operating conditions.  The design 
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of a PID controller is generally based on the assumption of exact 

knowledge about the system.  The assumption is often not valid since the 

development of model of any practical system may not include precise 

information of factors such as friction, backlash, unmodelled dynamics 

and uncertainty arising from any of the sources (Prabakaran, Kannan, 

Thirupathi and Hari Prakash, 2014). 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Block diagram of a PID controller 

A proportional–integral–derivative controller (PID controller) is a generic 

control loop feedback mechanism (controller) widely used in industrial 

control systems. A block diagram of a PID controller is shown in figure 

1.1.  It is the most commonly used feedback controller. A PID controller 
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calculates an "error" value as the difference between a measured process 

variable and a desired set point. The controller attempts to minimize the 

error by adjusting the process control inputs (Onkar, 2010). 

It was shown in (Ang, Chong and Li, 2005) that the PID controller 

calculation (algorithm) involves three separate constant parameters, and 

is accordingly sometimes called three-term control: the proportional, the 

integral and derivative values, denoted P, I, and D respectively. 

Heuristically, these values can be interpreted in terms of time: P depends 

on the present error, I on the accumulation of past errors, and D is a 

prediction of future errors, based on current rate of change. The weighted 

sum of these three actions is used to adjust the process via a control 

element such as the position of a control valve, or the power supplied to a 

heating element. 

In the absence of knowledge of the underlying process, a PID controller 

is the best (Rakesh Gautam, Rajesh Ingle, Milin Nagpure, 2014). By 

tuning the three parameters in the PID controller algorithm, the controller 

can provide control action designed for specific process requirements. 

The response of the controller can be described in terms of the 

responsiveness of the controller to an error, the degree to which the 

controller overshoots the set point and the degree of system oscillation. 
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Note that the use of the PID algorithm for control does not guarantee 

optimal control of the system or system stability (Jinghua, 2006). 

Some applications may require using only one or two actions to provide 

the appropriate system control. This is achieved by setting the other 

parameters to zero. A PID controller will be called a PI, PD, P or I 

controller in the absence of the respective control actions. PI controllers 

are fairly common, since derivative action is sensitive to measurement 

noise, whereas the absence of an integral term may prevent the system 

from reaching its target value due to the control action. 

1.7.1 Control Loop Basics 

A familiar example of a control loop is the action taken when adjusting 

hot and cold valves to maintain the water at a desired temperature. This 

typically involves the mixing of two process streams, the hot and cold 

water. The person touches the water to sense or measure its temperature. 

Based on this feedback they perform a control action to adjust the hot and 

cold water valves until the process temperature stabilizes at the desired 

value. The sensed water temperature is the process variable or process 

value (PV). The desired temperature is called the set point (SP). The input 

to the process (the water valve position) is called the manipulated 

variable (MV). The difference between the temperature measurement and 

the set point is the error (e) and quantifies whether the water is too hot or 

too cold and by how much. 



 

 

 

 

 

9 

After measuring the temperature (PV), and then calculating the error, the 

controller decides when to change the tap position (MV) and by how 

much. When the controller first turns the valve on, it may turn the hot 

valve only slightly if warm water is desired, or it may open the valve all 

the way if very hot water is desired. This is an example of a simple 

proportional control. In the event that hot water does not arrive quickly, 

the controller may try to speed-up the process by opening up the hot 

water valve more-and-more as time goes by. This is an example of an 

integral control. Making a change that is too large when the error is small 

is equivalent to a high gain controller and will lead to overshoot. If the 

controller were to repeatedly make changes that were too large and 

repeatedly overshoot the target, the output would oscillate around the set 

point in a constant, growing, or decaying sinusoid. If the oscillations 

increase with time then the system is unstable, whereas if they decrease 

the system is stable. If the oscillations remain at a constant magnitude the 

system is marginally stable. In the interest of achieving a gradual 

convergence at the desired temperature (SP), the controller may wish to 

damp the anticipated future oscillations. So in order to compensate for 

this effect, the controller may elect to temper its adjustments. This can be 

thought of as a derivative control method. If a controller starts from a 

stable state at zero error (PV = SP), then further changes by the controller 

will be in response to changes in other measured or unmeasured inputs to 
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the process that impact on the process, and hence on the PV. Variables 

that impact on the process other than the MV are known as disturbances. 

Generally controllers are used to reject disturbances and/or implement 

set-point changes. Changes in feed water temperature constitute a 

disturbance to the faucet temperature control process. 

In theory, a controller can be used to control any process which has a 

measurable output (PV), a known ideal value for that output (SP) and an 

input to the process (MV) that will affect the relevant PV. Controllers are 

used in industry to regulate temperature, pressure, flow rate, chemical 

composition, speed and practically every other variable for which a 

measurement exists (King, 2010). 

1.7.2 PID Controller Theory 

The PID control scheme is named after its three correcting terms, whose 

sum constitutes the manipulated variable (MV) which is a function of 

time. The proportional, integral, and derivative terms are summed to 

calculate the output of the PID controller (Kim, Hong and Park, 2002). 

Defining u (t) as the controller output, the final form of the PID algorithm 

is: 

 (1.1) 

where  

Kp: Proportional gain, a tuning parameter 
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Ki: Integral gain, a tuning parameter 

Kd: Derivative gain, a tuning parameter 

e: Error = SP − PV 

t: Time or instantaneous time (the present) 

1.7.3 Proportional Term 

The proportional term makes a change to the output that is proportional to 

the current error value. The proportional response can be adjusted by 

multiplying the error by a constant Kp, called the proportional gain. 

Figure 1.2 shows the graph. 

 

 

 

 

 

 

 

 

 

Figure 1.2: Plot of PV vs time, for three values of Kp (Ki and Kd held constant) 
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The proportional term is given by: 

        (1.2)  

A high proportional gain results in a large change in the output for a 

given change in the error. If the proportional gain is too high, the system 

can become unstable (see loop tuning). In contrast, a small gain results in 

a small output response to a large input error, and a less responsive or less 

sensitive controller. If the proportional gain is too low, the control action 

may be too small when responding to system disturbances. Tuning theory 

and industrial practice indicate that the proportional term should 

contribute the bulk of the output change (Jinghua, 2006). 

1.7.4 Droop 

 A pure proportional controller will not always settle at its target value, 

but may retain a steady-state error. Specifically, drift in the absence of 

control, such as cooling of a furnace towards room temperature, biases a 

pure proportional controller. If the drift is downwards, as in cooling, then 

the bias will be below the set point, hence the term "droop". 

Droop is proportional to the process gain and inversely proportional to 

proportional gain (Kim, 2002). Specifically the steady-state error is given 

by: 

e = G / Kp            (1.3) 
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Droop is an inherent defect of purely proportional control. Droop may be 

mitigated by adding a compensating bias term (setting the set point above 

the true desired value), or corrected by adding an integral term. 

1.7.5 Integral Term 

The contribution from the integral term is proportional to both the 

magnitude of the error and the duration of the error. The integral in a PID 

controller is the sum of the instantaneous error over time and gives the 

accumulated offset that should have been corrected previously. The 

accumulated error is then multiplied by the integral gain (Ki) and added to 

the controller output. The integral term is given by:  

    

                                       (1.4) 

  

 

 

 

 

 

 

 

 

 

Figure 1.3: Plot of PV vs time, for three values of Ki (Kp and Kd held constant) 
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The integral term accelerates the movement of the process towards set-

point and eliminates the residual steady-state error that occurs with a pure 

proportional controller. However, since the integral term responds to 

accumulated errors from the past, it can cause the present value to 

overshoot the set-point value. Figure 1.3 shows the Plot of PV vs time, 

for three values of Ki (Kp and Kd held constant) for integral term (Kim 

etal 2002). 

1.7.6 Derivative Term 

The derivative of the process error is calculated by determining the slope 

of the error over time and multiplying this rate of change by the 

derivative gain Kd. The magnitude of the contribution of the derivative 

term to the overall control action is termed the derivative gain, Kd. 

The derivative term is given by: 

         (1.5) 

 

 

 

 

 

 

Figure 1.4: Plot of PV vs time, for three values of Kd (Kp and Ki held constant) 
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The derivative term slows the rate of change of the controller output. 

Derivative control is used to reduce the magnitude of the overshoot 

produced by the integral component and improve the combined 

controller-process stability. However, the derivative term slows the 

transient response of the controller. Also, differentiation of a signal 

amplifies noise and thus this term in the controller is highly sensitive to 

noise in the error term, and can cause a process to become unstable if the 

noise and the derivative gain are sufficiently large. Hence an 

approximation to a differentiator with a limited bandwidth is more 

commonly used. Such a circuit is known as a phase-lead compensator.  

(Kim and Cho, 2004) 

Figure 1.4 above shows Plot of PV vs time, for three values of Kd (Kp and 

Ki held constant). 

1.7.7 Loop Tuning 

Tuning a control loop is the adjustment of its control parameters 

(gain/proportional band, integral gain/reset, derivative gain/rate) to the 

optimum values for the desired control response. Stability (bounded 

oscillation) is a basic requirement, but beyond that, different systems 

have different behavior, different applications have different 

requirements, and requirements may conflict with one another. 

PID tuning is a difficult problem, even though there are only three 

parameters and in principle is simple to describe, because it must satisfy 
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complex criteria within the limitations of PID control. There are 

accordingly various methods for loop tuning, and more sophisticated 

techniques are the subject of patents; this section describes some 

traditional manual methods for loop tuning. (Kim, 2004) 

Designing and tuning a PID controller appears to be conceptually 

intuitive, but can be hard in practice, if multiple (and often conflicting) 

objectives such as short transient and high stability are to be achieved. 

Usually, initial designs need to be adjusted repeatedly through computer 

simulations until the closed-loop system performs or compromises as 

desired. Some processes have a degree of non-linearity and so parameters 

that work well at full-load conditions don't work when the process is 

starting up from no-load; this can be corrected by gain scheduling (using 

different parameters in different operating regions). PID controllers often 

provide acceptable control using default tunings, but performance can 

generally be improved by careful tuning, and performance may be 

unacceptable with poor tuning (Kim, 2004) and  (King, 2010). 

1.7.8 Stability 

If the PID controller parameters (the gains of the proportional, integral 

and derivative terms) are chosen incorrectly, the controlled process input 

can be unstable, i.e. its output diverges, with or without oscillation, and is 

limited only by saturation or mechanical breakage. Instability is caused 

by excess gain, particularly in the presence of significant lag. 
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Generally, stability of response is required and the process must not 

oscillate for any combination of process conditions and set-points, though 

sometimes marginal stability (bounded oscillation) is acceptable or 

desired (Tan, Wang and Hang Chang, 1999). 

1.7.9 Optimum Behavior 

The optimum behavior of a process change or set -point change varies 

depending on the application. Two basic requirements are regulation 

(disturbance rejection –staying at a given set point) and command 

tracking (implementing set point changes), these refer to how well the 

controlled variable tracks the desired value. Specific criteria for command 

tracking include rise time and settling time. Some processes must not 

allow an overshoot of the process variable beyond the set point if, for 

example, this would be unsafe. Other processes must minimize the energy 

expended in reaching a new set point (Tan et al 1999). 

For a PID controller with Kp=5, K =0.7s
-1

, KD=0.5s, and PI(0)=20%  the 

error will produce a graph as shown in figure 1.5 .  
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Figure 1.5: Graph of classical PID  
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CHAPTER TWO 

LITERATURE REVIEW 

The history of process control can be traced back when people managed 

bronze and iron producing furnaces by manual practices which, after the 

First World War, were gradually supplemented by automatic regulatory 

control of temperatures, levels, pressures, and flow rates. This relieved 

the process operator of some unsuitable and boring tasks (Antsaklis, 

2012). 

The first feedback device on record was the water clock invented by the 

Greek Ktesibios in Alexandria Egypt around the 3
rd

 century Before Christ 

(B.C).This was certainly a successful device as water clocks of similar 

design were still being made in Baghdad when the Mongols captured the 

city in 1258 After Death (A.D). The first mathematical model to describe 

plant behavior for control purposes is attributed to James Clark Maxwell, 

of the Maxwell equations‘ fame, who in 1868 used differential equations 

to explain instability problems encountered with James Watt‘s flyball 

governor. The first known automatic control system, the Flyball 

governor, was installed on Watts‘ steam engine over 229 years ago in 

1775, the governor was introduced to regulate the speed of steam engine 

vehicles. (Fu,1970). When J.C. Maxwell used mathematical modeling 

and methods to explain instability problems encountered with James 

Watt‘s flyball governor, it demonstrated the importance and usefulness of 
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mathematical models and methods in understanding complex phenomena 

and signaled the beginning of mathematical system and control theory. It 

also signaled the end of the era of intuitive invention. Control theory 

made significant strides in the past 120 years, with the use of frequency 

domain methods and Laplace transforms in the 1930s and 1940s and the 

development of optimal control methods and state space analysis in the 

1950s and 1960s, followed by progress in stochastic, robust, adaptive and 

nonlinear control methods in the 1960s to today, have made it possible to 

control more accurately significantly more complex dynamical systems 

than the original flyball governor (Fu, 1970). 

Conventional control systems are designed today using mathematical 

models of physical systems. A mathematical model, which captures the 

dynamical behavior of interest, is chosen and then control design 

techniques are applied, aided by Computer Aided Design (CAD) 

packages, to design the mathematical model of an appropriate controller. 

The controller is then realized via hardware or software and is used to 

control the physical system. The procedure may take several iterations. 

The mathematical model of the system must be ―simple enough‖ so that it 

can be analyzed with available mathematical techniques, and ―accurate 

enough‖ to describe the important aspects of the relevant dynamical 

behavior. It approximates the behavior of a plant in the neighborhood of 

an operating point. 
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The control methods and the underlying mathematical theory were 

developed to meet the ever increasing control needs of our technology. 

The need to achieve the demanding control specifications for increasing 

complex dynamical systems has been addressed by using more complex 

mathematical models such as non linear and stochastic ones, and by 

developing more sophisticated design algorithm for, say, optimal control. 

The use of highly complex mathematical models however, can seriously 

inhibit our ability to develop control algorithms. Fortunately, simpler 

plant models like linear models, can be used in control design, this is 

possible because of the feedback used in control which cat tolerate 

significant model uncertainties. When the fixed feedback controllers are 

not adequate, then adaptive controllers are used. Controllers can then be 

designed to meet the specifications around an operating point, where the 

linear model is valid and then via a scheduler a controller emerges which 

can accomplish the control objectives over the whole operating range. 

This is, for example, the method typically used for aircraft flight control 

and it is a method to design fixed controllers for certain classes of 

nonlinear systems. Adaptive control in conventional control theory has a 

specific and rather narrow meaning. In particular it typically refers to 

adapting to variations in the constant coefficients in the equations 

describing the linear plant, these new coefficient values are identified and 

then used, directly or indirectly, to reassign the values of the constant 
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coefficients in the equation describing the linear controller. Adaptive 

controllers provide for wider operating ranges than the fixed controllers 

and so conventional adaptive control systems can be considered to have 

higher degrees of autonomy than control systems employing fixed 

feedback controllers (Sklansky, 1966) 

There are cases where there is need to significantly increase the operating 

range of the system. There is need to deal effectively with significant 

uncertainties in models of increasingly complex dynamical systems in 

addition to increasing the validity range of our control methods. The need 

to cope with significant unmodelled and unanticipated changes in the 

plant, in the environment and in the control objective arises. This will 

involve the use of intelligent decision making processes to generate 

control actions so that certain performance level is maintained even 

though there are drastic changes in the operating conditions. However, it 

is quite clear that in the control systems there are requirements today that 

cannot be successfully addressed with the existing conventional control 

theory and thence is the introduction of Intelligent Process Control 

System (IPCS) (Saridis and Valavanis, 1988). 

Intelligent control describes the discipline where control methods are 

developed that attempt to emulate important characteristics of human 

intelligence. These characteristics include adaptation and learning, 

planning under large uncertainty and coping with large amounts of data. 
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Intelligent control is interdisciplinary as it combines and extends theories 

and methods from areas such as control, computer science and operation 

research, It uses theories from mathematics and seeks inspiration and 

ideas from biological systems. In control engineering, a state-space 

representation is a mathematical model of a physical system as a set of 

input, output and state variables related by first-order differential 

equations. "State space" refers to the space whose axes are the state 

variables (Kataria, 2008). 

Intelligent control methodologies are being applied to robotics (Vijay, 

Popat, Khot Sachin and Burle, 2014) and automation, communication, 

manufacturing, traffic control to mention but a few application areas 

(Antsaklis, 2012).  Neural networks, fuzzy control, genetic algorithms, 

petri-nets (Sijimol, Pooja and Soji, 2014) and planning systems, expert 

systems, and hybrid systems are all intelligent control methodologies. 

The areas of computer science and in particular artificial intelligence 

provide knowledge representation ideas, methodologies and tools such as 

semantic networks, frames, reasoning techniques and computer 

languages. Concepts and algorithms developed in the areas of adaptive 

control and machine learning help intelligent controllers to adapt and 

learn. Advances in sensors, actuators, computation technology and 

communication networks help provide what is necessary for the 

implementation of intelligent control hardware (Antsaklis, 2012).  
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The fact is that there are problems of control today that cannot be 

formulated and studied in the conventional differential or difference 

equation mathematical framework using conventional control. Intelligent 

control attempts to build upon and enhance the conventional control 

methodologies to solve new challenging control problems (Antsaklis and 

Passino, 2013). The intelligent control methodology used in this work is 

hybrid network. 

2.1 Previous Works 

Dorf and Bishop, (2004) stated that robust control is a branch of control 

theory that explicitly deals with uncertainty in its approach to controller 

design. Robust control methods are designed to function properly so long 

as uncertain parameters or disturbances are within some (typically 

compact) set. Robust methods aim to achieve robust performance and/or 

stability in the presence of bounded modeling errors. The early methods 

of Bode and others were fairly robust; the state-space methods invented 

in the 1960s and 1970s were sometimes found to lack robustness,
 

prompting research to improve them. This was the start of the theory of 

Robust Control, which took shape in the 1980s and 1990s and is still 

active today. In contrast with an adaptive control policy, a robust control 

policy is static rather than adapting to measurements of variations, the 

controller is designed to work with the assumption that certain variables 

will be unknown. 
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Ellis, (2012) stated that adaptive control is the control method used by a 

controller which must adapt to a controlled system with parameters which 

vary, or are initially uncertain. For example, as an aircraft flies, its mass 

slowly decrease as a result of fuel consumption, a control law is needed 

that adapts itself to such changing conditions. Adaptive control is 

different from robust control in that it does not need a priori information 

about the bounds on these uncertain or time-varying parameters; robust 

control guarantees that if the changes are within given bounds the control 

law need not be changed, while adaptive control is concerned with 

control law changing them. 

Kataria and Sons, (2008) showed that automatic control as the application 

of control theory for regulation of processes without direct human 

intervention. An  automatic  control  system  is  a  preset  closed-

loop  control  system  that  requires  no  operator action.   In the simplest 

type of an automatic control loop, a controller compares a measured value 

of a process with a desired set value, and processes the resulting error 

signal to change some input to the process, in such a way that the process 

stays at its set point despite disturbances. This closed-loop control is an 

application of negative feedback to a system. The mathematical basis of 

control theory was begun in the 18th century, and advanced rapidly in the 

20th.Designing a system with features of automatic control generally 

requires the feeding of electrical or mechanical energy to enhance the 
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dynamic features of an otherwise sluggish or variant, even errant system. 

The control is applied by regulating the energy feed.  An automatic 

control system has two process variables associated with it:  a controlled 

variable and a manipulated variable. A controlled variable is the process 

variable that is maintained at a specified value or within a specified 

range. 

 Dubrova, E (2013) stated in fault tolerant control that fault tolerance is 

the property that enables a system to continue operating properly in the 

event of the failure of (or one or more faults within) some of its 

components. If its operating quality decreases at all, the decrease is 

proportional to the severity of the failure, as compared to a naïvely 

designed system in which even a small failure can cause total breakdown. 

Fault tolerance is particularly sought after in high-availability or life-

critical systems. A fault-tolerant design enables a system to continue its 

intended operation, possibly at a reduced level, rather than failing 

completely, when some part of the system fails. The term is most 

commonly used to describe computer systems designed to continue more 

or less fully operational with, perhaps, a reduction in throughput or an 

increase in response time in the event of some partial failure. That is, the 

system as a whole is not stopped due to problems either in the hardware 

or the software. An example in another field is a motor vehicle designed 

so it will continue to be drivable if one of the tires is puncture (Menychtas 
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and Konstanteli, 2012). A structure should be able to retain its integrity in 

the presence of damage caused by fatigue, corrosion, manufacturing 

flaws, or impact. 

Lee, Yu, and Chien, (2011) in Adaptive Neural Network Controller 

Design for a Class of Nonlinear Systems Using Simultaneous 

Perturbation Stochastic Approximation (SPSA) Algorithm proposed a 

novel SPSA-based on-line adaptive decoupled control scheme by using 

PID neural network for a class of nonlinear systems. The update laws of 

parameters with adaptive optimal learning rate were proposed based on 

the Lyapunov stability theorem and this guarantees the stability and 

performance of closed-loop system. The proposed approach was applied 

in the Translational Oscillations Rotational Actuator (TORA) system and 

the experimental results realized by Digital Signal Processing (DSP) 

demonstrated its performance and efficiency. This did not eliminate the 

rigorous mathematical approach for solving non linear PID controllers. 

(Abu-Mustaf, 1993). 

Seema, Mitra and Vijay (2007) designed a Neural Network Tuned fuzzy 

controller for Multiple Input Multiple output (MIMO) system featuring a 

neural network based tuned fuzzy controller for controlling the degree of 

freedom for MIMO systems. The coupling effect of the system was added 

into the main fuzzy controller for each step to improve the performance. 

A data set generated was partitioned into a set of clusters based on 
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subtractive clustering method. A fuzzy IF-THEN rule was then extracted 

from each cluster to form a fuzzy rule base from which the Fuzzy Neural 

Network is designed. The Neural Network designed contains only three 

layers and the hybrid learning algorithm was used to refine the 

parameters on fuzzy rule base. There was improvement in performance 

no consideration for a PID controller and the fault diagnosis mechanism 

of the system was considered (Aleksander (1989) 

Lobbrecht and Solomatine (1999) applied intelligent control schemes for 

reproducing optimal control actions for polder water level. The Artificial 

Neural Network and Fuzzy Adaptive System reproduced the 

corresponding control actions with high accuracy. Nevertheless, the 

adaptive models performances were dependent on choice of training data 

set so that the two different data sets results in different levels of model 

performance. Inclusion of variables resulted from the extreme events and 

also the use of moving average and moving sum values into the training 

pattern improves the models performance. Artificial Neural Network and 

Fuzzy Adaptive System exhibited properties of adaptation during training 

but once trained on the basis of one water system model they cannot 

represent the hydrologic behavior in other model areas and so have to be 

retrained. However, the fault diagnosis of the system was not considered 

(Aluja,Teodorescu and Gil Lafuente, 1992). 

 



 

 

 

 

 

29 

Anthonio (2002) in Intelligent Car Parking Using Fuzzy Neural Networks 

analyzes the performance and practical implementation of Fuzzy Neural 

Networks for the autonomous motion of mobile robot. The mobile robot 

with Fuzzy Neural controller presents good positioning and tracking 

performance for different types of desired trajectories. In this work the 

fault diagnosis of the system was not considered (Abiyev, Kaynak, 

Alshanableh and Mamedov, 2011). 

