

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

In the last, decade considerable research efforts have been spent on

seeking systematic approaches to fault diagnosis on process control

system. This dissertation analyzes the performance and practical

implementation of Fuzzy Neural Network for intelligent process control

system. The main goal of intelligent process control systems is the

monitoring of the system during its normal working condition so as to

detect the occurrences of failures (fault detection), recognize the location

(fault isolation), the time evolution and indication (fault identification)

hence suggests possible rectification procedures (fault rectification).

Every intelligent technique has computational properties (e.g. ability to

learn explanation of decisions) that make them suited for particular

problems and not for others. Intelligent process control systems are

widely used in modern industrial applications due to their reliability, low

cost and high performance. Detection and diagnosis of systems faults are

very essential for protection of such control systems against failures and

permanent damage. In recent years, monitoring and fault detection in

control systems have moved from traditional methods to artificial

intelligence techniques (Mohamed, 2014) and (Chin-Teng and Lee,

1991).

2

 Neural network are good at recognizing patterns, they are not good at

explaining how they reach their decisions (Ding, 1992). Fuzzy logic

systems can reason with imprecise information and are good at explaining

their decisions but they cannot automatically acquire the rules they use to

make those decisions. These limitations have been a central driving force

behind the creation of intelligent hybrid systems where two or more

techniques are combined in a manner that overcomes the limitations of

individual techniques. Neural networks are used to tune membership

functions of fuzzy systems that are employed as decision making systems

for controlling equipment (De Bollivier and Gallinani,1990). Although

fuzzy logic can encode expert knowledge directly using rules with

linguistic labels, it usually takes a lot of time to design and tune the

membership functions which quantitatively define these linguistic labels.

Neural Network learning techniques can automate the process and

substantially reduce development time and cost while improving

performance (Abraham and Nath, 2001).

1.2 Statement of the Problem

Rigorous effort is required to obtain an appropriate transfer function for

use in classical PID control systems. Also the computation of the

constants Kp, Ki, Kd (constants of proportion) for a PID control system is

difficult even for someone who is familiar with the system that is being

modeled.

3

A new approach that would allow someone who is experienced in a

system to model a control system without getting involved in any of the

mathematical derivations highlighted above is required. This is the niche

which the fuzzy logic based control is expected to fill. Often the result

realized through the use of fuzzy logic may be coarse (not exact) for most

control systems. It is hoped that neural network can be used to optimize

(or fine–tune) the fuzzy process output thereby leading to the emergence

of a Fuzzy Neural process control system. This is the direction this

research work seeks to follow.

1.3 Aim and Objectives

The aim of this dissertation is to design Intelligent Process Control

systems using Fuzzy Neural Network (FNN).

To achieve this aim the following are the objectives.

1. To design a process control system in PID mode using Fuzzy

Logic.

2. To optimize the performance of the Fuzzy control system using

Neural Network.

3. To simulate a prototype Fuzzy Neural process control system in

PID mode.

4. To evaluate the performance of the Fuzzy Logic, Neural Network,

Fuzzy Neural Network and classical PID control systems using the

results from the simulation.

4

5. To automate the fault diagnosis in Fuzzy Neural logic based

process control system.

1.4 Justification for the Project

Components, machines and processes fail in varying ways depending

upon their constituent materials, operating conditions, etc. Failure modes

are typically monitored by a sensor which is intended for failure analysis

purpose, to capture those failure symptoms that are characteristics of a

particular failure mode. Using fuzzy neural network to analyze this is

well suited to low cost implementation based on cheap sensors, low

resolution analog to digital converters, and 4-bit or 8-bit one chip

microcontroller chips (Gupta, 1992).

Moreover such systems can be easily upgraded by adding new rules to

improve performance or add new features. Also machine operators will

have an idea of the fault and the rectification procedure (Huifang, Ren,

Jizhu, and Benxian, 2011).

1.5 Scope of the Dissertation

Intelligent process control systems using fuzzy-neural logic has the

advantage that the solution to the problem can be cast in terms that human

operators can understand, so that their experiences can be used in the

design of process controllers. This makes it easier to mechanize tasks that

are already successfully performed by humans, hence assisting to improve

substantially production cycle. The thesis will cover the followings:

5

a) Design of intelligent controllers based on Fuzzy Logic, Neural

network, and hybrid of the two (Fuzzy Neural).

b) The application of the designed controllers in terms of transient and

steady state response of the process.

c) Evaluation of the performance of the intelligent controllers in terms of

transient and steady state response of the process.

d) Comparing the result of the controller with a conventional PID

controller.

1.6 Organization of Dissertation Chapters

In this work, Chapter introduced the dissertation topic, Chapter two

handled the literature review, Chapter three discussed the methodology

and system analysis, Chapter four covered the system design, Chapter

five explained the System implementation and testing while finally

Chapter six deals on Summary and Conclusion.

1.7 Proportional Integral Derivative (PID) Controller

 PID is a popular control method extensively used in an industrial set up.

PID controllers are popular in industrial applications, as they are easy to

install and reasonably robust. However, for highly nonlinear systems, the

performance of PID controllers can deteriorate quite fast. It is necessary

to develop nonlinear PID controllers for controlling nonlinear processes.

The advantages of a PID controller include its simple structure along with

robust performance in a wide range of operating conditions. The design

6

of a PID controller is generally based on the assumption of exact

knowledge about the system. The assumption is often not valid since the

development of model of any practical system may not include precise

information of factors such as friction, backlash, unmodelled dynamics

and uncertainty arising from any of the sources (Prabakaran, Kannan,

Thirupathi and Hari Prakash, 2014).

Figure 1.1: Block diagram of a PID controller

A proportional–integral–derivative controller (PID controller) is a generic

control loop feedback mechanism (controller) widely used in industrial

control systems. A block diagram of a PID controller is shown in figure

1.1. It is the most commonly used feedback controller. A PID controller

7

calculates an "error" value as the difference between a measured process

variable and a desired set point. The controller attempts to minimize the

error by adjusting the process control inputs (Onkar, 2010).

It was shown in (Ang, Chong and Li, 2005) that the PID controller

calculation (algorithm) involves three separate constant parameters, and

is accordingly sometimes called three-term control: the proportional, the

integral and derivative values, denoted P, I, and D respectively.

Heuristically, these values can be interpreted in terms of time: P depends

on the present error, I on the accumulation of past errors, and D is a

prediction of future errors, based on current rate of change. The weighted

sum of these three actions is used to adjust the process via a control

element such as the position of a control valve, or the power supplied to a

heating element.

In the absence of knowledge of the underlying process, a PID controller

is the best (Rakesh Gautam, Rajesh Ingle, Milin Nagpure, 2014). By

tuning the three parameters in the PID controller algorithm, the controller

can provide control action designed for specific process requirements.

The response of the controller can be described in terms of the

responsiveness of the controller to an error, the degree to which the

controller overshoots the set point and the degree of system oscillation.

8

Note that the use of the PID algorithm for control does not guarantee

optimal control of the system or system stability (Jinghua, 2006).

Some applications may require using only one or two actions to provide

the appropriate system control. This is achieved by setting the other

parameters to zero. A PID controller will be called a PI, PD, P or I

controller in the absence of the respective control actions. PI controllers

are fairly common, since derivative action is sensitive to measurement

noise, whereas the absence of an integral term may prevent the system

from reaching its target value due to the control action.

1.7.1 Control Loop Basics

A familiar example of a control loop is the action taken when adjusting

hot and cold valves to maintain the water at a desired temperature. This

typically involves the mixing of two process streams, the hot and cold

water. The person touches the water to sense or measure its temperature.

Based on this feedback they perform a control action to adjust the hot and

cold water valves until the process temperature stabilizes at the desired

value. The sensed water temperature is the process variable or process

value (PV). The desired temperature is called the set point (SP). The input

to the process (the water valve position) is called the manipulated

variable (MV). The difference between the temperature measurement and

the set point is the error (e) and quantifies whether the water is too hot or

too cold and by how much.

9

After measuring the temperature (PV), and then calculating the error, the

controller decides when to change the tap position (MV) and by how

much. When the controller first turns the valve on, it may turn the hot

valve only slightly if warm water is desired, or it may open the valve all

the way if very hot water is desired. This is an example of a simple

proportional control. In the event that hot water does not arrive quickly,

the controller may try to speed-up the process by opening up the hot

water valve more-and-more as time goes by. This is an example of an

integral control. Making a change that is too large when the error is small

is equivalent to a high gain controller and will lead to overshoot. If the

controller were to repeatedly make changes that were too large and

repeatedly overshoot the target, the output would oscillate around the set

point in a constant, growing, or decaying sinusoid. If the oscillations

increase with time then the system is unstable, whereas if they decrease

the system is stable. If the oscillations remain at a constant magnitude the

system is marginally stable. In the interest of achieving a gradual

convergence at the desired temperature (SP), the controller may wish to

damp the anticipated future oscillations. So in order to compensate for

this effect, the controller may elect to temper its adjustments. This can be

thought of as a derivative control method. If a controller starts from a

stable state at zero error (PV = SP), then further changes by the controller

will be in response to changes in other measured or unmeasured inputs to

10

the process that impact on the process, and hence on the PV. Variables

that impact on the process other than the MV are known as disturbances.

Generally controllers are used to reject disturbances and/or implement

set-point changes. Changes in feed water temperature constitute a

disturbance to the faucet temperature control process.

In theory, a controller can be used to control any process which has a

measurable output (PV), a known ideal value for that output (SP) and an

input to the process (MV) that will affect the relevant PV. Controllers are

used in industry to regulate temperature, pressure, flow rate, chemical

composition, speed and practically every other variable for which a

measurement exists (King, 2010).

1.7.2 PID Controller Theory

The PID control scheme is named after its three correcting terms, whose

sum constitutes the manipulated variable (MV) which is a function of

time. The proportional, integral, and derivative terms are summed to

calculate the output of the PID controller (Kim, Hong and Park, 2002).

Defining u (t) as the controller output, the final form of the PID algorithm

is:

 (1.1)

where

Kp: Proportional gain, a tuning parameter

11

Ki: Integral gain, a tuning parameter

Kd: Derivative gain, a tuning parameter

e: Error = SP − PV

t: Time or instantaneous time (the present)

1.7.3 Proportional Term

The proportional term makes a change to the output that is proportional to

the current error value. The proportional response can be adjusted by

multiplying the error by a constant Kp, called the proportional gain.

Figure 1.2 shows the graph.

Figure 1.2: Plot of PV vs time, for three values of Kp (Ki and Kd held constant)

P
V

12

The proportional term is given by:

 (1.2)

A high proportional gain results in a large change in the output for a

given change in the error. If the proportional gain is too high, the system

can become unstable (see loop tuning). In contrast, a small gain results in

a small output response to a large input error, and a less responsive or less

sensitive controller. If the proportional gain is too low, the control action

may be too small when responding to system disturbances. Tuning theory

and industrial practice indicate that the proportional term should

contribute the bulk of the output change (Jinghua, 2006).

1.7.4 Droop

 A pure proportional controller will not always settle at its target value,

but may retain a steady-state error. Specifically, drift in the absence of

control, such as cooling of a furnace towards room temperature, biases a

pure proportional controller. If the drift is downwards, as in cooling, then

the bias will be below the set point, hence the term "droop".

Droop is proportional to the process gain and inversely proportional to

proportional gain (Kim, 2002). Specifically the steady-state error is given

by:

e = G / Kp (1.3)

13

Droop is an inherent defect of purely proportional control. Droop may be

mitigated by adding a compensating bias term (setting the set point above

the true desired value), or corrected by adding an integral term.

1.7.5 Integral Term

The contribution from the integral term is proportional to both the

magnitude of the error and the duration of the error. The integral in a PID

controller is the sum of the instantaneous error over time and gives the

accumulated offset that should have been corrected previously. The

accumulated error is then multiplied by the integral gain (Ki) and added to

the controller output. The integral term is given by:

 (1.4)

Figure 1.3: Plot of PV vs time, for three values of Ki (Kp and Kd held constant)

P
V

14

The integral term accelerates the movement of the process towards set-

point and eliminates the residual steady-state error that occurs with a pure

proportional controller. However, since the integral term responds to

accumulated errors from the past, it can cause the present value to

overshoot the set-point value. Figure 1.3 shows the Plot of PV vs time,

for three values of Ki (Kp and Kd held constant) for integral term (Kim

etal 2002).

1.7.6 Derivative Term

The derivative of the process error is calculated by determining the slope

of the error over time and multiplying this rate of change by the

derivative gain Kd. The magnitude of the contribution of the derivative

term to the overall control action is termed the derivative gain, Kd.

The derivative term is given by:

 (1.5)

Figure 1.4: Plot of PV vs time, for three values of Kd (Kp and Ki held constant)

P
V

15

The derivative term slows the rate of change of the controller output.

Derivative control is used to reduce the magnitude of the overshoot

produced by the integral component and improve the combined

controller-process stability. However, the derivative term slows the

transient response of the controller. Also, differentiation of a signal

amplifies noise and thus this term in the controller is highly sensitive to

noise in the error term, and can cause a process to become unstable if the

noise and the derivative gain are sufficiently large. Hence an

approximation to a differentiator with a limited bandwidth is more

commonly used. Such a circuit is known as a phase-lead compensator.

(Kim and Cho, 2004)

Figure 1.4 above shows Plot of PV vs time, for three values of Kd (Kp and

Ki held constant).

1.7.7 Loop Tuning

Tuning a control loop is the adjustment of its control parameters

(gain/proportional band, integral gain/reset, derivative gain/rate) to the

optimum values for the desired control response. Stability (bounded

oscillation) is a basic requirement, but beyond that, different systems

have different behavior, different applications have different

requirements, and requirements may conflict with one another.

PID tuning is a difficult problem, even though there are only three

parameters and in principle is simple to describe, because it must satisfy

16

complex criteria within the limitations of PID control. There are

accordingly various methods for loop tuning, and more sophisticated

techniques are the subject of patents; this section describes some

traditional manual methods for loop tuning. (Kim, 2004)

Designing and tuning a PID controller appears to be conceptually

intuitive, but can be hard in practice, if multiple (and often conflicting)

objectives such as short transient and high stability are to be achieved.

Usually, initial designs need to be adjusted repeatedly through computer

simulations until the closed-loop system performs or compromises as

desired. Some processes have a degree of non-linearity and so parameters

that work well at full-load conditions don't work when the process is

starting up from no-load; this can be corrected by gain scheduling (using

different parameters in different operating regions). PID controllers often

provide acceptable control using default tunings, but performance can

generally be improved by careful tuning, and performance may be

unacceptable with poor tuning (Kim, 2004) and (King, 2010).

1.7.8 Stability

If the PID controller parameters (the gains of the proportional, integral

and derivative terms) are chosen incorrectly, the controlled process input

can be unstable, i.e. its output diverges, with or without oscillation, and is

limited only by saturation or mechanical breakage. Instability is caused

by excess gain, particularly in the presence of significant lag.

17

Generally, stability of response is required and the process must not

oscillate for any combination of process conditions and set-points, though

sometimes marginal stability (bounded oscillation) is acceptable or

desired (Tan, Wang and Hang Chang, 1999).

1.7.9 Optimum Behavior

The optimum behavior of a process change or set -point change varies

depending on the application. Two basic requirements are regulation

(disturbance rejection –staying at a given set point) and command

tracking (implementing set point changes), these refer to how well the

controlled variable tracks the desired value. Specific criteria for command

tracking include rise time and settling time. Some processes must not

allow an overshoot of the process variable beyond the set point if, for

example, this would be unsafe. Other processes must minimize the energy

expended in reaching a new set point (Tan et al 1999).

For a PID controller with Kp=5, K =0.7s
-1

, KD=0.5s, and PI(0)=20% the

error will produce a graph as shown in figure 1.5 .

18

Figure 1.5: Graph of classical PID

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
22

24

26

28

30

32

34

C
o

n
tro

lle
r o

u
tp

u
t

time(s)

19

CHAPTER TWO

LITERATURE REVIEW

The history of process control can be traced back when people managed

bronze and iron producing furnaces by manual practices which, after the

First World War, were gradually supplemented by automatic regulatory

control of temperatures, levels, pressures, and flow rates. This relieved

the process operator of some unsuitable and boring tasks (Antsaklis,

2012).

The first feedback device on record was the water clock invented by the

Greek Ktesibios in Alexandria Egypt around the 3
rd

 century Before Christ

(B.C).This was certainly a successful device as water clocks of similar

design were still being made in Baghdad when the Mongols captured the

city in 1258 After Death (A.D). The first mathematical model to describe

plant behavior for control purposes is attributed to James Clark Maxwell,

of the Maxwell equations‘ fame, who in 1868 used differential equations

to explain instability problems encountered with James Watt‘s flyball

governor. The first known automatic control system, the Flyball

governor, was installed on Watts‘ steam engine over 229 years ago in

1775, the governor was introduced to regulate the speed of steam engine

vehicles. (Fu,1970). When J.C. Maxwell used mathematical modeling

and methods to explain instability problems encountered with James

Watt‘s flyball governor, it demonstrated the importance and usefulness of

20

mathematical models and methods in understanding complex phenomena

and signaled the beginning of mathematical system and control theory. It

also signaled the end of the era of intuitive invention. Control theory

made significant strides in the past 120 years, with the use of frequency

domain methods and Laplace transforms in the 1930s and 1940s and the

development of optimal control methods and state space analysis in the

1950s and 1960s, followed by progress in stochastic, robust, adaptive and

nonlinear control methods in the 1960s to today, have made it possible to

control more accurately significantly more complex dynamical systems

than the original flyball governor (Fu, 1970).

Conventional control systems are designed today using mathematical

models of physical systems. A mathematical model, which captures the

dynamical behavior of interest, is chosen and then control design

techniques are applied, aided by Computer Aided Design (CAD)

packages, to design the mathematical model of an appropriate controller.

The controller is then realized via hardware or software and is used to

control the physical system. The procedure may take several iterations.

The mathematical model of the system must be ―simple enough‖ so that it

can be analyzed with available mathematical techniques, and ―accurate

enough‖ to describe the important aspects of the relevant dynamical

behavior. It approximates the behavior of a plant in the neighborhood of

an operating point.

21

The control methods and the underlying mathematical theory were

developed to meet the ever increasing control needs of our technology.

The need to achieve the demanding control specifications for increasing

complex dynamical systems has been addressed by using more complex

mathematical models such as non linear and stochastic ones, and by

developing more sophisticated design algorithm for, say, optimal control.

The use of highly complex mathematical models however, can seriously

inhibit our ability to develop control algorithms. Fortunately, simpler

plant models like linear models, can be used in control design, this is

possible because of the feedback used in control which cat tolerate

significant model uncertainties. When the fixed feedback controllers are

not adequate, then adaptive controllers are used. Controllers can then be

designed to meet the specifications around an operating point, where the

linear model is valid and then via a scheduler a controller emerges which

can accomplish the control objectives over the whole operating range.

This is, for example, the method typically used for aircraft flight control

and it is a method to design fixed controllers for certain classes of

nonlinear systems. Adaptive control in conventional control theory has a

specific and rather narrow meaning. In particular it typically refers to

adapting to variations in the constant coefficients in the equations

describing the linear plant, these new coefficient values are identified and

then used, directly or indirectly, to reassign the values of the constant

22

coefficients in the equation describing the linear controller. Adaptive

controllers provide for wider operating ranges than the fixed controllers

and so conventional adaptive control systems can be considered to have

higher degrees of autonomy than control systems employing fixed

feedback controllers (Sklansky, 1966)

There are cases where there is need to significantly increase the operating

range of the system. There is need to deal effectively with significant

uncertainties in models of increasingly complex dynamical systems in

addition to increasing the validity range of our control methods. The need

to cope with significant unmodelled and unanticipated changes in the

plant, in the environment and in the control objective arises. This will

involve the use of intelligent decision making processes to generate

control actions so that certain performance level is maintained even

though there are drastic changes in the operating conditions. However, it

is quite clear that in the control systems there are requirements today that

cannot be successfully addressed with the existing conventional control

theory and thence is the introduction of Intelligent Process Control

System (IPCS) (Saridis and Valavanis, 1988).

Intelligent control describes the discipline where control methods are

developed that attempt to emulate important characteristics of human

intelligence. These characteristics include adaptation and learning,

planning under large uncertainty and coping with large amounts of data.

23

Intelligent control is interdisciplinary as it combines and extends theories

and methods from areas such as control, computer science and operation

research, It uses theories from mathematics and seeks inspiration and

ideas from biological systems. In control engineering, a state-space

representation is a mathematical model of a physical system as a set of

input, output and state variables related by first-order differential

equations. "State space" refers to the space whose axes are the state

variables (Kataria, 2008).

Intelligent control methodologies are being applied to robotics (Vijay,

Popat, Khot Sachin and Burle, 2014) and automation, communication,

manufacturing, traffic control to mention but a few application areas

(Antsaklis, 2012). Neural networks, fuzzy control, genetic algorithms,

petri-nets (Sijimol, Pooja and Soji, 2014) and planning systems, expert

systems, and hybrid systems are all intelligent control methodologies.

The areas of computer science and in particular artificial intelligence

provide knowledge representation ideas, methodologies and tools such as

semantic networks, frames, reasoning techniques and computer

languages. Concepts and algorithms developed in the areas of adaptive

control and machine learning help intelligent controllers to adapt and

learn. Advances in sensors, actuators, computation technology and

communication networks help provide what is necessary for the

implementation of intelligent control hardware (Antsaklis, 2012).

24

The fact is that there are problems of control today that cannot be

formulated and studied in the conventional differential or difference

equation mathematical framework using conventional control. Intelligent

control attempts to build upon and enhance the conventional control

methodologies to solve new challenging control problems (Antsaklis and

Passino, 2013). The intelligent control methodology used in this work is

hybrid network.

2.1 Previous Works

Dorf and Bishop, (2004) stated that robust control is a branch of control

theory that explicitly deals with uncertainty in its approach to controller

design. Robust control methods are designed to function properly so long

as uncertain parameters or disturbances are within some (typically

compact) set. Robust methods aim to achieve robust performance and/or

stability in the presence of bounded modeling errors. The early methods

of Bode and others were fairly robust; the state-space methods invented

in the 1960s and 1970s were sometimes found to lack robustness,

prompting research to improve them. This was the start of the theory of

Robust Control, which took shape in the 1980s and 1990s and is still

active today. In contrast with an adaptive control policy, a robust control

policy is static rather than adapting to measurements of variations, the

controller is designed to work with the assumption that certain variables

will be unknown.

25

Ellis, (2012) stated that adaptive control is the control method used by a

controller which must adapt to a controlled system with parameters which

vary, or are initially uncertain. For example, as an aircraft flies, its mass

slowly decrease as a result of fuel consumption, a control law is needed

that adapts itself to such changing conditions. Adaptive control is

different from robust control in that it does not need a priori information

about the bounds on these uncertain or time-varying parameters; robust

control guarantees that if the changes are within given bounds the control

law need not be changed, while adaptive control is concerned with

control law changing them.

Kataria and Sons, (2008) showed that automatic control as the application

of control theory for regulation of processes without direct human

intervention. An automatic control system is a preset closed-

loop control system that requires no operator action. In the simplest

type of an automatic control loop, a controller compares a measured value

of a process with a desired set value, and processes the resulting error

signal to change some input to the process, in such a way that the process

stays at its set point despite disturbances. This closed-loop control is an

application of negative feedback to a system. The mathematical basis of

control theory was begun in the 18th century, and advanced rapidly in the

20th.Designing a system with features of automatic control generally

requires the feeding of electrical or mechanical energy to enhance the

26

dynamic features of an otherwise sluggish or variant, even errant system.

