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Chapter 1

INTRODUCTION

Background of the Study

All bodies possessing mass and elasticity are capable of vibration thus all structures
experience vibration to some degree. Structural vibrations are oscillatory in nature and
can be linear or non-linear. For linear systems the principle of superposition holds and

their analysis is well developed.

There are two classes of vibrations, free and forced vibration. Free vibrations are
vibrations that take place in the absence of any external force. They are due to the
action of forces inherent in the system itself. A system under free vibration will
vibrate at one or more of its natural frequencies. The natural frequencies of a system
depend on the distribution of its mass and stiffness and hence are a property of the

dynamical system.

Forced vibrations take place under the excitation of external forces. If the excitation is
oscillatory, the system is forced to vibrate at the same excitation frequency. These
excitations can undermine the safety of the structure when large amplitudes develop.
If the frequency of excitation coincides with any of the natural frequencies of the
structural system, a phenomenon known as resonance occurs resulting in large
oscillations in the system. This can lead to the failure of bridges, buildings, airplane

wings and other structures subject to dynamic loads.



Resonance is to be avoided in most systems. The effect can be reduced with dampers
and absorbers. It is important to note that all vibrating systems are subjected to some
degrees of damping. This is because energy is dissipated by friction, air resistance and
other resistances. When damping is small, it has very little influence on the natural
frequency of vibration hence calculations for natural frequencies are done on the basis
of zero damping. Damping is very important in limiting the amplitude of oscillations
at the natural frequencies of the system.

When a system is excited by a suddenly applied non-periodic force, its response is
transient and the oscillations take place at the natural frequencies of the system. The

amplitude of vibration will vary in a manner dependent on the type of excitation.

The number of independent coordinates required to describe the motion of a system is
known as the degrees of freedom of the system. A continuous structure will have an
infinite number of degrees of freedom and hence an infinite number of coordinates to
analyze. However certain idealizations are made and a continuous system may be
treated as one having a finite number of degrees of freedom. A structure with N
degrees of freedom will have N natural frequencies and each of the natural
frequencies will have a displacement configuration known as normal modes. The
normal modes of a system depend on the distribution of the mass and stiffness of the
system. When vibrating at one of these modes all points in the system undergo simple
harmonic motion that passes through their equilibrium positions simultaneously. To
produce a normal mode vibration, the system has to be given an initial displacement

corresponding to the normal mode.



For systems with few degrees of freedom, it is possible to formulate the equations of
motion by an application of the Newton’s laws of motion. The method however
becomes complicated for systems with a high degree of freedom and the energy
methods provide a convenient alternative. One of the noTable products of the energy
method is the Lagrange’s equations. The Lagrange’s equation enables the analysis of
structural elements as discrete masses connected together by mass-less elements. With
a proper selection of representative masses the results can be very close to the exact
response. When the discretization is increased by the use of more number of lump

masses, the accuracy of the response improves.

In order to obtain the exact response of structural systems it is necessary to analyse
them as elements with continuously distributed masses. A continuous structure has
infinite degrees of freedom and normal modes but generally the first few modes are of
most importance. The amplitudes of vibration associated with higher modes are very
small and can be ignored. Hamilton’s principle is an energy method for the analysis of
continuous structures. It is an extension of the principle of minimum potential energy

for the analysis of dynamic systems.

For structural systems with complex geometries, it is generally very difficult to obtain
the exact dynamic response. This arises from difficulty in formulating the partial
differential equations of motion for the system or difficulty in solving the equations
formulated. In such situations approximate solutions are obtained by lumping the
masses. This in effect reduces the system’s infinite degrees of freedom to a finite
value. Another method with similar consequences is the Rayleigh-Ritz method. It is

actually an extension of the Rayleigh method. It involves the use of a series of shape



functions multiplied by constant coefficient to depict the mode shapes. This method is
known to give very good predictions of lower modes. The success of the Rayleigh-
Ritz method depends on the choice of the shape functions, the number of shape
functions and how well they define the mode shapes and satisfy the kinematic

conditions of the structural system.

The advent of fast digital computers has made the analysis of large simultaneous
equations easy. This can be put to use in the Finite Element Method. Just like in the
Rayleigh-Ritz method, there is need to select a shape function. The accuracy of finite
element method can be improved upon by the careful selection of better shape
functions (p-version) and also by the introduction of more joints/nodes and hence
more elements (h-version). The latter has the implication of increasing the size of the

resulting equations and hence the computational cost.

The finite element method and the Rayleigh-Ritz method are numerical methods for
obtaining approximate solutions. Their results can only be exact when the chosen
shape function depicts perfectly the structure’s displacement configuration and end
conditions. Once these conditions are not met, their results remain approximate. In the
Rayleigh-ritz method, one way of improving its accuracy is by increasing the number
of terms in the shape function. This has the implication of increasing the flexibility of
the shape function so as to mimic better the deformation or displacement
configuration of the real structures. If the number of terms in the shape function is
increased to infinity, then the resulting shape function will be able to depict any curve
or deformation perfectly and hence will give an exact solution. The resulting analysis

however will be too complex hence in the application of the Rayleigh ritz method a



compromise is reached between the accuracy desired, number of terms in the chosen
shape function and the mathematical analyses to be carried out.

The finite element method became very popular because in addition to being able to
improve on its chosen shape function, it is also possible to break the structure into
finite elements, enabling the chosen shape functions to march better the displacement
configuration of the elements under consideration and so improve the results. The
smaller the elements the more likely the chosen shape function would depict its
deflection more accurately. The introduction of more nodes (increase in number of

elements) however leads to an increase in the size of computation to be carried out.

On the other hand, the Hamilton’s principle and Lagrange equations are energy
formulations designed to give accurate or exact results. The Hamilton’s principle can
be used for the analysis of structures with a continuous distribution of mass
(continuous structures). Since all structural elements have a continuous distribution of
mass it is a powerful tool for the accurate analysis of structural elements. The
lagrange equation was formulated for the analysis of structures consisting of discrete
masses connected together by mass-less elements. For such a structure the results
from the use of lagrange equations are accurate. The question is, are there mass-less
structural elements? If a continuous mass is treated as mass-less then, the result from
the use of Lagrange equation becomes approximate. One such approximate
application is carried out when a beam supports a mass and the mass of the beam is
small when compared to the mass of the body it is supporting. In such a case the
supported mass is treated as a discrete mass and the supporting beam as mass-less.
This leads to an approximate result. Another common approximate application of the

lagrange equation is when a continuous mass is treated as discrete masses connected
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by mass-less elements. This is done primarily to ease the calculation and reduce a
structure of infinite DOF to a one of finite DOF. The implication is that since the real
structure does not have discrete masses but a continuous stream of masses, analyzing
it as discrete masses results in approximate solutions. The discretization error is
reduced by having masses lumped at uniform distance (this helps to keep the centre of
gravity of the lump-massed beam same as that of the continuous structure) and by
increasing the number of lumped masses (having smaller lumped masses and hence
smaller discretization). Either way as long as there is lumping of continuous masses,
the results remains approximate, but will continue tending to the exact solution with

an increase in the number of lumped masses.

Statement of the Problem

Real structures, because of their continuous distribution of mass have infinite degrees
of freedom. The degrees of freedom of a structure can be reduced to a finite value by
the lumping of the continuous masses at some selected nodes. This enables an easy
application of the Lagrange’s equation for the dynamic analysis of the structure.
However results obtained this way are not exact. This is so because the lumping of the
continuous mass at selected nodes of the structure alters the mass distribution of the
structure and hence introduces an error in the results of the dynamic analysis. There is
need to determine an effective way of minimizing or eliminating the error introduced
by the lumping of continuous mass and hence improve the results of the dynamic
analysis.

Aim of Study

The aim of the study is to dynamically analyse beams by modifying the structure’s

stiffness distribution.
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Objectives of Study

i)

i)

To formulate the force equilibrium equations for beams of different end
conditions under free vibration and determine the equations for the inherent
forces in a vibrating element of a beam.

To determine the required modification in stiffness distribution required for
the lumped mass element to possess the same natural frequency as the
continuous one.

Evaluate the improvement in the accuracy of the fundamental frequencies
obtained by the modification of a beam’s stiffness distribution and extend the
principle to an approximate analysis of frames.

Validate previous works done on determination of natural frequencies of

frames

The use of lumped mass comes with some benefits

i)

The visual appeal: The lumping of masses can be easily appreciated in
schematic diagrams. This enables easy comprehension and easy formulation of
the structure stiffness and inertia matrices.

Just like in the direct stiffness or finite element method of structural analysis,
it enables the structure to be divided into elements connected at selected points
(nodes) that are being investigated. This is done by lumping the masses at

these nodes.

These have made the use of lumped masses a core part of the introductory subjects in

structural dynamics.

Justification of Study

This work is necessary because the use of lumped masses to depict continuous

systems is a commonly used form of idealization in structural dynamics. It is found on
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almost every introductory text on structural dynamics (Donaldson (2006); Graig and
Kurdila (2006); Williams (2016)). This is largely due to the simplification and clarity
it offers. But its use is limited by the fact that it gives approximate results. This
limitation has reduced its use as a tool for research and investigation making it tenable
only in works where approximate results are adequate. The results are improved by
using evenly spaced lumps, but this places a constraint on the free selection of
possible node points for lumping. If the use of lumped masses can be improved upon
S0 as to give exact solutions, then it would be deployed in more advanced studies on

the vibration of beams and frames.

Scope of Work

The project was limited to 2-dimensional structural elements. The loads (inertia) are
assumed to act only within the elastic limits of the structural elements.

Prismatic elements (elements with a constant cross-section and which are long in
comparism to their cross-section) will be considered. Connecting members are jointed
at the centroids of their respective cross-sections such that forces and moments are
transferred from one member to another without the generation of additional loading
due to eccentricity.

In calculating the displacement of nodal points, deformation due to bending alone was
considered. Longitudinal and lateral vibrations were considered in beams of different
end conditions. Both single degree of freedom (SDOF) and multi-degree of freedom
(MDOF) systems will be considered. The effect of damping was for some reasons
ignored. This is because the effect of damping on the natural frequency of frames is

very minimal. The damping ratio { for reinforced concrete frames range from 2% to



5% (Hesameddin et al 2015). The relationship between the damped natural frequency
and the undamped natural frequency is (Thomson and Dahleh 1998)

Wy = w1 - 32 (1.1)

If the value of the damping is taken as being 0.02 to 0.05 then from equation (1.1)
damping reduces the natural frequency of reinforced concrete frames by 0.02% to
0.125% which are very minimal and can be neglected.

Beams of different end conditions and simple frames were treated.
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Chapter 2

LITERATURE REVIEW

Brief History of Structural Analysis

The foundation of modern structural analysis can be said to have been laid in the 17"
century by the works of Galileo Galilei, Robert Hooke and Isaac Newton (Wikipedia
2014). In 1638 Galileo first established a scientific approach to structural engineering
in his article ‘Dialogue Relating to Two New Sciences’. It contained the first attempt
to develop the theory for beams and is regarded as the beginning of structural analysis
(Gere et al, 2012; Wells 2010). Thirty-two years later Robert Hooke in his statement
of Hooke’s law provided a scientific understanding of elasticity of materials and their

behaviour under load (Britannica 2014).

In 1687, Sir Isaac Newton set out his laws of motion providing for the first time an
understanding of the fundamental laws governing structures. He also developed the
fundamental theorem of calculus which is an indispensible tool in modern structural

analysis.

By the turn of the 18" century, Leonhard Euler with Daniel Bernoulli developed the
Euler-Bernoulli beam equation. Euler in 1757 derived the Euler buckling formula,
greatly advancing the analysis of slender members under compression. During this
period, Daniel Bernoulli with Johann Bernoulli formulated the theory of virtual work
which uses the equilibrium of forces and compatibility of geometry to solve structural

problems.
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The 19" and 20" century witnessed a rapid development in material science and
structural analysis. In 1826 Claude Louis Navier formulated the general theory of
elasticity in a mathematical form. He also established the elastic modulus giving
insight into the structural behaviour of materials (Britannica 2014). In 1873 Carlo
Alberto Castigliano presented his two theorems for computing displacement as a
partial derivative of the strain energy (Timoshenko 1953). From 1875 to 1920 very
little progress was made in the development of theory and analytical techniques, this
is largely due to practical limitations on the solvability of algebraic equations with

more than few unknowns (McGuire et al 2000).

The idea behind the matrix structural analysis concepts were formulated by Maney
and Ostenford in their analysis of trusses and framework based on displacement
parameters as unknowns. The early formulations of discrete dynamical systems were
also done in the 1930s (Duncan and Collar 1934, Duncan and Collar 1935; Frazer et
al 1938). But these efforts were highly stultified by the severe limitations on the size
of unknowns that can be managed by a manual implementation of either the force or
displacement method. In 1932 Hardy Cross provided a respite with the introduction of
the method of ‘moment distribution’. This made possible the solution of complex
structural problems by an iterative process. The method of moment distribution
became a sTable for structural frame analysis until the birth of digital computers in
the early 1950s. This saw the codification of well established framework analysis in
the format best suited for the computer, the matrix format. The matrix force method
was deployed to the aircraft industry by Levy (1947). This was followed by
contributions from other scholars (Rand 1951, Langefors 1952, Wehle and Lansing

1952, Denke 1954). Argyris and Kelsey (1955) systemized the concept of assembling
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structural system equations from elemental components. Turner in 1959 introduced
the direct stiffness method which was to pave way to the finite element method.
Before 1970 the direct stiffness method has become the dominant method used in the

implementation of production —level structural analysis programs (Fellipa 2000)

Today there has been tremendous development in the use of computers for structural
analysis (Samuelsson and Zienkiewi, 2006). The formulation of the finite element
method has enabled the analysis of more sophisticated frameworks, plates and shells
(Case et al, 1999). Advances had also been made on non-linear and plastic analysis of

structures.

Analysis Type

1) Linear Static Analysis

This is the most common type of analysis, under this type of analysis, loads
applied to a body deform the body and the body generates internal forces and
reactions at the support to balance the applied external loads. Displacements,
stresses and strains under the effect of loads are calculated based on some
assumptions. They include the following among others:

a) All loads are static ie they are applied slowly and gradually until their full
magnitude is reached (Gere et al, 2012). After reaching the full magnitude, the
load remains constant i.e does not vary with time.

b) The relationship between loads and resulting responses is linear. If you double
the magnitude of loads, the response of the structure (displacement, stresses

and strains) will also double (Saikat , 2001).

12



2)

3)

The linearity assumption holds when all materials of the structure obeys Hooke’s
law ie stress is directly proportional to strain; the induced displacements are small
enough to ignore the changes in stiffness caused by loads and loads are constant in
magnitude, direction and distribution (Ghali et al 2003).

When the above conditions are not valid, then a non-linear analysis has to be

carried out.

Dynamic Analysis

This kind of analysis is performed on a structure with dynamic loads ie loads that
vary with time. The most common case is the dynamic response of a building due
to earthquake acceleration at its base. When a structure is exerted by a dynamic
load with a frequency that coincides with one of the structure’s natural frequencies
the structure undergoes large displacements. This is a phenomenon called
resonance. The natural frequencies and their corresponding mode shapes depend
on the structure’s geometry, material properties, its support conditions and static

loads.

Buckling Analysis

Experience shows that structures may fail in some cases not on account of high
stresses surpassing the strength of the material, but due to insufficient stability of
slender or thin-walled members (Timoshenko, 1961). This occurs when the stored
axial energy is converted into bending energy with no change in the externally
applied loads. Mathematically when buckling occurs, the total stiffness matrix

becomes singular (Ghali et al 2003).
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Buckling always involves compression. Buckling analysis involves the calculation
of the smallest (critical) loading required to buckle a model. Buckling loads are
associated with buckling modes. In engineering we are usually interested in the
lowest mode because it is associated with the lowest critical load, but in very
slender structures where buckling is a critical factor, calculating multiple buckling

modes helps in locating weak areas in the structure.

4) Thermal Analysis

The three basic mechanisms for heat transfer are conduction, convection and
radiation. Thermal analysis is the analysis of the changes in stresses and internal

forces in structures due to a variation in temperature.

In statically determinate frames, no stresses are generated when the temperature
variation (across member sections) is linear. In this case the thermal expansion
occurs freely without restraint. For composite members, when the temperature
variation is non-linear, each fiber may not be free to undergo the full expansion

and thus induces stresses.

In statically indeterminate structures, the increase in length or rotations at
members’ ends may be restrained giving rise to changes in reaction and internal
forces which can be determined by a thermal analysis. The reactions produced by
temperature variation must represent a set of forces in equilibrium.
2.3 Analysis by Computer
Before the advent of the computer, structural engineers had of necessity avoided

structural analysis formulations which led to the solution of more than three or four

14



simultaneous equations (Jenkins, 1990). The introduction of the method of Moment
Distribution circumvented this difficulty and so was extensively developed to solve
rotational equilibrium equations at the joints by an iterative process (Leet et al, 2005;

Hibbeler 2006).

By the early 1950, the computer came on stream, their potential for carrying out the
more laborious parts of analysis were appreciated and there began a steady
development of methods designed to utilize their speed and numerical processing
capacity. The formulation of methods of analysis using matrix algebra was found to
be very suitable for the digital computer (McGuire et al, 2000). They could generate
the required matrices and also perform the matrix operations of addition,
multiplication and inversion to provide values of displacements and stress resultants.
The concepts of flexibility and stiffness were developed and these new methods were
able to analyse skeletal structures and later through the method of finite element

plates and shells using the enormous computational power of the digital computer.

Computer aided structural analysis is the method of solving structural analysis

problems with the help of a computer software (Saikat, 2001). Virtually all general

purpose programs contain essentially four components (see Figure 2.1).
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Figure 2.1 Structural Analysis Computational flow (McGuire et al, 2000)

) Input: - The input phase requires information about the material, geometric
description and loading of the element. More sophisticated programs produce
graphical idealisations of the element enabling some errors in input to be
detected early.

i) Element Library: - The library phase contains codes necessary for the

generation of element algebraic relationships for connection to the
neighbouring elements as well as connection process itself. The final products
are algebraic equations that characterize the response of the structure (the
structure stiffness or flexibility matrix).
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i) Solution: - In this phase the generated algebraic equations are solved to find
the nodal displacements or resultant stresses. In the case of a linear static
analysis program this may mean no more than a simple solution.

iv) Output: - This phase presents the numerical or graphical records of the
solution upon which the engineer can base decisions regarding the

proportioning of the structure and other design processes.

Basic Concepts in the Analysis of structures

Principle of Superposition

If deformations are assumed to be small so that they do not significantly affect the
geometry of the structure or alter the forces in the members, stresses, strains and
displacements due to different actions (loads) can be added together by the Principle
of Superposition (Vitor, 2006). The principle of superposition states that the stresses,
strains or displacements due to a number of forces acting simultaneously on a system
is equal to the sum of the stresses, strains or displacements due to each force acting
separately. In structural and mechanical engineering superposition is used to solve for
beam and structure deflections due to combined loads when the effects are linear and
each load does not significantly alter the geometry of the structural system (Shigley et
al, 2004). In structural dynamics the superposition of the mode shapes for different
natural frequencies is used to characterize the dynamic response of a linear structure

(Bathe, 2006).
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2.4.2 Equations of Equilibrium

2.4.3

A structure is in a state of static equilibrium if the resultants of all forces and moments
at all joints or node points are equal to zero (Wilson, 1995). The three dimensional

equilibrium equations for an infinitesimal element is given as

00‘1 0‘[12 6‘[13

axl axz E-{_Bl = 0

0‘[21 60‘2 6‘[23 _

axl axz ax3 + BZ - 0

3] d 0

Ly T B R =0 (2.1)

axq | oxp | oxs
Where f; is the body force per unit volume in the i-direction (Boresi and Schmidt,
2003).
For a body subjected to forces in three dimensions, six equations of static equilibrium
can be written (Harrison and Nettleton, 1994).
They are:
YF =0, YE =0, XF =0 }
¥M,=0, ¥M, =0, XM, =0 (2.2)
For coplanar forces ie when all the forces acting on the body are in one plane, only
three equations are required to establish the static equilibrium of the body. When
forces act in the x-y plane, these equations are
YF =0, YF, =0, ¥ M, =0 (2.3)
When a stucture is in equilibrium every part of it is in the same state and the above

equations of statics must be satisfied.

Statical Determinacy
The analysis of a structure is usually carried out to determine the reactions at the

supports and the internal stress resultants. If these can be determined entirely from the
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equations of statics (equations 2.2) above then the structure is said to be statically
determinate. When there are more unknown reactive elements than the equations of
static equilibrium then the structure is statically indeterminate (Beer et al, 1996). The
reactive elements in indeterminate structures cannot be obtained without reference to

the structures compatibility conditions (Barber, 1992).

The degree of statical indeterminacy of a structure can be determined by inspection or
from the number of releases necessary to render the structure statically determinate.
But for large complex structures with many members such an approach is difficult

and a more mathematical approach is prefered.

For a plane truss the degree of indeterminacy n is given by the formula below
n=m+r)—2j (2.4)
Where n is the degree of statical indeterminacy. It is zero for determinate structures.
m is the number of members
r is the number of reaction components
J is the number of joints
In the case of a pin-jointed space frame the degree of statical indeteminacy is given by
(Adekola, 1988)
n=0CBm+r)—3j (2.5)
While for a rigid jointed space frame it is
n=(6m+r)—6j (2.6)
For simple plane frames and continuous beams the degree of statical indeterminacy
can be determined using the formula

n=r—e—s (2.7)
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Where n is the degree of statical indeterminacy.
r is the number of reaction components
s is the number of special conditions e.g hinges. s is the number of releases introduced

by that special condition (Onyeyili, 2003; Meriam and Kraige, 2002).

Kinematic Determinacy

A structure is kinematically determinate if it is possible to obtain the nodal
displacements from compatibility conditions without reference to equilibrium
conditions for example a fixed end beam is kinematically determinate since the end

displacements are known from the support conditions. This of course is zero.

The degree of kinematic indeterminacy of a structure is the number of independent
joint displacements (rotations and translations) in a structure. This is also known as
the degree of freedom of the structure. A system of joint displacements is said to be
independent if each displacement can be varied arbitrarily and independently of all the
others. In a plane truss, each joint other than a support has two degrees of freedom ie
the translation in two orthogonal directions. In a space truss, it is three ie the
translation in three mutually perpendicular axis. For plane frames and space frames

each joint other than a support has 3 and 6 degrees of freedom respectively.

In modern structural analysis, the displacement method is almost entirely used and in

this method the relevant indeterminacy is the kinematic one (Megson, 2005).
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2.4.5 Strain Energy
Strain energy is defined as the energy absorbed by a bar (member) during the loading
process (Gere et al, 2012; Nash and Potter, 2014). When the structure is gradually
unloaded this elastic strain energy will return the structure to its undeformed state
provided the material’s elastic limit is not exceeded. From the principle of
conservation of energy, strain energy is equal to the work done by the load provided
no energy is added or subtracted in the form of heat.

The strain energy dU of an infinitesimal element is given by
dU = cedv (2.8)
Where ¢ is the general symbol for strain, ¢ is the general symbol for stress and dv is

the volume of the element.

The strain energy per unit volume of element is known as the strain energy density
and is equal to the area under a stress-strain curve. For linear elastic elements the
stress-strain curve is a straight line.

The total strain energy is the strain energy due to the four internal stresses (Ghali et al

2003)
U=t a2 ax+ Ix [ dx [ dx 2.9)
]
where N and A are the normal force and cross-sectional area respectively. E is the
young’s modulus for the material. | is the second moment of area of the member cross
section. T is the torsional moment, G is the modulus of elasticity in shear and J is a
torsional constant. For members with circular cross-sections J is equal to the polar

moment of inertia of the cross-section. X is a shape factor which depends on the shape

of the member’s cross-section.
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2.4.6 Betti’s and Maxwell’s theorem

2.5

Betti’s theorem states that the sum of the products of the forces of a system (say F
system) and the displacements at the corresponding coordinates caused by another
system of forces (say Q system) is equal to the sum of the products of the forces of the
Q system and the displacements at the corresponding coordinates caused by the F
system.

2 FDjg =X Q:Dir (2.10)

This theorem is valid for only linear elastic structures.

For a special case where there is only one force F; = 1 in the F system and one force
Q; = Linthe Q system. Equation (2.10) reduces to D;, = D;r and is better known as
fy = fi (2.12)

Where fij is the displacement at coordinate i due to a unit load at coordinate j. fj is the
displacement at coordinate j when a unit load is applied at coordinate i. Equation
(2.10) is known as the Maxwell’s reciprocal theorem and it states that in linear elastic
structures the displacement at coordinate i due to a unit force at coordinate j is equal
to the displacement at j due to a unit force acting at coordinate i. This theorem is
responsible for the symmetrical nature of the flexibility and stiffness matrices used in

structural analysis under the force and stiffness methods.

Energy principles in the analysis of structures
The response of structures to static and dynamic loads may be accessed in terms of
energy (Segal and Val, 2006). Energy principles are formulated based on the principle

of conservation of energy. They are fundamental in the study of structural dynamics
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and structural stability. They include the principles of virtual work and
complementary virtual work, principle of minimum potential energy and minimum

complementary energy and the Castigliano theorems.

Principle of Virtual Work

This principle was formulated by Bernoulli. The principle states that, if a structure is
in equilibrium and remains in equilibrium while it is subjected to a virtual distortion,
the external virtual work We done by the external forces acting on the structure is
equal to the internal work U done by the internal stresses.

SWy = 86U = [, 0, 8e;dV (2.12)

This implies that the product of the actual displacement and the corresponding virtual
forces is equal to the product of the actual internal displacements and the

corresponding virtual internal forces (Ghali et al, 2003).

n

Z(Virtual force at i)(Actual displacement at i)
i=1

n
= Z(Virtual internal forces at i)(Actual Internal displacement at i)
i=1

(2.13)
This principle is used to determine the external displacement at any coordinate from
the strains due to known actual internal displacements. For convenience the virtual
loads are chosen in such a way that the right-hand side of the above equation directly
gives the deformation. The virtual force is therefore taken as P = 1, this is known as
the unit load theorem and can be applied to both linear elastic and non-linear elastic

structures.
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2.5.2

Instead of displacement, the principle of virtual work can also be used to determine
the force at a coordinate if the real internal forces are known, then

(Virtual displacement at i)(Actual force at i)

n
=1

L

n
(Virtual internal displacement at i)(Actual Internal force at i)
i=1

(2.14)
This is known as the unit displacement theorem (Ghali et al 2003), it is valid for only
linear elastic structures owing to the inherent assumption in its definition that strain at
any point on a structure is proportional to the force at that point. Like in the unit load
theorem, unit displacements are used for convenience hence its name unit
displacement theorem. The principle of virtual work was extended to dynamics by
D’Alembert in 1743 when he introduced the concept of inertial forces. It has been
used in the formulation of symmetric stiffness matrices of structures (Pinto and Prato
2006), thin-walled curved beam equations (Rajasekaran and Padmanabham 1989) and

in the dynamic analysis of beams (Boutros 2000).

Principle of Complementary Virtual Work

It states that the complementary virtual work §Wy done by an external virtual force
system under the actual deformation of a structure is equal to the complementary
work §U™ done by the virtual stresses under the actual strains.

SWg =6U" = fV 8o;;e;dV (2.15)
Both the principle of virtual work and the principle of complementary virtual work

apply to situations involving small deformation.
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2.5.5

Principle of Minimum Potential Energy

It states that of all displacement fields which satisfy the prescribed constraint
condition, the correct state is that which makes the total potential energy of the
structure a minimum.

om=6(U+Vg)=0 (2.16)
n=U+Vg (2.16a)
Where U is the structure’s strain energy and Ve is the external potential or work done

by external forces.

Principle of Minimum Complementary Energy

The principle states that of all states of stress which satisfy the equations of
equilibrium, the correct state is that which makes the total complementary energy of
the structure a minimum.

ST =8U*+ V) =0 (2.17)
m=U*+Vg (2.17a)

For a case of an isotropic, linearly elastic structure subjected to discrete generalized

forces, the complementary strain energy U* is equal to the strain energy U.

Castigliano’s Theorems
These were published by Castigliano and Italian Engineer in 1873. The two theorems
can be derived from the principles of minimum potential energy and minimum

complementary energy.
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Castigliano’s first theorem states that if the strain energy U stored in an elastic
structure is expressed as a function of the generalized displacements q;, then the
partial derivatives of U with respect to any one of the generalized displacements qi is

equal to the corresponding generalized force Qi.

0, = ZTU i=12..1n (2.18)

Castigliano’s second theorem on the other hand states that if the strain energy U in a
linearly elastic structure is expressed as a function of the generalized forces Qi, then
the partial derivative of U with respect to any one of the generalized forces Qi is equal

to the corresponding displacement qi.

q; = %Ui; i=12,..n (2.19)

This theorem is applicable to only linearly elastic structures. If the strain energy is

replaced with the complementary strain energy we obtain

U,

=2 1=12.n (2.20)

4i
Equation (2.20) is known as the Engesser’s theorem and applies to both linearly and

non-linearly elastic structures.

Matrix Analysis of Structures

The advent and subsequent development of digital computers has made it possible to
analyse complicated structures using matrix methods (Rajasekaran and
Sankarasubramaniam 2001). Recall that indeterminate structures are those structures
that cannot be solved using only the equations of equilibrium. To analyse an
indeterminate structure there is need to generate the structure’s deformation equations
and the equilibrium, compatibility and force-displacement requirements of the

structure must be satisfied. Equilibrium is satisfied when the reactive forces hold the
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structure at rest. Compatibility is satisfied when the various segments of the structure
fit together without breaks or overlaps. The force displacement requirement depends

on the way the material of the structure responds to loads.

There are basically two matrix methods of analyzing structures; they are the flexibility

method and the displacement method.

The Flexibility Matrix

This method was developed by James Clerk Maxwell in 1864. It was later refined by
Ottor Mohr and Heinrich Muller-Breslau (Boyajian 2005). In the force/flexibility
method a system of arbitrary generalized forces which satisfy equilibrium conditions
are taken as unknowns. The correct state of stress is obtained using the principle of
minimum complementary energy. The structure compatibility equations are written as
(Jenkins 1990)

LY+ IF{Q} ={q} (2.21)
Where {f,} is a vector of displacements in the generalized coordinates of the reduced
/basic structure, {Q} is the vector of the generalized forces which is sought for. {g} is
a vector of generalized displacement of the structure (with all redundant forces
present). When there is no transversely loaded external forces on the elements of the
structure {f,} =0.

[f] is a square matrix called the flexibility matrix. The elements of [f] are the
flexibility influence coefficients fj;, f; represents the displacement at point i in the
direction of Q; produced by a unit force Q;. The flexibility influence coefficient can be

obtained from the Castigliano’s theorem as

fi = a%u
YT 00,00,

(2.22)
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Equation (2.22) applies to linearly elastic structures. These influence coefficients can

also be obtained using the principle of virtual work.

In structural dynamics it may sometimes be necessary to find the flexibility matrix of
a structure about a set of coordinates. If Q; (i = 1,2,3,...n) represents a set of loads
acting in coordinate 1, 2, 3,...,n and Y; (i=1,2,3,...,n) represent the redundant forces
on the structure. Then the flexibility matrix relating the displacements q; caused by
forces Q; must satisfy the relationship

{a} = [f{Q} (2.23)

It can be shown that the flexibility matrix can be expressed as (Tauchert 1974)

[f1 = [Boo] + [Bor]ID] (2.24)

Where [D] = —[Byy]™}[Byy] (2.24a)
[Bao] = [4e] [C1[4¢] (2.24b)
[Bor] = [4¢] [C1[4y] (2.24c)
[Bro] = [4y]7[C1[Aq] = [Boyr]' (2.24d)
[Byy] = [Ay]"[C][AY] (2.24e)

[C] is the flexibility matrix of the unconstrained structure.

[Ag] is a matrix of member forces due to unit external loads Q such that an element of
[Aq.], Aqij represents the force in coordinate i due to a unit applied load Q;

[Ay] is a matrix of member forces due to unit redundant force. Such that an element
of [Av], Avyij is the magnitude of member force at | due to a unit value of redundant
force Y;.

The corresponding stiffness matrix can be obtained by evaluating the inverse of the

flexibility matrix.
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The force method in the pre-computer era was the popular analysis tool for civil,
mechanical and aerospace engineering structures (Raju and Nagabhushanam, 2000).
The automation of force method on computers met a stiff challenge. The redundant
analysis was the major problem. This arose from the fact that an indeterminate
structure can be reduced to many different basic structures (Robinson and
Haggenmacher 1971, Topou 1979, Kaneko et al 1983). A new method known as the
integrated force method was developed to overcome this obstacle (Patnaik 1986).
Unlike the basic force method, the integrated force method is independent of
redundant and has successfully been used for the static analysis of frames (Patnaik
and Yadagiri, 1989), plates (Kaljevic et al, 1996) and structural dynamics and
optimization (Patnaik and Yadagiri, 1976, Patnaik et al 1996). Despite all these
efforts at improving the force method, the displacement method still remained the

preferred choice for automated structural analysis.

The Stiffness Matrix

In the displacement method of analysis, the unknown quantities are a set of arbitrary
generalized displacements which satisfy the kinematic conditions of the structure. If g;
(1i=1,2,...,n) represent a set of generalized displacements proportional to the

generalized forces Qj then

{Q} = [kl{g} (2.25)

Where [K] is a square matrix known as the stiffness matrix. The coefficient k;; of the
stiffness matrix represent the force at i due to a unit displacement at coordinate j when
all other displacements are equal to zero. In the displacement method of analysis, the
displacement and corresponding forces can only be obtained at the specified

generalized coordinates.
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The stiffness matrix with respect to any set of prescribed coordinates q; (i=1,2,...,n)

can be obtained from (Tauchert 1974)

[k] = [byq] + [bgy ][] (2.26)

Where [d] = —[by, ] [byq] (2.26a)
[b4q] = [a,]' [K1[a,] (2.26b)
[b0y] = [a,]' [K1[a] (2.26¢)
[bye] = [a] (K1[a] = [bgy]" (2.26d)
[byy] = [a,]' [K][a ] (2.26¢)

[K] is the stiffness matrix of the unconstrained structure.

[ag] is a matrix of member displacements due to unit displacement at the prescribed
coordinates ie an element in [ag,], aqj is the displacement in coordinate i when the
structure experience a unit displacement in coordinate g;, all other joint displacements
gi being zero.

If yi (i=1,,2,3,...,n) represent the kinematic indeterminate displacements, [a,] is a
matrix of member displacements per unit displacement in coordinate y; ie an element
of [ay], ay; is the displacement at i corresponding to a unit displacement y;. By
inverting the stiffness matrix [k] we get the flexibility matrix [f]. The overall potential
energy of a structure is directly related to the stiffness of the structure (Wong and

Zhao 2007).
Dynamic Analysis
All bodies possessing mass and elasticity are capable of vibration (Chen and Zhou

1993; Thomson 2003; Rajasekaran 2009). When the vibration takes place in the
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absence of external excitation it is known as free vibration. The equation of motion
for a viscously damped forced system is

mx + cx + kx = F(t) (2.27)
Where m is the mass of the vibrating system, k is the stiffness and c is the damping

coefficient (Thomson and Dahleh 1998).

Damping in small amounts has little influence on the natural frequency of vibration
and may be neglected in its calculation. When damping is neglected ¢ = 0 and the
equation of motion becomes

mx + kx = F(t) (2.28)
Equation (2.28) is the equation of motion of a forced undamped system under
vibration. If F(t) = 0 we have a free undamped vibration. Equation (2.28) is a non-
homogenous second differential equation and the solution consists of two parts, the
complementary function which is the solution of the homogenous equation and the
particular integral. The complementary function is

x = Asinwt + B cos wt (2.29)
Where w is the natural frequency of vibration, A and B are constants that can be

evaluated from the initial conditions x(0) and x(0) to obtain

x(0)
X =—
w

sin wt + x(0) cos wt (2.30)

The particular integral can be obtained from the Duhamel’s integral or the

convolution integral as

x = — [(F()sinw(t — &) d§ (2.31)
Hence the complete solution of the equation of motion of an undamped system under

forced vibration is
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x = sin wt +x(0) cos wt + —— [ F (&) sinw(t — £) dé (2.32)

Lagrange’s Equation

Equation (2.32) is for structures with only one degree of freedom. But every real
structure has a continuous distribution of mass and hence an infinite number of
degrees of freedom (DOF) (Sule 2011). The structure however can be modeled with a
finite number of degrees of freedom. The number of degrees of freedom depends on
the accuracy required and the mass distribution of the structure. A structure modeled
with N DOF will have N natural frequencies and for each natural frequency there will
be a natural state of vibration with a displacement configuration known as normal

mode.

The analysis of multi-DOF systems can be carried out using the method of virtual
work. Lagrange formulated a scalar equation in terms of generalized coordinates and

is presented as

a (oT T . AU
2E)-E a0 s
i=12,..n

Where 01, 02, ..., qn are a set of independent generalized displacements, T is the
kinetic energy of the structure and U is the strain energy of the structure and Q; is the
non-conservative or the non-potential force on the system.

Since it is easier to analyse complicated structures in matrix notation, the Lagrange‘s
equations can be used to develop the matrix equation for the analysis of a damped n-

degree of freedom discrete mass structure as

[m]{x} + [d]{x} + [k]{x} = {F}, (2.34)
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Where [m] is the inertia matrix, [d] is the damping matrix and [K] is the structures
stiffness matrix. If a set of generalized coordinates q; different from the absolute
displacement x is used, equation (2.34) is re-written as (Trauchert 1974)

[ml{g} + [dl{q} + [k]{q} = {Q}, (2.34)

For a free undamped vibration equation (2.34) becomes

[ml{g} + [kl{q} =0 (2.35)

By pre-multiplying the equation with the structure’s flexibility matrix [f]

[DHg}+{q} =0 (2.36)
Where the dynamical matrix [D] = [f][m] (2.37)

A solution of equation (2.36) is given as

{q} = {¢}sin(wt + 6) (2.38)

By substituting equation (2.38) into equation (2.36) and rearranging we obtain

([D] = AlID{gp} =0 (2.39)
Where [I] is an identity matrix and A = 1/0)2 (2.40)

Equation (2.39) represents a system of n-homogenous, linear algebraic equation in the

amplitudes {¢} and can be solved to get the frequencies w1, ®,, ..., ®, for an n-degree

of freedom system. For each distinct frequency w; (or eigenvalue), there will be a set

of amplitudes {¢}; (or eigenvector).

A general solution to equation (2.35) becomes the sum of each solution multiplied by

an arbitrary constant.

{q} = {phCisin(wit + 6)) + {9}, G sin(wat + 63) + -+ + {$}, G, sin(w, t + 6,)
(2.41)

Put in matrix form equation (2.41) becomes

{q} = [pl{C sin(wt + §)} (2.42)

Or
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{q} = [¢]{A cos(wt) + B sin(wt)} (2.43)
Where [¢] is the modal matrix. The constants A;, A,, ..., Ay and By, Bo, ..., B, are
determined from the initial conditions. If at time t = 0 the displacement and velocities
are of values {q, } and {q, } respectively then

{4} = [¢] .} (2.44)
{wB} = [¢]7{4,} (2.45)

The eigenvectors or relative amplitudes {¢}; obtained from a free vibration satisfy

certain orthogonality conditions. They are summarized below (Tauchert 1974)

{p} [ml{¢}; =0 wheni=#j (2.46a)
{¢p} [ml{¢}; = M; wheni=j (2.46b)
{p} [K1{$}; =0 wheni=+j (2.472)
{$} k{¢}; = Mjw® wheni=j (2.47h)

where M; and w; are the generalized mass and circular frequency for the i normal

mode respectively. Equations (2.46a) — (2.47b) can written in terms of modal matrix

as
[¢]" [m][#] = [M] (2.48)
(1" [k][¢] = [K] (2.49)

Where [M] is a generalized inertia matrix and [K] is a generalized stiffness matrix.
Both are diagonal matrices. The matrix [K] has the following elements M; w? , M, w3,

M;w?, etc on its main diagonal.

The differential equations of a multi-degree of freedom system are in general coupled.
Mass or dynamical coupling exist if the mass matrix is non-diagonal, whereas

stiffness or static coupling exist if the stiffness matrix is non-diagonal. There exist a
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coordinate system that has neither form of coupling, such coordinates are called
principal or normal coordinates. Consider a set of coordinates ry, ro, ..., r, or {r} such
that

{a} = [¢]{r} (2.50)

By substituting equation (2.50) into (2.35) and applying the orthogonality conditions
equations (2.48) and (2.49) we obtain

[MI{7} + [K{r} =0 (2.51)
Since [M] and [K] are diagonal matrices, equation (2.51) is uncoupled. This is

particularly important in the analysis of forced vibration.

Hamilton’s Principle

Structures can be analysed as systems with continuously distributed masses. This
leads to exact results that are within the framework of the classical beam theory.
While Lagrange’s equations provide a way of analyzing multi-degree of freedom
system, a similar approach for continuous structures is an energy theorem known as

the Hamilton’s principle.

The Hamilton’s principle states that the motion of an elastic structure during the time
interval t; <t <t is such that the time integral of the total dynamic potential U — T +

VE IS an extremum.
t2
6ft1 (U—-T+Vg)dt=0 (2.52)

where U represents the strain energy of the system, T the kinetic energy and Vg the

work done by the external forces.
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The principle represents a generalization of the principle of minimum potential energy
to include dynamic effects. When the dynamic effects are neglected, kinetic energy T
= 0 and the equation reduces to the principle of minimum potential energy.

Using the Hamilton’s principle the partial differential equation and boundary

conditions governing the longitudinal vibration of a bar is derived as (Trauchert 1974)

(EAU) — pii+ F(x,t) = 0 (2.53)
and

N, = [EAu],,—o or 6uy(0,t) =0 (2.53a)
N, = [EAui]xl:O or Su;(L,t) =0 (2.53b)

respectively.

Where A(Xy) is the cross sectional area of the bar, p(xy) is the mass per unit length of
the bar and E is the modulus of elasticity of the material of the bar. Equation (2.53) is
the equation of motion for the longitudinal vibration of a bar while equations (2.53a —
2.53Db) are the corresponding boundary conditions. x; is the position of a element of
the bar and u; is the displacement of the element in question in the longitudinal axis of
the bar.

For the free longitudinal vibration of a uniform bar F(x;,t) = 0 and equation (2.53)

reduces to
c?uy =iy (2.54)
where ¢? = i—A (2.54a)

Equation (2.54) is a one dimensional wave equation and has a general solution

Uy = g(xg —ct) + h(xq + ct) (2.55)
Where g and h are arbitrary functions satisfying initial conditions. For a normal mode
vibration (where each particle of the bar vibrates harmonically at a circular frequency
w)
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uy (xq,t) = ¢1(x1) sin(wt + &) (2.56)
which upon substitution into equation (2.54) will give

¢+ “:—zqu =0 (2.57)

The general solution of equation (2.57) is

o(x) =G cos% + G, sin% (2.58)

By introducing the boundary conditions equation (2.58) results in an eigenvalue
problem, the solution of which yields the natural circular frequencies w; and mode
shapes (eigenvectors) ¢, . The general solution by mode superposition is

wy (x1,t) = %721 ¢; (x1) (4 cos w;t + By sin w;t) (2.59)
Where the constants A; and B; can be determined form the initial conditions.

The eigenfunctions ¢; satisfy certain orthogonality relationships. The orthogonality

conditions for a uniform bar having any combination of clamped and free ends are

summarized as

ufol ¢ipjdx; = 0when i # j (2.60a)
ufol $ip;dx; = M; wheni = j (2.60b)
EA [, ¢;djdx; = Owhen i # j (2.60c)
EA fol gl);q,’)]f dx; = w'M; wheni = j (2.60d)

Where p and A are the mass per unit length and cross-sectional area of element
respectively, M; is the generalized mass for the j™ mode of vibration.

From initial conditions the constants Aj and Bj can be expressed as

l
A] = ML]f() Uuq (Xl, O)¢] dx1 (261a)
L.
Bj = ﬁfo Uuq (xl, 0)¢] dX1 (261b)
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Using the Hamilton’s principle the differential equations and boundary conditions

governing the lateral vibration of a bar is obtained as
(Eluy)" + pily = F(xy,t)

V, = —[(EIuz) 14,—0 or 5u,(0,£) =0

V; = —[(ETuy) 1y = or Sup(L,t) =0

M, = —[EIu’z']xFO or §u,(0,t) = 0

M, = —[Elug]xlzo or Suy(l,t) = 0

Where M, and V, represent the bending moment and shear force at x; = 0,

V) and M, represent the bending moment and shear force at x; = I.

(2.62)

(2.63a)
(2.63b)
(2.63c)

(2.63d)

Equation (2.62) is the equation of motion for flexural vibrations while equations

(2.63a) — (2.63d) are the corresponding boundary conditions.

For a uniform bar undergoing free lateral vibration equation, F(x1,t) = 0 and equation

(2.62) reduces to
(Eluy)’ + pii, = 0
For normal modes of vibration
Uy (xq,t) = Pp(xq) sin(wt + 6)
When equation (2.65) is substituted into (2.64) we obtain
P — Bt =0
2
Where g* = =~
The general solution of equation (2.66) is

¢(x1) = CicoshBxy + Cysinhfxy + C3cosBxy + Cusinfxy

(2.64)

(2.65)

(2.66)

(2.66a)

(2.67)

By introducing the necessary boundary conditions and solving the resulting

eigenvalue problem, the beam’s natural frequencies w; and mode shapes ¢; (j =
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1,2,...0) are obtained. The general free vibration solution is obtained by mode
superposition as

Uy (x1,t) = X721 @ (xl)(Aj cosw;t + B; sin w; t) (2.68)
where A; and B; are constants. Just like in the longitudinal vibration of beams, normal
modes also exhibit some orthogonality relationships. The othogonality conditions for
a uniform beam with any combination of clamped, free, simply supported and guided

end can be summarized as (Tauchert 1974)

wf, pidydx; = 0 wheni # j (2.69)
wfy pidydx, = M when i = j (2.69b)
EI [, ¢ ¢ dx; = Owhen i # j (2.69c)
EI [, ; ¢] dx; = @' M; when i = j (2.69d)

The constants A; and B; in equation (2.68) are determined from the initial conditions

and generalized mass by using equations (2.61a — 2.61b).

The Finite Element Method

In the finite element method the structure is represented as an assemblage of
subdivisions called finite elements. The elements are connected to each other at joints
known as nodes. The variation of displacement along the length of an element is
assumed to be governed by simple functions. These approximating functions are
known as interpolation models and are defined in terms of displacement at the nodes.
When the equilibrium equations of the structure are written, the unknowns in the
equilibrium will be the displacement at the nodes. Once they are known, the
displacement at any point on an element can be obtained using the integration models.

Basic steps of the finite Element Method
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The structure is divided into elements, the number depends on the accuracy of
results required.

Displacement models for elements are chosen. They should be simple functions
that can easily be worked on, preferably polynomials. They are also required to
meet certain convergence requirement.

Using the assumed displacement model, the structure stiffness matrix and inertia
matrix are formulated.

The element equations are assembled to get an overall equilibrium equation. This
includes the stiffness and inertia matrices.

The resulting structure matrix is analysed for the displacement at the nodes. In
case of dynamic analysis, it is analysed for the natural frequencies and mode

shapes (Rao 2005).

Axial Element
Axial elements support only longitudinal forces and hence act like a spring. For an
axial element with the two ends displaced by u; and uy, the displacement at any

point & = % is assumed to be a straight line and the displacement is a superposition

of the two mode shapes. The normalized mode shapes are

$p1=010-28) (2.70)

¢, =¢ (2.71)

The displacement u at any point along the axis of the element is

u=01-8u; + ¢&u, (2.72)

This displacement model is used to formulate the kinetic energy and potential
energy of the system which are substituted into Lagrange’s equations for

generalized mass to obtain the element’s inertia mass as
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b)

e ] 2.73)

_u
ml =5[] .
This can also be obtained from the equation for generalized masses obtained

previously as

my = [ upiydx, (2.74)

Beam Element
The local coordinate for the beam elements are the lateral displacements and
rotations at the two ends. The positive sense of these coordinates is arbitrary, but

the one mostly accepted is presented in Figure 2.2

T F1,ds

Fa, d2<1

Fs, daT
e

Figure 2.2: Coordinates of a Beam Element

excluding axial forces
The mode shapes of the beam are generated from the general equation of the beam
which is a cubic polynomial. The normalized mode shapes for a given beam

element with four DOF numbered 1- 4 are

¢1(x) = 1—38% +28° (2.753)
b2 (x) = 1§ — 218 + 183 (2.75b)
$3(x) = 38% — 283 (2.75¢)
ba(x) = —1&% +1&° (2.75d)

For the mode shapes the generalized masses m;; (which form the elements of the
inertia matrix) can be obtained from equation (2.74) while stiffness influence
coefficients kj (which form the elements of the element stiffness matrix) can be

obtained from
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By substituting equations (2.75a) — (2.75d) into equation (2.74) the mass matrix

for a uniform element is obtained as

156 221 54 —-13l
2 _n2J]2

~ 20| 54 131 156 —22I
—131 —-312 =221 4[>

This matrix is called consistent mass because it is based on the same functions
used for the stiffness (Thomson and Dahleh 1998).

The accuracy of the finite element method depends on the assumed shape
functions. The shape functions are picked from different base functions such as
polynomials and trigonometric functions (Milsted and Hutchinson 1974, Christian
2009). They are carefully chosen to meet the following requirements amongst
others (Hutton 2004, Rao 2005)

1) Vertex modes have unit magnitude at one vertex and zero at all others.

2) Edge modes have magnitude along one edge and zero at all edges and vertices.
3) Inter-element compatibility and degrees of continuity ( C%, C%, ...) e.t.c

The difference between models developed from different shape functions is their
accuracy and rate of convergence (Faroughi and Ahmadian 2010). The accuracy
of finite element method can be improved by increasing the number of elements
while keeping the order of the elements fixed. This results in elements of smaller
sizes (Zienkiwicz et al 2013). Another method is by increasing the order of the
interpolation functions without any reduction in the size of the elements (Houmat

2009).

Another strategy for obtaining more accurate finite element models is by
employing the inverse methods (Faroughi et al 2011). In the inverse method the
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criteria that must be satisfied by the element model is determined and used to form
a parametric family of admissible mass and stiffness matrices. The elements are
determined by minimizing the discretization error in the element formulation
(Ahmadian et al 1998). This has the benefit of producing a better model for the
element under consideration. NoTable contributors to this method include Kim

(Kim 1993) and Fried I (Fried and Chavez 2004; Fried and Leong 2005).