Mitchell et al (2000) worked on using a Neural Network to predict the 

Dynamic Frequency Response of  a power system to an Under-frequency 

Load Shedding Scenario. It showed a method to quickly and accurately 

predict the dynamic response of a power system during an under 

frequency load shedding. Emergency actions in a power system due to 

loss of generation typically calls for under-frequency load shedding 

measures, to avoid potential collapse  due to lack of time in which to 

correct the imbalance via other means. This is a slow and repetitious use 

of dynamic simulators so a neural network was used to obtain a fast and 

accurate procedure during optimal load shedding. In this work the fault 

diagnosis of the system was not considered Amit (1989). 

Wu, Karray and Song (2003) in Water Level Control by Fuzzy Logic and 

Neural Network designed an Intelligent controllers for controlling water 

level system by building a prototype of water level control system first 

with Fuzzy Logic control and then with Neural Network. The 
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performance of both was noted and compared and it shows that the 

Neural Network showed a better performance than that of Fuzzy Logic. 

In this work the hybrid of the two networks was not considered. Fuzzy 

Neural Networks implement the process of fuzzy reasoning through a 

neural network structure so that they behave as fuzzy system with 

learning capabilities. 

Pislaru, Trandabat and Olariu (2003) in their work on Neurofuzzy system 

for industrial processes fault diagnosis featured a methodology to monitor 

and diagnose machine faults in complex industrial processes. They 

developed the diagnostic model capable of providing diagnosis for single 

and multiple faults based on noisy data. In their work, they only showed 

the faults incurred and ignored monitoring of the system while on 

operation, the type and time of fault occurrence and also the possible 

rectification techniques (Stathacopoulou, Magoulas, Grigoriadou, and 

Samarakou, 2011). 

2.1.1 Intelligent Process Control Systems Using Fuzzy-Neural Network 

In this research, Fuzzy Neural Network is to be applied to a PID 

controller. The intelligent control will be used to monitor the system 

during its normal working condition so as to detect the occurrences of 

failures, recognize the fault location, the time of fault and hence suggests 

the possible rectification procedures (fault rectification). The system will 

be first realized using fuzzy logic and then be improved upon with Fuzzy 
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Neural Network. The data obtained will be plotted in a graph and the 

results obtained will be compared with the graph of a classical PID.  

2.2 Fuzzy Logic Control 

Yager and Zadeh, (1992) stated that Fuzzy Logic is the branch of 

artificial intelligence that deals with the reasoning algorithms used to 

emulate human thinking and decision making in machines. The term 

itself inspires certain skepticism, sounding equivalent to "half-baked 

logic" or "bogus logic", but the "fuzzy" part does not refer to a lack of 

rigor in the method, rather to the fact that the logic involved can deal with 

fuzzy concepts i.e. concepts that cannot be expressed as "true" or "false" 

but rather as "partially true". The fuzzy logic creates a way to express in-

between data values. It deals with uncertainty in engineering by attaching 

degrees of certainty to answer to a logical question. Fuzzy logic requires 

knowledge in order to reason (Bezdek and Pal, 1992) and (Binaghi, 

1992). This knowledge which is provided by an expert who knows the 

process or machine is stored in the fuzzy system. For example, an expert 

may specify that a steam valve should be turned clockwise a ―little bit‖ if 

the temperature rises in a batching operation. The fuzzy system might 

interpret this expression as a 10-degree clockwise rotation that closes the 

output valve opening by five percent. As the name implies the description 

like a ―little bit‖ is a fuzzy description, meaning that it does not have a 
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definite value. A Fuzzy Logic system takes this vague description and 

translates it into a decisive output (Ahlawat, Ashu, and Nidi, 2014). 

2.2.1 Fuzzy Logic Principles 

The figure 2.1 illustrates the operation of a Fuzzy Logic control system 

(Fuzzy Logic Controller).  It consists of three main components, or 

actions that must be completed sequentially to determine the appropriate 

output value. These components are   

1. Fuzzification 

2. Fuzzy processing 

3. Defuzzification 

 

 

 

               Figure 2.1: Fuzzy Logic controller 

When a fuzzy controller receives input data it translates it into a fuzzy 

form. This process is called fuzzification. The controller then performs 

fuzzy processing which involves the evaluation of the input information 

according to IF-THEN rules created by the user during the fuzzy control 

system‘s design stage. Once the fuzzy controller finishes the rule 

processing stage and arrives at an outcome conclusion, it begins the 

defuzzification process (Chen, 1988). In this final step, the fuzzy 

controller converts the output conclusions into ―real‖ output data (analog 
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counts) and sends this data to the process via an output module interface. 

If the fuzzy logic controller is located in the Programmable Logic 

Controller (PLC) rack and does not have a direct or built in input/output 

interface with the process then it will send the defuzzification output to 

the PLC memory location that maps the processors output interface 

module (Langavi and Berenji, 1992), (Lee, 1990) and (Kandel, 1991). 

2.2.2 Fuzzy Sets 

Fuzzy set theory was originally proposed by Prof Lotfi A. Zadeh of 

University of California at Berkley quantitatively and effectively handles 

problems involving uncertainty, ambiguity and vagueness.  The theory, 

which is now well-established, was specifically designed to 

mathematically represent uncertainty and vagueness and provide 

formalized tools for dealing with the imprecision that is intrinsic to many 

real world problems. The ability of fuzzy logic to deal with uncertainty 

and noise has led to its use in control. Designing a fuzzy controller 

requires describing the operators control knowledge/experience 

linguistically. The controller captures these traits in the form of fuzzy 

sets, fuzzy logic operations and fuzzy rules.  Thus, Fuzzy logic control 

can be used to emulate human expert knowledge and experience. The 

Fuzzy sets and fuzzy rules can be formulated in terms of linguistic 

variables, which help the operator to understand the functioning of the 

controller. "Fuzzy sets" can be a complex mathematical term in multi- 



 

 

 

 

 

34 

valued logic. A fuzzy set is an object with elements, or members, which 

can belong to it in degrees (Lim, Rahardja and Gwee, 1995). The 

membership function is obviously a crucial component of a fuzzy set. It is 

therefore natural to define operations on Fuzzy sets by means of their 

membership function. In practice, the fuzzy rule sets usually have several 

antecedents that are combined using fuzzy operators, such as AND, OR, 

and NOT, though again the definitions tend to vary: AND, in one popular 

definition, simply uses the minimum weight of all the antecedents, while 

OR uses the maximum value. There is also a NOT operator that subtracts 

a membership function from 1 to give the "complementary" function 

(Dubois and Prade, 1985) and (Fuzzy CLIPS, 1994) 

2.2.3 Assigning Zero or One Values to Fuzzy Sub-Sets  

A fuzzy control system is a control system based on fuzzy logic - a 

mathematical system that analyzes analog input values in terms of logical 

variables that take on continuous values between 0 and 1, in contrast to 

classical or digital logic, which operates on discrete values of either 0 and 

1 (true and false). When implementing fuzzy logic control with human 

originated rules in the loop, we must have a way to assign some numeric 

value to humans' intuitive assessments of fuzzy sets (Lim and Takefuji, 

1990).   We must translate from human fuzziness to numbers that can be 

used by a computer.   We do this by assigning fuzzy sub-set conditions a 

value from zero to 1. In setting up a control system for room temperature, 
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for example, we could assign a membership of "1.0" in the sub-set of 

"just right" when the temperature is 75 degrees F. Then, if the 

temperature drops to 70 degrees F, we might design the system for a 

membership in the "just right" sub-set of ".8". Fuzzy logic makes use of 

human common sense. This common sense is either applied from what 

seems reasonable for a new system, or from experience for a system that 

has been previously handled by a human operator. The input variables in 

a fuzzy control system are in general mapped into sets of membership 

functions similar to this, known as "fuzzy sets". The process of 

converting a crisp input value to a fuzzy value is called "fuzzification". A 

control system may also have various types of switch, or "ON-OFF", 

inputs along with its analog inputs, and such switch inputs of course will 

always have a truth value equal to either 1 or 0, but the scheme can deal 

with them as simplified fuzzy functions that happen to be either one value 

or another (Dubois and Prade, 1988). 

Given "mappings" of input variables into membership functions and truth 

values, the microcontroller then makes decisions for what action to take 

based on a set of "rules", each of the form: For instance, IF brake 

temperature is warm AND speed is not very fast THEN brake pressure is 

slightly decreased. In this example, the two input variables are "brake 

temperature" and "speed" that have values defined as fuzzy sets. The 

output variable, "brake pressure", is also defined by a fuzzy set that can 
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have values like "static", "slightly increased", "slightly decreased", and so 

on. This rule by itself is very puzzling since it looks like it could be used 

without bothering with fuzzy logic, but remembers the decision is based 

on a set of rules which are as follows:  

 All the rules that apply are invoked, using the membership 

functions and truth values obtained from the inputs, to determine 

the result of the rule. 

 This result in turn will be mapped into a membership function and 

truth value controlling the output variable. 

 These results are combined to give a specific ("crisp") answer, the 

actual brake pressure, a procedure known as "defuzzification". 

This combination of fuzzy operations and rule-based "inference" 

describes a "fuzzy expert system" (Zimmermann, 1996). 

2.2.4 Fuzzy Control Design 

The design of fuzzy controllers consists of an input stage, a processing 

stage, and an output stage. The input stage maps sensor or other inputs, 

such as switches, thumbwheels, and so on, to the appropriate membership 

functions and truth values. The processing stage invokes each appropriate 

rule and generates a result for each, then combines the results of the rules. 

Finally, the output stage converts the combined result back into a specific 

control output value (Zadeh, 1984). The most common shape of 

membership functions is triangular, although trapezoidal and bell curves 
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are also used, but the shape is generally less important than the number of 

curves and their placement. From three to seven curves are generally 

appropriate to cover the required range of an input value, or the "universe 

of discourse" in fuzzy jargon. The processing stage is based on a 

collection of logic rules in the form of IF-THEN statements, where the IF 

part is called the "antecedent" and the THEN part is called the 

"consequent". Typical fuzzy control systems have dozens of rules. 

Consider a rule for a thermostat: 

  IF (temperature is "cold") THEN (heater is "high") 

This rule uses the truth value of the "temperature" input, which is some 

truth value of "cold", to generate a result in the fuzzy set for the "heater" 

output, which is some value of "high". This result is used with the results 

of other rules to finally generate the crisp composite output. Obviously, 

the greater the truth value of "cold", the higher the truth value of "high", 

though this does not necessarily mean that the output itself will be set to 

"high", since this is only one rule among many. In some cases, the 

membership functions can be modified by "hedges" that are equivalent to 

adjectives. Common hedges include "about", "near", "close to", 

"approximately", "very", "slightly", "too", "extremely", and "somewhat". 

These operations may have precise definitions, though the definitions can 

vary considerably between different implementations. "Very", for one 

example, squares membership functions; since the membership values are 
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always less than 1, this narrows the membership function. "Extremely" 

cubes the values to give greater narrowing, while "somewhat" broadens 

the function by taking the square root. There are several different ways to 

define the result of a rule, but one of the most common and simplest is the 

"max-min" inference method, in which the output membership function is 

given the truth value generated by the premise. Rules can be solved in 

parallel in hardware, or sequentially in software (Zimmerman, 1987). The 

results of all the rules that have fired are "defuzzified" to a crisp value by 

one of several methods. There are dozens in theory, each with various 

advantages and drawbacks. The "centroid" method is very popular, in 

which the "center of mass" of the result provides the crisp value. Another 

approach is the "height" method, which takes the value of the biggest 

contributor. The centroid method favors the rule with the output of 

greatest area, while the height method obviously favors the rule with the 

greatest output value (Ross, 1995) and (Kazuo and Hua, 2001) 

Figure 2.2 demonstrates centroid defuzzification max-min inference used 

for a system with input variables "x", "y", and "z" and an output variable 

"n". Note that "mu" is standard fuzzy-logic nomenclature for "truth 

value": 
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    Figure 2.2: Centroid Defuzzification using max-min inference  

Notice how each rule provides a result as a truth value of a particular 

membership function for the output variable. In centroid defuzzification 

the values are ORs, that is, the maximum value is used and values are not 

added, and the results are then combined using a centroid calculation. 

Fuzzy control system design is based on empirical methods, basically a 

methodical approach to trial-and-error (Wie and Da fa, 2010). The 

general process is as follows: 

 Document the system's operational specifications and inputs and 

outputs. 

 Document the fuzzy sets for the inputs. 

 Document the rule set. 
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 Determine the defuzzification method. 

 Run through test suite to validate system, adjust details as required. 

 Complete document and release to production. 

2.3 Neural Networks 

An Artificial Neural Network (ANN) is an information processing 

paradigm that is inspired by the way biological nervous systems, such as 

the brain, process information. The key element of this paradigm is the 

novel structure of the information processing system. It is composed of a 

large number of highly interconnected processing elements (neurons) 

working in unison to solve specific application, such as pattern 

recognition or data classification, through a learning process. Learning in 

biological systems involves adjustments to the synaptic connections that 

exist between the neurons (Anderson, 1995). 

Neural network (NN) methods have become very popular recently 

involving mapping of input-output vectors for cases where no theoretical 

model works satisfactorily. An Artificial Neural Network (ANN) is an 

information processing paradigm inspired by the manner in which the 

heavily interconnected, parallel structure of the human brain processes 

information.  They are collections of mathematical processing units that 

emulate some of the observed properties of biological nervous systems 

and draw on the analogies of adaptive biological learning. Neural 

Networks (NN) are trainable systems whose learning abilities, tolerance 
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to uncertainty and noise and generalization capabilities are derived from 

their distributed network structure and knowledge representation (Lee et 

al., 2011). 

Learning of a Neural Network typically implies adjustments of 

connection weights and biases so that the square error (between Neural 

Network output and desired output) is minimized. However NN is often 

called a black box and it is difficult to interpret the knowledge stored by a 

it. Knowledge in NN is represented in the values of the weights and 

biases which forms part of a large and distributed network (Hert, Krogh 

and Palmer, 1991)  

 

2.3.1 The significance of a Neural Network 

Zhou and Quek (1996) showed that Neural Networks with their 

remarkable ability to derive meaning from complicated or imprecise data, 

can be used to extract patterns and detect trends that are too complex to 

be noticed by either humans or other computer techniques. A trained 

neural network can be thought of as an expert in the category of 

information it has been given to analyze. This expert can then be used to 

provide projections given new situations of interest and answer what if 

questions (Borisyuk, Holden and Kryukov, 1991). 

Other advantages include 
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1. Adaptive learning: An ability to learn how to do tasks based on the 

data given for training or initial experience. 

2. Self Organization: An ANN can create its own organization or 

representation of the information it receives during learning time. 

3. Real Time Operation: ANN computations may be carried out in 

parallel and special hardware devices are being designed and 

manufactured which take advantage of this capability. 

4. Fault Tolerance via Redundant Information Coding: Partial 

destruction of a network leads to the corresponding degradation of 

performance. However, some network capabilities may be retained 

even with major network damage. (Kohers, 1992) 

2.3.2  Neural Networks versus Conventional Computers: 

Neural networks take a different approach to problem solving than that of 

conventional computers. Convention computers use an algorithmic 

approach i.e. the computer follows a set of instructions in order to solve a 

problem. Unless the specific steps that the computer needs to follow are 

known the computer cannot solve the problem. That restricts the problem 

solving capability of conventional computers to problems that we already 

understand and know how to solve. But computers would be so much 

more useful if they could do things that we don‘t exactly know how to do. 

(Verma, Verma and Bhandari, 2014). Neural Networks process 

information in a similar way the human brain does. The network is 
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composed of a large number of highly interconnected processing element 

(neurons) working in parallel to solve a specific problem. Neural 

Networks learn by example. They cannot be programmed to perform a 

specific task. The examples must be selected carefully otherwise useful 

time is wasted or even worse the network might be functioning 

incorrectly .The disadvantage is that because the network finds out how 

to solve the problem by itself, its operation can be unpredictable (Kosco, 

1991). 

On the other hand, conventional computers use a cognitive approach to 

problem solving, the way the problem is to be solved must be known and 

stated in small unambiguous instructions. These instructions are then 

converted to a high level language program and then into machine code 

that the computer can understand. These machines are totally predictable, 

if anything goes wrong is due to a software or hardware fault. 

Neural Networks and conventional algorithmic computers are not in 

competition but complement each other. There are tasks more suited to an 

algorithmic approach like arithmetic operations and tasks that are more 

suited to Neural Networks. Even more, a large number of tasks, require 

systems that use a combination of two approaches (normally a 

conventual‘s computer is used to supervise the neural network) in order 

to perform at maximum efficiency. 
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Neural Networks do not perform miracles. But if used sensibly they can 

produce some amazing results (Beale and Jackson, 1990). 

2.3.3 How the Human Brain Learns 

Much is still unknown about how the brain trains itself to process 

information, so, theories abound. In the human brain, a typical neuron 

(Figure 2.3 shows the component of a neuron) collects signal from others 

through a host of fine structures called dendrites. The neuron sends out 

spikes of electrical activity through a long thin strand known as an axon, 

which splits into thousands of branches. At the end of each branch, a 

structure called a synapse illustrated in figure 2.4 converts the activity 

from the axon into electrical effects that inhibit or excite activity into the 

connected neurons (Bulsara, Jacobs and Zhou, 1991). When a neuron 

receives excitatory input that is sufficiently large compared with its 

inhibitory input, it sends a spike of electrical activity down its axon. 

Learning occurs by changing the effectiveness of the synapses so that the 

influence of one neuron on another changes (Aleksander and Morton, 

1993) and (Arbib, 1995). 
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Figure 2.3: Components of a neuron 

 

  

 

 

 

         Figure 2.4: The Synapse 

 

2.3.4 From Human Neurons to Artificial Neurons 

These Neural Networks were first deduced with the essential features of 

neurons and their interconnections. Figure 2.5 shows the neuron model. 

We then typically program a computer to simulate these features. 

However because our knowledge of neurons is incomplete and our 

computing power is limited, our models are necessarily gross 

idealizations of real networks of neurons (Eckmiller and Napp-Zinn, 

1993).  
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                                                                     Cell body 

                                               Dendrites                        Threshold 

                                                                       

                                                                                              Axon                                                                             

                                                         Summatic                                                                         

 Figure 2.5: Neuron model. 

2.3.5 A Simple Neuron 

 An artificial neuron is a device with many inputs and one output. The 

neuron has two modes of operation, the training mode and the using 

mode. In the training mode, the neuron can be trained to fire (or not), for 

particular input pattern. In the using mode, when a taught input pattern is 

detected at the input, its associated output becomes the current output. If 

the input pattern does not belong in the taught list of input patterns, the 

firing rule is used to determine whether to fire or not. Figure 2.6 shows 

the diagram of a simple neuron (Feigenbaum 1989) and (Lippman, 1987). 
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        Xn                                             

                                                    TEACHING INPUT 

                   Figure 2.6: A Simple Neuron 
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2.3.6 The Firing Rules 

The firing rule is an important concept in neural networks and accounts 

for their high flexibility. A firing rule determines how one calculates 

whether a neuron should fire for any input pattern. It relates to all the 

input patterns, not only the ones on which the node was trained (Eaton 

and Oliver, 1992). A simple firing rule can be implemented by using 

Hamming distance technique. The rule goes as follows: 

Take a collection of training patterns for a node, some of which cause it 

to fire (the 1- taught set of patterns) and others which prevent it from 

doing so (the 0 - taught set).Then the patterns not in the collection cause 

the node to fire if, on comparison, they have more input elements in 

common with the nearest pattern in the 1 taught set than with the nearest 

pattern in the 0 taught set. If there is a tie, then the pattern remains in the 

undefined stat (Ajanagadde and Shastri, 1991). 

For example , a 3 input neuron is taught to output 1 when the input 

(X1.X2 and X3) is 111 or 101 and to output 0 when the input is 000 or 

001.Then , before applying the firing rule the truth table (Table 2.1) is  

 

 

 

 

 



 

 

 

 

 

48 

 

Table 2.1: Truth table for 3 input neuron  

X1  0 0 0 0 1 1 1 1 

X2  0 0 1 1 0 0 1 1 

X3  0 1 0 1 0 1 0 1 

          

OUT  0 0 0 0/1 0/1 1 1 1 

 

As an example of the way the firing rule is applied, take the pattern 010 

for instance, it differs from 000 in 1 element, from 001 in 2 elements, 

from 101 in 3 elements and from 111 in 2 elements. Therefore, the 

nearest pattern is 000 which belongs in the 0 taught set. Thus the firing 

rule requires that the neuron should not fire when the input is 001.On the 

other hand, 011 is equally distant from two taught patterns that have 

different outputs and thus the output stays undefined (0/1) (Fletcher and 

Goss, 1993) and (Freeman and Skapura, 1992). 

By applying the firing in every column the following truth table is 

obtained as shown in Table 2.2. 
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(Table 2.2: Truth table of 3 input neuron)  

 

The difference between the two truth tables is called generalization of the 

neuron. Therefore the firing rule gives the neuron a sense of similarity 

and enables it to respond sensibly to patterns not seen during training 

(Funahashi, 1989). 

2.4 NeuroFuzzy System 

A neurofuzzy system is a fuzzy system that uses a learning algorithm 

derived from or inspired by neural network theory to determine its 

parameters (fuzzy sets and fuzzy rules) by processing data samples (Lin 

and Lee, 1996). 

2.4.1 Fuzzy Neural network 

A Fuzzy Neural Network or neurofuzzy system is a learning machine that 

finds the parameters of a Fuzzy system (i.e., fuzzy sets, fuzzy rules) by 

X1  0 0 0 0 1 1 1 1 

X2  0 0 1 1 0 0 1 1 

X3  0 1 0 1 0 1 0 1 

          

OUT  0 0 0 0/1 0/1 1 1 1 
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exploiting approximation techniques from Neural Networks (Feldkamp, 

Puskorius and Yuan, 1992).  

A Fuzzy Neural system is based on a Fuzzy system which is trained by a 

learning algorithm derived from Neural Network theory. The (heuristical) 

learning procedure operates on local information, and causes only local 

modifications in the underlying Fuzzy System (Kar, Das, and Ghosh, 

(2014). 

A Fuzzy Neural system can be viewed as a 3-layer feed forward Neural 

Network. The first layer represents input variables, the middle (hidden) 

layer represents fuzzy rules and the third layer represents output 

variables. Fuzzy sets are encoded as (fuzzy) connection weights. It is not 

necessary to represent a Fuzzy System like when you want to apply a 

learning algorithm to it. However, it can be convenient, because it 

represents the data flow of input processing and learning within the 

model (Gallinari, Thinia and Fogelman-Soulie, 1988) 

 A Fuzzy Neural system can be always (i.e. before, during and after 

learning) interpreted as a system of fuzzy rules. It is also possible to 

create the system out of training data from scratch, as it is possible to 

initialize it by prior knowledge in form of fuzzy rules (Park, 2002). 