The control is applied by regulating the energy feed. An automatic

control system has two process variables associated with it: a controlled

variable and a manipulated variable. A controlled variable is the process

variable that is maintained at a specified value or within a specified

range.

 Dubrova, E (2013) stated in fault tolerant control that fault tolerance is

the property that enables a system to continue operating properly in the

event of the failure of (or one or more faults within) some of its

components. If its operating quality decreases at all, the decrease is

proportional to the severity of the failure, as compared to a naïvely

designed system in which even a small failure can cause total breakdown.

Fault tolerance is particularly sought after in high-availability or life-

critical systems. A fault-tolerant design enables a system to continue its

intended operation, possibly at a reduced level, rather than failing

completely, when some part of the system fails. The term is most

commonly used to describe computer systems designed to continue more

or less fully operational with, perhaps, a reduction in throughput or an

increase in response time in the event of some partial failure. That is, the

system as a whole is not stopped due to problems either in the hardware

or the software. An example in another field is a motor vehicle designed

so it will continue to be drivable if one of the tires is puncture (Menychtas

27

and Konstanteli, 2012). A structure should be able to retain its integrity in

the presence of damage caused by fatigue, corrosion, manufacturing

flaws, or impact.

Lee, Yu, and Chien, (2011) in Adaptive Neural Network Controller

Design for a Class of Nonlinear Systems Using Simultaneous

Perturbation Stochastic Approximation (SPSA) Algorithm proposed a

novel SPSA-based on-line adaptive decoupled control scheme by using

PID neural network for a class of nonlinear systems. The update laws of

parameters with adaptive optimal learning rate were proposed based on

the Lyapunov stability theorem and this guarantees the stability and

performance of closed-loop system. The proposed approach was applied

in the Translational Oscillations Rotational Actuator (TORA) system and

the experimental results realized by Digital Signal Processing (DSP)

demonstrated its performance and efficiency. This did not eliminate the

rigorous mathematical approach for solving non linear PID controllers.

(Abu-Mustaf, 1993).

Seema, Mitra and Vijay (2007) designed a Neural Network Tuned fuzzy

controller for Multiple Input Multiple output (MIMO) system featuring a

neural network based tuned fuzzy controller for controlling the degree of

freedom for MIMO systems. The coupling effect of the system was added

into the main fuzzy controller for each step to improve the performance.

A data set generated was partitioned into a set of clusters based on

28

subtractive clustering method. A fuzzy IF-THEN rule was then extracted

from each cluster to form a fuzzy rule base from which the Fuzzy Neural

Network is designed. The Neural Network designed contains only three

layers and the hybrid learning algorithm was used to refine the

parameters on fuzzy rule base. There was improvement in performance

no consideration for a PID controller and the fault diagnosis mechanism

of the system was considered (Aleksander (1989)

Lobbrecht and Solomatine (1999) applied intelligent control schemes for

reproducing optimal control actions for polder water level. The Artificial

Neural Network and Fuzzy Adaptive System reproduced the

corresponding control actions with high accuracy. Nevertheless, the

adaptive models performances were dependent on choice of training data

set so that the two different data sets results in different levels of model

performance. Inclusion of variables resulted from the extreme events and

also the use of moving average and moving sum values into the training

pattern improves the models performance. Artificial Neural Network and

Fuzzy Adaptive System exhibited properties of adaptation during training

but once trained on the basis of one water system model they cannot

represent the hydrologic behavior in other model areas and so have to be

retrained. However, the fault diagnosis of the system was not considered

(Aluja,Teodorescu and Gil Lafuente, 1992).

29

Anthonio (2002) in Intelligent Car Parking Using Fuzzy Neural Networks

analyzes the performance and practical implementation of Fuzzy Neural

Networks for the autonomous motion of mobile robot. The mobile robot

with Fuzzy Neural controller presents good positioning and tracking

performance for different types of desired trajectories. In this work the

fault diagnosis of the system was not considered (Abiyev, Kaynak,

Alshanableh and Mamedov, 2011).

Mitchell et al (2000) worked on using a Neural Network to predict the

Dynamic Frequency Response of a power system to an Under-frequency

Load Shedding Scenario. It showed a method to quickly and accurately

predict the dynamic response of a power system during an under

frequency load shedding. Emergency actions in a power system due to

loss of generation typically calls for under-frequency load shedding

measures, to avoid potential collapse due to lack of time in which to

correct the imbalance via other means. This is a slow and repetitious use

of dynamic simulators so a neural network was used to obtain a fast and

accurate procedure during optimal load shedding. In this work the fault

diagnosis of the system was not considered Amit (1989).

Wu, Karray and Song (2003) in Water Level Control by Fuzzy Logic and

Neural Network designed an Intelligent controllers for controlling water

level system by building a prototype of water level control system first

with Fuzzy Logic control and then with Neural Network. The

30

performance of both was noted and compared and it shows that the

Neural Network showed a better performance than that of Fuzzy Logic.

In this work the hybrid of the two networks was not considered. Fuzzy

Neural Networks implement the process of fuzzy reasoning through a

neural network structure so that they behave as fuzzy system with

learning capabilities.

Pislaru, Trandabat and Olariu (2003) in their work on Neurofuzzy system

for industrial processes fault diagnosis featured a methodology to monitor

and diagnose machine faults in complex industrial processes. They

developed the diagnostic model capable of providing diagnosis for single

and multiple faults based on noisy data. In their work, they only showed

the faults incurred and ignored monitoring of the system while on

operation, the type and time of fault occurrence and also the possible

rectification techniques (Stathacopoulou, Magoulas, Grigoriadou, and

Samarakou, 2011).

2.1.1 Intelligent Process Control Systems Using Fuzzy-Neural Network

In this research, Fuzzy Neural Network is to be applied to a PID

controller. The intelligent control will be used to monitor the system

during its normal working condition so as to detect the occurrences of

failures, recognize the fault location, the time of fault and hence suggests

the possible rectification procedures (fault rectification). The system will

be first realized using fuzzy logic and then be improved upon with Fuzzy

31

Neural Network. The data obtained will be plotted in a graph and the

results obtained will be compared with the graph of a classical PID.

2.2 Fuzzy Logic Control

Yager and Zadeh, (1992) stated that Fuzzy Logic is the branch of

artificial intelligence that deals with the reasoning algorithms used to

emulate human thinking and decision making in machines. The term

itself inspires certain skepticism, sounding equivalent to "half-baked

logic" or "bogus logic", but the "fuzzy" part does not refer to a lack of

rigor in the method, rather to the fact that the logic involved can deal with

fuzzy concepts i.e. concepts that cannot be expressed as "true" or "false"

but rather as "partially true". The fuzzy logic creates a way to express in-

between data values. It deals with uncertainty in engineering by attaching

degrees of certainty to answer to a logical question. Fuzzy logic requires

knowledge in order to reason (Bezdek and Pal, 1992) and (Binaghi,

1992). This knowledge which is provided by an expert who knows the

process or machine is stored in the fuzzy system. For example, an expert

may specify that a steam valve should be turned clockwise a ―little bit‖ if

the temperature rises in a batching operation. The fuzzy system might

interpret this expression as a 10-degree clockwise rotation that closes the

output valve opening by five percent. As the name implies the description

like a ―little bit‖ is a fuzzy description, meaning that it does not have a

32

definite value. A Fuzzy Logic system takes this vague description and

translates it into a decisive output (Ahlawat, Ashu, and Nidi, 2014).

2.2.1 Fuzzy Logic Principles

The figure 2.1 illustrates the operation of a Fuzzy Logic control system

(Fuzzy Logic Controller). It consists of three main components, or

actions that must be completed sequentially to determine the appropriate

output value. These components are

1. Fuzzification

2. Fuzzy processing

3. Defuzzification

 Figure 2.1: Fuzzy Logic controller

When a fuzzy controller receives input data it translates it into a fuzzy

form. This process is called fuzzification. The controller then performs

fuzzy processing which involves the evaluation of the input information

according to IF-THEN rules created by the user during the fuzzy control

system‘s design stage. Once the fuzzy controller finishes the rule

processing stage and arrives at an outcome conclusion, it begins the

defuzzification process (Chen, 1988). In this final step, the fuzzy

controller converts the output conclusions into ―real‖ output data (analog

INPUT

INTERFACE
FUZZIFI-

CATION

FUZZY

PROCESSING

PROCESS OUTPUT

INTERFACE

DEFUZZIFI-

CATION

33

counts) and sends this data to the process via an output module interface.

If the fuzzy logic controller is located in the Programmable Logic

Controller (PLC) rack and does not have a direct or built in input/output

interface with the process then it will send the defuzzification output to

the PLC memory location that maps the processors output interface

module (Langavi and Berenji, 1992), (Lee, 1990) and (Kandel, 1991).

2.2.2 Fuzzy Sets

Fuzzy set theory was originally proposed by Prof Lotfi A. Zadeh of

University of California at Berkley quantitatively and effectively handles

problems involving uncertainty, ambiguity and vagueness. The theory,

which is now well-established, was specifically designed to

mathematically represent uncertainty and vagueness and provide

formalized tools for dealing with the imprecision that is intrinsic to many

real world problems. The ability of fuzzy logic to deal with uncertainty

and noise has led to its use in control. Designing a fuzzy controller

requires describing the operators control knowledge/experience

linguistically. The controller captures these traits in the form of fuzzy

sets, fuzzy logic operations and fuzzy rules. Thus, Fuzzy logic control

can be used to emulate human expert knowledge and experience. The

Fuzzy sets and fuzzy rules can be formulated in terms of linguistic

variables, which help the operator to understand the functioning of the

controller. "Fuzzy sets" can be a complex mathematical term in multi-

34

valued logic. A fuzzy set is an object with elements, or members, which

can belong to it in degrees (Lim, Rahardja and Gwee, 1995). The

membership function is obviously a crucial component of a fuzzy set. It is

therefore natural to define operations on Fuzzy sets by means of their

membership function. In practice, the fuzzy rule sets usually have several

antecedents that are combined using fuzzy operators, such as AND, OR,

and NOT, though again the definitions tend to vary: AND, in one popular

definition, simply uses the minimum weight of all the antecedents, while

OR uses the maximum value. There is also a NOT operator that subtracts

a membership function from 1 to give the "complementary" function

(Dubois and Prade, 1985) and (Fuzzy CLIPS, 1994)

2.2.3 Assigning Zero or One Values to Fuzzy Sub-Sets

A fuzzy control system is a control system based on fuzzy logic - a

mathematical system that analyzes analog input values in terms of logical

variables that take on continuous values between 0 and 1, in contrast to

classical or digital logic, which operates on discrete values of either 0 and

1 (true and false). When implementing fuzzy logic control with human

originated rules in the loop, we must have a way to assign some numeric

value to humans' intuitive assessments of fuzzy sets (Lim and Takefuji,

1990). We must translate from human fuzziness to numbers that can be

used by a computer. We do this by assigning fuzzy sub-set conditions a

value from zero to 1. In setting up a control system for room temperature,

35

for example, we could assign a membership of "1.0" in the sub-set of

"just right" when the temperature is 75 degrees F. Then, if the

temperature drops to 70 degrees F, we might design the system for a

membership in the "just right" sub-set of ".8". Fuzzy logic makes use of

human common sense. This common sense is either applied from what

seems reasonable for a new system, or from experience for a system that

has been previously handled by a human operator. The input variables in

a fuzzy control system are in general mapped into sets of membership

functions similar to this, known as "fuzzy sets". The process of

converting a crisp input value to a fuzzy value is called "fuzzification". A

control system may also have various types of switch, or "ON-OFF",

inputs along with its analog inputs, and such switch inputs of course will

always have a truth value equal to either 1 or 0, but the scheme can deal

with them as simplified fuzzy functions that happen to be either one value

or another (Dubois and Prade, 1988).

Given "mappings" of input variables into membership functions and truth

values, the microcontroller then makes decisions for what action to take

based on a set of "rules", each of the form: For instance, IF brake

temperature is warm AND speed is not very fast THEN brake pressure is

slightly decreased. In this example, the two input variables are "brake

temperature" and "speed" that have values defined as fuzzy sets. The

output variable, "brake pressure", is also defined by a fuzzy set that can

36

have values like "static", "slightly increased", "slightly decreased", and so

on. This rule by itself is very puzzling since it looks like it could be used

without bothering with fuzzy logic, but remembers the decision is based

on a set of rules which are as follows:

 All the rules that apply are invoked, using the membership

functions and truth values obtained from the inputs, to determine

the result of the rule.

 This result in turn will be mapped into a membership function and

truth value controlling the output variable.

 These results are combined to give a specific ("crisp") answer, the

actual brake pressure, a procedure known as "defuzzification".

This combination of fuzzy operations and rule-based "inference"

describes a "fuzzy expert system" (Zimmermann, 1996).

2.2.4 Fuzzy Control Design

The design of fuzzy controllers consists of an input stage, a processing

stage, and an output stage. The input stage maps sensor or other inputs,

such as switches, thumbwheels, and so on, to the appropriate membership

functions and truth values. The processing stage invokes each appropriate

rule and generates a result for each, then combines the results of the rules.

Finally, the output stage converts the combined result back into a specific

control output value (Zadeh, 1984). The most common shape of

membership functions is triangular, although trapezoidal and bell curves

37

are also used, but the shape is generally less important than the number of

curves and their placement. From three to seven curves are generally

appropriate to cover the required range of an input value, or the "universe

of discourse" in fuzzy jargon. The processing stage is based on a

collection of logic rules in the form of IF-THEN statements, where the IF

part is called the "antecedent" and the THEN part is called the

"consequent". Typical fuzzy control systems have dozens of rules.

Consider a rule for a thermostat:

 IF (temperature is "cold") THEN (heater is "high")

This rule uses the truth value of the "temperature" input, which is some

truth value of "cold", to generate a result in the fuzzy set for the "heater"

output, which is some value of "high". This result is used with the results

of other rules to finally generate the crisp composite output. Obviously,

the greater the truth value of "cold", the higher the truth value of "high",

though this does not necessarily mean that the output itself will be set to

"high", since this is only one rule among many. In some cases, the

membership functions can be modified by "hedges" that are equivalent to

adjectives. Common hedges include "about", "near", "close to",

"approximately", "very", "slightly", "too", "extremely", and "somewhat".

These operations may have precise definitions, though the definitions can

vary considerably between different implementations. "Very", for one

example, squares membership functions; since the membership values are

38

always less than 1, this narrows the membership function. "Extremely"

cubes the values to give greater narrowing, while "somewhat" broadens

the function by taking the square root. There are several different ways to

define the result of a rule, but one of the most common and simplest is the

"max-min" inference method, in which the output membership function is

given the truth value generated by the premise. Rules can be solved in

parallel in hardware, or sequentially in software (Zimmerman, 1987). The

results of all the rules that have fired are "defuzzified" to a crisp value by

one of several methods. There are dozens in theory, each with various

advantages and drawbacks. The "centroid" method is very popular, in

which the "center of mass" of the result provides the crisp value. Another

approach is the "height" method, which takes the value of the biggest

contributor. The centroid method favors the rule with the output of

greatest area, while the height method obviously favors the rule with the

greatest output value (Ross, 1995) and (Kazuo and Hua, 2001)

Figure 2.2 demonstrates centroid defuzzification max-min inference used

for a system with input variables "x", "y", and "z" and an output variable

"n". Note that "mu" is standard fuzzy-logic nomenclature for "truth

value":

39

 Figure 2.2: Centroid Defuzzification using max-min inference

Notice how each rule provides a result as a truth value of a particular

membership function for the output variable. In centroid defuzzification

the values are ORs, that is, the maximum value is used and values are not

added, and the results are then combined using a centroid calculation.

Fuzzy control system design is based on empirical methods, basically a

methodical approach to trial-and-error (Wie and Da fa, 2010). The

general process is as follows:

 Document the system's operational specifications and inputs and

outputs.

 Document the fuzzy sets for the inputs.

 Document the rule set.

40

 Determine the defuzzification method.

 Run through test suite to validate system, adjust details as required.

 Complete document and release to production.

2.3 Neural Networks

An Artificial Neural Network (ANN) is an information processing

paradigm that is inspired by the way biological nervous systems, such as

the brain, process information. The key element of this paradigm is the

novel structure of the information processing system. It is composed of a

large number of highly interconnected processing elements (neurons)

working in unison to solve specific application, such as pattern

recognition or data classification, through a learning process. Learning in

biological systems involves adjustments to the synaptic connections that

exist between the neurons (Anderson, 1995).

Neural network (NN) methods have become very popular recently

involving mapping of input-output vectors for cases where no theoretical

model works satisfactorily. An Artificial Neural Network (ANN) is an

information processing paradigm inspired by the manner in which the

heavily interconnected, parallel structure of the human brain processes

information. They are collections of mathematical processing units that

emulate some of the observed properties of biological nervous systems

and draw on the analogies of adaptive biological learning. Neural

Networks (NN) are trainable systems whose learning abilities, tolerance

41

to uncertainty and noise and generalization capabilities are derived from

their distributed network structure and knowledge representation (Lee et

al., 2011).

Learning of a Neural Network typically implies adjustments of

connection weights and biases so that the square error (between Neural

Network output and desired output) is minimized. However NN is often

called a black box and it is difficult to interpret the knowledge stored by a

it. Knowledge in NN is represented in the values of the weights and

biases which forms part of a large and distributed network (Hert, Krogh

and Palmer, 1991)

2.3.1 The significance of a Neural Network

Zhou and Quek (1996) showed that Neural Networks with their

remarkable ability to derive meaning from complicated or imprecise data,

can be used to extract patterns and detect trends that are too complex to

be noticed by either humans or other computer techniques. A trained

neural network can be thought of as an expert in the category of

information it has been given to analyze. This expert can then be used to

provide projections given new situations of interest and answer what if

questions (Borisyuk, Holden and Kryukov, 1991).

Other advantages include

42

1. Adaptive learning: An ability to learn how to do tasks based on the

data given for training or initial experience.

2. Self Organization: An ANN can create its own organization or

representation of the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in

parallel and special hardware devices are being designed and

manufactured which take advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial

destruction of a network leads to the corresponding degradation of

performance. However, some network capabilities may be retained

even with major network damage. (Kohers, 1992)

2.3.2 Neural Networks versus Conventional Computers:

Neural networks take a different approach to problem solving than that of

conventional computers. Convention computers use an algorithmic

approach i.e. the computer follows a set of instructions in order to solve a

problem. Unless the specific steps that the computer needs to follow are

known the computer cannot solve the problem. That restricts the problem

solving capability of conventional computers to problems that we already

understand and know how to solve. But computers would be so much

more useful if they could do things that we don‘t exactly know how to do.

(Verma, Verma and Bhandari, 2014). Neural Networks process

information in a similar way the human brain does. The network is

43

composed of a large number of highly interconnected processing element

(neurons) working in parallel to solve a specific problem. Neural

Networks learn by example. They cannot be programmed to perform a

specific task. The examples must be selected carefully otherwise useful

time is wasted or even worse the network might be functioning

incorrectly .The disadvantage is that because the network finds out how

to solve the problem by itself, its operation can be unpredictable (Kosco,

1991).

On the other hand, conventional computers use a cognitive approach to

problem solving, the way the problem is to be solved must be known and

stated in small unambiguous instructions. These instructions are then

converted to a high level language program and then into machine code

that the computer can understand. These machines are totally predictable,

if anything goes wrong is due to a software or hardware fault.

Neural Networks and conventional algorithmic computers are not in

competition but complement each other. There are tasks more suited to an

algorithmic approach like arithmetic operations and tasks that are more

suited to Neural Networks. Even more, a large number of tasks, require

systems that use a combination of two approaches (normally a

conventual‘s computer is used to supervise the neural network) in order

to perform at maximum efficiency.

44

Neural Networks do not perform miracles. But if used sensibly they can

produce some amazing results (Beale and Jackson, 1990).

2.3.3 How the Human Brain Learns

Much is still unknown about how the brain trains itself to process

information, so, theories abound. In the human brain, a typical neuron

(Figure 2.3 shows the component of a neuron) collects signal from others

through a host of fine structures called dendrites. The neuron sends out

spikes of electrical activity through a long thin strand known as an axon,

which splits into thousands of branches. At the end of each branch, a

structure called a synapse illustrated in figure 2.4 converts the activity

from the axon into electrical effects that inhibit or excite activity into the

connected neurons (Bulsara, Jacobs and Zhou, 1991). When a neuron

receives excitatory input that is sufficiently large compared with its

inhibitory input, it sends a spike of electrical activity down its axon.

Learning occurs by changing the effectiveness of the synapses so that the

influence of one neuron on another changes (Aleksander and Morton,

1993) and (Arbib, 1995).

45

Figure 2.3: Components of a neuron

 Figure 2.4: The Synapse

2.3.4 From Human Neurons to Artificial Neurons

These Neural Networks were first deduced with the essential features of

neurons and their interconnections. Figure 2.5 shows the neuron model.

We then typically program a computer to simulate these features.

However because our knowledge of neurons is incomplete and our

computing power is limited, our models are necessarily gross

idealizations of real networks of neurons (Eckmiller and Napp-Zinn,

1993).

 nucleus

Cell body

 axon

dendrites

Synapse

Dendrites

Axon

46

 Cell body

 Dendrites Threshold

 Axon

 Summatic

 Figure 2.5: Neuron model.

2.3.5 A Simple Neuron

 An artificial neuron is a device with many inputs and one output. The

neuron has two modes of operation, the training mode and the using

mode. In the training mode, the neuron can be trained to fire (or not), for

particular input pattern. In the using mode, when a taught input pattern is

detected at the input, its associated output becomes the current output. If

the input pattern does not belong in the taught list of input patterns, the

firing rule is used to determine whether to fire or not. Figure 2.6 shows

the diagram of a simple neuron (Feigenbaum 1989) and (Lippman, 1987).

 X1 TEACH/USE

 X2

INPUTS OUTPUT

 Xn

 TEACHING INPUT

 Figure 2.6: A Simple Neuron

 neuron

W1

W2

W3

47

2.3.6 The Firing Rules

The firing rule is an important concept in neural networks and accounts

for their high flexibility. A firing rule determines how one calculates

whether a neuron should fire for any input pattern. It relates to all the

input patterns, not only the ones on which the node was trained (Eaton

and Oliver, 1992). A simple firing rule can be implemented by using

Hamming distance technique. The rule goes as follows:

Take a collection of training patterns for a node, some of which cause it

to fire (the 1- taught set of patterns) and others which prevent it from

doing so (the 0 - taught set).Then the patterns not in the collection cause

the node to fire if, on comparison, they have more input elements in

common with the nearest pattern in the 1 taught set than with the nearest

pattern in the 0 taught set. If there is a tie, then the pattern remains in the

undefined stat (Ajanagadde and Shastri, 1991).

For example , a 3 input neuron is taught to output 1 when the input

(X1.X2 and X3) is 111 or 101 and to output 0 when the input is 000 or

001.Then , before applying the firing rule the truth table (Table 2.1) is

48

Table 2.1: Truth table for 3 input neuron

X1 0 0 0 0 1 1 1 1

X2 0 0 1 1 0 0 1 1

X3 0 1 0 1 0 1 0 1

OUT 0 0 0 0/1 0/1 1 1 1

As an example of the way the firing rule is applied, take the pattern 010

for instance, it differs from 000 in 1 element, from 001 in 2 elements,

from 101 in 3 elements and from 111 in 2 elements. Therefore, the

nearest pattern is 000 which belongs in the 0 taught set. Thus the firing

rule requires that the neuron should not fire when the input is 001.On the

other hand, 011 is equally distant from two taught patterns that have

different outputs and thus the output stays undefined (0/1) (Fletcher and

Goss, 1993) and (Freeman and Skapura, 1992).