2.7.4 Rayleigh Ritz Method
This is another method for obtaining approximate results in the dynamic analysis of
structures. It also has the effect of reducing the number of degrees of freedom of a
continuous system from infinity to a finite. In the application of Rayleigh-Ritz method
the beam deflection is represented by a series of shape functions multiplied by
constant coefficients. The chosen functions must satisfy the kinematic boundary
conditions of the vibrating element. If the chosen equations are 1, yo,..,y3 then the
beams deflection curve, generalized masses and generalized stiffness coefficients are

given as follows

Uy (2, 1) = Xioq ¥ (1) q; (0) (2.78)
my = f(f pip; dxq (2.79)
ky = [y EIW; ¥ dx, (2.80)

After using equations (2.62) and (2.63) to generate the inertia matrix and stiffness
matrix the analysis that follows is the same as in the Lagrange’s method. The solution
of the structures equations of motion is

{q} = [v]{A cos(wt) + B sin(wt)} (2.81)

and the final equation of vibration is written as

Uy (x1,t) = Xieg ¢ (x1)(4; cos w;t + B; sin w;t) (2.82)
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where ¢, (x1) = X7-1¥; (x1)y; (2.83)

Reducing the degrees of freedom of a continuous structure is like adding additional
constraints on the structure hence the idealized structure is stiffer than the real
structure. As a result the values of frequencies obtained by Rayleigh-Ritz method are
large and amplitudes of vibration smaller than their exact values (Tauchert 1974).
Rayleigh-Ritz method generally gives a good prediction of the values of the
fundamental frequency and provides progressively poor results for the higher modes.
To obtain better results there is need to choose good shape functions and increase the

number of functions.

Dynamic Analysis of Building Frames

Most international codes allow the use of an equivalent static lateral force method for
the practical design of real structure from the action of dynamic loads (Nassani,
2014). The estimation of the fundamental period of buildings is therefore important
both for the design of new buildings and for the performance assessment of existing
one (Clive et al, 2007; Chiauzzi et al, 2012). Empirical formula were proposed and

adopted for calculating the fundamental periods of building frames such (ASCE 7-10)

T = 0.0724h°® for steel moment resisting frames (2.84a)
T = 0.0466h° for concrete moment resisting frames (2.84b)
T = 0.0731h°%75 for eccentrically braced steel frames (2.84c)

Where h is the total height of frame.

According to the Eurocode 8(2004)

T = 0.075h%7> for framed structures (2.84d)

In the static force procedure (UBC, 1997), the second method (known as method B)

for calculating T is the Rayleigh equation
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T = sz S, w82 = (g5, /i8) (2.85)

Where w; is the portion of the seismic dead load located at or assigned to level i, §; is
the horizontal displacement at level i relative to the base due to applied force, g is the
acceleration due to gravity, f; is the lateral force at level i.

The Rayleigh equation even though is time consuming gives a better estimation of the
fundamental frequency of frames. A hand calculated approach for the computation of
frame deflections using a calculator has been suggested by Hsiao (2009). The method
implements the demands of the Rayleigh equation but in a simplier manner thereby
facilitating an easier determination of the fundamental frequencies/periods of low rise

moment frames.

Several research has been carried out using numerical methods to determine the
contribution of shear walls on the fundamental frequency (Crowley and Pinho, 2004,
Masi and Vona, 2008; Cinitha et al 2012). For the case of reinforced concrete frame
buildings the building height contributes more to the value of its period when
compared to the other characteristics of the building like in-plan regularity, infills and

shear wall distribution (Kose 2009).

Use of Lumped mass idealisation

All real structures have distributed masses and consequently have infinite degrees of
freedom. Their analysis is tedious and may require a lot of mathematical
manipulations. The dynamic analysis of structures is made simpler using a lumped
mass idealization (Sule 2011). The results from such analysis are usually approximate

(Gasic et al 2014). In the lumping of masses effort is made to preserve the total mass
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2.10

of the structure even though this alone cannot ensure the quality of the solution (lyer
1993). The use of diagonal lumped mass matrices simplifies the program coding and

results in significant reduction in computer memory and computational effort.

In finite element analysis, researchers have found out that the use of consistent mass
matrix did not always lead to an improved accuracy that justifies the additional
computational effort (Clough 1971, Washizu 1971). For this reason Key and
Beisinger developed a method for deriving a diagonal mass matrix from the standard
consistent mass matrix for elements with linear and cubic shape functions (Key and
Beisinger 1971). The use of lumped mass matrix has been extended to the dynamic
finite element analysis of plates and shells (lyer et al 2003). However it is a general
belief that consistent matrix lead to a more accurate solution (Nandi and Bosu 2004).

The diagonal mass matrix is still employed because of its lesser computational effort.

Efforts have also been made at developing simplified models for predicting the
natural frequencies of lumped mass structures. The concept of using shear wave in a
solid prismatic bar was used by Sule (Sule 2011) in studying and obtaining
approximate natural frequency of vibration of beams under lateral vibration. Osadebe

(1999) also proposed a model for calculating the natural frequencies of some beams.

Summary of Literature Review

One of the products of a dynamic analysis is the natural frequency of a structure. The
natural frequency of the structure is a property of the structure that depends
exclusively on its mass distribution and stiffness. It can be obtained for continuous

structures (structures with a continuous distribution of mass) using the Hamilton’s
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principle. This principle is an energy theorem that is an extension of the well known
principle of minimum potential energy for dynamic analysis. It can be used to obtain
exact results in the dynamic analysis of structures. Unfortunately it is quite difficult to
obtain the differential equation of motions for complex structures using this principle,
hence approximate methods are sought after. ‘Lagrange equations’ was one of them.
Using this method, the continuous mass of the structure are lumped together at
selected nodes (junctions/coordinates) about which we are interested in. This has the
advantage of reducing the degree of freedom of the continuous structure from an
infinite value to a finite value and so eases the analysis. But because the lumping of
the continuous mass at selected nodes of the structure has altered the mass distribution
(inertia matrix) of the structure the results are approximate and depends largely on the

pattern and extent of redistribution

Another approximate method is the Rayleigh-ritz method which is an extension of the
Rayleigh method. In this method shape functions are used to depict the displacement
configuration of the system under vibration. While a single function is used in the
Rayleigh function, a series of shape functions multiplied by constant coefficients are
used in the Rayleigh-ritz approach. The use of a series instead of a singular function
improves the results of the analysis as the series will better represent the displacement
of the structure more than a single function. The strain energy and kinetic energy of
the vibrating system are formulated with the chosen shape function. If the shape
function depicts accurately the displacement configuration of the system then the
result of the analysis will be accurate else it becomes approximate. What the chosen
shape functions do is to apply a particular mass distribution on the system. The

applied mass distribution will only be exact i.e. depict the continuous and uniform
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mass distribution if the chosen shape function depicts accurately the displacement of
the real structure. The finite element method just like the Rayleigh-ritz approach uses
a shape function to depict the displacement configuration of the system and as such
the mass distribution. The product of the chosen shape function is the consistency
matrix which is an inertia matrix formulated from the chosen shape function. While in
the Rayleigh-ritz method the accuracy of results can be improved upon by increasing
the number of terms in the shape function, the finite element method can also achieve
this by subdividing the element into smaller elements hence making the chosen shape
function a better approximation of the displacement configuration and hence

improving the result of the analysis.

Osadebe’s model (Osadebe 1999) and that of Sule (Sule 2011) are empirical formulae
for estimating the natural frequency of simple beams. The building codes are also
replete with empirical equations for estimating the natural frequency of building

frames.

We observe that the approximate methods such as Lagrange (by mass lumping),
Rayleigh-ritz and the finite element method all modify the mass distribution of the
structure. While in the use of the Lagrange’s equations, simple redistribution on the
basis of the centre of gravity can be done. The Rayleigh-ritz and finite element
method carries out a more complex mass formulation resulting in the consistency
matrix. The effort of these methods is to obtain a mass distribution (inertia matrix)
representative of the real structure and so produce exact results. In the use of the
Lagrange’s equation the masses are lumped. Efforts have been made at finding better

patterns of lumping that will minimize errors due to the lumping of continuous mass.
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Using evenly spaced lumps and increasing the number of lumps are the results of such
studies. We can see that all the approximate methods hover around the distribution of
the mass of the structure; work has not been done on possible redistribution of the
stiffness of the structure so as to counter the errors due to the poor or non-
representative distribution of the mass. We therefore need to explore the possibility of

modification in the structure’s stiffness distribution.

Stiffness in its simplest form is the deformation per unit force and can be likened to
the unit response of a system to external forces. For a simple bar, Hooke’s law is
written as

F = ke (2.86)
Where F is the applied longitudinal force, e is the enlongation and k the elastic
constant or stiffness. The stiffness is a characteristic of the bar as it expresses the
relationship between force applied on the bar and the corresponding deformation that
results. Because equation (2.66) does not take care of other variables that affect k such
as cross-sectional area of the bar and bar length, Hooke’s law can be rewritten as

o =Es (2.87)
Where ¢ = stress = F/A, € = strain = e/l and E is the young’s modulus. By
comparing equations (3.86) and (3.87) we find out that

k=E4/ (2.88)

The stiffness from equation (2.88) is a property of the bar and captures the material
property E (young’s modulus is a property of the material of the bar), cross-sectional
area A and length | are geometrical properties of the bar.

In deriving equations (2.86) and (2.87) force is applied at specified points (nodes) and

deflection is also measured at those points (nodes). Hence in calculating or writing the
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stiffness of a bar , it has to be written with respect to the defined nodes. For a structure
that consists of an assemblage of elements such as frames, the structures cannot be
one dimensional as in equation (2.86) but mult-dimensional because of the presence
of more than one node (see section 2.6.2). However the multi-dimensional stiffness
[K] provides the force per unit deformation of the assembled elements at the nodes
considered in the writing of the stiffness matrix.

Consider a uniform bar made of a homogenous material and having four nodes (1 - 4).

1 2 4
kl k2 3 k3
| 1 1 J
I I |
| I V4 I
Z A A A

Figure 2.3: A uniform beam subdivided into three

equal segments

The bar can be said to be divided into segments and if the length of each

segment/element | is equal, each segment will have a stiffness
k=k1=kz=k3=_ (289)

If the beam’s stiffness is altered in such a way that

ki =0k
ky = @,k (2.90)
ks = @3k
And @1 # @, # 03 (2.91)

The response of the structure to external loads will no longer be the same as before
and one can say that the stiffness distribution of the structure has been modified ( or
the stiffness of the structure has been redistributed). This is the intended meaning of

modification in stiffness distribution in the context of this work.
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Chapter 3

METHODOLOGY

The two essential components that determine the vibration of structural systems are:-
1) The structure’s mass distribution

i) The structure’ s stiffness

These properties are captured in the structure’s inertia matrix and stiffness matrix
respectively. The prominent role these elements play can easily be appreciated by
taking a look at the equations of motion of a vibrating system or the structural

dynamics’ eigenvalue problem.

In the use of Lagrange’s method, a solid mass is treated as particles connected
together by mass-less elements. When the continuous mass of an element are lumped
at specified nodes, these lumped masses are used in formulating the diagonal mass
matrix of the element. The corresponding stiffness matrix is formulated with respect
to the coordinates of the lumped masses. Hence there is a relationship between the
way lumped masses depicting a continuous system are positioned and the stiffness
matrix of the system. The product of the mass matrix and the inverse of structure
stiffness matrix (the flexibility matrix) give the dynamical matrix from which the
natural frequencies and mode shapes are obtained (see equations (2.35), (2.39) —
(2.40)). This can also be observed in the othogonality relations for discrete masses. By
substituting equation (2.48) into equation (2.49) we obtain

(61" (k][9] = [w?1{[¢]" [m][¢]} (3.1)
where [w?] is a diagonal matrix containing the square of the circular frequencies of

vibration w1, w,, w3 etc. From equation (3.1) it would be seen that if [¢] and [w?]
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which are the two products of a dynamic analysis are kept constant, any change in the
inertia matrix [m] must be accompanied by a corresponding change in the stiffness

matrix [K] and vice versa.

In the analysis of continuous systems using the Hamilton’s principle the way the
structure’s stiffness and mass distribution interplay in the determination of the
system’s circular frequencies and mode shapes is evident if equation (2.60b) is

substituted into equation (2.60d).
L, !
EA [, ¢;%dx; = wfp [, ¢fdx; (3.2)
If the mode shape ¢; and circular frequency w; are kept constant, then any variation

in mass distribution u will have a corresponding change in the element rigidity EA.

Likewise by substituting equation (2.69b) into equation (2.69d)

Lo l
El fO ¢] del = (A)jzﬂ fO (,‘b]-del (33)

If the mode shape ¢; and circular frequency w; are kept constant, then any variation

in mass distribution u will have a corresponding change in the element rigidity EI.

The use of either the finite element method or the Rayleigh-ritz approach also involve
the evaluation of equations similar to equations (3.1) — (3.3); hence the results of a
structural dynamic analysis of a structure rests squarely on how the mass of the

structure is distributed and on the structure’s stiffness matrix.

The important question is how is the mass of the structure distributed? They are
continuous. If the continuous system is represented with a set of lumped masses

connected by masses elements, do | hope to get an exact solution (exact value of
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circular frequency and shape function)? Presented in Appendix H is a rigid body
dynamics for a lumped mass encaste beam under longitudinal and lateral vibration
showing its departure from the correct value of natural frequency at different possible
positions of the lumped mass(es).

From equations (3.1) — (3.3) a possible way of achieving this is by altering the
structure’s stiffness distribution. The lumped mass beam would be reduced to finite

elements with masses lumped at its ends see the Figure 3.1

LS S S
| 1 1 1 1 J
L]_ L2 L3 L4 L5
4 4 V4 V4 V4 V4
Ll 1 Al Al 4 4l

(@ Uniform beam
2 Kk 3
| ]
L
L : L

1

(b) An element of the uniform beam

0 1 2 3 4 5
Ky Kz Ks Ky Ks
D — S S S d
Ly L, Ls L4 Ls
I/ [ |/ V4 |/ |/
7l 1 A A A A

(c) Lumped mass beam

2 3
ks
HL3/2 L3 UL3/2
|- -
A1 A1

(d) An Element of the Lumped mass beam

Figure 3.1: Lump mass idealizations of a uniform beam (Tauchert 1974)
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(W is the mass per unit length of the beams)

Beams of different end restraint will be analysed under free vibration to determine the
distribution of the inertia forces causing vibration. This can be obtained by finding the
second derivative of equation (2.59) with respect to time and multiplying it with an
elementary mass pdx of the vibrating beam (p is the mass per unit length of the
beam). The stiffness of the beam will be taken to be constant (as expected) which
implies that the stiffness at time t = O will be the same at any other time during
vibration. Equilibrium equations of any element of the vibrating beam will be written
and the deformation of the element at the ends at time t = O equated to the
deformation of a corresponding lumped massed element with similar position on the
vibrating element and the stiffness value of the lumped mass element calculated. The
rotational inertia of the lumped mass may or may not be ignored or may be computed

as a fraction of the total mass.

This can be achieved by comparing two equations. One is the force equilibrium
equation written as

{F}+[sI{D}=0 (3.4)
(when no external force acts at the element’s nodes)

{F} + [SI{D} ={F"} (3.5)
(when the external force vector {F*} acts at the element’s nodes)

Where {F} is the vector of fixed end forces generated when nodal displacements are
restrained. [S] is the element stiffness matrix and {D} a vector of nodal displacements
(Okonkwo 2012).

The second is the equation of motion of a vibrating system written simply as (see

section 2.7.1)
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[ml{x} + [k]{x} =0 (3.6)
(when no external force acts at the element’s nodes)

[ml{x} + [k]{x} = {F} 3.7)

(when the external force vector {F} acts at the element’s nodes)

Where [m] is the inertia matrix, [K] is the element stiffness matrix and {x} a vector of
nodal displacements.

By comparing equations (3.4) and (3.5) with (3.6) and (3.7) we see a lot of
similarities. Even though equations (3.4) and (3.5) have been largely applied in
statics, it can also be applied in dynamics if the equations for the vector of fixed end
moments/forces {F} can be formulated. The real structure (continuous system) will be
analyzed using the Hamilton’s principle and the equations for the fixed end forces {F}
and nodal displacements {D} formulated for any arbitrary segment of a vibrating
beam at time t = 0. This will be substituted into equation (3.5) to get the vector of
nodal force {P} that is causing the vibration.

{F}+ [SI{D} = {P} (3.8)

[K] in equations (3.6) and (3.7) will be taken as the stiffness matrix of the lump-
massed beam. If a vibrating element of the real beam (beam with continuous mass)
and that of a corresponding element of a lump-massed beam are to be equivalent then
their deformation must be equal and the force acting on their nodes {P} will also be
equal. Therefore

{D} = {x} 3.9)
[m]{x} + [k]{x} = {P} (3.10)

Equation (3.10) can then be solved to obtain the value of [k] which will not be the

same as [S]. Since [k] will be solved for different segments (elements) of the vibrating
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3.1

beam, it is not expected to give the same results but will vary depending on the
position of the selected segment in the vibrating beam. This gives rise to the
modification of the beam stiffness distribution. The lumping of masses at the left and
right ends of a segment already has an established principle of lumping 50% of mass

to the left and another 50% to the right (see Figure 3.1d).

Formulation of the equations for fixed end forces for segments of a bar under

free longitudinal vibration

The partial differential equation governing the free longitudinal vibration of an elastic

bar of uniform cross-section is (see section 2.7.2)
c2u' =1 (3.10)

where ¢? = i—A (3.11)

E is the young’s modulus of the material of the bar and p is the mass per unit length

of the bar.

For a normal mode vibration where each particle in the bar vibrates harmonically with

a circular frequency w

u(x, t) = @(x) sin(wt + §) (3.12)
By differentiating equation (3.12) twice with respect to x we obtain

u'(x,t) = 0" (x) sin(wt + §) (3.13)

Equation (3.12) and (3.13) are substituted into equation (3.10) to obtain

0" + ‘;’—fgzs =0 (3.14)
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The general solution of equation (3.14) is
Q=C cos% + G, sin% (3.15)

3.1.1 For a Clamped (fixed-fixed) bar or pinned (pinned-pinned) bar

AN
\\ \{\\\

~

X

Figure 3.2: An illustration of a Clamped
bar

At the boundaries (see Figure 3.2)

@) =0(L)=0 (3.16)

By substituting equation (3.15) into equation (3.16) we obtain

C, =0 (3.17)

C; cosWC—L + C, sinWC—L =0 (3.18)

For a non-trivial solution C, # 0 hence

sin“= = 0 (3.19)
From equation (3.19) it would be seen that the bar has infinite number of natural

frequencies given by

' . [Ea
w, = ]% =Jjn .z (3.20)
j=123,..,0

By taking C; to be equal to unity

jmx

Q; = sinT (3.21)
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Or @; = siny,x, where y; = an

j=123,..,00
Substituting equation (3.20) and (3.21) into (3.12) and summing it for all normal
modes

u(x, t) = X2, 0, (A]- cos w;t + B; sin w; t) (3.22)
Equation (3.22) is the equation of motion for the longitudinal vibration of a bar. To
find the acceleration and hence the inertia forces due to vibration there is need to find
the second derivative of equation (3.22) with respect to time.

ii(x,t) = 27’:1 —a)jz ?; (Aj cosw;t + B; sin w; t) (3.23)

Substituting equation (3.21) into (3.23) at time t = 0 will give

i(x,0) = )72, —a)jzAj sinjnTx
=25 —a)jzAj siny;x (3.24)
where y; = ]T” = wc—’ (3.25)

By treating the longitudinally vibrating bar like a beam segment pinned at both ends,
it is possible to obtain the fixed end forces (axial) forces of an arbitrary segment of the

bar (see Figure 3.3).
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Figure 3.3

(a) A bar under longitudinal vibration due to inertial forces uii

(b) A segment of the bar under longitudinal vibration due to inertial forces pii

The forces at the ends of the isolated segment are F; and F.

Using the equations of external equilibrium

Z MZ =0; Fl(xz - xl) + fxxlz HU(XZ - X)dx =0

2 pii(x, — x)dx (3.26)

Xp—Xx1 "X1

Fl =
YE =0, F+F +fx"12,1udx =0
F,=— fx"f piidx — F, (3.27)

It is necessary to carry out the integration of the different component functions of
equations (3.26) and (3.27) separately.

X2 . _ [o'e) 2 X2
fxl pilx dx = 3774 —w; Aj,ufxl @;x dx

X2 .
=¥, _szf”fxl xsiny;x dx
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= Z ( Y1X2 COSY1X, + SinyyX; + ¥1X1 COSY X — siny;xq)

(3.28)
X2 .. X2 ..
fxl piix, dx = ux; fxl it dx
=Y —wi A ux; fxxlz siny,x dx
=X Zodiu (cosyyx, + cosy;x;) (3.29)
Y1

By substituting equations (3.28) and (3.29) into equation (3.26) we obtain

2
o W

2]1 }/

1

rE— (ylxz COSyX; — y1X1 COSYX1 — Siny1x; + siny;xq) (3.30)

Fl =
From equation (3.29)
fxxlz pit dx = Y5, —wf A fxxlz siny;x dx

(3.31)

=¥,
By substituting equation (3.31) and (3.30) into equation (3.27) we obtain the value of

the second end force F»

2 . .
F _ Io'e) ‘Uj Ajll —}/1LCOS ]/1X2+)/L COoS yY1X1 Y1X2 COS Y1X1—Y1X1COS Y1X1—SIn V1XZ+SIII Y1X1
2T 4j=1" 2 - _
i L xX2—Xx1

(3.32)
Having obtained the equations of the fixed end forces F; and F,, there is need to
express them in terms of EA rather than w;
From equation (3.25)
yil = jm (3.33)

By substituting equation (3.11) into (3.25)

== (3.34)
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The length of the bar L can be normalized to be equal to unity and the distances x; and

Xz expressed in dimensionless units.

Let

G =7 (3.35)
0<x <1

& =" (3.36)
0<x, <1

By substituting equations (3.33) — (3.36) into equations (3.30) and (3.32) we obtain

EA o . . . . . L
F = Tt 2t A; [jmé;, cos jméy — jméy cos jméy — sinjmé, + sin jmé;] (3.37)

and

Fzz

EA
L

;,0=1 Aj [—jT[ COSjT[fZ +j71' COSjT[fl _ jm &y cos jmé—jméq cos jm&q—sin jw &y +sin jnfl]

$2—81

(3.38)
Equations (3.37) and (3.38) are the equations of the fixed end forces on an arbitrary
segment of a clamped bar under free vibration. In order to evaluate these equations,
there is need to derive an expression for A.

Recall that the constant A; depends on the initial conditions of the vibrating bar.
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A vertical uniform bar

i . easy calculation of the axial force P at any point
under its self weight

along its length (See proof in Appendix J)

Figure 3.4: A vertical uniform bar clamped at both

ends and acted upon by its self weight

The axial force at any point x along the length of the bar is given by (see Figure 3.4)

L
1;=uge—x) (3.39)
M is the mass per unit length of the bar and g is the acceleration due to gravity.

At any distance x an element of the bar is under an axial force Py. This is illustrated

with Figure 3.5

dx

Py «—— ——» Py

Figure 3.5: An infinitesimal element of the bar

under axial stress
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If the axial deformation on the infinitesimal element dx is du, then from Hooke’s law
du

P, =EA— (3.40)

By equating equation (3.39) to equation (3.40)

duzg(g—x)dx

_ Mg x (L
u="2") (E—x)dx
=29 (Lx — x?) (3.41)

T 2EA

Equation (3.41) is the equation of the deformation/longitudinal displacement of the

bar under its weight. Let this displacement u of the bar at time t = 0 be equal to

u(x,0) = %(Lx —x?) (3.42)
Where e is a dimensionless constant equal to %

By substituting equation (3.21) and (3.42) into the equation for A; given as equation

(2.61a)
4 = Mi OL % (Lx — x?) siny;x dx (3.42)
j

i w .
Where y; = ’T” = TJ as stated earlier

A 2

; siny;x dx

ue L .
=— | Lxsiny;x —x

__ e [L(—ylL cos y1L+sin y1L)  —y£L2 cos y1L+2y1L sin y1L+2 cos y1L—2]

ML V2 i
2 .
__uel® (2—yqLsin y1L—2cos y1L
= ( 35 (3.43)
M; yiL
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Equation (3.43) above is an expression for the constant A;. As can be seen, it is a

function of the generalized mass M;j.

The generalized mass can be expressed as (from equation (2.60b))

M = pf; 0 dx (3.44)
By substituting equation (3.21) into equation (3.44)

M =p fOL sin? yyx dx

_u (ylL sin 2y1L)
- 2 4

— K (3.45)
(since y1L=jm)

By substituting equation (3.33) and (3.45) into (3.43) and simplifying

2-2(-1)
j=123,.., 00

Equation (3.46) above is an expression for the constant A; for a bar under an initial
displacement caused by its self weight. Equation (3.46) can be substituted into the

equation (3.37) and (3.38) to obtain the values of the fixed end forces F; and F.

3.1.2 For a Clamped-free bar

»
»
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N

Xy
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A

>/

Figure 3.6: An illustration of a Clamped-free bar
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At the boundaries (see equation 2.53 and Figure 3.6)
3(0) =0 (3.47)
N, = [EAu],—,

= EAQ (L) (3.48)
For a free vibration N._ = 0, hence
@ (L) =0 (3.49)
By substituting equation (3.15) into equation (3.47) and (3.49) we obtain
€ =0 (3.50)
%Cz cos(‘:—L =0 (3.51)
For a non-trivial solution C, # 0 hence
coswC—L =0 (3.52)
From equation (3.52) it would be seen that the bar has infinite number of natural

frequencies given by

imc i EA
w=—=— |— 3.53
J 2L 2 Aful? ( )

i=1,35709,..,0 j=12345,..,0
By substituting equation (3.50) and (3.53) into (3.15) and taking C, to be equal to
unity

@) =sinZ- (3.54)

Or @; = siny,x, where y, = %
i=13579,..,0
Substituting equation (3.53) and (3.54) into (3.12) and summing it for all normal

modes

u(x, t) = X2, 9, (A]- cosw;t + B; sin w; t) (3.55)
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Equation (3.55) is the equation of motion for the longitudinal vibration of a clamp-
free bar. The second derivative of equation (3.55) with respect to time

i(x,t) = X5, —wjz ?; (A]- cos w;t + B; sin w; t) (3.56)
Substituting equation (3.54) into (3.56) at time t = 0 will give

i(x,t) = X5, —wjzAj sin —

2L
= i1 —wjzAj siny,x (3.57)
where y, = % = % (3.58)

By treating the longitudinally vibrating bar like a beam supported at one end, it is
possible to obtain the fixed end forces (axial) forces of an arbitrary segment of the bar

(see Figure 3.7).

u uiidx
/ ]
“A X1 L
A
R1 X2 X ¥
L K
(a)
wiid
X1 A A
F1 »- X F?
X? /IV
(b)
Figure 3.7

(a) A clamped-free bar under longitudinal vibration due to inertial forces uii
(b) A segment of the clamped-free bar under longitudinal vibration due to inertial

forces uii
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There are two possible cases for any arbitrary segment of the vibrating bar
Case 1
WhenOSx1<Land0<x2<L

The forces at the ends of the isolated segment are F; and F, and the solution is largely

the same as for the case of a fixed-fixed bar solved earlier.

Using the equations of external equilibrium
Z MZ = 0; Fl(xz - xl) + fxxlz MU(XZ - X)dx =0

F=— f pii(x, — x)dx (3.59)

X2—X1

YFE =0, F+F +fx"12uudx =0
F,=— fx’“f piidx — F, (3.60)

fxxlz pitx dx = Y52, —w?Aipu fxxlz x siny,x dx

Z —siny;x;)
(3.61)
fxxf pitx, dx = Y521 —wf A i x; fxxlz siny,x dx
. —wjzAjuxz
= ijlT(cos Y2Xy + COSY2X1) (3.62)

By substituting equations (3.61) and (3.62) into equation (3.59) we obtain

1 OOwA

F = mzj ) 25 (y2% COS Y221 — V%1 COS V%1 — Sinax, + sinyx;)
(3.63)
fxxf pit dx = Y572, —wP 4 uf siny,x dx
—0? A
=2jo1—, (= cosyx; + cosyax) (3.64)
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By substituting equation (3.63) and (3.64) into equation (3.60) we obtain the value of

the second end force F»

2 . .

F _ 0 wj Ajli —}/zL cos y2x2+y2L COS Y2Xx1 _ V2X2 COS Y2X1—Y2X1COS YpXx1—SIn y2x2+51n Y2Xx1

2 - _]=1 2 L _
Y2 X2—X1

(3.65)
The fixed end forces F; and F,, can be expressed in terms of the axial rigidity EA
rather than the circular frequency w;

From equation (3.58)

VoL = % (3.66)

i=1,35709,..,0

By substituting equation (3.11) into (3.58)

S
'~ o

EA
-2 (3.67)

L)

14

There is also need to normalize our distances so that the length of the bar L becomes
equal to unity and the distances X; and x, expressed in dimensionless units.

By substituting equations (3.35) — (3.36) and (3.66) — (3.67) into equations (3.63) and

(3.65) we obtain
—_ A yo &2 oML _ w8 T
f = f=1Af[ 5 COsS—= — —=cos—=—sin—=+sin— ] (3.68)
F, =y 4|, i”52+iﬂco inf1_@c05in§1 iﬂjlcosm;1 siniﬂjz:sin%
o = 2 2 2 2 $2—61
(3.69)

j=1234,5,..,00
i=13579,..,00
Equations (3.68) and (3.69) are the equations of the fixed end forces on an arbitrary

segment of a clamped-free bar under free vibration.
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b)

Case Il
When0 <x; <Landx, =L
Since the far end of the bar is free, F, =0

For vertical force equilibrium
F, + fol piidx = 0 (3.70)
F,=— fo1 piidx

= -2 —wAu fol siny,x dx

=Yj=1 w’i# (—cosy,L + cosy,x) (3.72)
By substituting equations (3.35) — (3.36) and (3.66) — (3.67) into equations (3.71)
F, = % o1 Al (— cos%ﬂ + cos %) (3.72)
Where j = 1,2,3/4,5, ...,

i=13579,..,0

In order to evaluate the equations for F; and F,, there is need to derive an expression

for A for a clamped-free bar.
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(b)
@) The vertical bar represented as a horizontal

A vertical uniform bar bar with the self weight acting transversely

under its self weight to enable easy calculation of the axial force P

at any point along its length

Figure 3.8: A vertical uniform clamped-free bar

acted upon by its self weight

The axial force at any point x along the length of the bar is given by (see Figure 3.8)
P, = pug(L —x) (3.73)
where [ is the mass per unit length of the bar and g is the acceleration due to gravity.
From Hooke’s law the equilibrium equation for an infinitesimal element of the bar is
By equating equation (3.73) to equation (3.40)

_ K9

du = 7 (L —x)dx
— M9 *ey _

u=": fo (L — x)dx

=4 (Lx - ) (3.74)
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Equation (3.74) is the equation of the deformation/longitudinal displacement of the
clamped-free bar under its self weight. Let this displacement u of the bar at timet=0

be equal to

u(x,0) = %(Lx - ?) (3.75)

. . . L
Where f is a dimensionless constant equal to %

By substituting equation (3.54) and (3.75) into the equation for A; given as equation

(2.61a)
L x2 .
A = ML]-IO ]L:(Lx — 7) sin y,x dx (3.76)

i w -
Where y, = ]zlL = TJ as stated earlier

A:

uf (L ) x2
=— | Lxsiny,x —=siny,x dx

__ uf [L(=y2Lcos ypL+sin y,L) —¥312 cos yoL42y,L sin y,L+2 cos yzL—Z]

ML vi 2y3
_ ,qu2 —)/22L2 cos yp2L—2cos ypL+2 3.77
- M, 2v313 ( : )
j Y2

Equation (3.43) above is an expression for the constant A; for a clamped-free bar

having an initial displacement due to its self weight.

To obtain the generalized mass M; we substitute equation (3.54) into (3.44)
M =p fOL sin® y,x dx

u (yzL sin 2y2L)

v\ 2 4
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== (3.78)
(since y,L=jn/2)
By substituting equation (3.66) and (3.78) into (3.77) and simplifying
22 in in
=2 () e @79
8

j=12345,..,©

i=1,35709,..,0

Equation (3.79) above is an expression for the constant A; for a clamped-free bar

under an initial displacement caused by its self weight.

Presented below is a summary of the end forces obtained for arbitrary segments of a

bar under longitudinal vibration.

3.1.3 For a Free-free bar (a bar unrestrained at both ends)

Figure 3.9: An illustration of a Free-free
bar

At the boundaries (see Figure 3.2)
@'(0)=0'(L)=0 (3.80)
By substituting equation (3.15) into equation (3.80) we obtain

%cz =0 (3.81)
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w . WL w wlL _
_761 51n7+?62 cos— = 0 (3.82)
Put in matrix format

0 w
[ Low WL] E;] =0 (3.83)

wo.w w
——SIn— —CO0S—
c c c c

For a non-trivial solution the coefficients of the constants C; and C, must be zero

hence
—sin—=20 (3.84)
From equation (3.84) it would be seen that the bar has infinite number of natural

frequencies given by

jme . |EA
w =5 = jm |2 (3.85)

j=0123,..,00
The calculated natural frequencies are the same with that of a fixed-fixed bar except
that the lowest frequency for a free-free is zero (the condition for a rigid body
motion).

By taking C; to be equal to unity C, can be calculated from equation (3.82) to be
C;=tan*> =0 (3.86)
C, is equal to zero for all possible values of WC—L

@; = cosyzx, where y; = ]Tﬂ (3.86a)
j=0123,..,0
By treating the longitudinally vibrating bar like a horizontal beam segment free at

both ends, it is possible to obtain the fixed end forces (axial) forces of an arbitrary

segment of the free-free bar (see Figure 3.4).
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Figure 3.10

() A bar under longitudinal vibration due to inertial forces uii

(b) A segment of the bar under longitudinal vibration due to inertial forces pii

The forces at the ends of the isolated segment are F; and F.

Using the equations of external equilibrium

Z MZ =0; Fl(xz - xl) + fxxlz HU(XZ - X)dx =0

—— [*? i, — x)dx (3.87)

Xp—Xx1 "X1

F1=

YE =0, F+F +fx"fuudx =0
F,=— fx"f piidx — F, (3.88)

By carrying out the integration of the different component functions of equations

(3.87) and (3.88) .

X2 .. . x
fxlz pitx dx = Y721 —wlAjp fxf @ x dx
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= Zj‘.”:l —a)zAjy fxxlz X cosy3x dx

= Z ( ¥Y3X2 Siny3Xz + COS ¥3X; — ¥3X1 Siny3xy — COSY3X1) .
.(3.89)
fxxlz piix, dx = ux, fxxlz il dx

=Y —wi A ux; fxxlz cosysx dx

=)= m (siny3x; — siny3xq) (3.90)

By substituting equations (3.89) and (3.90) into equation (3.87) we obtain

F, = . )Z ( Y3Xy Siny3xy + Y3x1 Sinyx; — cosy3X, + COSY3X1)
— X1

(3.91)
fxxlz pit dx = Y52, —wf A fxxlz cosy;x dx

2

=Xz

(sm Y3X; — sinysx;) (3.92)

By substituting equation (3.92) and (3.91) into equation (3.88) we obtain the value of

the second end force F»

2 . . . .
F — oo ‘Uj Ajll [y3Lsm y3x2—y3Lsm Y3X1 _ —Y3X2 SIn }/1X1+}/3X1 Sin y3x1—CosS y3x2+cos y3x1]
2 j=1 ng L X2—Xq

(3.93)
In other to express the fixed end forces F; and F; in terms of EA rather than w; we

substitute equations (3.33 — 3.36) into equations (3.92) and (3.93) to obtain

EA . . _ . . . .
F = mzf:l A;[—jm&; sin jméy + jméy sinjmé; — cos jmé, + cos jméy] (3.94)
FZ =

EA
L

;ozl Aj []ﬂ Siﬂjﬂfz —jﬂ Sil’ljﬂ,'fl _ —jm &y sin jm &1 +jm &4 sin jm §1—cos jm &y +cos jng’l]
$2—¢1
(3.95)
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Equations (3.94) and (3.95) are the equations of the fixed end forces on an arbitrary
segment of a free-free bar under free vibration. In order to evaluate these equations,
there is need to derive an expression for A.

Recall that the constant A; depends on the initial conditions of the vibrating bar.

By treating the bar as a free bar under of the influence of gravitational force propped

at the centre of gravity.

— ] =+
X
Z Ly
Joot b
Ly
< - =

Figure 3.11: A vertical uniform bar under its self

weight propped at the centre

From the equation for deflection of a uniform fixed-free bar under its self weight

ZZ
u(z,0) =L (L2 -%) (3.96)
where f =42 (3.963)

From Figure (3.5) we can infer that

z=1; —x (3.97)
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In order to express the displacement of the bar in terms of x rather than z we

substitute equation (3.97) into (3.96) to obtain
u(x,0) = L (12 - x?) (3.98)
2Ly

By substituting equation (3.86a) and (3.98) into the equation for A; given as equation

(2.61a)

_ K Lfog2 2
Aj—Mj OLl(Ll X“) cosysx dx (3.99)

i [OX] .
Where y; = ’T" = 7’ as stated earlier

The integral has been multiplied by two to take care of the other half length L1. This
will be correct for all symmetrical modes of vibration and is safe as we will later find

out from that of fixed-fixed bar that A; for all asymmetric modes of vibration is zero.

By evaluating the integral of equation (3.99) and simplifying

_ nyL% —cos y1L1 sin y1L1
4 =45 ( A ) (3.100)
But L, =L/, (3.101)
Therefore

_ 2uf L2 —cos% ZSin%
4 = M ( V212 + 313 (3.102)

The generalized mass can be expressed as (from equation 2.60b)

By substituting equation (3.86a) into equation (3.44)
M =p fOL cos? yyx dx
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=4 (3.103)
(since y1L=jm)

By substituting equation (3.33) and (3.103) into (3.102) and simplifying

—cos% Zsin%
4 = 4fL(—F+ - (3.104)
j=0123,..,00

Equation (3.104) above is an expression for the constant A; for a free-free bar under
an initial displacement caused by its self weight. Equation (3.104) is substituted into

the equation (3.94) and (3.95) to obtain the values of the fixed end forces F; and F».
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Table 3.1: Summary of Fixed-end forces on a Segment of a Bar under Free

Longitudinal vibration

SIN | Description Remarks

1 Fixed-Fixed, Fixed-Pinned and Pinned-Pinned Bar

uiidx

11 |

—

R1 X2 - X £l R,

wiidx

1

H— F
X, ' 1 ° X 2

*

For0<é <lor0<x; <L

0<&H<1lor0<x, <L

$ > 8
See  Equation
F1 = m j=1 A] []Tl.'fz COS]T[El —]T[El COS]7T€1 - (3.30)

sin jmé, + sin jméy |

F2 =
See Equation

EA <o . , , ,

— 2j=1 A [—]n cos jré, + jmcos jméy — (3.32)

jm &y cos jmé1—jméq cos jm€q—sin jm &y +sin jn'{l]

$2—61
2-2(-1) ,

4; = 2eL( j3(ﬂ3)) j=1,2345,..,0 See  Equation

(3.46)
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Fixed-Free and Pinned-Free Bar

uidx

—

11 |

R: X2 C X
£ ’
A
/uiél/dx\
X1 A A
For Case |
0<&<lor0<x <L
0<é&<lor0<x, <L
&> &

__EA v [mE oomt mE oind
Fi = 16D jzlA][ S Cos— -~ cos sin
. infl
sin— ]

F2 =
EFA oo i inéy i iré&q

jzlAj[ S Cos—=+—cos—
in§p in§1 iméyq iméy . imép . iméy
TCOS 2 2 COoS 2 Sin 2 TS1n 2

&2—¢1
For Case 11

OS€1<10|’OSX1<L
fz=10rx2=L

EA

F, ==
17

0 . i
=1 A]- i (— cos — + cos

=)

iTl'vfz
2

+

See

(3.68)

See

(3.69)

See

Equation

Equation

Equation
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_16fL
J T B3
See Equation

j=1234)5,..,0 (3.79)
i=13579,..,0
Free-Free Bar

T u uiidx

— ~

X1 .
> X
X2
* L
2
uiidx
X1 A A
X2 FJ_ > X . F2

0<&<lor0<x <L
0<&H<1or0<x, <L
&> See Equation

EA o . L . L (3.94)
Fy = mzj;l 4 [—jmé, sin jméy + jméy sinjné; —
cos jré, + cos jméy ]
F See  Equation

2 =
(3.95)
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3.2

EA oo o .
— Lj=1 4 []T[ sinjné, — jmsinjné; —

—jm &y sin jm &1 +jm 1 sin jm &1 —cos jm y+cos jnfl]
§2—¢1

. . See  Equation
—cosjzl ZSinjzl
A = AfL [ +—== (3.104)

j n

j = 0)1;2;3,4,5, vee, OO

Note: F; and F, are axial forces in the bar, they were treated as support reactions to ease their

calculation.

e and f are dimensionless constants and can be taken as equal to unity

Formulation of the equations for fixed end forces for segments of a beam under

free lateral vibration

The partial differential equation governing the free lateral vibration of a beam is given

by
Elu'V + uii =0 (3.105)

By taking a trial solution of

u(x,t) = @(x)(A cos wt + B sin wt) (3.1064)
ul” (x,t) = 8" (x)(A cos wt + B sin wt) (3.106b)
ii(x,t) = —w?®(x) (A cos wt + B sin wt) (3.106¢)
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3.2.1

Substitute equation (3.106b) and (3.106c) into equation (3.105)

1) % =0 or

" —ptp =0 (3.107)
where g* = £ (3.108)
The solution of equation (3.107) is given as

@(x) = C; cosh Bx + C, sinh Bx + C5 cos Bx + C, sin Bx (3.109)

For a beam clamped at both ends (Fixed-fixed beam)

An illustration of this beam is shown in Figure 3.2. Since the displacement and

rotation are zero at both ends

?(0)=0

9'(0)=0

@(L) =0 (3.110)
9(L)=0

By substituting equations (3.110) into (3.109) we obtain

CGB+CB=0 (3.110b)
Ci coshfL + Cy sinh L + C3cos BL + C4sin L =0 (3.110c)
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C1B sinh fL + C, cosh BL — C3B sin fL + C4f cos BL = 0 (3.110d)

Putting equations (3.110a) to (3.110b) in matrix form

1 0 )
0 8 ol
coshfSL  sinhfSL cos BL sin ﬁL ‘ I =0 (3.111)

BsinhfL pLcoshfL —psinfL fcosfL

For a non-trivial solution the determinant of the coefficients of the constants C4, Co,

Csz and C4 must be zero .

~ B(B cos? BL + B sin? L) + B(—p sinh BL - sin SL — B cosh SL - cos L) —

B (B cosh BL - cos BL — B sinh BL - cos BL) + (B cosh? BL — B sinh? BL) = 0
1—cosPBLcoshfL =0 (3.112)

The first seven roots of equation (3.90) were obtained numerically using the bisection

method (Chapra and Canale, 2007) as
B,L = 4.7300408, B,L = 7.8532047, B3L = 10.99560784, B,L = 14.1371655,
BsL = 17.278759658, L = 20.42035224563,
B,L = 23.561944902041 (3.113)

From equation (3.108)

w = B2L2 /;% (3.114)

By substituting equation (3.113) into (3.114) we obtain the first natural frequencies of

a fixed-fixed beam as

wq = 22.37328597 / G W2 = 61.67282406 / T W03 = 120.9033918 /E—14
uL
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EI EI EI
w, = 199.8594484 /m ws = 298.555535 /M’ wg = 416.9907856 /E ,

w; = 555.1652475 /% (3.115)

By taking C; to be equal to one, the other constants C,, C3 and C4 can be obtained

from equation (3.111) as follows

C; =—1 (3.116a)

__ cos BL—cosh BL
2™ “Sinh BL—sin fL (3.116b)

__ cosh BL—cos SL
3 ™ Sinh BL—sin fL (3116C)

By substituting equation (3.116a) — (3.116c¢) into equation (3.109) we obtain the

equation of the jth mode shape of vibration

cos B;L—cosh ;L cosh B;L—cos f;L

@j (x) = cosh ﬁjx + (m) smhﬁjx — COS ﬁjx + (W) Sll’l,BjX

@;(x) = cosh f;x + ay; sinh f;x — cos fjx + ay; sin f;x (3.117)
Where
__cos B;L—cosh B;L
2j = Sion BjL—sin B;L (3.118a)
__cosh BjL—cos B;L
A4) = ik ,L—sin ;1 (3.118b)

Equation (3.113) is the equation of the mode of vibration of a fixed-fixed beam. The
first mode of vibration (j = 1) can be obtained by substituting ;L = p;L =
4.7300408 into equation (3.113). The second mode of vibration (j = 2) can be

obtained by substituting g;L = p,L = 7.8532047 into the equation. Likewise the
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mode shape for the j" mode can be obtained by substituting the value of B; L into the

equation.
I u uiidz
R 2 \Ra
y X4 L 4
R: X, "z , Ra
L A
(a) !
uiid
Fzg I/l > F4
Xl AF A
X2 v
(b)
Figure 3.12

(a) A fixed-fixed beam under lateral vibration due to the inertial forces uii

(b) A segment of the beam under longitudinal vibration due to inertial forces uii

Figure 3.12 shows a fixed-fixed beam under inertia forces. A segment of the beam
showed is being restrained by the fixed end forces F; — F4. The reduced structure or

basic system of the segment is shown in Figure 3.13.

F2
F'y Z
X1 Figure 3.13: The reduced/basic
F1 » 7 structure of an arbitrary
X
2 #  element of the vibrating beam
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From equation (3.106¢) and (3.117) the acceleration at any point in the vibrating

beam is given by mode superposition as
=37 —wjz(bj (x)(A]- cosw;t + B; sin w; t) (3.119)
The moment of an elementary force uitdz , at a distance z from the origin about an
arbitrary point a distance x from the origin is given as
dM, = udziu(x — z) (3.120)
M, = fxxl pii(x — z)dz
= ux fxxl iidz —pu fxxl iiz dz (3.121)
By integrating the component parts of equation (3.121) separately
m fxxl iizdz =Y, —wlAju fxxl @;zdz
=¥, —a)jzAju fxxl 0z dz

Y —wi A fxxl (zcosh Bz + ayjzsinh Bz — zcos Bz + aq;zsin f;z) dz

(3.122)

fxxl zcosh Bz dz = [% (B;x sinh B;x — cosh Bjx — B;x; sinh f;x; + cosh B;x;)
(3.123)

fxxl zsinh Bz dz = [% (B;x cosh B;x — sinh Bjx — B;x; cosh B;x; + sinh B x; )
(3.124)

fxxl zcos Pz dz = ﬁiz (,Bjx sin ;x + cos fB;x — B x1 sin §;x; — cos ,Bjxl) (3.125)

fxxl zsinf;z dz = ﬁiz (—,B]-x cos fjx + sin B;x + f;xq cos fx; — sin,Bjxl) (3.126)

By substituting equations (3.123) — (3.126) into equation (3.122) we obtain
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11“

f iizdz =¥, |B;x(sinh B;x + ay; cosh B;x — sin B;x — ay; cos fx) —

]
B;x1(sinh B;x; + ay; cosh Bx; — sin B;xy — ay; cos Bx;) — (cosh fx +
ay; sinh B x + cos B x — ay; sin B x) + (coshﬁ’jxl + ay; sinh B;x; + cos Bjx; —
a4 sin f; xl)] (3.127)

uxf idz = Y7, —w, Auxf;f(b,-dz

= Y5, —wi A ux fxxl(cosh Bjz + ay; sinh Bz — cos Bz + ay; sinB;z)dz dz

(3.128)
We integrate the components of equation (3.128) separately
fxxl coshBjzdz = % (sinh B;x — sinh B;x;) (3.129a)
fxx1 sinh Bz dz = % (cosh B;x — cosh B x;) (3.129h)
fxxl cos Bizdz = % (sin B;x — sin B x;) (3.129¢)
fxxl sinB;zdz = % (= cos B;x + cos B; x1) (3.129d)

By substituting equations (3.129a) — (3.129d) into equation (3.128) we obtain

J/“

] 1 (smh ﬁ]x — sinh ﬁ] X1 + ay; cosh ﬁ] ay; cosh,B]-xl —

uxf iidz =
sin ; x + sin B x; — a4 cos f;x + ay; cos f;x;) (3.130)

By substituting equations (3.128) and (3.130) into equations (3.121) we obtain

M, = Z}so 1 Ajm [ﬁ;x( slnhﬁ]xjL azj cosh[?jxjL + sinﬁjxl + ay; cos,Bjxl) +

B x1 (sinh Bjx1 + ay; cosh B x; — sin B x; — ay; cos f; xl) + (cosh Bjx +
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ay; sinh B;x + cos B x — ay; sin B x) — (coshﬁjxl + ay; sinh B;x; + cos Bjx; —

ay; sin Bxy)] (3.131)

Equation (3.131) is the expression of the bending moment at a point x from the origin
of a reduced segment of a fixed-fixed beam under free lateral vibration caused by

inertia forces.