 The learning procedure of a Fuzzy Neural system takes the semantical 

properties of the underlying Fuzzy System into account. This results in 

constraints on the possible modifications applicable to the system 
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parameters. A Fuzzy Neural system approximates an $n$-dimensional 

(unknown) function that is partially defined by the training data. The 

fuzzy rules encoded within the system represent vague samples, and can 

be viewed as prototypes of the training data. A Fuzzy Neural system 

should not be seen as a kind of (fuzzy) expert system, and it has nothing 

to do with Fuzzy Logic in the narrow sense (Abiyev, Kaynak, 

Alshanableh and Mamedov, 2011). 

2.4.2 Combining Fuzzy Systems with Neural Networks 

Both neural networks and fuzzy systems have some things in common. 

They can be used for solving a problem (e.g. pattern recognition, 

regression or density estimation) if there does not exist any mathematical 

model of the given problem. They solely do have certain disadvantages 

and advantages which almost completely disappear by combining both 

concepts. Neural Networks can only come into play if the problem is 

expressed by a sufficient amount of observed examples. These 

observations are used to train the black box. ( Hech- Nielsen, 1988)  and 

Holland, 1975). On the one hand no prior knowledge about the problem 

needs to be given. On the other hand, however, it is not straightforward to 

extract comprehensible rules from the neural network's structure. On the 

contrary, a Fuzzy System demands linguistic rules instead of learning 

examples as prior knowledge. Furthermore the input and output variables 
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have to be described linguistically. If the knowledge is incomplete, wrong 

or contradictory, then the fuzzy system must be tuned. Since there is not  

any formal approach for it, the tuning is performed in a heuristic way.  

 

This is usually very time consuming and error-prone. (Kasabov, 1995)  

It is desirable for Fuzzy Systems to have an automatic adoption procedure 

which is comparable to Neural Networks. As it can be seen in Table 2.3, 

combining both approaches should include advantages and exclude 

disadvantages.  

 Characteristics 

 Compared to a common Neural Network, connection weights and 

propagation and activation functions of Fuzzy Neural Network 

differ a lot. Although there are many different approaches to model 

a Fuzzy Neural Network, most of them agree on certain 

characteristics such as the following: A Fuzzy Neural system based 

on an underlying fuzzy system is trained by means of a data-driven 

Table 2.3: Comparison of neural control and fuzzy control  

Neural Networks  Fuzzy Systems  

no mathematical model necessary  no mathematical model necessary  

learning from scratch  Apriori knowledge essential  

several learning algorithms  not capable to learn  

black-box behavior  Simple interpretation and implementation  
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learning method derived from neural network theory. This heuristic 

only takes into account local information to cause local changes in 

the fundamental fuzzy system.  

 It can be represented as a set of fuzzy rules at any time of the 

learning process, i.e., before, during and after. Thus the system 

might be initialized with or without prior knowledge in terms of 

fuzzy rules. 

 The learning procedure is constrained to ensure the semantic 

properties of the underlying Fuzzy System.  

 A Fuzzy Neural system approximates a n-dimensional unknown 

function which is partly represented by training examples.  

 Fuzzy rules can thus be interpreted as vague prototypes of the 

training data.  

 A Fuzzy Neural system is represented as special three-layer feed 

forward Neural Network as it is shown in Figure 2.7,there the  

The first layer corresponds to the input variables, the second layer 

symbolizes the fuzzy rules and the third layer represents the output 

variables (Keller and Chen, 1992) and (Maren, 1990)   

The fuzzy sets are converted as fuzzy connection weights.  

Some approaches also use five layers where the fuzzy sets are 

encoded in the units of the second and fourth layer, respectively. 

However, these models can be transformed into three-layer 
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architecture. One can basically distinguish between three different 

kinds of Fuzzy Neural Networks (FNN), i.e., cooperative, 

concurrent and hybrid FNNs. (Abraham, 1997) and (Bart, 1991) 

 

 

 

 

 

 

 

 

 

2.4.3 Cooperative Fuzzy-Neural Network 
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 Figure 2.7: The architecture of a Fuzzy Neural system 
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 Figure 2.8: Cooperative Fuzzy Neural Networks 
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In the case of Cooperative Neural Fuzzy systems, both Artificial Neural 

Network and Fuzzy System work independently from each other. The 

ANN tries to learn the parameters from the Fuzzy System. This can be 

either performed offline or online while the Fuzzy System is applied. 

Figure 2.8 depicts four different kinds of Cooperative Fuzzy Neural 

Networks. The upper left Fuzzy Neural Network learns fuzzy set from 

given training data. This is usually performed by fitting membership 

functions with a neural network. The fuzzy sets are then determined 

offline. They are then utilized to form the Fuzzy System by fuzzy rules 

that are given (not learned) as well (Limkens and Nie, 1992). 

The upper right Fuzzy Neural System determines fuzzy rules from 

training data by a Neural Network. Here as well, the neural networks 

learn offline before the Fuzzy System is initialized. The rule learning is 

usually done by clustering on self-organizing feature maps. It is also 

possible to apply fuzzy clustering methods to obtain rules.  

In the lower left Fuzzy Neural model, the system learns all membership 

function parameters online, i.e. while the Fuzzy System is applied. Thus 

initially fuzzy rules and membership functions must be defined 

beforehand. Moreover, the error has to be measured in order to improve 

and guide the learning step (Peymanfar, Khoei and Hadidi, 2010).  

The lower right one determines rule weights for all fuzzy rules by a 

neural network. This can be done online and offline. A rule weight is 

http://www.scholarpedia.org/article/Neuron
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interpreted as the influence of a rule. They are multiplied with the rule 

output. The authors argue that the semantics of rule weights are not 

clearly defined. They could be replaced by modified membership 

functions. However, this could destroy the interpretation of fuzzy sets. 

Moreover, identical linguistic values might be represented differently in 

dissimilar rules (Yi and Oh 1992), (Fogelman, Lamy, and Viennet, 1993) 

and (Fukushima, Miyake and Ito, 1993). 

 

2.4.4 Hybrid Fuzzy Neural Network 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: A Hybrid Fuzzy Neural Network 

Hybrid Fuzzy Neural systems are homogeneous and usually resemble 

neural networks. Here, the Fuzzy System is interpreted as special kind of 

Neural Network. The advantage of such hybrid NFS is its architecture 
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since both Fuzzy System and Neural Network do not have to 

communicate any more with each other. They are one fully fused entity 

(Goonatilake and Khebbal, 1994). These systems can learn online and 

offline. Figure 2.9 shows such a hybrid FNN.  

The rule base of a Fuzzy System is interpreted as a Neural Network. 

Fuzzy sets can be regarded as weights whereas the input and output 

variables and the rules are modeled as neurons. Neurons can be included 

or deleted in the learning step. Finally, the neurons of the network 

represent the fuzzy knowledge base. Obviously, the major drawbacks of 

both underlying systems are thus overcome.  

In order to build a fuzzy controller, membership functions which express 

the linguistic terms of the inference rules have to be defined. In fuzzy set 

theory, no formal approach to define these functions. Any shape (e.g., 

triangular, Gaussian) can be considered as membership function with an 

arbitrary set of parameters. Thus the optimization of these functions in 

terms of generalizing the data is very important for Fuzzy Systems. 

Neural Networks can be used to solve this problem.  

By fixing a distinct shape of the membership functions, say triangular, the 

neural network must optimize their parameters by gradient descent. Thus, 

aside information about the shape of the membership functions, training 

data must be available as well (Barlett, 1993) 
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Quek and Zhou (1999) suggested another approach which is to group the 

training data  

into M clusters. Every cluster represents a rule  where

. Hence these rules are not defined linguistically but rather by crisp data 

points . Thus a Neural Network with n input units, 

hidden layers and M output units might be applied to train on the pre-

defined clusters. For testing, an arbitrary pattern x is presented to the 

trained neural network. Every output unit will return a degree to which 

extend x may fit to the antecedent of rule Rm.) (Zurada, 1992)  

To guarantee the characteristics of a Fuzzy System, the learning 

algorithm must enforce the following mandatory constraints:  

 Fuzzy sets must stay normal and convex.  

 Fuzzy sets must not exchange their relative positions (they must 

not pass each other).  

 Fuzzy sets must always overlap.  

Additionally there exist some optional constraints like the following:  

 Fuzzy sets must stay symmetric.  

 The membership degrees must sum up to 1.  

An important Hybrid Fuzzy Neural Network has been introduced .The 

ARIC (Approximate Reasoning-based Intelligent Control) is presented as 
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a neural network where a prior defined rule base is tuned by updating the 

network's prediction. Thus the advantages of Fuzzy Systems and Neural 

Networks are easily combined as presented in Table 2.3 

The ARIC is represented by two feed-forward Neural Networks, the 

Action-state Evaluation Network (AEN) and the Action Selection 

Network (ASN). The ASN is a multilayer neural network representation 

of a fuzzy system. It then again consists of two separate. The first one 

represents the fuzzy inference and the second one computes a confidence 

measure based on the current and next system state. Both parts are 

eventually combined to the ASN's output.  

   As it is shown in Figure 2.7, the first layer represents the rule 

antecedents, whereas the second layer corresponds to the implemented 

fuzzy rules and the third layer symbolized the system action. The network 

flow is at follows. In the first layer the system variables are fuzzified. In 

the next step these membership values are multiplied by the attached 

weights of the connections between the first and second layer. In the 

latter layer, every rule's input corresponds to the minimum of its input 

connections (Hayashi, 1991).  

    A rules conclusion is installed as membership function. This function   

maps the inverse rule input value. Its output values are then multiplied by 

the weights of the connections between second and third layer. The final 
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output value is eventually computed by the weighted average of all rules' 

conclusions (Iniyia and Lalitha, 2014) .  

   The AEN (which is as three-layer feed-forward Neural Network as 

well) aims to forecast the system behavior. The hidden layer obtains as 

input both the system state and an error signal from the underlying 

system. The output of the networks shall represent the prediction of the 

next reinforcement which depends on the weights and the system state. 

The weights are changed by a reinforcement procedure which takes into 

consideration the outputs of both networks ASN and AEN, respectively. 

ARIC was successfully applied to the cart-pole balancing problem 

(Hornik 1991).  

Whereas the ARIC model can be easily interpret as a set of fuzzy-if-then 

rules, the ASN network to adjust the weights is rather difficult to 

understand. It is a working Neural Network architecture that utilizes 

aspects of Fuzzy Systems. However, a semantic interpretation of some 

learning steps is not possible (Ang, Quek and Pasquier, 2003) .  

2.5 Genetic Algorithms  

Genetic Algorithms are search algorithms based on mechanics of natural 

selection and natural genetics.  They combine survival of the fittest 

among the string structures with randomized, yet organized, information 

exchange to form a search algorithm with capabilities of natural 

evolution. A genetic algorithm starts with a random creation of a 
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population of strings and thereafter generates successive populations of 

strings that improve over generations.  The processes involved in the 

generation of new populations mainly consist of operations such as 

reproduction, cross over and mutation. Genetic Algorithms have proven 

their robustness and usefulness over other search techniques because of 

their unique procedures that differ from other normal search and 

optimization techniques. Genetic Algorithm based search and 

optimization techniques have recently found increasing use in machine 

learning, robot motion planning scheduling, pattern recognition, image 

sensing and many other engineering applications. (Davis, 1991), and 

(Goonatilake and Campbell, 1994) 

Since they work on coding of the parameter set, and not on the derivative 

function, they are capable of solving a vast range of optimization 

problems including optimization of the rule set of a fuzzy logic controller.  

2.6 Process Control 

Process control is extensively used in industry and enables mass 

production of continuous processes such as oil refining, paper 

manufacturing, chemicals, power plants and many other industries. 

Process control enables automation, with which a small staff of operating 

personnel can operate a complex process from a central control room. 

All control systems have at least three parts to them. An input that takes 

information into the control system, a process that uses the input 
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information to create the output information and an output that passes 

information out of the control system. There is an Open Loop control 

system and a Closed Loop Control system (Onkar, 2010). 

   An Open Loop control system is a system where the information from 

the output is not sent back to the input. For example an electric heater, the 

input is the power, the element is the process and the heater is the output. 

When one switches on, however hot the room gets, the heater keeps 

producing heat until someone switches it off hence no feedback to the 

input. If the heater had a thermostat in, it would switch off by itself when 

the room reached a set temperature (the ‗input‘ to the system). In this case 

information from the output of the system (heat) has been fed back to the 

input, as shown in the block diagram of a closed loop system in figure 

2.10. Here, the control system is 

                                                               PROCESS 

   

 

 

                                                                 Temperature 

 

now a Closed Loop system. Information from the output goes back to the 

input in a Feedback loop, a thermostat can be considered as the heater 

comparator in this control system. It compares the set temperature with 

Set temperature                    Heater 

 

INPUT 

(Process) 

 

OUTPUT 

 

Heating 

 

COMPARATOR 

Figure 2.10: Block diagram of closed loop system  
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the output temperature and the difference between these two temperatures 

is the error. When the control system detects an error it tries to make it 

smaller by changing the output and then the thermostat turns ON or OFF 

the heater (King, 2010). Table 2.4 shows the comparison between open 

loop system and closed loop system. 

 

 

2.6.1 Advantages of a Closed Loop System 

1. They are more reliable 

2. They are faster 

3. It can handle a number of variables simultaneously 

2.6.2 Disadvantages of a Closed Loop System 

1. Closed loop systems are expensive 

2. Its maintenance is difficult 

 OPEN LOOP SYSTEM CLOSED LOOP SYSTEM 

1 They are not reliable These are reliable 

2 It is easier to build It is difficult to build 

3 If calibration is good, they perform 

accurately 

They are accurate because of feedback 

4 They are generally more stable They are less stable 

5 Optimization is not possible Optimization is possible 

Table 2.4 Comparison between open loop system and closed loop system  
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3. It has complicated installation 

4. It is difficult to build. 

2.6.3 Types of Control Systems 

In practice, process control systems can be characterized as one or more 

of the following forms: 

 Discrete – Found in many manufacturing, motion and packaging 

applications. Robotic assembly, such as that found in automotive 

production, can be characterized as discrete process control. Most 

discrete manufacturing involves the production of discrete pieces 

of product, such as metal stamping (Wayne, 2003). 

 Batch – Some applications require that specific quantities of raw 

materials be combined in specific ways for particular durations to 

produce an intermediate or end result. One example is the 

production of adhesives and glues, which normally require the 

mixing of raw materials in a heated vessel for a period of time to 

form a quantity of end product. Other important examples are the 

discrete production of individual products at a time and batch 

production of group products at a time. 

 Continuous process –A physical system which variables are 

smooth and uninterrupted in time can be classified as a continuous 
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process. For example, the control of the water temperature in a 

heating jacket. Other examples of continuous processes are seen in 

production of fuels, chemicals and plastics. Continuous processes 

in manufacturing are used to produce very large quantities of 

product annually.  

2.6.4 Control System Parameters 

         e = r – b             c            

 r                                                                

       + b                                              

                   Figure 2.11: Control system parameters 

In Figure 2.11 the reference input (r) shows the externally produced input 

while the error detector receives the measured signal (b) from the 

feedback from the output and compares it with the reference input (r). 

The difference of the two signals gives the error signal which is given by  

  e = r – b       2.1 

Where,   e = error 

 b = measured indication of variable or the feedback 

 r = reference input 

The controller (c) represents the actual variable that is being controlled 

and regulates the output (p) according to the signal obtained from the 

detector. The feedback feeds back the output to the error detector for 

P   Output to final controlled element. 
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comparison with the reference input (Tan, Wang, Quing and Chang, 

1999). 

2.6.5 Process Characteristics  

a. Process Load: - The term process load refers to all the set of 

parameters resulting in the controlled variable having the set point 

value excluding the controlled variable. This set of parameters is 

called the nominal set. The required controlling variable value under 

these conditions is the nominal value of that parameter. If the set point 

is changed, the control parameter is altered to cause the variable to 

adopt this new operating point. The load is still nominal, however 

because the other parameters are assumed to be unchanged. Suppose 

one of the parameters changes from nominal, causing a corresponding 

shift in the controlled variable, then a process load change has 

occurred. The controlling variable is then adjusted to compensate for 

this load change and its effect on the dynamic variable to bring it back 

to the set point. In practice, concern is only shown on the variation in 

the controlling parameter bringing the controlled variable back to the 

set point. 

b.  Transient:  Another type of change involves a temporary variation of 

one of the load parameters. After the excursion, the parameter returns 

to its nominal value. This variation is called a transient. A transient 

cause variation of the controlled variable and the control system must 
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make equally transient changes of the controlling variable to keep 

error to a minimum. A transient is not a load change because it is not 

permanent (Tanomaru and Omatu, 1992). 

c.  Self Regulation: The tendency to adopt a specific value of the 

controlled variable for nominal load with no control operation is 

referred as self regulation. For instance, for a process with a steam 

valve at 50% that has its‘ control loop open so that no change in valve 

position is possible. The liquid heats up until the energy carried away 

by the liquid equals that input energy from the steam. If the load 

changes, a new temperature is adopted because the system temperature 

is not controlled. The process is self regulating, however, because the 

temperature will not ―run away‖ but stabilizes at some value under 

given conditions. (Ang, Chong and Li, 2005). 

2.7 Limitations of PID control: 

While PID controllers are applicable to many control problems, and often 

perform satisfactorily without any improvements or even tuning, they can 

perform poorly in some applications, and do not in general provide 

optimal control.  

The fundamental difficulty with PID control is that it is a feedback 

system, with constant parameters, and no direct knowledge of the process 

and thus overall performance is reactive. 
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PID controllers, when used alone, can give poor performance when the 

PID loop gains has be reduced so that the control system does not 

overshoot, oscillate or hunt about the control set point value (Lima, 

Jacobina and Souza, 1997). 

 Linearity: Another problem faced with PID controllers is that they are 

linear, and in particular symmetric. Thus, performance of PID controllers 

in non-linear systems is variable. For example, in temperature control, a 

common use case is active heating (via a heating element) but passive 

cooling (heating off, but no cooling), so overshoot can only be corrected 

slowly – it cannot be forced downward. In this case the PID should be 

tuned to be over damped, to prevent or reduce overshoot, though this 

reduces performance, it increases settling time. 

 Noise in derivative: A problem with the derivative term is that small 

amounts of measurement or process noise can cause large amounts of 

change in the output. It is often helpful to filter the measurements with a 

low-pass filter in order to remove higher-frequency noise components. 

However, low-pass filtering and derivative control can cancel each other 

out, so reducing noise by instrumentation means is a much better choice. 

Alternatively, a nonlinear median filter may be used, which improves the 

filtering efficiency and practical performance. In some case, the 

differential band can be turned off in many systems with little loss of 
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control. This is equivalent to using the PID controller as a Proportional 

Integral controller. (Tanamaru and Omatu, 1992) 

Recent advances in instrumentation, telecommunications and computing 

are making available to manufacturing company‘s new sensors and 

sensing strategies, plant-wide networking and information technologies 

that are assisting to improve substantially the production cycle. Recently 

soft computing method, integrating quantitative and qualitative modeling 

information, has been developed to improve in FD reasoning capabilities. 

In order to develop better - fast accurate and robust – process control, 

model – based modern control methods and efficient adaptive and 

learning techniques are required. The adoption of effective fault diagnosis 

techniques is becoming critical to ensure higher levels of safety and 

reliability in automated plants and autonomous systems. (Hoskins and 

Himmelbaum, 1990) 

 In many practical situations, uncertainty in the process can affect the 

performance of the system significantly no matter how the uncertainty 

that is described as vagueness or ambiguity.  

This realization provides the motivation for a possible fuzzy logic 

approach to Fault Diagnosis Logic (FDL). This has the ability to directly 

describe the potential failure modes in the parameters while handling a 

class of nonlinear systems. (Pislaru etal, 2003)  
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CHAPTER THREE 

METHODOLOGY AND SYSTEM ANALYSIS  

3.1  METHODOLOGY 

The methodology of this research involves the fuzzy logic technique, 

the neural network and the application of Fuzzy Neural Network 

which fine tunes the Fuzzy Logic output.  

     3.1.1 The Fuzzy Logic Principle 

Once a clear understanding of the process control is obtained, the 

rigorous mathematical steps involved in a linear modeling are 

overcome using fuzzy logic technique. The technique includes the 

inputs which are the systems variables, the fuzzy sets were generated 

from the system variables and used to form the membership functions. 

The fuzzy helps in generating the matrix table, the fuzzy rule is 

obtained easily using the matrix table. In this work Visual Basic. Net 

(VB.Net) was used to solve the PID equation to obtain the data that is 

used to generate the matrix table (See Appendix E). In the rule base 

stage, the inference engine contains all the system processes. It assists 

in depiction of an action. The deffuzification stage which is the last 

stage outputs the approximated actions from the system. Another 

advantage of this technique is that it can handle multiple inputs and 

multiple outputs. 
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3.1.2 The Neural Network 

The artificial neuron model simulates multiple inputs and one output, 

the switching function of input-output relation and the adaptive 

synaptic weights. In this work, the feed forward neural network and 

unsupervised learning algorithm was adopted. The feed-forward 

network is a filter which outputs the processed input signal while the 

unsupervised learning algorithm use the mechanism that changes 

synaptic weight values according to input values to the network. A 

four layer Neural Network was implemented. 

   3.1.3 Fuzzy Neural Network 

The hybrid of the Fuzzy Logic and Neural Network was implemented 

to fine tune and optimize the fuzzy output. Figure 3.1 shows the block 

diagram of Fuzzy Neural system used. In response to linguistic 

statements, the fuzzy interface block provides an input vector to a 

multi-layer neural network. The Neural Network is trained to yield 

desired command outputs or decisions. The output of the fuzzy above 

was fed into the Neural Network and outputs the decision as shown in 

figure 3.1. The learning algorithm was used to train the neurons. 
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3.2 System Analysis 

In analyzing the process control, the controller theory and PID 

Continuous Process Control Unit was discussed. 

3.2.1 The Controller Theory 

The block diagram of a controller is shown in figure 3.2. The output 

(controlled variable) is first measured by the instrument. The 

measurement signal goes to the comparator in form of signal (where it is 

compared with the set point signal). The difference is called the deviation 

or error .The resulting current output of the comparator is the error signal 

which is given as input to the controller. According to the error signal, the 

controller gives the correction signal (output of controller) to the final 

control element. The final control element implement the correction by 

physically adjusting the value of controlled variable of the process to 

bring the new process output which is fed back to be compared with the 

set point. 
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Figure 3.1: Block diagram of Fuzzy Neural Network 
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3.2.2 PID Continuous Process Control Unit 

Here, the three PID parameters required are the proportional gain value, 

Kp; integral gain value Ki; and the derivative gain value Kd that guarantee 

system stability in spite of the time delay. Figure 3.3 shows the water 

inside a process that is made hot by the heater. The objective of the 

process is to keep the temperature of the water at a steady temperature (in 

this case at 50
o
c) s as the temperature ranges between (30-70)

 o
c

 
.The 

system should also ensure that the liquid level should be at a steady set 

level as water flows into and out of the tank. This is being controlled by 

their respective valves.  The feedback of the temperature measurement is 

transmitted by the temperature sensor to the controller. The comparator 

compares the actual temperature with the set point and the output current 

of the comparator is the error signal. (i.e. E = Ts-Tm).The error signal 

goes to the controller. The controller makes the necessary correction and 

Controller output 
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Figure 3.2: Block diagram of a controller 
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the output of the controller (4-20 milliampere) is given to the E/P 

converter. A constant air supply (137.8KN/m
2
) is given to the E/P 

converter. According to the output of the controller, the outflow of air 

from E/P converter is regulated i.e. pneumatic signal (20.6KN/m
2
 - 

103.4KN/m
2
). The pneumatic signal goes to the control valve and 

according to the pneumatic signal, the valve position changes to 

manipulate the water inlet flow to minimize error. The stirrer 

automatically turns on when the system is at it working condition to 

establish uniform liquid temperature. The heat is generated by passing 

hot air through a tube embedded in water whose inlet valve determines 

the volume of hot air that is passed through the tube.  