By applying the firing in every column the following truth table is

obtained as shown in Table 2.2.

49

(Table 2.2: Truth table of 3 input neuron)

The difference between the two truth tables is called generalization of the

neuron. Therefore the firing rule gives the neuron a sense of similarity

and enables it to respond sensibly to patterns not seen during training

(Funahashi, 1989).

2.4 NeuroFuzzy System

A neurofuzzy system is a fuzzy system that uses a learning algorithm

derived from or inspired by neural network theory to determine its

parameters (fuzzy sets and fuzzy rules) by processing data samples (Lin

and Lee, 1996).

2.4.1 Fuzzy Neural network

A Fuzzy Neural Network or neurofuzzy system is a learning machine that

finds the parameters of a Fuzzy system (i.e., fuzzy sets, fuzzy rules) by

X1 0 0 0 0 1 1 1 1

X2 0 0 1 1 0 0 1 1

X3 0 1 0 1 0 1 0 1

OUT 0 0 0 0/1 0/1 1 1 1

50

exploiting approximation techniques from Neural Networks (Feldkamp,

Puskorius and Yuan, 1992).

A Fuzzy Neural system is based on a Fuzzy system which is trained by a

learning algorithm derived from Neural Network theory. The (heuristical)

learning procedure operates on local information, and causes only local

modifications in the underlying Fuzzy System (Kar, Das, and Ghosh,

(2014).

A Fuzzy Neural system can be viewed as a 3-layer feed forward Neural

Network. The first layer represents input variables, the middle (hidden)

layer represents fuzzy rules and the third layer represents output

variables. Fuzzy sets are encoded as (fuzzy) connection weights. It is not

necessary to represent a Fuzzy System like when you want to apply a

learning algorithm to it. However, it can be convenient, because it

represents the data flow of input processing and learning within the

model (Gallinari, Thinia and Fogelman-Soulie, 1988)

 A Fuzzy Neural system can be always (i.e. before, during and after

learning) interpreted as a system of fuzzy rules. It is also possible to

create the system out of training data from scratch, as it is possible to

initialize it by prior knowledge in form of fuzzy rules (Park, 2002).

 The learning procedure of a Fuzzy Neural system takes the semantical

properties of the underlying Fuzzy System into account. This results in

constraints on the possible modifications applicable to the system

51

parameters. A Fuzzy Neural system approximates an n-dimensional

(unknown) function that is partially defined by the training data. The

fuzzy rules encoded within the system represent vague samples, and can

be viewed as prototypes of the training data. A Fuzzy Neural system

should not be seen as a kind of (fuzzy) expert system, and it has nothing

to do with Fuzzy Logic in the narrow sense (Abiyev, Kaynak,

Alshanableh and Mamedov, 2011).

2.4.2 Combining Fuzzy Systems with Neural Networks

Both neural networks and fuzzy systems have some things in common.

They can be used for solving a problem (e.g. pattern recognition,

regression or density estimation) if there does not exist any mathematical

model of the given problem. They solely do have certain disadvantages

and advantages which almost completely disappear by combining both

concepts. Neural Networks can only come into play if the problem is

expressed by a sufficient amount of observed examples. These

observations are used to train the black box. (Hech- Nielsen, 1988) and

Holland, 1975). On the one hand no prior knowledge about the problem

needs to be given. On the other hand, however, it is not straightforward to

extract comprehensible rules from the neural network's structure. On the

contrary, a Fuzzy System demands linguistic rules instead of learning

examples as prior knowledge. Furthermore the input and output variables

52

have to be described linguistically. If the knowledge is incomplete, wrong

or contradictory, then the fuzzy system must be tuned. Since there is not

any formal approach for it, the tuning is performed in a heuristic way.

This is usually very time consuming and error-prone. (Kasabov, 1995)

It is desirable for Fuzzy Systems to have an automatic adoption procedure

which is comparable to Neural Networks. As it can be seen in Table 2.3,

combining both approaches should include advantages and exclude

disadvantages.

 Characteristics

 Compared to a common Neural Network, connection weights and

propagation and activation functions of Fuzzy Neural Network

differ a lot. Although there are many different approaches to model

a Fuzzy Neural Network, most of them agree on certain

characteristics such as the following: A Fuzzy Neural system based

on an underlying fuzzy system is trained by means of a data-driven

Table 2.3: Comparison of neural control and fuzzy control

Neural Networks Fuzzy Systems

no mathematical model necessary no mathematical model necessary

learning from scratch Apriori knowledge essential

several learning algorithms not capable to learn

black-box behavior Simple interpretation and implementation

53

learning method derived from neural network theory. This heuristic

only takes into account local information to cause local changes in

the fundamental fuzzy system.

 It can be represented as a set of fuzzy rules at any time of the

learning process, i.e., before, during and after. Thus the system

might be initialized with or without prior knowledge in terms of

fuzzy rules.

 The learning procedure is constrained to ensure the semantic

properties of the underlying Fuzzy System.

 A Fuzzy Neural system approximates a n-dimensional unknown

function which is partly represented by training examples.

 Fuzzy rules can thus be interpreted as vague prototypes of the

training data.

 A Fuzzy Neural system is represented as special three-layer feed

forward Neural Network as it is shown in Figure 2.7,there the

The first layer corresponds to the input variables, the second layer

symbolizes the fuzzy rules and the third layer represents the output

variables (Keller and Chen, 1992) and (Maren, 1990)

The fuzzy sets are converted as fuzzy connection weights.

Some approaches also use five layers where the fuzzy sets are

encoded in the units of the second and fourth layer, respectively.

However, these models can be transformed into three-layer

54

architecture. One can basically distinguish between three different

kinds of Fuzzy Neural Networks (FNN), i.e., cooperative,

concurrent and hybrid FNNs. (Abraham, 1997) and (Bart, 1991)

2.4.3 Cooperative Fuzzy-Neural Network

INPUT LAYER

MIDDLE LAYER

 Figure 2.7: The architecture of a Fuzzy Neural system

COOPERATIVE FUZZY NEURAL NETWORK

FUZZY

SYSTEM

S

FUZZY

SYSTEMS

ERROR

COMPUTATION

FUZZY

SYSTEMS

FUZZY

SYSTEMS

ERROR

COMPUTATION

 Figure 2.8: Cooperative Fuzzy Neural Networks

OUTPUT LAYER

55

In the case of Cooperative Neural Fuzzy systems, both Artificial Neural

Network and Fuzzy System work independently from each other. The

ANN tries to learn the parameters from the Fuzzy System. This can be

either performed offline or online while the Fuzzy System is applied.

Figure 2.8 depicts four different kinds of Cooperative Fuzzy Neural

Networks. The upper left Fuzzy Neural Network learns fuzzy set from

given training data. This is usually performed by fitting membership

functions with a neural network. The fuzzy sets are then determined

offline. They are then utilized to form the Fuzzy System by fuzzy rules

that are given (not learned) as well (Limkens and Nie, 1992).

The upper right Fuzzy Neural System determines fuzzy rules from

training data by a Neural Network. Here as well, the neural networks

learn offline before the Fuzzy System is initialized. The rule learning is

usually done by clustering on self-organizing feature maps. It is also

possible to apply fuzzy clustering methods to obtain rules.

In the lower left Fuzzy Neural model, the system learns all membership

function parameters online, i.e. while the Fuzzy System is applied. Thus

initially fuzzy rules and membership functions must be defined

beforehand. Moreover, the error has to be measured in order to improve

and guide the learning step (Peymanfar, Khoei and Hadidi, 2010).

The lower right one determines rule weights for all fuzzy rules by a

neural network. This can be done online and offline. A rule weight is

http://www.scholarpedia.org/article/Neuron

56

interpreted as the influence of a rule. They are multiplied with the rule

output. The authors argue that the semantics of rule weights are not

clearly defined. They could be replaced by modified membership

functions. However, this could destroy the interpretation of fuzzy sets.

Moreover, identical linguistic values might be represented differently in

dissimilar rules (Yi and Oh 1992), (Fogelman, Lamy, and Viennet, 1993)

and (Fukushima, Miyake and Ito, 1993).

2.4.4 Hybrid Fuzzy Neural Network

Figure 2.9: A Hybrid Fuzzy Neural Network

Hybrid Fuzzy Neural systems are homogeneous and usually resemble

neural networks. Here, the Fuzzy System is interpreted as special kind of

Neural Network. The advantage of such hybrid NFS is its architecture

HYBRID FUZZY NEURAL

 NETWORK

DETERMINE

 ERROR

SYSTEM

IF

THEN

System state

Control output

57

since both Fuzzy System and Neural Network do not have to

communicate any more with each other. They are one fully fused entity

(Goonatilake and Khebbal, 1994). These systems can learn online and

offline. Figure 2.9 shows such a hybrid FNN.

The rule base of a Fuzzy System is interpreted as a Neural Network.

Fuzzy sets can be regarded as weights whereas the input and output

variables and the rules are modeled as neurons. Neurons can be included

or deleted in the learning step. Finally, the neurons of the network

represent the fuzzy knowledge base. Obviously, the major drawbacks of

both underlying systems are thus overcome.

In order to build a fuzzy controller, membership functions which express

the linguistic terms of the inference rules have to be defined. In fuzzy set

theory, no formal approach to define these functions. Any shape (e.g.,

triangular, Gaussian) can be considered as membership function with an

arbitrary set of parameters. Thus the optimization of these functions in

terms of generalizing the data is very important for Fuzzy Systems.

Neural Networks can be used to solve this problem.

By fixing a distinct shape of the membership functions, say triangular, the

neural network must optimize their parameters by gradient descent. Thus,

aside information about the shape of the membership functions, training

data must be available as well (Barlett, 1993)

58

Quek and Zhou (1999) suggested another approach which is to group the

training data

into M clusters. Every cluster represents a rule where

. Hence these rules are not defined linguistically but rather by crisp data

points . Thus a Neural Network with n input units,

hidden layers and M output units might be applied to train on the pre-

defined clusters. For testing, an arbitrary pattern x is presented to the

trained neural network. Every output unit will return a degree to which

extend x may fit to the antecedent of rule Rm.) (Zurada, 1992)

To guarantee the characteristics of a Fuzzy System, the learning

algorithm must enforce the following mandatory constraints:

 Fuzzy sets must stay normal and convex.

 Fuzzy sets must not exchange their relative positions (they must

not pass each other).

 Fuzzy sets must always overlap.

Additionally there exist some optional constraints like the following:

 Fuzzy sets must stay symmetric.

 The membership degrees must sum up to 1.

An important Hybrid Fuzzy Neural Network has been introduced .The

ARIC (Approximate Reasoning-based Intelligent Control) is presented as

59

a neural network where a prior defined rule base is tuned by updating the

network's prediction. Thus the advantages of Fuzzy Systems and Neural

Networks are easily combined as presented in Table 2.3

The ARIC is represented by two feed-forward Neural Networks, the

Action-state Evaluation Network (AEN) and the Action Selection

Network (ASN). The ASN is a multilayer neural network representation

of a fuzzy system. It then again consists of two separate. The first one

represents the fuzzy inference and the second one computes a confidence

measure based on the current and next system state. Both parts are

eventually combined to the ASN's output.

 As it is shown in Figure 2.7, the first layer represents the rule

antecedents, whereas the second layer corresponds to the implemented

fuzzy rules and the third layer symbolized the system action. The network

flow is at follows. In the first layer the system variables are fuzzified. In

the next step these membership values are multiplied by the attached

weights of the connections between the first and second layer. In the

latter layer, every rule's input corresponds to the minimum of its input

connections (Hayashi, 1991).

 A rules conclusion is installed as membership function. This function

maps the inverse rule input value. Its output values are then multiplied by

the weights of the connections between second and third layer. The final

60

output value is eventually computed by the weighted average of all rules'

conclusions (Iniyia and Lalitha, 2014) .

 The AEN (which is as three-layer feed-forward Neural Network as

well) aims to forecast the system behavior. The hidden layer obtains as

input both the system state and an error signal from the underlying

system. The output of the networks shall represent the prediction of the

next reinforcement which depends on the weights and the system state.

The weights are changed by a reinforcement procedure which takes into

consideration the outputs of both networks ASN and AEN, respectively.

ARIC was successfully applied to the cart-pole balancing problem

(Hornik 1991).

Whereas the ARIC model can be easily interpret as a set of fuzzy-if-then

rules, the ASN network to adjust the weights is rather difficult to

understand. It is a working Neural Network architecture that utilizes

aspects of Fuzzy Systems. However, a semantic interpretation of some

learning steps is not possible (Ang, Quek and Pasquier, 2003) .

2.5 Genetic Algorithms

Genetic Algorithms are search algorithms based on mechanics of natural

selection and natural genetics. They combine survival of the fittest

among the string structures with randomized, yet organized, information

exchange to form a search algorithm with capabilities of natural

evolution. A genetic algorithm starts with a random creation of a

61

population of strings and thereafter generates successive populations of

strings that improve over generations. The processes involved in the

generation of new populations mainly consist of operations such as

reproduction, cross over and mutation. Genetic Algorithms have proven

their robustness and usefulness over other search techniques because of

their unique procedures that differ from other normal search and

optimization techniques. Genetic Algorithm based search and

optimization techniques have recently found increasing use in machine

learning, robot motion planning scheduling, pattern recognition, image

sensing and many other engineering applications. (Davis, 1991), and

(Goonatilake and Campbell, 1994)

Since they work on coding of the parameter set, and not on the derivative

function, they are capable of solving a vast range of optimization

problems including optimization of the rule set of a fuzzy logic controller.

2.6 Process Control

Process control is extensively used in industry and enables mass

production of continuous processes such as oil refining, paper

manufacturing, chemicals, power plants and many other industries.

Process control enables automation, with which a small staff of operating

personnel can operate a complex process from a central control room.

All control systems have at least three parts to them. An input that takes

information into the control system, a process that uses the input

62

information to create the output information and an output that passes

information out of the control system. There is an Open Loop control

system and a Closed Loop Control system (Onkar, 2010).

 An Open Loop control system is a system where the information from

the output is not sent back to the input. For example an electric heater, the

input is the power, the element is the process and the heater is the output.

When one switches on, however hot the room gets, the heater keeps

producing heat until someone switches it off hence no feedback to the

input. If the heater had a thermostat in, it would switch off by itself when

the room reached a set temperature (the ‗input‘ to the system). In this case

information from the output of the system (heat) has been fed back to the

input, as shown in the block diagram of a closed loop system in figure

2.10. Here, the control system is

 PROCESS

 Temperature

now a Closed Loop system. Information from the output goes back to the

input in a Feedback loop, a thermostat can be considered as the heater

comparator in this control system. It compares the set temperature with

Set temperature Heater

INPUT

(Process)

OUTPUT

Heating

COMPARATOR

Figure 2.10: Block diagram of closed loop system

63

the output temperature and the difference between these two temperatures

is the error. When the control system detects an error it tries to make it

smaller by changing the output and then the thermostat turns ON or OFF

the heater (King, 2010). Table 2.4 shows the comparison between open

loop system and closed loop system.

2.6.1 Advantages of a Closed Loop System

1. They are more reliable

2. They are faster

3. It can handle a number of variables simultaneously

2.6.2 Disadvantages of a Closed Loop System

1. Closed loop systems are expensive

2. Its maintenance is difficult

 OPEN LOOP SYSTEM CLOSED LOOP SYSTEM

1 They are not reliable These are reliable

2 It is easier to build It is difficult to build

3 If calibration is good, they perform

accurately

They are accurate because of feedback

4 They are generally more stable They are less stable

5 Optimization is not possible Optimization is possible

Table 2.4 Comparison between open loop system and closed loop system

64

3. It has complicated installation

4. It is difficult to build.

2.6.3 Types of Control Systems

In practice, process control systems can be characterized as one or more

of the following forms:

 Discrete – Found in many manufacturing, motion and packaging

applications. Robotic assembly, such as that found in automotive

production, can be characterized as discrete process control. Most

discrete manufacturing involves the production of discrete pieces

of product, such as metal stamping (Wayne, 2003).

 Batch – Some applications require that specific quantities of raw

materials be combined in specific ways for particular durations to

produce an intermediate or end result. One example is the

production of adhesives and glues, which normally require the

mixing of raw materials in a heated vessel for a period of time to

form a quantity of end product. Other important examples are the

discrete production of individual products at a time and batch

production of group products at a time.

 Continuous process –A physical system which variables are

smooth and uninterrupted in time can be classified as a continuous

65

process. For example, the control of the water temperature in a

heating jacket. Other examples of continuous processes are seen in

production of fuels, chemicals and plastics. Continuous processes

in manufacturing are used to produce very large quantities of

product annually.

2.6.4 Control System Parameters

 e = r – b c

 r

 + b

 Figure 2.11: Control system parameters

In Figure 2.11 the reference input (r) shows the externally produced input

while the error detector receives the measured signal (b) from the

feedback from the output and compares it with the reference input (r).

The difference of the two signals gives the error signal which is given by

 e = r – b 2.1

Where, e = error

 b = measured indication of variable or the feedback

 r = reference input

The controller (c) represents the actual variable that is being controlled

and regulates the output (p) according to the signal obtained from the

detector. The feedback feeds back the output to the error detector for

P Output to final controlled element.

 Controller
+

Feedback (b)

 Error

Detector

66

comparison with the reference input (Tan, Wang, Quing and Chang,

1999).

2.6.5 Process Characteristics

a. Process Load: - The term process load refers to all the set of

parameters resulting in the controlled variable having the set point

value excluding the controlled variable. This set of parameters is

called the nominal set. The required controlling variable value under

these conditions is the nominal value of that parameter. If the set point

is changed, the control parameter is altered to cause the variable to

adopt this new operating point. The load is still nominal, however

because the other parameters are assumed to be unchanged. Suppose

one of the parameters changes from nominal, causing a corresponding

shift in the controlled variable, then a process load change has

occurred. The controlling variable is then adjusted to compensate for

this load change and its effect on the dynamic variable to bring it back

to the set point. In practice, concern is only shown on the variation in

the controlling parameter bringing the controlled variable back to the

set point.

b. Transient: Another type of change involves a temporary variation of

one of the load parameters. After the excursion, the parameter returns

to its nominal value. This variation is called a transient. A transient

cause variation of the controlled variable and the control system must

67

make equally transient changes of the controlling variable to keep

error to a minimum. A transient is not a load change because it is not

permanent (Tanomaru and Omatu, 1992).

c. Self Regulation: The tendency to adopt a specific value of the

controlled variable for nominal load with no control operation is

referred as self regulation. For instance, for a process with a steam

valve at 50% that has its‘ control loop open so that no change in valve

position is possible. The liquid heats up until the energy carried away

by the liquid equals that input energy from the steam. If the load

changes, a new temperature is adopted because the system temperature

is not controlled. The process is self regulating, however, because the

temperature will not ―run away‖ but stabilizes at some value under

given conditions. (Ang, Chong and Li, 2005).

2.7 Limitations of PID control:

While PID controllers are applicable to many control problems, and often

perform satisfactorily without any improvements or even tuning, they can

perform poorly in some applications, and do not in general provide

optimal control.

The fundamental difficulty with PID control is that it is a feedback

system, with constant parameters, and no direct knowledge of the process

and thus overall performance is reactive.

68

PID controllers, when used alone, can give poor performance when the

PID loop gains has be reduced so that the control system does not

overshoot, oscillate or hunt about the control set point value (Lima,

Jacobina and Souza, 1997).

 Linearity: Another problem faced with PID controllers is that they are

linear, and in particular symmetric. Thus, performance of PID controllers

in non-linear systems is variable. For example, in temperature control, a

common use case is active heating (via a heating element) but passive

cooling (heating off, but no cooling), so overshoot can only be corrected

slowly – it cannot be forced downward. In this case the PID should be

tuned to be over damped, to prevent or reduce overshoot, though this

reduces performance, it increases settling time.

 Noise in derivative: A problem with the derivative term is that small

amounts of measurement or process noise can cause large amounts of

change in the output. It is often helpful to filter the measurements with a

low-pass filter in order to remove higher-frequency noise components.

However, low-pass filtering and derivative control can cancel each other

out, so reducing noise by instrumentation means is a much better choice.

Alternatively, a nonlinear median filter may be used, which improves the

filtering efficiency and practical performance. In some case, the

differential band can be turned off in many systems with little loss of

69

control. This is equivalent to using the PID controller as a Proportional

Integral controller. (Tanamaru and Omatu, 1992)

Recent advances in instrumentation, telecommunications and computing

are making available to manufacturing company‘s new sensors and

sensing strategies, plant-wide networking and information technologies

that are assisting to improve substantially the production cycle. Recently

soft computing method, integrating quantitative and qualitative modeling

information, has been developed to improve in FD reasoning capabilities.

In order to develop better - fast accurate and robust – process control,

model – based modern control methods and efficient adaptive and

learning techniques are required. The adoption of effective fault diagnosis

techniques is becoming critical to ensure higher levels of safety and

reliability in automated plants and autonomous systems. (Hoskins and

Himmelbaum, 1990)

 In many practical situations, uncertainty in the process can affect the

performance of the system significantly no matter how the uncertainty

that is described as vagueness or ambiguity.

This realization provides the motivation for a possible fuzzy logic

approach to Fault Diagnosis Logic (FDL). This has the ability to directly

describe the potential failure modes in the parameters while handling a

class of nonlinear systems. (Pislaru etal, 2003)

70

CHAPTER THREE

METHODOLOGY AND SYSTEM ANALYSIS

3.1 METHODOLOGY

The methodology of this research involves the fuzzy logic technique,

the neural network and the application of Fuzzy Neural Network

which fine tunes the Fuzzy Logic output.

 3.1.1 The Fuzzy Logic Principle

Once a clear understanding of the process control is obtained, the

rigorous mathematical steps involved in a linear modeling are

overcome using fuzzy logic technique. The technique includes the

inputs which are the systems variables, the fuzzy sets were generated

from the system variables and used to form the membership functions.

The fuzzy helps in generating the matrix table, the fuzzy rule is

obtained easily using the matrix table. In this work Visual Basic. Net

(VB.Net) was used to solve the PID equation to obtain the data that is

used to generate the matrix table (See Appendix E). In the rule base

stage, the inference engine contains all the system processes. It assists

in depiction of an action. The deffuzification stage which is the last

stage outputs the approximated actions from the system. Another

advantage of this technique is that it can handle multiple inputs and

multiple outputs.

71

3.1.2 The Neural Network

The artificial neuron model simulates multiple inputs and one output,

the switching function of input-output relation and the adaptive

synaptic weights. In this work, the feed forward neural network and

unsupervised learning algorithm was adopted. The feed-forward

network is a filter which outputs the processed input signal while the

unsupervised learning algorithm use the mechanism that changes

synaptic weight values according to input values to the network. A

four layer Neural Network was implemented.

 3.1.3 Fuzzy Neural Network

The hybrid of the Fuzzy Logic and Neural Network was implemented

to fine tune and optimize the fuzzy output. Figure 3.1 shows the block

diagram of Fuzzy Neural system used. In response to linguistic

statements, the fuzzy interface block provides an input vector to a

multi-layer neural network. The Neural Network is trained to yield

desired command outputs or decisions. The output of the fuzzy above

was fed into the Neural Network and outputs the decision as shown in

figure 3.1. The learning algorithm was used to train the neurons.