Using the principle of virtual work, there is need to obtain the equation of bending

moments produced by unit values of the removed redundant forces.
For F; =1 and F, = 0 (see Figure 3.13)
My = F(x — x1)
=x—x (3.132)
where x; < x < x,

Deformation at coordinate 1 (direction of force F;) from the inertia forces is

X2 M{M, X2 Myx—M,
810 = [} rdx = fxf%dx (3.133)
fxxf M, xdx =
ijl 57 [(— sinh f;x; — ay; cosh f;x; + sin B x; + ay; cos ,Bjxl) fxl Bjx-dx +
J

B x1 (sinh Bjx1 + ay; cosh B x; — sin B x; — ay; cos f; xl) fxxlz xdx +
X . .
fxlz(x cosh fB;x + ayjx sinh B x + x cos Bjx — ay;x smﬁjx)dx — (cosh,Bjxl +

a; sinh f;xq + cos B;x; — ayj sin Bx;) fxxlz xdx] (3.134)

By integrating the terms of equations of (3.134) separately
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fxxlz x cosh Bix dx = ﬁiz (,8]- X, sinh f; x, — cosh B; x, — B x1 sinh f;x; + cosh g xl)
(3.135a)
fxxlz xsinh B;x dx = ﬁiz (,8]- X, cosh B x; — sinh B x, — B;x1 cosh B;x; + sinh §; xl)
(3.135h)
X2 1 . .
fxl xcosBix dx = ﬁ(ﬁsz sin B x, + cos f;x; — Bjxq sin B x; — cosﬁjxl)
(3.135¢)
X2 . 1 . -
fxl xsinf;x dx = 5 (—Bsz cos B x; + sin f;x, + B;xq cos fx; — sm,Bjxl)

(3.135d)

By substituting equations (3.135a) — (3.135d) into equation (3.134) simplifying

—w?2A4; ?(x3—x3
wjAjK [ﬂ’ (2 i) (—sinh B;x; — ay; cosh fx; + sin fx; +

X2 oo
fx1 My xdx = %77, 5 ;

B (x3x?) , . .
— (smhﬁ’jx]L + ay; cosh fx; — sin fx; — au; cosﬁjxl) +

a4j COS B x1) +
Bx; sinh B x; — cosh B x; — Bjxq sinh B;x1 + cosh B;x1 + B;x; sin B x; +

oS fjx; — Bxy sin Bjx; — cos fixg + ay; (ﬁxz cosh f;x, — sinh B;x, —

Bjx1 cosh B;x1 + sinh f;x1) — ay; (—ﬁxz cos B x; + sin B x, + B;xq cos fxy —

2(,2_,2
sin B x;) — w(cosh Bix1 + ay; sinh Bx; + cos Bix; — ay; sin,b’jxl)]
(3.136)
2
x2 e —0XAuxg . .
fxl M, x;dx = f=1]ﬁT [(— sinh B x; — ay; cosh B x; + sin f;x; +

a4 COS B x1) fxxlz Bjxdx + Bjxq (sinh Bjx1 + ay; cosh B;x; — sin fx; —
a4 cos B x1) fxxlz dx + fxxlz (cosh B;x + a,j sinh fx + cos B;x — ay; sin B;x)dx —

(cosh Bx; + ay; sinh B;xy + cos fjx; — ag; sin B x;) fxxlz dx]
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—w2A;ppxy [BE(x5—x})
B} 2

=X, (—sinh Bjx; — a,; cosh Bx; + sin B;x; +
a4j cos B x1) + Bfx1 (x, — x1)(sinh B x; + ay; cosh Bx; — sin Bx; —
a4j €Os B;x1) + sinh B x, — sinh B;x; + sin B;x; — sin B;x1 + ay; (cosh Bjx, —

cosh B;x1) — aq; (— cos Bx, + cos Bjx;) — B(xz — x1)(cosh Bx; + ay; sinh Bx; +

oS B x1 — Qy4; Sin f; xl)] (3.137)

By substituting equations (3.136) and (3.137) into equation (3.133)

—w2A. 3_.3 2.2
El§y = X4 w[;f}’“ [ﬁ}:” ((x23x1) - X1(X22 xl)) (—sinh Bjx; — ay; cosh Bx; +
]

pix(d—<h)

sin B x1 + a4 cos B;x;) + <f 'Bj3x12(x2 — x1)> (sinhﬁjxl +

ayj cosh fB;xy — sin B xq — ayj cos fix;) —

2

Bi(x5-x%) i
AT VA ﬁj x1(xy — x1) (COShﬂle + ay; sinh ﬁjxl + cos ﬁjxl -

a4 sin B x1) + Bx; sinh B x; — cosh B x; + cosh fx1 + B x, sin B x, + cos B x; —
cos fjx; — Pjxg sinh B;xq — Bxq sin B x; + ay; (ﬁxz cosh f;x, — sinh ;x, —

B;x1 cosh B;x; + sinh f;x1) — ay; (—ﬁxz cos B x, + sin B x, + B xq1 cos fx; —

sin f3;x;) (3.138)
Equation (3.138) above is the equation of deformation in coordinate 1 (direction of
F,) of a reduced segment of the vibrating fixed-fixed beam due to its inertia forces.

For F, =1 and F; = 0 (see Figure 3.13)

=-1 (3.139)
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where x; < x < x,

From the principle of virtual work deformation at coordinate 2 (direction of force Fy)

from the inertia forces is

520 = [ ’V’z’;’x dx = fxxlz_E—N]["dx (3.140)

El6,) = — f;‘f M, dx

w —0iAju ) . *2
Zj=1é—j2] [(— sinh B x; — ay; cosh Bx; + sin B;x; + ay; cos fix;) fxl Bjx dx +
B;x1(sinh B;x; + ay; cosh B;xy — sin Bx; — ayj cos Bix;) fxxlz dx + fxxlz(cosh Bix +
a; sinh f;x + cos f;x — ay; sin B x) dx — (cosh Bjx1 + ay; sinh B;x1 + cos Bx; —

ay; sin B;x;) fxxlz dx]

—w-zA-/A [5’.2 x%—x? . i
_ v 4 [1(2 1)(—slnhﬁjx1—a2j cosh fx; +sinf;x; +

T 4j=1 ;;].3 2
asj cos Bixq) + ,B’jle (x, — xl)(sinh Bjx1 + ay; cosh Bjxq — sin fjx; —
a4 oS B x1) + sinh B;x, — sinh f;x; + sin B;x, — sin B x; + ay; (cosh Bjx, —
cosh B x1) — aq; (—cos B;x, + cos B;x1) — B; (xz — x1)(cosh B x + ay; sinh Bjx +
COS fjx — ay; sin f3; x)] (3.141)

Equation (3.141) is the equation of deformation in coordinate 2 (direction of F,) of a

reduced segment of the vibrating fixed-fixed beam due to its inertia forces.

The compatibility equations of the segment (Figure 3.13) with respect to the

coordinates 1 and 2 can be written as
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611F1 + 512F2 + 610 =0
621F1 + 622F2 + 620 = 0 (3142)

Or put in matrix form as

611 512] ] [510]
3.142a
o 520 (3.1422)

Where the influence coefficient d;; is the deformation in coordinate i due to a unit load

in coordinate j while djp is the deformation in coordinate i due to inertia forces.

Using the principle of virtual work, these influence coefficients can be obtained as

3 12

l
, 622 251512 =6y =—

01 =
1 2EI

— (3.143)

By substituting equation (3.143) into (3.142a) and making F; and F, the subject of the

formula
13 2171
[Fl] _ | 3e " 2E —510]
F _r L =620
2EI El
12EI  6EI 5
13 12 10
= o1 g‘ [ 520 (3.144)
12 !
But from Figure 3.13
l = xZ — X1 (3145)

By multiplying out the first row of equation (3.144) and substituting equation (3.145),

the equation for F; is obtained as

Flz—

12E1819  6EISg0 (2E1610 51520)
3 2z (r2—x1)3  (x2—x1)?

(3.146)
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By substituting equation (3.138) and (3.141) into equation (3.146) and simplifying

F1=

WA (ea+x)(x5-x3)  2(x3-x})
AN j 4 3 (Gztx)(xg—x1) _ 2(x;—x3
62] =1 ,3]4(362—361)3 [ﬁj ( 2 3

) (—sinh Bjx; — a,; cosh B x; +
sin B x; + agj cos Bix1) + az; (B(x; — x;) cosh B;x, + 2 sinh x; — B (x, —
x1) cosh B x; — 2sinh Bjxl) — Ay (—,B(xl — X3) €OS fx; — 2sinf;x; +

B; (x — x1) cos B;xy + 2sin fx1) + f(x; — x3) sinh f;x, —

B(x; — x1) sinh f;x1 + B (x; — x3) sin f;x; — B(x, — x1) sin B x; + 2 cosh f;x, —

2 cosh Bjx; — 2 cos Bjx, + 2 cos f5; xl] (3.147)
2
. _ Y\ wjAju
F = 62]':1 [)’—;—}(xz—x1)3 1 (3.147&)
Where
2_.2 3_.3
Wy =B} ((x2+x1)2(x2 <) _ 2(x23 xl)) (—sinh B;x; — ay; cosh Bx; + sin B;x; +

a4 COS B x1) + ay; (ﬁ(xl — x3) cosh B;x; + 2 sinh B;x; — B (x, — x1) cosh B x; —
2sinh Bx1) — ag; (—B(x1 — x) cos Bjx; — 2sin Bx, + B (x; — x1) cos Bxy +
2sin fjx;1) + B (x; — x2) sinh f;x; — B(x; — x1) sinh B;x; + B(x; — x3) sin B x; —
B(x; — xq) sin B;x; + 2 cosh B x, — 2 cosh fx; — 2 cos B x, + 2 cos B x;

(3.147b)

By multiplying out the second row of equation (3.144) and substituting equation

(3.145), the equation for F, is obtained as

_ _6EISyy  4EISy _ . ( 3ElSi 2E1840
Ry =50 o g ( Sy <x2—x1)) (3.148)

By substituting equation (3.138) and (3.141) into equation (3.148) and simplifying
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F2=

w?A;u @xa+x)(x5—x3)  xq(xz—x1)?
o) ) 3 2TX1)\X27X7 1\X2—X1 3 3 :
—2 z:1'=1 B} (x2—x1)? lﬁl ( 2 o 2 - (2 — 1) (_ Slnh'gjxl B

ayj cosh B xq1 + sin B x; + a4 cos Bjx1) —

200 N2
(M) (cosh Bjxy + ay; sinh Bjx; + cos Bjxy — ay; sin Bx;) + B (xy —

x) sinh B x; — 2 (x, — x3) sinh B;x1 + B (x1 — x;) sin B x; — 28 (x, —
x1) sin B;x; — 3 cos B;x, + 3 cos B x; + 3 cosh B x, — 3 cosh B x; + ay; (ﬁj (xq —

x7) cosh B x; — 2 (x; — x1) cosh B x1 + 3 sinh fx, — 3sinh f;x;) —

Ay (—,8] (%1 — x2) cos B x; + 2 (x; — x1) cos B;x; — 3sin B x; + 3 sin,Bjxl)

(3.149)

24.
F2 :_2200 OJ} ]“

Where

2_.2 _ 2
w, = '[3].3 <(2x2+x1;(x2 <) _ xl(xzz ) _ (x5 — xf)) (—sinh B;x; — ay; cosh B x; +

BF (x3—x1)?

> > (cosh Bjx1 + ay; sinh B;xy + cos Bjx; —

sin B x1 + a4 cos B x;) — (
a4j sin ﬁjxl) + ,B] (Xl - XZ) sinhﬁsz - Zﬁ] (Xz - Xz) Sinh[fjxl + ‘B] (Xl -

X7) sin B;x; — 2 (x2 — x1) sin Bjx1 — 3 cos P x, + 3 cos B;x; + 3 cosh B x; —

3 cosh Bix; + ay; (ﬁj (x1 — x3) cosh B;x; — 2p; (x; — x1) cosh fx; + 3 sinh B;x, —

3sinh B x;) — ay; (—ﬁj (x1 — x2) cos Bjx; + 2 (x, — x1) cos B;x; — 3sinfx; +

3 sin B x1) (3.149Db)
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Equation (3.147a) and (3.149a) are the equations of the fixed end forces F; and F, on
a segment of a fixed-fixed beam under vibration. There is need to determine the other

end forces F3 and F4 needed to keep this segment in equilibrium (see Figure 3.12b).

For vertical equilibrium
F,+F + f;‘f piidx = 0 (3.150)
“Fy=—F — fx"f piidx (3.151)

From equation (3.130)

w-zA-,u
fxxlz pitdx = Y77, ;f,-] (sinh B;x, — sinh B;x; + ay; cosh Bjx; — a,; cosh Bjx; —

sin B x; + sin Bjx1 — ay; cos Bx; + ay; cos fxq) (3.152)
By substituting equations (3.152) and (3.147) into equation (3.151)

2
wiAju
F3 0o J ]

I Ay FICTEVE

[6W1 + B (x — x1)? (sinh B; x, — sinh B x; — sin B x; +
sin B;x; + ay; (cosh Bx; — cosh B;x;) — aq;(cos B;x, — cos B xl))] (3.153)

When a system is in equilibrium, every part of it is in the same state, hence for the

beam segment (see Figure 3.13b)

XMz, =0; Filx;—x)—-F+ fxxlz plidx (x; —x) —F, =0
F,=F(x,—x))—F, + fxxlz piidx (x; — x) (3.154)
fxxlz piidx (x; — x) = px, fxxlz iidx — fxxlz iix dx (3.155)
From equation (3.128)
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1 Ajuxa

uxzf iidx = Y72, (sinh B;x; — sinh B;x; + ay; cosh Bx; —

a; cosh Bxq — sin B x; + sin B x1 — au; cos B x; + ayj cos fxq) (3.156)
From equation (3.127)

2
—a)jAju

Xy .. o
ufxlz iix dx = ¥i7, 57

[,8]- X3 (sinh Bjx, + ay; cosh B;x; — sin B x; —

a4j €OS Bixz) — Bixq (sinh Bjx1 + azj cosh Bjx; — sin B x; — ay; cos ﬁjxl) —
(cosh B;x, + ay; sinh B;x; + cos B x, — ayj sin fx;) +

(coshﬁ]-xl + ayj sinh B x1 + cos B x; — ay; sin f; xl)] (3.157)
By substituting equations (3.156) and (3.157) into equation (3.155) and simplifying

2
a)]-Aj,u

7 [B;x2(— sinh B;x; — a,; cosh Bx; + sin B x; +

f piidx (x; — x) = ] =1
a4 COS Pix1) + B x1 (sinh Bjx1 + ayj cosh Bx; — sin fx; — ay; cos ﬁjxl) +
(coshﬁsz + ay; sinh B;x, + cos B x; — ay; sin ﬁsz) -

(cosh B x; + ay; sinh B;x; + cos fx; — aq; sinfx;)] (3.158)

By substituting equations (3.147), (3.149) and (3.158) into equation (3.154)

u
F4_ o] J )

j= 13(362——36)2[ 6W1 + 2W2 ﬁjg(xz - xl)g(— Sinhﬁjxl - azj COSthxl +

sin B x1 + a4 cos Bjx;) + (coshﬁsz + ay; sinh f;x; + cos B x; — ay; sin,Bsz) —

(cosh B;x; + ay; sinh B x1 + cos fjx; — aq; sinBx;)] (3.159)

For us to be able to evaluate the equations for the fixed end forces F; F, F3 and F4,

there is need to derive an expression for A; for a fixed-fixed beam.
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Derivation of the expression for A; for a fixed-fixed beam

Consider a uniform fixed-fixed beam under the action of its self weight.

,ugLZ \ ug .ung
12 ) Wz 12
% N <
) — ol
2 2

Figure 3.14: A Uniform fixed-fixed beam
under the action of its self weight

The equation of the bending moment at any distance x from the left support is

(3.160)

Where p is the mass per unit length of the beam and g is the acceleration due to

gravity.
From the equation of elastic curve (beam flexure equation)

My, dzy
El ~ dx?

(3.161)
By substituting equation (3.160) into (3.161) and solving for the deflection y

Ely' = [ M, dx

L 2 3 LZ
“uo(E-2-5) g @162

L 3 4 L2 2
Ely = ug (f—z—%— ZZ )+clx+cz (3.163)

Consider the boundary conditions
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Atx =0, y=0 ~¢c;=0

Atx=0, yY=0 ¢ =0

Hence the equation for the static deformation or deflection of the uniform beam under

its self weight is

L 3 4 L2 2
Ely = pg (-5 - =) (3.164)

2x3 x* x?
=al (3 -5-%) (3.185)
3
Where a is dimensionless constant equal to a = —’;‘Z;

From equation (2.61a)
L
4 = Mijfo u(x,0)@; dx

u 2x3 x*

=L ftar 2 (cosh inh
_M—jfoa (L_3_L_4_L_2)(COS B;x + ay; sinh B;x — cos Bjx +

a4 sin B x) dx

__aul

L (2x3 2x3 . 2x3 2x3 .
=M, fo (—coshﬁjx + 3 g sinh ;x — L—3(:os,8jx + 3 sin B x —

L3

X4 X4 . X4 X4 . Xz

L—4cosh,[3]-x — 7 @y sinh f;x + L—4cosﬁ]~x — T34 sin fjx — L—zcoshﬁjx —

xz . Xz Xz .

7 @y sinh 8 x + 7 Cos Bjx — 77 Qaj smﬁjx) (3.166)

By integrating each term separately
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fOL X3 cosh ﬁjx dx = (sinh BL  3cosh BL + 6sinh BL 6(cosh ﬁL—l)) 14 (31673.)

L
Jo x* cosh Bx dx = (

L 4 .
Jo x*sinh B;x dx = (

BiL BiL2 BiL® piLt

L 3 . __ [ cosh BL _ 3sinh L 6 cosh L . 6sinh fL\ ;4

J, x° sinh Bjx dx = ( 5L R TE 5 )L (3.167h)
L 3 _ (sinBL | 3cos BL  6sin fL 6(cos BL—-1)\ ;4

Jy %% cos Bxdx = ( Lt e E 5 )L (3.167c)
L 3 . __ [—cos BL 3sin SL 6 cos SL __ 6sin BLY\ ;4

Jy ¥%sinpixdx = ( 51t 5717 + R i )L (3.167d)

sinh SL 4 cosh BL 12 sinh BL 24 cosh BL 24 sinh SL LS
B;L B71? B}L3 Lt B7LS

(3.167¢)

cosh L 4sinh L 12 cosh BL 24 sinh BL = 24(cosh ﬁL—l)) L5

BiL B?12 g3 phLt B3L

(3.167f)
J x* cos fx dx = (Si;jfL + 4;?21? - 12;};2? _z ;1224“ + 242;‘;? ) 15 (3.1670)
[t sin e = (<2 S0 e oy Bienp )

(3.159)
Jy ¢ cosh fyx dx = (L - ES AL 4 B (3.167h)
fOL x2 sinh Bixdx = (COZ};LBL - 25;?22& + Z(Cosﬁk}f:_l)) L3 (3.167i)
fOL x%cos Bixdx = (Si;j/zL + ZZ;SLfL — ZZi;Lle) L3 (3.167))
Jy x% sin B x dx = (‘ﬁ]"L L lei;LfL + 2“";}5@‘“) I3 (3.167K)
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b)

By substituting equations (3.167a — 3.167K) into equation (3.166) and simplifying

A = ap L2 [—Z(Sinh BjL—sin ﬁL) 12(c05h BjL—cos ﬁjL) _ 24(sinh BjL—sin BjL)

J M; ﬁ]? L3 ,Bf 14 [;}5 L5

) (—2(cosh ﬁjL—cos ﬁjL) n 12(sinh ﬁjL—sin ﬁjL) . 24(c05h ,BjL+cos ﬂjL—2)>] (3168)

3 4 5
B;L3 BiLt B;LS
Please note that a,; = —ay;

Equation (3.168) is the equation for the arbitrary constant A; for a fixed-fixed beam.

In order to evaluate equation (3.168) there is need to derive an expression for the

generalized mass Mj.
Derivation of the expression for the generalized mass M;j for a fixed-fixed beam

From equation (2.69b) the equation for the generalized mass is given as

M = pf) 0 dx (3.169)
By substituting the general modal equation (3.117) into equation (3.169)

M, = p fOL(coshﬁjx + ay; sinh B;x — cos B x + ay; sin,B]-x)2 dx

L .

=puf, (cosh? B;x + 2ay; sinh B;x cosh Bx — 2 cosh B;x cos B x +
2ay; sin f;x cosh B x + agj sinh? Bjx — 2a,; sinh ;x cos B x +
2a,; a4 sin B;x sinh B x + cos? B;x — 2ay; cos B x sin B;x + aj; sin® fx)dx

(3.170)

In order to evaluate the integrals of the product of trigonometric and hyperbolic

functions it is necessary to refer to the relationship between the two functions

coshif = cos 6 (3.171a)
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sinh i@ = isin @ (3.171b)

sini@ = isinh 6 (3.171c)

cos if = cosh 6 (3.171d)
(Stroud and Booth, 2007)

These together with trigonometric identities were used in evaluating the next set of

integrals.

fOL cosh B;x cos fB;x dx = % (cosh B; L sin B;L + sinh ;L cos ;L) (3.172a)
fOL cosh f;x sin B;x dx = % (1 — cos f; L cosh B; L + sin f; L sinh f; L) (3.172b)
fOL sinh B x sin B;x dx = % (cosh B; L sin ;L — sinh B; L cos ;L) (3.172¢)

fOL sinh 8 x cos Bjx dx = % (sinh B;LsinB;L + cosh ;L cos ;L — 1) (3.172d)

By substituting equations (3.172a — 3.172d) into equation (3.170) and evaluating the

simple integrals we obtain

1\4].=

pL sinh BL+sin SL 2 (sinh BL ) 2 __sin LY
2 [2 + 2L +ay ( 2L 1)+ ay (1 2L )

cosh SL sin BL+sinh SL cos SL 1—cos BL cosh BL+sin BL sinh BL—sinZ BL
2 ( BL ) +2ay ( BL ) N

sinh BL sin BL+cosh BL cos BL—sinh 2 BL—1 cosh BL sin fL—sinh BL cos BL
2 ( oL )+ 2@, ( L )

(3.173)

Equation (3.173) is the equation of the generalized mass of a fixed-fixed beam for the

i mode of vibration.
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Having derived the equations of the fixed-end forces for a segment of a fixed-fixed
beam under free vibration, a summary of the equations are presented in Table 3.2
below. In the Table the distances x; and x, were normalized using equations (3.35)
and (3.36) and square of the j" natural frequency w,-z was eliminated from the

equations by substituting equation (2.66a) which can be rewritten as

[~

EI
p (3.174)

HE
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Table 3.2: Summary of Fixed-end forces on a Segment of a Fixed-fixed Beam under

Free Lateral vibration

S/N | Description Remarks

1 Fixed-Fixed Beam

uiidx

R, TU W ') Rs

% X3

For0<¢& <lor0<x; <L

0<é&<1lor0<x, <L

$2>¢61
X
$1 = 1/L
&2 /L See Equation
621 1WW (3.147)
Where

Wy = gL ((fz+el)2(f%—f%) _ 2(5233—613)) (—sinh g L&, —

az; cosh B;LE; + sin ;L& + ay; cos fiLE;) + ay; (BL(E; —
&) cosh L&, + 2sinh L&, — B;L(&, — &) cosh ;L& —
2sinh ;L&) — asj (=B L(§1 — &) cos B LE;, — 2sin B L&, +

B;L(§2 — &1) cos BjLEy + 2sin B LEy) + B L(§; —
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§2) sinh B; L&, — B;L(&; — &) sinh f; L&y + B L(&; —
§2)sin L&, — B L(E; — &) sinB;LE; + 2 cosh L&, —

2 cosh B L§; — 2 cos B; LS, + 2 cos B L&,

232,

Lz(fz 51)2 W,

where

W2 =

(28, +81)(£5-¢% (£,—81)? .
Bj?)L?;( §2+&1 (52 51)_51 &2 _(523_513)> (_Slnhﬁjl:fl_

2 2

azj cosh ﬁ]Lfl + Sinﬁijl + a4,j COS ﬁ]Lfl) -

BZL%(5,—¢1)? .
(]f) (cosh B;Lé1 + ayj sinh f;LE; + cos B LE; —

aqj sin L&) + BiL(§y — &2) sinh B LS, — 2B L(S; —
§1)sinh B Ly + BiL(§y — &) sin B LE; — 2B L(S, —

&) sin ;L& — 3 cos B L&, + 3 cos B; L& + 3 cosh B LE, —
3cosh ;L&) + ay; (B L(& — &;) cosh B;LE, — 2B;L(&; —
&) cosh ;L& + 3 sinh B; L&, — 3sinh B L&) —

a4; (=B L(&1 — &) cos B; L&, + 2B;L(§, — &) cos B L§; —
3sin B; L&, + 3sin B L&)

Fy =32 1% 6w, + 5713 (&, — )% (sinh ;L& —
sinh B;L§; — sin B; L&, + sin B L&; + ay;(cosh BLE, —
cosh B, L&;) — a4 (cos B; L&, — cos ﬁijl))]

F, =

e [—6w; + 2w, —

J= 1L2(s‘z e )2

See  Equation

(3.149)

See  Equation

(3.153)

See Equation

(3.159)
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B3 (&, — &)3(—sinh B L&, — ayj cosh B; L& + sin B LE; +
ay; cos B L&) + (cosh B;LE; + ay; sinh B; L&, + cos L&, —

ayj sin B LEy) — (cosh BiLé1 + ayj sinh B; L&y + cos B;LE; —

a4_j sin ,8] Lfl)]

A = ap L [—Z(Sinh BjL—sin BL) 12(cosh BjL—cos [)’jL)
T~ M. 33 474 -
M; BjL BjL
24(sinh B;L—sin B;L)

BrLS

. —2(cosh B;L—cos B;L) + 12(sinh B;L—sin ;L) _
2j ,[?13L3 [g]fLL4

24(cosh BjL+cos ,B]-L—Z)
)

I\/Ij _ % [2 4 sinh BL+sin SL + a%j (sinh BL 1) + aﬁj (1 _

2L 2L

sin L _ cosh BL sin SL+sinh BL cos SL
2BL ) 2 ( BL ) +

1—cos BL cosh BL+sin BL sinh BL—sin? BL
2a4]‘ 5L —

sinh BL sin BL+cosh BL cos BL—sinh 2 BL—1
Zazj ( 6L +

cosh SL sin L —sinh BL cos ﬂL)]

Zazj a4,j ( 5L

cos BjL—cosh ;L
a S =E—
2j sinh B;L—sin ;L
cosh f;L—cos ;L
AL, = —mm——
4 sinh B;L—sin ;L

B1L = 4.7300408 B,L = 7.8532047 , B3L = 10.99560784

BsL = 14.1371655, PsL = 17.278759658

See  Equation

(3.168)

See Equation

(3.173)

See  Equation

(3.118a)

See  Equation

(3.118b)

See equation
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PeL = 20.42035224563 ;L = 23.561944902041 etc. (3.113)

Note: a is a dimensionless constant and can be taken as equal to unity

3.2.2 For abeam clamped at one end and pinned at the other (Fixed-pinned beam)

If the beam is fixed at the near end (x = 0) and pinned at the far end (x = L), the

boundary conditions are

@(0)=0

8'(0)=0

@(L) =0 (3.175)
9 (L)=0

By substituting equations (3.175) into (3.109) we obtain

C,+C3=0 (3.175a)
GB+CL=0 (3.175b)
C; cosh BL + C, sinh BL + C3 cos BL + C4 sin BL = 0 (3.175c)
C1% cosh BL + C, % sinh fL — C38?% cos BL — C4f3? sin fL = 0 (3.175d)

Putting equations (3.175a) to (3.175b) in matrix form

107



cosh L sinh L cos L sin ﬁL =0 (3.176)

1 0 1 c,
B?coshBL p?sinhBL —B?cosBL —B?%sinpL

Cy

For a non-trivial solution the determinant of the coefficients of the constants Cq, Co,

Cs and C4 must be zero .

~ B(=B?sin BL - cos BL + B? sin SL - cos BL) + B(—B? sinh BL - cos SL +
B2 sinh BL - cos BL) — f(—B? sin BL - cosh BL — B? sin BL - cosh L) +

L (B? sinh BL - cosh BL — B? sinh L - cosh fL) = 0
sinh SL cos BL — sin BL cosh BL = 0 (3.177)

The first seven roots of equation (3.177) were obtained numerically using the

bisection method as
B,L = 3.92660232, B,L = 7.06858275, B3L = 10.210176123,
B.L = 13.35176878,
BsL = 16.49336143135, fcL = 19.634954084937,
B,L = 22.77654673853 (3.178)

By substituting equations (3.178) into (3.114)

wy = 15.41820578 / . W, = 49.96486209 / - w3 = 1042476964 /%
w, = 178.2697296 /5’4, ws = 272.0309713 / ., we = 3855314217 /E—’4 ,
ulL uL

w; = 518.7710809 /% (3.179)

108



Equation (3.179) is the first seven natural frequencies of a fixed-pinned beam.

By taking C; to be equal to one, the other constants C,, C3 and C,4 can be obtained

from equations (3.175) as follows

(;=-1 (3.180a)

__ cos BL—cosh SL
2™ sinh BL—sin fL (3180b)
__ cosh BL—cos SL (3 180C)

3™ Sinh LL—sin SL

By substituting equation (3.180a — 3.180c¢) into equation (3.86) we obtain the equation

of the j™ mode shape of vibration

cos B;L—cosh ;L
sinh B;L—sin ;L

. cosh ﬁJ-L—cos ﬁ]—L .
sinh f;x — cos B; x —— - |sinp; x
) ﬁ] ﬁ] + (sinh BjL—sin B;L ’8]

@;(x) = cosh f;x + (
@;(x) = cosh fjx + b,; sinh f;x — cos B;x + by; sin f;x (3.181)

Where

__cos B;L—cosh B;L

2] ™ sinh B;L—sin B;L (3.182)
__cosh BjL—cos B;L
4 ™ sinh B;L—sin B;L (3.183)

Equation (3.181) is the equation of the jth mode of vibration of a fixed-pinned beam.
The first mode of vibration (j = 1) can be obtained by substituting §;L = p;L =
3.92660232 into equation (3.181). The second mode of vibration (j = 2) can be
obtained by substituting g;L = p,L = 7.06858275 into the equation. Likewise the

mode shape for the | mode can be obtained by substituting the value of B; L into the
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equation. Notice that ay; and by; have the same equation, the only difference is that

there values of BjL are different. The same applies to as; and ba;.

Iu uiidz
T ! Ry =
7 X y _ZzL
A Xl v
R, X, "z , Rs
L A
(a)
uiidz

F»
X1 1

TV
N
Ny

F1 > Z Fq
X2 v
(b)
F2 ( !2
Xy yy =
A,
X2 v
(c)

Figure 3.15
(a) A fixed-pinned beam under lateral vibration due to the inertial forces uii
(b) A segment of the beam under longitudinal vibration due to inertial forces uii

(c) The reduced/basic structure of an arbitrary element of the vibrating beam

Figure 3.15a shows a fixed-pinned beam under inertia forces. A segment of the beam
showed is being restrained by the fixed end forces F; — F4. The reduced structure of

basic system is shown in Figure 3.15c.
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The acceleration at any point in the vibrating beam as stated earlier (equation 3.119)
IS given by mode superposition as

=37 —wjz(bj (x)(A]- cosw;t + B; sin w; t)

For the segment of a fixed-pinned beam above (see figure 3.15b) there are two

possible cases.
Casel:0<x1 <L; 0<x, <L

For this case the beam segment is largely the same as that of a fixed-fixed beam
except that in the equation for mode shape @, ay; and as; has been replaced by b,; and
bsj and values of BjL defined earlier by equation (3.113) is now defined by equation

(3.178). Compare equation (3.181) with (3.117).

Hence the equations for the fixed end forces (F1 — F4) for a segment of the fixed-fixed
beam can be reproduced for this case of a fixed-pinned beam with ay; and a; replaced

by sz and b4j,
From equation (3.147)

2.
Fl :_6200 w} ]“

j=1 5}4(752——751)3 1 (31843.)

Where

( + ) 2_.2 2 3_.3 . .
Wy =B} ( 27 2(x2 <) _ (ng xl)) (—sinh B;x; — by; cosh B;x; + sin fx; +

by;j cos Bjx1) + by; (,B(x1 — x3) cosh B;x; + 2 sinh B;x; — B (x, — x1) cosh B x; —
2sinh B x1) — by; (—ﬁ(xl — x3) cos fx; — 2sin f;x; + B (x; — x1) cos fxqy +

2sinfx;1) + f(x; — x2) sinh f;x; — B(x; — x1) sinh B;x; + B(x; — x3) sin fjx; —

111



B(x; — x1) sin B;x; + 2 cosh B x, — 2 cosh fx; — 2 cos B x, + 2 cos B x4

(3.184b)
From equation (3.149)

24.
FZ = _2200 w] ]‘u

i =135, —x)? 2 (3.185a)

Where

2_.2 _ 2
W, = B} <(2x2+x1;(x2 <) _ xl(xzz a) (x5 — xf)) (—sinh B;xy — by; cosh B;x; +

BF (xa—x1)?

- ) (cosh Bjx1 + by; sinh B;x1 + cos Bjx; —

sin fjx1 + by; cos Bjxq) — (
by sin B x1) + B; (x; — x2) sinh B x; — 28; (x, — x3) sinh B x; + B; (x4 —

X7) sin B;x; — 2 (x2 — x1) sin Bjx1 — 3 cos B x, + 3 cos B;x; + 3 cosh B x; —

3 cosh Bjx1 + by; (,8]- (x1 — x2) cosh B;x; — 2p; (x, — x1) cosh f;x; + 3sinh B x, —
3sinh f;x1) — by; (—ﬁj (x4 — x2) cos Bx; + 2 (x; — x1) cos Bjx; — 3sin fx; +

3 sin B x1) (3.185b)

From equation (3.153)

2
wiAip
F3 00 J

T AE g g —x)?

[6W1 + ,81-3 (x; —x1)3 (sinh pBjx, — sinh B x; — sin f;x, +
sin B x; + by; (cosh P x; — cosh p; xl) — by; (cos pjx; — cos f; xl))] (3.186)

From equation (3.159)

*® —sz'“ 3 3 .
Fy=2j= !;]‘}(x]z_]xl)z [—6W; + 2W, — B7 (x; — x1)3(—sinh B;x; — by; cosh fx; +

sin B x1 + by; cos Bx1) + (coshﬁsz + byj sinh B x; + cos B x; — by, sin,Bsz) -

(cosh Bjx1 + byj sinh B;x1 + cos B x1 — by; sin f5; xl)] (3.187)
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Equations (3.184 — 3.187) are the equations of the fixed-end forces on a segment of a

fixed-pinned beam under free lateral vibration.

Casell: 0 <xy <L; x=1L

F, 3
Xo y
(a)
A
Xy ’ T
éz Fs
X D
(b)

Figure 3.16
(a) A segment of the fixed-pinned beam with x, = L under lateral vibration due to
inertial forces uii

(b) The reduced/basic structure of an arbitrary element of the vibrating beam

If the reduced structure (Figure 3.16b) is mirrored laterally and its position measured
from the right, it would look like the reduced structure of a segment of the fixed-fixed
beam when x; = 0. Hence from equation (3.131) the equation of bending moment in z

coordinates can be written as

—w2A.
MZ = Z}w:lw;?TAjﬂ [ﬁ]Z(—sz + b4]) + (COSthZ + sz Sinhﬁjz + COSﬁjZ -
by sin B z) — 2] (3.188)

From Figure 3.16b
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z=L—x (3.189)

By substituting equation (3.189) into (3.188) we can express the bending moment in

terms of x.
Mx _ Z})O ) —w; A],Lt [,8] (L X)(_b2] + b4]) + COShB]’ (L — X) + b2] Slnhﬁ](L — X) +
cos Bj (L — x) — by; sin B; (L — x) — 2] (3.190)

By replacing the redundant force F; with a virtual load of unit value (see Figure

3.16h)
M3 =X — X (3191)

From the principle of virtual work, the deformation at the direction (coordinate) of F3

due to the inertia forces is
630 — J-JCZ M3M — fXZ Mxx2 Mx X' (3192)

X1

By integrating the components of equation (3.192) separately

fxxf M,x dx = [ﬁ]( by; + b4])f (Lx — x?) dx +f (x cosh B (L —

x) + b,jx sinh f; (L — x) + x cos B; (L — x) — byjx sin §; (L — x) — 2x) dx]

+b
=1 ﬁ“ 4) (3L(x2 —x2) —2(x3 —xl)) B x, sinh f; (L —

x3) + Bjx1 sinh B; (L — x1) — cosh f; (L — x;) + cosh f; (L — x1) — B x, sinf; (L —
x3) + Bjxy sin B; (L — x;) + cos f; (L — x;) — cos B; (L — x1) +

by; (—p;xz cosh B (L — x) — sinh B; (L — x3) + B;x; cosh B (L — x1) +
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sinh B; (L — x1)) — by; (B]-xz cos B; (L — x3) + sin f; (L — x2) — B;x; cos f5; (L —

%)) — sin B (L — x,)) — B2(x} — 7)) (3.193)

2
—w; Ajux;

X2 R e le)
fx1 Myxy dx = X2, 52

[,Bj (by; + bsj) fxxlz (L—x)dx + fxxlz(cosh Bi(L—x)+

b,; sinh B; (L — x) + cos B; (L — x) — by; sin ; (L — x) — 2) dx]

o —@iAjux) [[”,-2(—172}'“‘}74;)

= 37— - (2L(xy — x1) — x5 + x7) — sinh B; (L — x,) +
J

sinh B; (L — x1) —sinB; (L — x3) + sin B (L — x1) + 2B; (x; — x1) —

b,; (cosh B; (L — x3) — cosh B; (L — xl)) + by (— cos B (L — x;) + cos f; (L — xl))]

(3.194)

By substituting equations (3.193) and (3.194) into equation (3.192) we have

—wiAjn [51'3 (=baj+byj)(x2—x1)

57 S (BL(xy — x1) — x5 — x1%; + 2x7) +
j

El630 = Xj2,

B;x, sinh B; (L — x1) + B;x; sin B; (L — x1) — Bjx1 sinh B(L — x2) — B xq sin B; (L —
x1) + cosh f; (L — x;) — cosh f; (L — x;) — cos B; (L — x,) + cos B; (L — x1) +
b,; (,Bsz cosh B; (L — x;) — sinh f; (L — x;) — f;x1 cosh B; (L — x1) — sinh §; (L —

x1)) — by; (—ﬁsz cos B(L —x1) —sinf; (L — x2) + Bjxq cos B (L — x1) +

sin (L — x,)) + B2(x} — x2)| (3.195)
By writing the beam’s compatibility equations (see Figure 3.16b)

F3833 + 83 =0

o By =230 (3.196)

833
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From the principle of virtual work, the influence coefficient 853 (deformation in

coordinate 3 due to a unit force at 3) can be determined as

833 = ;- (3.197)
where l = x, — x (3.198)
Substituting equation (3.195) and (3.197) into equation (3.196)

F3 =Y 30;?;13,-;1 ﬁjs(_bzﬁb:j)(xz_xl) (BL(x; —x1) — x5 — x1%, + 2x7) +

Bjx, sinh B; (L — x1) + B;x; sin B; (L — x1) — Bjx1 sinh (L — x2) — Bjxq sin B (L —
x1) + cosh f; (L — x;) — cosh f; (L — x;1) — cos B; (L — x,) + cos B; (L — x1) +

b,; (,B]-xz cosh B; (L — x1) — sinh f; (L — x;) — B, x1 cosh B; (L — x;) — sinh §; (L —
x1)) — by (—Bjxz cos B(L — x1) — sin B (L — x) + B;xy cos B (L — x1) +

sinf; (L — x1)) + ,B]-Z (x% — xlz)] (3.198)
Equation (3.198) is an expression of the fixed end force F3; on a segment of the fixed-

pinned beam when x,=L. Please note that this equation is simpler than it looks and

this becomes obvious when x; = L is substituted into the equation.

F3:

2 3
5o 3w/ At [B} (=b2j+ba;) (L—x1)
= 473
j=1"p 6

(BL(L —x1) — L* = x;L + 2x{) + B; L sinh B; (L —
x1) + B;Lsin B; (L — x1) — B;x; sin B; (L — x1) — cosh ; (L — x1) + cos f5; (L —
x1) + by; (ﬁjL cosh B; (L — x1) — B;x1 cosh B; (L — x1) — sinh 5; (L — xl)) —

by (—B;L cos B(L — x1) + B;x; cos B; (L — x;) +sin B, (L — x1)) + B (L* — xlz)]

(3.1984)
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Having obtained the equation for F3, the equations of F; and F, can be obtained from

the principles of static equilibrium from (see figure 3.16a)

Fy = =My — F5(x3 — x1)

—wA.
F, = %72, :}zzju Iﬁjglz(L — x1)(=by; + byy) + BF 1% cosh B (L — x;) +

by B 12 sinh B (L — x1) + BF1% cos B (L — x1) — by B 1% sin B (L — x1) — 2B71% —

(BL(L —x1) — L* = x1L + 2xf) + B;Lsinh B; (L — x1) +

3(x2—x1) <Bj3 (—azj+as;)(L—x1)
l 6

B;Lsin f; (L — x1) — B;x1 sin B; (L — x1) — cosh ; (L — x;) + cos B; (L — x1) +

b,; (,BIL cosh B; (L — x1) — Bjx1 cosh B; (L — x1) — sinh 5; (L — xl)) —

b; (—BjL cos B(L — x1) + Bjx1 cos B; (L — x1) + sin B; (L — X1)) + ,3,-2(L2 _ x12)>l

(3.199)
For vertical equilibrium (X F, = 0)
F,+F + fx"f pitdx =0
F, = —F; — fx"f pii dx (3.200)

From equation (3.152)

X2 . _
fxl pitdx =
Zf:lﬁfT (smhﬁsz — sinh f;x; + by; cosh B x; — b cosh B x; — sin B x, +
sin B x1 — byj cos B x; + byj cos B x1) (3.201)

By substituting equation (3.201) and (3.198a) into (3.200) we have
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2
a)jA]-,u

F, = Z}"’zl 513 ,6’]-3l3(sir1h Bjx, — sinh B;x1 + by; cosh B;x, — byj cosh Bjx —
]

. : P (=byj+ba;)(x2—x1)
sin B x; + sin Bx1 — byj cos Bx; + byj cos Bix;) — 3 (ﬁ’ (b 64’) 2 (3L(xy —

X1) = X5 = X1%2 + 2x§) + Bjxp sinh B; (L — x1) + B;xp sin B; (L — x1) —
B;x1 sinh B(L — x;) — Bjx1 sin ; (L — x;) + cosh B; (L — x;) — cosh B; (L — x1) —
cos fB; (L — x3) + cos f; (L — x1) + by; (ﬁsz cosh B; (L — x1) — sinh §; (L — x;) —

B;x1 cosh B; (L — x1) — sinh B; (L — x1)) — by, (—ﬁj Xy cos B(L — x1) —

sin B (L — x2) + B;x; cos B; (L — x;) + sin B (L — x1)) + B/ (x5 — xf))l (3.202)

In order to evaluate the equations for the fixed end forces F; F,, F3 and Fy4, there is

need to derive an expression for A; for the fixed-pinned beam.

Derivation of the expression for A; for a fixed-pinned beam

Consider a uniform fixed-pinned beam under the action of its self weight.

LU iy
8 4) |
SugLp——* L —
8

Figure 3.17: A Uniform fixed-pinned

beam under the action of its self weight

The equation of the bending moment at any distance x from the left support is

M, =2 (-2 -2 (3.203)
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Where p is the mass per unit length of the beam and g is the acceleration due to

gravity.
From the equation of elastic curve (beam flexure equation)
Ely = [ M, dx

= f%(SLx —4x? — 1) dx

- 2x)+ o (3.204)

3 4 2.2
Slat L—x) +cix+cy (3.205)

— X9
Ely = (6 12 2

8

Consider the boundary conditions

Atx=0, y=0 «~c; =0

Atx=0, y¥=0 ~¢ =0

Hence the equation for the static deformation or deflection of the uniform beam under

its self weight is

5Lx3 45t L%x?2
Ely =" (22 1)
8 6 12 2

(3.206)
Let the initial deflection of the beam (at time t = 0) be

u(x,0) = %

6 12 2

(SLx3 4x* szz)

— b (_____2) (3.207)

pg L3

Where b is a dimensionless constant equal to T

From equation (2.61a)
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L
A= Mijfo u(x,0)@; dx

3 4
=LfOLbL (—————) (cosh B;x + by; sinh B;x — cos Bjx +
b4j SlnﬁIX) dx

_ buL
M;

5x3 5x
—J, ( cosh B x + sz sinh B, x — cos,[?]x + b4] sin B x —
4 4 4 4 2
X 2x . 2x 2x . 3x
L—4coshﬁjx — L—4b2j sinh ;x + L—4cosﬁjx — L_4b4f sin fjx — L—Zcoshﬁjx —

2 2
3Lx b,; sinh B x + cos Bix % by; sin f; x) (3.208)

By taking advantage of equations (3.152) — (3.163) we can perform the integration of

equation (3.208) to obtain

bu L? [—(cosh BjL+cos BL) . 18(cosh BjL—cos ﬂjL) 48(sinh BjL—sin ﬁ]—L)

. 272 414 5715
M; BjL ﬁjL ﬁjL

—2(sinh f;L+sin ;L 18(sinh B;L—sin ;L 48(cosh B;L jiL—2
b2j< (sin BjL+sin B; ) (sin BjL—sin B; )_ (cos BjL+cos B; ))] (3209)

BrL? Lt B7L®
Please note that b,; = —b,;

Equation (3.209) is the equation for the arbitrary constant A; for a fixed-pinned beam.

In order to evaluate equation (3.209) there is need to derive an expression for the

generalized mass Mj.

b) Derivation of the expression for the generalized mass M; for a fixed-pinned

beam

By substituting the general modal equation (3.181) into equation (3.165)
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M =pu fOL(coshﬁjx + by; sinh B;x — cos B;x + by, sin,[?jx)2 dx

=u fOL(cosh2 Bjx + 2by; sinh B; x cosh B;x — 2 cosh f;x cos B;x +
2by; sin B x cosh B;x + b3; sinh? B;x — 2by; sinh B x cos B;x +
2by; by; sin B x sinh B x + cos? B;x — 2by; cos B;x sin B;x + by; sin? B;x)dx

(3.210)

By substituting equations (3.168 — 3.171) into equation (3.210) and evaluating the

simple integrals we obtain

1\4]. =
ul sinh BL+sin SL 2 (sinh BL 2 sin L
7[2-'_ 2BL +b21'( 2BL _1)+b41' (1_ 2BL )_
cosh BL sin BL+sinh SL cos SL 1—cos BL cosh BL4+sin BL sinh BL—sin? BL _
2 ( BL ) + 2by; ( BL )

sinh BL sin BL4+cosh BL cos BL—sinh 2 BL—1 cosh BL sin fL—sinh BL cos BL
2by ( m )+ 2By by ( L )|
(3.211)

Equation (3.211) is the equation of the generalized mass of a fixed-pinned beam for

the j™ mode of vibration.

Having derived the equations of the fixed-end forces for a segment of a fixed-pinned
beam under free vibration, a summary of the derived equations are presented in Table
3.3 for a quick reference. In the Table the distances x; and x, were normalized using
equations (3.35) and (3.36) and square of the j" natural frequency cojz was eliminated

from the equations by substituting equation (3.173)
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Table 3.3: Summary of Fixed-end forces on a Segment of a Fixed-pinned Beam under

Free Lateral vibration

S/N | Description Remarks

1 Fixed-pinned Beam

uiidx
11 |
R2 g . R4=O
# X1 # . X A
X >
Rl 2 ¥ L R3
wiidx
F2 Z I:4
X1 ( 4
1
X2 'EJ. > X ’IV FS
§1= X1/L
$2 = xZ/L
CASE |

For0<é& <lor0<x <L

0<é&<lor0<x, <L

$>6

oy See Equation

Fr=-62j4 L3(§,—-£1)3 M (3.184)

Where

(E+i0(E3-¢8)  2(&3-¢3 :
leﬁsts( 2 12(2 1)_ (23 1))(_SlnhﬁjL€1—

sz COShﬁijl + Sinﬁijl + b4] COoS ﬁ]Lfl) + b2] (‘BL(fl -

§3) cosh B; L&, + 2 sinh B L, — B L(§; — &1) cosh B L&y —
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2sinh B; L&) — by; (—B;L(&; — &;) cos B;LE, — 2sin B LE, +
BiL(§, — §1) cos BjL&y + 2sin B L&) + B L(S —

§2) sinh B; L&, — BL(E, — &1) sinh B; L&y + B L(S; —

§2) sinB; LS, — By L(§; — §1) sinf;LE; + 2 cosh B LS, —

2 cosh B L§y — 2 cos B; LS, + 2 cos B L&,

_ o El4;

fo = ~22 /= -2
Where

WZ =

2 2

(2&2+61)(¢5-¢F (§2-61)° ;
Bj3L3< HHDEEEE) L& _(55_513)> (—Slnhﬁijl—

sz cosh B] Lfl + sin B] Lfl + b4_] CoS ﬁ] Lfl) -

212(8,—¢1)2
(W) (cosh L&, + by sinh Ly + cos i L§; —

byj sin L&) + B L(& — &) sinh B L&, — 26 L(&; —

§1) sinh B LSy + By L(§1 — $3) sin B LE; — 2B L(§2 —

&) sinf; L& — 3 cos B L&, + 3 cos B; L& + 3 cosh B LE, —
3cosh B L&, + by (B L(§; — &) cosh B LE, — 2B L(&, —
&) cosh ;L& + 3sinh §;LE, — 3sinh L&) —

ba; (—B;L(&1 — &) cos ;L& + 2B L(&; — &) cos f;LE; —
3sin B; L&, + 3sin B L&)

Fy = B s [6Wh + B2 (6 — £0° (sinh B L6, -
sinh B;L§; — sin B; L&, + sin B;L&; + by; (cosh B; L&, —

cosh B;L&;) — byj(cos B L&, — cos B; Lfl))]

See  Equation

(3.185)

See  Equation

(3.186)

123




F4_:

ol 1m[ 6W; + 2W, —

B3 (&, — &)3(—sinh B;LE; — byj cosh B LE; + sin ;L& +
byj cos B L&;) + (cosh B; L&, + by; sinh B LE; + cos B; L&, —
by sin B;L&;) — (cosh B; L&, + by; sinh B; L& + cos ;L& —

byj sin B;L&1)]

CASE 11
For0<¢ <lor0<x <L
S =1orx, =1L

$>6

Fy = ] 1(x x)3 [ﬁ, P& —&)° (Smhﬁ]sz sinh §;L§; +

sz COShﬁijz - sz COSh'Bijl - Sinﬁijz + Sinﬁjl‘fl -

byj cos B L&, + byj cos B L) —

3 <ﬁ] L (_b2j+6b4]')(€2_€1) (BL(EZ —_ 61) — 522 — 6162 + 2512) +

B;LE sinh BiL(1 — &) + B;LE sin B L(1 — &) —

B; L&, sinh BL(1 — &) — B; L& sin B;L(1 — &) + cosh B;L(1 —
§2) —cosh BiL(1 — &) — cos B;L(1 — &) + cos BL(1 — &) +
by (B;jLE; cosh B;L(1 — &) — sinh B;L(1 — &) —

BjL& cosh B;L(1 — &) —sinh BL(1 — §1)) —

by (—BjLE; cos BL(1 — &) —sin B L(1 — &) +

See  Equation

(3.187)

See Equation

(3.202)
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BiL&cos BiL(1— &) +sinBL(1—&)) + B (& — ff))l

ow  —EIA;
F2 = 2= sy

ﬁngg(fz —&)*(1—&)(=by + byy) +
BL*(&; — &1)% cosh B L(1 — &) + by BPL (&, —
&)%sinh BL(1— &) + .3]'2142(52 —&)?cosBiL(1— &) —

by BIL* (& — &)* sin BL(L — &) — 2B7L* (&, — &) —

3 (ﬁ,-3L3(—sz +hyy)(1—€1)

' BU-&)—1-§&+26) +

B;Lsinh B L(1— &) + BLsin B L(1 — &) — fix; sin fL(1 —
&) —coshBiL(1 — &) + cos BL(1 — &) +

by (B;L cosh B;L(1 — &) — B;xy cosh B;L(1 — &) —

sinh B;L(1 — &)) —

by; (—/j’jL cos BL(1 — &) + Bjxy cos B L(1 — &) +

sinf,L(1 — ) + BPLA(1 — f%))]

F3 i

_ 3EIA; [ﬂ]3L3(—b2j+b4j)(1—fl)
T A= 3(g,-6)3

. BA-&)—-1-&+

28%) + B Lsinh B L(1 — &) + B, Lsin B L(1 — &) —

B;LE sin BiL(1 — &) — cosh BL(1 — &) + cos BiL(1 — &) +
by (B;L cosh B;L(1 — &) — B;L& cosh B;L(1 — &) —

sinh B;L(1 — &)) —

baj(—pB;L cos BL(1 — &) + B L& cos BiL(1 — &) +

sinf; L(1—¢;)) + .BjZLZ(l - 512)]

See Equation

(3.199)

See Equation

(3.1982)
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A = bu L% [—(cosh BjL+cos BL)
= Z
J M; BrL?