 

 

 

 

 

 

 

 

 

Fig 3.3: PID Continuous Process Control Unit 
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The equation for the above process is given as below: 

                         

   P = kp ep + kp k1   ∫ epdt + kpkD ɖ ep   + P1 (o)          (3.1)                 

where Ki = 0.7/s 

          Kp   =     5 

 KD   = 0.5 (s)                     

 p1 (o) = 20%                 

 ep      = t% 

T = the interval of time until the system stabilizes. 

These values were obtained as shown below: 

ep =[ (x-xo)/Kp] x 100             (3.2) 

Assume ep = 2% and X=120cm3/s and Xo =110cm3/s 

this gives Kp = 5 

To obtain KD  

p(t) = KD (dep/dt)             (3.3) 

p(t) is taking to be 5s and since a positive rate of change of error produces 

a positive derivative mode output , then KD is given to be 5s. 

To obtain Ki 

Ki = - 0.15% of controller output per second per percentage error, this is 

given to be -4.67/s/%, therefore Ki = 0.7005/s 

T 

dt 
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Having obtained these values, it was applied to the three mode equation 

for controller output (see eqn 3.1) 

We have that p1=5t +1.75t
2
+22.5; p2=3.5(t-1) +1.75t

2
+26.75;  

P3=-0.875t
2
+6.25t+21.625     (3.4) 

3.3 Problem Formulation: 

In addition to other limitations stated in section 2.7 PID controllers 

operate in single input single output (SISO) mode. Also the tuning of the 

PID variables involves trial and error method and rigorous mathematical 

procedures.  
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CHAPTER FOUR 

SYSTEM DESIGN 

The design stage of the intelligent process control is discussed below. 

4.1 The Design of Intelligent Process Control System Using Fuzzy Network 

The fuzzy control system design follows the following steps: 

i) Obtain the system‘ operational specifications and inputs and 

outputs. 

ii) Obtain the fuzzy sets for the inputs 

iii) Determine the rule set 

iv)  Determine the defuzzification 

v) Run through test suite to validate system and adjust systems as 

required. 

vi) Complete document and release to production. 

The detailed discussion of what happens at each step now follows: 

4.1.1 Obtaining the system’ operational specifications and inputs and 

outputs:  

This involves the Universe of Discourse (Ȕ) which is the range of all 

possible values that comprise the input to the fuzzy system and also the 

output.  

It is given by:  

                              Ȕ=UL+UP+UT                     (4.1) 

Where   UL=fuzzy parameters for liquid level 
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              UP=fuzzy parameters for pressure 

              UT=fuzzy parameters for temperature  

4.1.2 Obtaining the fuzzy sets (U) for the inputs: 

 Fuzzy set (U) is any set that empowers its members to have different 

grades of membership in an interval and the values obtained are based 

on the system adaptation during training. The fuzzy set for liquid level 

(UL), pressure (UP) and temperature (UT) is depicted below: 

      UL= {H5, H4, H3, H2, H1} = {12, 11, 10, 9, 8,}        (4.2) 

      UP= {P5, P4, P3, P2, P1}    = {15, 12, 9, 6, 3}        (4.3) 

      UT= {T5, T4, T3, T2, T1}   = {70, 60, 50, 40, 30.}        (4.4) 

 

To determine the fuzzy set for both the input and output variables, we 

have that:  

For change in liquid level (dl) with reference to the set point 

H5 - Very high    12 

H4 - High     11 

H3 - Zero (at set point)      10 

H2   -        low      9 

H1 - very Low     8 
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For valve settings (Vo): 

Vw - Very Wide   5  

W - Wide    4 

Nm - Normal   3 

Na - Narrow   2 

VNa - Very Narrow  1 

 

For the outflow rate (Rout) in (cm
3
/s): 

VH - Very High  150 

H  - High   120 

N - Normal  90  

L - Low   60 

VL - Very Low  30  

 

The fuzzy inference system for liquid level in MATLAB environment is 

shown in Figure 4.1a (See Appendix C) 
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 The rule sets for the water level are as follows: 

Rout = Rate of outflow 

dL = Change in water level 

Vo = Valve setting     

The fuzzy parameters for temperature in (
o 
C) 

T5 = ᶿ5 = very hot      (70) 

T4 = ᶿ4 = hot             (60) 

Figure 4.1a: Fuzzy inference system for water level in MATLAB 
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T3 = ᶿ3 = warm         (50) 

T2 = ᶿ2 = cold           (40) 

T1 = ᶿ1 = very cold   (30) 

 

The heater settings: 

HT5 = Very High   

HT4= High 

HT3= medium 

HT2= Low 

HT1= Very Low 

 

The heater control settings: 

Hc5 = Very High 

Hc4= High 

Hc3= Normal 

Hc2= Low 

Hc1= Very Low 

The fuzzy inference system for temperature in MATLAB environment is 

shown in Figure 4.1b 
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The fuzzy parameters for pressure in KN/m
2
: 

P5 = Very High    15 

P4 = High             12 

P3 = Normal         9 

P2 = Low              6 

P1 = Very Low     3 

Figure 4.1b: Fuzzy inference system for temperature in MATLAB 
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4.1.3 Membership functions (UA) 

This is given by 

UAPC = UAL+ UAT + UAP        (4.5) 

Where  

UAL = DL + ROUT   + VO        (4.6) 

UAT = T + HT   + HC        (4.7) 

UAP   =   P +   HL +VOP        (4.8) 

And 

DL = {H5, H4, H3, H2, H1} = {12, 11, 10, 9, 8}     (4.9) 

ROUT = {VH, H, N, L, VL} = {7, 6, 5, 4, 3}     (4.10) 

VO= {VW, W, N, NA, VNA} = {5, 4, 3, 2, 1}     (4.11)  
 

Using MATLAB, figure 4.2a, fig 4.2b and 4.2c, shows the membership 

functions of the liquid level, outflow rate, and the valve setting 

respectively. Membership functions are used in the fuzzification and 

defuzzification steps of a Fuzzy Logic System to map the non-fuzzy input 

values to fuzzy linguistic terms and vice versa. A membership function is 

used to quantify a linguistic term. Note that an important characteristic of 

fuzzy logic is that a numerical value does not have to be fuzzified using 

only one membership function. In other words, a value can belong to 

multiple sets at the same time. For example, figure 4.2a, a liquid level 

value can be considered as ―Very High (H5)‖ and ―High (H4)‖ at the same 
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time, with different degree of memberships. Note that that H5 to H1 are 

the degree of membership which the system can comprise. 

 

Fig 4.2a:  Membership function for liquid level in MATLAB 
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In Figure 4.2b, the memberships functions  for outflow rate value are 

―Very High (V5)‖, ―High (H)‖, ―Normal(N)‖,  Low(L) and Very Low 

(VL)‖ and can be considered as ―Very Low‖ and ―Low‖ at the same time, 

based on the value it acquired at that point.   

  

Figure 4.2b: Membership function for outflow rate in MATLAB 
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Figure 4.2c shows the membership functions for valve setting are ―Very 

Wide (VW)‖, ―Wide (W)‖, ―Normal(Nm)‖,  Narrow(Na) and Very Narrow 

(VNa)‖ and can be considered as ―Very Wide‖ and ―Wide‖ at the same 

time, depending on its value at that point.   

Figure 4.2c: Membership function for valve setting in MATLAB 
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The fuzzy sets for the temperature (T), Heater (H) and Heater Control 

(HC) from which the membership functions is formulated is shown below 

T = {T5, T4, T3, T2, T1}    = {70, 60, 50, 40, 30.}         (4.12)  

HT ={HT5, HT4, HT3, HT2, HT1) ={100, 80, 60, 40, 20}        (4.13)  

HC= HC5, HC4, HC3, HC2, HC1) = {5, 4, 3, 2, 1}         (4.14) 

 Figure 4.2d to 4.2f shows the membership functions for temperature, 

heater and heater control in MATLAB. 

           Figure 4.2d: Membership function for temperature in MATLAB 
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In Figure 4.2e shows the membership function for the heater in 

MATLAB, the output of the heater control can fall in any point in the 

fuzzy set axis giving values like 20.5, 80.2, 60.8 e.t.c, The fuzzy 

Figure 4.2e:  Membership function for the heater in MATLAB 
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controller cannot take critical decision on what the final output should be 

and this is where the neural network fine tunes the variables based on its 

characteristics at that point in time. It approximates it and deduces an 

action. 

 

 

 

Figure 4.2f: Membership function for heater control in MATLAB 
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In Figure 4.2f, the membership functions for heater control are ―Very 

High (Hc55)‖, ―High (Hc4)‖, ―Normal (Hc3)‖, ―Low (Hc2)‖ and ―Very 

Low‖ (Hc1)‖ and can be considered as ―Normal‖ and ―Low‖ at the same 

time, with different degree of memberships.   

The membership functions for the pressure (P), water level (HL) and 

pressure valve (VOP) was shown below and Fig 4.2g, 4.2h and 4.2i shows 

this in MATLAB respectively. 

P = {P5, P4, P3, P2, P1} = {15, 12, 9, 6, 3}          (4.15) 

HL = {H5, H4, H3, H2, H1= {12, 11, 10, 9, 8}         (4.16)  

VOP = {VW, W, N, NA, VNA} = {5, 4, 3, 2, 1}         (4.17)                                   
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Fig 4.2g: Membership function for pressure in MATLAB 



 

 

 

 

 

92 

 

 Figure 4.2h: Membership function for water level in MATLAB 
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Figure 4.2i: Membership function for valve setting in MATLAB 



 

 

 

 

 

94 

4.1.4 Depiction of the Fuzzy Sets (f)  

fUAPC = (fUAL U  fUAT  U fUAP )            (4.18) 

where fuzzy sets for liquid level, temperature and pressure is shown in fuzzy 

set notation below. 

fUAL        (DL ᶯ ROUT  )= VO               (4.19) 

fUAT        (T  ᶯ HT)   = HC            (4.20) 

fUAP       ( P ᶯ HL) =VOP           (4.21) 

4.1.5 Determining the fuzzy rule set: The depiction of the fuzzy sets is 

used to create a matrix table which makes it easier for the developing of 

the fuzzy rule. Fig 4.3a, 4.3b, 4.3c and table 4.3a, 4.3b, 4.3c shows the 

block diagram for the fuzzy control system and matrix table respectively 

for liquid level, temperature and pressure. The first two blocks contain 

the fuzzy sets, the second single block represents the fuzzy rule base 

while the last block depicts the defuzification that is the output of the 

control respectively for each of the variables under control. 
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Valve 

setting 

H5 

 

H4 

 

H3 

 

H2 

 

H1 

D
 E

 F
 F

 U
 Z

 I F
 I C

 T
 I O

 N
 

VH 

 

H 

 

N 

 

L 

 

VL 

Outflow 

rate 

(Rout) 

IF Rout is VH AND dl is H5 THEN VO IS Nm 

If Rout is VH AND dl is H5 THEN VO IS Na 

If Rout is VN AND dl is H5 THEN VO IS Na   

If Rout is L AND dl is H5 THEN VO IS VNa 

If Rout is VLAND dl is H5 THEN VO IS VNa 

If Rout is L AND dl is H3 THEN VO IS Nm 

 

……other rules……… 

Liquid 

level (Dl) 

T5 

 

T4 

 

T3 

 

T2 

 

T1 

D
 E

 F
 F

 U
 Z

 I F
 I C

 T
 I O

 N
 

HT5 

 

HT4 

 

HT3 

 

HT2 

 

HT1 

 

Heater (T) 

IF T is T5 AND HT is HT5 THEN Hc is Hc1 

 

 

IF T is T5 AND HT is HT4 THEN Hc is Hc1 

 

IF T is T5 AND HT is HT3 THEN Hc is Hc1 

 

IF T is T5 AND HT is HT2 THEN Hc is Hc1 

 

IF T is T5 AND HT is HT1 THEN Hc is Hc2 

 

IF T is T5 AND HT is HT5 THEN Hc is Hc1 

 

……other rules……… 

Temperature (T) 

Heater 

control 

(HC) 

Figure 4.3a: Block diagram of fuzzy control system for water level 

Figure 4.3b:  Block diagram of fuzzy control system for temperature 
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The matrix tables (table 4.1, 4.2, 4.3) are 5 X 5 matrix table with 5 rows 

and 5 columns in each case. The rows and columns represent one of the 

inputs each for the parameter being considered whereas the intersection 

(blocks inside) represents its output. For instance, in the matrix table for 

water level in table 4.1, the row represents the liquid level, the column 

represents the outflow rate while the intersection of both (internal blocks) 

is the output in this case the valve setting. In the matrix table for 

temperature in table 4.2, the row represents the temperature rating, the 

column represents the heater while the intersection of both (internal 

Valve 

setting 

(VOP) 

P5 

 

P4 

 

P3 

 

P2 

 

P1 

D
 E

 F
 F

 U
 Z

 I F
 I C

 T
 I O

 N
 

H5 

 

H4 

 

H3 

 

H2 

 

H1 

 

Liquid 

level (HL) 

If P is P5 and H is H5 THEN V is VNA 

 

If P is P5 and H is H4 THEN V is VNA 

 

If P is P5 and H is H3 THEN V is VNA 

 

If P is P5 and H is H2 THEN V is NA 

 

If P is P5 and H is H1 THEN V is NA 

 

If P is P5 and H is H5 THEN V is VNA 

 

 

……other rules……… 

 

Pressure (P) 

Figure 4.3c:  Block diagram of fuzzy control system for pressure 
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blocks) is the output in this case the heater control. The matrix table for 

pressure in table 4.3, the row represents the pressure rating, the column 

represents the liquid level while the intersection of both (internal blocks) 

is the output in this case the valve setting for pressure.  

 

 

Table 4.1 was used to generate the 25 fuzzy rules as shown in table 4.5a 

 

Dl / Rout 

 

VH 

 

H 

 

N 

 

L 

 

VL 

 

H5 

 

Nm 

 

Na 

 

Na 

 

VNa 

 

VNa 

 

H4 

 

Nm 

 

Nm 

 

Na 

 

VNa 

 

VNa 

 

H3 

 

Vw 

 

W 

 

Nm 

 

Na 

 

VNa 

 

H2 

 

Vw 

 

W 

 

W 

 

Na 

 

Nm 

 

H1 

 

Vw 

 

VW 

 

W 

 

W 

 

W 

TABLE 4.1:  Matrix table for outflow rate 
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T/HT 

 

HT5 

 

HT4 

 

HT3 

 

HT2 

 

HT1 

 

T5 

 

Hc1 

 

Hc1 

 

Hc1 

 

Hc1 

 

Hc2 

 

T4 

 

Hc1 

 

Hc1 

 

Hc1 

 

Hc2 

       

      Hc2 

 

T3 

 

Hc1 

 

Hc2 

 

Hc3 

 

Hc4 

 

Hc5 

 

T2 

 

Hc1 

 

Hc2 

 

Hc3 

 

Hc4 

 

Hc5 

 

T1 

 

Hc2 

 

Hc3 

 

Hc4 

 

Hc4 

 

Hc5 

TABLE 4.2:  Matrix Table for Temperature 
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Table 4.2 was used to generate the 25 fuzzy rules as shown in table 4.5b 

while table 4.3 was used to generate the 25 fuzzy rules as shown in table 

4.5c 

 

P/HL 

 

H5 

 

H4 

 

H3 

 

H2 

 

H1 

 

P5 

 

VNA 

 

VNA 

 

VNA 

 

NA 

 

NA 

 

P4 

 

VNA 

 

VNA 

 

NA 

 

NA 

 

NA 

 

P3 

 

VNA 

 

VNA 

 

NM 

 

W 

 

W 

 

P2 

 

VNA 

 

NM 

 

NM 

 

W 

 

W 

 

P1 

 

NM 

 

NM 

 

W 

 

VW 

 

VW 

TABLE 4.3: Matrix Table for Pressure 
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4.1.6 The Algorithm and Flowchart 

The algorithm shown below is the stepwise procedures taken to develop 

the source code of the (ROUT, D), 5x5 matrix table and the flowchart (fig 

4.4a (flowchart for the matrix) shows the diagrammatic representation of 

the flow or execution of the algorithm. VB.Net software was used to 

develop a generalized 5x5 matrix table (eij) for all the variables under 

consideration. Table 4.4 shows the matrix table used while fig 4.4b shows 

the matrix table of eij in VB.Net environment (See Appendix). In the 

table above eij   where i =1 to 5 and j =1 to5.  

1. Start 

2.  DIM (ROUT , D) 

3. For RO = 1 TO 5 

4. For DI = 1TO 5 

5. INPUT (RO , DI) 

6. NEXT DI 

7. NEXT RO 

8. END 
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Figure 4.4a: Flowchart of the Matrix  
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Table 4.4: Matrix table for eij 

Rout /D R1out  R2out  R3out  R4out  R5 

D1 e11 e12 e13 e14 e15 

D2 e21 e22 e23 e24 e25 

D3 e31 e32 e33 e34 e35 

D4 e41 e42 e43 e44 e45 

D5 e51 e52 e53 e54 e55 

  



 

 

 

 

 

103 

 

  

 

 

 

Figure 4.4b Matrix table in VB.Net environment  
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4.1.7 The Fuzzy Rule Table 

Tables 4.5a, 4.5b and 4.5c show the fuzzy rule table for liquid level, 

temperature, and pressure respectively. They contained possible fuzzy 

operations in ―AND operator‖ on the sets comparatively. 

In Table 4.5a the Rule Base for liquid level/Outflow rate was derived 

from the Matrix Table of table 4.3a. For example, rule one was formed 

from IF ―column 1‖ AND ―row 1‖, THEN the ―Intersection‖ become the 

output. This is how the twenty five rules were generated. 

Table 4.5b shows the Rule Base for temperature and was derived from 

the Matrix Table of table 4.3b. For example, rule one was formed from IF 

―IF T(Temperature) is T5 and HT(Heater) is HT5THEN Hc is Hc1 (which 

is the output). Rule two was formed from IF ―IF T (Temperature) is T5 

and HT (Heater) is HT4THEN Hc is Hc1). Rule three was formed from IF 

―IF T (Temperature) is T5 and HT (Heater) is HT3THEN Hc is Hc2 and 

etcetera. This is also how the twenty- five rules for each of the variables 

were generated. 

However, Table 4.5c shows the Rule Base for pressure and was derived 

from the Matrix Table of table 4.3c just as discussed above. 
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RULE CONDITION ANTECEDENT 

1. If Rout is VH AND dl is H5  THEN Vo is Nm 

2. If Rout is VH AND dl is H5  THEN Vo is Na 

3. If Rout is VN AND dl is H5  THEN Vo is Na 

4 If Rout is L AND dl is H5  THEN Vo is VNa 

5 If Rout is VLAND dl is H5  THEN Vo is VNa 

6 If Rout is VH AND dl is H4  THEN Vo is Nm 

7 If Rout is  H AND dl is H4 THEN Vo is Nm 

8 If Rout is N  AND dl is H4  THEN Vo is Na 

9. If Rout is L  AND dl is H4 THEN Vo is Vma 

10 If Rout is VL AND dl is H4  THEN Vo is VNa 

11 If Rout is VH AND dl is H3 THEN Vo is Vm 

12 If Rout is H AND dl is H3  THEN Vo is W 

13 If Rout is N AND dl is H3  THEN Vo is Nm 

14 If Rout is L AND dl is H3  THEN Vo is Na 

15 If Rout is VL AND dl is H3  THEN Vo is VNa 

16 If Rout is VH AND dl is H2  THEN Vo is Vw 

17 If Rout is H AND dl is H2 THEN Vo is  W 

18 If Rout is N AND dl is H2  THEN Vo is  W 

19 If Rout is L AND dl is H2  THEN Vo is Na 

20 If Rout is VL AND dl is H2  THEN Vo is Nm 

21 If Rout is VH AND dl is H1  THEN Vo is Vm 

22 If Rout is H AND dl is H1  THEN Vo is Vw 

23 If Rout is N AND dl is H1  THEN Vo is W 

24. If Rout is L AND dl is H1  THEN Vo is W 

25 If Rout is VL AND dl is H1  THEN Vo is W 

TABLE 4.5a:  Rule Base for Outflow rate 
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RULE CONDITION ANTECEDENT 

1. If T is T5 and HT is HT5 THEN Hc is Hc1 

2. If T is T5 and HT is HT4 THEN Hc is Hc1 

3. If T is T5 and HT is HT3 THEN Hc is Hc1 

4 If T is T5 and HT is HT2 THEN Hc is Hc1 

5 If T is T5 and HT is HT1 THEN Hc is Hc2 

6 If T is T4 and HT is HT5 THEN Hc is Hc1 

7 If T is T4 and HT is HT4 THEN Hc is Hc1 

8 If T is T4 and HT is HT3 THEN Hc is Hc1 

9. If T is T4 and HT is HT2 THEN Hc is Hc2 

10 If T is T4 and HT is HT1 THEN Hc is Hc2 

11 If T is T3 and HT is HT5 THEN Hc is Hc1 

12 If T is T3 and HT is HT4 THEN Hc is Hc2 

13 If T is T3 and HT is HT3 THEN Hc is Hc3 

14 If T is T3 and HT is HT2 THEN Hc is Hc4 

15 If T is T3 and HT is HT1 THEN Hc is Hc5 

16 If T is T2 and HT is HT5 THEN Hc is Hc1 

17 If T is T2 and HT is HT4 THEN Hc is Hc2 

18 If T is T2 and HT is HT3 THEN Hc is Hc3 

19 If T is T2 and HT is HT2 THEN Hc is Hc4 

20 If T is T2 and HT is HT1 THEN Hc is Hc5 

21 If T is T1 and HT is HT5 THEN Hc is Hc2 

22 If T is T1 and HT is HT4 THEN Hc is Hc3 

23 If T is T1 and HT is HT3 THEN Hc is Hc4 

24. If T is T1 and HT is HT2 THEN Hc is Hc4 

25 If T is T1 and HT is HT1 THEN Hc is Hc5 

 

 

 

TABLE 4.5b: Rule Base for Temperature  
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RULE CONDITION ANTECEDENT 

1. If P is P5 and H is H5 THEN V is VNA 

2. If P is P5 and H is H4 THEN V is VNA 

3. If P is P5 and H is H3 THEN V is VNA 

4 If P is P5 and H is H2 THEN V is NA 

5 If P is P5 and H is H1 THEN V is NA 

6 If P is P4 and H is H5 THEN V is VNA 

7 If P is P4 and H is H4 THEN V is VNA 

8 If P is P4 and H is H3 THEN V is NA 

9. If P is P4 and H is H2 THEN V is NA 

10 If P is P4 and H is H1 THEN V is NA 

11 If P is P3 and H is H5 THEN V is VNA 

12 If P is P3 and H is H4 THEN V is VNA 

13 If P is P3 and H is H3 THEN V is NM 

14 If P is P3 and H is H2 THEN V is W 

15 If P is P3 and H is H1 THEN V is W 

16 If P is P2 and H is H5 THEN V is VNA 

17 If P is P2 and H is H4 THEN V is NM 

18 If P is P2 and H is H3 THEN V is NM 

19 If P is P2 and H is H2 THEN V is W 

20 If P is P2 and H is H1 THEN V is W 

21 If P is P1 and H is H5 THEN V is NM 

22 If P is P1 and H is H4 THEN V is NM 

23 If P is P1 and H is H3 THEN V is W 

24. If P is P1 and H is H2 THEN V is VW 

25 If P is P1 and H is H1 THEN V is VW 

 

 

TABLE 4.5c: Rule Base for Pressure  
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The fuzzy rule for liquid level, pressure and temperature was 

implemented respectively in the MATLAB environment. The evaluations 

of the fuzzy rules and the combination of the results of the individual 

rules are performed using fuzzy set operations. 