72

3.2 System Analysis

In analyzing the process control, the controller theory and PID

Continuous Process Control Unit was discussed.

3.2.1 The Controller Theory

The block diagram of a controller is shown in figure 3.2. The output

(controlled variable) is first measured by the instrument. The

measurement signal goes to the comparator in form of signal (where it is

compared with the set point signal). The difference is called the deviation

or error .The resulting current output of the comparator is the error signal

which is given as input to the controller. According to the error signal, the

controller gives the correction signal (output of controller) to the final

control element. The final control element implement the correction by

physically adjusting the value of controlled variable of the process to

bring the new process output which is fed back to be compared with the

set point.

FUZZY

INTERFACE

 Neural

output

NEURAL

NETWORK

Decisions

Perception as

neural input

Figure 3.1: Block diagram of Fuzzy Neural Network

Learning

algorithm

73

3.2.2 PID Continuous Process Control Unit

Here, the three PID parameters required are the proportional gain value,

Kp; integral gain value Ki; and the derivative gain value Kd that guarantee

system stability in spite of the time delay. Figure 3.3 shows the water

inside a process that is made hot by the heater. The objective of the

process is to keep the temperature of the water at a steady temperature (in

this case at 50
o
c) s as the temperature ranges between (30-70)

 o
c

.The

system should also ensure that the liquid level should be at a steady set

level as water flows into and out of the tank. This is being controlled by

their respective valves. The feedback of the temperature measurement is

transmitted by the temperature sensor to the controller. The comparator

compares the actual temperature with the set point and the output current

of the comparator is the error signal. (i.e. E = Ts-Tm).The error signal

goes to the controller. The controller makes the necessary correction and

Controller output

signal.CO

Set Point

(SP)

Feedback signal

Process Controller

 OUTPUT

(Measurement Sensor)

Final Control

Element (FCE)

disturbance (D)

Controller error e(t)

SP- Process Output

+

-

Controlled variable Process output

Figure 3.2: Block diagram of a controller

Disturbances from
the system

74

the output of the controller (4-20 milliampere) is given to the E/P

converter. A constant air supply (137.8KN/m
2
) is given to the E/P

converter. According to the output of the controller, the outflow of air

from E/P converter is regulated i.e. pneumatic signal (20.6KN/m
2
 -

103.4KN/m
2
). The pneumatic signal goes to the control valve and

according to the pneumatic signal, the valve position changes to

manipulate the water inlet flow to minimize error. The stirrer

automatically turns on when the system is at it working condition to

establish uniform liquid temperature. The heat is generated by passing

hot air through a tube embedded in water whose inlet valve determines

the volume of hot air that is passed through the tube.

Fig 3.3: PID Continuous Process Control Unit

Outflow rate valve

Outflow rate

Valve

Heater control valve

 Water

Air supply

Heater Controller

 E/P

Comparator

Cold water inlet

m

Stirrer

Process Tank

Set point
for water

level

Tm E

 Ts

75

The equation for the above process is given as below:

 P = kp ep + kp k1 ∫ epdt + kpkD ɖ ep + P1 (o) (3.1)

where Ki = 0.7/s

 Kp = 5

 KD = 0.5 (s)

 p1 (o) = 20%

 ep = t%

T = the interval of time until the system stabilizes.

These values were obtained as shown below:

ep =[(x-xo)/Kp] x 100 (3.2)

Assume ep = 2% and X=120cm3/s and Xo =110cm3/s

this gives Kp = 5

To obtain KD

p(t) = KD (dep/dt) (3.3)

p(t) is taking to be 5s and since a positive rate of change of error produces

a positive derivative mode output , then KD is given to be 5s.

To obtain Ki

Ki = - 0.15% of controller output per second per percentage error, this is

given to be -4.67/s/%, therefore Ki = 0.7005/s

T

dt

76

Having obtained these values, it was applied to the three mode equation

for controller output (see eqn 3.1)

We have that p1=5t +1.75t
2
+22.5; p2=3.5(t-1) +1.75t

2
+26.75;

P3=-0.875t
2
+6.25t+21.625 (3.4)

3.3 Problem Formulation:

In addition to other limitations stated in section 2.7 PID controllers

operate in single input single output (SISO) mode. Also the tuning of the

PID variables involves trial and error method and rigorous mathematical

procedures.

77

CHAPTER FOUR

SYSTEM DESIGN

The design stage of the intelligent process control is discussed below.

4.1 The Design of Intelligent Process Control System Using Fuzzy Network

The fuzzy control system design follows the following steps:

i) Obtain the system‘ operational specifications and inputs and

outputs.

ii) Obtain the fuzzy sets for the inputs

iii) Determine the rule set

iv) Determine the defuzzification

v) Run through test suite to validate system and adjust systems as

required.

vi) Complete document and release to production.

The detailed discussion of what happens at each step now follows:

4.1.1 Obtaining the system’ operational specifications and inputs and

outputs:

This involves the Universe of Discourse (Ȕ) which is the range of all

possible values that comprise the input to the fuzzy system and also the

output.

It is given by:

 Ȕ=UL+UP+UT (4.1)

Where UL=fuzzy parameters for liquid level

78

 UP=fuzzy parameters for pressure

 UT=fuzzy parameters for temperature

4.1.2 Obtaining the fuzzy sets (U) for the inputs:

 Fuzzy set (U) is any set that empowers its members to have different

grades of membership in an interval and the values obtained are based

on the system adaptation during training. The fuzzy set for liquid level

(UL), pressure (UP) and temperature (UT) is depicted below:

 UL= {H5, H4, H3, H2, H1} = {12, 11, 10, 9, 8,} (4.2)

 UP= {P5, P4, P3, P2, P1} = {15, 12, 9, 6, 3} (4.3)

 UT= {T5, T4, T3, T2, T1} = {70, 60, 50, 40, 30.} (4.4)

To determine the fuzzy set for both the input and output variables, we

have that:

For change in liquid level (dl) with reference to the set point

H5 - Very high 12

H4 - High 11

H3 - Zero (at set point) 10

H2 - low 9

H1 - very Low 8

79

For valve settings (Vo):

Vw - Very Wide 5

W - Wide 4

Nm - Normal 3

Na - Narrow 2

VNa - Very Narrow 1

For the outflow rate (Rout) in (cm
3
/s):

VH - Very High 150

H - High 120

N - Normal 90

L - Low 60

VL - Very Low 30

The fuzzy inference system for liquid level in MATLAB environment is

shown in Figure 4.1a (See Appendix C)

80

 The rule sets for the water level are as follows:

Rout = Rate of outflow

dL = Change in water level

Vo = Valve setting

The fuzzy parameters for temperature in (
o
C)

T5 = ᶿ5 = very hot (70)

T4 = ᶿ4 = hot (60)

Figure 4.1a: Fuzzy inference system for water level in MATLAB

81

T3 = ᶿ3 = warm (50)

T2 = ᶿ2 = cold (40)

T1 = ᶿ1 = very cold (30)

The heater settings:

HT5 = Very High

HT4= High

HT3= medium

HT2= Low

HT1= Very Low

The heater control settings:

Hc5 = Very High

Hc4= High

Hc3= Normal

Hc2= Low

Hc1= Very Low

The fuzzy inference system for temperature in MATLAB environment is

shown in Figure 4.1b

82

The fuzzy parameters for pressure in KN/m
2
:

P5 = Very High 15

P4 = High 12

P3 = Normal 9

P2 = Low 6

P1 = Very Low 3

Figure 4.1b: Fuzzy inference system for temperature in MATLAB

83

4.1.3 Membership functions (UA)

This is given by

UAPC = UAL+ UAT + UAP (4.5)

Where

UAL = DL + ROUT + VO (4.6)

UAT = T + HT + HC (4.7)

UAP = P + HL +VOP (4.8)

And

DL = {H5, H4, H3, H2, H1} = {12, 11, 10, 9, 8} (4.9)

ROUT = {VH, H, N, L, VL} = {7, 6, 5, 4, 3} (4.10)

VO= {VW, W, N, NA, VNA} = {5, 4, 3, 2, 1} (4.11)

Using MATLAB, figure 4.2a, fig 4.2b and 4.2c, shows the membership

functions of the liquid level, outflow rate, and the valve setting

respectively. Membership functions are used in the fuzzification and

defuzzification steps of a Fuzzy Logic System to map the non-fuzzy input

values to fuzzy linguistic terms and vice versa. A membership function is

used to quantify a linguistic term. Note that an important characteristic of

fuzzy logic is that a numerical value does not have to be fuzzified using

only one membership function. In other words, a value can belong to

multiple sets at the same time. For example, figure 4.2a, a liquid level

value can be considered as ―Very High (H5)‖ and ―High (H4)‖ at the same

84

time, with different degree of memberships. Note that that H5 to H1 are

the degree of membership which the system can comprise.

Fig 4.2a: Membership function for liquid level in MATLAB

85

In Figure 4.2b, the memberships functions for outflow rate value are

―Very High (V5)‖, ―High (H)‖, ―Normal(N)‖, Low(L) and Very Low

(VL)‖ and can be considered as ―Very Low‖ and ―Low‖ at the same time,

based on the value it acquired at that point.

Figure 4.2b: Membership function for outflow rate in MATLAB

86

Figure 4.2c shows the membership functions for valve setting are ―Very

Wide (VW)‖, ―Wide (W)‖, ―Normal(Nm)‖, Narrow(Na) and Very Narrow

(VNa)‖ and can be considered as ―Very Wide‖ and ―Wide‖ at the same

time, depending on its value at that point.

Figure 4.2c: Membership function for valve setting in MATLAB

87

The fuzzy sets for the temperature (T), Heater (H) and Heater Control

(HC) from which the membership functions is formulated is shown below

T = {T5, T4, T3, T2, T1} = {70, 60, 50, 40, 30.} (4.12)

HT ={HT5, HT4, HT3, HT2, HT1) ={100, 80, 60, 40, 20} (4.13)

HC= HC5, HC4, HC3, HC2, HC1) = {5, 4, 3, 2, 1} (4.14)

 Figure 4.2d to 4.2f shows the membership functions for temperature,

heater and heater control in MATLAB.

 Figure 4.2d: Membership function for temperature in MATLAB

88

In Figure 4.2e shows the membership function for the heater in

MATLAB, the output of the heater control can fall in any point in the

fuzzy set axis giving values like 20.5, 80.2, 60.8 e.t.c, The fuzzy

Figure 4.2e: Membership function for the heater in MATLAB

89

controller cannot take critical decision on what the final output should be

and this is where the neural network fine tunes the variables based on its

characteristics at that point in time. It approximates it and deduces an

action.

Figure 4.2f: Membership function for heater control in MATLAB

90

In Figure 4.2f, the membership functions for heater control are ―Very

High (Hc55)‖, ―High (Hc4)‖, ―Normal (Hc3)‖, ―Low (Hc2)‖ and ―Very

Low‖ (Hc1)‖ and can be considered as ―Normal‖ and ―Low‖ at the same

time, with different degree of memberships.

The membership functions for the pressure (P), water level (HL) and

pressure valve (VOP) was shown below and Fig 4.2g, 4.2h and 4.2i shows

this in MATLAB respectively.

P = {P5, P4, P3, P2, P1} = {15, 12, 9, 6, 3} (4.15)

HL = {H5, H4, H3, H2, H1= {12, 11, 10, 9, 8} (4.16)

VOP = {VW, W, N, NA, VNA} = {5, 4, 3, 2, 1} (4.17)

91

Fig 4.2g: Membership function for pressure in MATLAB

92

 Figure 4.2h: Membership function for water level in MATLAB

93

Figure 4.2i: Membership function for valve setting in MATLAB

94

4.1.4 Depiction of the Fuzzy Sets (f)

fUAPC = (fUAL U fUAT U fUAP) (4.18)

where fuzzy sets for liquid level, temperature and pressure is shown in fuzzy

set notation below.

fUAL (DL ᶯ ROUT)= VO (4.19)

fUAT (T ᶯ HT) = HC (4.20)

fUAP (P ᶯ HL) =VOP (4.21)

4.1.5 Determining the fuzzy rule set: The depiction of the fuzzy sets is

used to create a matrix table which makes it easier for the developing of

the fuzzy rule. Fig 4.3a, 4.3b, 4.3c and table 4.3a, 4.3b, 4.3c shows the

block diagram for the fuzzy control system and matrix table respectively

for liquid level, temperature and pressure. The first two blocks contain

the fuzzy sets, the second single block represents the fuzzy rule base

while the last block depicts the defuzification that is the output of the

control respectively for each of the variables under control.

95

Valve

setting

H5

H4

H3

H2

H1

D
 E

 F
 F

 U
 Z

 I F
 I C

 T
 I O

 N

VH

H

N

L

VL

Outflow

rate

(Rout)

IF Rout is VH AND dl is H5 THEN VO IS Nm

If Rout is VH AND dl is H5 THEN VO IS Na

If Rout is VN AND dl is H5 THEN VO IS Na

If Rout is L AND dl is H5 THEN VO IS VNa

If Rout is VLAND dl is H5 THEN VO IS VNa

If Rout is L AND dl is H3 THEN VO IS Nm

……other rules………

Liquid

level (Dl)

T5

T4

T3

T2

T1

D
 E

 F
 F

 U
 Z

 I F
 I C

 T
 I O

 N

HT5

HT4

HT3

HT2

HT1

Heater (T)

IF T is T5 AND HT is HT5 THEN Hc is Hc1

IF T is T5 AND HT is HT4 THEN Hc is Hc1

IF T is T5 AND HT is HT3 THEN Hc is Hc1

IF T is T5 AND HT is HT2 THEN Hc is Hc1

IF T is T5 AND HT is HT1 THEN Hc is Hc2

IF T is T5 AND HT is HT5 THEN Hc is Hc1

……other rules………

Temperature (T)

Heater

control

(HC)

Figure 4.3a: Block diagram of fuzzy control system for water level

Figure 4.3b: Block diagram of fuzzy control system for temperature

96

The matrix tables (table 4.1, 4.2, 4.3) are 5 X 5 matrix table with 5 rows

and 5 columns in each case. The rows and columns represent one of the

inputs each for the parameter being considered whereas the intersection

(blocks inside) represents its output. For instance, in the matrix table for

water level in table 4.1, the row represents the liquid level, the column

represents the outflow rate while the intersection of both (internal blocks)

is the output in this case the valve setting. In the matrix table for

temperature in table 4.2, the row represents the temperature rating, the

column represents the heater while the intersection of both (internal

Valve

setting

(VOP)

P5

P4

P3

P2

P1

D
 E

 F
 F

 U
 Z

 I F
 I C

 T
 I O

 N

H5

H4

H3

H2

H1

Liquid

level (HL)

If P is P5 and H is H5 THEN V is VNA

If P is P5 and H is H4 THEN V is VNA

If P is P5 and H is H3 THEN V is VNA

If P is P5 and H is H2 THEN V is NA

If P is P5 and H is H1 THEN V is NA

If P is P5 and H is H5 THEN V is VNA

……other rules………

Pressure (P)

Figure 4.3c: Block diagram of fuzzy control system for pressure

97

blocks) is the output in this case the heater control. The matrix table for

pressure in table 4.3, the row represents the pressure rating, the column

represents the liquid level while the intersection of both (internal blocks)

is the output in this case the valve setting for pressure.

Table 4.1 was used to generate the 25 fuzzy rules as shown in table 4.5a

Dl / Rout

VH

H

N

L

VL

H5

Nm

Na

Na

VNa

VNa

H4

Nm

Nm

Na

VNa

VNa

H3

Vw

W

Nm

Na

VNa

H2

Vw

W

W

Na

Nm

H1

Vw

VW

W

W

W

TABLE 4.1: Matrix table for outflow rate

98

T/HT

HT5

HT4

HT3

HT2

HT1

T5

Hc1

Hc1

Hc1

Hc1

Hc2

T4

Hc1

Hc1

Hc1

Hc2

 Hc2

T3

Hc1

Hc2

Hc3

Hc4

Hc5

T2

Hc1

Hc2

Hc3

Hc4

Hc5

T1

Hc2

Hc3

Hc4

Hc4

Hc5

TABLE 4.2: Matrix Table for Temperature

99

Table 4.2 was used to generate the 25 fuzzy rules as shown in table 4.5b

while table 4.3 was used to generate the 25 fuzzy rules as shown in table

4.5c

P/HL

H5

H4

H3

H2

H1

P5

VNA

VNA

VNA

NA

NA

P4

VNA

VNA

NA

NA

NA

P3

VNA

VNA

NM

W

W

P2

VNA

NM

NM

W

W

P1

NM

NM

W

VW

VW

TABLE 4.3: Matrix Table for Pressure

100

4.1.6 The Algorithm and Flowchart

The algorithm shown below is the stepwise procedures taken to develop

the source code of the (ROUT, D), 5x5 matrix table and the flowchart (fig

4.4a (flowchart for the matrix) shows the diagrammatic representation of

the flow or execution of the algorithm. VB.Net software was used to

develop a generalized 5x5 matrix table (eij) for all the variables under

consideration. Table 4.4 shows the matrix table used while fig 4.4b shows

the matrix table of eij in VB.Net environment (See Appendix). In the

table above eij where i =1 to 5 and j =1 to5.

1. Start

2. DIM (ROUT , D)

3. For RO = 1 TO 5

4. For DI = 1TO 5

5. INPUT (RO , DI)

6. NEXT DI

7. NEXT RO

8. END

101

Figure 4.4a: Flowchart of the Matrix

START

ENTER

DIM (ROUT , D)

FOR

DI = 1

PRINT

(RO , DI)

NEXT RO

 NEXT DI

IS

RO = 5

?

IS

DI = 5

?

STOP

Y

Y

N

N

FOR

RO =1

102

Table 4.4: Matrix table for eij

Rout /D R1out R2out R3out R4out R5

D1 e11 e12 e13 e14 e15

D2 e21 e22 e23 e24 e25

D3 e31 e32 e33 e34 e35

D4 e41 e42 e43 e44 e45

D5 e51 e52 e53 e54 e55

103

Figure 4.4b Matrix table in VB.Net environment

104

4.1.7 The Fuzzy Rule Table

Tables 4.5a, 4.5b and 4.5c show the fuzzy rule table for liquid level,

temperature, and pressure respectively. They contained possible fuzzy

operations in ―AND operator‖ on the sets comparatively.

In Table 4.5a the Rule Base for liquid level/Outflow rate was derived

from the Matrix Table of table 4.3a. For example, rule one was formed

from IF ―column 1‖ AND ―row 1‖, THEN the ―Intersection‖ become the

output. This is how the twenty five rules were generated.

Table 4.5b shows the Rule Base for temperature and was derived from

the Matrix Table of table 4.3b. For example, rule one was formed from IF

―IF T(Temperature) is T5 and HT(Heater) is HT5THEN Hc is Hc1 (which

is the output). Rule two was formed from IF ―IF T (Temperature) is T5

and HT (Heater) is HT4THEN Hc is Hc1). Rule three was formed from IF

―IF T (Temperature) is T5 and HT (Heater) is HT3THEN Hc is Hc2 and

etcetera. This is also how the twenty- five rules for each of the variables

were generated.

However, Table 4.5c shows the Rule Base for pressure and was derived

from the Matrix Table of table 4.3c just as discussed above.

105

RULE CONDITION ANTECEDENT

1. If Rout is VH AND dl is H5 THEN Vo is Nm

2. If Rout is VH AND dl is H5 THEN Vo is Na

3. If Rout is VN AND dl is H5 THEN Vo is Na

4 If Rout is L AND dl is H5 THEN Vo is VNa

5 If Rout is VLAND dl is H5 THEN Vo is VNa

6 If Rout is VH AND dl is H4 THEN Vo is Nm

7 If Rout is H AND dl is H4 THEN Vo is Nm

8 If Rout is N AND dl is H4 THEN Vo is Na

9. If Rout is L AND dl is H4 THEN Vo is Vma

10 If Rout is VL AND dl is H4 THEN Vo is VNa

11 If Rout is VH AND dl is H3 THEN Vo is Vm

12 If Rout is H AND dl is H3 THEN Vo is W

13 If Rout is N AND dl is H3 THEN Vo is Nm

14 If Rout is L AND dl is H3 THEN Vo is Na

15 If Rout is VL AND dl is H3 THEN Vo is VNa

16 If Rout is VH AND dl is H2 THEN Vo is Vw

17 If Rout is H AND dl is H2 THEN Vo is W

18 If Rout is N AND dl is H2 THEN Vo is W

19 If Rout is L AND dl is H2 THEN Vo is Na

20 If Rout is VL AND dl is H2 THEN Vo is Nm

21 If Rout is VH AND dl is H1 THEN Vo is Vm

22 If Rout is H AND dl is H1 THEN Vo is Vw

23 If Rout is N AND dl is H1 THEN Vo is W

24. If Rout is L AND dl is H1 THEN Vo is W

25 If Rout is VL AND dl is H1 THEN Vo is W

TABLE 4.5a: Rule Base for Outflow rate

106

RULE CONDITION ANTECEDENT

1. If T is T5 and HT is HT5 THEN Hc is Hc1

2. If T is T5 and HT is HT4 THEN Hc is Hc1

3. If T is T5 and HT is HT3 THEN Hc is Hc1

4 If T is T5 and HT is HT2 THEN Hc is Hc1

5 If T is T5 and HT is HT1 THEN Hc is Hc2

6 If T is T4 and HT is HT5 THEN Hc is Hc1

7 If T is T4 and HT is HT4 THEN Hc is Hc1

8 If T is T4 and HT is HT3 THEN Hc is Hc1

9. If T is T4 and HT is HT2 THEN Hc is Hc2

10 If T is T4 and HT is HT1 THEN Hc is Hc2

11 If T is T3 and HT is HT5 THEN Hc is Hc1

12 If T is T3 and HT is HT4 THEN Hc is Hc2

13 If T is T3 and HT is HT3 THEN Hc is Hc3

14 If T is T3 and HT is HT2 THEN Hc is Hc4

15 If T is T3 and HT is HT1 THEN Hc is Hc5

16 If T is T2 and HT is HT5 THEN Hc is Hc1

17 If T is T2 and HT is HT4 THEN Hc is Hc2

18 If T is T2 and HT is HT3 THEN Hc is Hc3

19 If T is T2 and HT is HT2 THEN Hc is Hc4

20 If T is T2 and HT is HT1 THEN Hc is Hc5

21 If T is T1 and HT is HT5 THEN Hc is Hc2

22 If T is T1 and HT is HT4 THEN Hc is Hc3

23 If T is T1 and HT is HT3 THEN Hc is Hc4

24. If T is T1 and HT is HT2 THEN Hc is Hc4

25 If T is T1 and HT is HT1 THEN Hc is Hc5

TABLE 4.5b: Rule Base for Temperature

107

RULE CONDITION ANTECEDENT

1. If P is P5 and H is H5 THEN V is VNA

2. If P is P5 and H is H4 THEN V is VNA

3. If P is P5 and H is H3 THEN V is VNA

4 If P is P5 and H is H2 THEN V is NA

5 If P is P5 and H is H1 THEN V is NA

6 If P is P4 and H is H5 THEN V is VNA

7 If P is P4 and H is H4 THEN V is VNA

8 If P is P4 and H is H3 THEN V is NA

9. If P is P4 and H is H2 THEN V is NA

10 If P is P4 and H is H1 THEN V is NA

11 If P is P3 and H is H5 THEN V is VNA

12 If P is P3 and H is H4 THEN V is VNA

13 If P is P3 and H is H3 THEN V is NM

14 If P is P3 and H is H2 THEN V is W

15 If P is P3 and H is H1 THEN V is W

16 If P is P2 and H is H5 THEN V is VNA

17 If P is P2 and H is H4 THEN V is NM

18 If P is P2 and H is H3 THEN V is NM

19 If P is P2 and H is H2 THEN V is W

20 If P is P2 and H is H1 THEN V is W

21 If P is P1 and H is H5 THEN V is NM

22 If P is P1 and H is H4 THEN V is NM

23 If P is P1 and H is H3 THEN V is W

24. If P is P1 and H is H2 THEN V is VW

25 If P is P1 and H is H1 THEN V is VW

TABLE 4.5c: Rule Base for Pressure

108

The fuzzy rule for liquid level, pressure and temperature was

implemented respectively in the MATLAB environment. The evaluations

of the fuzzy rules and the combination of the results of the individual

rules are performed using fuzzy set operations.