18(cosh BjL—cos ﬁjL)
pjiLt

48(sinh BjL—sin ﬁjL)
L

18(sinh B;L—sin ;L)
Lt

—2(sinh B;L+sin B;L)
ij ﬁszz

48(cosh BjL+cos [)’jL—Z)
BiL® )]

M;

2L 2L

sin SL _ cosh AL sin BL+sinh SL cos fSL
2BL ) 2 ( BL ) +

1—cos BL cosh BL+sin BL sinh BL —sin 2 [)’L)

2b4,( o

sinh BL sin BL+cosh BL cos BL—sinh 2 BL—l) +

ZbZi( o

szj b4j (cosh BL sin [?Lﬁ—Lsinh BL cos ﬂL)]

by = cos B;L—cosh f;L
2] ™ sinh BjL—sin B;L

cosh B;L—cos f;L

b,: =
4 sinh B;L—sin ;L

B1L = 3.92660232 oL = 7.06858275 :

10.210176123
BiL = 13.35176878 , BsL = 16.49336143135

PeL = 19.634954084937 f,L = 22.77654673853

— %[2 + sinh BL+sin BL + b%] (sinh BL _ 1) + sz (1

BsL =

etc.

See Equation

(3.209)

See Equation

(3.211)

See Equation

(3.182)

See  Equation

(3.183)

See equation

(3.178)
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Note: b is a dimensionless constant and can be taken as equal to unity

3.2.3 For abeam pinned at both ends (Pinned-pinned beam)

If the beam is pinned at the near end (x = 0) and also pinned at the far end (x = L), the

displacements and moments at the ends are zero hence the boundary conditions are
®(0)=0

9 (0)=0

B(L) =0 (3.212)

@' (L) =0

By substituting equations (3.212) into (3.109) we obtain

Ci+C3=0 (3.213a)
C,B%>—C38%=0 (3.213b)
C; cosh BL + C, sinh BL + C3 cos BL + C4 sin BL = 0 (3.213c)
C,? cosh BL + C,3? sinh fL — C38% cos BL — C4B% sin L = 0 (3.213d)

Putting equations (3.213a) to (3.213b) in matrix form

1 0 1 0 C
0 B —p? 0 C,
cosh BL sinh L cos SL sin BL c|= 0 (3.214)

B?coshBL p?sinhBL —B%cosBL —p?sinpLILC,
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For a non-trivial solution the determinant of the coefficients of the constants C, Co,

Cs and C4 must be zero.

~ B2(—p? sinh BL - sin BL — B? sinh BL - sin BL) + B?(—B? sinh BL - sin fL —

f?sinh BL - sinfL) = 0
sinh BL - sin BL = 0 (3.215)
The first seven roots of equation (3.177) were obtained using the bisection method as
BiL = 3.1415927, B,L = 6.2831854, B3L = 9.424777961,
PsLl = 12.5663706144,
BsL = 1570796326795,  B¢L = 18.8495559215388,
B,L = 21.99114857513 (3.216)

By substituting equations (3.216) into (3.114) we obtain the first seven natural

frequencies of a pinned-pinned beam as

w; = 9.869604693 /5—’4 w; = 39.47841877 /5—’4 w3 = 88.82643961 |-
ulL ulL ulL
El EIl El

w, = 157.9136703 /—4, ws = 246.7401098 | 2L wg = 3553057584 /—4 ,
ulL uL ulL

w, = 483.6106154\/%, (3.217)
By taking

Ci,=C=0 (3.218a)
C,=1 (3.218b)
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C,4 can be obtained from equations (3.214) to be

—sinh BL

C4 - sin SL

(3.218¢)

Equations (3.218a — 3.218c) are substituted into equation (3.109) to obtain the
equation of the j" mode shape of vibration for a pinned-pinned beam under lateral

vibration.

sinh B;L

@;(x) = sinh f;x — (Sin 5l ) sin 8 x

@;(x) = sinh B;x + c4; sin f;x (3.219)
Where
Cyj = — hﬂ’jfLL (3.220)

Equation (3.219) is the equation of the j™ mode of vibration of a pinned-pinned beam.
The first mode of vibration (j = 1) can be obtained by substituting g;L = p1L =
3.1415927 into equation (3.219). The second mode of vibration (j = 2) can be
obtained by substituting g;L = p,L = 6.2831854 into the equation. Likewise the
mode shape for the j"" mode can be obtained by substituting the value of p; L into the

equation.
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F, >z
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(c)
Figure 3.18

(a) A pinned-pinned beam under lateral vibration due to the inertial forces puii
(b) A segment of the beam under longitudinal vibration due to inertial forces uii

(c) The reduced/basic structure of an arbitrary element of the vibrating beam

Figure 3.18a shows a pinned-pinned beam under inertia forces. A segment of the
beam showed is being restrained by the fixed end forces F; — F4. The reduced

structure or basic system is shown in Figure 3.18c.

The acceleration at any point in the vibrating beam as stated earlier is given by mode
superposition as
=" —a)jz(bj (x)(Aj cos w;t + B; sin w t)
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The moment of an elementary force uitdz , at a distance z from the origin about an
arbitrary point a distance x from the origin is given as (see Figure 3.18)
dM, = pdzu(x — z)
M, = fxxl pii(x — z)dz
= ux fx"l iidz + u fx"l iz dz (3.221)
By integrating the component parts of equation (3.221) separately
m fxxl iizdz =Y, —wlAju fxxl @;zdz

=Y —wi A fxxl (zsinh Bz + cyjzsinp;z) dz

—wiA
=2t w;;z]# x(cosh f;x — ey cos fx) — Bjx1(cosh Bx; —

C4j COS Bix1) — (sinh Bjx — c4j sin x) + (sinh Bjx1 — €4 sin ﬂjxl)] (3.222)

X .. 0 x
Ux fx1 iidz = Y72, —wjzAjux fxl Q;dz
= —px Y2 a)jzAj fxxl (sinh Bz + c4j sin f; z)dz

ux
=¥, - ’ 4 (cosh B;x — cosh B;x; — c4j €O Bjx + c4; cos fix;)

(3.223)
By substituting equations (3.222) and (3.223) into equations (3.221) we obtain

;01 a)A],u[

B]x( cosh B x1 + c4j cos f; xl) + B x4 (coshﬁ}xl
C4j COS Bix1) + (sinh Bjx — ¢4 Sin f; x) - (sinh Bjx1 — €4 Sin ﬁjxl)] (3.224)

Equation (3.224) is the expression of the bending moment at a point x from the origin
of a reduced segment of a pinned-pinned beam under free lateral vibration caused by

its inertia forces.
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Using the principle of virtual work, there is need to obtain the equation of bending

moments produced by unit values of the removed redundant forces.
For F; =1 and F, = 0 (see Figure 3.18¢)
My = Fi(x —x;)
=x—x (3.225)
where x; < x < x,

Deformation at coordinate 1 (direction of force F;) from the inertia forces is

50 = [ gy = [P H gy (3.226)

2
2
Bj

fxxlz M,x dx = %72, [(— cosh B;x; + c4j cos B;x;) fxxlz B;x*dx +

B x1(cosh Bx; — c4j cos B;xy) fxxlz xdx + fxxlz (x sinh B;x — c4jx sin fx)dx —

(sinh Bjx; — ¢y sin B;x;) fxxlz xdx]

Bix1(xf—xf)
cosh B;x1 + ¢y cos B xl) L — (cosh Bjxi —

() _wZAjtu ,33(36%—36%)
Zj:]_ 24 [ : 3 (_

caj cos Bjx1) + (Bx, cosh Bx, — sinh fx, — Bxy cosh fjx; + sinh fx;) —
ﬂjz(x%_x%)

Caj (—,sz cos B x; + sin B x; + ;x4 cos Bjxg — sinﬁjxl) - (sinh,Bjxl —

C4j Sin B; xl)] (3.227)
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2
ijjuxl

f M, xidx = Y52, [(— cosh B x1 + c4; cos B x;) fxxlz B xdx +

B x1(cosh B;x; — c4j cos Bx;) f;lz dx + f;lz(sinh Bjx — c4; sin fjx)dx —

(sinh Bjx; — ¢4 sin B x;) fxxlz dx]

24
w 0 ARB [ﬁf (x2—xf )(— cosh fx; + ¢4 cos fjx1) + Bx; (xz —

j 1 ,84
x1)(cosh B;x; — c4; cos Bjx1) + (cosh B x, — cosh Bix1) — ¢4 (— cos Bjx, +
cos B x1) — B (x; — x1)(sinh B x; — ¢4 sin B xl)] (3.228)

By substituting equations (3.227) and (3.228) into equation (3.226)

E1510 — Yo —w7 A;# [.B] (xz xl) x1(xz x1))( coshﬁ,xl +C4] COSﬂ]xl) +

,8-3x (xz—xz) B-Z(xz—xz)
(% — BPxf(x; — x1) | (cosh Bix; — cyj cos Bixy) — ’;—1 —

BPxy (xy — x1)> (sinh Bjx; — ¢y sin B;x1) + (Bx; cosh Bx, — sinh Bx; —
B x1 cosh B x; + sinh B x1) — c4; (—ﬁxz cos B x; + sin B x, + B xq1 cos fx; —

sinﬁjxl)l (3.229)

Equation (3.229) above is the equation of deformation in coordinate 1 (direction of

F1) of a reduced segment of the vibrating pinned-pinned beam due to its inertia forces.

For F, =1 and F; = 0 (see Figure 3.14c¢)

— 1 (3.230)
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where x; < x < x,

From the principle of virtual work deformation at coordinate 2 (direction of force Fy)

from the inertia forces is

Xy MyM, X3 —M,

8p0 = [7 = dx = [P —xdx (3.231)

El6,) = — f;‘f M, dx

2
—wjAju
2
B;

= 2;021 [(_ cosh B] x1 + C4]' CosS ﬁ] xl) fxx12 ﬂ]x dx + ﬂ] X1 (COShﬁjxl —
caj COS Bix1) fxxlz dx + fxxlz (sinh Bjx — ¢4 sin Bx) dx —

(sinh B;x; — ¢4 sin Bx;) fxxlz dx]

—wiAju [BF (x5 —x1)
=27 [’))3’ [ — (—cosh B;x; + c4; cos Bix1) + By (xp —

xl)(cosh Bjx1 — €4 COS B; xl) + (cosh Bjx; — cosh p; xl) — Cyj (—cos Bix; +
cos Bjx1) — B (x2 — xl)(sinh Bjx — ¢4 sin f5; x)] (3.232)

Equation (3.126) is the equation of deformation in coordinate 2 (direction of F;) of a

reduced segment of the vibrating pinned-pinned beam due to its inertia forces.

From the compatibility equations of the reduced segment, the equation of the

redundant force F; can be written as (see equations 3.127) — (3.131)

F o= 12E1819  6EISy (2E1610 El63 )
| == - _

B2 (r2—x1)3  (x2—x1)?

(3.233)

By substituting equations (3.229) and (3.232) into equation (3.233) and simplifying
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w?Aip (oa+x)(xd—x3)  2(x3—-x3)
— © i 3 ((ztx)(xz—x1 27X1
Fp=-6)", BTG [ﬁj ( > I )(— cosh f;x, +

C4j COS B x1) + (ﬁ(x1 — x3) cosh B x; + 2 sinh B;x; — B; (x, — x1) cosh B x; —
2sinh fx1) — c4; (—B(xl — Xx3) cos fjx; — 2sin fx; + B (x; — x1) cos fx; +

2sin B xy)| (3.234)

24,
F]. :_6200 a)] ]ﬂ

j=1 ;;]ft(xz_xl_)s 1 (3.234a)

Where

( + ) 2_.2 2 3_.3
W1 — ,8]-3 ( X2+Xq 2(x2 xl) _ (x23 xl)) (_ COShﬁle + C4j COSﬁjxl) + (,B(Xl _

xy) cosh B x, + 2 sinh B x; — B (x, — x1) cosh B x1 — 2sinh B x1) — cy; (—ﬁ(xl —

X7) €0s fjx; — 2sin fx; + B (x2 — x1) cos Bjx; + 2 sin fx;) (3.234b)

Likewise F is obtained as

F = _SFISw _ 4EI83 _ ( 3EI61 2E1620)
, = ——10_ 2220

12 l (x2—x1)%  (x2—x1)

(3.235)

By substituting equations (3.229) and (3.232) into equation (3.235) and simplifying

F2:

w24 @x2+x)(x5-x3)  xq(xp—x1)?
o) j 3 2TX1)\X2 —X1 1\X2—X1 3 3
-2 2].21 FIemns lﬁj ( - - . — (x5 —x7) (— cosh B x; +

/3]-2(x2—x1)2

C4j COS B X1) — (T) (sinh Bix1 — c4j sin ﬁjxl) + (,B} (x4 — x3) cosh B;x; —

2p; (x; — x1) cosh B;x; + 3 sinh B;x; — 3 sinh B;x1) — ¢4 (—ﬁj (x4 — x3) cos Bjx; +

2B (x; — x1) cos Bjxq — 3 sin fx; + 3 sin f; xl)l (3.236)
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2
wiAin
F,=-2%Y% —JJr
2 =1 (rp—x1)? 2

(3.236a)

Where

2_.2 _ 2
W, = ﬁjS ((2x2+x1;(xz xi) x1(x22 x1)® (x23 — xf)) (— cosh'[?jx1 + cyy Coslgjxl) —

20 .2
(ﬁ] (xzz = )(Sinh Bix1 — ey sinfx1) + (B (x1 — x) cosh fx, — 2 (x; —

x1) cosh B x1 + 3 sinh f;x, — 3 sinh f;x1) — cy; (—ﬁj (x4 — x3) cos B x; +

2 (x; — x1) cos fjx1 — 3sin B x; + 3 sin fxq) (3.236b)

Equation (3.234) and (3.236) are the equations of the fixed end forces F; and F, on a
segment of a pinned-pinned beam under vibration. There is need to determine the

other forces F3 and F4 needed to keep this segment in equilibrium (see Figure 3.18b).
For vertical equilibrium (as applied in fixed-fixed beam)

“Fy=—F — fx"f piidx (3.237)
From equation (3.223)

2
—w24;
fxxlz pitdx = le% (cosh B;x; — cosh B;x; — c4; cos Bx, + c4; cos fix;)
J
(3.238)

By substituting equations (3.223) and (3.234) into equation (3.238)

2
ij]-,u

_ oo 3 3
F; = lem [6W1 + B (x2 — x1) (coshﬁsz — cosh B x1 — cy; (cos Bjx; —

cos /zjxl))] (3.239)
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When a system is in equilibrium, every part of it is in the same state, hence for the
beam segment (see Figure 3.18b), the sum of the moment of forces about any point on

the segment must be zero

XMz =0; Fi(x; —x1)— F2+f piidx (x; —x) —F, =0
F, = Fi(x; — x1) — F5 + px;, fx"f itdx — p fx"f iix dx (3.240)

From equation (3.223)

]”xz

UXo fxxlz iidx = Zj" 1 (cosh Bjx; — cosh B x1 — ¢4j €Os B x, + c4j COS ﬂjxl)

(3.241)

From equation (3.222)

. o ~®j A —wjAjp
u fxxlz iix dx = j=1 [ﬁj X (COSh ﬁ] Xy — C4j CosS ﬁ]xZ) — ﬁj'xl (C()Sh ﬁ]xl —
C4j COS Bx1) — (Sinh Bjxz — ¢4 Sin ﬁsz) + (Sinh Bix1 — Ca; Sin[)’jxl)] (3.242)

By substituting equations (3.234), (2.236), (3.241) and (3.242) into equation (3.240)

and simplifying
0 U
F4 j= 13()612——136)2[ 6W1 + ZWZ ﬁjg(xz - xl)g(— COSthxl + C4-j COS Bjxl) +

(sinh Bjx; — c4j sin f; xz) — (sinh Bjx1 — C4; Sin xl)] (3.243)

In order to evaluate the equations for the fixed end forces F; F,, F3 and Fg4, there is
need to derive an expression for A; for a pinned-pinned beam.

Derivation of the expression for A; for a pinned-pinned beam

Consider a uniform pinned-pinned beam under the action of its self weight.
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MY

Figure 3.19: A Uniform pinned-pinned
beam under the action of its self weight

From Figure 3.19 the equation of the bending moment at any distance x from the left
support is
M, = % (Lx — x?) (3.244)

where p is the mass per unit length of the beam and g is the acceleration due to

gravity.
From the equation of elastic curve (beam flexure equation)
Ely = [ M, dx

=f%(Lx—x2)dx

_ Mg Lx? x3
=5 (5 -5)+a (3.245)
L 3 4

Consider the boundary conditions

Atx=0, y=0 +~c; =0

3
Atx =0, v =0 ¢ = —”‘Z:

Hence the equation for the static deformation or deflection of the uniform beam under
its self weight is
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3 4 3
Ely =" (% - -2 (3.247)

— L (E_ﬁ_f) (3.248)

ug L3

Where c is a dimensionless constant equal to Al

From equation (2.61a)

L
4 = ML]-IO u(x,0)9; dx

2x3 x4

= Jy e (G == 7) (sinh x + cy; sin fx) dx

__cuL L 2x3 . 2x3 . xt x4 .
—M—jfo (L—351nh,8]-x+L—364j 51n,8]-x—L—451nh[>’]-x — 77 C4 sin B x —

—~Zsinh Bx — X cy; sin B x) (3.249)

By taking advantage of equations (3.152) — (3.163) we can perform the integration of

equation (3.249) to obtain

A = cuL? [—sinh BjL  12sinh B;L 24(cosh ,BjL—l)+ —sinﬂjL_12sinBjL_
7T M B2 it e C2j FHE piLt
24(cos ﬁ-L—l)
[35—L]5)] (3.250)
J

Equation (3.250) is the equation for the arbitrary constant A; for a pinned-pinned

beam.
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In order to evaluate equation (3.250) there is need to derive an expression for the

generalized mass Mi;.

Derivation of the expression for the generalized mass M; for a pinned-pinned

beam

By substituting the general modal equation (3.219) into equation (3.165)
M =p fOL(sinhﬁjx + ¢4 sin Bjx)z dx
=y fOL(sinh2 B;x + 2c4; sin B;x sinh B x + cf; sin® B;x)dx (3.251)

By substituting equations (3.168 — 3.171) into equation (3.251) we obtain

1\/11- _ % [(sir;l;LﬁL . 1) n Cz%j (1 . %) n 2C4j (cosh BL sin ﬁLﬁ—Lsinh BL cos ﬁL)]

(3.252)

Equation (3.252) is the equation of the generalized mass of a pinned-pinned beam for

the j™ mode of vibration.

Having derived the equations of the fixed-end forces for a segment of a pinned-pinned
beam under free vibration, a summary of the equations are presented in Table 3.4. In
the Table the distances x; and x, were normalized using equations (3.35) and (3.36)
and square of the j™ natural frequency (Dj2 was eliminated from the equations by

substituting equation (3.173)
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Table 3.4: Summary of Fixed-end forces on a Segment of a Pinned-pinned Beam

under Free Lateral vibration

S/N

Description

Remarks

Pinned-pinned Beam

uiidx

X’I ’
X2 TX
R1 * L R3
uiidx
F2 A
X1 (u /' ¢
= >
X2 T > X ’ FS

For0<¢& <lor0<x; <L
0<é&<1lor0<x, <L
$2>¢8

51:x1/L

52=XZ/L

—62)= 1L3(s‘z —&1 )3W

Where

(E+é0EE-¢t)  2(8-8
leﬁsts( 2 12(2 1)_ (23 1))(—C05hﬁjL€1+

caj cos BiLE) + (BL(§; — &) cosh B; L&, + 2 sinh B L&, —

B;L(&; — &) cosh B; L& — 2sinh B LE;) — ¢4y (—B;L(E1 —

§2) cos B L&, — 2sin B L&, + B;L(, — &1) cos B LE; +

2 sin ﬁ] LEl)

See Equation

(3.234)
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ET4;

Fp = —2%j4 - V2
Where
W2 =
3,3 [ QE+E)(83-¢3)  &1(6,-¢€1)?
Bi'L ( 2 - 2 o

(& — &) (~cosh L& + cyy cos fiLE,) —

(M) (sinh L&) — ¢4y sin fL&1) + (B L(G —

$2) cosh ,Bijz - ZﬁjL(fz

3sinh B L&) — ca; (—B;L(E1 — &) cos BiLE, + 2B L(&, —

&1) cos [)’ij1 — 3sin [)’jLEZ + 3sin ﬁj L&)

ElA;

Fy = B2 s | 6Wa + BPL3 (6 = §1)° (cosh B L&, -

cosh B; L&y — ¢y (cos BjL§, — cos ﬁijl))]

F4=

> [—6w; + 2w, —

Jj= 1L2(s‘z 5 )2

ﬁj3L3(fz - 51)3(— cosh fB; L&y + ¢4 cos ﬁijl) +

(sinh Bj L&, — ¢4 sin ,Bijz) - (sinh B L& — c4j sin B; LEl)]
culL? [—sinh §;L  12sinh §;L 24(cosh B;L—1) + —sin B;L
M; BJ'ZLZ [’)1“4 BJSLS Y ﬁJ'ZLZ
12sin f;L  24(cos B;L—1)

BiL* B7LS )]

— &1) cosh B; L&y + 3sinh B LS, —

See Equation

(3.236)

See Equation

(3.239)

See Equation

(3.243)

See  Equation

(3.250)
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1\/]j=

UL [ (sinh BL 2 sin BL .
2 [( 28L 1) +Cy (1 T 281 ) + See  Equation
2 (cosh BL sin BL—sinh BL cos [)’L) (3.252)

4 BL ]

__ —sinh B;L
" sin B;L
See Equation
(3.218¢)

BiL = 3.1415927 B,L = 6.2831854 , 3L = 9.424777961

PsLl = 12.5663706144 , 5L = 15.70796326795
See Equation

BeL = 18.8495559215388 f,L = 21.99114857513 etc. | (3216)

Note: ¢ is a dimensionless constant and can be taken as equal to unity

3.2.4 For abeam clamped at one end and free at the other (Fixed-free beam)

If the beam is fixed at the near end (x = 0) and pinned at the far end (x = L), the

boundary conditions are

®0)=0

9'(0) =0

@"(L) =0 (3.253)

0" (L) =0
143



By substituting equations (3.174) into (3.109) we obtain

CL+C=0 (3.254a)
CoB + CuB =0 (3.254b)
C1B% cosh BL + C,B% sinh fL — C38?% cos BL — C43? sin fL = 0 (3.254c¢)
C,3 sinh L + C,B3 cosh BL + C3B3 sin L — C433 cos L = 0 (3.254d)

Putting equations (3.254a) to (3.254b) in matrix form

[ 1 0 1 0 ] o
| 0 3 0 B [ C:
|32 coshBL  B%sinh B —BZcosBL —B%sinBL||C;
|g3sinh BL  B3coshBL  B3sinBL  —pB3cos pLILC

=0 (3.255)

For a non-trivial solution the determinant of the coefficients of the constants C;, C»,

Csz and C4 must be zero .

~ B(B> cos? BL + B° sin® BL) + B(B> sinh BL - sin BL + B° cosh SL - cos BL) —
B(—pB> cosh SL - cos SL + B° sinh SL - sin SL) + B(B° cosh BL - cosh L —

B° sinh BL - sinh BL) = 0
1+ coshfBLcosfBL=0 (3.256)
The first seven roots of equation (3.256) were obtained using the bisection method as
BiL = 1.87510407, B,L = 4.6940912, B3L = 7.854757439,
B.L = 10.9955407349,
BsL = 14137168392,  B¢L = 17.27875953209,

B,L = 20.420352251042 (3.257)
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By substituting equations (3.257) into (3.114)

w; = 3.516015273 /’% w, = 22.03449219 /’5—14 w3 = 61.69721443 |-

ulL ulL ulL

. El _ EI . EI
wy = 120.9019159 |5, ws = 199.8595301 |7, w = 298.5555309 |7 |

w; = 416.990786 /H% (3.258)

By taking C; to be equal to one, the other constants C,, C; and C4 can be obtained

from equations (3.255) as follows

(3 =-1 (3.259)
__ —(cosh SL+cos L)
C2 = =G BL+sin BL (3.259b)
__ cosh BL+cos L
3 ™ sinh BL+sin BL (3.259C)

By substituting equation (3.259a) — (3.259c) into equation (3.86) we obtain the

equation of the j™ mode shape of vibration

cosh B;L+cos ;L
sinh B;L+sin ;L

cosh B;L+cos ;L

?;(x) =coshﬁjx—< )sinhﬁjx—cosﬁjx+(m)sinﬁjx

@;(x) = cosh f;x + dy; sinh B;x — cos B;x + dy; sin f;x (3.260)
Where
__ —(cosh BL+cos L)
de " sinh BL+sin SL (3261)
d.: = cosh SL+cos BL (3 262)
4' - . . .

J ™ sinh BL+sin fL
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Equation (3.260) is the equation of the j™ mode of vibration of a fixed-free beam. The
first mode of vibration (j = 1) can be obtained by substituting ;L = p;L =
1.87510407 into equation (3.260). The second mode of vibration (j = 2) can be
obtained by substituting g;L = p,L = 4.6940912into the equation. Likewise the

mode shape for the j"" mode can be obtained by substituting the value of p; L into the

equation.
u uﬁdz
R, 4 R;=0
X . '
y X1 ¥ 7
L A
(a) |
uiidz
F2 g 4 >F4
X]_ AL A
Fl > 7 F3
Xo ¥
(b)
F>
e A Z
Fy > 7
Xo v
A
(c)
Figure 3.20

(a) A fixed-free beam under lateral vibration due to the inertial forces pii
(b) A segment of the beam under longitudinal vibration due to inertial forces uii

(c) The reduced/basic structure of an arbitrary element of the vibrating beam
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Figure 3.20a shows a fixed-free beam under inertia forces. A segment of the beam
showed is being restrained by the fixed end forces F; — F4. The reduced structure of

basic system is shown in Figure 3.20c.

The acceleration at any point in the vibrating beam as stated earlier (equation 3.119)
is given by mode superposition as

i =% —w?0;(x) (4 cosw;t + B; sinw;t)

For the segment of a fixed-free beam above (see figure 3.20b) the beam segment is
largely the same as that of a fixed-fixed beam except that in the equation for mode
shape @, a,j and a4; has been replaced it dy; and d4j and values of B;L defined earlier by
equation (3.113) is now defined by equation (3.257). Compare equation (3.260) with

(3.117).

Hence the equations for the fixed end forces (F1 — F4) for a segment of the fixed-fixed
beam can be reproduced for this case of a fixed-free beam with ay; and a4; replaced by

dzj and d4j,
From equation (3.132a)

2.
Fl :_6200 w} ]“

/=1 5y 1 (3.263a)

Where

ot (3—x3)  2(xf—xi . .
Wy =B} ( 27 2(x2 <) _ (ng xl)) (—sinh B;x; — dy; cosh B;x; + sin Bjx; +

d4j cos Bxq1) + dy; (,B(x]L — x;) cosh B;x, + 2 sinh B;x, — B; (x; — x1) cosh B x1 —
2sinh B x1) — dy; (—,B(xl — X3) cos Bjx; — 2sin fx; + B (x2 — x1) cos B x; +
2sinfx;1) + f(x; — x2) sinh f;x; — B (x; — x1) sinh B;x; + B(x; — x3) sin B x; —
B(x; — xq) sin B;x; + 2 cosh B;x, — 2 cosh fx; — 2 cos B x, + 2 cos f x4
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(3.263D)

From equation (3.134a)

w; A]u
=1 (rp—x1)2 2

23 (3.2644)

Where

2_.2 _ 2
W, = 131.3 <(2x2+x1;(x2 x) _ xl(xzz a1 _ (x5 — x1)> (— sinh Bjx; — dy; cosh B x; +

. (x
sin B x1 + dy; cos Bjx1) — (ﬂjz—) (cosh Bjx1 + dyj sinh B;x1 + cos B x; —

d4j Sinﬁ]‘xl) + ﬁ] (xl - xZ) Sinhﬁsz - Zﬁ] (xz - xz) sinh ﬂjxl + ﬁj(xl -
X7) sin B;x; — 2 (x2 — x1) sin Bjx1 — 3 cos B x, + 3 cos B x; + 3 cosh B x; —
3 cosh Bjx1 + dy; ([)’j (%1 — x2) cosh B;x; — 2; (x; — x1) cosh B;x; + 3sinh §;x, —

3sinh fx1) — dy; (—,Bj (x1 — x3) cos B x; + 2;(x, — x1) cos B;x; — 3sin fx, +

3sin B;x1) (3.264b)

From equation (3.138)

u
F3 (] J]

i =1 5T Gey—x)? [6W1 + ﬁ, (x — x1)? (smh Bjx; — sinh B x; — sin f;x; +

sin B x; + dy; (cosh Bjx; — cosh B;x1) — dy; (cos B x; — cos B; xl))] (3.265)

From equation (3.144)

u
F4 (o] J

j= 13(962—96)2[ 6W1 + 2W2 ﬁj3(x2 - X1)3(— Sinhﬁjxl - d2] COShﬁjxl +

sin B x1 + dyu; cos Bjxq1) + (cosh Bjx; + dyj sinh B x; + cos B x; — dy; sin ,Bsz) -

(cosh Bjx1 + dy; sinh B x1 + cos Bjx; — dy; sin f; xl)] (3.266)
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Equations (3.263) — (3.266) are the equations of the fixed-end forces on a segment of

a fixed-free beam under free lateral vibration.

In order to evaluate the equations for the fixed end forces F; F,, F3 and F,4, there is

need to derive an expression for A for a fixed-free beam.

Derivation of the expression for A; for a fixed-free beam

Consider a uniform fixed-free beam under the action of its self weight.

LN ug
2

—

)
/ X
ngl f———* L

|4
1

Figure 3.21: A Uniform fixed-free beam

under the action of its self weight

The equation of the bending moment at any distance x from the left support is
M, =52 (2Lx — x* — ) (3.267)

Where p is the mass per unit length of the beam and g is the acceleration due to

gravity.

By substituting equation (3.267) into the equation of elastic curve (equation 3.146)

and solving for the deflection y
' L
Ely = [/ M, dx
_ foL% (2Lx — x? — L?) dx
3
=4 (sz -z - sz) + 0 (3.268)
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Lx3 x4 L%x?
Ely = K9 (_ _x _
2 3 12 2

)+ ax+c (3.269)

Consider the boundary conditions
Atx =0, y=0 ~¢c;=0
Atx=0, y¥=0 ¢ =0

Hence the equation for the static deformation or deflection of the uniform beam under

its self weight is

g (i
Ely = 2 ( 3 12 2 ) (3270)

Let the initial deflection of the beam (at time t = 0) be

dL (% -5 - %) (3.271)
Where d is dimensionless constant equal to %
From equation (2.61a)
A= MiijL u(x,0)@; dx
= MiijL dL (426—33 - ’Z—: - 6;—22) (cosh B x + dy; sinh B;x — cos f;x +

dyj sin B x) dx
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b)

__dul 4x
= M—jfo ( cosh B x + dzj sinh B x — L3 cos,[?]x + d4] sin B x —

4 x4 6x2
cosh B x d sinh B;x + cos Bjx — 74 sinBjx — oz coshBjx —
2
& dy sinh fx + & cos fx — - dy sin ) (3.272)
By evaluating the integrals and simplifying

du L% [-3(sinh B;L—sin BL 4(cosh BiL+cos B;L 24(sinh B;L—sin B;L
H J + J i) j J

272 5715
M; B;L ﬂjL ﬂjL

—3(cosh B;L iL 4(sinh B;L+sin §;L 24(cosh f;L iL—2
d2j< (cos BjL+cos f; ) (sin BjL+sin B; )_ (cos BjL+cos B; ))] (3273)

BiL BPL2 ByL

Please note that d,; = —dy;

Equation (3.273) is the equation for the arbitrary constant A; for a fixed-free beam.

In order to evaluate equation (3.273) there is need to derive an expression for the

generalized mass Mj.
Derivation of the expression for the generalized mass M;j for a fixed-free beam

By substituting the general modal equation (3.260) into equation (3.165)
M =p fOL(coshﬁjx + dy; sinh Bjx — cos fx + dy; sin,[>’]-x)2 dx

=u fOL(cosh2 Bjx + 2d;; sinh f; x cosh ;x — 2 cosh f;x cos p;x +
2d,; sin fB;x cosh B;x + dgj sinh? Bjx — 2d,; sinh f;x cos B x +
2d,;dy; sin B;x sinh B;x + cos® B x — 2dy; cos B;x sin fx + dj; sin® B x)dx

(3.274)
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By substituting equations (3.168 — 3.171) into equation (3.274) and evaluating the

simple integrals we obtain

[\4].:

ul sinh BL+sin SL 2 (sinh BL 2 sin SL
7[2+ 2BL +d2f( 2BL _1)+d41'(1_ ZﬁL)_

cosh BL sin SL+sinh BL cos SL 1—cos BL cosh BL+sin L sinh BL—sin? L _
2 ( AL ) +2dy; ( BL )

sinh BL sin BL+cosh BL cos BL—sinh 2 BL—1 cosh BL sin SL—sinh BL cos SL
24y ( L )+ 2dadyy ( L )

(3.275)

Equation (3.275) is the equation of the generalized mass of a fixed-free beam for the

j™ mode of vibration.

Having derived the equations of the fixed-end forces for a segment of a fixed-free
beam under free vibration, a summary of the equations are presented in Table 3.5. In
the Table the distances x; and x, were normalized using equations (3.35) and (3.36)
and square of the j™ natural frequency (Dj2 was eliminated from the equations by

substituting equation (3.173)
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Table 3.5: Summary of Fixed-end forces on a Segment of a Fixed-free Beam under

Free Lateral vibration

S/N | Description Remarks

1 Fixed-Free Beam

uiidx

RZCTU W

For0<¢& <lor0<x; <L

0<é&<1lor0<x, <L

$2> 61
$1= xl/L
$2 = xZ/L
See  Equation
F, = -6 Zf;l%m (3.263)
Where

W, = ﬁ,~3L3 ((s‘z+€1)2(fz —$1) 2(523—'51)) (_ sinh g L&; —
dyj cosh B; L& + sin B;LE; + dyj cos B LE1) + dy; (,BL(El —
§z) cosh B L&, + 2 sinh f; LS, — B L(§, — &) cosh B LE; —

2sinh B; L&) — daj (=B L(& — &) cos BiLE, — 2sin B LE, +
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BiL(&; — &) cos B Ly + 2sin B LEy) + B L(§; —
§z) sinh B; L&, — B;L(&; — &) sinh L&y + B L(&; —
§2)sin L&, — B L(E; — &) sinB;LE; + 2 cosh L&, —

2 cosh BjL& — 2 cos B L&, + 2 cos B L&,

2 LZ(fz 61)2 w2

Where

WZ =

Bj3L3 ((252'{‘51)(522_51) 51(52 fl) (5—2 Ef)) (_ SinthLfl _

2
dyj cosh B; L& + sin B;LEy + dyj cos B LE1) —

BFL2(§2—81)° .
(%) (COSh ﬁ] Lfl + d2] sinh B] Lfl + COSﬁij1 —

dyj sin BjL&) + B;L(&; — &) sinh B L&, — 28, L(&; —
§1)sinh B Ly + BiL(§y — &) sin B LE; — 2B, L(S, —

&) sin L& — 3 cos L&, + 3 cos L& + 3 cosh f§LE, —
3cosh ;L&) + dyj (B L(&; — &) cosh L&, — 2B, L (&, —
&) cosh ;L& + 3 sinh B, L&, — 3sinh B L&) —

da (=B L(§1 — &) cos B; L&, + 2 L(82 — §1) cos B LE; —
3sin L&, + 3sin B;L&;)

Fy =32 1% 6w, + 5713 (&, — )% (sinh ;L& —
sinh B, L&, — sin B L&, + sin B;LE; + dy;(cosh B LE, —

cosh B;L&;) — dy; (cos p;L&, — cos ,B]-Lﬁ))]

See

Equation

(3.264)

See

Equation

(3.265)
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F4_=

EIA

[e) J
2 =112(5,-£,)? [—6w + 2w, —

B3 (&, — &)3(—sinh B; L&, — dy; cosh B;LE; + sin B LE; +
dy; cos ;L&) + (cosh B LE, + dy; sinh B L&, + cos B; L&, —
dy; sin ;L&) — (cosh B LE; + dy; sinh B;LE; + cos ;L& —

dy; sin B;LE)]

A = ap L2 [—Z(Sinh BjL—sin BL)  12(cosh BjL—cos [)’]—L) _
J = . 3713 474
M ﬁjL ﬂjL

J

24(sinh BjL—sin ﬂjL)
B7LS

—2(cosh BjL—cos [)’jL) 12(sinh BjL—sin BjL)
daj p313 phLt -

24(cosh BjL+cos [)’jL—Z)
gL )]

<
|

_ & sinh BL+sin BL 2 (sinh L _ 2 _
2 [2 + 2BL +dy; ( 2BL 1) +dy (1

sin ﬂL) _9 (cosh BL sin ﬂLﬁ-:sinh BL cos ﬁL) +

1—cos BL cosh BL+sin BL sinh BL—sin? L
2dy ( BL ) -
sinh BL sin BL+cosh BL cos BL—sinh ? BL—1
24y o )+
cosh SL sin fL—sinh L cos L
203y ( L )
do: = —(cosh BjL+cosh BjL)
2 ™ sinh BjL—sin ;L
d4- _ cosh f;L+cosh ;L

] sinh B;L—sin ;L

See Equation

(3.266)

See Equation

(3.273)

See Equation

(3.275)

See  Equation

(3.261)

See Equation

(3.262)
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BiL = 1.87510407 B,L = 4.6940912 , B;L = 7.854757439

BsL = 10.9955407349 , BsL = 14.137168392 See equation

(3.257)
BsL = 1727875953209 pB,L = 20.420352251042 etc.

Note: d is a dimensionless constant and can be taken as equal to unity

3.2.5 For a beam free at both ends (Free-free beam)

If the beam is free at the near end (x = 0) and free at the far end (x = L), the boundary

conditions are

9"(0) =0

9" (0)=0

@"(L) =0 (3.276)
9" (L)=0

By substituting equations (3.276) into (3.109) we obtain

C,—C3=0 (3.277a)
C,8 — C4 = 0 (3.277b)
C1? cosh BL + C,B% sinh fL — C38?% cos BL — C4f3? sin fL = 0 (3.277¢)
C,33 sinh BL + C, 83 cosh SL + C383 sin BL — C433 cos L = 0 (3.277d)
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Putting equations (3.277a) to (3.277b) in matrix form

1 0 1 0 ¢,
0 B 0 B C,
B?coshBL B?sinhBL —p?cosBL —p*sinBL||Cs
B3sinhBL  B3coshfL  B3sinfL  —f3 cos BLILC,

=0 (3.278)

For a non-trivial solution the determinant of the coefficients of the constants C;, C»,

C; and C4 must be zero .
«~ B2(1 — cosh BL cos BL) = 0 (3.279)

This is the same as the equation we obtained for the case of a fixed-fixed beam so
therefore the free-free beam shares the same natural frequencies as a fixed-fixed beam

(except that the lowest frequency is zero).
The first seven roots of equation (3.256) were obtained using the bisection method as
BiL =0, B,L = 4.7300408, B3L = 7.8532047, B,L = 10.99560784,
BsL = 14.1371655, Bl = 17.278759658,
B,L = 20.42035224563 (3.280)

By substituting equations (3.280) into (3.114)

w, =0, w, =22.37328597 |2, w; = 61.67282406 |-
ulL* ul4

w, = 120.9033918 /5—’4 ws = 199.8594484 /E—Z we = 298.555535 /E—Z '
ulL uL ulL

w; = 416.9907856 /% (3.281)
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By taking C; to be equal to one, the other constants C,, C3 and C4 can be obtained

from equations (3.278) as follows
C; =1 (3.282a)

_ __ cosh BL—cos L
a=0= sin BL—sinh BL (3.282b)

By substituting equation (3.282a) — (3.282b) into equation (3.109) we obtain the

equation of the j"" mode shape of vibration

cosh B;L—cos B;L\ . cosh B;L—cos B;L\ .
—~——|sinhf; i — | SIn b;
sin BjL—sinh B;L S ﬂ]X+COSﬁ]X+ sin BjL—sinh B;L S 'Bjx

@;(x) = cosh B x + (
@;(x) = cosh f;x + ey; sinh f;x + cos fjx + ey sin f;x (3.283)

Where

__ cosh BL—cos L

er = 6’4]- " sin BL—sinh L (3284)

Equation (3.283) is the equation of the | mode of vibration of a fixed-free beam.
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u uﬁdz

/IV
Ri=0 X K , Rs=0
L !
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uiidz
FZ [ F4
Xl AF A
Fl > 7 F3
Xo ¥
(b)
F2
e A Z
= >
Xo ¥
(c)
Figure 3.22

(a) A free-free beam under lateral vibration due to the inertial forces uii
(b) A segment of the beam under longitudinal vibration due to inertial forces uii

(¢) The reduced/basic structure of an arbitrary element of the vibrating beam

Figure 3.22a shows a fixed-free beam under inertia forces. A segment of the beam
showed is being restrained by the fixed end forces F; — F4. The reduced structure of

basic system is shown in Figure 3.22c.
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The acceleration at any point in the vibrating beam as stated earlier (equation 3.119)
IS given by mode superposition as

=37 —wjz(bj (x)(A]- cosw;t + B; sin w; t)

For the segment of a free-free beam above (see figure 3.22b) the beam segment is
largely the same as that of a fixed-fixed beam except that in the equation for mode
shape @, ayj and auj has been replaced it e, and es; and values of ;L defined earlier by
equation (3.113) is now defined by equation (3.280). Compare equation (3.283) with

(3.117).

Hence the equations for the fixed end forces (F1 — F4) for a segment of the fixed-fixed
beam can be reproduced for this case of a fixed-free beam with ay; and a4; replaced by

ey and e4jand by negating every trigonometric function not pre-multiplied by es;.

From equation (3.132a)

w-ZA-,u
= _6Y® J4
Fl - 62] =1 ‘B;}(xz_xl)3 1 (32853.)
Where
2.2 3 .3
w, = ,3]'3 ((xz+x1)2(xz xf) 2(xz3 xl)) (—sinh Bjx; — ey; cosh B;x; — sin Bjx; +

e4j COS B x1) + ey; (ﬁ(xl — x3) cosh B;x; + 2 sinh B;x, — B (x; — x1) cosh B x; —
2sinh ,Bjxl) — ey (—[?(x]L — x3) cos Bjx; — 2sin fx; + P (x2 — x1) cos B x; +
2sin fjx1) + B(x1 — x2) sinh f;x; — B(x; — x1) sinh B;x; — B(x1 — x3) sin B x; +

B(x; — xq) sin B;x; + 2 cosh B;x, — 2 cosh fx; + 2 cos fx, — 2 cos fx; (3.285b)
From equation (3.134a)

2
24,
F,=-2Y% o L

j=1 m p (3.286a)
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Where

2_.2 _ 2
W, = B} <(2x2+x1;(x2 x) _ xl(xzz ) (x5 — xf)) (— sinh Bjx; — dy; cosh B x; —

BF (x3—x1)?

- ) (cosh Bjx1 + dyj sinh B x; — cos Bjxq —

sin B xq + d4j cos Bxq) — (
dyj sin fxq1) + B; (x1 — x2) sinh B;x, — 2 (x; — x3) sinh B x; — B (x1 —

x2) sin B x; + 2 (x, — x1) sin fx1 + 3 cos fjx; — 3 cos f§jx; + 3 cosh f;x; —

3 cosh Bix1 + dy; (,8]- (x4 — x3) cosh B;x; — 2 (x; — x1) cosh B x; + 3sinh f;x, —

3sinh f;x1) — dy; (—,8]- (x1 — x2) cos Bjx; + 2;(x, — x1) cos Bjx; — 3sin fx, +

3 sin 5 x1) (3.286b)

From equation (3.138)

2
wiAiu
F3 00 J

T A= ﬁ;‘(xz—xl)'d’

[6W1 + ,8]-3 (x; —x1)3 (sinh pBjx, — sinh f;x; + sin f;x, —
sin B x; + dy; (cosh Bjx; — cosh p; xl) — dyj (cos Bjx; — cos p; xl))] (3.287)

From equation (3.144)

2
wiAiu
F4_ (o] J

T A=l ﬁ;}(xz—xl)z

[—6W1 + 2W2 - ﬁ]3 (XZ - X1)3(— sinh ,B]xl - dzl cosh ,B]xl -

sin B x; + dy; cos B;x1) + (cosh B x, + dyj sinh fx, — cos Bjx; — dy; sin fjx;) —

(cosh Bjx1 + dyj sinh B x; — cos B x; — dy; sin f; xl)] (3.288)

Equations (3.285 — 3.288) are the equations of the fixed-end forces on a segment of a

free-free beam under free lateral vibration.

In order to evaluate the equations for the fixed end forces F; F,, F3 and Fg4, there is

need to derive an expression for A; for a free-free beam.
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Derivation of the expression for A; for a free-free beam

Consider a uniform free-free beam under the action of its self weight propped at its

centre (the point through which its resultant weight acts)

ug

-
Y

Figure 3.23: A Uniform fixed-free beam under

the action of its self weight propped at the centre

From the equation for the deflection of a fixed-free beam the equation of the

deflection of the beam can be written as

473 z% 622
u(z,0) = dL (E —a E) (3.289)
3
Where d is dimensionless constant equal to ’;‘Z;
But z=1L; —x (3.290)

By substituting equation (2.290) into equation (3.289)

u(x,0) = % (—3L% + 4xL3 — x*) (3.291)
1

From equation (2.61a)

_u oy
A= M_jf0 u(x,0)@; dx
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b)

__ 2ud
- 3
M;L3

fOLl(—SL‘{ + 4xL3 — x*)(cosh B x + ey; sinh f;x — cos B;x +

ey Sin B x) dx (3.292)

The integral of equation (3.292) was pre-multiplied by two to take care of the other

half of the beam (L; is only half of the full length)

By evaluating the integrals and simplifying

4 = 2ud L% [—12(sinh BjLy—sin B;Ly) + 24(cosh BjLi+cos BjLy) _ 24(sinh BjLi+sin B;L1) _

= GF 5 G

12(cosh BjLq+cos ﬂle) 24(sinh BjL1+sin ﬂle) 24(cosh BjLy—cos ,Ble)
2j 3,3 - 414 + 5:5
313 prLY gL
(3.293)

Please note that L; = L/z (3.294)

Equation (3.293) is the equation for the arbitrary constant A; for a free-free beam.

In order to evaluate equation (3.293) there is need to derive an expression for the

generalized mass Mj.
Derivation of the expression for the generalized mass M; for a fixed-free beam
By substituting the general modal equation (3.283) into equation (3.165)

2
M, = p fOL(cosh,B]-x + ey; sinh B;x + cos B x + ey, sinﬁjx) dx

=u fOL(cosh2 Bjx + 2ey; sinh B;x cosh B; x + 2 cosh f;x cos B x +
2ey; sin B x cosh B x + ezzj sinh? Bjx + 2ey; sinh f;x cos B x +

2e;;e4; sin B;x sinh B;x + cos® B x — 2e,; cos Bx sin By x + ef; sin? Bx)dx
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uL sinh BL—sin BL 2 (sinh SL _ 2 __sin BL
2 [2 + 2BL t ey ( 2BL 1) t ey (1 2L )+

cosh BL sin SL+sinh BL cos SL 1—cos BL cosh BL+sin BL sinh BL—sin? L
2 ( BL ) +2ey ( BL ) B

sinh BL sin BL+cosh BL cos BL—sinh 2 BL—1 cosh BL sin L —sinh BL cos BL
2ey ( oL )+ 2ez5e4 ( L )l

(3.295)

Equation (3.295) is the equation of the generalized mass of a free-free beam for the j™

mode of vibration.