Figures 4.5a, 4.5c and 4.5e show the fuzzy rule editor while figures 4.5b, 

4.5d and 4.5f show the surface viewer of the fuzzy rule in MATLAB. 

Based on the descriptions of the input and output variables defined earlier 

on, the Rule Editor allows you to construct the rule statements 

automatically, by clicking on and selecting one item in each input 

variable box, one item in each output box, and one connection item based 

on the fuzzy rule for the process under control in this case ―AND‖. Rules 

may be changed, deleted, or added, by clicking on the appropriate button.  

The Surface Viewer represents the mapping of the variables that is 

outflow rate, temperature and pressure in each case. Since this is a three-

input three-output case, we can see the entire mapping in one plot as they 

generate three-dimensional plots that MATLAB can adeptly manage  
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Figure 4.5a Fuzzy rule editor for water level in MATLAB  
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Figure 4.5b Fuzzy rule surface viewer for water level in MATLAB  
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Figure 4.5c: Fuzzy rule editor for pressure in MATLAB  
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Fig 4.5d: Surface viewer of Fuzzy rule for pressure in MATLAB  
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 Figure 4.5e: Fuzzy rule editor for temperature in MATLAB  
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4.1.8 Determining the Defuzzification.  

Since fuzzy logic controller can have only one output, it must complete a 

process called deffuzification to determine the actual final output value. 

Defuzzification is performed according to the membership function of the 

output variable. In figures 4.6a, 4.6b and 4.6c shows the Rule Viewer for 

outflow rate, temperature and pressure respectively. They display a 

Fig ure 4.5f: Surface viewer of fuzzy rule for temperature in MATLAB  
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roadmap of the whole fuzzy inference process. The three small plots 

across the top of the figure represent the antecedent and consequent of the 

first rule. Each rule is a row of plots, and each column is a variable. The 

first two columns of plots show the membership functions referenced by 

the antecedent, or the if-part of each rule. The third column of plots 

shows the membership functions referenced by the consequent, or the 

then-part of each rule and that is the column for defuzzification. If we 

follow rule 1 across the top of the diagram through the twenty-fifth rule, 

we can see the consequents  has been truncated to exactly the same 

degree as the (composite) antecedent--this is the implication process in 

action. The aggregations occur down the third column, and the resultant 

aggregate plot and the defuzzified output value is shown through the 

aggregate fuzzy set. The Rule Viewer also shows how the shape of 

certain membership functions influences the overall result.. 
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` 

       Outflow rate 

Figure 4.6a: Rule viewer for outflow rate  
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 Figure 4.6b: Rule viewer for temperature  
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Figure 4.6c Rule viewer for pressure  
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4.1.9 Running Test Suite to Validate System, Adjusting Systems, 

Completing Document and Releasing for production. 

After the defuzification stage, the fuzzy logic network was tested and 

necessary adjustment made before it is implemented in the process 

control as shown in Figure 4.7. It shows the block diagram of the PID 

fuzzy controller of the tank water level. The process under control has a 

valve that controls the inflow of liquid into the tank and another one that 

controls the outflow from the tank. The control system tries to keep the 

liquid level in the tank constant within the set-point for level. This is 

achieved by adjusting the inflow rate and outflow rate dynamically as 

appropriate by the microcontroller. The heater is being controlled by the 

heater control while the stirrer ensures that the liquid is at uniform 

temperature. Four sensors where used:  

1) To sense the liquid level in the tank, 

2) To sense the outflow rate from the tank 

3) To sense the temperature and  

4) To sense the pressure 

The four sensor outputs in millivolt after being amplified are selected one 

at a time via 4 X 1 analog multiplexer. The selected signal is then 

converted to digital pattern via an analog to digital converter. The 

digitalized sensor output is then sent to the microcontroller which 

controls the process.  
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Figure 4.7: Fuzzy controller of the process under control  
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The keyboard serves as the input device for the controlled parameters 

while the Liquid Crystal Display (LCD) displays the output of the 

controlled variables. Outputs of the matrix are as shown in the matrix 

tables discussed in table 4.1, 4.2 and 4.3. 

4.2 The Neural Network Design: The procedures for designing a neural 

network for the process under control involve the followings: 

 Collection of data (same as that of fuzzy network)  

  Creating and Configuring the network 

 Training the network 

 Validating and Using the network 

4.2.1 Collection of data: The process involves collecting of data and 

separating them into training set and a test set. The training cases are used 

to adjust the weights, and the test cases are used for network validation. 

The data used for training and testing must include all the attributes that 

are useful for solving the problem. The system can only learn as much as 

the data can tell. The data is the same as fuzzy sets (see section 4.1.2) 

4.2.2 Creating and configuring the network: Once the training and 

testing data sets are identified, the next step is to design the structure of 

the neural networks. A feed-forward four layer showing the neural 

controller was configured for liquid level, pressure and temperature 
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respectively (see figures 4.8a, 4.8b and 4.8c). The first layer represents 

input variables, the middle (hidden) layers represents membership 

functions and fuzzy rules respectively and the fourth layer represents the 

output variables. 
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Figure 4.8a: Neural controller for the water level  
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Figure 4.8b: Neural controller for the temperature  
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Figure 4.8c:  Neural controller for pressure 
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4.2.3 Training the Network: Once the network structure is chosen, a 

learning algorithm to identify a set of connection weights that best cover 

the training data and have the best predictive accuracy is achieved. For 

the feed forward topology which was applied in this work, the back 

propagation algorithm was implemented. Back propagation is the most 

widely used supervised learning algorithm in neural computing. During 

supervised training, externally provided correct patterns are compared 

with the neural network‘s output and the feedback is used to adjust the 

weights until all the training patterns are categorized as correctly as 

possible by the network. Since many commercial packages are available 

on the market, there is no need to implement the learning algorithm 

instead a suitable commercial package (Neural ware) was chosen to 

analyze the data. Training of artificial neuron (see the flowchart in figure 

4.9) is an iterative process that starts from a random set of weights and 

gradually enhances the fitness of the network model and the known data 

set .The iteration continues until the error sum is converged to below a 

preset acceptable level. In back propagation two parameters, learning rate 

and momentum was adjusted to control the speed of reaching a solution.  
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4.3 Validating and using the network 

Some data conversation is necessary in the training process. This 

includes, changing the data format to meet the requirements of the 

software, normalization of the data scale to make them more comparable 

and removing problematic data. Once the training data set is ready, it is 

loaded into the package and the learning process executed. Once the 

training has been completed, the network is tested to examine the 

performance of the derived network model. The implementation of the 

Y 

N 

Figure 4.9: Flowchart for training a neuron 



 

 

 

 

 

127 

network requires interfaces with other computer based information 

systems as discussed below.   

4.4 Neural Control of Tank Water Level  

The neural control of the process was designed as shown in fig 4.10a 
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The Neural control system running on PC interfaced to the process under 

control via an INTEL 8286 Bidirectional Buffer. When the signal line B 

is active, the buffer sends information to the process under control via the 

output port latch. Similarly, when the signal line A is active, the feedback 

signals from the process are input via the input port latch to the 

bidirectional buffer and from thence to the PC. The process under Neural 

control has a valve that controls the inflow of the liquid into the tank and 

another one that controls the outflow from the tank. The heater increases 

the temperature of the liquid while the stirrer is used to ensure that the 

liquid is of uniform temperature. The control system tries to keep the 

liquid level in the tank constant within the set point for level. This is 

achieved by neural control by adjusting the inflow rate and outflow rate 

dynamically as appropriate. Four sensors were used: 1) to sense the liquid 

level in the tank and 2) to sense the outflow rate from the tank, 3) to sense 

the temperature and 4) to sense the pressure of the system. The four 

sensor outputs are selected one at a time via 4 X 1 analog multiplexer. 

The selected signal is first amplified and then converted to digital pattern 

via an analog to digital converter. The digitalized sensor outputs are 

latched by the input port latch and forwarded to the neural control system 

via the bidirectional buffer. Figure 4.10b depicts the real time simulation 

of Neural control of tank water level in Proteus. 
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Figure 4.10b: Real time simulation of neural controller of tank water level in Proteus 
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The real time simulation of the control system used as a typical industrial 

scenario is achieved by clicking the play button. When this is done the 

liquid from the upper tank flows to the lower tank. The valve to the water 

inlet of the upper tank is being controlled based on the rate of the outflow 

from the lower tank. This is done to make sure that the set point of the 

process under control is maintained. The heater heats the liquid while the 

stirrer ensures that a uniform liquid temperature is maintained. The alarm 

sub system sounds at indication of any fault. One of the four computer 

system interfaces displays the possible rectification methods of the fault 

and the time evolution of such faults while the other three, displays show 

the various readings of the outflow rate/liquid level, the pressure and 

temperature. When Proteus software is used to implement a real-time 

simulation, not all the system components are placed on the layout. Some 

are placed in the sub sheet e.g. controller; some are not visible but are 

there by default e.g. reset circuit, crystal microcontroller, power, etc; 

while some are taken care of by the control program. In Proteus design, 

this is called ―referencing.  

4.5 Intelligent Process Control System Using NeuroFuzzy Network 

Fuzzy neural networks (FNN) combine fuzzy logic with artificial neural 

networks. In this work, the input and output variables processed by the 

fuzzy logic was fed into the neural networks for learning. (This step is 
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called fuzzification). The neural network then takes the fuzzified input 

and output scales to derive a model which is converted back to the 

original input and output scales (defuzzification). Then the output of the 

―defuzified‖ fuzzy system became input to the process under control as 

shown in the block diagram in Figure 3.1. The Fuzzy Neural controller of 

tank water level shown in Figure 4.12a has four layers. The first layer 

represents the input variables for liquid level, temperature and pressure 

respectively, the second represents their membership sets, the third layer 

represents the fuzzy rules and the fourth layer represents the defuzified 

output for the three variables under consideration. The rule layer 

produces seventy-five rules altogether, twenty-five rules from each of the 

variables and gives three outputs at a time for each of the three variables 

that satisfies the condition at a particular instance. 

The design specification is in two stages. The first stage has the personal 

computer (PC) where all the software controlling the system is installed. 

The PC has limited ports which are used for other computer peripheral 

and communication devices. Out of these ports, one is then used for the 

bidirectional buffer which interfaced the process control system and the 

PC. This helps to eliminate the use of two ports for input and output from 

the PC. When line A is active (Figure 4.11a), line B becomes inactive, 

and then feedback signal from the process via input latch moves to the 

bidirectional buffer and goes to the PC. The feedback signals from the 
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process sensors pass through a set of stages before reaching the 

bidirectional buffer. After amplification of the signal, the multiplexer 

selects one out of the four variables at a time and sends it to Analog 

Digital Converter which digitizes the signal and then passes it to the 

buffer through the input latch. When line B is active, the buffer sends 

information to the process under control via the output latch to the 

process through the actuators. 

 

 

 

 

 

 

 

 

 

 

 

 

The second stage as shown in figure 4.11b shows the process under fuzzy 

neural control, which shows a tank containing the liquid that is to be at a 

set level as water flows in and out of the tank, the heater heats up the 

Figure 4.11a: Design specification for Fuzzy Neural control of tank water level (First stage) 
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liquid and the stirrer continually stirs it to ensure a uniform temperature. 

The three actuators shown are the interfaces to the process under control, 

and they are the heater control interface, the valve control interface and 

the power control interface. Four transducers which sense the variables 

(liquid level, temperature, pressure and outflow rate) were used to convert 

each respective signal to electrical signal which is sent to the multiplexer 

where one is selected at a time and from the ADC through the input port 

latch back to the PC. When Figures 4.11a and 4.11b are combined, figure 

4.12b, the model diagram results. 
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Figure 4.12b shows the block diagram of the Intelligent Process Control 

System Using Fuzzy-Neural Network. Here, the Fuzzy Neural control 

system running on PC interfaced to the process under control via an 

INTEL 8286 Bidirectional Buffer. Just like in the neural controller, when 

the signal line B is active, the buffer sends information to the process 
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Figure 4.12a: Fuzzy Neural control of tank water level 
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under control via the output port latch. Similarly, when the signal line A 

is active, the feedback signals from the process are input via the input 

port latch to the bidirectional buffer and from thence to the PC. The 

process under Fuzzy Neural control has a valve that controls the inflow of 

the liquid into the tank and another one that controls the outflow from the 

tank. The heater increases the temperature of the liquid while the stirrer is 

used to ensure that the liquid is of uniform temperature. The control 

system tries to keep the liquid level in the tank constant within the set-

point for level. This is achieved by Fuzzy Neural control by adjusting the 

inflow rate and outflow rate dynamically as appropriate. Four sensors 

were also used: 1) to sense the liquid level in the tank and 2) to sense the 

outflow rate from the tank, 3) to sense the temperature and 4) to sense the 

pressure of the system. The four sensor outputs are selected one at a time 

via 4-out-of-1 analog multiplexer. The selected signal is first amplified 

and then converted to digital pattern via an analog to digital converter. 

The digitalized sensor output are latched by the input port latch and 

forwarded to the Fuzzy Neural control system via the bidirectional buffer. 
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Figure 4.12b: Block diagram of The Intelligent Process Control System Using Fuzzy-

Neural Network 
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4.6 The Industrial scenario 

It is always necessary to perform a real-time simulation of any control 

system before the circuit is constructed, to ensure the workability of that 

system. The simulated prototype model of the system using Proteus 

software which is a good software tool for real time simulation is shown 

in figure 4.13. In this work, Proteus 7 software package was used for the 

simulation. 

The real time simulation of the control system used as a typical industrial 

scenario is achieved by clicking the play button. When this is done the 

liquid from the upper tank flows to the lower tank. The valve at the water 

inlet of the upper tank is being controlled based on the rate of the outflow 

from the lower tank. This is done to make sure that the set-point of the 

process under control is maintained. The heater heats the liquid while the 

stirrer ensures that a uniform liquid temperature is maintained. The alarm 

sub system sounds at indication of any fault. Figure 4.13 shows the real 

time simulation for a typical Fuzzy Neural controller of tank water level 

in Proteus environment. The first three computer system interface shown 

displays the variables under control (liquid level/outflow rate, pressure 

and temperature) while the fourth one displays the fault diagnosis features 

(type of faults, time of occurrence and possible rectification methods).. It 

should be noted that when Proteus software is used to implement a real-
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time simulation, not all the system components are placed on the layout. 

Some are placed in the sub sheet for example the controller and some are 

not visible but are there by default e.g. reset circuit, bidirectional buffer, 

power, the interfaces, analog to digital converter, the multiplexer etc; 

while some are taken care of by the control program. In Proteus design, 

this is called ―referencing‖. 
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Figure 4.13 Real time simulation for a typical Fuzzy Neural controller of tank water level in Proteus 
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4.7 Design of the Fault Diagnosis System: 

The main aim of the Fault diagnosis system is the monitoring of the 

process control during its normal conditions so as to detect the occurrence 

of failures, recognize the location and time of occurrence. Typical failure 

modes may include leaks, sensor failures, temperature, pressure, valve 

failure, etc which is the characteristics of a process failure as well as a 

variety of vibration induced faults that are affecting mechanical and 

electro-mechanical process elements. In this research fuzzy diagnostic 

system (FDS) was used. The FDS takes features of the process control as 

inputs and then outputs any indication that a failure mode has occurred. 

Fig 4.14 shows the FDS of tank water level.  

 

 

 

 

 

 

 

Figure 4.14: FDS of tank water level. 
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The fuzzification block converts the feature extraction to degree and type 

of failure, the fuzzy rule base is constructed from symptoms that indicate 

a potential failure mode (This is developed directly from user experience, 

simulated models or experimental data). The inference engine determines 

the degree of fulfillment for each rule corresponding to each failure mode 

while the last stage defuzzifies the resulting output to indicate a failure 

and this triggers an alarm and at the same time suggests a solution to the 

fault. Table 4.6 show the rule base for failure, the time of occurred fault 

and rectification techniques. This is easily produced by the inference 

engine. 

 

Time of 

Occurrence 

Observation 

(Rule Base) 

Fault 

(Output) 

Rectification Techniques 

12.00pm If Water level is at  

constant  position Then 

Outflow valve /inflow 

valve is faulty 

Verify which and 

change the valve 

1.00am If Outflow rate is below 

the lower threshold level 

then 

The inflow valve is faulty Change the inflow valve 

    ....etc                 ...  etc             ...  etc             ...  etc 

 

Table 4.6:  Rule base for failure, time of occurred fault and rectification techniques. 
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4.8 The Choice of the Sensor Used 

A sensor is a device that monitors a parameter and produces an output in 

a required form while an actuator is a device that converts an electrical 

signal into a mechanical signal (such as heat, light, sound or movement) 

and vice versa. Actuators and sensors are both transducers (devices that 

change one kind of signal into a different kind of signal). 

The following sensors were considered. 

4.8.1 Piezoelectric Pressure Sensor.  

Piezoelectric Pressure Sensor was considered in this research. 

Piezoelectric elements are bi-directional transducers capable of 

converting stress into an electric potential and vice versa. They consist of 

metalized quartz or ceramic materials. One important factor to remember 

is that it has a dynamic effect, which is providing an output only when the 

input is changing. This means that these sensors can be used only for 

varying pressures .The piezoelectric element has a high-impedance output 

and care must be taken to avoid loading the output by the interface 

electronics. Some piezoelectric pressure sensors include an internal 

amplifier to provide an easy electrical interface. 
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Piezoelectric Pressure sensors (figure 4.15a) convert stress into an electric 

potential and vice versa. Sensors based on this technology are used to 

measure varying pressure.  

4.8.2 Temperature sensors: Temperature sensors tend to measure heat to 

ensure that a process is either; staying within a certain range, providing 

safe use of that application, or meeting a mandatory condition when 

dealing with extreme heat, hazards, or inaccessible measuring points.  

Thermistor was used in this work. Thermistors, are also inexpensive, 

readily available, easy to use, and adaptable temperature sensors. They 

are used, however, to take simple temperature measurements rather than 

for high temperature applications. They are made of semiconductor 

material with a resistivity that is especially sensitive to temperature. The 

Figure 4.15a:  Piezoelectric Pressure Sensor  
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resistance of a thermistor decreases with increasing temperature so that 

when temperature changes, the resistance change is predictable. They are 

widely used as inrush current limiters, temperature sensors, self-resetting 

overcurrent protectors, and self-regulating heating elements. 

 

The 44000 series thermistor element shown in Figure 4.15b is the 

simplest form of thermistor. Because of their compact size, thermistor 

elements are commonly used when space is very limited. OMEGA offers 

a wide variety of thermistor elements which vary not only in form factor 

but also in their resistance versus temperature characteristics. Since 

thermistors are non-linear, the instrument used to read the temperature 

must linearize the reading. 

4.8.3 Capacitance Level Sensors 

Like ultrasonic sensors, capacitance sensors (Figure 4.15c) can handle 

point or continuous level measurement. Capacitance sensor was 

       Figure 4.15b: Thermistor element 
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implemented in this work. They use a probe to monitor liquid level 

changes in the tank, electronically conditioning the output to capacitive 

and resistive values, which are converted to analog signals. The probe 

and the vessel wall equate to two plates of a capacitor, the liquid to the 

dielectric medium. Because the signal emanates from level changes 

alone, material build-up on the probe has no effect. Non-conductive fluid 

vessels may dictate dual probes or an external conducting strip.  

The probe, which can be rigid or flexible, commonly employs conducting 

wire insulated. Using stainless steel as the probe's base metal provides the 

extra sensitivity needed for measuring liquids that are non-conductive, 

granular, or low in dielectric properties (dielectric constant less than 4). 

Flexible probes must be used when there is insufficient clearance for a 

rigid probe, or in applications that demand very long lengths. Rigid 

probes offer higher stability, especially in turbulent systems, where 

swaying of the probe can cause signal fluctuations. 

 

Figure 4.15c: Capacitance Measurement Probe 
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Capacitance Measurement Probe is able to withstand high temperatures 

and pressures, and impervious to many corrosives, LV3000/4000 Series 

probes give reliable continuous level measurements in difficult 

applications. Appropriate for liquids, pastes, and some solids–whether 

conductive or non-conductive–they have no moving parts and are easy to 

install. After rectifying and filtering incoming power, generating a radio 

frequency signal, and calculating changes in current, the electronic 

circuitry produces a 4 to 20 mA 2-wire output signal proportional to the 

process level. 

4.8.4 Calorimetric Flow meter 

The Calorimetric Flow meter was used in this project. Calorimetric Flow 

meter principle for fluid flow measurement is based on two temperature 

sensors in close contact with the fluid but thermal insulated from each 

other. See Fig 4.15d 

 

One of the two sensors is constantly heated and the cooling effect of the 

flowing fluid is used to monitor the flow rate. In a stationary (no flow) 

Figure 4.15d:  Calorimetric Flow meter 
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fluid condition there is a constant temperature difference between the two 

temperature sensors. When the fluid flow increases, heat energy is drawn 

from the heated sensor and the temperature difference between the 

sensors are reduced. The reduction is proportional to the flow rate of the 

fluid. Response times will vary due the thermal conductivity of the fluid. 

In general lower thermal conductivity requires higher velocity for proper 

measurement. The calorimetric flow meter can achieve relatively high 

accuracy at low flow rates. 
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CHAPTER FIVE 

SYSTEM SIMULATION AND EVALUATION 

5.1 Real –Time Simulation Results and Analysis 

Three software tools were used to implement this work. First is the 

VB.net that was used to develop the matrix table. Each cell of the matrix 

table represents a possible output of the Fuzzy Neural control system. 

Secondly, Proteus was used for real time simulation. Proteus is 

specialized software for virtual implementation of embedded system 

designs, and its use in this project is to check the workability of this 

system in a real-life situation. The readings obtained during the testing of 

the process was tabulated and plotted in a graph using excel.  

5.2 The Fuzzy Network Result and Analysis: After the simulation of 

the system control under fuzzy network, the following data were obtained 

and plotted against time. Table 5.1a shows the fuzzy output for outflow 

rate while Fig 5.1shows the graph. 