Figures 4.5a, 4.5c and 4.5e show the fuzzy rule editor while figures 4.5b,

4.5d and 4.5f show the surface viewer of the fuzzy rule in MATLAB.

Based on the descriptions of the input and output variables defined earlier

on, the Rule Editor allows you to construct the rule statements

automatically, by clicking on and selecting one item in each input

variable box, one item in each output box, and one connection item based

on the fuzzy rule for the process under control in this case ―AND‖. Rules

may be changed, deleted, or added, by clicking on the appropriate button.

The Surface Viewer represents the mapping of the variables that is

outflow rate, temperature and pressure in each case. Since this is a three-

input three-output case, we can see the entire mapping in one plot as they

generate three-dimensional plots that MATLAB can adeptly manage

109

Figure 4.5a Fuzzy rule editor for water level in MATLAB

110

Figure 4.5b Fuzzy rule surface viewer for water level in MATLAB

111

Figure 4.5c: Fuzzy rule editor for pressure in MATLAB

112

Fig 4.5d: Surface viewer of Fuzzy rule for pressure in MATLAB

113

 Figure 4.5e: Fuzzy rule editor for temperature in MATLAB

114

4.1.8 Determining the Defuzzification.

Since fuzzy logic controller can have only one output, it must complete a

process called deffuzification to determine the actual final output value.

Defuzzification is performed according to the membership function of the

output variable. In figures 4.6a, 4.6b and 4.6c shows the Rule Viewer for

outflow rate, temperature and pressure respectively. They display a

Fig ure 4.5f: Surface viewer of fuzzy rule for temperature in MATLAB

115

roadmap of the whole fuzzy inference process. The three small plots

across the top of the figure represent the antecedent and consequent of the

first rule. Each rule is a row of plots, and each column is a variable. The

first two columns of plots show the membership functions referenced by

the antecedent, or the if-part of each rule. The third column of plots

shows the membership functions referenced by the consequent, or the

then-part of each rule and that is the column for defuzzification. If we

follow rule 1 across the top of the diagram through the twenty-fifth rule,

we can see the consequents has been truncated to exactly the same

degree as the (composite) antecedent--this is the implication process in

action. The aggregations occur down the third column, and the resultant

aggregate plot and the defuzzified output value is shown through the

aggregate fuzzy set. The Rule Viewer also shows how the shape of

certain membership functions influences the overall result..

116

`

 Outflow rate

Figure 4.6a: Rule viewer for outflow rate

117

 Figure 4.6b: Rule viewer for temperature

118

Figure 4.6c Rule viewer for pressure

119

4.1.9 Running Test Suite to Validate System, Adjusting Systems,

Completing Document and Releasing for production.

After the defuzification stage, the fuzzy logic network was tested and

necessary adjustment made before it is implemented in the process

control as shown in Figure 4.7. It shows the block diagram of the PID

fuzzy controller of the tank water level. The process under control has a

valve that controls the inflow of liquid into the tank and another one that

controls the outflow from the tank. The control system tries to keep the

liquid level in the tank constant within the set-point for level. This is

achieved by adjusting the inflow rate and outflow rate dynamically as

appropriate by the microcontroller. The heater is being controlled by the

heater control while the stirrer ensures that the liquid is at uniform

temperature. Four sensors where used:

1) To sense the liquid level in the tank,

2) To sense the outflow rate from the tank

3) To sense the temperature and

4) To sense the pressure

The four sensor outputs in millivolt after being amplified are selected one

at a time via 4 X 1 analog multiplexer. The selected signal is then

converted to digital pattern via an analog to digital converter. The

digitalized sensor output is then sent to the microcontroller which

controls the process.

120

Figure 4.7: Fuzzy controller of the process under control

 LCD

Outflow rate

(OFR)

A/D

Converter

Water level

Keypad Water

level

Outflow O/P

matrix

MICROCONTROLLER

Temperature

Pressure

 4 x1

Analog

 MUX

Valve

CCT

Pressure Temperature

Setpoint for level

Valve control

Transducer

Valve

CCT

 Stirrer

Heater

Valve control

Transducer

Heater

control

Amplification

stages

V

 mV

121

The keyboard serves as the input device for the controlled parameters

while the Liquid Crystal Display (LCD) displays the output of the

controlled variables. Outputs of the matrix are as shown in the matrix

tables discussed in table 4.1, 4.2 and 4.3.

4.2 The Neural Network Design: The procedures for designing a neural

network for the process under control involve the followings:

 Collection of data (same as that of fuzzy network)

 Creating and Configuring the network

 Training the network

 Validating and Using the network

4.2.1 Collection of data: The process involves collecting of data and

separating them into training set and a test set. The training cases are used

to adjust the weights, and the test cases are used for network validation.

The data used for training and testing must include all the attributes that

are useful for solving the problem. The system can only learn as much as

the data can tell. The data is the same as fuzzy sets (see section 4.1.2)

4.2.2 Creating and configuring the network: Once the training and

testing data sets are identified, the next step is to design the structure of

the neural networks. A feed-forward four layer showing the neural

controller was configured for liquid level, pressure and temperature

122

respectively (see figures 4.8a, 4.8b and 4.8c). The first layer represents

input variables, the middle (hidden) layers represents membership

functions and fuzzy rules respectively and the fourth layer represents the

output variables.

OUTPUT LAYER

RULE LAYER

MEMBERSHIP

LAYER

INPUT LAYER

Rout

Dl

If then

rule

N L H
VL

VH

If

then rule

If

then rule

Vo

If

then rule

If

then rule

Figure 4.8a: Neural controller for the water level

123

RULE LAYER

INPUT LAYER

MEMBERSHIP

LAYER

OUTPUT LAYER

 T HT

If then

rule

T3
T2

T4
T1

T5

If

then rule

If

then rule

HC

If

then rule

If

then rule

Figure 4.8b: Neural controller for the temperature

124

INPUT LAYER

MEMBERSHIP

LAYER

OUTPUT LAYER

P Dl

If then

rule

P3
P2

P4
P1

P5

If

then rule

If

then rule

 Vop

If

then rule

If

then rule

Figure 4.8c: Neural controller for pressure

RULE LAYER

125

4.2.3 Training the Network: Once the network structure is chosen, a

learning algorithm to identify a set of connection weights that best cover

the training data and have the best predictive accuracy is achieved. For

the feed forward topology which was applied in this work, the back

propagation algorithm was implemented. Back propagation is the most

widely used supervised learning algorithm in neural computing. During

supervised training, externally provided correct patterns are compared

with the neural network‘s output and the feedback is used to adjust the

weights until all the training patterns are categorized as correctly as

possible by the network. Since many commercial packages are available

on the market, there is no need to implement the learning algorithm

instead a suitable commercial package (Neural ware) was chosen to

analyze the data. Training of artificial neuron (see the flowchart in figure

4.9) is an iterative process that starts from a random set of weights and

gradually enhances the fitness of the network model and the known data

set .The iteration continues until the error sum is converged to below a

preset acceptable level. In back propagation two parameters, learning rate

and momentum was adjusted to control the speed of reaching a solution.

126

4.3 Validating and using the network

Some data conversation is necessary in the training process. This

includes, changing the data format to meet the requirements of the

software, normalization of the data scale to make them more comparable

and removing problematic data. Once the training data set is ready, it is

loaded into the package and the learning process executed. Once the

training has been completed, the network is tested to examine the

performance of the derived network model. The implementation of the

Y

N

Figure 4.9: Flowchart for training a neuron

127

network requires interfaces with other computer based information

systems as discussed below.

4.4 Neural Control of Tank Water Level

The neural control of the process was designed as shown in fig 4.10a

Outflow rate sensor

NEURO CONROL SYSTEM

RUNNING ON PC

PRINTER PORT

Intel 8286 Bidirectional Buffer

A
n

a
lo

g
 M

U
X

 1
 o

u
t o

f 4

D
o

D
1

A
n

a
lo

g
 D

ig
ita

l C
o

n
v

er
ter

IN
P

U
T

 P
O

R
T

 L
 A

T
C

H

O
U

T
P

U
T

 P
O

R
T

 L
A

T
C

H

Outflow

Rate

Sensor

Interface

Level sensor

interface

Valve

Control

interface

ON/OFF

VALVE

Interface

PROCESS UNDER NEURAL

CONTROL NETWORK

 Stirrer

 Level sensor

Temperature

Sensor

interface

Pressure

sensor

interface

Heater

Control

interface

Heater

Amplification

stage

Set point

for level

V

mV

A

B

Figure 4.10a: Neural control of tank water level

128

The Neural control system running on PC interfaced to the process under

control via an INTEL 8286 Bidirectional Buffer. When the signal line B

is active, the buffer sends information to the process under control via the

output port latch. Similarly, when the signal line A is active, the feedback

signals from the process are input via the input port latch to the

bidirectional buffer and from thence to the PC. The process under Neural

control has a valve that controls the inflow of the liquid into the tank and

another one that controls the outflow from the tank. The heater increases

the temperature of the liquid while the stirrer is used to ensure that the

liquid is of uniform temperature. The control system tries to keep the

liquid level in the tank constant within the set point for level. This is

achieved by neural control by adjusting the inflow rate and outflow rate

dynamically as appropriate. Four sensors were used: 1) to sense the liquid

level in the tank and 2) to sense the outflow rate from the tank, 3) to sense

the temperature and 4) to sense the pressure of the system. The four

sensor outputs are selected one at a time via 4 X 1 analog multiplexer.

The selected signal is first amplified and then converted to digital pattern

via an analog to digital converter. The digitalized sensor outputs are

latched by the input port latch and forwarded to the neural control system

via the bidirectional buffer. Figure 4.10b depicts the real time simulation

of Neural control of tank water level in Proteus.

129

Figure 4.10b: Real time simulation of neural controller of tank water level in Proteus

130

The real time simulation of the control system used as a typical industrial

scenario is achieved by clicking the play button. When this is done the

liquid from the upper tank flows to the lower tank. The valve to the water

inlet of the upper tank is being controlled based on the rate of the outflow

from the lower tank. This is done to make sure that the set point of the

process under control is maintained. The heater heats the liquid while the

stirrer ensures that a uniform liquid temperature is maintained. The alarm

sub system sounds at indication of any fault. One of the four computer

system interfaces displays the possible rectification methods of the fault

and the time evolution of such faults while the other three, displays show

the various readings of the outflow rate/liquid level, the pressure and

temperature. When Proteus software is used to implement a real-time

simulation, not all the system components are placed on the layout. Some

are placed in the sub sheet e.g. controller; some are not visible but are

there by default e.g. reset circuit, crystal microcontroller, power, etc;

while some are taken care of by the control program. In Proteus design,

this is called ―referencing.

4.5 Intelligent Process Control System Using NeuroFuzzy Network

Fuzzy neural networks (FNN) combine fuzzy logic with artificial neural

networks. In this work, the input and output variables processed by the

fuzzy logic was fed into the neural networks for learning. (This step is

131

called fuzzification). The neural network then takes the fuzzified input

and output scales to derive a model which is converted back to the

original input and output scales (defuzzification). Then the output of the

―defuzified‖ fuzzy system became input to the process under control as

shown in the block diagram in Figure 3.1. The Fuzzy Neural controller of

tank water level shown in Figure 4.12a has four layers. The first layer

represents the input variables for liquid level, temperature and pressure

respectively, the second represents their membership sets, the third layer

represents the fuzzy rules and the fourth layer represents the defuzified

output for the three variables under consideration. The rule layer

produces seventy-five rules altogether, twenty-five rules from each of the

variables and gives three outputs at a time for each of the three variables

that satisfies the condition at a particular instance.

The design specification is in two stages. The first stage has the personal

computer (PC) where all the software controlling the system is installed.

The PC has limited ports which are used for other computer peripheral

and communication devices. Out of these ports, one is then used for the

bidirectional buffer which interfaced the process control system and the

PC. This helps to eliminate the use of two ports for input and output from

the PC. When line A is active (Figure 4.11a), line B becomes inactive,

and then feedback signal from the process via input latch moves to the

bidirectional buffer and goes to the PC. The feedback signals from the

132

process sensors pass through a set of stages before reaching the

bidirectional buffer. After amplification of the signal, the multiplexer

selects one out of the four variables at a time and sends it to Analog

Digital Converter which digitizes the signal and then passes it to the

buffer through the input latch. When line B is active, the buffer sends

information to the process under control via the output latch to the

process through the actuators.

The second stage as shown in figure 4.11b shows the process under fuzzy

neural control, which shows a tank containing the liquid that is to be at a

set level as water flows in and out of the tank, the heater heats up the

Figure 4.11a: Design specification for Fuzzy Neural control of tank water level (First stage)

NEURO CONROL SYSTEM

RUNNING ON PC

PRINTER PORT

Intel 8286 Bidirectional Buffer

A
n

a
lo

g
 M

U
X

 1
 o

u
t o

f 4

D
o

D
1

A
n

a
lo

g
 D

ig
ita

l C
o

n
v

er
ter

IN
P

U
T

 P
O

R
T

 L
 A

T
C

H

O
U

T
P

U
T

 P
O

R
T

 L
A

T
C

H

Amplification

stage

V

A

B

133

liquid and the stirrer continually stirs it to ensure a uniform temperature.

The three actuators shown are the interfaces to the process under control,

and they are the heater control interface, the valve control interface and

the power control interface. Four transducers which sense the variables

(liquid level, temperature, pressure and outflow rate) were used to convert

each respective signal to electrical signal which is sent to the multiplexer

where one is selected at a time and from the ADC through the input port

latch back to the PC. When Figures 4.11a and 4.11b are combined, figure

4.12b, the model diagram results.

Outflow rate sensor

Outflow

Rate

Sensor

Interface

Level sensor

interface

Valve

Control

interface

ON/OFF

VALVE

Interface

PROCESS UNDER NEURAL

CONTROL NETWORK

 Stirrer

 Level sensor

Temperature

Sensor

interface

Pressure

sensor

interface

Heater

Control

interface

Heater

Set point

for level

mV

Figure 4.11b: Design specification for Fuzzy Neural control of tank water level (Second stage)

134

Figure 4.12b shows the block diagram of the Intelligent Process Control

System Using Fuzzy-Neural Network. Here, the Fuzzy Neural control

system running on PC interfaced to the process under control via an

INTEL 8286 Bidirectional Buffer. Just like in the neural controller, when

the signal line B is active, the buffer sends information to the process

Vo

HC

Vop

Figure 4.12a: Fuzzy Neural control of tank water level

Vo Vop
HC

T HL P

1
ST

 Layer (input layer)

2
nd

 Layer

(membership

function layer)

3
rd

 Layer (rule

base layer)

4
th

 Layer (output layer)

135

under control via the output port latch. Similarly, when the signal line A

is active, the feedback signals from the process are input via the input

port latch to the bidirectional buffer and from thence to the PC. The

process under Fuzzy Neural control has a valve that controls the inflow of

the liquid into the tank and another one that controls the outflow from the

tank. The heater increases the temperature of the liquid while the stirrer is

used to ensure that the liquid is of uniform temperature. The control

system tries to keep the liquid level in the tank constant within the set-

point for level. This is achieved by Fuzzy Neural control by adjusting the

inflow rate and outflow rate dynamically as appropriate. Four sensors

were also used: 1) to sense the liquid level in the tank and 2) to sense the

outflow rate from the tank, 3) to sense the temperature and 4) to sense the

pressure of the system. The four sensor outputs are selected one at a time

via 4-out-of-1 analog multiplexer. The selected signal is first amplified

and then converted to digital pattern via an analog to digital converter.

The digitalized sensor output are latched by the input port latch and

forwarded to the Fuzzy Neural control system via the bidirectional buffer.

136

Figure 4.12b: Block diagram of The Intelligent Process Control System Using Fuzzy-

Neural Network

Outflow rate sensor

 FUZZY-NEURAL

 CONROL SYSTEM

RUNNING ON PC

PRINTER PORT

Intel 8286 Bidirectional Buffer

A
n

a
lo

g
 M

U
X

 1
 o

u
t o

f 4

D
o

 D
1

A
n

a
lo

g
 D

ig
ita

l C
o

n
v

er
ter

IN
P

U
T

 P
O

R
T

 L
 A

T
C

H

O
U

T
P

U
T

 P
O

R
T

 L
A

T
C

H

Outflow

Rate

Sensor

Interface

Level sensor

interface

Valve

Control

interface

ON/OFF

VALVE

Interface

PROCESS UNDER FUZZY-

NEURAL CONTROL

 Stirrer

 Level sensor

Temperature

Sensor

interface

Pressure

sensor

interface

Heater

Control

interface

Heater

Amplification

stage

Set point

for level

V

mV

A

B

137

4.6 The Industrial scenario

It is always necessary to perform a real-time simulation of any control

system before the circuit is constructed, to ensure the workability of that

system. The simulated prototype model of the system using Proteus

software which is a good software tool for real time simulation is shown

in figure 4.13. In this work, Proteus 7 software package was used for the

simulation.

The real time simulation of the control system used as a typical industrial

scenario is achieved by clicking the play button. When this is done the

liquid from the upper tank flows to the lower tank. The valve at the water

inlet of the upper tank is being controlled based on the rate of the outflow

from the lower tank. This is done to make sure that the set-point of the

process under control is maintained. The heater heats the liquid while the

stirrer ensures that a uniform liquid temperature is maintained. The alarm

sub system sounds at indication of any fault. Figure 4.13 shows the real

time simulation for a typical Fuzzy Neural controller of tank water level

in Proteus environment. The first three computer system interface shown

displays the variables under control (liquid level/outflow rate, pressure

and temperature) while the fourth one displays the fault diagnosis features

(type of faults, time of occurrence and possible rectification methods).. It

should be noted that when Proteus software is used to implement a real-

138

time simulation, not all the system components are placed on the layout.

Some are placed in the sub sheet for example the controller and some are

not visible but are there by default e.g. reset circuit, bidirectional buffer,

power, the interfaces, analog to digital converter, the multiplexer etc;

while some are taken care of by the control program. In Proteus design,

this is called ―referencing‖.

rxd
vcc

gnd

vcc

gnd

flow0

liq0

a0

a1

a2

a3

a4

a5

a6

a7

b0

b1

b2

b3

b4

b5

b6

b7

rxd

ga8

ga9

v1 v0

flow0

liq0

ga7

ga6

ga5

ga4

ga3

ga2

ga1

ga0

c7

c6

c5

c4

c3

c2

c1

c0

a6 a6

a5 a5

a4 a4

a3 a3

a2 a2

a1 a1

a7 a7

a0 a0

b
7

b
6

b
5

b
4

b
3

b1

b0

b
2

ga9

ga0

ga8

ga7

ga6

ga5

ga4

ga3

ga2

ga1

ga0

ga1

ga2

ga3

ga4

ga5

ga6

ga7

ga8

ga9

P2.0P2.1

pre

temp
P2.a

buz

rxd1

txd1

txd3

rxd3

txd3

rxd3
P3.a
txd2

tssrxd2

txd2

rxd2

txd1

rxd1

SUB?

CCT001

RXD

RTS

TXD

CTS

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

ga0

ga1

ga2

ga3

ga4

ga5

ga6

ga7

buz

liq0

flow0

v0

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

txd

ga8

ga9

v1

24.0

3

1

VOUT
2

43.0

3

1

VOUT
2

1

2

3

4

5

6

7

8

20

19

18

17

16

15

14

13

9

10

12

11

U2

LED-BARGRAPH-GRN

1

2

3

4

5

6

7

8

20

19

18

17

16

15

14

13

9

10

12

11

fl
o
w

0g
n
d

P2.0P2.1

?

?

pre

temp

P2.a

buz

rxd1

txd1

buz

P2.0

P2.1

Level Sensor
Over Flow

Rate Sensor

Collector
Tank

ON/OFF Valve
Interface

Valve
Control

Process Under
Neuro Fuzzy

Control

Neuro fuzzy Controller Of Tank Water Level

Computer System

 Interface

Sound(Alarm)

 Sub System

SyStem Sub

 Circuit

RXD

RTS

TXD

CTS

36.0

3

1

VOUT
2

67.0

3

1

VOUT
2

pre

temp

P3.a txd3

rxd3txd2
rxd2 tss

RXD

RTS

TXD

CTS

RXD

RTS

TXD

CTS

?

?

P2.a

P3.a

tp

tp

P3.a

Temp Sensor

Pressure Sensor

Figure 4.13 Real time simulation for a typical Fuzzy Neural controller of tank water level in Proteus

139

4.7 Design of the Fault Diagnosis System:

The main aim of the Fault diagnosis system is the monitoring of the

process control during its normal conditions so as to detect the occurrence

of failures, recognize the location and time of occurrence. Typical failure

modes may include leaks, sensor failures, temperature, pressure, valve

failure, etc which is the characteristics of a process failure as well as a

variety of vibration induced faults that are affecting mechanical and

electro-mechanical process elements. In this research fuzzy diagnostic

system (FDS) was used. The FDS takes features of the process control as

inputs and then outputs any indication that a failure mode has occurred.

Fig 4.14 shows the FDS of tank water level.

Figure 4.14: FDS of tank water level.

PROCESS

UNDER
CONTROL

Pre-
processing

and Feature

extraction

Fuzzy

Diagnostic

System

 ALARM

FAILURES &

POSSIBLE

RECTIFICATION

TECHNIQUESS

FUZZY DIAGNOSTIC SYSTEM

Fuzzification

Defuzification

Fuzzy inference

engine

Fuzzy rule base

Failure

140

The fuzzification block converts the feature extraction to degree and type

of failure, the fuzzy rule base is constructed from symptoms that indicate

a potential failure mode (This is developed directly from user experience,

simulated models or experimental data). The inference engine determines

the degree of fulfillment for each rule corresponding to each failure mode

while the last stage defuzzifies the resulting output to indicate a failure

and this triggers an alarm and at the same time suggests a solution to the

fault. Table 4.6 show the rule base for failure, the time of occurred fault

and rectification techniques. This is easily produced by the inference

engine.

Time of

Occurrence

Observation

(Rule Base)

Fault

(Output)

Rectification Techniques

12.00pm If Water level is at

constant position Then

Outflow valve /inflow

valve is faulty

Verify which and

change the valve

1.00am If Outflow rate is below

the lower threshold level

then

The inflow valve is faulty Change the inflow valve

 etc ... etc ... etc ... etc

Table 4.6: Rule base for failure, time of occurred fault and rectification techniques.

141

4.8 The Choice of the Sensor Used

A sensor is a device that monitors a parameter and produces an output in

a required form while an actuator is a device that converts an electrical

signal into a mechanical signal (such as heat, light, sound or movement)

and vice versa. Actuators and sensors are both transducers (devices that

change one kind of signal into a different kind of signal).