Having derived the equations of the fixed-end forces for a segment of a fixed-free
beam under free vibration, a summary of the equations are presented in Table 3.5
below. In the Table the distances x; and x, were normalized using equations (3.35)
and (3.36) and square of the j" natural frequency coj2 was eliminated from the

equations by substituting equation (3.173)
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Table 3.6: Summary of Fixed-end forces on a Segment of a Free-free Beam under

Free Lateral vibration

S/N | Description Remarks

1 Free-Free Beam

1]

For0<¢é¢ <lor0<x; <L

0<é&<1lor0<x, <L

$2>¢8

X
$1 = 1/L

X
$2 = Z/L

See  Equation
EIA;

FL=-6)Y"—2—W
' AIGE (3.2852)
Where

(E+i0(E3-¢8)  2(&3-¢3 :
leﬁsts( 2 12(2 1)_ (23 1))(_SlnhﬁjL€1—

ezj cosh f; L&y — sin f; LE; + ey; cos B L&) + ey; (,BL(El —

§3) cosh B; L&, + 2 sinh B L, — B L(§; — &1) cosh B L&y —
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2sinh B L&) — eq; (—B;L(&; — &) cos BjLE, — 2sin BLE, +
BiL(§, — §1) cos BjL&y + 2sin B L&) + B L(S —

§2) sinh B; L&, — B;L(E, — &1) sinh B; L&y — BL(S; —

&) sin B, L&, + BiL(& — &) sin ;L& + 2 cosh B; L&, —

2 cosh B;L¢; + 2 cos B L, — 2 cos B LE;

_ o El4;

fo = ~22 /= -2
Where

WZ =

2 2

(2&2+61)(¢5-¢F (§2-61)° ;
Bj3L3< HHDEEEE) L& _(55_513)> (—Slnhﬁijl—

92]' cosh B] Lfl — sin B] Lfl + 64_]' CoS ﬁ] Lfl) -

.2L2( _ )2 .
(#) (cosh L&y + ey; sinh L&, — cos i L§; —

eq; sin B; L&) + BL(& — &) sinh B, LE, — 2B, L(&; —
§1)sinh B LSy — BiL(§y — $3) sin B LE, + 2B L(§2 —

&) sinf; L& + 3 cos B L&, — 3 cos B; L& + 3 cosh B LE, —
3cosh B L&) + ey (B L(&; — &) cosh B;LE, — 2B, L (&, —
&) cosh ;L& + 3sinh §;LE, — 3sinh L&) —

eq; (=B L(§1 — &) cos B; L&, + 2B L(§; — §1) cos B L&y —
3sin B; L&, + 3sin B L&)

Fy = B s [6Wh + B2 (6 — £0° (sinh B L6, -
sinh B; L&, + sin B; L&, — sin B;L&; + ey;(cosh B L&, —

cosh B;L&;) — eq;(cos B; L&, — cos B; Lfl))]

See

Equation

(3.2864)

See

Equation

(3.287)
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F4_ =
w  EIA
R YTy 6w + 2w, -
ﬂngg(Ez — 51)3(— Slnhﬁijl - ezj cosh ﬁjL€1 - Sinﬂijl +
eq; cos ;L&) + (cosh B LE, + ey; sinh B L&, — cos B; L&, —

eq; sin B L&) — (cosh B;LE; + ey; sinh B;LE; — cos B;LE; —

eq; sin B L&)

A 2ud L% [—12(sinh BjL1—sin Ble) 24(cosh BjLy+cos ﬁle)
.= T3 — _
J Mj ﬁj Ll ﬂj L1
24(sinh BjL1+sin ,B]-Ll)

B LY

(12(cosh BjLy+cos [)’le) 24(sinh BjLy+sin [)’le) n
2j -

373 4
BlL3 LY

24(cosh B;L1—cos [f’le))]

B7LS
L1 = L/Z
_ & sinh BL—sin BL 2 (sinh SL _ 2 _
M =3 [2 + 2BL 2j ( 2BL 1) T ey (1

sin SL cosh SL sin BL+sinh SL cos SL
2BL ) +2 ( BL ) +

1—cos BL cosh BL+sin BL sinh BL —sin? BL
2€4j 5L -

sinh BL sin BL+cosh BL cos BL—sinh 2 BL—1
262]' ( L +

cosh BL sin BL—sinh BL cos /?L)]
BL

Zezj e4j (

__cosh BL—cos L

2j 4 ™ sin BL—sinh AL

See Equation

(3.288)

See Equation

(3.293)

See Equation

(3.295)

See  Equation

(3.284)
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BlL = O, ﬁzL = 4.7300408, ﬁ3L = 7.853204‘7, ﬁ4L See Equation

= 10.99560784, (3.280)
BsL = 14.1371655, BsL = 17.278759658,

B,L = 20.42035224563

Note: d is a dimensionless constant and can be taken as equal to unity

3.2.6 For a beam pinned at one end and free at the other (Pinned-free beam)

If the beam is pinned at the near end (x = 0) and free at the far end (x = L), the

boundary conditions are

®(0) =0
@"(0)=0
0"(L) = 0 (3.296)
@ (L) =0

By substituting equations (3.296) into (3.109) we obtain

Cip—C3 =0 (3.297b)
C,? cosh BL + C,3? sinh fL — C38% cos BL — C4B% sin L = 0 (3.297¢)
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C1B3 sinh BL + C, 83 cosh BL + C383 sin BL — C,B3 cos BL = 0 (3.297d)
Putting equations (3.297a) to (3.297b) in matrix form

[ 1 0 1 0 ] o
| b 0 —p 0 [|C2
|82 coshBL  B?sinh B —BZcosBL —B%sinBL||C;
|g3sinh BL B3 coshBL  B3sinBL  —pB3cos pLILC

=0 (3.298)

For a non-trivial solution the determinant of the coefficients of the constants Cq, Co,

Cs and C4 must be zero .
~tanBL —tanh BL = 0 (3.299)
The first seven roots of equation (3.299) were obtained using the bisection method as
BiL = 0,B,L = 3.92660232, B3L = 7.06858275,
B,L = 10.210176123,
BsL = 13.35176878, BsL = 16.49336143135,
B,L = 19.634954084937 (3.300)

By substituting equations (3.300) into (3.114)

w; = 15.41820578 /5—’4 w; = 49.96486209 /5—’4 w3 = 104.2476964 |-
ulL ulL ulL

wy = 178.2697296 |— ws = 272.0309713 /E—’4 wg = 385.5314217 /E—’4 ,
ulL uL uL

w; = 518.7710809 /% (3.301)
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We observe that the natural frequencies for a pinned-free beam is the same as that of a
fixed-free beam except that the lowest frequency for a pinned-free bar is zero. This is

the frequency corresponding to a rigid body motion.

From equation (3.298) C; = C3 = 0 and by taking C, to be equal to one, the other

constant C4 can be obtained from equations as

sinh SL

= o (3.302)

By substituting the values of C; — C4 into equation (3.109) we obtain the equation of

the j™ mode shape of vibration

@;(x) = sinh B;x + f4; sin B;x (3.303)
Where

__ sinh BL
fay = et (3.304)

Equation (3.303) is the equation of the | mode of vibration of a pinned-free beam.
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uiidz

X /A
: r R;=0
Rl X2 z y
L A
(a) |
wiidz
F, | F
Xl AL A
I:1 > 7 F3
Xo v
A
(b)
F>
e A %
Fy > 7
Xo ¥
(c)
Figure 3.24

() A pinned-free beam under lateral vibration due to the inertial forces uii

(b) A segment of the beam under longitudinal vibration due to inertial forces uii

(c) The reduced/basic structure of an arbitrary element of the vibrating beam

Figure 3.24a shows a pinned-free beam under inertia forces. A segment of the beam

presented in Figure 3.24b is restrained by the fixed end forces F; — F4. The reduced

structure of the basic system is shown in Figure 3.24c.
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The equations for the fixed end forces (F; — F4) for a segment of the fixed-fixed beam
can be reproduced for this case of a pinned-free beam with ay; and ay; replaced by

f2;=1 and f4; and all functions not multiplied by a,;j and as; expunged.

From equation (3.132a)

w; A]u
J=1 gt oy —x1)3

63 (3.3054)

Where

2 .2
W1 — ,8]‘3 ((XZ‘HCl)Z(xZ xl) 2(9(2 xl )( COShﬁ]xl +f;1.] COSﬂ]xl) + (B(xl
xy) cosh B x, + 2 sinh f;x; — B (x, — x1) cosh fx1 — 2sinh B x1) — f4; (—,B(x1 —

X7) €0s fjx; — 2sin fx; + B (x2 — xq) cos Bjx1 + 2sinfBjx;) .. . . (3.305b)

From equation (3.134a)

2A
J=1 gt ey —xp)2

23 (3.3064)

Where

2.2 )2
W, = ,31‘3 <(2x2+x1;(x2 xf) X1(x22 x1) — (3 - x1)> (_ cosh B;x1 + fy; COS,B]xl) —

(M> (sinh B;x; — fi; sin B x;) + (B; (x4 — x2) cosh B2 — 28, (x —

x1) cosh B;x; + 3 sinh §;x; — 3 sinh §;x1) — fi; (—ﬁj (x4 — x3) cos B x, +

2; (x, — x1) cos Bjx; — 3sin B x, + 3 sin B x1) (3.306b)

From equation (3.138)
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2
w]-Aju

B =Sty (6w, + B2z — 1)* ((cosh B x; — cosh ;) -
faj (COS Bjx; — cos f; xl))] (3.307)

From equation (3.144)

) w'zA‘li 3 3
Fy = j=1 ﬁ]‘}(x]z_jxl)z [_6W1 +2W,; — ﬁj (xz — x1) (_ COShﬁjxl + f4j cos ﬁjxl) +

(sinh Bjxz — faj sin ﬁsz) — (sinh Bjx1 — fa; sin ﬁjxl)] (3.308)

Equations (3.305a — 3.308) are the equations of the fixed-end forces on a segment of a

fixed-free beam under free lateral vibration.

In order to evaluate the equations for the fixed end forces F; F,, F3 and Fg4, there is

need to derive an expression for A, for a pinned-free beam.

Derivation of the expression for A; for a pinned-free beam

Consider a uniform pinned-free beam under the action of its self weight propped at its

centre of gravity.

| Hg
™ « z %
— 2,
L L, % L, %
A Al I
v L %
A |

Figure 3.25: A Uniform pinned-free

beam under the action of its self weight

For0 <x <L,
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The equation of the bending moment at a distance x from the left support is
M, = -HZ (3.309)

Where [ is the mass per unit length of the beam and g is the acceleration due to

gravity.

By substituting equation (3.309) into the equation of elastic curve (equation 3.146)

and solving for the deflection y

Ely' = [ M, dx

3
==+ (3.310)

4
Ely = —% +c1x + ¢y (3.311)

Consider the boundary conditions

Hence the equation for the static deformation or deflection of the uniform beam under

its self weight for the region (0 < x < L) considered is
Ely = —% (x* — L3x) (3.312)
ForL; <x < 2L

2
M, = pg (=% + Lix - 13) (3.313)
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By substituting equation (3.313) into the equation of elastic curve and solving for the

deflection y

Ely' = [ M, dx

3 2
= ug (—% + lex - L%x) + (3.314)
4 3 2.2
Ely = ug (—;—4+LlTx—L12x )+clx+cz (3.315)

Consider the boundary conditions

3 3
' Hgli 13pug Li
Atx =1L, y = . 1=,

_ugli

AtX=L1, y=0 S Cy = .

Hence the equation for the static deformation or deflection of the uniform beam under

its self weight for the region (L; < x < 2Lq) considered is

(3.316)

4 3 2,2 3 4

x Lix Lix 13L3x L7

Ely = (——+ -1+ —4
y=Hg 24 6 2 24 6

From equations (3.312) and (3.316) let the initial deflection of the beam (at time t = 0)

be
u(x,0) = %(Lix —xY) for 0Kx<KI
1
u(x,0) = L%’(_x4 +4Lx3 — 1212x% + 13L3x — 41) for L, < x < 2L,

(3.317)

ug L3
24E]

Where d is a dimensionless constant equal to
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From equation (2.61a)

_ u L _ b orly ko2l
A = M—jfo u(x,0)@; dx = M—jfo u(x,0)@; dx + M—jle u(x,0)@; dx  (3.318)

L.foLl u(x,0)9; dx == b d

M; M_] 0 E(Laix - x4)(Sinh,8jx + ﬁ}] sin ﬁ].X') dx

_dulj [3sinh B;Lq _ 12cosh fjLy | 24sinh B;Ly 24 cosh f;Ly

- +
3sin BjL1  12cos B;Ly | 24sinfB;L;  24(—cos B;Lq)
f4j 212 373 44 - 515 (3-319)
Bi L1 B;Li BjLi BjLi

2Ly _
M—jle u(x,0)0; dx =

MLijZL1%(_x4 +4Lyx3 — 12L5x + 13L3x — 4L})(sinh B;x + fy; sin B;x) dx

3 Jo 7 (-t 4L — 1218 + 1313x — 419) (sinh §x + £ sin ;%) dx

(3.320)

Ly d
%f L—3(—x4 + 4L x3 — 1215x? + 13L3x — 4L})(sinh B;x + fy; sin B;x) dx
J 70 1

_duli [3sinh BjL1  12(cosh BjL1—2)  24cosh B;L; +f (—3 sin B;Lq
M | pEA B33 gL AN
12(cos Ble—Z) 24 cos ,Ble)]
3.321
B3 B13 ( )

u (2L d . .
M—jfo ! E(—x4 + 4Ly x3 — 1215x? + 13L3x — 4L})(sinh B x + f3; sin Bx) dx =

d‘uLZ1 [—10 cosh 2B;L4 19 sinh 26,14 24 cosh 2B;Lq 24 sinh 2B;Lq

272 - 3,3 414
M; BjlL1 B;'L1 B; L1 B;'Li

24 cosh Zﬁle -|-f (10 cos 2[)’]-L1 19 sin ZBjL1 24 cos Zﬂle 24 sin Zﬁle 24 cosh Zﬁle):l
———L—+fs; -
g i\ 7 7 7 7

(3.322)
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By substituting equation (3.322) and (3.321) into equation (3.320) we obtain

—10 cosh 28,1y 19 sinh 26,14 24 cosh 2B;Lq

b r2ly du L3
— u(x,0)0; dx = +
M; I R M; Bila 7L 313
24 sinh 2B;Lq 24 cosh 2B;L +f (10 cos 2Ly 19sin 28;L4 24 cos 2B;Ly 24sin 2B;Lq
Bt B7L3 AN B3 B33 Bt
24 cosh 2Ly dul [BSinh BjL1  12(cosh B;L1—2)  24cosh B;L; +f, (—3 sin B;Lq
B7L My | BHA B3 B7L AN

12(cos BjL1—2) 24 cos ﬁle)] (3 323)

B3 B L
By substituting equation 3.323 and (3.319) into (3.318) we obtain

d,uLzl [—10 cosh 2B;Lq 19 sinh 26,14 _ 24 cosh 2B;Lq 24 sinh 2814 _

3
M; Bil1 BFLY B3 BrLY

24 cosh 2Ly +f, (10 cos 28;Ly  19sin 2Ly | 24cos 2B;Ly  24sin 2B;Ly = 24cosh ZﬁjL1>]

2 i .
dulj [ 24 24 sinh B L4 (3324)

M:

—6sin B;Lq 24 24 sin ﬁ]-L1>]
J

g3 prLk aj ( g2z g3 i
Equation (3.324) is the equation for the arbitrary constant A; for a pinned-free beam.
b) Derivation of the expression for the generalized mass M;j for a pinned-free beam
By substituting the general modal equation (3.303) into equation (3.165)

Ly, : 2
M=, (sinh Bjx + fy; sin B;x)" dx

= ufOL(Z sinh f; x cosh f;x + 2f,; sin B x cosh B x + sinh? Bjx —

2 sinh B x cos Bjx + 2f4; sin B;x sinh f; x — 2f,; cos B;x sin f§; x +f43. sin? ,Bjx)dx
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_ ML sinh BL _ 2 __sin BL 1—cos BL cosh BL+sin BL sinh BL—sin? L _
R [( 2BL 1) + faj (1 28L )+ 2faj ( BL )

2 (sinh BL sin BL+cosh BL cos BL—sinh 2 BL—1 cosh BL sin BL—sinh SL cos SL

BL ) +2fy ( BL )] (3.325)

Equation (3.325) is the equation of the generalized mass of a pinned-free beam for the

j™ mode of vibration.

Having derived the equations of the fixed-end forces for a segment of a pinned-free
beam under free vibration, a summary of the equations are presented in Table 3.7. As
in previous Tables the distances x; and X, were normalized using equations (3.35) and
(3.36) and square of the j™ natural frequency (Djz was eliminated from the equations by

substituting equation (3.173)
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Table 3.7: Summary of Fixed-end forces on a Segment of a Fixed-free Beam under

Free Lateral vibration

S/N | Description

Remarks

1 Pinned-Free Beam

uiidx
1
<
A Xl )
X2 > X ¥ L
L
wiidx
F2 N Fa
X1 C K
£

For0<¢é¢ <lor0<x; <L

0<é&<1lor0<x, <L

&> &
X
$1 = 1/L
X
$2 = Z/L
_ o El4;
Fi==6limpmg ™
Where

(E+i0(E3-¢8)  2(&3-¢3
leﬁjSLs( 2 12(2 t)_ (23 1))(—coshﬁjL€1+

faj cos L&) + (BL(§; — &) cosh B;LE, + 2 sinh L&, —

B;iL(¢; — &) cosh B; L&y — 2sinh B; L&) — fu; (=B L(& —

See  Equation

(3.305a)
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§2) cos B LE; — 2sin B LE, + B L(E, — &) cos B L, +

2 sin B] LEl)
_ . EIA]-
Fa= J=1 25,07 V2
Where
W2 =

3.3 [ QEL+E(85-¢F)  &1(6—81)?
AL ( 2 2

(& — &) (~ cosh By LE + fi cos By L) -

(@) (sinh ;L& — fy; sin ;L&) + (B, L(& —
§z) cosh B LE; — 2 L(§; — &1) cosh B;LE; + 3sinh f; L&, —
3sinh B L§1) — faj (=B, L(& — &) cos BiLé, + 2B L(&; —

&) cos ,8ij1 — 3sin ,BjLEZ + 3sin ,8]- L&)

El14;

Fs =Yg ny [6W1 + B (& — &1)° ((cosh[)’]-sz -

cosh B L&) — fu; (cos B L&, — cos B; Lf1))]

F4:

oo [—6W; + 2w, —

J= 1L2<sz f )2

BPL3 (&, — &1)*(—cosh B; L&, + fi; cos B;L&;) + (sinh B LE, —

faj sinB;LE;) — (sinh B; L&) — f3; sin B; L&y ]

A =
BjL1 B7LY B3

) M

d,uL% [—10 cosh 2f;Lq 19sinh 2f;L4 24 cosh 2B;Lq
J

See Equation

(3.306a)

See Equation

(3.307a)

See  Equation

(3.308)

See  Equation
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24sinh 2f;Ly 24 cosh 2Ly +f, (10 cos 2fjLy  19sin 26;Ly (3.324)

24 cos 20iLq 24 sin 203;Lq 24 cosh 2f:Lq dul?
J J J KL

L3 BiLe B7LY M;

24

24 sinh B;Lq +f, (—6sin BjL1 24 24 sin ﬁle)
piLt Y\ pri o T pid g

1\/]]. =
See  Equation
ul [ (sinh SL sin BL
2 [( 28L 1) + f‘é (1 2L ) + (3.325)
2 1—cos BL cosh BL+sin BL sinh BL—sinZ BL
fyj ( BL ) B
2 (sinh BL sin BL4+cosh BL cos BL—sinh 2 [)’L—l) +
BL

cosh BL sin SL—sinh BL cos SL
2 ( = )

sinh ;1 See  Equation
for = e (3.304)

See equation
BiL =0,B,L = 3.92660232, 3L = 7.06858275,

(3.300)
BsL = 10.210176123,

BsL = 13.35176878, 5L = 1649336143135,

B,L = 19.634954084937etc.

Note: d is a dimensionless constant and can be taken as equal to unity
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4.1

Chapter Four

CALCULATION OF THE STIFFNESS MODIFICATION FACTORS FOR

SEGMENTS OF A VIBRATING SYSTEM

The equations for calculating the fixed end forces for segments of a vibrating beam
are presented in Tables 3.1 to 3.6. With these equations the force equilibrium
equations for segments of a vibrating beam can be written and the inherent forces in
the system that are causing motion calculated at the nodes/junctions of the element.
An arbitrary segment of a vibrating element is identified by means of the normalized
distances &; and &, of its nodes from an origin. &; and &, are numbers between 0 and

1.

Longitudinally vibrating bars

The equations of the fixed end forces F; and F, of segments of a longitudinally
vibrating bar are presented in Tables 3.1 and 3.2. The force equilibrium equations for
a segment of a longitudinally vibrating bar can be written as

{F} + [kl{u} ={P} (4.1)
Where {F} is the fixed end forces, [k] is the stiffness of the segment under

consideration and {u} is a vector of nodal displacements.

" ={] @2
EA- _E4
k1= %1 & (43)

(e, 0] _ (u(&1,0)
{”:&éﬁﬁ:&éﬁﬁ
=i} (40
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E is the young’s modulus of elasticity of the material of the segment and A is the
cross sectional area of the bar. | is the length of the segment and is equal to x, — X; but
since the length of the bar L has been normalized and is now equal to unity
l=%-§& (4.5)

u; is the total displacement at the position x; while u; is the total displacement at the
position X,. The total displacement is obtained by totaling the displacements due to all
the modes of vibration.

{P} is the vector of nodal forces; they represent the forces acting on the nodes of the

isolated segment.

@ ={ 46

From equation (4.1) P; and P, can be expressed as

EA EA
P1 = Fl +Tu1 —TuZ

= F1 + % (u1 - uz) (463.)
2 1

EA EA
Pz = FZ —Tul +Tu2

=F, + % (—uy + uy) (4.6b)
2 1

Just like we do in the decomposition of structures, a segment of a vibrating bar can be
isolated and will be in equilibrium with the application of the force vector {P}. The
force {P} represents the effect of the removed adjourning elements on the isolated

segment.
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Figure 4.1

(a) Anisolated segment of the longitudinally vibrating continuous
bar showing the nodal forces P; and P,

(b) An equivalent lumped massed segment showing the nodal forces

Figure 4.1a shows a segment of the vibrating continuous or real bar. The nodal forces
on the bar P; and P, are calculated from the equilibrium equations (equation (4.1)).
When the continuous bar is represented by a lumped massed bar (a bar that has its
distributed masses lumped at selected nodes), the equivalent segment of the bar is
shown in Figure 4.1b. Just like the real segment the equivalent segment is supported
by the same nodal forces P; and P, and has the same nodal displacements as the real
bar. This implies that for the lumped massed beam to be equivalent to the real beam

they must share the same inherent forces and displacements at the nodes.

The equation of motion for the lumped massed bar is given as

[ml{i} + [kql{u} = {P} (4.7)
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Where [m] is the inertial matrix, {u} is a vector of nodal displacement and kyq is the

stiffness of the lumped massed segment under consideration.

The proposed stiffness matrix for the lumped massed segment kq is

EA EA o
- 1 -2
[kd] = lEA EAl (48)
- o

where oz and ay are the stiffness modification factors for longitudinal vibration. They
help redistribute the stiffness of the lumped massed bar in such a way as to annul the
effect of the discretization of the bar due to the lumping of its distributed mass on

selected nodes.

n(2—¢1) 0
_ 2
[m] = 0 u(€2—¢1) (4.9)

2

M is the mass per unit length of the beam.

When treating the isolated segment of the vibrating beam alone the vector of nodal

acceleration is written as

@ ={ier o) = ool = o) (410

o is the fundamental frequency of the vibrating mass while u;; and uy; are the values

of u; and u, for the first mode only.

By substituting equations (4.8) to (4.10) into equation (4.7) we obtain

12—¢1) EA EA
—z 0 {—wzun} LT TR {un}_{”l} (4.11)
0 £ =) | (—w?uy, _Eaz Eal Uz P, '

2 l l
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By substituting equation (4.5) into (4.11) and multiplying out the first row of equation

(4.11)
1 —§)wu EA EA
—— ; =+ £, Tt T g Qollyy = Py
_ 2
Qg — Aylyy = szAﬁ (Pl +#(52 f;)w u11) (4.12)

Similarly by multiplying out the second row of equation (4.11)

u(E2—E1)w?uy EA EA
— — au au,4 = P
5 £, ¢, X2l +€ &, M1zt 2
— _ 2
Ay — Ayl = szAfl (P2 _I_M(fz 5;)(» u21) (4.13)

Put in matrix form equation (4.12) and (4.13) can be written as

$2-6 (Pl +u(52—$1)w2u11)

U1 —u21] {al} EA 2
= 4.14
[u21 —uprila; §2—61 (P +y(§‘2—€1)w2u21) ( )
EA \'?2 2
§2—¢1 1 (E—Ew?uqq
{Cﬁ} _ [un —1121]_1 EA (P1 + 2 )
az)  lupzp  —ugp §) 51( 1 (&= w?uy
EA P + 2 )
§2-61 u(&—)w?uqq
__ 1 —Uyq u21] EA (Pl + 2 ) (4.14)
(wi—uf) l=Uz1 Ul ) 2-&1 (P +M(52—51)w2u21) '
EA \'?2 2
From equation (4.14) a; and o, can be expressed as
_s2=t1, (p, {u(fz—h)wzun =61, (p, =u($2—$1)w2uz1
a; = E4 ( 2 — >_quA ( z ) (4.15)
51Ul
§2-41,, P, }#(Ez—fl)wzum fz—fldm P, =M(é’z—é’ﬂwzull
ay = EA 11( 2 ) EA ( 2 ) (4.16)

2 2
Uuz1—un
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4.1.1 Fixed-fixed, fixed-pinned and pinned-pinned bars

These are bars restrained from longitudinal vibration at the ends. From section 3.1.1

the first natural frequency w for such a bar is given as

w = n\/i% (4.17)
In normalized coordinates, the length of the bar L = 1 hence

o= 2= (4.173)
Likewise

jmxy
L

u; = u(xy,0) = 27’:1 A; sin

= Z}X’Zl A; sin jmé; (4.18)
Uy = u(x,0) = X721 4 sinﬁTLx2

= Z]‘-”:l A; sin jmé, (4.19)
From Table 3.1
A = 2el (2‘123(—;3”}) =2 (2‘123(—;3”’) (4.20)

j=12345,..,©

Even though equations (4.18) and (4.19) are infinite series, only the first few terms
needs to be evaluated to get values of very good precision. This is so because the

series converge very quickly.
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By substituting equation (4.17a) into equations (4.15) and (4.16) and taking EA =1

we obtain

~§2=8un (Pl +W)+(fz —&)uz1 (Pz +W>
“ e (4.21)

2 2
Uuzi—umn

(E2-¢m%un (¢2-¢Dm%uny
(E2—¢Duq | Pp+=—— (&2 —¢Dupq | P +—2———
ay = ( 2 ) ( 2 ) (422)

2 2
uz1-uU11

Equations (4.21) and (4.22) can be used to evaluate the stiffness modification factor
for longitudinal vibration of a segment of a fixed-fixed or fixed-pinned bar located
between &; and &, of the bar’s total length. Some numerical demonstrations of their
use are presented below. For ease of presentation the calculations will be presented in

a tabular form.

Example 1: when §; = 0, &, = 0.3

Table 4.1: Calculation of the Stiffness modification factor for an element positioned at

& =0, & = 0.3 on a fixed-fixed bar under longitudinal vibration

Using the equations presented in Table 3.1

$1=0, ;=03

j Aj Fyj Fy Usj Uy;
1 | 0.25801227546560 | 0.11478175044198 | 0.21934693877846 0 0.20873631560902
2 0 0 0 0 0
3 | 0.00955601020243 | 0.08022004251217 | 0.09549849578482 0 0.00295296955097
4 0 0 0 0 0
5 | 0.00206409820372 | 0.03930310611130 | -0.0068803273457 0 -0.0020640982037
6 0 0 0 0 0
7 0.00075222237745 0.01576740240345 | -0.0149577678401 0 0.00023244949818
8 0 0 0 0 0
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9 0.00035392630379

0.00905258916811

0.00683642625235

0.00028633239453

Total

0.25912489063701

0.29984376562978

0.21014396884897

U11:O

Up; = 0.20873631560902

From equations 4.6a and 4.6b

P, =-0.95960478680024

P,=0.40063613053345

From equations 4.21 and 4.22 the stiffness modification factors for longitudinal vibration of the element are

oy = 1.01993444314165

ap = 1.37916315711590

J is the mode number, j = 1 stands for the first mode, j = 2 for the second mode and so

on. The values of the paramaters A;, Fj, F»;, usj and uy; are evaluated for modes 1 to 9

and summed using the equations present in Table 3.1 to obtain end forces F; and F;

and the end displacements u; and u,. The same procedure is applied to the other

examples that follow.

Table 4.2: Calculation of the Stiffness modification factor for an element positioned at

& = 0.3, & = 0.5 on a fixed-fixed bar under longitudinal vibration

Using the equations presented in Table 3.1

El = 03, EZ =0.5

i Aj Fij Fa Uyj Uyj

1 | 0.25801227546560 | 0.23006098063538 | 0.24637979928289 | 0.20873631560902 | 0.25801227546560
2 0 0 0 0 0

3 | 0.00955601020243 | -0.0231103651813 | -0.0625448987670 | 0.00295296955097 | -0.0095560102024
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0 0 0 0 0
0.00206409820372 | -0.0206409820373 | 0.02064098203725 | -0.0020640982037 | 0.0020640982037
0 0 0 0 0
0.00075222237745 | 0.02065595887886 | -0.0049233593782 | 0.00023244949818 | -0.0007522223775
0 0 0 0 0
0.00035392630379 | -0.0062199544836 | 0.00033796954634 | 0.00028633239453 | 0.00035392630379

Total 0.20074563781213 | 0.19989049272132 | 0.21014396884897 | 0.25012206739323

up; = 0.20873631560902

Uy = 0.25801227546560

From equations 4.6a and 4.6b

P, =-0.40063613053345

P2:0

From equations 4.21 and 4.22 the stiffness modification factors for longitudinal vibration of the element are

a; = 0.92460237451664

ap = 0.89888134804473

Table 4.3: Calculation of the Stiffness modification factor for an element positioned at

& = 0.5, & = 1.0 on a fixed-fixed bar under longitudinal vibration

Using the equations presented in Table 3.1

$1=05 & =1
i Aj Fij Fa Uyj Uyj
1 | 0.25801227546560 | 0.51602455093119 | 0.29454491820751 | 0.25801227546560 0
2 0 0 0 0 0
3 | 0.00955601020243 | -0.0191120204049 | 0.10917529475360 | -0.0095560102024 0
4 0 0 0 0 0
5 | 0.00206409820372 | 0.00412819640745 | 0.02829458235810 | 0.0020640982037 0
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0 0 0 0 0
0.00075222237745 | -0.0015044447549 | 0.01804667881896 | -0.0007522223775 0
0 0 0 0 0
0.00035392630379 | 0.00070785260759 | 0.00929917787561 | 0.00035392630379 0
Total 0.50024413478647 | 0.45936065201378 | 0.25012206739323 0

up; = 0.25801227546560

U21:O

From equations 4.6a and 4.6b

P]_:O

P,=-0.95960478680024

From equations 4.21 and 4.22 the stiffness modification factors for longitudinal vibration of the element are

a; = 1.23370055013617

a, = 1.85961072020428

Table 4.4: Calculation of the Stiffness modification factor for an element positioned at

& =0,&, = 0.2 on a fixed-fixed bar under longitudinal vibration

Using the equations presented in Table 3.1

$1=0, § =02

Aj Fij Fy Uyj Uy;
0.25801227546560 0.05229041699320 | 0.10251457649081 0 0.15165581042910

0 0 0 0 0
0.00955601020243 0.04462174548473 | 0.07327261120683 0 0.00908830577280

0 0 0 0 0
0.00206409820372 0.03242277876555 | 0.03242277876555 0 0

0 0 0 0 0
0.00075222237745 0.02011926403294 | 0.00153480148183 0 -0.0007154059938
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0 0 0 0 0
0.00035392630379 | 0.01104719379204 | -0.0091360210330 0 -0.0002080326618
Total 0.16050139906845 | 0.20060874691205 0 0.15982067754636
u;; =0

Up; = 0.15165581042910

From equations 4.6a and 4.6b

P, =-0.95960478680024

P,=0.59849464081974

From equations 4.21 and 4.22 the stiffness modification factors for longitudinal vibration of the element are

a; = 0.98667228655336

ap = 1.26550348988951

Table 4.5: Calculation of the Stiffness modification factor for an element positioned at

& =0.2, & = 0.6 on a fixed-fixed bar under longitudinal vibration

Using the equations presented in Table 3.1

& =02 &=06

Aj Fij Fa Ugj Uy;
0.25801227546560 | 0.42144336206320 | 0.48480085467683 | 0.15165581042910 | 0.24538425586570
0 0 0 0 0
0.00955601020243 | 0.00893188675855 | -0.1096256886186 | 0.00908830577280 | -0.0056168818677
0 0 0 0 0

0.00206409820372 | 0.03242277876555 | 0.03242277876555 0 0
0 0 0 0 0
0.00075222237745 | -0.0080057094849 | -0.0104890704485 | -0.0007154059938 | 0.00044214521991
0 0 0 0 0
0.00035392630379 | 0.00841728586349 | 0.00277091434318 | -0.0002080326618 | -0.0003366039175
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Total

0.39836404643476

0.39987978871846

0.15982067754636

0.23987291530035

up; = 0.15165581042910

Up; = 0.24538425586570

From equations 4.6a and 4.6b

P, =-0.59849464081974

P,=-0.19974919433349

From equations 4.21 and 4.22 the stiffness modification factors for longitudinal vibration of the element are

oy = 1.23832355716995

ap = 1.25294994804916

Table 4.6: Calculation of the Stiffness modification factor for an element positioned at

& = 0.6, &, = 1 on a fixed-fixed bar under longitudinal vibration

Using the equations presented in Table 3.1

$1=06, & =1

i Aj Fij Fa Uyj Uyj
1 | 0.25801227546560 | 0.36298089857890 | 0.19710882947446 | 0.24538425586570 0
2 0 0 0 0 0
3 | 0.00955601020243 | 0.05882051484783 | 0.10410547901811 | -0.0056168818677 0
4 0 0 0 0 0
5 | 0.00206409820372 | -0.0324227787656 | 0.03242277876555 0 0
6 0 0 0 0 0
7 | 0.00075222237745 | 0.01448831153252 | 0.01543687101428 | 0.00044214521991 0
8 0 0 0 0 0
9 | 0.00035392630379 | -0.0039338522763 | 0.01084854027697 | -0.0003366039175 0

Total 0.39993309391739 | 0.35992249854937 | 0.23987291530035 0
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up; = 0.24538425586570

U21:O

From equations 4.6a and 4.6b

P, =0.19974919433348

P,=-0.95960478680024

From equations 4.21 and 4.22 the stiffness modification factors for longitudinal vibration of the element are

a; =1.11517880110114

a, = 1.56424833926666

Tables 4.1 to 4.6 are illustrations on how the inherent nodal forces P; and P, and the
stiffness modification factors o and oy are calculated. The nodal forces P, and P, are
the forces acting at the selected nodal point if the beam segment under consideration
is decomposed. These nodal forces represent the effect of the removed adjacent beam
segment on the beam segment under consideration. Using the methods presented in
Table 4.1 to 4.6 the values of stiffness modification factors at different values of &;
and &, for the longitudinal vibration of a fixed-fixed bar are presented in Table 4.7. A
sample matlab program for the calculation of the stiffness modification factors for a

segment of a beam restrained at both end can be found in Appendix B.
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Table 4.7: Stiffness modification factors for the longitudinal vibration of a fixed-
fixed/fixed-pinned/pinned-pinned bar

0 0.05 0.10 5.215 0.20 0.25 0.30
0 | o - 1143151 | 1058495 | 0997834 | 0.986672 | 1.000866 | 1019934
o - 1188747 | 1203565 | 1228843 | 1265503 | 1314943 | 1379163
005 | o | 1143151 - 1.080427 | 1024910 | 1006729 | 1012629 | 1.026512
ap | 1188747 - 1113157 | 1115460 | 1.141255 | 1.181044 | 1.232144
010 | oy | 1058495 | 1.080427 - 0.998704 | 0.980187 | 0.981916 | 0.991600
o, | 1203565 | 1.113157 - 1014836 | 1.019911 | 1.042110 | 1.074280
015 | oy | 0997834 | 1.024910 | 0.998704 - 0.938530 | 0.935178 | 0.938885
o, | 1228843 | 1115460 | 1.014836 - 0.943689 | 0.948312 | 0.962200
020 | o | 0986672 | 1.006729 | 0.980187 | 0.938539 - 0.901715 | 0.897092
0p | 1265503 | 1141255 | 1019911 | 0.943689 - 0.903322 | 0.902645
025 | o | 1000866 | 1012629 | 0981916 | 0.935178 | 0.901715 - 0.867017
o, | 1314943 | 1181044 | 1042110 | 0048312 | 0.903322 - 0.868061

030 | o | 1019934 | 1026512 | 0991599 | 0.938885 | 0.897092 | 0.867017 -

ap | 1379163 | 1232144 | 1074280 | 0.962200 | 0.902645 | 0.868061 -
035 | o | 1054605 | 1057992 | 1.018826 | 0.959383 | 0.908659 | 0.867950 | 0.829199
ap | 1460963 | 1299001 | 1121355 | 0.990718 | 0.916692 | 0.869455 | 0.828832
040 | oy | L115179 | 1117462 | 1.074506 | 1.008167 | 0.948618 | 0.897608 | 0.846355
0, | 1564248 | 1386386 | 1.188496 | 1.039554 | 0.952085 | 0.893711 | 0.841244
045 | oy | 1182917 | 1189762 | 1.146079 | 1.074437 | 1.007395 | 0.947269 | 0.884015
o, | 1694512 | 1496212 | 1274497 | 1.104955 | 1003103 | 0.933439 | 0.868971
g | os0 | oy | 1233701 | 1254602 | 1215722 | 1141712 | 1069081 | 1000866 | 0.924602
o, | 1859611 | 1632023 | 1379063 | 1.183281 | 1063227 | 0.979250 | 0.898881
055 | o | 1268354 | 1315400 | 1.288508 | 1.216097 | 1140810 | 1.066697 | 0.976738
o | 2071070 | 1.803974 | 1511273 | 1283034 | 1141149 | 1040586 | 0.940450
060 | oy | 1288113 | 1378511 | 1.374214 | 1310002 | 1.238324 | 1.165702 | 1.068050
o, | 2346373 | 2027226 | 1685114 | 1418270 | 1252950 | 1.137999 | 1.020543
065 | oy | 1249068 | 1411994 | 1447670 | 1401772 | 1.343039 | 1.284923 | 1.195354
o | 2713217 | 2.318450 | 1909302 | 1591796 | 1398286 | 1272354 | 1146426
070 | oy | 1074514 | 1359921 | 1462504 | 1446515 | 1407191 | 1.374004 | 1.310103*
o, | 3218047 | 2.702364 | 2192812 | 1798719 | 1550662 | 1.416893 | 1.288271*
075 | og | 0698504 | 1104162 | 1.408082 | 1436868 | 1416483 | 1.406445% | 1.374004
0, | 3944830 | 323164 | 2570783 | 2.059370 | 1.740833 | 1557625* | 1.416893
080 | o | 0001153 | 0.883447 | 1298618 | 1400046 | 1412313 | 1.416483 | 1.407191
0, | 5062014 | 4010719 | 3.125278 | 2.446031 | 2.003625* | 1.740833 | 1.559662
085 | oy | -1459811 | 0229120 | 1047829 | 1.340164* | 1400046 | 1436868 | 1.446515
0, | 6963446 | 5225115 | 3975516 | 3.060516* | 2446031 | 2.059370 | 1.798719
000 | o; | 5085133 | -1.343961 | 0.348648* | 1047829 | 1298618 | 1.408082 | 1.462504
o, | 10.832088 | 7.246460 | 5.263551* | 3.975516 | 3.125258 | 2570783 | 2.192812
095 | oy | -17.031813 | -5.197933* | -1.343961 | 0.229120 | 0.883447 | 1.194162 | 1.359921
o, | 22586202 | 11.150537* | 7.246460 | 5225115 | 4.010719 | 3231645 | 2.702364
100 | o - -17.031813 | -5.085133 | -1.450811 | 0.001153 | 0.698504 | 1.074515
o - 22586202 | 10.832088 | 6.963446 | 5062014 | 3.044830 | 3.218047

$2
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0.35 0.40 0.45 0.50 0.55 0.60 0.65
0 | oy | 1054605 | 1115179 | 1182917 | 1233701 | 1.268354 | 1.288113 | 1.249068
oy | 1460963 | 1564248 | 1694512 | 1.850611 | 2.071070 | 2346373 | 2.713217
005 | o | 1057992 | 1117462 | 1117462 | 1.254602 | 1.315400 | 1378511 | 1.411994
op | 1299001 | 1386386 | 1386386 | 1.632023 | 1.803974 | 2.027226 | 2.318450
010 | oy | 1018826 | 1.074506 | 1.074506 | 1.215722 | 1.288508 | 1374214 | 1.447670
op | 1121355 | 1188496 | 1188496 | 1.379063 | 1511273 | 1.685114 | 1.909302
015 | o | 0.959383 | 1008167 | 1.008167 | 1.141712 | 1.216097 | 1.310002 | 1.401772
oy | 0990718 | 1039554 | 1.039554 | 1183281 | 1.283034 | 1.418270 | 1.591796
020 | o | 0.908650 | 0.948618 | 0.948618 | 1.069081 | 1.140810 | 1.238324 | 1.343039
oy | 0916692 | 00952085 | 0952085 | 1.063227 | 1.141149 | 1.252950 | 1.398286
025 | o | 0867949 | 0.897608 | 0.897608 | 1.000866 | 1.066697 | 1165702 | 1.284923
oy | 0869455 | 0893711 | 0.893711 | 0.979259 | 1.040586 | 1.137999 | 1.272354
030 | o; | 0829199 | 0.846355 | 0.846355 | 0.924602 | 0.976738 | 1.068050 | 1.195354
op | 0.828832 | 0841244 | 0841244 | 0898881 | 0.940450 | 1.020543 | 1.146426
035 | o - 0.806627 | 0.806627 | 0.854040 | 0.883238 | 0.951720 | 1.069273*
0l - 0.804377 | 0.804377 | 0.833896 | 0.850730 | 0.903873 | 1.010934*
040 | oy | 0.806627 - 0.810954 | 0.820405 | 0.825416 | 0.861619* | 0.951720
o | 0.804377 - 0.808189 | 0.810737 | 0.805463 | 0.827032* | 0.903873
045 | oy | 0.830575 | 0.810954 - 0.825638 | 0.816815* | 0.825416 | 0.883238
o | 0.820765 | 0.808189 - 0.823439 | 0.808272* | 0.805463 | 0.850730
g | 050 | @ | 0854040 | 0820405 | 0820405 - 0.825638 | 0.820405 | 0.854040
o | 0.833896 | 0.810737 | 0.810737 - 0.823439 | 0.810737 | 0.833896
055 | o | 0883238 | 0.825416 | 0.816815* | 0.825638 - 0.810954 | 0.830575
o | 0850730 | 0.805463 | 0.808272* | 0.823439 - 0.808189 | 0.820765
060 | o; | 0951720 | 0.861619* | 0.825416 | 0.820405 | 0.810954 - 0.806627
o | 0.903873 | 0.827032* | 0.805463 | 0.810737 | 0.808189 - 0.804377
065 | og | 1.069273% | 0951720 | 0.883238 | 0.854040 | 0.830575 | 0.806627 -
oy | 1.010934% | 0903873 | 0.850730 | 0.833896 | 0.820765 | 0.804377 -
070 | oy | 1195354 | 1068050 | 0.976738 | 0.924602 | 0.884015 | 0.846355 | 0.829199
op | 1146426 | 1020543 | 0.940450 | 0.898881 | 0.868971 | 0.841244 | 0.828832
075 | oy | 1.284923 | 1165702 | 1.066697 | 1.000866 | 0.947269 | 0.897608 | 0.867949
op | 1272354 | 1137999 | 1.040586 | 0.979259 | 0.933439 | 0.893711 | 0.869455
080 | oy | 1343039 | 1238324 | 1140810 | 1.069081 | 1.007395 | 0.948618 | 0.908659
op | 1.398286 | 1252050 | 1141149 | 1.063227 | 1.003103 | 0.952085 | 0.916692
085 | oy | 1401772 | 1310002 | 1216097 | 1141712 | 1.074437 | 1.008167 | 0.959383
op | 1591796 | 1418270 | 1.283034 | 1183281 | 1.104955 | 1.039554 | 0.990718
090 | oy | 1447670 | 1.374214 | 1288508 | 1215722 | 1.146079 | 1.074506 | 1.018826
op | 1909302 | 1685114 | 1511273 | 1.379063 | 1.274497 | 1.188496 | 1.121355
095 | oy | 1411994 | 1.378511 | 1315400 | 1254602 | 1.189762 | 1.117462 | 1.057992
op | 2318450 | 2027226 | 1803974 | 1632023 | 1496212 | 1.386386 | 1.299001
100 | o | 1249068 | 1288113 | 1.268354 | 1.233701 | 1.182917 | 1.115179 | 1.054605
op | 2713217 | 2346373 | 2.071070 | 1.859611 | 1.694512 | 1564248 | 1.460963
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$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0 | o | 1074514 | 0698504 | 0.001153 | -1.459811 | -5.085133 | -17.031812 -
o, | 3218047 | 3.944830 | 5062014 | 6.963446 | 10.832088 | 22.586202 -
005 | oy | 1359921 | 1194162 | 0.883447 | 0229120 | -1.343961 | -5.197933* | -17.031812
o, | 2702364 | 3231645 | 4010719 | 5225115 | 7.246460 | 11.159537* | 22586202
010 | oy | 1462504 | 1408082 | 1.208618 | 1.047829 | 0.348648* | -1.343961 | -5.085133
o | 2192812 | 2570783 | 3.125258 | 3.975516 | 5.263551* | 7.246460 | 10.832088
015 | oy | 1446515 | 1436868 | 1400046 | 1340164* | 1.047829 | 0229120 | -1.459811
op | 1798719 | 2059370 | 2446031 | 3.060516* | 3.975516 | 5225115 | 6.963446
020 | oy | LA407191 | 1416483 | 1412313* | 1409046 | 1.298618 | 0.883447 | 0.001153
op | 1559662 | 1740833 | 2.003625* | 2446031 | 3.125258 | 4.010719 | 5.062014
025 | oy | 1374004 | 1406445* | 1416483 | 1436868 | 1.408082 | 1.194162 | 0.698504
0, | 1416893 | 1557625 | 1740833 | 2059370 | 2570783 | 3.231645 | 3.944801
030 | oy | 1:310103* | 1.374004 | 1.407191 | 1446515 | 1462504 | 1.359921 | 1.074515
oy | 1.288271* | 1.416893 | 1559662 | 1.798719 | 2.192812 | 2.702364 | 3.218047
035 | oy | 1195354 | 1284923 | 1.343039 | 1401772 | 1447670 | 1.411994 | 1.249068
o | 1146426 | 1272354 | 1.398286 | 1501796 | 1.909302 | 2.318450 | 2.713217
040 | oy | 1068050 | 1.165702 | 1.238324 | 1.310002 | 1.374214 | 1378511 | 1.288113
0 | 1020543 | 1137999 | 1252050 | 1418270 | 1.685114 | 2.027226 | 2.346373
045 | o | 0976738 | 1.066696 | 1.140810 | 1.216097 | 1.288508 | 1.315400 | 1.268354
0y | 0940450 | 1040586 | 1.141149 | 1283034 | 1511273 | 1803974 | 2.071070
g | 050 | oy | 0924602 | 1000866 | 1069081 | 1141712 | 1215722 | 1254602 | 1233701
o, | 0898881 | 0079259 | 1.063227 | 1.183281 | 1.379063 | 1.632023 | 1.859611
055 | oy | 0884015 | 0.947269 | 1.007395 | 1.074437 | 1.146079 | 1.189762 | 1.182917
0, | 0868971 | 0033439 | 1003103 | 1.104955 | 1274497 | 1496212 | 1.694512
060 | 0oy | 0846355 | 0.897608 | 0.948618 | 1.008167 | 1.074506 | 1117462 | 1.115179
0, | 0841244 | 0893711 | 0052085 | 1.039554 | 1.188496 | 1.386386 | 1.564248
065 | oy | 0829199 | 0.867949 | 0.908659 | 0.959383 | 1.018826 | 1.057992 | 1.054605
0, | 0828832 | 0.869455 | 0016692 | 00990718 | 1.121355 | 1299001 | L1.460963
070 | o - 0.867017 | 0.897092 | 0938885 | 0.991599 | 1.026512 | 1.019934
a - 0.868061 | 0.902645 | 0962200 | 1074280 | 1.232144 | 1379163
075 | o | 0.867017 - 0901715 | 0935178 | 0981916 | 1.012629 | 1.000866
0y | 0.868061 - 0903322 | 0948312 | 1042110 | 1.181044 | 1314943
080 | o | 0897092 | 0.901715 - 0.938539 | 0.980187 | 1.006729 | 0.986672
0, | 0902645 | 0.903322 - 0043689 | 1019911 | 1.141255 | 1.265503
085 | o | 0938885 | 0.935178 | 0.938539 - 0.998704 | 1.024910 | 0.997834
0y | 0962200 | 0048312 | 0.943689 - 1.014836 | 1.115460 | 1.228845
090 | oy | 0991598 | 0.981916 | 0.980187 | 0.998704 - 1.080427 | 1058495
o | 1074280 | 1042110 | 1.019911 | 1.014836 - 1113157 | 1.203565
095 | o | 1026512 | 1.012629 | 1.006729 | 1.024910 | 1.080427 - 1.143151
op | 1232144 | 1181044 | 1141255 | 1115460 | 1.113157 - 1.188747
100 | o | 1019934 | 1.000866 | 0.86672 | 0097834 | 1.058495 | 1.143151 -
op | 1379163 | 1314943 | 1265503 | 1.228843 | 1.203565 | 1.188747 -
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4.1.2 Fixed-free and pinned-free bars

These are bars restrained from longitudinal vibration at only one end. From section

3.1.2 the first natural frequency w for such a bar is given as

EA
W= g /ﬁ (4.23)

In normalized coordinates, the length of the bar L = 1 hence

m |EA
w=" \/; (4.23a)

Likewise

JT X1
2L

u; = u(xy,0) = 27’:1 A; sin

= %72, 4 sinZ2 (4.24)

. jmx
Uy = u(xy,0) = X727, 4 smjz—L2

= %72, 4 sinZ2 (4.25)
From Table 3.2
16elL
4 =53 (4.26)

j=12345,..,©

i=13579,..,0©

Just like in the previous section, only the first few terms of equations (4.24 — 4.26)
needs to be evaluated to get values of very good precision. By substituting equation
(4.24a) into equations (4.15) and (4.16) and taking EA = 1 we obtain
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e )2 52
—(52—51)1111(1’14'—({2 flgn u11)+(52—f1)u21(1’2+—(§2 “g” u21)

2 2
Uuzi—un

o, = (4.27)

- 2 _ 2
(62—¢1)un (Pz +W)—(fz —§uz (PyFW)
a, =

(4.28)

2 2
uzi—un

Equations (4.27) and (4.28) can be used to evaluate the stiffness modification factor
for longitudinal vibration of a segment of a fixed-free or pinned-free bar located
between &; and &, of the bar’s total length. Some numerical demonstrations of their
use are presented below. For ease of presentation the calculations will also be

presented in a tabular form.

Example 1: when & = 0, &, = 0.3

Table 4.8: Calculation of the Stiffness modification factor for an element positioned at

& =0, &, = 1.0 on a fixed-free bar under longitudinal vibration

From Table 3.1

& =0, §=1.0

i Aj Fij Fy Usj Uy;

1 | 0.51602455093119 0.29454491820751 0.51602455093119 0 0.51602455093119
2 | 0.01911202040486 0.10917529475360 -0.0191120204049 0 -0.0191120204049
3 | 0.00412819640745 0.02829458235810 0.00412819640745 0 0.00412819640745
4 | 0.00150444475490 0.01804667881896 -0.0015044447549 0 -0.0015044447549
5 | 0.00070785260759 0.00929917787561 0.00070785260759 0 0.00070785260759
6 | 0.00038769688274 0.00708661811529 -0.0003876968827 0 -0.0003876968827
7 | 0.00023487690074 0.00456139214742 0.00023487690074 0 0.00023487690074
8 | 0.00015289616324 0.00375542713719 -0.0001528961632 0 -0.0001528961632
9 | 0.00010503247526 0.00269970617228 0.00010503247526 0 0.00010503247526
Total 0.47746379558596 0.50004345111648 0 0.50004345111648
u;; =0
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Up; = 0.51602455093119

From equations 4.6a and 4.6b

P, =-0.97750724670244

P2:O

From equations 4.27 and 4.28 the stiffness modification factors for longitudinal vibration of the element are

a; = 1.23370055013617

ap = 1.89430375926587

j is the mode number, j = 1 stands for the first mode, j = 2 for the second mode and so
on. The values of the paramaters A;, Fj, F»j, usj and uy; are evaluated for modes 1 to 9
and summed using the equations present in Table 3.2 to obtain end forces F; and F;
and the end displacements u; and u,. The same procedure is applied to the other

examples that follow.