 

Rout 

(cm
3
/s) 

23.5 24.3 25.1 50.7 25.1 90.3 100.8 112.2 111.0 112.3 112.5 118.3 120.6 119.9 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.1: Data of fuzzy output for outflow rate 
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 In Figure 5.1, it was observed that the outflow rate for fuzzy network 

gave a sharp rise at 5s before the settling down after 8s. The fuzzy 

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
o

u
t 

in
 c

m
3 /

s

Time in secs

The fuzzy output for outflow rate Rout (cm3/s)

Rout (cm3/s)

Figure 5.1: Fuzzy output for outflow rate 
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network operates on whole number data. When data are in fraction and 

decimals, it cannot deduce what should be the output which is the cause 

of the overshoot between 3s and 5s. 

 Table 5.2 shows the fuzzy output for temperature while Fig 5.2 shows 

the graph of fuzzy output for temperature. 

 

 

T(oC) 29.5 30.1 34.6 35.2 40.0 50.6 50.9 57.8 59.5 60.4 70.8 80.1 80.3 79.4 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.2: Data of fuzzy output for temperature 
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In Figure 5.2, the temperature increased gradually from 30
o
C for 11s to 

get stabilized at 80
o
C between 12s and 14s. The temperature increase was 

a function of the heater which is being controlled by the heater control as 

to keep the liquid at a set temperature. 

 Table 5.3 shows the fuzzy output for pressure while Figure 5.3 shows the 

graph. 

 

 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

te
m

p
e

ra
tu

re
 in

 o
C

time (s)

The fuzzy output for temperarure T(oC)

T(oC)
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From figure 5.3, the graph shows that the pressure in fuzzy logic network 

was not steady but got at its peak at 11s. The pressure of the liquid during 
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Table 5.3: Data of fuzzy output for pressure 
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Figure 5.3: Graph of fuzzy output for pressure  
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the systems operation rose to 7.2KN/m
2
 at 3s, went up and down and got 

at its peak at 12s. 

5.3 The Neural Network Result and Analysis:  

Sometimes the data generated by the fuzzy are not whole numbers and 

the fuzzy network is not intelligent to approximate it and deduce an 

output. Hence the application of Neural Network helps to fine tune the 

data and deduce an action. Table 5.2 gave rise to Table 5.4 which is the 

data for outflow rate which the Neural Network fine-tunes while Figure 

5.4 shows the graph. 

 

 

 

Rout 

(cm
3
/s) 

24 24 25 30 51 90 101 112 111 112 113 118 121 120 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.4: Data of Neural Network for outflow rate 
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Figure 5.4 shows the output of outflow rate performed in neural network. 

It rose gradually from 3s and gave a settling time of 13s. This performed 

much better than that of fuzzy network because the neural network 

approximates data in fractions and deduces an output. 

Table 5.5 shows the data for temperature after fine tuning by the neural 

network while Figure 5.5 graph. 
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T(oC) 30 30 35 35 40 51 51 58 60 60 71 79 80 79 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.5: Data of neural output for temperature  

 

Figure 5.5: Graph of the Neural output for temperature 
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In figure 5.5, the rise time for the temperature was 9s before undershoot 

of 1s and a further rise time of 2s. The neural network performed better 

than the fuzzy logic. There is no much change temperature during the 

systems operation when compared with that of the fuzzy network. 

Table 5.6 shows the data of pressure for the Neural Network after fine 

tuning while Figure 5.6 the graph. 
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Table 5.6: Data of pressure for the neural network  
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In figure 5.6, the pressure of the liquid was going up and down and 

became very high at 13s .This is the same when compared with the fuzzy 

output.  

5.4 The Fuzzy Neural Network Result and Analysis:  

However, the combination of the Fuzzy Network and Neural Network 

directly fine-tunes the data generated by the fuzzy and deduce an action. 

Table 5.7 shows the data of Fuzzy Neural for outflow rate while Figure 

5.7shows the graph.  

 

Rout(cm
3
/s) 23 24 24 24 110 110 111 111 112 112 119 119 120 120 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.7: Data of Fuzzy Neural for outflow rate 
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The outflow rate of Fuzzy Neural plotted in graph (see figure 5.7) shows 

that the Fuzzy Neural Network performed better than Neural Network  

 

alone. There was a sharp rise after 4s, this increased gradually and 

stabilized after 6s.Table 5.8 shows the data of Fuzzy Neural for 

temperature. 
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T(
0
C) 30 40 45 50 50 50 50 59 60 58 57 58 59 59 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.8:  Data of Fuzzy Neural for temperature 

 

Fig 5.8:  Graph of Fuzzy Neural output for temperature 
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Figure 5.8 shows the graph of temperature in fuzzy-neural network 

respectively. Here the temperature rose from (30 to 50) 
O
C for 3s 

stabilized for 3s, rose to 60
o
C for 1s and finally stabilized. This is much 

better than the fuzzy network and neural network alone. 

Table 5.9 shows the data of Fuzzy Neural for pressure while Figure 5.9 

shows the graph.  

 

 

P(KN/m
2
) 3 6 7 5 5 5 5 5.5 6 6 6.5 5 5 5 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.9: Data of Fuzzy Neural for pressure 
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In Figure 5.9 shows the graph of fuzzy neural output for pressure. Here, 

there was an overshoot of pressure at 3s which game to normal at 5s to 

7s, increases again within 4s and finally normalizes at 2s. 

5.5 Performance Evaluation 

It was observed that the Intelligent Process Control Systems Using Fuzzy 

Neural Network gave a steep rise time of 4s and stabilized after 6s. The 

Intelligent Process Control Systems using Fuzzy network rose sluggishly 
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after an undershoot at 5s and stabilized after 9s while the Intelligent 

Process Control Systems using Neural Network kicked off its rise time at 

3s and stabilized after 9s. The Fuzzy Neural model performed better than 

the fuzzy and the neural network respectively considering the rising time 

and stabilizing time. When compared with classical PID whose rise time 

was 3s and took 2s to stabilize, the Fuzzy Neural model performed best 

with a rise time of 1s and showed a smoother overall performance (see 

Table 5.10 and Figure 5.10).  

Similarly, comparison was also shown for temperature output for Fuzzy, 

Neural and Fuzzy Neural for the PID controller. It was observed that for 

the Fuzzy Neural, the temperature started rising and got stabilized at a 

higher temperature when compared with Fuzzy Logic and Neural 

Network output alone. Table 5.10 shows the data while Figure 5.11 

shows the graph. 

 

Rout(cm3/s) for FNN 23 24 24 24 110 110 111 111 112 112 119 119 120 120 

Rout (cm
3
/s) for fuzzy 23.5 24.3 25.1 50.7 25.1 90.3 100.8 112.2 111 112.3 112.5 118.3 120.6 119.9 

Rout (cm3/s) for neural 24 24 25 30 51 90 101 112 111 112 113 118 121 120 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.10: data for outflow rate for Fuzzy, Neural, and Fuzzy Neural network 
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In Figure 5.11, the graphs of temperature for Fuzzy, Neural, and Fuzzy 

Neural Network were compared. It was observed that there was 

uniformity for change in temperature of the liquid for both Fuzzy and 

Neural Network. The change in temperature for Fuzzy Neural Network 

was minimal and better. 
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T(oC) for fuzzy

T(oC) for neural

T(0C) for fuzzy-neural

T(
o
C) for fuzzy 29.5 30.1 34.6 35.2 40 50.6 50.9 57.8 59.5 60.4 70.8 80.1 80.3 79.4 

T(
o
C) for neural 30 30 35 35 40 51 51 58 60 60 71 79 80 79 

T(
0
C) for fuzzy-

neural 

30 40 45 50 50 50 50 59 60 58 57 58 59 59 

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Table 5.11: data of temperature for Fuzzy, Neural, and Fuzzy Neural Network 

Figure 5.11: Joint graph of temperature for Fuzzy, Neural, and Fuzzy Neural 

Network 
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CHAPTER SIX 

SUMMARY AND CONCLUSION 

 6.1 Summary of Achievement: Though very tedious and time 

consuming, yet the joy was that a system has been developed to monitor, 

detect, diagnose and indicate faults in control systems using Fuzzy Neural 

logic principles. 

 6.2 Problems Encountered: So many problems which include the initial 

sourcing of research material and majorly financing were encountered. 

The process of development of VB.net software, the training of the 

neurons and the design of the fuzzy controller was a big challenge. The 

hard disk got crashed in the process and all the data were lost so the work 

has to be re-started all over again. 

6.3 Contribution to Knowledge:  

1) In this research work, Fuzzy Logic PID controller is used to model a 

control system and it has been shown that it is possible without passing 

through the rigorous mathematics needed to establish a transfer function 

for the system under control. 

2). An Artificial Neural Network (ANN) has been used to optimize the 

performance of a Fuzzy Logic PID controller given rise to what is known 

as Fuzzy Neural PID controller. This optimization led to a faster response 

time of 4s compared to 5s for the Fuzzy based PID alone. 

 



 

 

 

 

 

165 

3) Error detection and isolation has been implemented in a Fuzzy Neural 

PID controller thereby obviating the need of trial and error in fault 

diagnosis. 

6.4 Suggestion for Further Improvement: Any important document 

gathered should be saved over the internet through the e-mail. Genetic 

Algorithm techniques should be applied to see if there will be any 

improvement over the Fuzzy Neural. The research was software based 

therefore a hardware implementation can be worked on. 

 6.5 Conclusion: 

A Fuzzy Neural PID controller has been successfully developed without 

passing through the rigorous mathematics needed to establish a transfer 

function for the system under control. The Fuzzy PID control system was 

developed and optimized using Neural Network which gave rise to a 

faster response time. The Fuzzy Neural PID control system has also been 

successfully simulated and compared with classical PID controller to 

highlight the performance superiority of the Fuzzy Neural PID control 

system. Fuzzy logic based PID controller is easier to implement than 

classical PID controllers and Neural Network fine-tunes it to obtain a 

Fuzzy Neural system which produces a better response time in the output. 

Also, the developed Fuzzy Neural system features error detection and 

presents detailed rectification steps. This is much better than the trial and 

error method used in repair and maintenance of process control systems. 
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6.6 Recommendation: 

It is strongly recommended that this technique be applied in every 

process control system because, it will drastically reduce the trial and 

error method in repairs and maintenance. Furthermore, it is easy to 

implement and use, and does not require much mathematical rigor even 

for complex control systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

167 

REFERENCES 

Abraham, A. (1997) . Adaptation of Fuzzy Inference System Using Neural Learning, 

 Fuzzy System Engineering: Theory and Practice.  

 

Abraham A., Nath B.(2001) A Neuro-Fuzzy Approach for Forecasting Electricity 

 Demand InVictoria, Applied Soft Computing Journal, Elsevier Science, 1&2, 

 pp. 127-138. 

 

Ahlawat, Nishant, Ashu Gautam, and Nidhi Sharma (2014) "Use of Logic Gates to 

 Make Edge  Avoider Robot." International Journal of Information & 

 Computation Technology (Volume 4,  Issue 6; page 630) ISSN 0974-2239 

 (Retrieved 27 April 2014)  

 

Ajanagadde V, Shastri L.(1991). Rules and variables in neural networks. Neural 

 Computing 3:121-134. 

 

Aleksander I (ed). (1989) Neural Computing Architectures. The Design of Brain-like 

 Machines.Cambridge, Mass, MIT Press. Aleksander I, Morton H. 1990. An 

 Introduction to Neural Computing.London, Chapman & Hall. 

 

Amit D. (1989). Modelling brain function: The world of attractor neural networks. 

 Cambridge, England, Cambridge University Press. 

 

Anderson J. (1995). An Introduction to Neural Networks. Cambridge, Mass, MIT 

 Press. 

 

Arbib M (1995). The Handbook of Brain Theory and Neural Networks. MIT Press. 

Abiyev, R.H., O. Kaynak, T. Alshanableh, F. Mamedov, (2011). A type-2 neuro-

 fuzzy system  

Ang, K. K, Quek, C, and  Pasquier, M. (2003). POPFNN-CRI(S): Pseudo  outer 

 product based fuzzy neural network using the compositional rule of inference 

 and singleton fuzzifier. IEEE Transactions on Systems, Man and Cybernetics, 

 Part B, 33(6): 838-849. 

Ang, K.H., Chong, G.C.Y., and Li, Y. (2005). PID control system analysis, design, 

 and technology, IEEE Trans Control Systems Tech, 13(4): 559-576.  

Anthonio, M.C. (2002). Intelligent Car Parking Using Fuzzy Neural Networks, 

 Emerging Technologies, Paper No:008 pg.1-6. 

Bart, K. (1991) Neural Networks and Fuzzy Systems: a dynamical systems approach 

 to machine intelligence, Prentice-Hall, Inc., Upper Saddle River, NJ. 

Barlett P. 1993. The sample size necessary for learning in multi-layer networks. In 

 Proceedings of theFourth Australian Conference on Neural Networks, 

 Melbourne, Australia,  Sydney University Electrical Engineering, 14-17. 

 



 

 

 

 

 

168 

Beale R, Jackson T. (1990). Neural Computing—Introduction. Bristol, England, 

 Adam Hilger. 

 

Bezdek J, Pal. S. (ed) (1992). Fuzzy Models for Pattern Recognition. New York, 

 IEEE P ress. 

 

Binaghi E. (1992). Empirical learning for fuzzy knowledge acquisition. In 

 Proceedings of the Second International Conference on Fuzzy Logic and 

 Neural Networks, Iizuka, Japan, pp 245-251. 

. 

Borisyuk R, Holden A, Kryukov V (1991). Interacting neural oscillators can imitate 

 selective attention. In Neurocomputers and Attention. Neurobiology, 

 Synchronization and Chaos. Manchester,England, Manchester University 

 Press, pp 189-200. 

 

Bulsara A, Jacobs E, Zhou T, (1991). Stochastic resonance in a single neuron model: 

 Theory and analog simulation. Journal of Theoretical Biology 152:531-555. 

 

Cheng-J, L., Lee, C-Y and Cheng-C, C, (2006). Temperature control using neuro-

 fuzzy controllers with m compensatory operations and wavelet neural 

 networks, Journal of Intelligent and Fuzzy Systems, 17: 145–157. 

Chin-Teng, L. and Lee, C. S. G (1991). Neural Network-Based Fuzzy Logic Control 

 and Decision System, IEEE Transactions on Computers, pp 1320-1336.  

Chen S-M. (1988). A new approach to handling fuzzy decision making problems. 

 IEEE Transactions on Systems, Man and Cybernetics 18:1012-1016. 

 

Dorf R.C and Bishop R.H (2004), Modern Control Systems: Robust Control pp 688-

 698 

 

Dubois D, Prade H.(1988). Possibility Theory. An Approach to Computerized 

 Processing of Uncertainty. New York, Plenum Press. 

 

Eckmiller R, Napp-Zinn H.(1993). Information processing in biology-Inspired pulse 

 coded neural networks in Proceedings of the International Joint Conference on 

 Neural Networks, Nagoya, Japan, IEEE, pp 643-648. 

Ellis G. (2012) Control System Design Guide Using Your Computer to Understand 

 and  Diagnose Feedback Controllers 4th Edition published by Butterworth 

 Heineman, July 2014, ISBN 9780123859204 

 

Feigenbaum M. (1989). Artificial Intelligence, A Knowledge-Based Approach. 

 Boston, PWS. 

 

Feldkamp A, Puskorius G, Yuan F (1992). Architecture and training of a hybrid 

 neural-fuzzy system. In Proceedings of the Second International Conference 

 on Fuzzy Logic and Neural Networks, lizuka, Japan, pp 131-134. 

 



 

 

 

 

 

169 

Fletcher D, Goss E. (1993). Forecasting with neural networks. An application using 

 bankruptcy data. Journal of Information and Management 24:159-167. 

 

Freeman J, Skapura D. (1992). Neural Networks Algorithms, Applications and 

 programming techniques, Addison-Wesley Publ. Comp., Reeding,  

 Massachusetts. 

 

Fogelman F, Lamy B, Viennet E. (1993). Multimodular Neural Network architectures 

 for pattern recognition. Internationl Journal of Pattern Recognition and 

 Artificial Intelligence,7(4). 

 

Fu K.S (1970) Learning Control Systems ---Review and Outlook, IEEE Transactions 

 on Automatic Control 

Fukushima K, Miyake S, Ito T. (1983). Neocognition: A neural network model for a 

 mechanism of visual pattern recognition. IEEE Transactions on Systems, Man 

 and Cybernetics 13:826-834. 

 

Funahashi K. (1989). On the approximate realization of continuous mappings by 

 neural networks. Neural Networks 2:183-192. 

 

Fuzzy CLIPS, (1994). User's Manual. NRC (National Research Council) Canada. 

 

Gallinari P, Thinia S, Fogelman-Soulie F. (1988). Multilayer perceptrons and data 

 analysis in Proceedings of IEEE International Conference on Neural 

 Networks, vol 2, July 24-27, 1988, pp 1391-1399. 

 

Goonatilake S, Campbell J. (1994). Genetic fuzzy hybrid systems for decision 

 making. In Proceedings of the 1994 IEEE/Nagoya University World 

 Wisemen/women Workshop, Nagoya, Japan, pp 143-155. 

 

Gupta M. (1992). Fuzzy logic and neural networks. In Proceedings of the Second 

 International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan, 

 pp 157-160. 

 

Hertz , A., Krogh, R and Palmer G (1991), Introduction to the theory of  neural 

 computation. 

 

Hayashi Y. (1991). A neural expert system with automated extraction of fuzzy if-then 

 rules and its application to medical diagnosis. In Lippman RP, Moody JE, 

 Touretzky DS (eds), Advances in Neural Information Processing Systems, ed 

 3. San Mateo, Calif, Morgan Kaufmann, pp 578-584. 

 

Hech-Nielsen R. (1988). Application of counter propagation networks. Neural 

 Networks 1:131-139. 

 

Holland J. (1975). Adaptation in Natural and Artificial Systems. The University of 

 Michigan. 

 

Hornik K. (1991). Approximation capabilities of multilayer feedforward networks. 

 Neural Networks 4:251-257. 



 

 

 

 

 

170 

 

Hoskins JC, Himmelbaum DM. (1990). Fault detection and diagnosing using artificial 

 neural networks. In Mavrovouniotis ML (ed), Artificial Intelligence in Process 

 Engineering Orlando, Fla, Academic Press, pp 123-160. 

 

Huifang, K.; Ren Guoqing; Jizhu, H. and Benxian, X. (2011)The Application of 

 Fuzzy Neural Network in Fault Self-diagnosis System of Automatic 

 Transmission.Journal of Software, Vol.6No. , pp.209-212 

 

Huynh, H. T. and Won, Y. (2011,Artificial Neural Network Theory and Simulation 

 Mechanical Industry Press, Beijing, pp.44-68). 

Iniya Raghavi S., Lalitha P.(2014) Effective F-Score Feature Selection (KFFS) and 

Fuzzy  Neural Network (FNN) to Classify Congestive Heart Failure Patients in 

 International Journal of Engineering Research & Technology Vol. 3 - Issue 11 

 (November - 2014) e-ISSN:   2278-0181  

 

Jinghua, Z (2006). PID Controller Tuning: A Short Tutorial Retrieved 

 

Kandel A (ed). (1991). Fuzzy Expert Systems. Boca Raton, Fla, CRC Press. 

 

Kar, S.; Das, S.; Ghosh, P.K. (2014): Applications of Neuro-Fuzzy Systems: A Brief 

 Review and Future Outline, Applied Soft Computing, Vol.15, pp. 243-259 

 

Kataria S.K and Sonns (2008) Automatic Control Systems: State Space Analysis of 

 Control Systems pp 350-407 

. 
Kazuo, T and Hua, O. W (2001). Fuzzy control systems design and analysis: a linear 

 matrix inequality approach. John Wiley and Sons: ISBN 9780471323242.  

 

Kasabov N. (1995). Learning fuzzy rules and approximate reasoning in fuzzy neural 

 networks and hybrid systems. Fuzzy Sets and Systems, special issue "Hybrid 

 conn. systems". 

. 

Keller J, Chen Z. (1992). Learning in fuzzy neural networks utilising additive hybrid 

 operators. In Proceedings of the Second International Conference on Fuzzy 

 Logic and Neural Networks, Iizuka, Japan, July 17-22, 1992, pp 85-87. 

King, M (2010). Process Control: A practical Approach. Chinchester, UK: John 

 Wiley and sons Ltd ISBN 978-0-470-97587-9. 

Kim D. H., Hong W. P., Park J. I. (2002). Auto-tuning of reference model based PID 

 controller using immune algorithm, IEEE international conference on 

 evolutionary computation, Hawaii, pp. 483-488. 

 

 Kim D. H.(2002).  Intelligent tuning of a PID controller using an immune algorithm, 

 Transactions of KIEE, 51-D, 1 pp. 78-91. 

 



 

 

 

 

 

171 

Kim D. H.(2004). PID Controller Tuning of a Boiler Control System Using Immune 

 AlgorithmTyped Neural Network, 4th International Conference 

 Computational Science, Lecture Notes in Computer Science, pp. 695-698. 

 

Kim D. H., Cho J. H.(2004).Robust PID Controller Tuning Using Multi objective 

 Optimization Based on Clonal Selection of Immune Algorithm, 8th 

 International Conference Knowledge-Based Intelligent Information and 

 Engineering Systems, Lecture Notes in Computer Science, Springer, pp.50-56. 

 

Kohers G. (1992). The use of modular neural networks on time series forecasting. In 

 Proceedings of the 23rd Annual Meeting of the Decision Sciences Institute, 

 San Francisco, pp 759-761. 

. 

Kosko B. (1991). Neural Networks for Signal Processing. Englewood Cliffs, NJ, 

 Prentice Hall. 

Kosko, B (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems  

 Approach to Machine Intelligence.  Englewood Cliffs, NJ: Prentice Hall. 

 ISBN 0-13-611435-0. 

Langavi, R. and Berenji, H.R.(1992) Fuzzy logic, Fuzzy logic controller. Part I book 

 of Intelligent Control. Van Nostrand, New York.   

Lee, C-H., Yu, T-M, and Chien, J-C (2011) Adaptive Neural Network Controller 

 Design for a Class of Nonlinear Systems Using Simultaneous Perturbation 

 Stochastic Approximation (SPSA), Proceedings of the International Multi 

 conference of Engineers and Computer Scientists (Vol II). 

Lee, C.C. (1990), Fuzzy logic in control systems: Fuzzy logic controller. Part I and 

 Part II. IEEE. Trans.System Cybernet. pp 20-26. 

Lima A. M. N., Jacobina C. B., Souza Filho E. B. (1997). Nonlinear parameter 

 estimation of steady-state induction machine models, IEEE Trans. Industrial 

 Electronics. 

 

Lim M, Rahardja S, Gwee B. (1995). A GA paradigm for learning fuzzy rules. Fuzzy 

 Sets and Systems, Special Issue "Hybrid Connectionist Systems". 

 

Limkens D, Nie J. (1992). Rule extraction for BNN neural network-based fuzzy 

 control system by self  learning. In Aleksander I, Taylor J (eds), Artificial 

 Neural  Networks, vol 2. Amsterdam, Elsevier Science, pp 459- 466. 

 

Lippman R. (1987). An introduction to computing with neural nets. IEEE ASSP, 

 April, pp 4-21. 

 

Lin, C.T. and  Lee, C. S. G. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy 

 Synergism to Intelligent Systems. Upper Saddle River, NJ: Prentice Hall. 