The following sensors were considered.

4.8.1 Piezoelectric Pressure Sensor.

Piezoelectric Pressure Sensor was considered in this research.

Piezoelectric elements are bi-directional transducers capable of

converting stress into an electric potential and vice versa. They consist of

metalized quartz or ceramic materials. One important factor to remember

is that it has a dynamic effect, which is providing an output only when the

input is changing. This means that these sensors can be used only for

varying pressures .The piezoelectric element has a high-impedance output

and care must be taken to avoid loading the output by the interface

electronics. Some piezoelectric pressure sensors include an internal

amplifier to provide an easy electrical interface.

142

Piezoelectric Pressure sensors (figure 4.15a) convert stress into an electric

potential and vice versa. Sensors based on this technology are used to

measure varying pressure.

4.8.2 Temperature sensors: Temperature sensors tend to measure heat to

ensure that a process is either; staying within a certain range, providing

safe use of that application, or meeting a mandatory condition when

dealing with extreme heat, hazards, or inaccessible measuring points.

Thermistor was used in this work. Thermistors, are also inexpensive,

readily available, easy to use, and adaptable temperature sensors. They

are used, however, to take simple temperature measurements rather than

for high temperature applications. They are made of semiconductor

material with a resistivity that is especially sensitive to temperature. The

Figure 4.15a: Piezoelectric Pressure Sensor

http://search.digikey.com/scripts/DkSearch/dksus.dll?site=us&lang=en&Keywords=sensors+transducers+thermistors
http://search.digikey.com/scripts/DkSearch/dksus.dll?site=us&lang=en&Keywords=sensors+transducers+thermistors

143

resistance of a thermistor decreases with increasing temperature so that

when temperature changes, the resistance change is predictable. They are

widely used as inrush current limiters, temperature sensors, self-resetting

overcurrent protectors, and self-regulating heating elements.

The 44000 series thermistor element shown in Figure 4.15b is the

simplest form of thermistor. Because of their compact size, thermistor

elements are commonly used when space is very limited. OMEGA offers

a wide variety of thermistor elements which vary not only in form factor

but also in their resistance versus temperature characteristics. Since

thermistors are non-linear, the instrument used to read the temperature

must linearize the reading.

4.8.3 Capacitance Level Sensors

Like ultrasonic sensors, capacitance sensors (Figure 4.15c) can handle

point or continuous level measurement. Capacitance sensor was

 Figure 4.15b: Thermistor element

144

implemented in this work. They use a probe to monitor liquid level

changes in the tank, electronically conditioning the output to capacitive

and resistive values, which are converted to analog signals. The probe

and the vessel wall equate to two plates of a capacitor, the liquid to the

dielectric medium. Because the signal emanates from level changes

alone, material build-up on the probe has no effect. Non-conductive fluid

vessels may dictate dual probes or an external conducting strip.

The probe, which can be rigid or flexible, commonly employs conducting

wire insulated. Using stainless steel as the probe's base metal provides the

extra sensitivity needed for measuring liquids that are non-conductive,

granular, or low in dielectric properties (dielectric constant less than 4).

Flexible probes must be used when there is insufficient clearance for a

rigid probe, or in applications that demand very long lengths. Rigid

probes offer higher stability, especially in turbulent systems, where

swaying of the probe can cause signal fluctuations.

Figure 4.15c: Capacitance Measurement Probe

145

Capacitance Measurement Probe is able to withstand high temperatures

and pressures, and impervious to many corrosives, LV3000/4000 Series

probes give reliable continuous level measurements in difficult

applications. Appropriate for liquids, pastes, and some solids–whether

conductive or non-conductive–they have no moving parts and are easy to

install. After rectifying and filtering incoming power, generating a radio

frequency signal, and calculating changes in current, the electronic

circuitry produces a 4 to 20 mA 2-wire output signal proportional to the

process level.

4.8.4 Calorimetric Flow meter

The Calorimetric Flow meter was used in this project. Calorimetric Flow

meter principle for fluid flow measurement is based on two temperature

sensors in close contact with the fluid but thermal insulated from each

other. See Fig 4.15d

One of the two sensors is constantly heated and the cooling effect of the

flowing fluid is used to monitor the flow rate. In a stationary (no flow)

Figure 4.15d: Calorimetric Flow meter

146

fluid condition there is a constant temperature difference between the two

temperature sensors. When the fluid flow increases, heat energy is drawn

from the heated sensor and the temperature difference between the

sensors are reduced. The reduction is proportional to the flow rate of the

fluid. Response times will vary due the thermal conductivity of the fluid.

In general lower thermal conductivity requires higher velocity for proper

measurement. The calorimetric flow meter can achieve relatively high

accuracy at low flow rates.

147

CHAPTER FIVE

SYSTEM SIMULATION AND EVALUATION

5.1 Real –Time Simulation Results and Analysis

Three software tools were used to implement this work. First is the

VB.net that was used to develop the matrix table. Each cell of the matrix

table represents a possible output of the Fuzzy Neural control system.

Secondly, Proteus was used for real time simulation. Proteus is

specialized software for virtual implementation of embedded system

designs, and its use in this project is to check the workability of this

system in a real-life situation. The readings obtained during the testing of

the process was tabulated and plotted in a graph using excel.

5.2 The Fuzzy Network Result and Analysis: After the simulation of

the system control under fuzzy network, the following data were obtained

and plotted against time. Table 5.1a shows the fuzzy output for outflow

rate while Fig 5.1shows the graph.

Rout

(cm
3
/s)

23.5 24.3 25.1 50.7 25.1 90.3 100.8 112.2 111.0 112.3 112.5 118.3 120.6 119.9

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.1: Data of fuzzy output for outflow rate

148

 In Figure 5.1, it was observed that the outflow rate for fuzzy network

gave a sharp rise at 5s before the settling down after 8s. The fuzzy

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
o

u
t

in
 c

m
3 /

s

Time in secs

The fuzzy output for outflow rate Rout (cm3/s)

Rout (cm3/s)

Figure 5.1: Fuzzy output for outflow rate

149

network operates on whole number data. When data are in fraction and

decimals, it cannot deduce what should be the output which is the cause

of the overshoot between 3s and 5s.

 Table 5.2 shows the fuzzy output for temperature while Fig 5.2 shows

the graph of fuzzy output for temperature.

T(oC) 29.5 30.1 34.6 35.2 40.0 50.6 50.9 57.8 59.5 60.4 70.8 80.1 80.3 79.4

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.2: Data of fuzzy output for temperature

150

In Figure 5.2, the temperature increased gradually from 30
o
C for 11s to

get stabilized at 80
o
C between 12s and 14s. The temperature increase was

a function of the heater which is being controlled by the heater control as

to keep the liquid at a set temperature.

 Table 5.3 shows the fuzzy output for pressure while Figure 5.3 shows the

graph.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

te
m

p
e

ra
tu

re
 in

 o
C

time (s)

The fuzzy output for temperarure T(oC)

T(oC)

Figure 5.2: Graph of fuzzy output for temperature

151

From figure 5.3, the graph shows that the pressure in fuzzy logic network

was not steady but got at its peak at 11s. The pressure of the liquid during

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
re

ss
u

re
 (

K
N

/m
2
)

time (sec)

The graph of Fuzzy output for pressure P(KN/m2)

P(KN/m
2
) 3.5 6.0 7.3 5.3 7.0 5.8 4.9 5.7 6.2 7.5 11.5 10.5 6.8 8.5

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.3: Data of fuzzy output for pressure

8

Figure 5.3: Graph of fuzzy output for pressure

152

the systems operation rose to 7.2KN/m
2
 at 3s, went up and down and got

at its peak at 12s.

5.3 The Neural Network Result and Analysis:

Sometimes the data generated by the fuzzy are not whole numbers and

the fuzzy network is not intelligent to approximate it and deduce an

output. Hence the application of Neural Network helps to fine tune the

data and deduce an action. Table 5.2 gave rise to Table 5.4 which is the

data for outflow rate which the Neural Network fine-tunes while Figure

5.4 shows the graph.

Rout

(cm
3
/s)

24 24 25 30 51 90 101 112 111 112 113 118 121 120

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.4: Data of Neural Network for outflow rate

153

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
o

u
t

in
 c

m
3
/s

Time in sec

The neural output for out flow rate (Rout (cm3/s)

Rout (cm3/s)

Figure 5.4: Neural output for outflow rate

154

Figure 5.4 shows the output of outflow rate performed in neural network.

It rose gradually from 3s and gave a settling time of 13s. This performed

much better than that of fuzzy network because the neural network

approximates data in fractions and deduces an output.

Table 5.5 shows the data for temperature after fine tuning by the neural

network while Figure 5.5 graph.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

te
m

p
e

ra
tu

re
 in

 o
C

Time (s)

The neural output for temperature T(oC)

T(oC)

T(oC) 30 30 35 35 40 51 51 58 60 60 71 79 80 79

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.5: Data of neural output for temperature

Figure 5.5: Graph of the Neural output for temperature

155

In figure 5.5, the rise time for the temperature was 9s before undershoot

of 1s and a further rise time of 2s. The neural network performed better

than the fuzzy logic. There is no much change temperature during the

systems operation when compared with that of the fuzzy network.

Table 5.6 shows the data of pressure for the Neural Network after fine

tuning while Figure 5.6 the graph.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p
re

ss
u

re
 (

K
N

/m
2)

time (secs)

The graph of Neural output for pressure P(KN/m2)

P(KN/m
2
) 4 6 7 5 7 6 5 6 6 8 12 11 7 9

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5.6: Graph of Neural output for pressure

Table 5.6: Data of pressure for the neural network

156

In figure 5.6, the pressure of the liquid was going up and down and

became very high at 13s .This is the same when compared with the fuzzy

output.

5.4 The Fuzzy Neural Network Result and Analysis:

However, the combination of the Fuzzy Network and Neural Network

directly fine-tunes the data generated by the fuzzy and deduce an action.

Table 5.7 shows the data of Fuzzy Neural for outflow rate while Figure

5.7shows the graph.

Rout(cm
3
/s) 23 24 24 24 110 110 111 111 112 112 119 119 120 120

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.7: Data of Fuzzy Neural for outflow rate

157

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
o

u
t

in
 c

m
3
/s

Time in sec

The Fuzzy Neural output for outflow rate(Rout(cm3/s)

Rout(cm3/s)

Figure 5.7: Fuzzy Neural output for outflow rate

158

The outflow rate of Fuzzy Neural plotted in graph (see figure 5.7) shows

that the Fuzzy Neural Network performed better than Neural Network

alone. There was a sharp rise after 4s, this increased gradually and

stabilized after 6s.Table 5.8 shows the data of Fuzzy Neural for

temperature.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Te
m

p
e

ra
tu

re
 in

 o
C

Time (s)

The fuzzy-neural output for tempertaure T(0C)

T(0C)

T(
0
C) 30 40 45 50 50 50 50 59 60 58 57 58 59 59

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.8: Data of Fuzzy Neural for temperature

Fig 5.8: Graph of Fuzzy Neural output for temperature

159

Figure 5.8 shows the graph of temperature in fuzzy-neural network

respectively. Here the temperature rose from (30 to 50)
O
C for 3s

stabilized for 3s, rose to 60
o
C for 1s and finally stabilized. This is much

better than the fuzzy network and neural network alone.

Table 5.9 shows the data of Fuzzy Neural for pressure while Figure 5.9

shows the graph.

P(KN/m
2
) 3 6 7 5 5 5 5 5.5 6 6 6.5 5 5 5

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.9: Data of Fuzzy Neural for pressure

160

In Figure 5.9 shows the graph of fuzzy neural output for pressure. Here,

there was an overshoot of pressure at 3s which game to normal at 5s to

7s, increases again within 4s and finally normalizes at 2s.

5.5 Performance Evaluation

It was observed that the Intelligent Process Control Systems Using Fuzzy

Neural Network gave a steep rise time of 4s and stabilized after 6s. The

Intelligent Process Control Systems using Fuzzy network rose sluggishly

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
re

ss
u

re
 (

K
N

/m
2
)

Time (secs)

The graph of Fuzzy Neural output for pressure P(KN/m2)

Figure 5.9: Graph of Fuzzy Neural output for pressure

161

after an undershoot at 5s and stabilized after 9s while the Intelligent

Process Control Systems using Neural Network kicked off its rise time at

3s and stabilized after 9s. The Fuzzy Neural model performed better than

the fuzzy and the neural network respectively considering the rising time

and stabilizing time. When compared with classical PID whose rise time

was 3s and took 2s to stabilize, the Fuzzy Neural model performed best

with a rise time of 1s and showed a smoother overall performance (see

Table 5.10 and Figure 5.10).

Similarly, comparison was also shown for temperature output for Fuzzy,

Neural and Fuzzy Neural for the PID controller. It was observed that for

the Fuzzy Neural, the temperature started rising and got stabilized at a

higher temperature when compared with Fuzzy Logic and Neural

Network output alone. Table 5.10 shows the data while Figure 5.11

shows the graph.

Rout(cm3/s) for FNN 23 24 24 24 110 110 111 111 112 112 119 119 120 120

Rout (cm
3
/s) for fuzzy 23.5 24.3 25.1 50.7 25.1 90.3 100.8 112.2 111 112.3 112.5 118.3 120.6 119.9

Rout (cm3/s) for neural 24 24 25 30 51 90 101 112 111 112 113 118 121 120

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.10: data for outflow rate for Fuzzy, Neural, and Fuzzy Neural network

162

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

o
u

tf
lo

w
 r

at
e

 in
 c

m
3
/s

time in sec

Joint graph of outflow rate for Fuzzy, Neural and Fuzzy Neural Networks

Rout(cm3/s) for FNN

Rout (cm3/s) for fuzzy

Rout (cm3/s) for neural

Figure 5.10: The combination of graph of Fuzzy, Neural and Fuzzy Neural for pressure

163

In Figure 5.11, the graphs of temperature for Fuzzy, Neural, and Fuzzy

Neural Network were compared. It was observed that there was

uniformity for change in temperature of the liquid for both Fuzzy and

Neural Network. The change in temperature for Fuzzy Neural Network

was minimal and better.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Te
m

p
e

ra
tu

tr
e

 in
 O

c

Time in sec

Joint graph of temperature for Fuzzy. Neural and Fuzzy Neural Network

T(oC) for fuzzy

T(oC) for neural

T(0C) for fuzzy-neural

T(
o
C) for fuzzy 29.5 30.1 34.6 35.2 40 50.6 50.9 57.8 59.5 60.4 70.8 80.1 80.3 79.4

T(
o
C) for neural 30 30 35 35 40 51 51 58 60 60 71 79 80 79

T(
0
C) for fuzzy-

neural

30 40 45 50 50 50 50 59 60 58 57 58 59 59

T(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.11: data of temperature for Fuzzy, Neural, and Fuzzy Neural Network

Figure 5.11: Joint graph of temperature for Fuzzy, Neural, and Fuzzy Neural

Network

164

CHAPTER SIX

SUMMARY AND CONCLUSION

 6.1 Summary of Achievement: Though very tedious and time

consuming, yet the joy was that a system has been developed to monitor,

detect, diagnose and indicate faults in control systems using Fuzzy Neural

logic principles.

 6.2 Problems Encountered: So many problems which include the initial

sourcing of research material and majorly financing were encountered.

The process of development of VB.net software, the training of the

neurons and the design of the fuzzy controller was a big challenge. The

hard disk got crashed in the process and all the data were lost so the work

has to be re-started all over again.

6.3 Contribution to Knowledge:

1) In this research work, Fuzzy Logic PID controller is used to model a

control system and it has been shown that it is possible without passing

through the rigorous mathematics needed to establish a transfer function

for the system under control.

2). An Artificial Neural Network (ANN) has been used to optimize the

performance of a Fuzzy Logic PID controller given rise to what is known

as Fuzzy Neural PID controller. This optimization led to a faster response

time of 4s compared to 5s for the Fuzzy based PID alone.

165

3) Error detection and isolation has been implemented in a Fuzzy Neural

PID controller thereby obviating the need of trial and error in fault

diagnosis.

6.4 Suggestion for Further Improvement: Any important document

gathered should be saved over the internet through the e-mail. Genetic

Algorithm techniques should be applied to see if there will be any

improvement over the Fuzzy Neural. The research was software based

therefore a hardware implementation can be worked on.

 6.5 Conclusion:

A Fuzzy Neural PID controller has been successfully developed without

passing through the rigorous mathematics needed to establish a transfer

function for the system under control. The Fuzzy PID control system was

developed and optimized using Neural Network which gave rise to a

faster response time. The Fuzzy Neural PID control system has also been

successfully simulated and compared with classical PID controller to

highlight the performance superiority of the Fuzzy Neural PID control

system. Fuzzy logic based PID controller is easier to implement than

classical PID controllers and Neural Network fine-tunes it to obtain a

Fuzzy Neural system which produces a better response time in the output.

Also, the developed Fuzzy Neural system features error detection and

presents detailed rectification steps. This is much better than the trial and

error method used in repair and maintenance of process control systems.

166

6.6 Recommendation:

It is strongly recommended that this technique be applied in every

process control system because, it will drastically reduce the trial and

error method in repairs and maintenance. Furthermore, it is easy to

implement and use, and does not require much mathematical rigor even

for complex control systems.

167

REFERENCES

Abraham, A. (1997) . Adaptation of Fuzzy Inference System Using Neural Learning,

 Fuzzy System Engineering: Theory and Practice.

Abraham A., Nath B.(2001) A Neuro-Fuzzy Approach for Forecasting Electricity

 Demand InVictoria, Applied Soft Computing Journal, Elsevier Science, 1&2,

 pp. 127-138.

Ahlawat, Nishant, Ashu Gautam, and Nidhi Sharma (2014) "Use of Logic Gates to

 Make Edge Avoider Robot." International Journal of Information &

 Computation Technology (Volume 4, Issue 6; page 630) ISSN 0974-2239

 (Retrieved 27 April 2014)

Ajanagadde V, Shastri L.(1991). Rules and variables in neural networks. Neural

 Computing 3:121-134.

Aleksander I (ed). (1989) Neural Computing Architectures. The Design of Brain-like

 Machines.Cambridge, Mass, MIT Press. Aleksander I, Morton H. 1990. An

 Introduction to Neural Computing.London, Chapman & Hall.

Amit D. (1989). Modelling brain function: The world of attractor neural networks.

 Cambridge, England, Cambridge University Press.

Anderson J. (1995). An Introduction to Neural Networks. Cambridge, Mass, MIT

 Press.

Arbib M (1995). The Handbook of Brain Theory and Neural Networks. MIT Press.

Abiyev, R.H., O. Kaynak, T. Alshanableh, F. Mamedov, (2011). A type-2 neuro-

 fuzzy system

Ang, K. K, Quek, C, and Pasquier, M. (2003). POPFNN-CRI(S): Pseudo outer

 product based fuzzy neural network using the compositional rule of inference

 and singleton fuzzifier. IEEE Transactions on Systems, Man and Cybernetics,

 Part B, 33(6): 838-849.

Ang, K.H., Chong, G.C.Y., and Li, Y. (2005). PID control system analysis, design,

 and technology, IEEE Trans Control Systems Tech, 13(4): 559-576.

Anthonio, M.C. (2002). Intelligent Car Parking Using Fuzzy Neural Networks,

 Emerging Technologies, Paper No:008 pg.1-6.

Bart, K. (1991) Neural Networks and Fuzzy Systems: a dynamical systems approach

 to machine intelligence, Prentice-Hall, Inc., Upper Saddle River, NJ.

Barlett P. 1993. The sample size necessary for learning in multi-layer networks. In

 Proceedings of theFourth Australian Conference on Neural Networks,

 Melbourne, Australia, Sydney University Electrical Engineering, 14-17.

168

Beale R, Jackson T. (1990). Neural Computing—Introduction. Bristol, England,

 Adam Hilger.

Bezdek J, Pal. S. (ed) (1992). Fuzzy Models for Pattern Recognition. New York,

 IEEE P ress.

Binaghi E. (1992). Empirical learning for fuzzy knowledge acquisition. In

 Proceedings of the Second International Conference on Fuzzy Logic and

 Neural Networks, Iizuka, Japan, pp 245-251.

.

Borisyuk R, Holden A, Kryukov V (1991). Interacting neural oscillators can imitate

 selective attention. In Neurocomputers and Attention. Neurobiology,

 Synchronization and Chaos. Manchester,England, Manchester University

 Press, pp 189-200.

Bulsara A, Jacobs E, Zhou T, (1991). Stochastic resonance in a single neuron model:

 Theory and analog simulation. Journal of Theoretical Biology 152:531-555.

Cheng-J, L., Lee, C-Y and Cheng-C, C, (2006). Temperature control using neuro-

 fuzzy controllers with m compensatory operations and wavelet neural

 networks, Journal of Intelligent and Fuzzy Systems, 17: 145–157.

Chin-Teng, L. and Lee, C. S. G (1991). Neural Network-Based Fuzzy Logic Control

 and Decision System, IEEE Transactions on Computers, pp 1320-1336.

Chen S-M. (1988). A new approach to handling fuzzy decision making problems.

 IEEE Transactions on Systems, Man and Cybernetics 18:1012-1016.

Dorf R.C and Bishop R.H (2004), Modern Control Systems: Robust Control pp 688-

 698

Dubois D, Prade H.(1988). Possibility Theory. An Approach to Computerized

 Processing of Uncertainty. New York, Plenum Press.

Eckmiller R, Napp-Zinn H.(1993). Information processing in biology-Inspired pulse

 coded neural networks in Proceedings of the International Joint Conference on

 Neural Networks, Nagoya, Japan, IEEE, pp 643-648.

Ellis G. (2012) Control System Design Guide Using Your Computer to Understand

 and Diagnose Feedback Controllers 4th Edition published by Butterworth

 Heineman, July 2014, ISBN 9780123859204

Feigenbaum M. (1989). Artificial Intelligence, A Knowledge-Based Approach.

 Boston, PWS.

Feldkamp A, Puskorius G, Yuan F (1992). Architecture and training of a hybrid

 neural-fuzzy system. In Proceedings of the Second International Conference

 on Fuzzy Logic and Neural Networks, lizuka, Japan, pp 131-134.

169

Fletcher D, Goss E. (1993). Forecasting with neural networks. An application using

 bankruptcy data. Journal of Information and Management 24:159-167.

Freeman J, Skapura D. (1992). Neural Networks Algorithms, Applications and

 programming techniques, Addison-Wesley Publ. Comp., Reeding,

 Massachusetts.

Fogelman F, Lamy B, Viennet E. (1993). Multimodular Neural Network architectures

 for pattern recognition. Internationl Journal of Pattern Recognition and

 Artificial Intelligence,7(4).

Fu K.S (1970) Learning Control Systems ---Review and Outlook, IEEE Transactions

 on Automatic Control

Fukushima K, Miyake S, Ito T. (1983). Neocognition: A neural network model for a

 mechanism of visual pattern recognition. IEEE Transactions on Systems, Man

 and Cybernetics 13:826-834.

Funahashi K. (1989). On the approximate realization of continuous mappings by

 neural networks. Neural Networks 2:183-192.

Fuzzy CLIPS, (1994). User's Manual. NRC (National Research Council) Canada.

Gallinari P, Thinia S, Fogelman-Soulie F. (1988). Multilayer perceptrons and data

 analysis in Proceedings of IEEE International Conference on Neural

 Networks, vol 2, July 24-27, 1988, pp 1391-1399.

Goonatilake S, Campbell J. (1994). Genetic fuzzy hybrid systems for decision

 making. In Proceedings of the 1994 IEEE/Nagoya University World

 Wisemen/women Workshop, Nagoya, Japan, pp 143-155.