Table 4.9: Calculation of the Stiffness modification factor for an element positioned at

& =0, &, = 0.5 on a fixed-free bar under longitudinal vibration

From Table 3.1

& =0, & =05
Aj Fj Faj Uy Uy
0.51602455093119 | 0.08080055069432 | 0.15660975019362 0 0.36488445922219
0.01911202040486 | 0.06303479588784 | 0.09071283048876 0 0.01351423923045
0.00412819640745 | 0.03826093011310 | 0.01708821538248 0 -0.0029190756738
0.00150444475490 | 0.01866984024028 | 0.01708821538248 0 -0.0010638030881
0.00070785260759 | 0.00900597572538 | -0.0138247320589 0 0.00050052737891
0.00038769688274 | 0.00615063504289 | -0.0060749843564 0 0.00027414309483
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7 | 0.00023487690074 | 0.00512843514668 | 0.00528513881984 0 -0.0001660830493
8 | 0.00015289616324 | 0.00381875880164 | 0.00305930826983 0 -0.0001081139138
9 | 0.00010503247526 | 0.00265620029654 | -0.0027636019088 0 0.00007426917550

Total 0.22752612194867 | 0.24825721346430 0 0.37499056237688

U11:O

Up; = 0.36488445922219

From equations 4.6a and 4.6b

P, =-0.97750724670244

P,=0.50172391128947

From equations 4.27 and 4.28 the stiffness modification factors for longitudinal vibration of the element are

a; = 0.99593579824973

ap = 1.33947503380407

Table 4.10: Calculation of the Stiffness modification factor for an element positioned

at & = 0.5, &, = 1.0 on a fixed-free bar under longitudinal vibration

From Table 3.1

& =05 &§=1

j Aj Fyj Fy Usj Uy

1 | 0.51602455093119 | 0.27087898483275 | 0.30228018341801 | 0.36488445922219 | 0.51602455093119
2 | 0.01911202040486 | 0.00156816724276 | -0.0652525192706 | 0.01351423923045 | -0.0191120204049
3 | 0.00412819640745 | -0.0370209108925 | 0.01409454416245 | -0.0029190756738 | 0.00412819640745
4 | 0.00150444475490 | 0.01278409216525 | -0.0008812833336 | -0.0010638030881 | -0.0015044447549
5 | 0.00070785260759 | 0.00666138865684 | 0.00041465045736 | 0.00050052737891 | 0.00070785260759
6 | 0.00038769688274 | -0.0034131726750 | -0.0013236799552 | 0.00027414309483 | -0.0003876968827
7 | 0.00023487690074 | -0.0041933942684 | 0.00080191990000 | -0.0001660830493 | 0.00023487690074
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0.00015289616324 | 0.00263693857990 | -0.0000895644988 | -0.0001081139138 | -0.0001528961632
0.00010503247526 | 0.00192172311762 | 0.00006152659952 | 0.00007426917550 | 0.00010503247526
Total 0.25161813381027 | 0.25010577747920 | 0.37499056237688 | 0.50004345111648

up; = 0.36488445922219

Up; = 0.51602455093119

From equations 4.6a and 4.6b

P, =-0.50172391128947

P2:0

From equations 4.27 and 4.28 the stiffness modification factors for longitudinal vibration of the element are

oy = 0.99593579824973

a, = 0.97228690066021

Table 4.11: Calculation of the Stiffness modification factor for an element positioned

at & = 0.5, & = 0.8 on a fixed-free bar under longitudinal vibration

From Table 3.1

El = 05, Ez = 08

Aj Fij Fa Ugj Uy;
0.51602455093119 | 0.15354563988675 | 0.16913376727867 | 0.36488445922219 | 0.49076851173139
0.01911202040486 | 0.018808991119194 | -0.0096306237026 | 0.01351423923045 | -0.0112337637355
0.00412819640745 | -0.03265661897596 | -0.0226925265196 | -0.0029190756738 0
0.00150444475490 | 0.00520348078956 | 0.01987659357585 | -0.0010638030881 | 0.00088429043982
0.00070785260759 | 0.01098848982730 | -0.0070047931956 | 0.00050052737891 | -0.0006732078350
0.00038769688274 | -0.00505211446966 | -0.0017548186654 | 0.00027414309483 | 0.00036872164668
0.00023487690074 | -0.00348489393801 | 0.00397368273922 | -0.0001660830493 | -0.0001380571784
0.00015289616324 | 0.00218699436830 | -0.0032421512611 | -0.0001081139138 0
0.00010503247526 | 0.00202502516890 | 0.00222730577887 | 0.00007426917550 | 0.00006173653997
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Total 0.15156501384913 | 0.15088643602826 | 0.37499056237688 | 0.48003823160899

up; = 0.36488445922219

Up; = 0.49076851173139

From equations 4.6a and 4.6b

P, =-0.50172391128947

P,=0.19927246141208

From equations 4.27 and 4.28 the stiffness modification factors for longitudinal vibration of the element are

oy = 1.22639917154470

a, = 0.88830930379005

Table 4.12: Calculation of the Stiffness modification factor for an element positioned

at & = 0.8, &, = 1.0 on a fixed-free bar under longitudinal vibration

From Table 3.1

El = 08, Ez =1.0

Aj Fij Fa Ugj Uy;
0.51602455093119 | 0.12419954508633 | 0.12628019599901 | 0.49076851173139 | 0.51602455093119
0.01911202040486 | -0.0334714361703 | -0.0393912833469 | -0.0112337637355 | -0.0191120204049
0.00412819640745 | 0.01178179672830 | 0.02064098203725 0 0.00412819640745
0.00150444475490 | -0.0014392725091 | -0.0119436759736 | 0.00088429043982 | -0.0015044447549
0.00070785260759 | -0.0038129597305 | 0.00690530221305 | -0.0006732078350 | 0.00070785260759
0.00038769688274 | 0.00585217315195 | -0.0037820926471 | 0.00036872164668 | -0.0003876968827
0.00023487690074 | -0.0057449335651 | 0.00186467039552 | -0.0001380571784 | 0.00023487690074
0.00015289616324 | 0.00436701179014 | -0.0007644808162 0 -0.0001528961632
0.00010503247526 | -0.0024855609071 | 0.00021647967644 | 0.00006173653997 | 0.00010503247526

Total 0.09924636387458 | 0.10002609753749 | 0.48003823160899 | 0.50004345111648
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u;; = 0.49076851173139

Up; = 0.51602455093119

From equations 4.6a and 4.6b

P, =-0.19927246141208

P2:0

From equations 4.27 and 4.28 the stiffness modification factors for longitudinal vibration of the element are

o, = 0.81856438428735

a, = 0.80880194720539

Tables 4.8 to 4.12 are illustrations on how the inherent nodal forces P; and P, and the
stiffness modification factors o; and o, for a fixed-free bar under longitudinal
vibration are calculated. The nodal forces P; and P, are the forces acting at the
selected nodal point if the beam segment under consideration is decomposed. These
nodal forces represent the effect of the removed adjacent beam segment on the beam
segment under consideration. Using the methods presented in Table 4.8 to 4.12 the
values of stiffness modification factors at different values of & and &, for the
longitudinal vibration of a fixed-free bar are presented in Table 4.13 below. A sample
matlab program for the calculation of the stiffness modification factors for a segment

of a beam restrained at one end can be found in Appendix C.
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Table 4.13: Stiffness modification factors for the longitudinal vibration of a fixed-

free/pinned-free bar

0 0.05 0.10 8;.215 0.20 0.25 0.30
o | a - 1183968 | 1.132904 | 1.082305 | 1.049036 | 1.028611 | 1.010495
0 - 1207192 | 1210025 | 1.217182 | 1.226019 | 1.237514 | 1251769
005 | oy | 1.183968 - 1148560 | 1105646 | 1.073301 | 1051217 | 1.031511
0y | 1.207192 - 1166776 | 1161223 | 1164937 | 1173842 | 1.185349
010 | oy | 1132904 | 1.148560 - 1.097758 | 1.070537 | 1.050429 | 1.031727
0 | 1210925 | 1166776 - 1109006 | 1.102963 | 1.105153 | 1.110747
015 | oy | 1082305 | 1105646 | 1097758 - 1.052532 | 1.035185 | 1.018205
0, | 1217182 | 1161223 | 1.109006 - 1.058351 | 1.052824 | 1.051551
020 | oy | 1049036 | 1.073301 | 1.070537 | 1.052532 - 1.018377 | 1.002485
oy | 1226019 | 1.164937 | 1.102963 | 1.058351 - 1.021661 | 1.014191
025 | o | 1028611 | 1051217 | 1050429 | 1.035185 | 1.018377 - 0.988096
0, | 1237514 | 1173842 | 1105153 | 1.052824 | 1.021661 - 0.990709

030 | oy | 1010495 | 1031511 | 1031727 | 1018205 | 1002485 | 0.988096 -

0, | 1251769 | 1185349 | 1110747 | 1051551 | 1014191 | 0.990709 -
035 | op | 0994012 | 1013619 | 1014289 | 1.001798 | 0.986647 | 0.972243 | 0.956345
o, | 1268915 | 1199472 | 1119325 | 1.053751 | 1.01535 | 0.981802 | 0.958528
040 | oy | 0985971 | 1.003608 | 1.003820 | 0.991424 | 0.976089 | 0.961088 | 0.944345
o, | 1289113 | 1217183 | 1132300 | 1061173 | 1012784 | 0979345 | 0.951433
045 | o | 0988424 | 1003569 | 1002547 | 0989434 | 0973234 | 0.957085 | 0.939016
o | 1312556 | 1238683 | 1.149784 | 1073861 | 1.020974 | 0983413 | 0.951386
£ | 050 | o | 0995036 | 1008776 | 1.006373 | 0092253 | 0074911 | 0957376 | 0937743
o | 1339475 | 1263467 | 1170592 | 1.090040 | 1.032848 | 0.991349 | 0.955378
055 | on | 1004505 | 1015592 | 1012025 | 0.996925 | 0.978416 | 0.959454 | 0.938178
0, | 1370146 | 1291408 | 1194182 | 1.108782 | L.047147 | 1.001606 | 0.961602
0.60 | on | 1016998 | 1.026639 | 1.021980 | 1.005838 | 0.986075 | 0.965597 | 0.942562
0, | 1404893 | 1323124 | 1221360 | 1131033 | 1064944 | 1015379 | 0.971368
065 | oy | 1037287 | 1045494 | 1039679 | 1022343 | 1001172 | 0.979044 | 0.954112
o | 1444100 | 1350301 | 1.253032 | 1.157883 | 1087505 | 1.034112 | 0.986292
070 | o | 1062890 | 1070165 | 1.063363 | 1.044883 | 1.022319 | 0.998546 | 0.971697
o | 1488219 | 1400138 | 1289150 | 1.189058 | 1.114365 | 1.057173 | 1.005593
075 | op | 1088804 | 1095812 | 1.088531 | 1.069239 | 1.045528 | 1.020300 | 0.991651
o | 1537785 | 1445710 | 1329355 | 1223801 | 1144407 | 1083120 | 1.027518
080 | oy | 1114402 | 1121952 | 1114768 | 1.095064 | 1070505 | 1.044057 | 1.013765
op | 1593431 | 1496594 | 1374144 | 1262525 | 1177976 | 1.112240 | 1.052300
085 | oy | 1143503 | 1152264 | 1145657 | 1.125868 | 1.100720 | 1073272 | 1.041498
o | L655911 | 1553805 | 1.424742 | 1.306646 | 1.216679 | 1.146335 | 1081934
090 | oy | 1176530 | 1187281 | 1181830 | 1.162373 | 1136980 | 1.108834 | 1.075822
op | 1726125 | 1618200 | 1481971 | 1356951 | 1261292 | 1.186192 | 1.117231
095 | oy | 1208020 | 1221961 | 1218586 | 1200152 | 1175071 | 1146697 | 1.112807
o, | 1805153 | 1690400 | 1545067 | 1413160 | 1.311167 | 1.230829 | 1.156885
100 | oy | 1233701 | 1252387 | 1252289 | 1235779 | 1211728 | 1183714 | 1.149381
o, | 1894304 | 1771274 | 1617235 | 1475420 | 1366137 | 1279797 | 1.200175

$2
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0.35 0.40 0.45 0.50 0.55 0.60 0.65

0 o 0.994012 0.985971 0.988424 0.995936 1.004505 1.016998 1.037209
o 1.268915 1.289113 1.312556 1.339475 1.370146 1.404893 1.444100
0.05 o 1.013619 1.003608 1.003569 1.008776 1..015592 1.026639 1.045494
o 1.199472 1.217183 1.238683 1.263467 1.291408 1.323124 1.359301
0.10 oy 1.014289 1.003820 1.002547 1.006373 1.012025 1.021980 1.039680
o 1.119325 1.132299 1.149784 1.170592 1.194182 1.221360 1.253032
0.15 o 1.001798 0.991424 0.989434 0.992253 0.996924 1.005838 1.022344
o 1.053752 1.061173 1.073861 1.090040 1.108782 1.131033 1.157883
0.20 o 0.986647 0.976089 0.973234 0.974911 0.978416 0.986075 1.001172
o 1.010535 1.012784 1.020974 1.032848 1.047147 1.064944 1.087505
0.25 o 0.972243 0.961088 0.957085 0.957376 0.959454 0.965597 0.979044
o 0.981802 0.979345 0.983413 0.991349 1.001606 1.015379 1.034112
0.30 oy 0.956345 0.944545 0.939016 0.937743 0.938178 0.942562 0.954113
o 0.958528 0.951433 0.951386 0.955378 0.961602 0.971368 0.986292
0.35 oy - 0.926411 0.919559 0.916524 0.915080 0.917445 0.926832
o - 0.927808 0.923634 0.923657 0.925826 0.931564 0.942654
0.40 oy 0.926411 - 0.903190 0.898132 0.894541 0.894626 0.901612
o 0.927808 - 0.903857 0.900198 0.898599 0.900599 0.908154
0.45 oy 0.919559 0.903190 - 0.885113 0.879145 0.876737 0.881146
o 0.923634 0.903857 - 0.885481 0.880507 0.879168 0.883610
& 0.50 oy 0.916524 0.898132 0.885113 - 0.866839 0.861753 0.863414
o 0.923657 0.900198 0.885481 - 0.867144 0.862598 0.864070
0.55 oy 0.915080 0.894541 0.879145 0.866839 - 0.847616 0.846324
o 0.925826 0.898599 0.880507 0.867144 - 0.847731 0.846137
0.60 oy 0.917445 0.894626 0.876737 0.861753 0.847616 - 0.832200
o 0.931564 0.900599 0.879168 0.862598 0.847731 - 0.831992

0.65 oy 0.926832 0.901612 0.881146 0.863414 0.846324 0.832200 -

o 0.942653 0.908154 0.883610 0.864070 0.846137 0.831992 -
0.70 oy 0.942205 0.914540 0.891480 0.870988 0.850911 0.833642 0.822958
o 0.958177 0.920244 0.892680 0.870302 0.849437 0.832421 0.822552
0.75 oy 0.959998 0.929909 0.904267 0.880998 0.857861 0.837329 0.823390
o 0.976081 0.934463 0.903746 0.878371 0.854400 0.834331 0.821773
0.80 oy 0.980031 0.947556 0.919357 0.893300 0.867020 0.843089 0.825747
o 0.996541 0.950995 0.916887 0.888309 0.861001 0.837633 0.822161
0.85 oy 1.005784 0.971013 0.940362 0.911614 0.882246 0.854950 0.834285
o 1.021751 0.972221 0.934731 0.902995 0.872386 0.845765 0.827498
0.90 oy 1.038313 1.001420 0.968523 0.937299 0.905026 0.874551 0.850842
oy 1.052548 0.999025 0.958237 0.923478 0.889710 0.860016 0.839257
0.95 oy 1.073758 1.034947 1.000009 0.966482 0.931388 0.897758 0.871082
oy 1.087311 1.029475 0.985165 0.947202 0.910070 0.877090 0.853728
1.00 oy 1.109068 1.068526 1.031696 0.995936 0.957926 0.920893 0.890893
oy 1.125036 1.062282 1.013941 0.972287 0.931215 0.894297 0.867711
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$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0 | a | 1062890 | 1088804 | 1.114402 | 1143503 | 1.176530 | 1.208020 | 1.233701
o, | 1488219 | 1537785 | 1593431 | 1655011 | 1726125 | 1805153 | 1.894303
005 | oy | 1070165 | 1095812 | 1121952 | 1152264 | 1187281 | 1221961 | 1.252387
o | 1400138 | 1445710 | 1496594 | 1553805 | 0.618209 | 1690400 | 1.771274
010 | o; | 1063363 | 1088530 | 1114768 | 1.145658 | 1.181830 | 1218586 | 1.252289
op | 1289150 | 1329355 | 1374144 | 1424742 | 1481971 | 1545067 | 1.617235
015 | oy | 1044883 | 1069239 | 1095064 | 1.125868 | 1.162373 | 1200152 | 1.235779
o | 1189058 | 1223801 | 1262525 | 1.306646 | 1356951 | 1413160 | 1.475420
020 | oy | 1022319 | 1045528 | 1070505 | 1.100720 | 1.136980 | 1.175071 | 1.211728
op | 1114365 | 1144407 | 1177976 | 1216679 | 1261292 | 1311167 | 1.366137
025 | og | 0998563 | 1020300 | 1044057 | 1073272 | 1.108834 | 1.146697 | 1.183714
a; | 1057173 | 1083120 | 1112240 | 1.146335 | 1.186192 | 1230829 | 1.279797
030 | oy | 0971697 | 00991651 | 1013765 | 1.041498 | 1.075822 | 1.112807 | 1.149382
a, | 1005593 | 1027518 | 1.052300 | 1.081934 | 1117231 | 1.156885 | 1.200175
035 | oy | 0942205 | 00959998 | 0.98003L | 1.005784 | 1.038313 | 1.075758 | 1.109068
o, | 0958177 | 0076081 | 0096541 | 1.021751 | 1.052548 | 1.087311 | 1.125036
040 | oy | 0914540 | 0929909 | 0947556 | 0071013 | 1.001420 | 1.034947 | 1.068526
0, | 0020224 | 0034463 | 0050995 | 0.972221 | 0.999025 | 1.029475 | 1.062282
045 | oy | 0891480 | 0904267 | 0919357 | 0040362 | 0.968523 | 1.000009 | 1.031696
a, | 0892679 | 0003746 | 0016887 | 0.934731 | 0.958237 | 0.985165 | 1.031941
g | 050 | oy | 0870088 | 0.880098 | 0893300 | 0911614 | 0937299 | 0966481 | 0995936
a, | 0870302 | 0878371 | 0.888309 | 0.902994 | 0.923477 | 0947202 | 0.972287
055 | oy | 0850911 | 0857861 | 0.867020 | 0.882246 | 0.905026 | 0.931383 | 0.957926
a, | 0849437 | 0854400 | 0.861001 | 0.872386 | 0.889710 | 0.910070 | 0.931215
060 | oy | 0833642 | 0837329 | 0.843089 | 0.854950 | 0.874551 | 0.897758 | 0.920893
a, | 0832421 | 0834331 | 0.837633 | 0.845765 | 0.860016 | 0.877090 | 0.894297
065 | oy | 0822958 | 0823390 | 0.825747 | 0834285 | 0.850842 | 0.871082 | 0.890973
0, | 0822552 | 0821773 | 0822161 | 0.827498 | 0.839257 | 0.853728 | 0.867711
070 | o - 0815363 | 0.814326 | 0.819601 | 0.833297 | 0.850832 | 0.867716
o - 0.814953 | 0.812699 | 0.815590 | 0.825356 | 0.837841 | 0.849245
075 | o | 0-815363 - 0.804410 | 0.806085 | 0.816614 | 0.831061 | 0.844219
oy | 0.814953 - 0.803998 | 0.804186 | 0.811760 | 0.822021 | 0.830317
080 | oy | 0814326 | 0.804410 - 0.793129 | 0.799969 | 0.810603 | 0.818564
a, | 0812699 | 0.803998 - 0.792585 | 0.797518 | 0.804936 | 0.808802
085 | o, | 0819601 | 0.806085 | 0.793129 - 0.790081 | 0.797298 | 0.799783
a, | 0815590 | 0.804186 | 0.792585 - 0.789393 | 0.794567 | 0.793962
090 | oy | 0833207 | 0816614 | 0.799969 | 0.790081 - 0.797687 | 0.797349
a, | 0825356 | 0811760 | 0.797518 | 0.78939%4 - 0.797002 | 0.794797
095 | o, | 0850832 | 0831061 | 0.810603 | 0.797298 | 0.797687 - 0.806968
0, | 0837841 | 0822021 | 0.804936 | 0.794567 | 0.797002 - 0.806370

100 | oy | 0867716 | 0844219 | 0.818564 | 0.799783 | 0.797349 | 0.806968 -

0, | 0849245 | 0830317 | 0808802 | 0.793962 | 0.794797 | 0.806370 -
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4.1.3 Free-free bars

These are bars not restrained from longitudinal vibration at both ends. From section

3.1.1 the first or lowest natural frequency w for such a bar is given as
w=0 (4.29)

Likewise
Jjmxy
up = u(x,0) = X% 4 Cos ——

=214 cosjn% (4.30)

jmx

u; = ulxy, 0) = Y7Ly 4 cos—~=

=214 cosjn% (4.32)
From Table 3.2
—coszH ZSil’leH
4 = 4fL 22 + IEE (4.32)

j = 0’1!2I3;4;5, ey (0/e]

By substituting equation (4.29) into equations (4.15) and (4.16) and taking EA = 1 we

obtain

_ —(&2—¢u11 P1+(E2—¢1)un1 Po (4.33a)

a
2 2
Uuz1—un

_ &—$un Pa—(r—¢1ua Py

a;
2 2
uz1—-un

(4.33b)

Equations (4.33a) and (4.33b) are the equations for evaluating the stiffness

modification factor for longitudinal vibration of a segment of a free-free bar located
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4.2

between &; and &, of the bar’s total length. From the equations it would be observed

that a; and «a, are equal.

Recall that uy; and uy; are the values of u; and u; for the first mode (ie when j = 0).
From equations (4.30) and (4.31) it would be observed thatat j =0

Un = Up1 = Z;o=1 A; (4.34)
Hence a; = a; = © (4.35)

Equation (4.35) implies that for segments of a free-free bar under longitudinal

vibration their modification factors are numerically of infinite values.

Laterally vibrating beams

The equations of the fixed end forces F; to F4 of segments of a laterally vibrating
beam of different end constraints are presented in Tables 3.2 to 3.8. The force
equilibrium equations for a segment of a laterally vibrating beam can be written as
{F} + [kl{u} = {P} (4.36)
Where {F} is the vector of fixed end forces, [K] is the stiffness matrix of the segment

under consideration and {u} is a vector of nodal displacements.

F;
F.
(F}y={,? (4.37)
F3
Ey
12E1 GEI 12E1 6EI-
NED NNE 2
GEI AEI GEI 2EI
| 1 12 I
[kl =1 "12m 6EI  12EI GEI (4.38)
NE T2 13 T2
6EI 2E1 6EI AEI
12 1 12 ;A
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u(xy,0) {u(&’ml

_ u,(xlr O) _ u,(fli O)

tu} = iu(xz,o)f =\ u(&,0)
u'(xz, 0) u,(EZr 0)

_ (4.39)

E is the young’s modulus of elasticity of the material of the segment and A is the
cross sectional area of the bar. | is the length of the segment and is equal to x, — x; but
since the length of the bar L has been normalized and is now equal to unity
l=6-& (4.40)

u; is the total transverse displacement at the position x;, u, is the total rotational
displacement at the position x; while us is the total transverse displacement at the
position X, and uy is the total rotational displacement at the position X,. The total
displacement is obtained by totaling the displacements due to all the modes of
vibration.

{P} is the vector of nodal forces; they represent the forces acting on the nodes of the

isolated segment of the vibrating beam.

Py =1p (4.41)

From equation (4.36) P1, P2, P3 and P4 can be expressed as

Pl =F1 +&51u1 +6—§IUZ—&3EIU,3 +6—§IU4 (4423.)
l l l l

PZ =F1 +%u1+ AI-IEUZ—%'U?, +$u4 (442b)
12EI 6EI 12EI 6EI

P3 =F3—l—3u1—l—2u2 +l—3u3—l—2u4 (442C)

P4 =F4+£u1+ EUZ—EUZ), +$u4 (442d)

12 l 12

210



If a segment of a vibrating beam is isolated it will be in equilibrium with the
application of the force vector {P}. The force vector {P} represents the effect of the

removed adjourning elements on the isolated segment.

P
" -6 1
71 7
(a)
#(52 (& — &)
2
QD 4
u(fl,O) u(&,,0)
Pl $— & TP4
| 1
(b)
Figure 4.2

(@) Anisolated segment of the laterally vibrating continuous beam
showing the nodal forces Py, P, Pz and P,

(b) An equivalent lumped massed segment showing the nodal forces

Figure 4.2a shows a segment of the vibrating continuous beam. The nodal forces on
the bar P, P, Pzand P, are calculated from the equilibrium equations (equation (4.36))
or from equations (4.42a) — (4.42d). When the continuous bar is represented by a
lumped massed bar (a bar that has its distributed masses lumped at selected nodes),
the equivalent segment of the bar is shown in Figure 4.1b. Just like the real segment

the equivalent segment is supported by the same nodal forces P, P, Pszand P, and has
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the same nodal displacements as the continuous/real bar. This implies that for the
lumped massed beam to be equivalent to the real or continuous beam they must have

the same inherent forces and displacements at the nodes.

The equation of motion for the lumped massed vibrating beam is given as

[m]{it} + [kq{u} = {P} (4.43)

Where [m] is the inertial matrix, {u} is a vector of nodal displacement and Kkq is the

stiffness of the lumped massed segment under consideration.

The proposed stiffness matrix for the lumped massed segment Ky is

- 12E1 6E] 12E1 6E1 R
=P TP 5 s = ®a
6E] 4E1 6E] 2E1
= ®2 - b1 s - ®3
[kd] = 12EI 6E] 12E1 6E] (444)
— 3 b —p P T b
6E] 2EI 6E] 4E1
| 7 s - ¢ — 7 - 1

where ¢4, ¢, P53 and ¢, are the stiffness modification factors for lateral vibration.
They help redistribute the stiffness of the lumped massed segment in such a way as to
annul the effect of the discretization of the bar due to the lumping of its distributed
mass on selected nodes. By ignoring the rotational inertia of the lumped masses, the

inertia matrix of a lumped massed segment can be expressed as

[/1(522_{1) O 0 O]
—I o o O OI 4.45
m] = B =61 (4.49)
l 0 0 —Z=£ 0
0 0 o 0

M is the mass per unit length of the beam.

The vector of nodal acceleration is written as
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i(£1,0) —w?u(xy,0) —w?uyy

o JUELO | )0 (x,0) | _ ) —wPuy

{”}‘iu@z,mf‘ N R B (449
ii'(§2,0) \—0%u'(x2,0))  (—w?uy )

Where o is the fundamental frequency of the vibrating mass, uji, Uz Us1, Usp are the

values of nodal displacements uy, u, uzand uy4 for the first mode of vibration only.

By substituting equations (4.44) to (4.46) into equation (4.43) we obtain

_ﬂ(’fZ_fl) 0 0 0] (_wzull\
2 | 2
0 0 0 0| —W Uy,
0 0 M(EZZ_EI) Ol I —w2u31 I
0 O 0 OJ k—a)zu“}
- 12EI 6EI 12E1 6EI , -
- P E P 5 s 7 P4 ,
6EI 4E] 6EI 2EI Uy 1
= P2 - b1~ s T P3| uy | )P,
12E1 6EI 12E1 6EI uz (~ )P (4.47)
s Tl T h ey, P
6EI 2EI 6EI 4E] 4
7 P4 - ¢ —7 b2 — ¢

By multiplying out the first row of equation (4.43) we obtain
(é2-¢1) 12E1 6EI 12E1 6EI
- Mlezun t 5 1t + 7 Gallar — 5 P3usy + 5 Patls = Py

12E1 6EI 12E1 6EI 1(§2—¢1)
5 Grunn + 5 baupr — 5 Pausr + 5 Pallar = Py +—22 “wiuy; (4.483)

By multiplying out the second row of equation (4.43) we obtain

6E1 4EI 6EI 2E1
0+ 1_2¢2u11 + T¢1u21 - 1_2¢4u31 + T¢3u41 =P,

4EI 6E 2E 6E]
— Pruar + 7 Potlnn + - P3Usr — 5 Pauz = P, (4.48D)

By multiplying out the third row of equation (4.43) we obtain
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pE—) 2 12E1 6EI
T ¢P3uyp — NER ¢4 21 + ¢1 31 T 2 —Pauy; = P

nE2—¢1) 2

12E1 6EI
5 P3Uin — 7 Palizy = Py ————w Uz (4.48c)

12E1 6EI
5 P1us1 — 7 Pallar —

By multiplying out the fourth row of equation (4.43) we obtain

lz ¢4 11 + 2 ¢3 21— lz ¢3 31 +2 ¢1u41 =P

4EI
_¢1 41 — ¢2 31 +—¢3 21 + ¢4u11 =P (4.48d)

Putting equations (4.48a) — (4.48d) in matrix form

- 12E1 6E] 12E1 6E] 1

3 Un T2 Y21 T Usg 72 Ua (p, + u(fz-&)wZu \
4E1u 6E1u 2E1u 6E1u b1 [*1 2 B
U2 2 411 W41 z i)y 4 P, $
12E1 6EI 12E1 __6EI = p(@E—E1) o
5 U1 Tz U T uUn T2 Y21 s | P +— U3y |
4E1 6El 2EI 6EI b4 \ p J
| Uu — 7z U3 U2 7z W1 | 4
(4.49)
By rearranging equation (4.49) we obtain
- 12E1 6EI 12E1 6El 1
3 411 72 Y21 T W3t 72 Ua (P, + u(fz—&)wzu \
$1 AE] U 6FI U 2EI u 6EI u 1 2 1
= | 1261 6EI 12E1 6EI w(Ea—E1) o
¢s 3 U1 T U Tz Un T pua| [Pa AT o%up |
b4 4E] 6EI 2EI 6EI P )
| Ua —Tz U1 Uz 7z W11 4
(4.50)

Equation (4.50) is a mathematical expression for calculating the four stiffness

modification factors for a beam under lateral vibration.
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421 Fixed-fixed beams

These are beams rigidly restrained from lateral vibration at both ends. From section

3.2.1 the first natural frequency w for such a bar is given as

w, = 22.37328597 /% (4.51)

In normalized coordinates, the length of the bar L = 1 hence
w1 = 22.37328597\@. (4.51a)

Likewise
w; = u(xy,0) = 372, A (cosh Bx; + ay; sinh fx; — cos B;x; + ay; sin B x;)
=214 (cosh B;Lé1 + ayj sinh ;L& — cos B L&y + ay; sin ﬂijl)
(4.52a)
u; = u'(x1,0) = X721 A; B L(sinh B;x; + ay; cosh Bx; + sin B x1 + ay; cos B x;)
= Y91 A BL(sinh B, L&; + ay; cosh B; L& + sin B; L& + au; cos BLE;)
(4.52b)
uz = u(xy, 0) = X7l 4 (coshﬁsz + ayj sinh B x; — cos B x; + ay; sinﬁsz)
=Yj=14 (cosh BiL&; + ay; sinh B L&, — cos B;LE; + ayj sin f; LEZ)
(4.52¢)

uy = u'(x2,0) = X%, Aj,BL(sinh Bix, + ayj cosh fx; +sin B x; + ay; cos,B]-xZ)
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= 2;021 A]B]L(Slnh B]sz + azj cosh B]LEZ + Sirlﬁ]-sz + a4j CoS ﬂ]sz)
(4.52d)

Equations (4.52a — 4.52d) are used to evaluate the total displacements u; — u, at the
nodal points of a segment of the vibrating fixed-fixed beam. Though the equations
represent the summation of an infinite series, an evaluation of the first few terms

provide values of very good precision.

From Table 3.2

A = ap L? [—Z(Sinh BjL—sin [)’L) 12(cosh BjL—cos [)’]-L) _ 24(sinh BjL—sin BjL)

] M; ﬂjS 13 ﬂ]fl- 14 ﬁJS L5

—2(cosh BjL—cos [)’jL) n 12(sinh BjL—sin [)’]-L) 24(cosh BjL+cos [)’]—L—Z)
2j ﬁ]3 L3 ﬂ}‘l- 14 ﬁ]S L5 ]

(4.53)

The values of BjL, ayj, and ayj forj=1, 2, 3, 4, 5, 6, 7 can be obtained from Table 3.2.
The values of the fixed end forces Fi, F,, F3 and F,4 are evaluated using the equations
provided in Table 3.2 while the values of the nodal displacements uy, Uy, us and uy are
calculated from equations (4.52a) — (4.52b). These are substituted into the equations
for nodal forces (equations 4.35) — (4.38) from which the nodal forces P;, P, P3 and
P, are obtained.

Equations (4.52a) — (4.52d) are evaluated for the first mode, j = 1 to obtain the nodal
displacements ujj, U1, Usp and ug due to the first mode. These together with the
calculated nodal forces P; to P, are substituted into equation (4.49) in order to obtain
the stiffness modification factors ¢1, ¢2, d3 and ¢4. Some numerical demonstrations of
these steps are presented below. For clarity the calculations will be presented in a

tabular form.
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Example 1: when &; = 0, &, = 0.5

Table 4.14: Calculation of the Stiffness modification factor for an element positioned

at & =0, & = 0.5 on a fixed-fixed bar under lateral vibration

& =0, & =05

Al Fij F2j Fs; Fsj
-0.03983642568324 | -6.07354293466814 | -0.4349161689350 | -2.2104276673494 | 0.26415775020641
0.00000000062688 | -0.00000058939095 | -0.0000000572726 | -0.000000435889 | 0.00000004868688
-0.00059725591824 | 0.08061512479706 | -0.0825567447022 | -1.6685533888640 | 0.16457431427370
0.00000000001256 | 0.00000005627723 | 0.00000000200684 | -0.0000000770088 | 0.00000000602481
-0.00006240862307 | -0.00847499630378 | 0.02422490351705 | -0.6354158651679 | 0.03514613064230

0 0 0 0 0
-0.00000002582156 | 0.00000350561250 | -0.0000193968981 | -0.0006790375569 | 0.00002954686938
Total -6.00139983367608 | -0.4932674622840 | -4.5150764718360 | 0.46390779670347

Al Usj Uy; Us; Uyj
-0.03983642568324 | -0.06326607054284 | 0.00000000631491 0 -0.0000000207788
0.00000000062688 0 -0.0000000071591 0 0
-0.00059725591824 | 0.00083974090383 | -0.0000000000093 0 -0.0000000000263
0.00000000001256 0 0.00000000025086 0 0
-0.00006240862307 | -0.00008828121062 0 0 -0.0000000000033

0 0 0 0 0
-0.00000002582156 | 0.00000003651680 0 0 0
Total -0.06251457433283 | -0.0000000006026 0 -0.0000000208084

u;; = -0.06326607054284 uz =0

u,; = 0.00000000631491 U = -0.00000002080837
From Table 3. 2

F, = 6.00139983367608 F3 =4.51507647183599
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F, = 0.49326746228404

From equations (4.35) — (4.38)

P, = 1.838594375614049 x 107

P, =-1.00708240975866

F, =-0.46390779670347

P; =10.51647612165263

P, =-1.96425774956910

From equation (4.49) taking El = 1

¢, = 1.30355176828885

¢, = 0.66325857542082

¢3 = 1.73152250367623

¢4 = 1.29364863330555

Table 4.15: Calculation of the Stiffness modification factor for an element positioned

at & =0, &, = 0.3 on a fixed-fixed bar under lateral vibration

$1=0, =03

Al Fij Fy Fs Fyj
-0.03983642568324 | -0.60422929864885 | -0.0443311538700 | -2.0275325645405 | 0.08085046175642
0.00000000062688 | 0.00000015570810 | 0.00000001115058 | 0.00000042202589 | -0.0000000182381
-0.00059725591824 | -0.8404133833101 | -0.0581470356258 | -1.6268933696662 | 0.08063557854974
0.00000000001256 | 0.00000005725286 | 0.00000000376584 | 0.00000006096232 | -0.0000000039983
-0.00006240862307 | -0.64922194590421 | -0.0396555237773 | -0.1335606852543 | 0.02595648146587

0 0 0 0 0
-0.00000002582156 | -0.00073284865591 | -0.0000344016524 | 0.00053527751290 | -0.0000114516373

Total -2.09467521857903 | -0.1421681000090 | -3.7874508589600 | 0.18743104789833

Al Usj Uyj Us; Uyj
-0.03983642568324 0 0 -0.0436607183239 | -0.1758753331736
0.00000000062688 0 0 0.00000000094377 | -0.0000000004882
-0.00059725591824 0 0 -0.0005187962004 | 0.00775306253322
0.00000000001256 0 0 -0.0000000000053 | -0.0000000002414
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-0.00006240862307 0 0 0.00008358909649 | 0.00047729435847
0 0 0 0 0
-0.00000002582156 0 0 -0.0000000000220 | -0.0000008598982
Total 0 0 0.04409592451136 | -0.1676458369097
up;; =0 Uz, = -0.0436607183239
Uy =0 Ugy = -0.1758753331736

From Table 3. 2

F1 = 2.09467521857903 Fs = 3.78745085895998
F, =0.14216810000903 F,=-0.18743104789833
From equations (4.35) — (4.38)
P, =10.51647476298262 P; =-4.63434868544362
P, = 1.96425748803524 P, =0.51701942739655
From equation (4.49) taking EI = 1
¢1 = 1.00368699132460 ¢ = 1.25523649330347

¢, =0.98624232179889 ¢, =1.18047475960633

Table 4.16: Calculation of the Stiffness modification factor for an element positioned

at & = 0.3, & = 0.6 on a fixed-fixed bar under lateral vibration

fl = 03, 52 = 0.6

Aj Fyj = Fs; Fy
-0.0398364256832 | -4.1388906590437 | -0.2180613342475 | -4.5911143839929 | 0.22959746361135
0.00000000062688 | 0.00000035962860 | 0.00000001390725 | -0.0000000417563 | -0.0000000035487
-0.0005972559182 | 0.44248899356144 | 0.04544769491502 | 1.42875324175632 | -0.0718625825940
0.00000000001256 | -0.00000007088701 | -0.0000000033493 | 0.000000001567609 | 0.00000000089973
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-0.0000624086231 | 0.30210042255651 | -0.0041101918850 | -0.61321338253410 | 0.03204886005669
0 0 0 0 0
-0.0000000258216 | -0.00056438352709 | -0.0000138137699 | 0.00042416171754 | -0.0000264593382

Total -3.39486533771123 | -0.1767824336067 | -3.77515038917997 | 0.18975727908682

Al U U2j Usj Uy
-0.0398364256832 | -0.0436607183239 | -0.1758753331736 | -0.05797992579367 | 0.10311372400732
0.00000000062688 | 0.0000000094377 | -0.0000000004882 | -0.00000000064855 | -0.0000000051825
-0.0005972559182 | -0.0005187962004 | 0.00775306253322 | 0.00037529284311 | -0.0083468306820
0.00000000001256 | -0.0000000000053 | -0.0000000002414 | 0.00000000001751 | 0.00000000003863
-0.0000624086231 | 0.00008358909649 | 0.00047729435847 | 0.00001374263093 | 0.00150519231258

0 0 0 0 0
-0.0000000258216 | -0.0000000000220 | -0.0000008598982 | -0.00000002582366 | -0.0000006084548
Total 0 -0.1676458369097 | 0.04409592451136 | 0.09627147203923

u;; =-0.0436607183239

Uy = -0.1758753331736

From Table 3. 2

F, = 3.39486533771123

F,=0.17678243360667

From equations (4.35) — (4.38)

P, =4.63434868544351

P, =-0.51701942739658

From equation (4.49) taking El = 1

¢, = 0.96557551547973

¢, = 0.87888971884435

Us; = -0.05797992579367

Ug = -0.10311372400732

F; = 3.77515038917997

F, =-0.18975727908682

P; =2.53566704144769

P, =0.87588958623612

d3 = 0.92644783424547

¢, = 0.94910262055559
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at & = 0.6, &, = 1.0 on a fixed-fixed bar under lateral vibration

Table 4.17: Calculation of the Stiffness modification factor for an element positioned

& =06 &=10

Al Py Fj F; Fy
-0.0398364256832 | -3.92667609561488 | -0.2157462811042 | -1.27949857135126 | 0.12386477919121
0.00000000062688 | -0.00000060384580 | -0.0000000387961 | -0.00000029176047 | 0.00000002709014
-0.0005972559182 | -1.23443453370169 | -0.1167421711815 | -1.34529951947107 | 0.11675986077328
0.00000000001256 | 0.00000001271502 | -0.0000000024724 | -0.00000007571927 | 0.00000000587101
-0.0000624086231 | 0.50902618582038 | 0.01142603596911 | -0.70291231644793 | 0.04530618994493

0 0 0 0 0
-0.0000000258216 | -0.00036539791839 | 0.00000728113439 | -0.00064787284348 | 0.00002465979710

Total -4.65245043254537 | -0.3210551764508 | -3.32835864759348 | 0.28595552266766

Aj Uyj Uyj Us; Uyj
-0.0398364256832 | -0.0579799257937 | 0.10311372400732 0 -0.0000000207788
0.00000000062688 | -0.0000000006486 | -0.0000000051825 0 -0
-0.0005972559182 | 0.00037529284311 | -0.0083468306820 0 -0.0000000000263
0.00000000001256 | 0.00000000001751 | 0.00000000003863 0 0
-0.0000624086231 | 0.00001374263093 | 0.00150519231258 0 -0.0000000000033

0 0 0 0 0
-0.0000000258216 | -0.0000000258237 | -0.0000006084548 0 0
Total -0.0575909167743 | 0.09627147203923 0 -0.0000000208084
Uy; =-0.0579799257937 us; =0

Uy = 0.10311372400732

From Table 3. 2

F, = 4.65245043254537

F, = 0.32105517645079

From equations (4.35) — (4.38)

Ug; = -0.0000000207788

F; = 3.32835864759348

F, = -0.28595552266766

221




P, =-2.53566704148522 P; =10.51647612162406

P, =-0.87588958623633 P, =-1.96425774959277

From equation (4.49) taking El = 1

¢1 = 1.09521423566082 ¢ = 1.40740638741001

¢, =0.92225281851241 ¢, = 1.23715098708709

Tables 4.14 to 4.17 are illustrations on how the inherent nodal forces P; - P4 and the
stiffness modification factors ¢, — ¢4 for a element of a fixed-fixed beam under lateral
vibration are calculated. It would be observed that the values of the of fixed end
forces calculated where negated, this is to take care of the sign convention use in the
development of the equations of Table 3.2. Using the methods presented in Table 4.14
to 4.17 the values of stiffness modification factors at different values of &; and &, for
the lateral vibration of a fixed-fixed beam are presented in Table 4.18 below. A
sample matlab program for the calculation of the stiffness modification factors for a

segment of a fixed-fixed beam can be found in Appendix D.
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Table 4.18: Stiffness modification factors for the lateral vibration of a fixed-fixed

beam
&

0 0.05 0.10 0.15 0.20 0.25 0.30
@, - 1.013215 0.760820 2.008155 | 1.153819 | 1.030637 | 1.003687
0 @, - 1.002412 0.715577 2.162977 | 1.183432 | 1.039888 | 0.986242
7} - 1.120140 1.137169 1.155718 | 1.179020 | 1.210749 | 1.255236
@, - 1.113574 1.123447 1133304 | 1.145018 | 1.160295 | 1.180475
@, | 1.013215 - 1.251848 1.202652 | 1.133046 | 1.074884 | 1.048824
005 | @, | 1002412 - 1.262441 1.220267 | 1.151721 | 1.089912 | 1.050724
@, | 1120140 - 1.248770 1.198178 | 1.147220 | 1.126195 | 1.142708
@, | 1113574 - 1.238714 1.181370 | 1.124812 | 1.093274 | 1.091974
@, | 0760820 | 1.251848 - 1.154825 | 1.096929 | 1.048733 | 1.026611
010 | @, | 0715577 | 1.262441 - 1.158004 | 1.103855 | 1.057057 | 1.030556
@, | 1137169 | 1.248770 - 1.154955 | 1.100505 | 1.064020 | 1.060915
@, | 1123447 | 1238714 - 1.151738 | 1.092409 | 1.048831 | 1.034234
@, | 2008155 | 1.202652 1.154824 - 1.042871 | 0.995485 | 0.973431
015 | @, | 2162977 | 1220267 | 1.1580043 - 1.044072 | 0.998423 | 0.975930
@, | 1155718 | 1.198178 1.154955 - 1.043087 | 0.998055 | 0.982075
@, | 1133304 | 1.181370 1.151738 - 1.041796 | 0.993597 | 0.971856
@, | 1153819 | 1.133046 1.096929 1.042871 - 0.932602 | 0.908153
020 | @, | 1183432 | 1151721 1.103855 1.044072 - 0.933239 | 0.909649
@, | 1179020 | 1.147220 1.100505 1.043087 - 0.932719 | 0.909284
@, | 1145018 | 1.124812 1.092409 1.041796 - 0.931983 | 0.906252
@, | 1.030637 | 1.074884 1.048733 0.995485 | 0.932602 - 0.851998
& | 025 | @, | 1039888 | 1089912 1.057057 0.998423 | 0.933239 - 0.852511
@, | 1210749 | 1.126195 1.064020 0.998055 | 0.932719 - 0.852034
@, | 1160295 | 1.093274 1.048831 0.993597 | 0.931983 - 0.851430
@, | 1.003687 | 1.048824 1.026611 0.973431 | 0.908153 | 0.851998 -
030 | @, | 0986242 | 1.050724 1.030556 0.975930 | 0.909649 | 0.852511 -
@, | 1255236 | 1.142708 1.060915 0.982075 | 0.909284 | 0.852034 -
@, | 1180475 | 1.091974 1.034234 0.971856 | 0.906252 | 0.851430 -
@, | 1032039 | 1.060324 1.036211 0.981090 | 0.912221 | 0.851512 | 0.814977
035 | @, | 0960158 | 1.029813 1.023055 0.976047 | 0.911846 | 0.852561 | 0.815448
@, | 1318078 | 1.192309 1.091797 0.997997 | 0.915252 | 0.851688 | 0.814969
@, | 1206264 | 1.115534 1.048680 0.979188 | 0.908268 | 0.849301 | 0.814425
@, | 1095214 | 1.102706 1.073097 1.013832 | 0.939288 | 0.872083 | 0.829757
040 | @, | 0922253 | 1.008075 1.020542 0.986785 | 0.929251 | 0.870775 | 0.830650
@, | 1407406 | 1.268613 1.149004 1.038429 | 0.943551 | 0.871841 | 0.829501
@, | 1237151 | 1.155559 1.084817 1.009308 | 0.931920 | 0.867081 | 0.827616
@, | 1181749 | 1.167309 1.130434 1.064753 | 0.981210 | 0.903958 | 0.852890
045 | @, | 0836944 | 0.960688 1.003241 0.091084 | 0.946658 | 0.893002 | 0.851725
@, | 1536654 | 1.370256 1.225495 1.094095 | 0.983959 | 0.901426 | 0.851417
@, | 1269846 | 1.205903 1.136106 1.055329 | 0.969180 | 0.895178 | 0.848297
@, | 1303552 | 1.258836 1.212614 1136291 | 1.036919 | 0.942833 | 0.877477
050 | @, | 0663259 | 0.859073 0.948358 0.971087 | 0.950447 | 0.908051 | 0.868205
@, | 1731522 | 1502877 1.318201 1159271 | 1.030471 | 0.933818 | 0.872717
@, | 1293649 | 1.266247 1.205491 1.119627 | 1.019405 | 0.929761 | 0.869922
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$2