 

 

 

 

 

172 

Lobbrecht A.H and Solomatine D.P (1999). Intelligent control schemes for 

 reproducing optimal control actions for polder water level, Water Industry 

 Systems, Modeling and Optimization Applications pp.1-10. 

Menychtas, A. Konstanteli, K. (2012), Fault Detection and Recovery Mechanisms and 

 Techniques for Service Oriented Infrastructures, Achieving Real-Time in 

 Distributed Computing: From Grids to Clouds, IGI Global, pp. 259–274 

Mitchell, M .A., Lopes, P,, J.A.,  Fidalgo, J.N and McCalley, J.D (2000). Neural 

 Network to predict the Dynamic Frequency Response of  a power  system to 

 an Under-frequency Load Shedding Scenario, I.E.E.E Journal pp.  346-351. 

Mohamed, A. H. (2014) A Fuzzy Neural Network Fault Diagnostic System 

 International Journal of Computer Applications (0975 –8887)Volume 94–No 

 1, May 2014,  
 
Onkar P.N (2010), Principles of Process Control pp 252-284 

 

 Park B. J.(2002). Fuzzy polynomial neural networks: Hybrid architectures of fuzzy 

 modeling, IEEE Trans. on Fuzzy systems,10, 5, pp. 607-621. 

 

Peymanfar, A., A. Khoei, Kh. Hadidi, (2010). Design of a general propose neuro-

 fuzzy  controller by using modified adaptive-network-based fuzzy inference 

 system, AEU–International Journal of Electronics and Communications, 64: 

 433-442. 

Pislaru, M., Trandabat, A and Olariu, M (2003) Neurofuzzy System for Industrial 

 Processes Fault Diagnosis. 

 Prabakaran M. P., Kannan G. R., Thirupathi K. , Hari Prakash A.(2014) Optimization 

 Turning Process Parameters of Aluminum Alloy 5083 using Response Surface 

 Methodology in International Journal of Engineering Research & Technology 

 Vol. 3 - Issue 4 (April- 2014) e-ISSN:   2278-01 

Quek, C. and  Zhou, R. W. (1999). "POPFNN-AAR(S): a pseudo outer-product based 

 fuzzy neural network." IEEE Transactions on Systems, Man and Cybernetics, 

 Part B, 29(6), 859-870. 

Rakesh Gautam, Rajesh Ingle, Milin Nagpure (2014) Modeling And Control of 3 

 Linkbiped Leg using PID Controller in International Journal of Engineering 

 Research & Technology Vol. 3 - Issue 4 (April- 2014) e-ISSN:   2278-0181  

Ross, T.J (1995). Fuzzy Logic with Engineering Applications, McGraw-Hill, 

 Hightstown, NJ. 

Seema C.,  Mitra,  R. and Vijay K. (2007) Neural Network Tuned fuzzy controller for 

 Multiple Input Multiple output  (MIMO),World Academy of Science, 

 Engineering and Technology pp.485-491. 

http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://en.wikipedia.org/wiki/IGI_Global


 

 

 

 

 

173 

Sijimol A. S, Pooja V, Soji K. (2014) Cardiovascular Disease Diagnosis Using Fuzzy 

 Petri Net in International Journal of Engineering Research & Technology Vol. 

 3 - Issue 4 (April- 2014) e-ISSN:   2278-0181  

Sklansky J. (1966) Learning Systems for automatic  Control. IEEE Transactions on 

 Automatic Control 

Stathacopoulou R.; Magoulas G.D.; Grigoriadou, M. and Samarakou, M.(2011): 

 Neural-Fuzzy Knowledge Processing in Intelligent Learning Interactive 

 Neuro-Fuzzy Expert System for Diagnosis of Leukemiam Global,Journals Inc. 

 pp.112-130. 

  

Tan, K. K., Wang, Qing-G and Hang Chang, C. (1999). Advances in PID Control, 

 London, UK: Springer-Verlag. ISBN 1-85233-138- 0.  

 

Tanomaru, J. and S. Omatu, (1992). Process Control by On-Line Trained Neural 

 Controllers , IEEETrans. Ind. Electron., 39: 511-521. 

 

Valiant, Leslie, (2013) Probably Approximately Correct: Nature's Algorithms for 

 Learning and  Prospering in a Complex World New York: Basic Books. ISBN 

 978-0465032716  

 

Verma P, Verma N, Bhandari S (2014), Modeling of Adaptive Artificial Neural 

 Networks using VHDL is More Appropriate using Bipolar Inputs 

 in  International Journal of Engineering Research & Technology Vol. 3 - Issue 

 4 (April- 2014) e-ISSN:   2278-0181  

Vijay M.S, Popat R.A, Khot Sachin B, Burle K. J (2014) Paper on Recent 

 Development in Artificial Neural Control in Roboticsin International Journal 

 of Engineering Research & Technology Vol. 3 - Issue 11 (November - 2014) 

 e-ISSN: 2278-0181 

Wayne Bequette B. (2003). Process Control: Modeling, Design, and Simulation. 

 Prentice Hall Professional. p. 5. ISBN 9780133536409. 

 

Wei Peng and Da-fa Zhang, (2010) Research on Fuzzy Control for Steam Generator 

 Water Level. 

Wu, D,, Karray, F. and Song, I (2003) Water Level Control by Fuzzy Logic and 

 Neural Network.  

Yager R, Zadeh L (eds). (1992). An Introduction to Fuzzy Logic Applications in 

 Intelligent Systems,Boston, Kluwer Academic. 

 

Yi H-J, Oh KW. (1992). Neural network-based fuzzy production rule generation and 

 its application to approximate reasoning. In Proceedings of the Second 

 International Conference of Fuzzy Logic andNeural Networks. Iizuka, Japan, 

 , pp 333-336. 

 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-85233-138-0
http://books.google.com/books?id=PdjHYm5e9d4C&pg=PA5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9780133536409


 

 

 

 

 

174 

Zadeh L. (1984). Making computers think like people. IEEE Spectrum, August, pp 

26-32. 

 

Zimmermann H. (1987). Fuzzy Sets, Decision Making, and Expert Systems. Boston, 

 Kluwer Academic. 

 

Zurada J. (1992). Introduction to Artificial Neural Systems. St Paul, Minn, West. 

Zhou, R. W and Quek, C. (1996). POPFNN: A Pseudo Outer-product Based Fuzzy 

 Neural Network; Neural Networks, 9(9), 1569-1581. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

175 

APPENDIX  A 

The Software for the Real Time Simulation of the neural network 

adc_a      bit p2.0 

adc_b      bit p2.1 

adc_c      bit p2.2 

adc_start  bit p2.3 

adc_ale    bit p2.4 

adc_clk    bit P2.5  

valve_1    bit p2.6 

valve_2    bit p2.7 

latch_1    bit p3.2  

latch_2    bit p3.3  

latch_3    bit p3.4 

latch_4    bit p3.5   

buzzer     bit p3.6   

phase_1    equ 30h 

phase_2    equ 31h 

phase_3    equ 32h 

ph1_hund   equ 33h 

ph1_ten    equ 34h 

ph1_unit   equ 35h 
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ph2_hund   equ 36h 

ph2_ten    equ 37h 

ph2_unit   equ 38h 

ph3_hund   equ 39h 

ph3_ten    equ 3ah 

ph3_unit   equ 3bh 

level_ref  equ 3ch 

input      equ p0 

keep_data  equ 51h 

 

Org 0000h 

clr valve_1 

clr valve_2 

clr c 

clr buzzer 

mov p1,#0ffh 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

MOV TMOD,#20H ;timer 1, mode 2 

MOV TH1,#-3H ;4800 baud rate 

MOV SCON,#50H ;8-bit, 1 stop, REN enabled 

SETB TR1 ;sta 

mov dptr ,# humid_display 
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 CALL TRANS 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

start: 

;call read_sensor_0 

call adc_process 

  ;mov phase_1,a 

;call convert1 

 

  ;call  display1 

  ;call delay 

jmp start 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

read_sensor_0: 

             clr adc_a                              ; 

             clr adc_b                              ;Select Channel 0 

             clr adc_c  

             ret 

              

;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

read_sensor_1: 

             setb adc_a                              ; 

             clr adc_b                              ;Select Channel 0 
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             clr adc_c  

             ret              

;;;;;;;;;;;;;;;;;;;;;;;              

 

 

adc_process: 

mov p1,#0ffh 

 clr latch_1           ;;;;;;;;;;;;;;;;;;;;;;;   this for temperature 

setb latch_2           ;;;;;;;;;;;;;;;;;;;;;;;  

 

      call read_sensor_0 

      clr adc_ale 

      clr adc_start  

  

                                   ; 

      call delay_small 

      setb adc_ale                            ;ale pin high 

      call delay_small 

      setb adc_start                        ;start pin high 

      call delay_small  

      clr adc_ale                               ;ale pin low 

      call delay_small 
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      clr adc_start                          ;start pin low 

      call delay_long 

      mov a,P1 

      ;add a,#66     ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;lllll 

      mov keep_data,a 

      call delay_small 

      mov dptr ,#level_0 

      call trans 

      mov a,keep_data 

      call sensor_1 

      mov dptr ,#level 

      call trans 

      call level_check ;;;;check level 

      clr c  

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      call read_sensor_1 

      clr adc_ale 

      clr adc_start  

                                   ; 

      call delay_small 

      setb adc_ale                            ;ale pin high 

      call delay_small 
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      setb adc_start                        ;start pin high 

      call delay_small  

      clr adc_ale                               ;ale pin low 

      call delay_small 

      clr adc_start                          ;start pin low 

      call delay_long 

      mov a,P1 

     ; add a,#66 

      mov keep_data,a 

      call delay_small 

      mov dptr ,#flow_0 

      call trans 

      mov a,keep_data 

      call sensor_2 

      mov dptr ,#flow 

      call trans 

      call flow_check ;;;;check temperature 

      clr c  

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      mov dptr,#set_point 

      call trans 

      mov a,input 
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      call delay 

      mov keep_data,a 

      mov level_ref,a 

      call sensor_3 

       

      jmp adc_process 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;   

sensor_1:call convert1 

 mov a,ph1_hund 

       call send 

        mov a,ph1_ten 

       call send 

        mov a,ph1_unit 

       call send 

       ;mov a,#0dh 

       ;call send 

       ret 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

sensor_2:call convert2 

 mov a,ph2_hund 

       call send 

        mov a,ph2_ten 
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       call send 

        mov a,ph2_unit 

       call send 

       ;mov a,#0dh 

       ;call send 

       ret        

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

sensor_3:call convert3 

 mov a,ph3_hund 

       call send 

        mov a,ph3_ten 

       call send 

        mov a,ph3_unit 

       call send 

       ;mov a,#0dh 

       ;call send 

       ret                

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;                              

        

delay_small: 

      mov r0,#70 

l1_delay_small: 
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      cpl adc_clk 

      nop 

      nop 

      nop 

      nop 

      nop 

      nop 

djnz r0,l1_delay_small 

      ret   

       

       

delay_long: 

      mov r0,#140 

l1_delay_long: 

      cpl adc_clk 

      nop 

      nop 

      nop 

      nop 

      nop 

      djnz r0,l1_delay_long 

      ret 
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delay: 

     mov r2,#255 

     mov r1,#255 

delay1: 

     djnz r1,delay1 

     djnz r2,delay1 

ret 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

convert1:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph1_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph1_ten,a 

 mov a,b 

 call decode 

 mov ph1_unit,a 
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 ;call display1 

 ret 

;;;;;;;;;;;;;;;;;;;;;;;;;;  

convert2:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph2_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph2_ten,a 

 mov a,b 

 call decode 

 mov ph2_unit,a 

 ;call display1 

 ret   

;;;;;;;;;;;;;;;;;;;;;;;;;;  

convert3:;mov a,phase_1 

 mov b,#100 

 div ab 
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 call decode 

 mov  ph3_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph3_ten,a 

 mov a,b 

 call decode 

 mov ph3_unit,a 

 ;call display1 

 ret    

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

 decode :orl a,#30h 

        ret  

         

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 display1: mov dptr,#humid_display2  

         call trans 

         mov a,ph1_hund 

         call send 

         mov a,ph1_ten 
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         call send 

         mov a,ph1_unit 

         call send 

         mov a,#0dh 

         call send 

         ret 

   

 ;;;;;;;;;;;;;;;;;;;;;;; 

  

 humid_display  : DB "         SIMULATION OF THE     " ,0dh 

                  DB "       NEURAL  CONTROLLER  " ,0dh 

                  DB "        OF TANK WATER LEVEL    " ,0dh 

                  DB "     oooooooooooooooooooooooooo" ,0dh 

                  DB "     oooooooooooooooooooooooooo"  

                 db 0dh,0 

humid_display2  : DB "Relative Humidity Value : " 

                 db 0   

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;                        

level_0 :  db 0dh,0dh 

           db "Tank Water Level : ",0 

flow_0 :   db "Water Flow Rate  : ",0  

set_point: db "Maximum Water Level point: ",0  
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

  flow : db " Cm^3/s" ,0dh,0   

level : db " Cm" ,0dh,0                   

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

TRANS: 

 H_1: CLR A 

      movc a,@a+dptr;get the character 

      inc dptr 

      call send 

      jnz h_1 

      ;cjne a,#"@",h_1 

      RET 

  

 

 

SEND: MOV SBUF,A ;load the data 

 H_2: JNB TI,H_2 ;stay here until last bit 

      CLR TI ;get ready for next char 

      RET ;return to caller   

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

level_check:      

                clr c  

                mov a, keep_data 

                cjne a,#2,l_go 

                clr valve_1 

                clr buzzer 

                call delay 

                call delay 

                ret 

l_go: 

                subb a,#2 

                jnc l_grt_tan0 

                jc l_less_tan0 

 

l_less_tan0:   

          setb buzzer 

          setb valve_1 

          call delay 

          call delay 

          ret 

l_grt_tan0:      
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                mov a,keep_data 

  cjne a,#43,l_go2 

  setb buzzer 

  setb valve_1 

  call delay 

  call delay 

  ret 

l_go2:  subb a,#43    

                jnc l_grt_tan1 

                jc l_less_tan1 

l_grt_tan1:     setb buzzer 

                setb valve_1 

  call delay 

  call delay 

                ret 

l_less_tan1:    clr buzzer 

                clr valve_1 

  call delay 

  call delay 

                ret 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 



 

 

 

 

 

191 

flow_check:      

                clr c  

                mov a, keep_data 

                cjne a,#1,f_go 

                setb buzzer 

                setb valve_2 

                call delay 

                call delay 

                ret 

f_go: 

                subb a,#1 

                jnc f_grt_tan0 

                jc f_less_tan0 

f_less_tan0:     

          setb buzzer 

          setb valve_2 

          call delay 

           

          ret 

f_grt_tan0: 

                mov a,keep_data 

  cjne a,level_ref,f_go2 
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  setb buzzer 

  setb valve_2 

  call delay 

  call delay 

  ret 

f_go2:  subb a,#100    

                jnc f_grt_tan1 

                jc f_less_tan1 

                f_grt_tan1 :    call delay 

                setb buzzer 

                setb valve_2 

  call delay 

  call delay 

                ret 

f_less_tan1:    clr buzzer 

                clr valve_2 

  call delay 

  call delay 

                ret 

 

      end 

adc_a      bit p2.0 
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APPENDIX B 

The Software for the Real Time Simulation of the fuzzy-neural network 

adc_b      bit p2.1 

adc_c      bit p2.2 

adc_start  bit p2.3 

adc_ale    bit p2.4 

adc_clk    bit P2.5  

valve_1    bit p2.6 

valve_2    bit p2.7 

valve_3    bit p2.2 

valve_4    bit p3.7 

heat       bit p3.2  

buf1       bit p3.3  

buf2       bit p3.4 

buf3       bit p3.5   

buzzer     bit p3.6   

phase_1    equ 30h 

phase_2    equ 31h 

phase_3    equ 32h 
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ph1_hund   equ 33h 

ph1_ten    equ 34h 

ph1_unit   equ 35h 

ph2_hund   equ 36h 

ph2_ten    equ 37h 

ph2_unit   equ 38h 

ph3_hund   equ 39h 

ph3_ten    equ 3ah 

ph3_unit   equ 3bh 

level_ref  equ 3ch 

ph4_hund   equ 3eh 

ph4_ten    equ 3fh 

ph4_unit   equ 40h 

ph5_hund   equ 41h 

ph5_ten    equ 42h 

ph5_unit   equ 43h 

pre_ref    equ 44h 

temp_ref   equ 45h 

ph6_hund   equ 46h 

ph6_ten    equ 47h 

ph6_unit   equ 48h 

ph7_hund   equ 49h 
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ph7_ten    equ 4ah 

ph7_unit   equ 4bh 

input      equ p0 

keep_data  equ 51h 

 

Org 0000h 

clr valve_1 

clr valve_2 

clr valve_3 

clr valve_4 

clr heat 

clr c 

clr buzzer 

mov p1,#0ffh 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

MOV TMOD,#20H ;timer 1, mode 2 

MOV TH1,#-3H ;4800 baud rate 

MOV SCON,#50H ;8-bit, 1 stop, REN enabled 

SETB TR1 ;sta 

mov dptr ,# humid_display 

 CALL TRANS 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

start: 

;call read_sensor_0 

call adc_process 

  ;mov phase_1,a 

;call convert1 

 

  ;call  display1 

  ;call delay 

jmp start 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

 

read_sensor_0: 

             clr adc_a                              ; 

             clr adc_b                              ;Select Channel 0 

             ret 

              

;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

read_sensor_1: 

             setb adc_a                              ; 
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             clr adc_b                              ;Select Channel 1  

             ret              

;;;;;;;;;;;;;;;;;;;;;;;              

read_sensor_2: 

             clr adc_a                              ; 

             setb adc_b                              ;Select Channel 2  

             ret              

;;;;;;;;;;;;;;;;;;;;;;;              

read_sensor_3: 

             setb adc_a                              ; 

             setb adc_b                              ;Select Channel 3 

             ret              

;;;;;;;;;;;;;;;;;;;;;;;              

 

 

adc_process: 

mov p1,#0ffh 

 

 

      call read_sensor_0 

      clr adc_ale 

      clr adc_start  
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                                   ; 

      call delay_small 

      setb adc_ale                            ;ale pin high 

      call delay_small 

      setb adc_start                        ;start pin high 

      call delay_small  

      clr adc_ale                               ;ale pin low 

      call delay_small 

      clr adc_start                          ;start pin low 

      call delay_long 

      mov a,P1 

      ;add a,#66     ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;lllll 

      mov keep_data,a 

      call delay_small 

      mov dptr ,#level_0 

      call trans 

      mov a,keep_data 

      call sensor_1 

      mov dptr ,#level 

      call trans 

      call level_check ;;;;check level 
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      clr c  

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      call read_sensor_1 

      clr adc_ale 

      clr adc_start  

  

                                   ; 

      call delay_small 

      setb adc_ale                            ;ale pin high 

      call delay_small 

      setb adc_start                        ;start pin high 

      call delay_small  

      clr adc_ale                               ;ale pin low 

      call delay_small 

      clr adc_start                          ;start pin low 

      call delay_long 

      mov a,P1 

     ; add a,#66 

      mov keep_data,a 

      call delay_small 

      mov dptr ,#flow_0 

      call trans 
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      mov a,keep_data 

      call sensor_2 

      mov dptr ,#flow 

      call trans 

      call flow_check ;;;;check temperature 

      clr c  

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

       

        call read_sensor_2 

      clr adc_ale 

      clr adc_start  

  

                                   ; 

      call delay_small 

      setb adc_ale                            ;ale pin high 

      call delay_small 

      setb adc_start                        ;start pin high 

      call delay_small  

      clr adc_ale                               ;ale pin low 

      call delay_small 

      clr adc_start                          ;start pin low 

      call delay_long 
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      mov a,P1 

     ; add a,#66 

      mov keep_data,a 

      call delay_small 

      mov dptr ,#pres_0 

      call trans 

      mov a,keep_data 

      call sensor_3 

      mov dptr ,#pres 

      call trans 

      call pres_check ;;;;check temperature 

      clr c  

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

       

        call read_sensor_3 

      clr adc_ale 

      clr adc_start  

  

                                   ; 

      call delay_small 

      setb adc_ale                            ;ale pin high 

      call delay_small 
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      setb adc_start                        ;start pin high 

      call delay_small  

      clr adc_ale                               ;ale pin low 

      call delay_small 

      clr adc_start                          ;start pin low 

      call delay_long 

      mov a,P1 

     ; add a,#66 

      mov keep_data,a 

      call delay_small 

      mov dptr ,#temp_0 

      call trans 

      mov a,keep_data 

      call sensor_4 

      mov dptr ,#temp 

      call trans 

      call temp_check ;;;;check temperature 

      clr c  

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

       

      mov dptr,#set_water 

      call trans 
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      clr buf1 

      setb buf2 

      setb buf3 

      call delay 

      mov a,input 

      call delay 

      mov keep_data,a 

      mov level_ref,a 

      call sensor_water 

       

      ;;;;;;;;;;;;;;;;;;;; 

      mov dptr,#set_pres 

      call trans 

      setb buf1 

      clr buf2 

      setb buf3 

      call delay 

      mov a,input 

      call delay 

      mov keep_data,a 

      mov pre_ref,a 

      call sensor_pres 
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      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

      mov dptr,#set_temp 

      call trans 

      setb buf1 

      setb buf2 

      clr buf3 

      call delay 

      mov a,input 

      call delay 

      mov keep_data,a 

      mov temp_ref,a 

      call sensor_temp 

       

      jmp adc_process 

      ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;   

sensor_1:call convert1 

 mov a,ph1_hund 

       call send 

        mov a,ph1_ten 

       call send 

        mov a,ph1_unit 

       call send 
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       ;mov a,#0dh 

       ;call send 

       ret 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

sensor_2:call convert2 

 mov a,ph2_hund 

       call send 

        mov a,ph2_ten 

       call send 

        mov a,ph2_unit 

       call send 

       ;mov a,#0dh 

       ;call send 

       ret  

              

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

sensor_3:call convert3 

 mov a,ph3_hund 

       call send 

        mov a,ph3_ten 

       call send 

        mov a,ph3_unit 
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       call send 

       ;mov a,#0dh 

       ;call send 

       ret        

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

sensor_4:call convert4 

 mov a,ph4_hund 

       call send 

        mov a,ph4_ten 

       call send 

        mov a,ph4_unit 

       call send 

       ;mov a,#0dh 

       ;call send 

       ret        

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

sensor_water:call convert5 

 mov a,ph5_hund 

       call send 

        mov a,ph5_ten 

       call send 

        mov a,ph5_unit 
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       call send 

       ;mov a,#0dh 

       ;call send 

       ret 

       ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

sensor_pres:call convert6 

 mov a,ph6_hund 

       call send 

        mov a,ph6_ten 

       call send 

        mov a,ph6_unit 

       call send 

       ;mov a,#0dh 

       ;call send 

       ret          

       ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

sensor_temp:call convert7 

 mov a,ph7_hund 

       call send 

        mov a,ph7_ten 

       call send 

        mov a,ph7_unit 
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       call send 

       ;mov a,#0dh 

       ;call send 

       ret                         

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;                              

        

delay_small: 

      mov r0,#70 

l1_delay_small: 

      cpl adc_clk 

      nop 

      nop 

      nop 

      nop 

      nop 

      nop 

djnz r0,l1_delay_small 

      ret   

       