Gupta M. (1992). Fuzzy logic and neural networks. In Proceedings of the Second

 International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan,

 pp 157-160.

Hertz , A., Krogh, R and Palmer G (1991), Introduction to the theory of neural

 computation.

Hayashi Y. (1991). A neural expert system with automated extraction of fuzzy if-then

 rules and its application to medical diagnosis. In Lippman RP, Moody JE,

 Touretzky DS (eds), Advances in Neural Information Processing Systems, ed

 3. San Mateo, Calif, Morgan Kaufmann, pp 578-584.

Hech-Nielsen R. (1988). Application of counter propagation networks. Neural

 Networks 1:131-139.

Holland J. (1975). Adaptation in Natural and Artificial Systems. The University of

 Michigan.

Hornik K. (1991). Approximation capabilities of multilayer feedforward networks.

 Neural Networks 4:251-257.

170

Hoskins JC, Himmelbaum DM. (1990). Fault detection and diagnosing using artificial

 neural networks. In Mavrovouniotis ML (ed), Artificial Intelligence in Process

 Engineering Orlando, Fla, Academic Press, pp 123-160.

Huifang, K.; Ren Guoqing; Jizhu, H. and Benxian, X. (2011)The Application of

 Fuzzy Neural Network in Fault Self-diagnosis System of Automatic

 Transmission.Journal of Software, Vol.6No. , pp.209-212

Huynh, H. T. and Won, Y. (2011,Artificial Neural Network Theory and Simulation

 Mechanical Industry Press, Beijing, pp.44-68).

Iniya Raghavi S., Lalitha P.(2014) Effective F-Score Feature Selection (KFFS) and

Fuzzy Neural Network (FNN) to Classify Congestive Heart Failure Patients in

 International Journal of Engineering Research & Technology Vol. 3 - Issue 11

 (November - 2014) e-ISSN: 2278-0181

Jinghua, Z (2006). PID Controller Tuning: A Short Tutorial Retrieved

Kandel A (ed). (1991). Fuzzy Expert Systems. Boca Raton, Fla, CRC Press.

Kar, S.; Das, S.; Ghosh, P.K. (2014): Applications of Neuro-Fuzzy Systems: A Brief

 Review and Future Outline, Applied Soft Computing, Vol.15, pp. 243-259

Kataria S.K and Sonns (2008) Automatic Control Systems: State Space Analysis of

 Control Systems pp 350-407

.
Kazuo, T and Hua, O. W (2001). Fuzzy control systems design and analysis: a linear

 matrix inequality approach. John Wiley and Sons: ISBN 9780471323242.

Kasabov N. (1995). Learning fuzzy rules and approximate reasoning in fuzzy neural

 networks and hybrid systems. Fuzzy Sets and Systems, special issue "Hybrid

 conn. systems".

.

Keller J, Chen Z. (1992). Learning in fuzzy neural networks utilising additive hybrid

 operators. In Proceedings of the Second International Conference on Fuzzy

 Logic and Neural Networks, Iizuka, Japan, July 17-22, 1992, pp 85-87.

King, M (2010). Process Control: A practical Approach. Chinchester, UK: John

 Wiley and sons Ltd ISBN 978-0-470-97587-9.

Kim D. H., Hong W. P., Park J. I. (2002). Auto-tuning of reference model based PID

 controller using immune algorithm, IEEE international conference on

 evolutionary computation, Hawaii, pp. 483-488.

 Kim D. H.(2002). Intelligent tuning of a PID controller using an immune algorithm,

 Transactions of KIEE, 51-D, 1 pp. 78-91.

171

Kim D. H.(2004). PID Controller Tuning of a Boiler Control System Using Immune

 AlgorithmTyped Neural Network, 4th International Conference

 Computational Science, Lecture Notes in Computer Science, pp. 695-698.

Kim D. H., Cho J. H.(2004).Robust PID Controller Tuning Using Multi objective

 Optimization Based on Clonal Selection of Immune Algorithm, 8th

 International Conference Knowledge-Based Intelligent Information and

 Engineering Systems, Lecture Notes in Computer Science, Springer, pp.50-56.

Kohers G. (1992). The use of modular neural networks on time series forecasting. In

 Proceedings of the 23rd Annual Meeting of the Decision Sciences Institute,

 San Francisco, pp 759-761.

.

Kosko B. (1991). Neural Networks for Signal Processing. Englewood Cliffs, NJ,

 Prentice Hall.

Kosko, B (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems

 Approach to Machine Intelligence. Englewood Cliffs, NJ: Prentice Hall.

 ISBN 0-13-611435-0.

Langavi, R. and Berenji, H.R.(1992) Fuzzy logic, Fuzzy logic controller. Part I book

 of Intelligent Control. Van Nostrand, New York.

Lee, C-H., Yu, T-M, and Chien, J-C (2011) Adaptive Neural Network Controller

 Design for a Class of Nonlinear Systems Using Simultaneous Perturbation

 Stochastic Approximation (SPSA), Proceedings of the International Multi

 conference of Engineers and Computer Scientists (Vol II).

Lee, C.C. (1990), Fuzzy logic in control systems: Fuzzy logic controller. Part I and

 Part II. IEEE. Trans.System Cybernet. pp 20-26.

Lima A. M. N., Jacobina C. B., Souza Filho E. B. (1997). Nonlinear parameter

 estimation of steady-state induction machine models, IEEE Trans. Industrial

 Electronics.

Lim M, Rahardja S, Gwee B. (1995). A GA paradigm for learning fuzzy rules. Fuzzy

 Sets and Systems, Special Issue "Hybrid Connectionist Systems".

Limkens D, Nie J. (1992). Rule extraction for BNN neural network-based fuzzy

 control system by self learning. In Aleksander I, Taylor J (eds), Artificial

 Neural Networks, vol 2. Amsterdam, Elsevier Science, pp 459- 466.

Lippman R. (1987). An introduction to computing with neural nets. IEEE ASSP,

 April, pp 4-21.

Lin, C.T. and Lee, C. S. G. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy

 Synergism to Intelligent Systems. Upper Saddle River, NJ: Prentice Hall.

172

Lobbrecht A.H and Solomatine D.P (1999). Intelligent control schemes for

 reproducing optimal control actions for polder water level, Water Industry

 Systems, Modeling and Optimization Applications pp.1-10.

Menychtas, A. Konstanteli, K. (2012), Fault Detection and Recovery Mechanisms and

 Techniques for Service Oriented Infrastructures, Achieving Real-Time in

 Distributed Computing: From Grids to Clouds, IGI Global, pp. 259–274

Mitchell, M .A., Lopes, P,, J.A., Fidalgo, J.N and McCalley, J.D (2000). Neural

 Network to predict the Dynamic Frequency Response of a power system to

 an Under-frequency Load Shedding Scenario, I.E.E.E Journal pp. 346-351.

Mohamed, A. H. (2014) A Fuzzy Neural Network Fault Diagnostic System

 International Journal of Computer Applications (0975 –8887)Volume 94–No

 1, May 2014,

Onkar P.N (2010), Principles of Process Control pp 252-284

 Park B. J.(2002). Fuzzy polynomial neural networks: Hybrid architectures of fuzzy

 modeling, IEEE Trans. on Fuzzy systems,10, 5, pp. 607-621.

Peymanfar, A., A. Khoei, Kh. Hadidi, (2010). Design of a general propose neuro-

 fuzzy controller by using modified adaptive-network-based fuzzy inference

 system, AEU–International Journal of Electronics and Communications, 64:

 433-442.

Pislaru, M., Trandabat, A and Olariu, M (2003) Neurofuzzy System for Industrial

 Processes Fault Diagnosis.

 Prabakaran M. P., Kannan G. R., Thirupathi K. , Hari Prakash A.(2014) Optimization

 Turning Process Parameters of Aluminum Alloy 5083 using Response Surface

 Methodology in International Journal of Engineering Research & Technology

 Vol. 3 - Issue 4 (April- 2014) e-ISSN: 2278-01

Quek, C. and Zhou, R. W. (1999). "POPFNN-AAR(S): a pseudo outer-product based

 fuzzy neural network." IEEE Transactions on Systems, Man and Cybernetics,

 Part B, 29(6), 859-870.

Rakesh Gautam, Rajesh Ingle, Milin Nagpure (2014) Modeling And Control of 3

 Linkbiped Leg using PID Controller in International Journal of Engineering

 Research & Technology Vol. 3 - Issue 4 (April- 2014) e-ISSN: 2278-0181

Ross, T.J (1995). Fuzzy Logic with Engineering Applications, McGraw-Hill,

 Hightstown, NJ.

Seema C., Mitra, R. and Vijay K. (2007) Neural Network Tuned fuzzy controller for

 Multiple Input Multiple output (MIMO),World Academy of Science,

 Engineering and Technology pp.485-491.

http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://en.wikipedia.org/wiki/IGI_Global

173

Sijimol A. S, Pooja V, Soji K. (2014) Cardiovascular Disease Diagnosis Using Fuzzy

 Petri Net in International Journal of Engineering Research & Technology Vol.

 3 - Issue 4 (April- 2014) e-ISSN: 2278-0181

Sklansky J. (1966) Learning Systems for automatic Control. IEEE Transactions on

 Automatic Control

Stathacopoulou R.; Magoulas G.D.; Grigoriadou, M. and Samarakou, M.(2011):

 Neural-Fuzzy Knowledge Processing in Intelligent Learning Interactive

 Neuro-Fuzzy Expert System for Diagnosis of Leukemiam Global,Journals Inc.

 pp.112-130.

Tan, K. K., Wang, Qing-G and Hang Chang, C. (1999). Advances in PID Control,

 London, UK: Springer-Verlag. ISBN 1-85233-138- 0.

Tanomaru, J. and S. Omatu, (1992). Process Control by On-Line Trained Neural

 Controllers , IEEETrans. Ind. Electron., 39: 511-521.

Valiant, Leslie, (2013) Probably Approximately Correct: Nature's Algorithms for

 Learning and Prospering in a Complex World New York: Basic Books. ISBN

 978-0465032716

Verma P, Verma N, Bhandari S (2014), Modeling of Adaptive Artificial Neural

 Networks using VHDL is More Appropriate using Bipolar Inputs

 in International Journal of Engineering Research & Technology Vol. 3 - Issue

 4 (April- 2014) e-ISSN: 2278-0181

Vijay M.S, Popat R.A, Khot Sachin B, Burle K. J (2014) Paper on Recent

 Development in Artificial Neural Control in Roboticsin International Journal

 of Engineering Research & Technology Vol. 3 - Issue 11 (November - 2014)

 e-ISSN: 2278-0181

Wayne Bequette B. (2003). Process Control: Modeling, Design, and Simulation.

 Prentice Hall Professional. p. 5. ISBN 9780133536409.

Wei Peng and Da-fa Zhang, (2010) Research on Fuzzy Control for Steam Generator

 Water Level.

Wu, D,, Karray, F. and Song, I (2003) Water Level Control by Fuzzy Logic and

 Neural Network.

Yager R, Zadeh L (eds). (1992). An Introduction to Fuzzy Logic Applications in

 Intelligent Systems,Boston, Kluwer Academic.

Yi H-J, Oh KW. (1992). Neural network-based fuzzy production rule generation and

 its application to approximate reasoning. In Proceedings of the Second

 International Conference of Fuzzy Logic andNeural Networks. Iizuka, Japan,

 , pp 333-336.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-85233-138-0
http://books.google.com/books?id=PdjHYm5e9d4C&pg=PA5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9780133536409

174

Zadeh L. (1984). Making computers think like people. IEEE Spectrum, August, pp

26-32.

Zimmermann H. (1987). Fuzzy Sets, Decision Making, and Expert Systems. Boston,

 Kluwer Academic.

Zurada J. (1992). Introduction to Artificial Neural Systems. St Paul, Minn, West.

Zhou, R. W and Quek, C. (1996). POPFNN: A Pseudo Outer-product Based Fuzzy

 Neural Network; Neural Networks, 9(9), 1569-1581.

175

APPENDIX A

The Software for the Real Time Simulation of the neural network

adc_a bit p2.0

adc_b bit p2.1

adc_c bit p2.2

adc_start bit p2.3

adc_ale bit p2.4

adc_clk bit P2.5

valve_1 bit p2.6

valve_2 bit p2.7

latch_1 bit p3.2

latch_2 bit p3.3

latch_3 bit p3.4

latch_4 bit p3.5

buzzer bit p3.6

phase_1 equ 30h

phase_2 equ 31h

phase_3 equ 32h

ph1_hund equ 33h

ph1_ten equ 34h

ph1_unit equ 35h

176

ph2_hund equ 36h

ph2_ten equ 37h

ph2_unit equ 38h

ph3_hund equ 39h

ph3_ten equ 3ah

ph3_unit equ 3bh

level_ref equ 3ch

input equ p0

keep_data equ 51h

Org 0000h

clr valve_1

clr valve_2

clr c

clr buzzer

mov p1,#0ffh

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,#-3H ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;sta

mov dptr ,# humid_display

177

 CALL TRANS

;;

start:

;call read_sensor_0

call adc_process

 ;mov phase_1,a

;call convert1

 ;call display1

 ;call delay

jmp start

;;;

read_sensor_0:

 clr adc_a ;

 clr adc_b ;Select Channel 0

 clr adc_c

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;

read_sensor_1:

 setb adc_a ;

 clr adc_b ;Select Channel 0

178

 clr adc_c

 ret

;;;;;;;;;;;;;;;;;;;;;;;

adc_process:

mov p1,#0ffh

 clr latch_1 ;;;;;;;;;;;;;;;;;;;;;;; this for temperature

setb latch_2 ;;;;;;;;;;;;;;;;;;;;;;;

 call read_sensor_0

 clr adc_ale

 clr adc_start

 ;

 call delay_small

 setb adc_ale ;ale pin high

 call delay_small

 setb adc_start ;start pin high

 call delay_small

 clr adc_ale ;ale pin low

 call delay_small

179

 clr adc_start ;start pin low

 call delay_long

 mov a,P1

 ;add a,#66 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;lllll

 mov keep_data,a

 call delay_small

 mov dptr ,#level_0

 call trans

 mov a,keep_data

 call sensor_1

 mov dptr ,#level

 call trans

 call level_check ;;;;check level

 clr c

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 call read_sensor_1

 clr adc_ale

 clr adc_start

 ;

 call delay_small

 setb adc_ale ;ale pin high

 call delay_small

180

 setb adc_start ;start pin high

 call delay_small

 clr adc_ale ;ale pin low

 call delay_small

 clr adc_start ;start pin low

 call delay_long

 mov a,P1

 ; add a,#66

 mov keep_data,a

 call delay_small

 mov dptr ,#flow_0

 call trans

 mov a,keep_data

 call sensor_2

 mov dptr ,#flow

 call trans

 call flow_check ;;;;check temperature

 clr c

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 mov dptr,#set_point

 call trans

 mov a,input

181

 call delay

 mov keep_data,a

 mov level_ref,a

 call sensor_3

 jmp adc_process

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_1:call convert1

 mov a,ph1_hund

 call send

 mov a,ph1_ten

 call send

 mov a,ph1_unit

 call send

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_2:call convert2

 mov a,ph2_hund

 call send

 mov a,ph2_ten

182

 call send

 mov a,ph2_unit

 call send

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_3:call convert3

 mov a,ph3_hund

 call send

 mov a,ph3_ten

 call send

 mov a,ph3_unit

 call send

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

delay_small:

 mov r0,#70

l1_delay_small:

183

 cpl adc_clk

 nop

 nop

 nop

 nop

 nop

 nop

djnz r0,l1_delay_small

 ret

delay_long:

 mov r0,#140

l1_delay_long:

 cpl adc_clk

 nop

 nop

 nop

 nop

 nop

 djnz r0,l1_delay_long

 ret

184

delay:

 mov r2,#255

 mov r1,#255

delay1:

 djnz r1,delay1

 djnz r2,delay1

ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

convert1:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph1_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph1_ten,a

 mov a,b

 call decode

 mov ph1_unit,a

185

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;

convert2:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph2_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph2_ten,a

 mov a,b

 call decode

 mov ph2_unit,a

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;

convert3:;mov a,phase_1

 mov b,#100

 div ab

186

 call decode

 mov ph3_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph3_ten,a

 mov a,b

 call decode

 mov ph3_unit,a

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 decode :orl a,#30h

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 display1: mov dptr,#humid_display2

 call trans

 mov a,ph1_hund

 call send

 mov a,ph1_ten

187

 call send

 mov a,ph1_unit

 call send

 mov a,#0dh

 call send

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;

 humid_display : DB " SIMULATION OF THE " ,0dh

 DB " NEURAL CONTROLLER " ,0dh

 DB " OF TANK WATER LEVEL " ,0dh

 DB " oooooooooooooooooooooooooo" ,0dh

 DB " oooooooooooooooooooooooooo"

 db 0dh,0

humid_display2 : DB "Relative Humidity Value : "

 db 0

;;;

level_0 : db 0dh,0dh

 db "Tank Water Level : ",0

flow_0 : db "Water Flow Rate : ",0

set_point: db "Maximum Water Level point: ",0

188

;;;

 flow : db " Cm^3/s" ,0dh,0

level : db " Cm" ,0dh,0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

TRANS:

 H_1: CLR A

 movc a,@a+dptr;get the character

 inc dptr

 call send

 jnz h_1

 ;cjne a,#"@",h_1

 RET

SEND: MOV SBUF,A ;load the data

 H_2: JNB TI,H_2 ;stay here until last bit

 CLR TI ;get ready for next char

 RET ;return to caller

;;

189

;;

level_check:

 clr c

 mov a, keep_data

 cjne a,#2,l_go

 clr valve_1

 clr buzzer

 call delay

 call delay

 ret

l_go:

 subb a,#2

 jnc l_grt_tan0

 jc l_less_tan0

l_less_tan0:

 setb buzzer

 setb valve_1

 call delay

 call delay

 ret

l_grt_tan0:

190

 mov a,keep_data

 cjne a,#43,l_go2

 setb buzzer

 setb valve_1

 call delay

 call delay

 ret

l_go2: subb a,#43

 jnc l_grt_tan1

 jc l_less_tan1

l_grt_tan1: setb buzzer

 setb valve_1

 call delay

 call delay

 ret

l_less_tan1: clr buzzer

 clr valve_1

 call delay

 call delay

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

191

flow_check:

 clr c

 mov a, keep_data

 cjne a,#1,f_go

 setb buzzer

 setb valve_2

 call delay

 call delay

 ret

f_go:

 subb a,#1

 jnc f_grt_tan0

 jc f_less_tan0

f_less_tan0:

 setb buzzer

 setb valve_2

 call delay

 ret

f_grt_tan0:

 mov a,keep_data

 cjne a,level_ref,f_go2

192

 setb buzzer

 setb valve_2

 call delay

 call delay

 ret

f_go2: subb a,#100

 jnc f_grt_tan1

 jc f_less_tan1

 f_grt_tan1 : call delay

 setb buzzer

 setb valve_2

 call delay

 call delay

 ret

f_less_tan1: clr buzzer

 clr valve_2

 call delay

 call delay

 ret

 end

adc_a bit p2.0

193

APPENDIX B

The Software for the Real Time Simulation of the fuzzy-neural network

adc_b bit p2.1

adc_c bit p2.2

adc_start bit p2.3

adc_ale bit p2.4

adc_clk bit P2.5

valve_1 bit p2.6

valve_2 bit p2.7

valve_3 bit p2.2

valve_4 bit p3.7

heat bit p3.2

buf1 bit p3.3

buf2 bit p3.4

buf3 bit p3.5

buzzer bit p3.6

phase_1 equ 30h

phase_2 equ 31h

phase_3 equ 32h

194

ph1_hund equ 33h

ph1_ten equ 34h

ph1_unit equ 35h

ph2_hund equ 36h

ph2_ten equ 37h

ph2_unit equ 38h

ph3_hund equ 39h

ph3_ten equ 3ah

ph3_unit equ 3bh

level_ref equ 3ch

ph4_hund equ 3eh

ph4_ten equ 3fh

ph4_unit equ 40h

ph5_hund equ 41h

ph5_ten equ 42h

ph5_unit equ 43h

pre_ref equ 44h

temp_ref equ 45h

ph6_hund equ 46h

ph6_ten equ 47h

ph6_unit equ 48h

ph7_hund equ 49h

195

ph7_ten equ 4ah

ph7_unit equ 4bh

input equ p0

keep_data equ 51h

Org 0000h

clr valve_1

clr valve_2

clr valve_3

clr valve_4

clr heat

clr c

clr buzzer

mov p1,#0ffh

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,#-3H ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;sta

mov dptr ,# humid_display

 CALL TRANS

196

;;

start:

;call read_sensor_0

call adc_process

 ;mov phase_1,a

;call convert1

 ;call display1

 ;call delay

jmp start

;;;

read_sensor_0:

 clr adc_a ;

 clr adc_b ;Select Channel 0

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;

read_sensor_1:

 setb adc_a ;