0.35 0.40 0.45 0.50 0.55 0.60 0.65
, 1.032039 1.095214 1.181749 1.303552 1.536978 2.308365 -11.58787
0 a, 0.960158 0.922253 0.836944 0.663259 0.305475 | -0.735707 | 15.060751
s 1.318078 1.407406 1.536654 1.731522 2.051911 2.691037 4.962535
D, 1.206264 1.237151 1.269846 1.293649 1.274222 1.075525 -0.340917
&, 1.060324 1.102706 1.167309 1.258836 1.426476 2.097818 1.004257
0.05 a, 1.029813 1.008075 0.960688 0.859073 0.642329 -0.152837 0.804209
s 1.192309 1.268613 1.370256 1.502877 1.666256 1.567218 3.701355
D 1.115534 1.155559 1.205903 1.266247 1.355130 1.780706 0.262422
, 1.036211 1.073097 1.130434 1.212614 1.368495 2.376144 1.071407
0.10 a, 1.023055 1.020542 1.003241 0.948358 0.804189 -0.174134 1.015598
s 1.091797 1.149004 1.225495 1.318201 1.406677 0.782915 2.700375
D 1.048680 1.084817 1.136106 1.205491 1.331175 2.285273 0.707693
(o)) 0.981090 1.013832 1.064753 1.136291 1.264526 1.776638 0.734132
0.15 () 0.976047 0.986785 0.991084 0.971087 0.893589 0.480194 1.399571
D 0.997997 1.038429 1.094095 1.159271 1.219184 1.010929 2.411399
D 0.979188 1.009308 1.055329 1.119627 1.234772 1.736258 0.493322
(o)) 0.912221 0.939288 0.981210 1.036919 1.126283 1.347719 | -17.946756
0.20 () 0.911846 0.929251 0.946658 0.950447 0.924737 0.800052 16.314821
s 0.915252 0.943551 0.983959 1.030471 1.079146 1.077408 18.373465
d, 0.908268 0.931920 0.969180 1.019405 1.101217 1.312523 | -19.968175
, 0.851512 0.872083 0.903958 0.942833 0.998627 1.109463 1.455462
& 0.25 a, 0.852561 0.870775 0.893002 0.908051 0.909315 0.880622 0.694531
s 0.851688 0.871841 0.901426 0.933818 0.969977 1.006804 0.931350
d, 0.849301 0.867081 0.895178 0.929760 0.980360 1.083170 1.426430
, 0.814977 0.829757 0.852890 0.877477 0.908159 0.965576 1.097027
0.30 a, 0.815448 0.830650 0.851725 0.868205 0.877316 0.878890 0.854051
s 0.814969 0.829501 0.851417 0.872717 0.894934 0.926448 0.964062
d, 0.814425 0.827616 0.848297 0.869922 0.897094 0.949103 1.071548
J, - 0.816504 0.8335505 0.848000 0.861230 0.887520 -
0.35 D, - 0.816904 0.834321 0.847354 0.854150 0.860226 -
D - 0.816482 0.833219 0.846490 0.856510 0.873619 -
D - 0.816035 0.831840 0.844533 0.855543 0.878394 -
(o)) 0.816504 - 0.837497 0.846144 0.848573 - 0.887519
0.40 a, 0.816904 - 0.837801 0.846803 0.848319 - 0.860226
D 0.816482 - 0.837478 0.845881 0.847322 - 0.873619
D 0.816035 - 0.837149 0.844913 0.845989 - 0.878394
(o)) 0.833551 0.837497 - 0.855399 - 0.848572 0.861230
0.45 a, 0.834321 0.837801 - 0.855635 - 0.848318 0.854150
D 0.833219 0.837478 - 0.855385 - 0.847321 0.856510
D,y 0.831840 0.837149 - 0.855138 - 0.845988 0.855543
(o)) 0.848000 0.846144 0.855399 - 0.855398 0.846143 0.847999
0.50 d, 0.847354 0.846803 0.855635 - 0.855634 0.846802 0.847354
s 0.846490 0.845881 0.855385 - 0.855384 0.845881 0.846489
d, 0.844533 0.844913 0.855138 - 0.855137 0.844913 0.844533
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$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00
@, | -0.369799 0.170855 0.251525 0.009195 -0.807094 | -3.568891 -
0 d, 1.662239 0.219907 -1.351017 -3.718070 -7.901304 | -18.741665 -
@ | -5.242594 0.256588 1.515910 2.696528 4.658887 10.235807 -
() 8.601731 4.996296 5.332107 6.689763 9.800599 19.518472 -
(o) 2.531415 -3.570186 -0.202681 0.104046 -0.106133 | -0.935524 | -3.568891
0.05 | @, | -1.230657 6.113724 0.950537 -0.992074 -3.402389 | -2.007178 -18.71663
D 6.158617 -8.383279 -0.017202 1.591581 2.918805 4.901361 10.235807
@, | -1.131689 10.926486 5.260006 5.307910 6.429347 14.695172 | 19.518476
(o] 1.618052 2.710606 -10.017119 | -0.400145 -1.387680 | -0.106133 -0.807094
010 | 9, 0.316248 -1.298827 14.850474 1.334026 4.908252 -3.402387 -7.901303
D 3.344160 5.657693 -21.493753 | -0.369144 -1.386908 2.918804 4.658887
D 0.670560 -0.566326 20.877762 5.592012 11.376029 6.429349 9.800600
(o] 1.287215 1.737565 2.760835 - -0.400147 0.104046 0.009195
015 | 9, 0.883529 0.293027 -1.268890 - 1.334030 -0.992073 -3.718069
s 2.581048 3.370308 5.566265 - -0.369147 1.591580 2.696528
D 0.834612 0.703115 -0.412044 - 5.592016 5.307911 6.689764
(o] 0.943272 1.338288 3.185895 2.760837 - -0.202681 0.251525
020 | 9, 1.232249 0.881176 -0.727963 -1.268891 14.850480 | 0.950538 -1.351017
s 2.212601 2.582974 6.750157 5.566269 - -0.017203 1.515910
o) 0.666466 0.834243 -1.149167 -0.412046 20.877769 | 5.260007 5.332107
@, | -0.347414 - 1.338288 1.737565 2.710607 -3.570187 0.170855
& 025 | @, 2.165812 - 0.881175 0.293027 -1.298827 6.113724 0.219907
s 2.803123 - 2.582975 3.370309 5.657694 -8.383280 0.256587
@, | -0.645941 - 0.834242 0.703114 -0.566327 | 10.926487 4.996297
&, 0.588312 -0.347414 0.943273 1.287215 1.618052 2.531416 -0.369798
030 | 9, 0.126178 2.165812 1.232249 0.883529 0.316248 -1.230657 1.662238
s 0.644735 2.803123 2.212601 2.581048 3.344160 6.158618 -5.242598
() 0.096074 -0.645941 0.666467 0.834611 0.670559 -1.131690 8.601735
(o] 1.097026 1.455462 -17.946841 0.734132 1.071407 1.044257 | -11.587900
035 | 9, 0.854051 0.694531 16.314889 1.399571 1.015598 0.804210 15.060783
s 0.964062 0.931350 18.373540 2.411399 2.700376 3.701356 4.962526
D 1.071548 1.426430 19.968268 0.493322 0.707693 0.262422 -0.340909
(o)) 0.965575 1.109462 1.347718 1.776638 2.376142 2.097817 2.308364
040 | 9, 0.878889 0.880622 0.800052 0.480194 -0.174132 | -0.152836 -0.735707
s 0.926448 1.006804 1.077408 1.010930 0.782916 1.567219 2.691037
D 0.949102 1.083169 1.312523 1.736257 2.285272 1.780705 1.075525
(o)) 0.908159 0.998627 1.126283 1.264526 1.368495 1.426476 1.536978
045 | @, 0.877316 0.909315 0.924737 0.893589 0.804189 0.642329 0.305475
s 0.894934 0.969977 1.079146 1.219185 1.406677 1.666257 2.051911
D 0.897094 0.980360 1.101217 1.234772 1.331175 1.355130 1.274222
(o)) 0.877476 0.942833 1.036919 1.136291 1.212614 1.258836 1.303552
050 | 9, 0.868205 0.908052 0.950447 0.971087 0.948358 0.859073 0.663259
s 0.872717 0.933818 1.030471 1.159272 1.318201 1.502877 1.731523
() 0.869921 0.929761 1.019405 1.119627 1.205491 1.266247 1.293649
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$2

0 0.05 0.10 0.15 0.20 0.25 0.30
@, | 1536978 | 1426476 | 1.368495 | 1264526 | 1.126283 | 0.998627 | 0.908159
055 | @, | 0305475 | 0642329 | 0.804189 | 0893589 | 0.924737 | 0.909315 | 0.877316
@, | 2051911 | 1.666256 | 1406677 | 1.219184 | 1.079146 | 0.969977 | 0.894934

@, | 1274222 | 1355130 | 1.331175 | 1.234772 | 1.101217 | 0.980360 | 0.897094

@, | 2308365 | 2097818 | 2.376144 | 1.776638 | 1.347719 | 1.109463 | 0.965576
060 | @, | -0.735707 | -0.152837 | -0.174134 | 0480194 | 0.800052 | 0.880622 | 0.878890
@, | 2691037 | 1567218 | 0.782915 | 1.010929 | 1.077408 | 1.006804 | 0.926448

@, | 1075525 | 1.780706 | 2.285273 | 1.736258 | 1.312523 | 1.083170 | 0.949103

@, | -11587872 | 1.044257 | 1071407 | 0.734132 | -17.94676 | 1455462 | 1.097027
065 | @, | 15060751 | 0.804209 | 1.015598 | 1.399571 | 16.314821 | 0.694531 | 0.854051
@, | 4962535 | 3.701355 | 2.700375 | 2411399 | 18.373465 | 0.931350 | 0.964062

@, | -0.340917 | 0262422 | 0.707693 | 0.493322 | -19.96818 | 1426430 | 1.071548

@, | -0.369799 | 2531415 | 1.618052 | 1.287215 | 0.943272 | -0.347414 | 1.097026
070 | @, | 1662239 | -1.230657 | 0316248 | 0.883529 | 1.232249 | 2.165812 | 0.854051
@, | 5242594 | 6.158617 | 3.344160 | 2581048 | 2.212601 | 2.803123 | 0.964062

@, | 8601731 | -1.131689 | 0.670560 | 0.834612 | 0.666466 | -0.645941 | 1.071548

@, | 0170855 | -3570186 | 2.710606 | 1.737565 | 1.338288 - -0.347414
075 | @, | 0219907 | 6.113724 | -1.298827 | 0.293027 | 0.881176 - 2.165812
@, | 0256588 | -8.383279 | 5.65769 3.370308 | 2.582974 - 2.803123

3 @, | 4996296 | 10.926486 | -0.566326 | 0.703115 | 0.834243 - -0.645941
@, | 0251525 | -0.202681 | -10.017119 | 2.760835 - 1.338288 | 0.943273

080 | @, | -1.351017 | 0.950537 | 14.850474 | -1.268890 - 0.881175 | 1.232249
@, | 1515910 | -0.017202 | -21.493753 | 5566265 - 2582975 | 2.212601

@, | 533211 5260006 | 20.877762 | -0.412044 - 0.834242 | 0.666466

@, | 0009195 | 0.104046 | -0.400145 - 2.760837 | 1.737565 | 1.287215

085 | @, | -3.718070 | -0.992074 | 1.334026 - -1.268891 | 0.293027 | 0.883529
@, | 2696528 | 1591581 | -0.369144 - 5566260 | 3.370309 | 2.581048

@, | 6689763 | 5307910 | 5.592012 - -0.412046 | 0.703114 | 0.834611

@, | -0.807094 | -0.106133 - -0.400147 | -10.01712 | 2.710607 | 1.618052

090 | @, | -7.901304 | -3.402389 - 1.334030 | 14.850480 | -1.298827 | 0.316248
@, | 4658887 | 2.918805 - -0.369147 | -21.49376 | 50657694 | 3.344160

@, | 9.800599 | 6.429347 - 5592016 | 20.877769 | -0.566327 | 0.670560

@, | -3.568891 - -0.106133 | 0.104046 | -0.202681 | -3.570187 | 2.531416

095 | @, | -18.741665 - -3.402387 | -0.992073 | 0.950538 | 6.113725 | -1.230657
@, | 10.235807 - 2918804 | 1501580 | -0.017203 | -8.383280 | 6.158618

@, | 19518472 - 6.429349 | 5307911 | 5260007 | 10.926487 | -1.131690

@, - 3568891 | -0.807094 | 0.009195 | 0.251525 | 0.170855 | -0.369798

1.00 | @, - -18.741663 | -7.901303 | -3.718069 | -1.351017 | 0.219907 | 1.662238
@, - 10.235807 | 4.658887 | 2696528 | 1.515910 | 0.256587 | -5.242598

@, - 10518476 | 9.800600 | 6.689764 | 5.332107 | 4.996297 | 8.601735
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$2

0.35 0.40 0.45 0.50 0.55 0.60 0.65
@, | 0861230 | 0.848573 - 0.855308 - 0.837497 | 0.833550
055 | @, | 0854150 | 0.848319 - 0.855634 - 0837801 | 0.834321
@, | 0856510 | 0.847322 - 0.855384 - 0.837477 | 0.833219
@, | 0855543 | 0.845989 - 0.855137 - 0.837149 | 0.831840
@, | 0887520 - 0848572 | 0.846143 | 0.837497 - 0.816504
060 | @, | 0.860226 - 0.848318 | 0.846802 | 0.837801 - 0.816903
@, | 0873619 - 0847321 | 0.845881 | 0.837477 - 0.816482
@, | 0878394 - 0.845088 | 0.844913 | 0.837149 - 0.816035
@, - 0887519 | 0.861230 | 0.847999 | 0.833550 | 0.816504 -
065 | @ - 0.860226 | 0.854150 | 0.847354 | 0.834321 | 0.816903 -
@, - 0.873619 | 0.856510 | 0.846489 | 0.833219 | 0.816482 -
@, - 0.878394 | 0.855543 | 0.844533 | 0.831840 | 0.816035 -
@, | 1097026 | 0965575 | 0.908159 | 0.877476 | 0.852889 | 0.829757 | 0.814977
070 | @, | 0854051 | 0.878889 | 0.877316 | 0.868205 | 0.851725 | 0.830650 | 0.815448
@, | 0964062 | 0926448 | 0.894934 | 0872717 | 0.851417 | 0.829501 | 0.814968
@, | 1071548 | 0049102 | 0.897094 | 0869921 | 0.848297 | 0.827616 | 0.814425
@, | 1455462 | 1109462 | 0.998627 | 0942833 | 0903958 | 0.872083 | 0.851512
075 | @, | 0694531 | 0.880622 | 0.909315 | 0.908051 | 0.893002 | 0.870775 | 0.852561
@, | 0931350 | 1.006804 | 0.969977 | 0933818 | 0.901425 | 0.871841 | 0.851688
g @, | 1426430 | 1083169 | 0.980360 | 0929761 | 0.895178 | 0.867081 | 0.849301
@, | -17.946841 | 1347718 | 1126283 | 1.036919 | 0981210 | 0.939288 | 0.912221
080 | &, | 16314889 | 0.800052 | 0924737 | 0.950447 | 0.946658 | 0.929251 | 0.911846
@, | 18373540 | 1077408 | 1.079146 | 1.030472 | 0.983959 | 0.943551 | 0.915252
@, | -19.968268 | 1312523 | 1.101217 | 1.019405 | 0.969180 | 0.931920 | 0.908268
@, | 0734132 | 1776638 | 1264526 | 1.136291 | 1.064753 | 1.013832 | 0.981090
085 | @, | 1399571 | 0480194 | 0893589 | 071087 | 0.991084 | 0.986785 | 0.976047
@, | 2411399 | 1010930 | 1219185 | 1.159272 | 1.094095 | 1.038429 | 0.997997
@, | 0493322 | 1736257 | 1234772 | 1119627 | 1.055329 | 1.009307 | 0.979188
@, | 1071407 | 2376142 | 1.368495 | 1212614 | 1.130434 | 1.073097 | 1.036211
090 | @, | 1015598 | -0.174132 | 0.804189 | 0.948358 | 1.003241 | 1.020542 | 1.023055
@, | 2700376 | 0.782916 | 1.406677 | 1.318201 | 1225495 | 1.149004 | 1.091798
@, | 0707693 | 2285272 | 1.331175 | 1.205491 | 1.136106 | 1.084817 | 1.048680
@, | 1044257 | 2097817 | 1426476 | 1.258836 | 1.167309 | 1.102706 | 1.060324
095 | @, | 0.804210 | -0.152836 | 0.642329 | 0.859073 | 0.960688 | 1.008075 | 1.029813
@, | 3701356 | 1567219 | 1666257 | 1502877 | 1.370256 | 1.268613 | 1.192309
@, | 0262422 | 1.780705 | 1.3550130 | 1.266247 | 1.205903 | 1.155559 | 1.115534
@, | -11587900 | 2.308364 | 1536978 | 1.303552 | 1.181749 | 1.095214 | 1.032039
1.00 | @, | 15060783 | -0.735707 | 0.305475 | 0.663259 | 0.836944 | 0.922253 | 0.960158
@, | 4962526 | 2.691037 | 2051911 | 1.731523 | 1536654 | 1407406 | 1.318078
@, | -0.340009 | 1075525 | 1274222 | 1.293649 | 1.269846 | 1.237151 | 1.206264

227




$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00
@, | 0852889 | 0903958 | 0981210 | 1.064753 | 1.130434 | 1.167309 | 1.181749
055 | @, | 0851725 | 0.893002 | 0946658 | 0991084 | 1.003241 | 0.960688 | 0.836944
@, | 0851417 | 0901425 | 0983959 | 1.094095 | 1.225495 | 1.370256 | 1.536654
@, | 0848297 | 0895178 | 0.969180 | 1.055329 | 1.136106 | 1.205903 | 1.269846
@, | 0829757 | 0.872083 | 0939288 | 1013832 | 1.073097 | 1.102706 | 1.095214
060 | @, | 0830650 | 0870775 | 0929251 | 0986785 | 1.020542 | 1.008075 | 0.922253
@, | 0829501 | 0.871841 | 0943551 | 1.038429 | 1.149004 | 1.268613 | 1.407406
@, | 0.827616 | 0.867081 | 0931920 | 1.009308 | 1.084818 | 1.155559 | 1.237151
@, | 0.814977 | 0851511 | 0912221 | 081090 | 1.036211 | 1.060324 | 1.032039
065 | @, | 0815448 | 0852561 | 0.911846 | 0976047 | 1.023055 | 1.029813 | 0.960158
@, | 0.814968 | 0.851688 | 0915252 | 0997997 | 1.091797 | 1.192309 | 1.318078
@, | 0814425 | 0.849301 | 0908268 | 0079188 | 1.048680 | 1.115534 | 1.206264
@, - 0.851098 | 0.008154 | 00973431 | 1.026612 | 1.048824 | 1.003687
070 | @, - 0.852511 | 0.909649 | 00975930 | 1.030556 | 1.050724 | 0.986242
@, - 0.852034 | 0.09284 | 0982075 | 1.060915 | 1.142708 | 1.255237
@, - 0851430 | 0.06252 | 0071856 | 1.034234 | 1.091975 | 1.180475
@, | 0.851998 - 0.932602 | 0.095485 | 1.048733 | 1.074884 | 1.030637
075 | @, | 0852511 - 0933239 | 0098423 | 1.057057 | 1.089912 | 1.039888
@, | 0.852034 - 0.932719 | 0.998055 | 1.064020 | 1.126195 | 1.210749
g @, | 0.851430 - 0.931983 | 093597 | 1.048832 | 1.093227 | 1.160295
@, | 0.908154 | 0.932602 - 1.042871 | 1.096929 | 1.133046 | 1.153820
0.80 | @, | 0909649 | 0.933239 - 1.044073 | 1.103856 | 1.151722 | 1.183433
@, | 0.909284 | 0932719 - 1.043087 | 1.100505 | 1.147220 | 1.179020
@, | 0906252 | 0.931983 - 1.041796 | 1.092409 | 1.124812 | 1.145018
@, | 0973431 | 0995485 | 1.042871 - 1.154825 | 1.202652 | 2.008161
085 | @, | 0975930 | 0998423 | 1.044073 - 1.158004 | 1.220267 | 2.162983
@, | 0982075 | 0998055 | 1.043087 - 1.154955 | 1.198178 | 1.155718
@, | 0971856 | 0993597 | 1.041796 - 1151739 | 1.181370 | 1.133304
@, | 1026612 | 1048733 | 1.096929 | 1.154825 - 1.251848 | 0.760820
090 | @, | 1030556 | 1.057057 | 1.103856 | 1.158004 - 1.262441 | 0.715578
@, | 1.060915 | 1.064020 | 1.100505 | 1.154955 - 1.248770 | 1.137170
@, | 1034234 | 1.048832 | 1.092409 | 1.151739 - 1238714 | 1.123447
@, | 1048824 | 1.074884 | 1133046 | 1.202652 | 1.251848 - 1.013216
095 | @, | 1050724 | 1.089912 | 1.151722 | 1.220267 | 1.262441 - 1.002412
@, | 1142708 | 1126195 | 1.147220 | 1.198178 | 1.248770 - 1.120140
@, | 1091975 | 1.093275 | 1124812 | 1181370 | 1.238714 - 1.113575
@, | 1003687 | 1.030637 | 1.153820 | 2.008160 | 0.760820 | 1.013216 -
100 | @, | 0986242 | 1.039888 | 1.183433 | 2.162983 | 0.715578 | 1.002412 -
@, | 1255237 | 1210749 | 1.179020 | 1.155718 | 1.137170 | 1.120140 -
@, | 1180475 | 1.160295 | 1.145018 | 1.133304 | 1.123447 | 1.113575 -

Because our method of solution involves the computation of nodal forces, for

segments that have zero nodal forces their modification factors could not be

computed. This occurs for segments when &; = 1- &
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4.2.2 Fixed-pinned beams

These are beams rigidly restrained at one end and pinned at the other end. From

section 3.2.2 the first natural frequency w for such a beam is given as

w; = 15.41820578 /% (4.54)

In normalized coordinates, the length of the bar L = 1 hence
w1 = 15.41820578\@ (4.55)

Likewise
w; = u(x,0) = 372, A (cosh B;x; + by; sinh B x; — cos B;x; + by; sin Bjx;)
= %721 A; (cosh B LE; + by sinh B; L& — cos B; L& + by; sin B; L&)
(4.56a)
up = u'(x1,0) = X721 A; By L(sinh B;x; + by; cosh B x; + sin B;x; + by cos B x;)
= Y91 A BL(sinh B;L&; + by; cosh B;L&; + sin ;L& + by; cos B LE;)
(4.56b)
uz = u(xy, 0) = X7l 4 (cosh Bjx2 + by; sinh B x; — cos B x; + by; sin ﬁsz)
= Y721 A; (cosh B L&, + by; sinh B; L&, — cos B LE; + by; sin B;LE,)
(4.56¢)

uy = u'(x2,0) = X%, Aj,BL(sinh Bix; + byj cosh B x; + sin fx; + by; cos,B]-xZ)
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= 2;021 A]B]L(Slnh B]sz + sz COShB]’LEZ + Sinﬂjl’fz + b4] CosS ﬂ]sz)
(4.56d)

Equations (4.56a) — (4.56d) are used to evaluate the total displacements u; to u,4 at the
nodal points of a segment of the vibrating fixed-pinned beam. The equations represent
the summation of an infinite series but an evaluation of the first few terms of the

series provides values of very good precision.
From Table 3.3

__ bu L2 —(cosh BjL+cos [)’jL) 18(cosh BjL—cos [)’]-L) 48(sir1h BjL—sin BjL)
- e BrLA 3}5 L5

A:
] M;

—2(sinh g L+sin f;L) | 18(sinh f;L—sin §;L)  48(cosh f;L+cos [)’]-L—Z)>]

ﬁjz 12 ﬂ}‘l- 14 ﬁ]SLS (457)

The values of BjL, byj, and bsj for j =1, 2, 3, 4, 5, 6, 7 can be obtained from Table 3.3.
The formula for calculating the generalized mass M; can also be picked from Table
3.3.

For this beam there are two possible cases, and the method of obtaining the stiffness
modification factors depends on the case being considered.

When &; is greater or equal to zero and &; is less than 1

In this case the segment of the fixed-pinned beam under consideration is not
positioned to the far right of the beam (the end that is pinned). Hence the process of
calculating the stiffness modification factors is similar to the one for fixed-fixed
beam.

The values of the fixed end forces F1, F,, F3 and F, are evaluated using the equations
provided in Table 3.3 while the values of the nodal displacements us, u,, us and u, are

calculated from equations (4.56a) — (4.56b). These are substituted into the equations
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b)

for nodal forces (equations 4.35) — (4.38) from which the nodal forces P;, P,, P; and
P, are obtained.

Equations (4.56a) — (4.56d) are evaluated for the first mode, j = 1 to obtain the nodal
displacements ui1, Uz1, Us; and us due to the first mode. These together with the
calculated nodal forces P; to P, are substituted into equation (4.49) in order to obtain

the stiffness modification factors ¢y, ¢z, ¢3 and ¢,.
When &; isequal to 1

In this case the segment under consideration is located at the far right of the
fixed-pinned beam. This implies that the segment is fixed at the left end and
pinned at the right end hence its stiffness matrix is different from that of a
fixed-fixed beam. The stiffness matrix for a fixed pinned beam is given as

(Okonkwo and Onyeyili, 2012)

3EI 3EI 3EI
= 7 ~15 9
s
k] = 2 ! 12 (4.58)
3EI 3EI 3EI
{—z—a R 0‘
0 0 0 0

The proposed stiffness matrix for this beam segment is therefore

3EI 3EI 3EI

- $1 =2 593 0]
3EI 3El 3EI
k={ 2% T¢% ~—b O | (4.59)
3EI 3El 3EI
|— b P j
0 0 0 0

By substituting equations (4.40), (4.42) and (4.59) into equation (4.39) we obtain
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i (§2—81)

2 0 0 0] —wzull
0 0 0 OI —a)zu21 +
0 0 M Ol _Q)ZU31
0 0 (2) 0 —a)zu41
- 3EI 3EI 3EI
¢ ¢ —J¢s 0] ” P,
3EI 3EI 3EI
_2(]-')2 —¢1 __2¢4 OI Uz1 — P, 4.60
! ! ! u p (4.60)
3EI 3EI 3EI 31 3
—5 P — b Fh 01 \uy, P,
0 0 0 0

By multiplying out the first row of equation (4.60) we obtain

n(2—¢1) w2

3E1 3E] 3E1
5 Uy + l—3¢1u11 + l—2¢2u21 - l—3¢3u31 +0="p

3EI 3E] 3E1 1(E2—&1)
z_3¢1u11 + l—2¢2u21 —l—3¢3u31 =P+ 22 = WUy (4.61)

By multiplying out the second row of equation (4.60) we obtain

3EI 3EI 3EI
0+ douns + 1 — 7 Pauzs +0 =P,

3EI 3EI 3EI
— b1uar + 5 Potliy — T Patiz = P, (4.62)

By multiplying out the third row of equation (4.60) we obtain

_u(€—61) w2

3E] 3E] 3E1
5 Uzy — l—3¢3u11 - l—2¢4u21 +l—3¢1u31 +0="P;

3EI 3EI 3El u(€2—¢1)
3 P1uz1 — 3 P3thn — 3 Patiy = Py — = wluy (4.63)

By multiplying out the fourth row of equation (4.60) we obtain

Hence P, for an element with the far end pinned must be zero. This will help in

ascertaining the correctness of our equations.
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By putting equations (4.61) — (4.63) in matrix form we obtain

[3EI
iRkt
3EI
T Ya1
3EI
73 U3l

3EI

—7 U2

12
3EI
12

0

U1

3EI
3 U3

0

3EI

— 3 Ui

1¢>1
|¢z

0
3EI
T2 U3l
3EI

7z Y1) (g,

(P, +

i

\Ps +

n(E2=¢0)
2
P,
n(E2=¢0)
2

2

2

w un\

} (4.65)

w U31}

Equation (4.65) is a set of three equations (equations 4.61 — 4.63) with four unknowns

(¢p1to ¢4). To solve it there is need to know the value of one of the unknowns.

Let ¢4 = 1

(4.66)

By substituting equation (4.66) into (4.65) and rearranging the equation we obtain

3E1
—5 Uy 3EI 3E]
[ l—2u21 — 3 U3 ¢
3EI ! 1
—u,,; 3EI 0 {qbz} = 1
l Tzt 3EL (g
3EI ——1u
— 0 Bt
| l3 u31
Therefore
"3EI -1
—5 U1y 3EI 3EI
b, 3lEI 7Yt T us
¢2} = —u21 3EI 0
{q)g LT min 3E
3EI —_3u11
_l_3U31 0 l

\P3

\P3

M(fz

$1)

2

Py +

P, —

u(é; —

2

Py +

u(& —

2
3EI

12

Uzq

$1)

#(fz §1)
2

3EI
P, _l_2u31

$1)

2
2

W~ U1

— ~ wluy +

2

— WUz +

7z Y1)

3EI

WU

3EI
Tz Y21

(4.67)

Equation (4.67) is a mathematical expression for calculating the four stiffness

modification factors for an element of a beam (having the far end pinned) under

lateral vibration. Note that ¢, = 1.
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Having presented the methods of calculating the stiffness modification factors for a
fixed-pinned beam, some numerical demonstrations of these steps are presented

below. For clarity the calculations will be presented in a tabular form.

Example 1: when &; = 0, &, = 0.5

Table 4.19: Calculation of the Stiffness modification factor for an element positioned

at & =0, & = 0.5 on a fixed-pinned beam under lateral vibration

& =0, & =05
Aj Fyj Fyj Fs Fuj

-0.17364907535931 | -3.46795443001802 | -0.4184932923117 | -10.379501871211 | 0.71973306595434
-0.00158875089165 | -0.67522094272502 | -0.0770120802222 | -1.1637605379658 | 0.10110850740348
-0.00147691803689 | -3.13035585884167 | -0.3210181183045 | -0.8549012311576 | 0.22202170181458
-0.00006626491683 | -0.34660132237135 | -0.0291042316727 | 0.23742796910115 | -0.0036895971616
-0.00013421224883 | -1.21624196413605 | -0.0736000402438 | 0.33795071940028 | -0.0530628310870
-0.00000988628419 | -0.14307523918566 | -0.0064799781693 | -0.1043775770341 | 0.00009496675733
-0.00000020890674 | -0.00490120548876 | -0.0002129996562 | -0.0013714630787 | 0.00015565023283

Total -8.98435096276653 | -0.9259207405804 | -11.928533991946 | 0.98636146391392

Al Uy Uzj Us;j Uyj

-0.17364907535931 0 0 -0.2508979869619 | -0.2713326562263
-0.00158875089165 0 0 -0.0009061450552 | 0.01500096921473
-0.00147691803689 0 0 0.0019207280459 | 0.00825249030240
-0.00006626491683 0 0 0.00003577875740 | -0.0011548709728
-0.00013421224883 0 0 -0.0001753919344 | -0.0011974174623
-0.00000988628419 0 0 -0.0000053509572 | 0.00025363631599
-0.00000020890674 0 0 0.00000027294745 | 0.00000257515922

Total 0 0 -0.2500280951625 | -0.2501752736690

U =0 Usz; = -0.2500280951625
Uy =0 Ug1 = -0.2501752736690
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From Table 3. 3

F, = 8.98435096276653

F, = 0.92592074058035

From equations (4.35) — (4.38)

P, = 26.98284153031153

P, = 5.92589392980464

From equation (4.49) taking El = 1

¢, = 1.11502214241540

¢, =0.90229998347702

F; =11.92853399194589

F, =-0.98636146391392

P; = -6.06995657559912

P, =3.01291063063430

¢3 = 1.45734448442994

¢, = 1.24678725977081

Table 4.20: Calculation of the Stiffness modification factor for an element positioned

at & = 0.5, &, = 1.0 on a fixed-pinned beam under lateral vibration

fl = 05, 52 =1.0

j Aj Fij Fa Fsj Fy
-0.17364907535931 | -13.9957762990768 | -1.0948663443722 | -7.6576426975165 | 0.82549618887594
-0.00158875089165 | 0.60907317204077 | 0.07545574747650 | 0.90216848365137 | -0.0886461105590
-0.00147691803689 | 1.73552601656857 | -0.0046743568665 | -3.1173408929962 | 0.24972243460432
-0.00006626491683 | -0.26058792146973 | -0.0197932507008 | 0.27736871099274 | -0.0137706183840
-0.00013421224883 | -0.29649351035138 | 0.04642622845628 | -0.8811548234496 | 0.01604507715516
-0.00000988628419 | 0.09676165271599 | 0.00286512421068 | 0.10685201827263 | -0.0013100578916
-0.00000020890674 | 0.00158536678243 | -0.0000875313883 | -0.0037403522362 | 0.00007068397551

Total -12.1099115227902 | -0.9946743831844 | -10.373489553282 | 0.98760759777631
Al Usj Uyj Us; Uyj
-0.17364907535931 | -0.25089798696619 | -0.2713326562263 0 0.99154730530086
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Uy = -0.2713326562263

From Table 3. 3

F; =12.10991152279019

F, =0.99467438318438

From equations (4.35) — (4.38)

P, = 6.06995657564480

P, =-3.01291063065038

From equation (4.67) taking El = 1

¢, =1.31019183437732

¢, = 0.29225810649324 s

Ug; = 0.99154730530086

F3; = 10.37348955328170

F,=-0.98760759777631

¢3 = 2.18506014881593

1

P; = 16.41344450042708

P, = -5.751425291578016 x 10®

-0.00158875089165 | -0.00090614505516 | 0.01500096921473 0 -0.0158628131389
-0.00147691803689 | 0.00192072804559 | 0.00825249030240 0 0.02132687502742
-0.00006626491683 | 0.00003577875740 | -0.0011548709728 0 -0.0012512280745
-0.00013421224883 | -0.00017539193443 | -0.0011974174623 | 0.00000000000012 | 0.0031305191869
-0.00000988628419 | -0.00000535095716 | 0.00025363631599 0 -0.0002745225210
-0.00000020890674 | 0.000000027294745 | 0.00000257515922 0 0.00000672907449

Total -0.25002809516252 | -0.2501752736690 | 0.00000000000012 | 0.99862286485519

up; =-0.25089798696619 U =0

Table 4.21: Calculation of the Stiffness modification factor for an element positioned

at & =0, & = 0.4 on a fixed-pinned beam under lateral vibration

fl =0, 52 =04

i Aj Fij

F 2j

F 3j

F 4j

1| -0.17364907535931 | -1.95885130539335

-0.1908933873925

-6.3625124225160

0.34235311278584
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From Table 3. 3

F, = 6.60409544409049

F, =0.56902560199239

From equations (4.35) — (4.38)

P, = 26.98284153031158

P, = 5.92589392980464

From equation (4.49) taking EI

F3; =9.35556129895076

F, =-0.64489821392814

P3=-11.02318478727032

P, =2.14973189274804

=1

-0.00158875089165 | -0.43394284176040 | -0.0407922390309 | -1.0153455890456 | 0.06201407643782
-0.00147691803689 | -2.40123420143900 | -0.2126651325310 | -2.9121117209021 | 0.23850572770471
-0.00006626491683 | -0.32524583053818 | -0.0260852315448 | -0.0243416733237 | 0.01509778390815
-0.00013421224883 | -1.32495004334296 | -0.0901757378075 | 0.88020928018414 | -0.0075968378043
-0.00000988628419 | -0.15509835649696 | -0.0082222737245 | 0.08028930755915 | -0.0053795277931
-0.00000020890674 | -0.00477286511963 | -0.0001915999613 | -00174848090669 | -0.0000961213109
Total -6.60409544409049 | -0.5690256019924 | -9.3555612989508 | 0.64489821392814
j Aj Ugj Uy Us; Uyj
1| -0.17364907535931 0 0 -0.2095501987208 | -0.5388622969652
2 | -0.00158875089165 0 0 -0.0020959222175 | 0.00787482324347
3 | -0.00147691803689 0 0 0.00030187176657 | 0.02131713302710
4 | -0.00006626491683 0 0 0.00009224141154 | 0.00019997579844
5 | -0.00013421224883 0 0 0.00008598650455 | -0.0027862934131
6 | -0.00000988628419 0 0 -0.0000098901221 | -0.0001940413795
7 | -0.00000020890674 0 0 -0.0000002632609 | 0.00000305546161
Total 0 0 -0.2111761746386 | -0.5124476442272
u;; =0 Uz = -0.2095501987208
Uy =0 U4y = -0.5388622969652
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¢1 = 1.04248077620655

¢, = 0.98843685777153

¢3 = 1.30465183700470

¢, = 1.20143461764998

Table 4.22: Calculation of the Stiffness modification factor for an element positioned

at & = 0.4, &, = 0.7 on a fixed-pinned beam under lateral vibration

& =04, §=07

i Aj Fy Fy Fi Fy
1 | -0.17364907535931 | -8.62846486345837 | -0.4454268830278 | -9.0486286219172 | 0.45616689269091
2 | -0.00158875089165 | -0.36737036896912 | -0.0105135180580 | 0.28384180002719 | -0.0062075646843
3 | -0.00147691803689 | 2.38143485506075 | 0.13704682028785 | 2.00543405536515 | -0.1270297533939
4 | -0.00006626491683 | 0.17431842397132 | 0.00242763816785 | -0.2850304744890 | 0.01036703463981
5 | -0.00013421224883 | -0.94044200180817 | -0.0623405025903 | -0.0179546022520 | 0.03480406905528
6 | -0.00000988628419 | -0.10672925569029 | -0.0007707078843 | 0.12964287387314 | -0.0070406794717
7 | -0.00000020890674 | 0.00212233816722 | 0.00020827792590 | -0.0035142364815 | 0.00000952906367
Total -7.48513087272667 | -0.3793688751788 | -6.9392092058742 | 0.36106952789975
j Aj Ugj Uy Us;j Uyj
1 | -0.17364907535931 | -0.20955019872077 | -0.5388622969652 | -0.2370270716716 | 0.41706837652900
2 | -0.00158875089165 | -0.00209592221751 | 0.00787482324347 | 0.00190462781234 | 0.00837914022987
3 | -0.00147691803689 | 0.00030187176657 | 0.02131713302710 | -0.0001650357299 | -0.0212481296734
4 | -0.00006626491683 | 0.00009224141154 | 0.00019997579844 | -0.0000712655121 | 0.00081268672021
5 | -0.00013421224883 | 0.00008598650455 | -0.0027862934131 | 0.00018455916205 | 0.00073082654981
6 | -0.00000988628419 | -0.00000989012208 | -0.0001940413795 | -0.0000053504291 | -0.0002536255300
7 | -0.00000020890674 | -0.00000026326093 | 0.00000305546161 | -0.0000001543664 | 0.00000573747975
Total -0.21117617463862 | -0.5124476442272 | -0.2351796907346 | 0.40549501230523

up; = -0.20955019872077

Uy = -0.5388622969652

Uz = -0.2370270716716

Ug = 0.41706837652900
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From Table 3. 3

F, = 7.48513087272667

F, = 0.37936887517875

From equations (4.35) — (4.38)

P, =11.02318478727057

P, =-2.14973189274783

From equation (4.49) taking El = 1

¢, = 0.99486338610132

¢, =0.93372174004309

Fs; = 6.93620920587415

F, =-0.36106952789975

P = 3.39815529133027

P, =3.22944741439000

b3 = 0.97560437880874

¢, =0.97012166839347

Table 4.23: Calculation of the Stiffness modification factor for an element positioned

at & = 0.7, &, = 1.0 on a fixed-pinned beam under lateral vibration

fl = 07, 52 =1.0

j Aj Fij Fa Fsj Fy
-0.17364907535931 | -6.48137328145983 | -0.2864567110644 | -3.0210448030777 | 0.19928186132517
-0.00158875089165 | 0.75817259323220 | 0.03666989034355 | 0.44690458151699 | -0.0286680538133
-0.00147691803689 | -2.28564824481658 | -0.1351688664291 | -2.1549467096943 | 0.13170175396620
-0.00006626491683 | 0.08394024483541 | 0.01044569016191 | 0.28396674580612 | -0.0160161637421
-0.00013421224883 | 0.53824513976257 | -0.0072880889098 | -1.1910473518033 | 0.05891637688410
-0.00000988628419 | -0.13536861027945 | -0.0035057687902 | 0.14342489529287 | -0.0057078323818
-0.00000020890674 | 0.00373893447016 | 0.00019114988964 | -0.0042533466324 | 0.00011767982716

Total -7.51829322425552 | -0.3851127047983 | -5.4969959885918 | 0.33962562206542
Al Usj Uyj Us; Uyj
-0.17364907535931 | -0.23702707167164 | 0.41706837652900 0 0.99154730530086
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-0.00158875089165 | 0.00190462781234 | 0.00837914022987 0 -0.0158628131389
-0.00147691803689 | -0.00016503572987 | -0.0212481296734 0 0.02132687502742
-0.00006626491683 | -0.00007126551212 | 0.00081268672021 0 -0.0012512280745
-0.00013421224883 | 0.00018455916205 | 0.00073082654981 | 0.00000000000012 | 0.00313051918690
-0.00000988628419 | -0.00000535042906 | -0.0002536255300 0 -0.0002745225210
-0.00000020890674 | -0.00000015436635 | 0.00000573747975 0 0.00000672907449

Total -0.23517969073464 | 0.40549501230523 | 0.00000000000012 | -0.0002745225210

u;; =-0.23702707167164 Uy =0

Uy = 0.41706837652900

From Table 3. 3

F, = 7.51829322425552

F, =0.38511270479828

From equations (4.35) — (4.38)

P, =-3.39815529161311

P, =-3.22944741441518

From equation (4.67) taking El = 1

¢, =0.92287981019171

¢, = 0.89590870859280

Us; = 0.99154730530086

Fs; = 5.49699598859177

F, =-0.33962562206542

P, = 16.41344450446040

P, = -5.761254406877470 x 10°®

¢3 = 1.15109852884999

¢s=1

Tables 4.19 to 4.23 provide illustrations on how the inherent nodal forces P, to P4 and

the stiffness modification factors ¢; to ¢4 for a element of a fixed-pinned beam under

lateral vibration are calculated. It would be observed that the values of the of fixed

end forces calculated where negated, this is to take care of the sign convention used in

the development of the equations of Table 3.2. Using the methods presented in Table
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4.19 to 4.23 the values of stiffness modification factors at different values of &; and &,
for the lateral vibration of a fixed-pinned beam are presented in Table 4.24. A sample
matlab program for the calculation of the stiffness modification factors for a segment

of a fixed-pinned beam can be found in Appendix E.
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Table 4.24: Stiffness modification factors for the lateral vibration of a fixed-pinned

beam
&

0 0.05 0.10 0.15 0.20 0.25 0.30
@, - 1.033877 | 0.881306 | -0.068863 | 1.339468 | 1.095985 | 1.032136
0 @, - 1.025153 | 0.852781 | -0.238489 | 1.394572 | 1.117229 | 1.038153
7} - 1.122936 1.137995 1153326 | 1.170708 | 1.192121 | 1.219770
@, - 1.117139 1.126060 1134404 | 1.143244 | 1.153613 | 1.166398
@, | 1.033877 - 1.279392 1.241155 | 1.176808 | 1.116289 | 1.077191
005 | @, | 1025153 - 1.290878 1.260557 | 1.197586 | 1.135201 | 1.090533
@, | 1122936 - 1.275561 1.231454 | 1.177547 | 1.144591 | 1.140538
@, | 1117139 - 1.264738 1.213846 | 1.156535 | 1.117719 | 1.103020
@, | 0881306 | 1.279392 - 1.188396 | 1.138297 | 1.091330 | 1.060427
010 | @, | 0852781 | 1290878 - 1.101860 | 1.145849 | 1.101072 | 1.069592
@, | 1137995 | 1275561 - 1.188327 | 1.139927 | 1.100696 | 1.084064
@, | 1126060 | 1.264738 - 1.184873 | 1.131904 | 1.087551 | 1.063277
@, | -0.068863 | 1.241155 1.188396 - 1.092959 | 1.048665 | 1.020413
015 | @, | -0.238489 | 1.260557 1.191860 - 1.094265 | 1.051930 | 1.024704
@, | 1153326 | 1231454 1.188326 - 1.093086 | 1.050381 | 1.026759
@, | 1134404 | 1213846 1.184873 - 1.091736 | 1.046325 | 1.018445
@, | 1339468 | 1.176808 1.138297 1.092959 - 0.998710 | 0.971047
020 | @, | 1394572 | 1197586 1.145847 1.094265 - 0.999314 | 0.972668
@, | 1170708 | 1.177547 1.139927 1.093086 - 0.998796 | 0.971973
@, | 1143244 | 1.156535 1.131904 1.091736 - 0.998140 | 0.969549
@, | 1.095985 | 1.116289 1.091330 1.048665 | 0.998710 - 0.926831
& | 025 | @, | 1117229 | 1135201 1.101072 1.051930 | 0.999314 - 0.927224
@, | 1192121 | 1.144501 1.100696 1.050382 | 0.998796 - 0.926868
@, | 1153613 | 1.117719 1.087551 1.046325 | 0.998140 - 0.926428
@, | 1032136 | 1.077191 1.060427 1.020413 | 0.971047 | 0.926831 -
030 | @, | 1038153 | 1.090533 1.069592 1.024704 | 0.972668 | 0.927224 -
@, | 1219770 | 1.140538 1.084064 1.026759 | 0.971973 | 0.926868 -
@, | 1166398 | 1.103020 1.063277 1.018448 | 0.969549 | 0.926428 -
@, | 1023912 | 1.063765 1.049907 1.011332 | 0.962015 | 0.916877 | 0.886483
035 | @, | 1007971 | 1.064407 1.053431 1.013851 | 0.963722 | 0917931 | 0.886812
@, | 1256213 | 1161672 1.091764 1.025199 | 0.965038 | 0917211 | 0.886492
@, | 1182250 | 1.108094 1.059770 1.010443 | 0.959545 | 0.915470 | 0.886125
@, | 1.042481 | 1.070584 1.056290 1.017851 | 0.967665 | 0.920644 | 0.887791
040 | @, | 0988437 | 1.046949 1.045859 1.013173 | 0.966556 | 0.921389 | 0.888665
@, | 1304652 | 1201630 1.118708 1.041331 | 0973839 | 0921581 | 0.887833
@, | 1201435 | 1.125756 1.071428 1.017765 | 0.963976 | 0917746 | 0.886443
@, | 1.073619 | 1.089900 1.073594 1.034306 | 0.982192 | 0.932022 | 0.895439
045 | @, | 0957879 | 1.025527 1.037109 1.013841 | 0.972846 | 0.929700 | 0.895997
@, | 1369472 | 1256989 1.159877 1.069524 | 0.992396 | 0.933727 | 0.895459
@, | 1223540 | 1.150378 1.092244 1.034610 | 0.977073 | 0.927272 | 0.892600
@, | 1115022 | 1.119190 1.099718 1.058605 | 1.003193 | 0.948205 | 0.906311
050 | @, | 0902300 | 0.989655 1.018936 1.008764 | 0976381 | 0937422 | 0.904014
@, | 1457344 | 1329203 1.214352 1.107639 | 1.017953 | 0.950568 | 0.906087
@, | 1246787 | 1.179413 1.119691 1.058690 | 0.996495 | 0.941408 | 0.901631
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$2

0.35 0.40 0.45 0.50 0.55 0.60 0.65
] 1.023912 1.042481 1.073619 1.115022 1.178909 1.298098 1.565512
0 a, 1.007971 0.988437 0.957879 0.902300 0.806776 0.636098 0.274212
s 1.256213 1.304652 1.369472 1.457344 1.579701 1.759370 2.053368
D, 1.182250 1.201435 1.223540 1.246787 1.266293 1.269036 1.215803
&, 1.063765 1.070584 1.089900 1.119190 1.166086 1.252514 1.439769
0.05 a, 1.064407 1.046949 1.025527 0.989655 0.928820 0.820505 0.590009
s 1.161672 1.201630 1.256989 1.329203 1.423784 1.547124 1.689889
D 1.108094 1.125756 1.150378 1.179412 1.212939 1.253575 1.319927
, 1.049907 1.056290 1.073594 1.099718 1.141105 1.217102 1.390210
0.10 a, 1.053431 1.045859 1.037109 1.018936 0.983615 0.913988 0.742198
s 1.091764 1.118708 1.159877 1.214352 1.284777 1.371088 1.437638
D 1.059770 1.071428 1.092244 1.119691 1.156041 1.210566 1.327781
(o)) 1.011332 1.017851 1.034306 1.058605 1.096358 1.164507 1.315331
0.15 () 1.013851 1.013173 1.013841 1.008764 0.992269 0.951975 0.836528
D 1.025199 1.041331 1.069524 1.107639 1.157121 1.216605 1.252451
D 1.010443 1.017765 1.034610 1.058690 1.093397 1.150198 1.273588
(o)) 0.962014 0.967665 0.982192 1.003193 1.035176 1.091335 1.203438
0.20 () 0.963722 0.966556 0.972846 0.976381 0.973485 0.957113 0.898489
D 0.965038 0.973839 0.992396 1.017953 1.051874 1.094707 1.129103
D 0.959545 0.963976 0.977073 0.996495 1.025697 1.074854 1.171610
, 0.916877 0.920644 0.932022 0.948205 0.972684 1.015385 1.093518
& 0.25 a, 0.917931 0.921389 0.929700 0.937422 0.942683 0.942915 0.924295
s 0.917211 0.921581 0.933727 0.950568 0.973800 1.006330 1.042558
d, 0.915470 0.917746 0.927272 0.941408 0.963208 1.000885 1.068908
, 0.886483 0.887791 0.895439 0.906311 0.923337 0.954701 1.010846
0.30 a, 0.886812 0.888665 0.895997 0.904014 0.912332 0.921622 0.925848
D 0.886492 0.887833 0.895459 0.906087 0.921791 0.947272 0.982758
D 0.886125 0.886443 0.892600 0.901631 0.916300 0.943779 0.992511
, - 0.871440 0.875172 0.880864 0.891391 0.914612 0.958926
0.35 D, - 0.871734 0.875976 0.881452 0.889069 0.902055 0.918867
D - 0.871438 0.875130 0.880652 0.890512 0.910924 0.945471
D - 0.871118 0.873956 0.878282 0.886897 0.907022 0.945438
(o)) 0.871440 - 0.866052 0.866567 0.871307 0.888934 0.928794
0.40 a, 0.871734 - 0.866321 0.867339 0.871772 0.885372 0.910438
D 0.871438 - 0.866049 0.866528 0.871061 0.887574 0.922994
D 0.871118 - 0.865761 0.865435 0.868731 0.883858 0.918611
(o)) 0.875172 0.866052 - 0.855448 0.854261 0.867582 0.909029
0.45 a, 0.875976 0.866321 - 0.855716 0.855011 0.867338 0.900319
D 0.875130 0.866049 - 0.855447 0.854221 0.867185 0.906732
D,y 0.873956 0.865761 - 0.855158 0.853036 0.864429 0.900973
(o)) 0.880864 0.866567 0.855448 - 0.835749 0.845400 0.901008
0.50 d, 0.881452 0.867339 0.855716 - 0.836042 0.845908 0.889927
D 0.880652 0.866528 0.855447 - 0.835746 0.845315 0.900184
d, 0.878282 0.865435 0.855158 - 0.835415 0.843832 0.888793
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$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00
@, | 2595914 | 2172110 | 0.177611 | 0476098 | 0.486790 | 0.325283 -

0 @, | -1.018911 | 4281781 | 1.199283 | 0.261280 | -0.615353 | -1.601405 -
@, | 2672121 | 5876722 | -1.117326 | 0915539 | 1645079 | 2.263494 -

@, | 0944652 | -1.376949 | 4708916 | 3533182 | 3574035 | 3.927801 -
@, | 2406019 | 1263019 | 8676850 | 0.149628 | 0517018 | 0.501695 | -5.124731
005 | @, | 0529062 | 0532814 | -9.023118 | 1.315316 | 0.203700 | -0.669598 | -32.333667
@, | 1341264 | 3.674345 | 22074381 | -0.056971 | 1.210150 | 1.801691 | 713.258506

@, | 1897197 | 0.117870 | -14.143094 | 3.756001 | 3.182342 | 3.257590 1
@, | 4857283 | 1212148 | 1.881503 | -1.255422 | 0.530840 | 0.631951 | -1.410466
010 | @, | 2748434 | 0786906 | -0.196723 | 3.524698 | 0.720562 | -0.136393 | -14.413830
@, | -1668272 | 2594997 | 3.747179 | -3.426459 | 0.858208 | 1.495322 | 154.766607

@, | 4671569 | 0.706843 | 0.068954 | 5913190 | 2.855691 | 2.672692 1
@, | 2743700 | 1.030684 | 1411778 | 7.284137 | 0.633354 | 0.733836 | -0.233091
015 | @, | 0479304 | 1056240 | 0518456 | -7.271644 | 0.841907 | 0.025170 | -7.815071
@, | 0116914 | 2166176 | 2545986 | 15805416 | 0.812959 | 1.318795 | 59.431587