       

delay_long: 

      mov r0,#140 
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l1_delay_long: 

      cpl adc_clk 

      nop 

      nop 

      nop 

      nop 

      nop 

      djnz r0,l1_delay_long 

      ret 

delay: 

     mov r2,#255 

     mov r1,#255 

delay1: 

     djnz r1,delay1 

     djnz r2,delay1 

ret 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

convert1:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 
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 mov  ph1_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph1_ten,a 

 mov a,b 

 call decode 

 mov ph1_unit,a 

 ;call display1 

 ret 

;;;;;;;;;;;;;;;;;;;;;;;;;;  

convert2:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph2_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph2_ten,a 
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 mov a,b 

 call decode 

 mov ph2_unit,a 

 ;call display1 

 ret   

;;;;;;;;;;;;;;;;;;;;;;;;;;  

convert3:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph3_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph3_ten,a 

 mov a,b 

 call decode 

 mov ph3_unit,a 

 ;call display1 

 ret    

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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convert4:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph4_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph4_ten,a 

 mov a,b 

 call decode 

 mov ph4_unit,a 

 ;call display1 

 ret    

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

convert5:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph5_hund,a 

 mov a,b 
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 mov b,#10 

 div ab 

 call decode 

 mov ph5_ten,a 

 mov a,b 

 call decode 

 mov ph5_unit,a 

 ;call display1 

 ret 

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

convert6:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph6_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph6_ten,a 

 mov a,b 

 call decode 
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 mov ph6_unit,a 

 ;call display1 

 ret 

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

convert7:;mov a,phase_1 

 mov b,#100 

 div ab 

 call decode 

 mov  ph7_hund,a 

 mov a,b 

 mov b,#10 

 div ab 

 call decode 

 mov ph7_ten,a 

 mov a,b 

 call decode 

 mov ph7_unit,a 

 ;call display1 

 ret          

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

 decode :orl a,#30h 

        ret  
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 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 display1: mov dptr,#humid_display2  

         call trans 

         mov a,ph1_hund 

         call send 

         mov a,ph1_ten 

         call send 

         mov a,ph1_unit 

         call send 

         mov a,#0dh 

         call send 

         ret 

   

 ;;;;;;;;;;;;;;;;;;;;;;; 

  

 humid_display  : DB "         SIMULATION OF THE     " ,0dh 

                  DB "       NEURO FUZZY CONTROLLER  " ,0dh 

                  DB "        OF TANK WATER LEVEL    " ,0dh 

                  DB "     oooooooooooooooooooooooooo" ,0dh 

                  DB "     oooooooooooooooooooooooooo"  

                 db 0dh,0 
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humid_display2  : DB "Relative Humidity Value : " 

                 db 0   

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;                        

level_0 :  db 0dh,0dh 

           db "Tank Water Level : ",0 

flow_0 :   db "Water Flow Rate  : ",0  

pres_0 :   db "Pressure Value   : ",0  

temp_0 :   db "Temperature      : ",0  

set_water: db 0dh,"Maximum Water Level point: ",0  

set_pres:  db 0dh,"Maximum Pressure point   : ",0  

set_temp:  db 0dh,"Maximum Temperature Point: ",0  

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

  

 

  

flow  : db " Cm^3/s" ,0dh,0   

level : db " Cm" ,0dh,0  

pres  : db " Pascal" ,0dh,0 

temp  : db " 'C" ,0dh,0                  

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

TRANS: 

 H_1: CLR A 
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      movc a,@a+dptr;get the character 

      inc dptr 

      call send 

      jnz h_1 

      ;cjne a,#"@",h_1 

      RET 

  

 

 

SEND: MOV SBUF,A ;load the data 

 H_2: JNB TI,H_2 ;stay here until last bit 

      CLR TI ;get ready for next char 

      RET ;return to caller   

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

level_check:      

                clr c  

                mov a, keep_data 

                cjne a,#2,l_go 

                clr valve_1 



 

 

 

 

 

218 

                clr buzzer 

                call delay 

                call delay 

                ret  

l_go: 

                subb a,#2 

                jnc l_grt_tan0 

                jc l_less_tan0 

 

l_less_tan0:   

          setb buzzer 

          setb valve_1 

          call delay 

          call delay 

          ret 

l_grt_tan0:      

                mov a,keep_data 

  cjne a,#43,l_go2 

  setb buzzer 

  setb valve_1 

  call delay 

  call delay 
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  ret 

l_go2:  subb a,#43    

                jnc l_grt_tan1 

                jc l_less_tan1 

l_grt_tan1:     setb buzzer 

                setb valve_1 

  call delay 

  call delay 

                ret 

l_less_tan1:    clr buzzer 

                clr valve_1 

  call delay 

  call delay 

                ret 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

flow_check:      

                clr c  

                mov a, keep_data 

                cjne a,#1,f_go 

                setb buzzer 

                setb valve_2 
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                call delay 

                call delay 

                ret 

f_go: 

                subb a,#1 

                jnc f_grt_tan0 

                jc f_less_tan0 

 

f_less_tan0:     

          setb buzzer 

          setb valve_2 

          call delay 

           

          ret 

f_grt_tan0: 

                mov a,keep_data 

  cjne a,level_ref,f_go2 

  setb buzzer 

  setb valve_2 

  call delay 

  call delay 

  ret 
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f_go2:  subb a,#100    

                jnc f_grt_tan1 

                jc f_less_tan1 

                 

f_grt_tan1 :    call delay 

                setb buzzer 

                setb valve_2 

  call delay 

  call delay 

                ret 

f_less_tan1:    clr buzzer 

                clr valve_2 

  call delay 

  call delay 

                ret 

                 

  ;;;;;;;;;;;;;;;;;;;;;;;;;; 

  pres_check:      

                clr c  

                mov a, keep_data 

                cjne a,#1,p_go 

                setb buzzer 
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                setb valve_3 

                call delay 

                call delay 

                ret 

p_go: 

                subb a,#1 

                jnc p_grt_tan0 

                jc p_less_tan0 

 

p_less_tan0:     

          setb buzzer 

          setb valve_3 

          call delay 

           

          ret 

p_grt_tan0: 

                mov a,keep_data 

  cjne a,pre_ref,p_go2 

  setb buzzer 

  setb valve_3 

  call delay 

  call delay 
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  ret 

p_go2:  subb a,#100    

                jnc p_grt_tan1 

                jc p_less_tan1 

                 

p_grt_tan1 :    call delay 

                setb buzzer 

                setb valve_3 

  call delay 

  call delay 

                ret 

p_less_tan1:    clr buzzer 

                clr valve_3 

  call delay 

  call delay 

                ret 

  ;;;;;;;;;;;;;;;;;;;;;;;;;; 

  temp_check:      

                clr c  

                mov a, keep_data 

                cjne a,#1,t_go 

                setb buzzer 
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                setb valve_4 

                call delay 

                call delay 

                ret 

t_go: 

                subb a,#1 

                jnc t_grt_tan0 

                jc t_less_tan0 

 

t_less_tan0:     

          setb buzzer 

          setb valve_4 

          call delay 

           

          ret 

t_grt_tan0: 

                mov a,keep_data 

  cjne a,temp_ref,t_go2 

  setb buzzer 

  setb valve_4 

  call delay 

  call delay 
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  ret 

t_go2:  subb a,#100    

                jnc t_grt_tan1 

                jc t_less_tan1 

                 

t_grt_tan1 :    call delay 

                setb buzzer 

                setb valve_4 

  call delay 

  call delay 

                ret 

t_less_tan1:    clr buzzer 

                clr valve_4 

  call delay 

  call delay 

                ret 

      end 
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APPENDIX C  

Fuzzy Logic in MATLAB Environment 

The FIS (Fuzzy Inference System) Editor 

 

 

The following discussion walks you through building a new fuzzy inference 

system from scratch. If you want to save time and follow along quickly, you 

can load the already built system by typing 

fuzzy tipper 

This will load the FIS associated with the file tipper.fis (the .fis is implied) and 

launch the FIS Editor. However, if you load the pre-built system, you will not 

be building rules and constructing membership functions.  
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The FIS Editor displays general information about a fuzzy inference system. 

There's a simple diagram at the top that shows the names of each input variable 

on the left, and those of each output variable on the right. The sample 

membership functions shown in the boxes are just icons and do not depict 

the actual shapes of the membership functions.  

Below the diagram is the name of the system and the type of inference 

used. The default, Mamdani-type inference, is what we've been 

describing so far and what we'll continue to use for this example. Another 

slightly different type of inference, called Sugeno-type inference, is also 

available. This method is explained in Sugeno-Type Fuzzy Inference. 

Below the name of the fuzzy inference system, on the left side of the 

figure, are the pop-up menus that allow you to modify the various pieces 

of the inference process. On the right side at the bottom of the figure is 

the area that displays the name of either an input or output variable, its 

associated membership function type, and its range. The latter two fields 

are specified only after the membership functions have been. Below that 

region are the Help and Close buttons that call up online help and close 

the window, respectively. At the bottom is a status line that relays 

information about the system. 

To start this system from scratch, type 

fuzzy 

at the MATLAB prompt. The generic untitled FIS Editor opens, with one 

input, labeled input1, and one output, labeled output1. For this example, 

we will construct a two-input, one output system, so go to the Edit menu 

and select Add input. A second yellow box labeled input2 will appear. 

The two inputs we will have in our example are service and food. Our 

http://radio.feld.cvut.cz/matlab/toolbox/fuzzy/fuzzyt27.html#45361
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one output is tip. We'd like to change the variable names to reflect that, 

though:  

1. Click once on the left-hand (yellow) box marked input1 (the box 

will be highlighted in red). 

2. In the white edit field on the right, change input1 to service 

and press Return. 

3. Click once on the left-hand (yellow) box marked input2 (the box 

will be highlighted in red). 

4. In the white edit field on the right, change input2 to food and 

press Return. 

5. Click once on the right-hand (blue) box marked output1. 

6. In the white edit field on the right, change output1 to tip. 

7. From the File menu select Save to workspace as...

. 

8. Enter the variable name tipper and click on OK. 

You will see the diagram updated to reflect the new names of the input 

and output variables. There is now a new variable in the workspace called 

tipper that contains all the information about this system. By saving to the 

workspace with a new name, you also rename the entire system. Your 
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window will look something like this.

 

Leave the inference options in the lower left in their default positions for 

now. You've entered all the information you need for this particular GUI. 

Next define the membership functions associated with each of the 

variables. To do this, open the Membership Function Editor. You can 

open the Membership Function Editor in one of three ways: 

 Pull down the View menu item and select Edit Membership 

Functions.... 

 Double-click on the icon for the output variable, tip. 

 Type mfedit at the command line. 
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Upon opening the Surface Viewer, we are presented with a two-

dimensional curve that represents the mapping from service quality to tip 

amount. Since this is a one-input one-output case, we can see the entire 

mapping in one plot. Two-input one-output systems also work well, as 

they generate three-dimensional plots that MATLAB can adeptly 

manage. When we move beyond three dimensions overall, we start to 

encounter trouble displaying the results. Accordingly, the Surface Viewer 

is equipped with pop-up menus that let you select any two inputs and any 

one output for plotting. Just below the pop-up menus are two text input 

fields that let you determine how many x-axis and y-axis grid lines you 
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want to include. This allows you to keep the calculation time reasonable 

for complex problems. Pushing the Evaluate button initiates the 

calculation, and the plot comes up soon after the calculation is complete. 

To change the x-axis or y-axis grid after the surface is in view, simply 

change the appropriate text field, and click on either X-grids or Y-grids, 

according to which text field you changed, to redraw the plot. 

The Surface Viewer has a special capability that is very helpful in cases 

with two (or more) inputs and one output: you can actually grab the axes 

and reposition them to get a different three-dimensional view on the data. 

The Ref. Input field is used in situations when there are more inputs 

required by the system than the surface is mapping. Suppose you have a 

four-input one-output system and would like to see the output surface. 

The Surface Viewer can generate a three-dimensional output surface 

where any two of the inputs vary, but two of the inputs must be held 

constant since computer monitors cannot display a five-dimensional 

shape. In such a case the input would be a four-dimensional vector with 

NaNs holding the place of the varying inputs while numerical values 

would indicate those values that remain fixed. An NaN is the IEEE 

symbol for "not a number."  

This concludes the quick walk-through of each of the main GUI tools. 

Notice that for the tipping problem, the output of the fuzzy system 

matches our original idea of the shape of the fuzzy mapping from service 

to tip fairly well. In hindsight, you might say, "Why bother? I could have 

just drawn a quick lookup table and been done an hour ago!" However, if 

you are interested in solving an entire class of similar decision-making 

problems, fuzzy logic may provide an appropriate tool for the solution, 

given its ease with which a system can be quickly modified. 
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Constructing rules using the graphical Rule Editor interface is fairly self-

evident. Based on the descriptions of the input and output variables 

defined with the FIS Editor, the Rule Editor allows you to construct the 

rule statements automatically, by clicking on and selecting one item in 

each input variable box, one item in each output box, and one connection 

item. Choosing none as one of the variable qualities will exclude that 

variable from a given rule. Choosing not under any variable name will 

negate the associated quality. Rules may be changed, deleted, or added, 

by clicking on the appropriate button.  

The Rule Editor also has some familiar landmarks, similar to those in the 

FIS Editor and the Membership Function Editor, including the menu bar 
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and the status line. The Format pop-up menu is available from the 

Options pull-down menu from the top menu bar -- this is used to set the 

format for the display. Similarly, Language can be set from under 

Options as well. The Help button will bring up a MATLAB Help 

window. 

To insert the first rule in the Rule Editor, select the following: 

 poor under the variable service 

 rancid under the variable food 

 The radio button, or, in the Connection block 

 cheap, under the output variable, tip.  

The resulting rule is 

1. If (service is poor) or (food is rancid) 

then (tip is cheap) (1) 

The numbers in the parentheses represent weights that can be applied to 

each rule if desired. You can specify the weights by typing in a desired 

number between zero and one under the Weight setting. If you do not 

specify them, the weights are assumed to be unity (1).  

Follow a similar procedure to insert the second and third rules in the Rule 

Editor to get 

1. If (service is poor) or (food is rancid) then (tip is cheap) (1) 

2. If (service is good) then (tip is average) (1) 

3. If (service is excellent) or (food is delicious) then (tip is 

generous) (1) 



 

 

 

 

 

234 

To change a rule, first click on the rule to be changed. Next make the 

desired changes to that rule, and then click on Change rule. For example, 

to change the first rule to  

1. If (service not poor) or (food not rancid) 

then (tip is not cheap) (1) 

click not under each variable, and then click Change rule. 

The Format pop-up menu from the Options menu indicates that you're 

looking at the verbose form of the rules. Try changing it to symbolic. 

You will see 

1. (service==poor) => (tip=cheap) (1) 

2. (service==good) => (tip=average) (1) 

3. (service==excellent) => (tip=generous) (1) 

There is not much difference in the display really, but it's slightly more 

language neutral, since it doesn't depend on terms like "if" and "then." If 

you change the format to indexed, you'll see an extremely compressed 

version of the rules that has squeezed all the language out.  

1, 1 (1) : 1 

2, 2 (1) : 1 

3, 3 (1) : 1 

This is the version that the machine deals with. The first column in this 

structure corresponds to the input variable, the second column 

corresponds to the output variable, the third column displays the weight 

applied to each rule, and the fourth column is shorthand that indicates 
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whether this is an OR (2) rule or an AND (1) rule. The numbers in the 

first two columns refer to the index number of the membership function. 

A literal interpretation of rule 1 is: "if input 1 is MF1 (the first 

membership function associated with input 1) then output 1 should be 

MF1 (the first membership function associated with output 1) with the 

weight 1." Since there is only one input for this system, the AND 

connective implied by the 1 in the last column is of no consequence. 

The symbolic format doesn't bother with the terms, if, then, and so on. 

The indexed format doesn't even bother with the names of your variables. 

Obviously the functionality of your system doesn't depend on how well 

you have named your variables and membership functions. The whole 

point of naming variables descriptively is, as always, making the system 

easier for you to interpret. Thus, unless you have some special purpose in 

mind, it will probably be easier for you to stick with the verbose format. 

At this point, the fuzzy inference system has been completely defined, in 

that the variables, membership functions, and the rules necessary to 

calculate tips are in place. It would be nice, at this point, to look at a 

fuzzy inference diagram like the one presented at the end of the previous 

section and verify that everything is behaving the way we think it should. 

This is exactly the purpose of the Rule Viewer, the next of the GUI tools 

we'll look at. From the View menu, select View rules.... 
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The Rule Viewer displays a roadmap of the whole fuzzy inference 

process. It's based on the fuzzy inference diagram described in the 

previous section. You see a single figure window with 10 small plots 

nested in it. The three small plots across the top of the figure represent the 

antecedent and consequent of the first rule. Each rule is a row of plots, 

and each column is a variable. The first two columns of plots (the six 

yellow plots) show the membership functions referenced by the 

antecedent, or the if-part of each rule. The third column of plots (the three 

blue plots) shows the membership functions referenced by the 

consequent, or the then-part of each rule. If you click once on a rule 

number, the corresponding rule will be displayed at the bottom of the 

figure. Notice that under food, there is a plot which is blank. This 
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corresponds to the characterization of none for the variable food in the 

second rule. The fourth plot in the third column of plots represents the 

aggregate weighted decision for the given inference system. This decision 

will depend on the input values for the system.  

There are also the now familiar items like the status line and the menu 

bar. In the lower right there is a text field into which you can enter 

specific input values. For the two-input system, you will enter an input 

vector, [9 8], for example, and then click on input. You can also adjust 

these input values by clicking anywhere on any of the three plots for each 

input. This will move the red index line horizontally, to the point where 

you have clicked. You can also just click and drag this line in order to 

change the input values. When you release the line, (or after manually 

specifying the input), a new calculation is performed, and you can see the 

whole fuzzy inference process take place. Where the index line 

representing service crosses the membership function line "service is 

poor" in the upper left plot will determine the degree to which rule one is 

activated. A yellow patch of color under the actual membership function 

curve is used to make the fuzzy membership value visually apparent. 

Each of the characterizations of each of the variables is specified with 

respect to the input index line in this manner. If we follow rule 1 across 

the top of the diagram, we can see the consequent "tip is cheap" has been 

truncated to exactly the same degree as the (composite) antecedent--this 

is the implication process in action. The aggregation occurs down the 

third column, and the resultant aggregate plot is shown in the single plot 

to be found in the lower right corner of the plot field. The defuzzified 

output value is shown by the thick line passing through the aggregate 

fuzzy set. 
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The Rule Viewer allows you to interpret the entire fuzzy inference 

process at once. The Rule Viewer also shows how the shape of certain 

membership functions influences the overall result. Since it plots every 

part of every rule, it can become unwieldy for particularly large systems, 

but, for a relatively small number of inputs and outputs, it performs well 

(depending on how much screen space you devote to it) with up to 30 

rules and as many as 6 or 7 variables. 

The Rule Viewer shows one calculation at a time and in great detail. In 

this sense, it presents a sort of micro view of the fuzzy inference system. 

If you want to see the entire output surface of your system, that is, the 

entire span of the output set based on the entire span of the input set, you 

need to open up the Surface Viewer. This is the last of our five basic GUI 

tools in the Fuzzy Logic Toolbox, and you open it by selecting View 

surface... from the View menu. 

The Membership Function Editor shares some features with the FIS 

Editor. In fact, all of the five basic GUI tools have similar menu options, 

status lines, and Help and Close buttons. The Membership Function 

Editor is the tool that lets you display and edit all of the membership 

functions associated with all of the input and output variables for the 

entire fuzzy inference system. 

When you open the Membership Function Editor to work on a fuzzy 

inference system that does not already exist in the workspace, there are 

not yet any membership functions associated with the variables that you 

have just defined with the FIS Editor.  

On the upper left side of the graph area in the Membership Function 

Editor is a "Variable Palette" that lets you set the membership functions 

for a given variable.To set up your membership functions associated with 
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an input or an output variable for the FIS, select an FIS variable in this 

region by clicking on it.  

Next select the Edit pull-down menu, and choose Add MFs.... A new 

window will appear, which allows you to select both the membership 

function type and the number of membership functions associated with 

the selected variable. In the lower right corner of the window are the 

controls that let you change the name, type, and parameters (shape), of 

the membership function, once it has been selected.  
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The membership functions from the current variable are displayed in the 

main graph. These membership functions can be manipulated in two 

ways. You can first use the mouse to select a particular membership 

function associated with a given variable quality, (such as poor, for the 

variable, service), and then drag the membership function from side to 

side. This will affect the mathematical description of the quality 

associated with that membership function for a given variable. The 

selected membership function can also be tagged for dilation or 

contraction by clicking on the small square drag points on the 

membership function, and then dragging the function with the mouse 

toward the outside, for dilation, or toward the inside, for contraction. This 

will change the parameters associated with that membership function.  

Below the Variable Palette is some information about the type and name 

of the current variable. There is a text field in this region that lets you 

change the limits of the current variable's range (universe of discourse) 

and another that lets you set the limits of the current plot (which has no 

real effect on the system).  

The process of specifying the input membership functions for this two 

input tipper problem is as follows: 

1. Select the input variable, service, by double-clicking on it. Set both 

the Range and the Display Range to the vector [0 10]. 

2. Select Add MFs... from the Edit menu. The window below pops 

open
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. 

3. Use the pull-down tab to choose gaussmf for MF Type and 3 for 

Number of MFs. This adds three Gaussian curves to the input 

variable service. 

4. Click once on the curve with the leftmost hump. Change the name 

of the curve to poor. To adjust the shape of the membership 

function, either use the mouse, as described above, or type in a 

desired parameter change, and then click on the membership 

function. The default parameter listing for this curve is [1.5 0]. 

5. Name the curve with the middle hump, good, and the curve with 

the rightmost hump, excellent. Reset the associated parameters 

if desired. 

6. Select the input variable, food, by clicking on it. Set both the 

Range and the Display Range to the vector [0 10]. 

7. Select Add MFs... from the Edit menu and add two trapmf 

curves to the input variable food. 

8. Click once directly on the curve with the leftmost trapezoid. 

Change the name of the curve to rancid. To adjust the shape of 

the membership function, either use the mouse, as described above, 

or type in a desired parameter change, and then click on the 

membership function. The default parameter listing for this curve 

is [0 0 1 3]. 
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9. Name the curve with the rightmost trapezoid, delicious, and 

reset the associated parameters if desired. 

Next you need to create the membership functions for the output variable, 

tip. To create the output variable membership functions, use the Variable 

Palette on the left, selecting the output variable, tip. The inputs ranged 

from 0 to 10, but the output scale is going to be a tip between 5 and 25 

percent.  

Use triangular membership function types for the output. First, set the 

Range (and the Display Range) to [0 30], to cover the output range. 

Initially, the cheap membership function will have the parameters [0 5 

10], the average membership function will be [10 15 20], and the 

generous membership function will be [20 25 30]. Your system 

should look something like this.
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Now that the variables have been named, and the membership functions 

have appropriate shapes and names, you're ready to write down the rules. 

To call up the Rule Editor, go to the View menu and select Edit rules..., 

or type ruleedit at the command line. 

 

 

 

 

 

 