197

 clr adc_b ;Select Channel 1

 ret

;;;;;;;;;;;;;;;;;;;;;;;

read_sensor_2:

 clr adc_a ;

 setb adc_b ;Select Channel 2

 ret

;;;;;;;;;;;;;;;;;;;;;;;

read_sensor_3:

 setb adc_a ;

 setb adc_b ;Select Channel 3

 ret

;;;;;;;;;;;;;;;;;;;;;;;

adc_process:

mov p1,#0ffh

 call read_sensor_0

 clr adc_ale

 clr adc_start

198

 ;

 call delay_small

 setb adc_ale ;ale pin high

 call delay_small

 setb adc_start ;start pin high

 call delay_small

 clr adc_ale ;ale pin low

 call delay_small

 clr adc_start ;start pin low

 call delay_long

 mov a,P1

 ;add a,#66 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;lllll

 mov keep_data,a

 call delay_small

 mov dptr ,#level_0

 call trans

 mov a,keep_data

 call sensor_1

 mov dptr ,#level

 call trans

 call level_check ;;;;check level

199

 clr c

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 call read_sensor_1

 clr adc_ale

 clr adc_start

 ;

 call delay_small

 setb adc_ale ;ale pin high

 call delay_small

 setb adc_start ;start pin high

 call delay_small

 clr adc_ale ;ale pin low

 call delay_small

 clr adc_start ;start pin low

 call delay_long

 mov a,P1

 ; add a,#66

 mov keep_data,a

 call delay_small

 mov dptr ,#flow_0

 call trans

200

 mov a,keep_data

 call sensor_2

 mov dptr ,#flow

 call trans

 call flow_check ;;;;check temperature

 clr c

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 call read_sensor_2

 clr adc_ale

 clr adc_start

 ;

 call delay_small

 setb adc_ale ;ale pin high

 call delay_small

 setb adc_start ;start pin high

 call delay_small

 clr adc_ale ;ale pin low

 call delay_small

 clr adc_start ;start pin low

 call delay_long

201

 mov a,P1

 ; add a,#66

 mov keep_data,a

 call delay_small

 mov dptr ,#pres_0

 call trans

 mov a,keep_data

 call sensor_3

 mov dptr ,#pres

 call trans

 call pres_check ;;;;check temperature

 clr c

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 call read_sensor_3

 clr adc_ale

 clr adc_start

 ;

 call delay_small

 setb adc_ale ;ale pin high

 call delay_small

202

 setb adc_start ;start pin high

 call delay_small

 clr adc_ale ;ale pin low

 call delay_small

 clr adc_start ;start pin low

 call delay_long

 mov a,P1

 ; add a,#66

 mov keep_data,a

 call delay_small

 mov dptr ,#temp_0

 call trans

 mov a,keep_data

 call sensor_4

 mov dptr ,#temp

 call trans

 call temp_check ;;;;check temperature

 clr c

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 mov dptr,#set_water

 call trans

203

 clr buf1

 setb buf2

 setb buf3

 call delay

 mov a,input

 call delay

 mov keep_data,a

 mov level_ref,a

 call sensor_water

 ;;;;;;;;;;;;;;;;;;;;

 mov dptr,#set_pres

 call trans

 setb buf1

 clr buf2

 setb buf3

 call delay

 mov a,input

 call delay

 mov keep_data,a

 mov pre_ref,a

 call sensor_pres

204

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 mov dptr,#set_temp

 call trans

 setb buf1

 setb buf2

 clr buf3

 call delay

 mov a,input

 call delay

 mov keep_data,a

 mov temp_ref,a

 call sensor_temp

 jmp adc_process

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_1:call convert1

 mov a,ph1_hund

 call send

 mov a,ph1_ten

 call send

 mov a,ph1_unit

 call send

205

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_2:call convert2

 mov a,ph2_hund

 call send

 mov a,ph2_ten

 call send

 mov a,ph2_unit

 call send

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_3:call convert3

 mov a,ph3_hund

 call send

 mov a,ph3_ten

 call send

 mov a,ph3_unit

206

 call send

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_4:call convert4

 mov a,ph4_hund

 call send

 mov a,ph4_ten

 call send

 mov a,ph4_unit

 call send

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_water:call convert5

 mov a,ph5_hund

 call send

 mov a,ph5_ten

 call send

 mov a,ph5_unit

207

 call send

 ;mov a,#0dh

 ;call send

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_pres:call convert6

 mov a,ph6_hund

 call send

 mov a,ph6_ten

 call send

 mov a,ph6_unit

 call send

 ;mov a,#0dh

 ;call send

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sensor_temp:call convert7

 mov a,ph7_hund

 call send

 mov a,ph7_ten

 call send

 mov a,ph7_unit

208

 call send

 ;mov a,#0dh

 ;call send

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

delay_small:

 mov r0,#70

l1_delay_small:

 cpl adc_clk

 nop

 nop

 nop

 nop

 nop

 nop

djnz r0,l1_delay_small

 ret

delay_long:

 mov r0,#140

209

l1_delay_long:

 cpl adc_clk

 nop

 nop

 nop

 nop

 nop

 djnz r0,l1_delay_long

 ret

delay:

 mov r2,#255

 mov r1,#255

delay1:

 djnz r1,delay1

 djnz r2,delay1

ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

convert1:;mov a,phase_1

 mov b,#100

 div ab

 call decode

210

 mov ph1_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph1_ten,a

 mov a,b

 call decode

 mov ph1_unit,a

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;

convert2:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph2_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph2_ten,a

211

 mov a,b

 call decode

 mov ph2_unit,a

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;

convert3:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph3_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph3_ten,a

 mov a,b

 call decode

 mov ph3_unit,a

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

212

convert4:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph4_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph4_ten,a

 mov a,b

 call decode

 mov ph4_unit,a

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

convert5:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph5_hund,a

 mov a,b

213

 mov b,#10

 div ab

 call decode

 mov ph5_ten,a

 mov a,b

 call decode

 mov ph5_unit,a

 ;call display1

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

convert6:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph6_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph6_ten,a

 mov a,b

 call decode

214

 mov ph6_unit,a

 ;call display1

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

convert7:;mov a,phase_1

 mov b,#100

 div ab

 call decode

 mov ph7_hund,a

 mov a,b

 mov b,#10

 div ab

 call decode

 mov ph7_ten,a

 mov a,b

 call decode

 mov ph7_unit,a

 ;call display1

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 decode :orl a,#30h

 ret

215

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 display1: mov dptr,#humid_display2

 call trans

 mov a,ph1_hund

 call send

 mov a,ph1_ten

 call send

 mov a,ph1_unit

 call send

 mov a,#0dh

 call send

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;

 humid_display : DB " SIMULATION OF THE " ,0dh

 DB " NEURO FUZZY CONTROLLER " ,0dh

 DB " OF TANK WATER LEVEL " ,0dh

 DB " oooooooooooooooooooooooooo" ,0dh

 DB " oooooooooooooooooooooooooo"

 db 0dh,0

216

humid_display2 : DB "Relative Humidity Value : "

 db 0

;;;

level_0 : db 0dh,0dh

 db "Tank Water Level : ",0

flow_0 : db "Water Flow Rate : ",0

pres_0 : db "Pressure Value : ",0

temp_0 : db "Temperature : ",0

set_water: db 0dh,"Maximum Water Level point: ",0

set_pres: db 0dh,"Maximum Pressure point : ",0

set_temp: db 0dh,"Maximum Temperature Point: ",0

;;;

flow : db " Cm^3/s" ,0dh,0

level : db " Cm" ,0dh,0

pres : db " Pascal" ,0dh,0

temp : db " 'C" ,0dh,0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

TRANS:

 H_1: CLR A

217

 movc a,@a+dptr;get the character

 inc dptr

 call send

 jnz h_1

 ;cjne a,#"@",h_1

 RET

SEND: MOV SBUF,A ;load the data

 H_2: JNB TI,H_2 ;stay here until last bit

 CLR TI ;get ready for next char

 RET ;return to caller

;;

;;

level_check:

 clr c

 mov a, keep_data

 cjne a,#2,l_go

 clr valve_1

218

 clr buzzer

 call delay

 call delay

 ret

l_go:

 subb a,#2

 jnc l_grt_tan0

 jc l_less_tan0

l_less_tan0:

 setb buzzer

 setb valve_1

 call delay

 call delay

 ret

l_grt_tan0:

 mov a,keep_data

 cjne a,#43,l_go2

 setb buzzer

 setb valve_1

 call delay

 call delay

219

 ret

l_go2: subb a,#43

 jnc l_grt_tan1

 jc l_less_tan1

l_grt_tan1: setb buzzer

 setb valve_1

 call delay

 call delay

 ret

l_less_tan1: clr buzzer

 clr valve_1

 call delay

 call delay

 ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

flow_check:

 clr c

 mov a, keep_data

 cjne a,#1,f_go

 setb buzzer

 setb valve_2

220

 call delay

 call delay

 ret

f_go:

 subb a,#1

 jnc f_grt_tan0

 jc f_less_tan0

f_less_tan0:

 setb buzzer

 setb valve_2

 call delay

 ret

f_grt_tan0:

 mov a,keep_data

 cjne a,level_ref,f_go2

 setb buzzer

 setb valve_2

 call delay

 call delay

 ret

221

f_go2: subb a,#100

 jnc f_grt_tan1

 jc f_less_tan1

f_grt_tan1 : call delay

 setb buzzer

 setb valve_2

 call delay

 call delay

 ret

f_less_tan1: clr buzzer

 clr valve_2

 call delay

 call delay

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;;;;

 pres_check:

 clr c

 mov a, keep_data

 cjne a,#1,p_go

 setb buzzer

222

 setb valve_3

 call delay

 call delay

 ret

p_go:

 subb a,#1

 jnc p_grt_tan0

 jc p_less_tan0

p_less_tan0:

 setb buzzer

 setb valve_3

 call delay

 ret

p_grt_tan0:

 mov a,keep_data

 cjne a,pre_ref,p_go2

 setb buzzer

 setb valve_3

 call delay

 call delay

223

 ret

p_go2: subb a,#100

 jnc p_grt_tan1

 jc p_less_tan1

p_grt_tan1 : call delay

 setb buzzer

 setb valve_3

 call delay

 call delay

 ret

p_less_tan1: clr buzzer

 clr valve_3

 call delay

 call delay

 ret

 ;;;;;;;;;;;;;;;;;;;;;;;;;;

 temp_check:

 clr c

 mov a, keep_data

 cjne a,#1,t_go

 setb buzzer

224

 setb valve_4

 call delay

 call delay

 ret

t_go:

 subb a,#1

 jnc t_grt_tan0

 jc t_less_tan0

t_less_tan0:

 setb buzzer

 setb valve_4

 call delay

 ret

t_grt_tan0:

 mov a,keep_data

 cjne a,temp_ref,t_go2

 setb buzzer

 setb valve_4

 call delay

 call delay

225

 ret

t_go2: subb a,#100

 jnc t_grt_tan1

 jc t_less_tan1

t_grt_tan1 : call delay

 setb buzzer

 setb valve_4

 call delay

 call delay

 ret

t_less_tan1: clr buzzer

 clr valve_4

 call delay

 call delay

 ret

 end

226

APPENDIX C

Fuzzy Logic in MATLAB Environment

The FIS (Fuzzy Inference System) Editor

The following discussion walks you through building a new fuzzy inference

system from scratch. If you want to save time and follow along quickly, you

can load the already built system by typing

fuzzy tipper

This will load the FIS associated with the file tipper.fis (the .fis is implied) and

launch the FIS Editor. However, if you load the pre-built system, you will not

be building rules and constructing membership functions.

227

The FIS Editor displays general information about a fuzzy inference system.

There's a simple diagram at the top that shows the names of each input variable

on the left, and those of each output variable on the right. The sample

membership functions shown in the boxes are just icons and do not depict

the actual shapes of the membership functions.

Below the diagram is the name of the system and the type of inference

used. The default, Mamdani-type inference, is what we've been

describing so far and what we'll continue to use for this example. Another

slightly different type of inference, called Sugeno-type inference, is also

available. This method is explained in Sugeno-Type Fuzzy Inference.

Below the name of the fuzzy inference system, on the left side of the

figure, are the pop-up menus that allow you to modify the various pieces

of the inference process. On the right side at the bottom of the figure is

the area that displays the name of either an input or output variable, its

associated membership function type, and its range. The latter two fields

are specified only after the membership functions have been. Below that

region are the Help and Close buttons that call up online help and close

the window, respectively. At the bottom is a status line that relays

information about the system.

To start this system from scratch, type

fuzzy

at the MATLAB prompt. The generic untitled FIS Editor opens, with one

input, labeled input1, and one output, labeled output1. For this example,

we will construct a two-input, one output system, so go to the Edit menu

and select Add input. A second yellow box labeled input2 will appear.

The two inputs we will have in our example are service and food. Our

http://radio.feld.cvut.cz/matlab/toolbox/fuzzy/fuzzyt27.html#45361

228

one output is tip. We'd like to change the variable names to reflect that,

though:

1. Click once on the left-hand (yellow) box marked input1 (the box

will be highlighted in red).

2. In the white edit field on the right, change input1 to service

and press Return.

3. Click once on the left-hand (yellow) box marked input2 (the box

will be highlighted in red).

4. In the white edit field on the right, change input2 to food and

press Return.

5. Click once on the right-hand (blue) box marked output1.

6. In the white edit field on the right, change output1 to tip.

7. From the File menu select Save to workspace as...

.

8. Enter the variable name tipper and click on OK.

You will see the diagram updated to reflect the new names of the input

and output variables. There is now a new variable in the workspace called

tipper that contains all the information about this system. By saving to the

workspace with a new name, you also rename the entire system. Your

229

window will look something like this.

Leave the inference options in the lower left in their default positions for

now. You've entered all the information you need for this particular GUI.

Next define the membership functions associated with each of the

variables. To do this, open the Membership Function Editor. You can

open the Membership Function Editor in one of three ways:

 Pull down the View menu item and select Edit Membership

Functions....

 Double-click on the icon for the output variable, tip.

 Type mfedit at the command line.

230

Upon opening the Surface Viewer, we are presented with a two-

dimensional curve that represents the mapping from service quality to tip

amount. Since this is a one-input one-output case, we can see the entire

mapping in one plot. Two-input one-output systems also work well, as

they generate three-dimensional plots that MATLAB can adeptly

manage. When we move beyond three dimensions overall, we start to

encounter trouble displaying the results. Accordingly, the Surface Viewer

is equipped with pop-up menus that let you select any two inputs and any

one output for plotting. Just below the pop-up menus are two text input

fields that let you determine how many x-axis and y-axis grid lines you

231

want to include. This allows you to keep the calculation time reasonable

for complex problems. Pushing the Evaluate button initiates the

calculation, and the plot comes up soon after the calculation is complete.

To change the x-axis or y-axis grid after the surface is in view, simply

change the appropriate text field, and click on either X-grids or Y-grids,

according to which text field you changed, to redraw the plot.

The Surface Viewer has a special capability that is very helpful in cases

with two (or more) inputs and one output: you can actually grab the axes

and reposition them to get a different three-dimensional view on the data.

The Ref. Input field is used in situations when there are more inputs

required by the system than the surface is mapping. Suppose you have a

four-input one-output system and would like to see the output surface.

The Surface Viewer can generate a three-dimensional output surface

where any two of the inputs vary, but two of the inputs must be held

constant since computer monitors cannot display a five-dimensional

shape. In such a case the input would be a four-dimensional vector with

NaNs holding the place of the varying inputs while numerical values

would indicate those values that remain fixed. An NaN is the IEEE

symbol for "not a number."

This concludes the quick walk-through of each of the main GUI tools.

Notice that for the tipping problem, the output of the fuzzy system

matches our original idea of the shape of the fuzzy mapping from service

to tip fairly well. In hindsight, you might say, "Why bother? I could have

just drawn a quick lookup table and been done an hour ago!" However, if

you are interested in solving an entire class of similar decision-making

problems, fuzzy logic may provide an appropriate tool for the solution,

given its ease with which a system can be quickly modified.

232

Constructing rules using the graphical Rule Editor interface is fairly self-

evident. Based on the descriptions of the input and output variables

defined with the FIS Editor, the Rule Editor allows you to construct the

rule statements automatically, by clicking on and selecting one item in

each input variable box, one item in each output box, and one connection

item. Choosing none as one of the variable qualities will exclude that

variable from a given rule. Choosing not under any variable name will

negate the associated quality. Rules may be changed, deleted, or added,

by clicking on the appropriate button.

The Rule Editor also has some familiar landmarks, similar to those in the

FIS Editor and the Membership Function Editor, including the menu bar

233

and the status line. The Format pop-up menu is available from the

Options pull-down menu from the top menu bar -- this is used to set the

format for the display. Similarly, Language can be set from under

Options as well. The Help button will bring up a MATLAB Help

window.

To insert the first rule in the Rule Editor, select the following:

 poor under the variable service

 rancid under the variable food

 The radio button, or, in the Connection block

 cheap, under the output variable, tip.

The resulting rule is

1. If (service is poor) or (food is rancid)

then (tip is cheap) (1)

The numbers in the parentheses represent weights that can be applied to

each rule if desired. You can specify the weights by typing in a desired

number between zero and one under the Weight setting. If you do not

specify them, the weights are assumed to be unity (1).

Follow a similar procedure to insert the second and third rules in the Rule

Editor to get

1. If (service is poor) or (food is rancid) then (tip is cheap) (1)

2. If (service is good) then (tip is average) (1)

3. If (service is excellent) or (food is delicious) then (tip is

generous) (1)

234

To change a rule, first click on the rule to be changed. Next make the

desired changes to that rule, and then click on Change rule. For example,

to change the first rule to

1. If (service not poor) or (food not rancid)

then (tip is not cheap) (1)

click not under each variable, and then click Change rule.

The Format pop-up menu from the Options menu indicates that you're

looking at the verbose form of the rules. Try changing it to symbolic.

You will see

1. (service==poor) => (tip=cheap) (1)

2. (service==good) => (tip=average) (1)

3. (service==excellent) => (tip=generous) (1)

There is not much difference in the display really, but it's slightly more

language neutral, since it doesn't depend on terms like "if" and "then." If

you change the format to indexed, you'll see an extremely compressed

version of the rules that has squeezed all the language out.

1, 1 (1) : 1

2, 2 (1) : 1

3, 3 (1) : 1

This is the version that the machine deals with. The first column in this

structure corresponds to the input variable, the second column

corresponds to the output variable, the third column displays the weight

applied to each rule, and the fourth column is shorthand that indicates

235

whether this is an OR (2) rule or an AND (1) rule. The numbers in the

first two columns refer to the index number of the membership function.

A literal interpretation of rule 1 is: "if input 1 is MF1 (the first

membership function associated with input 1) then output 1 should be

MF1 (the first membership function associated with output 1) with the

weight 1." Since there is only one input for this system, the AND

connective implied by the 1 in the last column is of no consequence.

The symbolic format doesn't bother with the terms, if, then, and so on.

The indexed format doesn't even bother with the names of your variables.

Obviously the functionality of your system doesn't depend on how well

you have named your variables and membership functions. The whole

point of naming variables descriptively is, as always, making the system

easier for you to interpret. Thus, unless you have some special purpose in

mind, it will probably be easier for you to stick with the verbose format.

At this point, the fuzzy inference system has been completely defined, in

that the variables, membership functions, and the rules necessary to

calculate tips are in place. It would be nice, at this point, to look at a

fuzzy inference diagram like the one presented at the end of the previous

section and verify that everything is behaving the way we think it should.

This is exactly the purpose of the Rule Viewer, the next of the GUI tools

we'll look at. From the View menu, select View rules....

236

The Rule Viewer displays a roadmap of the whole fuzzy inference

process. It's based on the fuzzy inference diagram described in the

previous section. You see a single figure window with 10 small plots

nested in it. The three small plots across the top of the figure represent the

antecedent and consequent of the first rule. Each rule is a row of plots,

and each column is a variable. The first two columns of plots (the six

yellow plots) show the membership functions referenced by the

antecedent, or the if-part of each rule. The third column of plots (the three

blue plots) shows the membership functions referenced by the

consequent, or the then-part of each rule. If you click once on a rule

number, the corresponding rule will be displayed at the bottom of the

figure. Notice that under food, there is a plot which is blank. This

237

corresponds to the characterization of none for the variable food in the

second rule. The fourth plot in the third column of plots represents the

aggregate weighted decision for the given inference system. This decision

will depend on the input values for the system.

There are also the now familiar items like the status line and the menu

bar. In the lower right there is a text field into which you can enter

specific input values. For the two-input system, you will enter an input

vector, [9 8], for example, and then click on input. You can also adjust

these input values by clicking anywhere on any of the three plots for each

input. This will move the red index line horizontally, to the point where

you have clicked. You can also just click and drag this line in order to

change the input values. When you release the line, (or after manually

specifying the input), a new calculation is performed, and you can see the

whole fuzzy inference process take place. Where the index line

representing service crosses the membership function line "service is

poor" in the upper left plot will determine the degree to which rule one is

activated. A yellow patch of color under the actual membership function

curve is used to make the fuzzy membership value visually apparent.

Each of the characterizations of each of the variables is specified with

respect to the input index line in this manner. If we follow rule 1 across

the top of the diagram, we can see the consequent "tip is cheap" has been

truncated to exactly the same degree as the (composite) antecedent--this

is the implication process in action. The aggregation occurs down the

third column, and the resultant aggregate plot is shown in the single plot

to be found in the lower right corner of the plot field. The defuzzified

output value is shown by the thick line passing through the aggregate

fuzzy set.

238

The Rule Viewer allows you to interpret the entire fuzzy inference

process at once. The Rule Viewer also shows how the shape of certain

membership functions influences the overall result. Since it plots every

part of every rule, it can become unwieldy for particularly large systems,

but, for a relatively small number of inputs and outputs, it performs well

(depending on how much screen space you devote to it) with up to 30

rules and as many as 6 or 7 variables.

The Rule Viewer shows one calculation at a time and in great detail. In

this sense, it presents a sort of micro view of the fuzzy inference system.

If you want to see the entire output surface of your system, that is, the

entire span of the output set based on the entire span of the input set, you

need to open up the Surface Viewer. This is the last of our five basic GUI

tools in the Fuzzy Logic Toolbox, and you open it by selecting View

surface... from the View menu.

The Membership Function Editor shares some features with the FIS

Editor. In fact, all of the five basic GUI tools have similar menu options,

status lines, and Help and Close buttons. The Membership Function

Editor is the tool that lets you display and edit all of the membership

functions associated with all of the input and output variables for the

entire fuzzy inference system.

When you open the Membership Function Editor to work on a fuzzy

inference system that does not already exist in the workspace, there are

not yet any membership functions associated with the variables that you

have just defined with the FIS Editor.

On the upper left side of the graph area in the Membership Function

Editor is a "Variable Palette" that lets you set the membership functions

for a given variable.To set up your membership functions associated with

239

an input or an output variable for the FIS, select an FIS variable in this

region by clicking on it.

Next select the Edit pull-down menu, and choose Add MFs.... A new

window will appear, which allows you to select both the membership

function type and the number of membership functions associated with

the selected variable. In the lower right corner of the window are the

controls that let you change the name, type, and parameters (shape), of

the membership function, once it has been selected.

240

The membership functions from the current variable are displayed in the

main graph. These membership functions can be manipulated in two

ways. You can first use the mouse to select a particular membership

function associated with a given variable quality, (such as poor, for the

variable, service), and then drag the membership function from side to

side. This will affect the mathematical description of the quality

associated with that membership function for a given variable. The

selected membership function can also be tagged for dilation or

contraction by clicking on the small square drag points on the

membership function, and then dragging the function with the mouse

toward the outside, for dilation, or toward the inside, for contraction. This

will change the parameters associated with that membership function.

Below the Variable Palette is some information about the type and name

of the current variable. There is a text field in this region that lets you

change the limits of the current variable's range (universe of discourse)

and another that lets you set the limits of the current plot (which has no

real effect on the system).

The process of specifying the input membership functions for this two

input tipper problem is as follows:

1. Select the input variable, service, by double-clicking on it. Set both

the Range and the Display Range to the vector [0 10].

2. Select Add MFs... from the Edit menu. The window below pops

open

241

.

3. Use the pull-down tab to choose gaussmf for MF Type and 3 for

Number of MFs. This adds three Gaussian curves to the input

variable service.

4. Click once on the curve with the leftmost hump. Change the name

of the curve to poor. To adjust the shape of the membership

function, either use the mouse, as described above, or type in a

desired parameter change, and then click on the membership

function. The default parameter listing for this curve is [1.5 0].

5. Name the curve with the middle hump, good, and the curve with

the rightmost hump, excellent. Reset the associated parameters

if desired.

6. Select the input variable, food, by clicking on it. Set both the

Range and the Display Range to the vector [0 10].

7. Select Add MFs... from the Edit menu and add two trapmf

curves to the input variable food.

8. Click once directly on the curve with the leftmost trapezoid.

Change the name of the curve to rancid. To adjust the shape of

the membership function, either use the mouse, as described above,

or type in a desired parameter change, and then click on the

membership function. The default parameter listing for this curve

is [0 0 1 3].

242

9. Name the curve with the rightmost trapezoid, delicious, and

reset the associated parameters if desired.

Next you need to create the membership functions for the output variable,

tip. To create the output variable membership functions, use the Variable

Palette on the left, selecting the output variable, tip. The inputs ranged

from 0 to 10, but the output scale is going to be a tip between 5 and 25

percent.

Use triangular membership function types for the output. First, set the

Range (and the Display Range) to [0 30], to cover the output range.

Initially, the cheap membership function will have the parameters [0 5

10], the average membership function will be [10 15 20], and the

generous membership function will be [20 25 30]. Your system

should look something like this.

243

Now that the variables have been named, and the membership functions

have appropriate shapes and names, you're ready to write down the rules.

To call up the Rule Editor, go to the View menu and select Edit rules...,

or type ruleedit at the command line.