@, | 2705275 | 0.741690 | 0.666071 | -9.468059 | 2.319239 | 1.993284 1
@, | 1.595085 0.685026 | 1153122 | 3.049482 | 0.810269 | 0.710214 | 0.264989
020 | @, | 0584734 | 1374291 | 0.841189 | -1.777032 | 0.606567 | -0.151945 | -4.283662
@, | 0949759 | 2061940 | 2017123 | 6.395831 | 1.029725 | 1.020466 | 28.794937

@, | 1546875 | 0481327 | 0.749365 | -2.606944 | 1556480 | 1.210513 1
@, | 1260275 | 4506745 | 0918584 | 0.647380 | 0.809997 | 0.145598 | 0.481023
& | 025 [ @, | 0825847 | -2041302 | 1051814 | 1171276 | 0.288174 | -1.096990 | -2.180505
@, | 1031972 | -1.882180 | 1.749396 | 0397315 | 0.932240 | -0.347950 | 15.860689

@, | 1219270 | 4649108 | 0.668866 | 1.731909 | 0.907141 | 0.018121 1
@, | 1105308 | 1.308447 | 0.175611 | 0857180 | 0.341559 | 3.856357 | 0.563581
030 | @, | 0.898734 | 0.727975 | 1.797289 | 0.695899 | -0.675944 | 5429493 | -0.894186
@, | 1010909 | 0932727 | 2156916 | 1.036061 | -0.373641 | 7.815737 | 9.504482

@, | 0073318 | 1250929 | 0.065448 | 0822704 | 0.123245 | 4.652578 1
@, | 1027706 | 1120185 | 1.027196 | 0171517 | 1568103 | 1.584875 | 0.564293
035 | @, | 0923017 | 0858695 | 0.789897 | 3.485079 | 2.670149 | 1.806860 | -0.071200
@, | 0985988 | 0.999926 | 0.822494 | 4372770 | 3590924 | 2.815269 | 6.070767

@, | 1001972 | 1.057561 | 1.086947 | -0.057100 | 1.640720 | 1.686265 1
@, | 0994863 | 0.881270 | 0.900268 | -0.208520 | 0.804642 | 1.210537 | 0.399923
040 | @, | 0933722 | 1116344 | 0799188 | 0.763577 | 1.502086 | 1.441033 | 0.614009
@, | 0975604 | 0.860653 | 0.863077 | 0.930544 | 1952179 | 2.087233 | 4.096635

@, | 0970122 | 1.145231 | 0.873407 | -0.445045 | 0.726622 | 1.222386 1
@, | 1042454 | 1074389 | 1719053 | 1.757123 | -7.271986 | 0.903924 | 13513977
045 | @, | 0.895998 | 1.031793 | 1445889 | 1.224938 | 2420337 | 1357213 | -12.149381
@, | 1031469 | 1047945 | 1552103 | 1378081 | 2.866212 | 1.787913 | 2.91349%

@, | 0921715 | 1.087383 | 1.788588 | 1.834015 | -8.584750 | 0.865025 1
@, | 1061705 | 0.383753 | 0970752 | 1191346 | 1493014 | -6.403278 | 1.310192
050 | @, | 1.054167 | 0422509 | 0.930595 | 1.052685 | 1.086303 | 3.187114 | 0.292258
@, | 1056671 | 0.396075 | 0955443 | 1129075 | 1.235296 | 3.756568 | 2.185060

@, | 1069211 | 0343848 | 0959581 | 1195016 | 1536377 | -7.546021 1
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$2

0 0.05 0.10 0.15 0.20 0.25 0.30

&, 1.178909 1.166086 1.141105 1.096358 1.035176 0.972684 0.923337

0.55 d, 0.806776 0.928820 0.983615 0.992269 0.973485 0.942683 0.912332
s 1.579701 1.423784 1.284777 1.157121 1.051874 0.973800 0.921791

() 1.266293 1.212939 1.156041 1.093397 1.025697 0.963208 0.916300

(o) 1.298098 1.252514 1.217102 1.164507 1.091335 1.015385 0.954701

0.60 d, 0.636098 0.820505 0.913988 0.951975 0.957113 0.942915 0.921622
D 1.759370 1.547124 1.371088 1.216605 1.094707 1.006330 0.947272

D 1.269036 1.253575 1.210566 1.150198 1.074854 1.000885 0.943779

(o] 1.565512 1.439769 1.390210 1.315331 1.203438 1.093518 1.010846

0.65 () 0.274212 0.590009 0.742198 0.836528 0.898489 0.924295 0.925848
() 2.053368 1.689889 1.437638 1.252451 1.129103 1.042558 0.982758

D 1.215803 1.319927 1.327781 1.273588 1.171610 1.068908 0.992511

(o] 2.595914 2.406019 4.857283 2.743700 1.595085 1.260275 1.105308

0.70 @, | -1.018911 -0.529062 -2.748434 -0.479304 0.584734 0.825847 0.898734
s 2.672121 1.341264 -1.668272 0.116914 0.949759 1.031972 1.010909

D 0.944651 1.897197 4.671569 2.705275 1.546875 1.219270 0.073318

@, | -2.172211 1.263302 1.212148 1.030684 0.685026 4.506745 1.308447

0.75 d, 4.281781 0.532814 0.786906 1.056240 1.374291 -2.041302 0.727975
s 5.876722 3.674345 2.594997 2.166176 2.061940 -1.882180 0.932727

& @, | -1.376949 0.117870 0.706843 0.741690 0.481327 4.649108 1.250929
&, 0.177611 8.676850 1.881503 1.411778 1.153122 0.918584 0.175611

0.80 ad, 1.199283 -9.023118 -0.196723 0.518456 0.841189 1.051814 1.797289
@, | -1.117326 22.074381 3.747179 2.545986 2.017123 1.749396 2.156916

(o) 4.708916 -14.143094 0.068954 0.666071 0.749365 0.668866 0.065448

&, 0.476098 0.149628 -1.255422 7.284137 3.049482 0.647380 0.857180

0.85 a3, 0.261280 1.315316 3.524698 -7.271644 -1.777032 1.171275 0.695899
D 0.915539 -0.056970 -3.426459 15.805416 6.395831 0.397315 1.036061

D 3.533182 3.756001 5.913190 -9.468059 -2.606944 1.731909 0.822704

(o) 0.486790 0.517018 0.530840 0.633354 0.810269 0.809997 0.341559

0.90 @, | -0.615353 0.203700 0.720562 0.841907 0.606567 0.288174 -0.675944
s 1.645079 1.210150 0.858208 0.81259 1.029725 0.932240 -0.373641

D 3.574035 3.182342 2.855691 2.319239 1.556480 0.907141 0.123245

(o)) 0.325283 0.501695 0.631951 0.733836 0.710214 0.145598 3.856357

0.95 @, | -1.601405 -0.669598 -0.136393 0.025170 -0.151945 | -1.096990 5.429493
s 2.263494 1.801691 1.495323 1.318795 1.020466 -0.347950 7.815737

D 3.927801 3.257590 2.672692 1.993284 1.210513 0.018121 4.652578

(o)) - 0.317635 0.509947 0.554246 0.090048 8.495648 2.063735

1.00 a, - -1.589691 -0.937625 -0.767461 -1.449441 | 11.469416 1.913580
s - 2.316843 1.851332 1.375339 0.064056 | 17.038901 3.755075

D - 3.570686 2.766031 1.866645 0.460768 | 11.280457 2.435907
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$2

0.35 0.40 0.45 0.50 0.55 0.60 0.65
] 0.891391 0.871307 0.854261 0.835749 - 0.831416 0.952436
0.55 a, 0.889069 0.871772 0.855011 0.836042 - 0.831600 0.952437
s 0.890512 0.871061 0.854221 0.835746 - 0.831409 0.952195
D, 0.886897 0.868731 0.853036 0.835415 - 0.830963 0.952790
&, 0.914612 0.888934 0.867582 0.845400 0.831415 - 0.401331
0.60 a, 0.902055 0.885372 0.867338 0.845908 0.831600 - 0.402892
s 0.910924 0.887574 0.867185 0.845315 0.831409 - 0.401341
D 0.907022 0.883858 0.864429 0.843832 0.830963 - 0.399771
, 0.958926 0.928794 0.909029 0.901008 0.952436 0.401331 -
0.65 a, 0.918867 0.910438 0.900319 0.889927 0.952437 0.402892 -
s 0.945471 0.922994 0.906732 0.900184 0.952195 0.401341 -
D 0.945438 0.918611 0.900973 0.888793 0.952790 0.399771 -
(o)) 1.027706 0.994863 1.042454 1.061705 0.327387 0.658202 0.674225
0.70 () 0.923017 0.933722 0.895998 1.054167 0.343349 0.661321 0.675028
D 0.985988 0.975604 1.031469 1.056671 0.328722 0.658168 0.674222
D 1.001972 0.970121 0.921715 1.069211 0.311683 0.654682 0.673387
(o)) 1.120185 0.881270 1.074390 0.383753 0.746378 0.744364 0.725163
0.75 () 0.858695 1.116344 1.031793 0.422509 0.750816 0.748097 0.727601
D 0.999926 0.860653 1.047945 0.396075 0.745662 0.744097 0.725150
& d, 1.057561 1.145231 1.087383 0.343848 0.734681 0.737770 0.722110
, 1.027196 0.900268 1.719053 0.970752 0.896588 0.841969 0.800736
0.80 a, 0.789897 0.799188 1.445889 0.930595 0.883857 0.840931 0.803332
s 0.822493 0.863077 1.552103 0.955443 0.892216 0.841203 0.800925
d, 1.086947 0.873407 1.788588 0.959581 0.884763 0.832848 0.795058
, 0.171517 -0.208520 1.757123 1.191346 1.041276 0.953363 0.893274
0.85 a, 3.485079 0.763577 1.224938 1.052685 0.989120 0.936444 0.891075
@, | 4.372770 0.930544 1.378081 1.129075 1.026627 0.951611 0.894685
@, | -0.057100 -0.445045 1.834015 1.195016 1.033992 0.944842 0.886552
, 1.568103 0.804642 -7.271986 1.493014 1.196939 1.068525 0.988618
0.90 d, 2.670149 1.502086 2.420337 1.086303 1.060702 1.016933 0.972830
D 3.590924 1.952179 2.866212 1.235296 1.147750 1.062662 0.993295
D 1.640720 0.726622 -8.584750 1.536377 1.204493 1.067203 0.985307
(o)) 1.584875 1.210537 0.903924 -6.403278 1.435470 1.186332 1.074954
0.95 a, 1.806860 1.441033 1.357213 3.187114 1.063246 1.063473 1.031756
D 2.815269 2.087233 1.787913 3.756568 1.218355 1.157721 1.083468
D 1.686265 1.222386 0.865025 -7.546021 1.482626 1.203040 1.082527
(o)) 1.569110 1.331122 1.156544 0.934482 -2.701334 1.375316 1.155199
1.00 a, 1.420396 1.296707 1.264856 1.281661 2.348990 1.04484 1.055903
D 2.673676 2.166603 1.866474 1.697629 2.792276 1.201529 1.153701
D,y 1.721280 1.405144 1.188271 0.925040 -3.257790 1.432444 1.183802
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$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00

] 0.327387 0.746378 0.896588 1.041276 1.196939 1.435470 1.109554
0.55 a, 0.343349 0.750816 0.883857 0.989120 1.060702 1.063246 0.637042
s 0.328722 0.745662 0.892216 1.026627 1.147750 1.218355 1.729502

D, 0.311683 0.734681 0.884763 1.033992 1.204493 1.482626 1
, 0.658202 0.744364 0.841969 0.953363 1.068525 1.186332 1.020474
0.60 a, 0.661321 0.748097 0.840931 0.936444 1.016933 1.063473 0.790354
s 0.658168 0.744097 0.841203 0.951611 1.062662 1.157721 1.442831

D 0.654682 0.737770 0.832848 0.944842 1.067203 1.203040 1
) 0.674225 0.725163 0.800736 0.893274 0.988618 1.074954 0.958928
0.65 a, 0.675028 0.727601 0.803332 0.891075 0.972830 1.031756 0.862876
s 0.674222 0.725150 0.800925 0.894685 0.993295 1.083468 1.262866

D 0.673388 0.722110 0.795058 0.886552 0.985307 1.082527 1
(o)) - 0.720292 0.781514 0.860637 0.942931 1.014072 0.922880
0.70 3, - 0.721028 0.783624 0.862688 0.941137 1.002651 0.895909
D - 0.720296 0.781669 0.861873 0.947981 1.027675 1.151099

D - 0.719518 0.778875 0.856457 0.939934 1.017773 1
(o)) 0.720292 - 0.791130 0.858931 0.930799 0.991731 0.919768
0.75 () 0.721028 - 0.791758 0.860626 0.932474 0.991179 0.920490
s 0.720296 - 0.791149 0.859356 0.933475 1.001170 1.083017

& d, 0.719518 - 0.790477 0.857003 0.928763 0.993295 1
, 0.781514 0.791130 - 0.886534 0.949192 1.001907 0.950774
0.80 a, 0.783624 0.791758 - 0.887000 0.950391 1.003291 0.956972
s 0.781669 0.791149 - 0.886573 0.949942 1.006121 1.042723

d, 0.778875 0.790477 - 0.886068 0.948178 1.002244 1
&, 0.860637 0.858931 0.886534 - 0.988889 1.034450 1.006453
0.85 a, 0.862688 0.860626 0.887000 - 0.989170 1.035168 1.010174
D 0.861873 0.859356 0.886573 - 0.988949 1.035509 1.019814

D 0.856457 0.857003 0.886068 - 0.988635 1.034341 1
, 0.942931 0.930799 0.949192 0.988889 - 1.075036 1.068769
0.90 a, 0.941137 0.932474 0.950391 0.989170 - 1.075157 1.069790
D 0.947981 0.933475 0.949942 0.988949 - 1.075114 1.007541

D 0.939934 0.928763 0.948178 0.988635 - 1.074967 1
(o)) 1.014072 0.991731 1.001907 1.034450 1.075036 - 1.117068
0.95 a, 1.002651 0.991179 1.003291 1.035168 1.075157 - 1.117144
D 1.027675 1.001170 1.006121 1.035509 1.075114 - 1.001703

D 1.017773 0.993295 1.002244 1.034341 1.074967 1

(o)) 1.067201 1.032153 1.034078 1.060232 1.095390 1.124189 -

1.00 a, 1.037194 1.026543 1.034993 1.061404 1.095758 1.124217 -

D 1.093062 1.055338 1.047698 1.065733 1.096669 1.124276 -

D,y 1.085210 1.043367 1.040051 1.062599 1.095942 1.124227 -

247




4.2.3 Pinned-pinned beams

These are beams hinged or pinned at both ends. From section 3.2.3 the first natural

frequency w for such a beam is given as

w, = 9.869604693 /l% (4.68)

In normalized coordinates, the length of the bar L = 1 hence
w1 = 9.869604693\@ (4.69)

Likewise
w; = u(x,0) = 372, A (cosh Bx; + ¢y sinh Bjx; — cos B;x; + ¢4 sin B x;)
=214 (cosh BiL&1 + cyj sinh ;L&) — cos B L&y + ¢y, sin,Bijl)
(4.70a)
up = u'(x1,0) = X721 A; By L(sinh B;x; + ¢ cosh Bx; + sin B x1 + ¢4 cos Bixy)
= Y21 A BL(sinh B;L&; + ¢, cosh B; L& + sin B;L&; + ¢4 cos B LE;)
(4.70b)
uz = u(xy, 0) = X7l 4 (coshﬁsz + ¢zj sinh B x; — cos B x; + cy; sinﬁsz)
=Yj=14 (cosh BiL&, + cyj sinh B LE, — cos B L&, + ¢4 sin f; LEZ)
(4.70c)

uy = u'(x2,0) = X%, Aj,BL(sinh Bix; + cyj cosh B x; + sin B x; + ¢y, cos,B]-xZ)
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= 2;021 A]B]L(Slnh B]sz + CZ]' cosh B]LEZ + Sirlﬁ]-sz + C4j CoS ﬂ]sz)
(4.70d)

Equations (4.70a — 4.70d) are used to evaluate the total displacements u; — u4 at the

nodal points of a segment of the vibrating pinned-pinned beam.

From Table 3.4
A = cul? [—sinh g;L  12sinh p;L  24(cosh f;L—1) + (—sin BiL  12sin B;L
7T M BFL2 Lt B7LS Caj p212 prLt
24(cos BjL—1)
Ik )] (4.71)

The values of BjL, Cyj, and ¢4 for j =1, 2, 3, 4, 5, 6, 7 can be obtained from Table 3.4.
The formula for calculating the generalized mass M; can also be picked from Table
3.4.

For this beam there are three possible cases, and the method of obtaining the stiffness
modification factors depends on the case being considered.

When &; is greater than zero and &; is less than 1

In this case the segment of the pinned-pinned beam under consideration is not
positioned to the far left or far right of the beam (the ends that are pinned). Hence the
process of calculating the stiffness modification factors is similar to the one for fixed-
fixed beam.

The values of the fixed end forces Fi, F,, F3 and F,4 are evaluated using the equations
provided in Table 3.4 while the values of the nodal displacements us, u,, us and u,4 are
calculated from equations (4.70a — 4.70b). These are substituted into the equations for
nodal forces (equations 4.35 — 4.38) from which the nodal forces P, P,, P3 and P, are

obtained.
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b)

Equations (4.70a) — (4.70d) are evaluated for the first mode, j = 1 to obtain the nodal
displacements ui1, Uy1, Us; and us due to the first mode. These together with the
calculated nodal forces P; to P4 are substituted into equation (4.49) in order to obtain

the stiffness modification factors ¢y, ¢z, ¢3 and ¢,.
When &; isequal to 1

In this case the segment under consideration is located at the far right of the
pinned-pinned beam. This implies that the segment is fixed at the left end and
pinned at the right. Hence the process of calculating the stiffness modification
factors is similar to the one for a segment at the far right of a fixed-pinned beam.

The values of the fixed end forces Fi, F,, F3 and F,4 are evaluated using the equations
provided in Table 3.4 while the values of the nodal displacements uj, u,, uz and uy are
calculated from equations (4.70a) — (4.70b). These are substituted into the equations
for nodal forces (equations (4.35) — (4.38)) from which the nodal forces P1, P2, P3 and
P4 are obtained.

Equations (4.70a) — (4.70d) are evaluated for the first mode, j = 1 to obtain the nodal
displacements uji, Uy, Usz; and ug due to the first mode. These together with the
calculated nodal forces P; to P, are substituted into equation (4.67) in order to obtain
the stiffness modification factors ¢1, ¢, and ¢3. The value of ¢, is taken to be equal to

unity.
When &; is equal to 0

In this case the segment under consideration is located at the far left of the
pinned-pinned beam. This implies that the segment is pinned at the left end and

fixed at the right end hence its stiffness matrix is different from that of a fixed-
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fixed or fixed-pinned beam. The stiffness matrix for a pinned-fixed beam is

given as (Okonkwo , 2012)

3EI 3EI 3EI
= ° -5 = |
0 0 0 0
W=| s , = _m (4.72)
E E 2 |
3EI 3EI 3EI
l= o -% T
The proposed stiffness matrix for this beam segment is therefore
3EI 3EI 3EI
|7 b1 0 ——5¢3 7 P4 ]|
k |5 0 ) y | 4.73
= 3EI 3EI 3EI .
[kal |-=¢s 0 ¢ — = b2 (4.73)
3EI 3EI 3EI
[ = ¢ 0 -7 — ¢ J

By substituting equations (4.40), (4.42) and (4.73) into equation (4.39) we obtain

ru(§2—¢1) 0 0 0] (_wzull\
2 | | 2 |
0 0 0 0| —W Uy
_ 2 +
0 o “&=%) OJ —w?us,
2
0 0 0 0 k—w2u41}
3E] 3EI 3EI
1_304)1 g _f% f¢4]| iy P,
Uz1 p,
3EI 3EI 3EI = 4.74
=P 0 Fh —l—zd’z‘ Ui | ) Ps 4.74)
3EI 3EI 3EI Uyl P
| Z% 0~ - 1 *

By multiplying out the first row of equation (4.74) we obtain

w(E2—E1) 3EI 3EI 3EI
—%wzun + 5 b1t + 0 — 5 dauzy + 5 Pauy = Py
3EI 3EI 3EI 1 (Ey—£1)
5 P1thn — 5 P3tizn + 5 Paus = P+ = 0’y (4.75)

By multiplying out the second row of equation (4.60) we obtain
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P,=0 (4.76)

Hence P, for an element with the near (left) end pinned must be zero. This will help in

ascertaining the correctness of our equations.
By multiplying out the third row of equation (4.74) we obtain

_ 3EI 3EI EI
= P3uy1 + 0+ —Pruzy — 5 pousy = P,

3EI 3EI 3EI 3EI
75 P1us1t — 5 Pallar — 5 P3tlin = P + 5 dsun (4.77)

By multiplying out the fourth row of equation (4.74) we obtain

3EI 3E1
NER psugq + 0 — NEa Uz +3& ¢1u41 +0="F,

3EI EI 3EI
— b1uar — 75 Pauzt + 5 Patiyy = Py (4.78)

By putting equations (4.75),(4.77) and (4.78) in matrix form we obtain

3EI

3EI 2

— - Uy 3El = u(s‘ § ) 4.7
3121 o l?2>E1 IERE 3510 ¢3 Py + L8 gy, o (479)
—uy T Yt 0 P A P4

Equation (4.79) is a set of three equations (equations 4.75, 4.77 and 4.78) with four
unknowns (¢ — ¢4). To solve it there is need to know the value of one of the

unknowns.

Letg, = 1. (4.80)

By substituting equation (4.80) into (4.79) and rearranging the equation we obtain
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3EI 0
3 U11
3121 3E]
_U.31 lZ
3121 3E]
e F
Therefore
3EI
3 73 U1
b1 3EI
¢2 - l—3u31
s 3EI
e

3EI Pl
5 —l—3u31 R
1 3] b2t =<
— 3 U1
13 ¢s3
U3y 0
\
-1
0 3EI Pl
3EI —l_3u31
iz M 3y !
3EI _l_3u11
2 W 0 k

‘U(Ez El) 2 Eu W
— 2 1 2 441
u(y —§1)

P3 22 - 2u31 (

3EI
Py — Tzt )
ll(scz §1) 3EI
- 5 Uy _l_2u41
1z — 1)
P; + 22 : 2u31 (
3EI
Py — Tzt )
(4.81)

Equation (4.81) is a mathematical expression for calculating the four stiffness

modification factors for an element of a beam (having the near end pinned i.e. pinned-

fixed) under lateral vibration. Note that ¢p, = 1. Below are some examples on how to

calculate the stiffness modification factors for a pinned-pinned beam.

Table 4.25: Calculation of the Stiffness modification factor for an element positioned

at & =0, & = 0.5 on a pinned-pinned beam under lateral vibration

61 :O, 62 :OS

j Aj Fij Fy Fsi Fuj

1 | 0.00000000001114 | 3.26394701128700 | 0.35534693813438 | 6.46288662152144 | -0.4906429423346
2 | 0.00000000000000 | -0.00000059666034 | -0.0000000604543 | -0.0000005966603 | 0.00000006045433
3 | 0.00000000000000 | 1.49670241732092 | 0.12831996121837 | -0.4159431242878 | -0.0350205216652
4 | 0.00000000000000 | -0.00000000018717 | -0.0000000000109 | 0.00000000018717 | -0.0000000000109
5 | 0.00000000000000 | 0.41728083505831 | 0.01020558221588 | -0.0282074898687 | 0.02866734116343
6 | 0.00000000000000 | -0.00000000000010 0 -0.0000000000001 0

7 | 0.00000000000000 | 0.21014990221729 | 0.00373170988491 | -0.0116430934458 | -0.0069368316916
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Total 5.38807956903590 | 0.49760413098831 | 6.00709231744594 | -0.5039328940846
Al Uy Uzj Usj Uy
0.00000000001114 0 0.98553429629092 | 0.31370530965612 | -0.0000000001143
0.00000000000000 0 -0.0000000151136 0 0.00000001511358
0.00000000000000 0 0.01216709008996 | -0.0012909683539 | 0.00000000000143
0.00000000000000 0 -0.0000000000009 0 -0.0000000000009
0.00000000000000 0 0.00157685487433 | 0.00010038569912 0
0.00000000000000 0 0 0 0
0.00000000000000 0 0.00041046826175 | -0.0000186651580 0
Total 0 0.99968869440247 | 0.3124906184341 | 0.00000001499980

U]_]_:O

Uy = 0.98553429629092

From Table 3. 4

F, =-5.38807956903590

F, =-0.49760413098831

From equations (4.35) — (4.38)

P, =-11.39517248034896

P, = -1.123273595847988 x 10

From equation (4.81) taking El = 1

¢, =1.01467811086715

¢, =0.79618716451293

us; = 0.31370530965612

Us; =-0.0000000001143

F; = -6.00709231744594

F, = 0.50393289408460

P; = 5.938671222500384 x 10”

P, =-2.99721769254901

s = 1.51351872675740

¢s=1
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at & = 0.5, & = 1.0 on a pinned-pinned beam under lateral vibration

Table 4.26: Calculation of the Stiffness modification factor for an element positioned

=05 &=10

Al Fy Faj Fsj Fsj
0.00000000001114 | 6.46288662222064 | 0.49064294242366 | 3.26394700921441 | -0.3553469375521
0.00000000000000 | 0.00000059666039 | 0.00000006045434 | 0.00000059666033 | -0.0000000604543
0.00000000000000 | -0.41594312386947 | 0.03502052170401 | 1.49670241739663 | -0.1283199612233
0.00000000000000 | -0.00000000018717 | -0.0000000000109 | 0.00000000018717 | -0.0000000000109
0.00000000000000 | -0.02820748986902 | -0.0286673411634 | 0.41728083505868 | -0.0102055822159
0.00000000000000 | 0.00000000000010 0 0.00000000000010 0
0.00000000000000 | -0.01164309344546 | 0.00693683169164 | 0.21014990221753 | -0.0037317098849

Total 6.00709351151001 | 0.50393301509931 | 5.38808076073485 | -0.4976042513414

Al Usj U Us; Uyj
0.00000000001114 | 0.31370530965612 | -0.0000000001143 0 -0.9855342958502
0.00000000000000 0 0.00000001511358 0 -0.0000000151136
0.00000000000000 | -0.00129096835387 | 0.00000000000143 0 -0.0121670900872
0.00000000000000 0 -0.0000000000009 0 -0.0000000000009
0.00000000000000 | 0.00010038569912 0 0 -0.0015768548743
0.00000000000000 0 0 0 0
0.00000000000000 | -0.00001866515795 | 0.00000001499980 0 -0.0004104682618

Total 0.31249606184341 | 0.00000001499980 0 -0.9996887241879

U3 = 0.31370530965612 Us; = -0.0000000001143

Uy =0 Uyy = -0.9855342958502
From Table 3. 4

F, =-6.00709351151001 F; = -5.38808076073485
F, =-0.50393301509931 F4 = 0.49760425134140

From equations (4.35) — (4.38)
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P; =-5.950556705158761 x 10-7

P, =2.99721769238958

From equation (4.67) taking El = 1

1= 1.01467795324328

¢, =0.79618716484029

P;=-11.39517367718919

P, = 2.079678651512040 x 10°

¢3 = 1.51351886199768

¢s=1

Table 4.27: Calculation of the Stiffness modification factor for an element positioned

at & =0, & = 0.3 on a pinned-pinned beam under lateral vibration

$1=0, §;,=03

Al Fy Faj Fs Fuj
0.00000000001114 | 1.25109871009849 | 0.08281233325346 | 2.75844556193896 | -0.1206970219608
0.00000000000000 | -0.00000027613218 | -0.0000000178672 | -0.0000005049063 | 0.00000002371198
0.00000000000000 | 0.94315654019168 | 0.05848852173748 | 1.16546592128938 | -0.0643337129916
0.00000000000000 | -0.00000000017401 | -0.0000000000101 | -0.0000000000857 | 0.00000000000762
0.00000000000000 | 0.53881286975170 | 0.02771711159877 | -0.1497395245624 | -0.0075644326750
0.00000000000000 | -0.00000000000014 | -0.0000000000000 | 0.00000000000012 | -0.0000000000000
0.00000000000000 | 0.24933310455506 | 0.00769091018978 | -0.2396174897946 | 0.01034637252347

Total -6.60409544409049 | 0.17670885890221 | 3.53455396387949 | -0.1822487713844

Al Usj Uyj Us; Uyj
0.00000000001114 0 0.98553429629092 | 0.25379292675153 | 0.57928252492129
0.00000000000000 0 -0.0000000151136 | -0.0000000022877 | 0.00000000467035
0.00000000000000 0 0.01216709008996 | 0.00039893116046 | -0.0115715903147
0.00000000000000 0 -0.0000000000009 | 0.00000000000004 | 0.00000000000074
0.00000000000000 0 0.00157685487433 | -0.0001003856991 | 0.00000000000000
0.00000000000000 0 -0.0000000000000 | 0.00000000000000 | -0.0000000000000
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7 | 0.00000000000000 0

0.00041046826175 | 0.00000576785101 | 0.00039037851507

Total 0

0.99968869440247 | 0.25409723777626 | 0.56810131779279

U11:0

Uy = 0.98553429629092

From Table 3. 4

F, =-2.98240094829059

F,=-0.17670885890221

From equations (4.35) — (4.38)

P, =-11.39517248027852

P, =-1.454836251468805 x 10-12

From equation (4.81) taking El = 1

¢, = 0.95709405015697

$, = 0.95304903449419

Uz = 0.25379292675153

Uy = 0.57928252492129

F; = -3.53455396387949

F,=0.18224877138435

P, = 4.87821756810844

P, =-2.51829154711278

b3 = 1.07562866764841

¢s=1

Table 4.28: Calculation of the Stiffness modification factor for an element positioned

at & = 0.3, & = 0.8 on a fixed-pinned beam under lateral vibration

fl = 03, 62 =0.8

Al Fij Fy Fsj Faj
0.00000000001114 | 7.14708502739753 | 0.60580616824732 | 6.43937804289837 | -0.5758743972175
0.00000000000000 | -0.00000025485494 | -0.0000000008132 | 0.00000062361138 | -0.0000000381760
0.00000000000000 | -1.29491509294964 | -0.1328614716375 | -0.0669210635622 | 0.07295954406183
0.00000000000000 | 0.00000000015142 | 0.00000000000211 | -0.0000000001514 | 0.00000000001554
0.00000000000000 | 0.02820748986900 | 0.02866734116344 | -0.4172808350583 | 0.01020558221590
0.00000000000000 | -0.00000000000008 | -0.0000000000000 | -0.0000000000001 | -0.0000000000000
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0.00000000000000 0.20346234764431 | 0.00140546812313 | -0.0760131310429 | -0.0054441572102

Total 6.08383951725761 | 0.50301750508537 | 5.87916363669486 | -0.4981534663105

Al Uy Uzj Usj Uy

0.00000000001114 0.25379292675153 | 0.57928252492129 | 0.18439135455168 | -0.7973139941830
0.00000000000000 | -0.00000000228767 | 0.00000000467035 | 0.00000000228767 | -0.0000000046703
0.00000000000000 0.00039893116046 | -0.0115715903147 | 0.00122778386540 | 0.00375983760818
0.00000000000000 0.00000000000004 | 0.00000000000074 | 0.00000000000004 | 0.00000000000074
0.00000000000000 | -0.00010038569912 | 0.00000000000000 | 0.00000000000000 | 0.00157685487433
0.00000000000000 | 0.00000000000000 | -0.0000000000000 | -0.0000000000000 | 0.00000000000000
0.00000000000000 | 0.00000576785101 | 0.00039037851507 | -0.0000177516201 | 0.00012684166853

Total 0.25409723777626 0.56810131779279 | 0.18560138908470 | -0.7918504647016

Uy; = 0.25379292675153

Uy; = -0.57928252492129

From Table 3. 4

F; =-6.08383951725761

F, =-0.50301750508537

From equations (4.35) — (4.38)

P, =-4.87821756867864

P, =2.51829154704809

From equation (4.49) taking EI = 1

01 = 1.42114242852867

¢, = 0.93702083568665

Us; = 0.18439135455168

Ugg = -0.7973139941830

F3; = -5.87916363669486

F, = 0.49815346631049

P3 =-7.08478558527382

P, =-1.92034461153348

¢3 = 1.04372357801254

¢, = 1.45667820922367
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at & = 0.8, &, = 1.0 on a pinned-pinned beam under lateral vibration

Table 4.29: Calculation of the Stiffness modification factor for an element positioned

£ =08, &=10

Al Fy Faj Fsj Fsj
0.00000000001114 | 1.29061461108650 | 0.03721061709105 | 0.56704531082364 | -0.0251226784691
0.00000000000000 | 0.00000027954035 | 0.00000000829430 | 0.00000013274180 | -0.0000000058243
0.00000000000000 | 0.91456091451343 | 0.02863376173383 | 0.50017136707759 | -0.0215758458927
0.00000000000000 | 0.00000000015386 | 0.00000000000528 | 0.00000000010580 | -0.0000000000045
0.00000000000000 | 0.38907334518992 | 0.01576854874333 | 0.38907334518938 | -0.0157685487433
0.00000000000000 | 0.00000000000006 | 0.00000000000000 | 0.00000000000012 | -0.0000000000000
0.00000000000000 | -0.00782944172292 | 0.00435427966360 | 0.26767822790464 | -0.0096036915647

Total 2.58641970876120 | 0.08596721553139 | 1.72396838384296 | -0.0720707704986

Al Usj U Us; Uyj
0.00000000001114 | 0.18439135455168 | -0.7973139941830 0 -0.9855342958501
0.00000000000000 | 0.00000000228767 | -0.0000000046704 0 -0.0000000151136
0.00000000000000 | 0.00122778386540 | 0.00375983760818 0 -0.0121670900872
0.00000000000000 | 0.00000000000004 | 0.00000000000074 0 -0.0000000000009
0.00000000000000 | 0.00000000000000 | 0.00157685487433 0 -0.0015768548743
0.00000000000000 -0.0000000000000 | 0.00000000000000 | 0.0000000000000 | -0.0000000000000
0.00000000000000 | -0.00001775162010 | 0.00012684166853 | -0.0000000000000 | -0.0004104682618

Total 0.18560138908470 | -0.7918504647016 | 0.0000000000000 | -0.9996887241879

up; = 0.18439135455168 Us; = -0.7973139941830

Uy =0 Ugy = -0.9855342958501
From Table 3. 4

F, =-2.58641970876120 F3 =-1.72396838384296
F, =-0.08596721553139 F, =0.07207077049861

From equations (4.35) — (4.38)
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P, =7.08478558487801 P;=-11.39517367748218

P, =1.92034461126394 P, = 2.43112552311686 x 10°°
From equation (4.67) taking El = 1

¢, = 0.98577135090287 ¢z = 1.02960319969885

¢, =0.99136130264460 o,=1

Tables 4.25 to 4.29 provide illustrations on how the inherent nodal forces P, to P4 and
the stiffness modification factors ¢; to ¢, for a element of a pinned-pinned beam
under lateral vibration are calculated. It would be observed that the values of the of
fixed end forces calculated where negated, this is to take care of the sign convention
used in the development of the equations of Table 3.4. Using the methods presented in
Table 4.25 to 4.29 the values of stiffness modification factors at different values of &;
and &, for the lateral vibration of a pinned-pinned beam are presented in Table 4.30.
A sample Matlab program for the calculation of the stiffness modification factors for

a segment of a pinned-pinned beam can be found in Appendix F.
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Table 4.30: Stiffness modification factors for the lateral vibration of a pinned-pinned

beam
&

0.05 0.10 0.15 0.20 0.25 0.30
@, 1.148799 1.092695 1.030531 0.985771 | 0964402 | 0.957094
0 @, 1.148877 1.093700 1.033929 0.091361 | 0.968428 | 0.953049
7} 1.001437 1.006066 1.014871 1.029603 | 1.052953 | 1.088846
3, 1 1 1 1 1 1
@, - 1.098047 1.054748 1.025753 | 1.016801 | 1.022804
005 | @, - 1.098152 1.055372 1.027036 | 1.017636 | 1.020499
7} - 1.098106 1.055480 1.028409 | 1.022536 | 1.032350
@, - 1.097987 1.054603 1.025747 | 1.017325 | 1.024437
@, - - 1.011144 0.980355 | 0.969141 | 0.972091
010 | @, - - 1.011347 0.981177 | 0.970430 | 0.972655
@, - - 1.011182 0.980782 | 0.970581 | 0.975147
@, - - 1.010959 0.979646 | 0967771 | 0.970173
@, - - - 0.933250 | 0.920399 | 0.920631
015 | @, - - - 0.933530 | 0.921367 | 0.922125
/B - - R 0.933269 | 0.920590 | 0.921259
@, - - R 0.932970 | 0.919327 | 0.918457
@, - - - - 0.885874 | 0.883311
020 | @, - - - - 0.886181 | 0.884353
@, - - - - 0.885881 | 0.883380
@, - - - - 0.885557 | 0.882120
@, - - - - - 0.863445
& | 025 | @ - - - - - 0.863749
@, - - - - - 0.863447
@, - - - - - 0.863133
@, - - - - - -
030 | @, - - - - - -
@, - - - - - -
@, - - - - - -
@, - - - - : -
035 | @, - - - - - -
@5 - - - - - -
2, - - - - : -
@, - - - - : -
040 | @, - - - - - -
@5 - - - - - -
2, - - - - - -
@, - - - - - -
045 | @, - - - - - -
D5 - - - - - -
@, - - - - - -
2, - - - - - -
050 | @, - - - - - -
@, - - - - - -
@, - - - - - -
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$2

0.35 0.40 0.45 0.50 0.55 0.60 0.65
@, | 0953337 | 0953748 | 0969896 | 1.014678 | 1.101528 | 1319367 | -3.255413
0 @, | 0933241 | 0904699 | 0.864033 | 0.796187 | 0.664847 | 0.351318 | 4.763754
@, | 1142893 | 1223107 | 1.341019 | 1513519 | 1.765936 | 2137493 | 2.691491
D, 1 1 1 1 1 1 1
@, | 1037334 | 1061978 | 1108982 | 1204719 | 1490000 | 0.301853 | 1.004578
005 | @, | 1027520 | 1.036467 | 1.048415 | 1.056337 | 1.004663 | 1447389 | 1.235187
@, | 1051078 | 1078334 | 1117704 | 1164618 | 1.159988 | 1.745506 | 1.607624
@, | 1040993 | 1.068900 | 1.120899 | 1.226231 | 1.547679 | 0.177559 | 0.980931
@, | 0982262 | 1.000082 | 1.034277 | 1.096759 | 1.207130 | 1.507745 | 0.240974
010 | @, | 0979770 | 0989984 | 1.006248 | 1.027523 | 1.040150 | 0.983761 | 1.451766
@, | 0987489 | 1.007340 | 1.039922 | 1.086912 | 1.136609 | 1.124060 | 1.736221
@, | 0980192 | 0998482 | 1.033967 | 1.099427 | 1.218280 | 1.556263 | 0.095175
@, | 0926503 | 00937914 | 0962461 | 1008214 | 1.078763 | 1.186181 | 1473788
015 | @, | 0927614 | 0936427 | 0952862 | 0978400 | 1.005259 | 1.016567 | 0.957924
@, | 0927907 | 0940277 | 0964539 | 1.004612 | 1.054863 | 1.09942 | 1.079651
@, | 0923146 | 00933481 | 0957202 | 1.002791 | 1.075252 | 1.190647 | 1514579
@, | 0884727 | 0.889907 | 0906433 | 00941479 | 0994443 | 1060554 | 1.152721
020 | @, | 0886510 | 0.891686 | 0.905510 | 0.931279 | 0.962960 | 0.987832 | 0.993468
@, | 0.884993 | 0.890531 | 0.907054 | 0.939919 | 0.985005 | 1.030608 | 1.065032
@, | 0882255 | 0885875 | 0.900682 | 0.934143 | 0.986446 | 1.054398 | 1.154225
@, | 0860023 | 0859017 | 0.868738 | 0.896862 | 0.941657 | 0.993294 | 1.047320
& | 025 | @, | 0861109 | 0860990 | 0870563 | 0894998 | 0.929221 | 0.960208 | 0.977701
@, | 0.860060 | 0.859178 | 0.868968 | 0.896306 | 0.937858 | 0.981428 | 1.017089
@, | 0858822 | 0.856403 | 0.864264 | 0.890318 | 0.933409 | 0.984658 | 1.040815
@, | 0844036 | 0836200 | 0.839296 | 0.862449 | 0.904246 | 0.952614 | 0.996664
030 | @, | 0844345 | 0837351 | 0.841254 | 0.863534 | 0.900326 | 0.937532 | 0.962528
@, | 0844038 | 0836235 | 0.839387 | 0.862308 | 0.902791 | 0.947660 | 0.984290
@, | 0843721 | 0834917 | 0836391 | 0857441 | 0.897125 | 0.944090 | 0.988158
@, R 0811395 | 0.806468 | 0.824086 | 0.864246 | 0.914051 -
035 | @, - 0811742 | 0.807719 | 0.825874 | 0.864345 | 0.908453 -
@, R 0.811398 | 0.806487 | 0.824055 | 0.863739 | 0.912053 -
@, R 0.811038 | 0.804972 | 0.820735 | 0.858699 | 0.906579 -
@, R R 0.769745 | 0.779025 | 0.815273 - 0.914049
040 | @, R R 0.770153 | 0.780375 | 0.816904 - 0.908451
@, R R 0.769746 | 0.779017 | 0.815133 - 0.912052
@, R R 0.769316 | 0.777285 | 0.811574 - 0.906578
@, R R - 0.739677 - 0.815271 | 0.864245
045 | @, - - - 0.740132 - 0.816903 | 0.864344
@, R R - 0.739676 - 0.815131 | 0.863739
@, R R - 0.739193 - 0.811573 | 0.858698
@, R R - R 0.739675 | 0.779024 | 0.824086
050 | @, - - - : 0.740130 | 0.780374 | 0.825874
@, - - - - 0.739675 | 0.779016 | 0.824054
D, - - - - 0.739192 | 0.777284 | 0.820735
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$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00

@, | 0572582 | 0687158 | 0.692418 | 0.648055 | 0535998 | 0.325845 -

o | @, | 0705852 | 0279811 | -0.173470 | -0.800686 | -1.651712 | -2.695135 -

@, | 3535758 | 4.867786 | 7.087778 | 11.138151 | 19.862313 | 47.518020 -

@, 1 1 1 1 1 1 -
@, | 1156859 | 1.272939 | 1.392716 | 1.507009 | 1.581464 - 0.325845
005 | @, | 1204548 | 1185032 | 1.149029 | 1.063117 | 0.898520 - -2.695135
@, | 1718009 | 1.897632 | 2.131726 | 2.384472 | 2597429 - 47518027

@, | 1150083 | 1270986 | 1.391745 | 1518262 | 1.639732 - 1
@, | 0980072 | 1149480 | 1.289854 | 1.427157 - 1581464 | 0.535998
010 | @, | 1236124 | 1222475 | 1.218899 | 1.183406 - 0.898520 | -1.651712
@, | 1594773 | 1.732839 | 1.948454 | 2.201690 - 2507431 | 19.862316

@, | 0936263 | 1116106 | 1.255638 | 1.396018 - 1.639732 1
@, | 0210826 | 0950444 | 1.138096 - 1427157 | 1507010 | 0.648055
015 | @, | 1427016 | 1.228913 | 1.232121 - 1.183406 | 1.063118 | -0.800686
@, | 1689198 | 1569223 | 1.735788 - 2201601 | 2.384473 | 11.138153

@, | 0.056467 | 0892833 | 1.087876 - 1.396018 | 1518262 1
@, | 1.421143 0.202983 - 1.138096 | 1.289854 | 1.392716 | 0.692418
020 | @, | 0937021 | 1.401913 - 1232121 | 1.218899 | 1.149029 | -0.173470
@, | 1043724 | 1647501 - 1735788 | 1948455 | 2131726 | 7.087779

@, | 1456679 | 0.047510 - 1.087876 | 1.255638 | 1.391745 1
@, | 1127751 - 0202984 | 00950444 | 1.149480 | 1.272939 | 0.687158
& | 025 | @, | 0979235 - 1401912 | 1.228912 | 1.222475 | 1.185032 | 0.279811
@, | 1044551 - 1.647501 | 1.569223 | 1.732839 | 1.897632 | 4.867787

@, | 1128501 - 0.047510 | 0.892833 | 1.116106 | 1.270986 1
@, - 1127750 | 1.421142 | 0.210827 | 0.980072 | 1.156859 | 0.572582
030 | @, - 0979234 | 0937021 | 1427016 | 1.236124 | 1.204548 | 0.705852
@, - 1.044550 | 1.043724 | 1.689197 | 1.594773 | 1.718009 | 3.535758

@, - 1.128500 | 1.456678 | 0.056468 | 0.936263 | 1.150083 1
@, | 0996663 | 1047319 | 1.152720 | 1.473787 | 0.240974 | 1.004578 | -3.255411
035 | @, | 0962527 | 0977700 | 0.993468 | 0957923 | 1451765 | 1235187 | 4.763752
@, | 0984289 | 1017088 | 1.065082 | 1.079651 | 1.736221 | 1.607624 | 2.691491

@, | 0988157 | 1.040815 | 1.154224 | 1514578 | 0.095175 | 0.980931 1
@, | 0952614 | 0993294 | 1.060554 | 1.186181 | 1507744 | 0.301854 | 1.319367
040 | @, | 0937532 | 0960207 | 0.987832 | 1.016567 | 0.983761 | 1447389 | 0.351318
@, | 0947659 | 0981427 | 1.030608 | 1.099419 | 1.124060 | 1.745505 | 2.137494

@, | 0944089 | 0984658 | 1.054398 | 1.190647 | 1556263 | 0.177560 1
@, | 0.904246 | 0941657 | 00994443 | 1078762 | 1.207129 | 1490000 | 1.101528
045 | @, | 0.900326 | 00929220 | 0.962960 | 1.005259 | 1.040150 | 1.044663 | 0.664847
@, | 0902790 | 0937858 | 0.985005 | 1.054863 | 1.136609 | 1.159988 | 1.765936

@, | 0897124 | 00933408 | 0986446 | 1075252 | 1.218280 | 1.547679 1
@, | 0.862449 | 0896862 | 0941479 | 1.008214 | 1.096759 | 1.204719 | 1.014678
050 | @, | 0.863534 | 0.894997 | 0931279 | 0978400 | 1.027523 | 1.056337 | 0.796187
@, | 0.862308 | 0.896306 | 0.939919 | 1.004612 | 1.086912 | 1.164618 | 1513519

@, | 0857441 | 0890318 | 0934143 | 1.002791 | 1.099428 | 1.226231 1
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$2

0.70 0.75 0.80 0.85 0.90 0.95 1.00

@, | 0.839296 0.868738 0.906433 0.962461 1.034277 1.108983 0.969896
055 | @, | 0.841254 0.870563 0.905510 0.952862 1.006248 1.048415 0.864032
@, | 0.839387 0.868968 0.907054 0.964539 1.039922 1.117704 1.341019

@, | 0.836391 0.864264 0.900682 0.957202 1.033967 1.120899 1
@, | 0.836200 0.859017 0.889907 0.937914 1.000082 1.061978 0.953748
060 | @, | 0.837351 0.860990 0.891686 0.936427 0.989984 1.036467 0.904699
@, | 0.836234 0.859178 0.890531 0.940277 1.007340 1.078334 1.223107

@, | 0.834917 0.856403 0.885875 0.933481 0.998482 1.068900 1
@, | 0.844036 0.860023 0.884727 0.926503 0.982262 1.037334 0.953337
065 | @, | 0.844345 0.861109 0.886510 0.927614 0.979770 1.027520 0.933241
@, | 0.844038 0.860060 0.884992 0.927907 0.987489 1.051078 1.142893

@, | 0.843721 0.858822 0.882255 0.923146 0.980192 1.040993 1
() - 0.863445 0.883311 0.920631 0.972091 1.022804 0.957094
070 | 9, - 0.863749 0.884353 0.922125 0.972655 1.020499 0.953049
s - 0.863447 0.883380 0.921259 0.975147 1.032350 1.088846

D - 0.863133 0.882120 0.918457 0.970173 1.024437 1
() - - 0.885874 0.920400 0.969141 1.016801 0.964402
075 | 9, - - 0.886181 0.921367 0.970430 1.017636 0.968428
s - - 0.885881 0.920590 0.970581 1.022536 1.052953

& d, - - 0.885557 0.919327 0.967771 1.017325 1
, - - - 0.933250 0.980354 1.025753 0.985771
0.80 | 9, - - - 0.933530 0.981178 1.027036 0.991361
s - - - 0.933269 0.980782 1.028409 1.029603

a, - - - 0.932970 0.979646 1.025747 1
, - - - - 1.011144 1.054748 1.030531
085 | 9, - - - - 1.011348 1.055372 1.033929
s - - - - 1.011182 1.055480 1.014871

d, - - - - 1.010959 1.054603 1
, - - - - - 1.098047 1.092695
090 | 9, - - - - - 1.098152 1.093700
s - - - - - 1.098106 1.006066

D, - - - - - 1.097987 1
() - - - - - - 1.148799
095 | 9@, - - - - - - 1.148877
s - - - - - - 1.001437

Q4 - - - - - - 1

Ql - - - - - - -

1.00 | 9, - - - - - - -

@, - - - - - - -

g4 - - - - - - -

In locating an element using & and &, for pinned pinned beam, &, must be greater than

&1, hence the reason for many of the blank spaces.
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424 Fixed-free beams

These are beams rigidly restrained at one end and completely free at the other end.

From section 3.2.4 the first natural frequency w for such a beam is given as

EIl
w1 = 3.516015273 /m (4.82)
In normalized coordinates, the length of the bar L = 1 hence

El
w1 = 3.516015273\g (4.83)

Likewise
w; = u(x,0) = 372 A (cosh Bx; + dyj sinh Bx; — cos Bjx; + dy; sin B x)
= %721 A; (cosh B LE; + dy; sinh B LE; — cos B LE; + dy; sin B; L&)
(4.84a)
up = u'(x1,0) = X721 A; B L(sinh B;x; + dy; cosh Bixy + sin fx; + dy; cos fx;)
= Y91 A BL(sinh B, L&; + d,; cosh B;L&; + sin B;LE; + dy; cos L)
(4.84b)
uz = u(xy, 0) = X7l 4 (coshﬁsz + dyj sinh fx; — cos B x; + dy; sin,Bsz)
= %721 A (cosh B L&, + dy; sinh B LE, — cos B; L&, + dy; sin B LE,)
(4.84c¢)

uy = u'(x2,0) = X%, Aj,BL(sinh Bjx; + dyj cosh B x; + sin B x; + dy; cos ,Bsz)
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= 2;021 A]B]L(Slnh B]sz + d2] cosh B]LEZ + sin ﬂ]LEZ + d4,] COS,B]'sz)
(4.84d)

Equations (4.84a) — (4.84d) are used to evaluate the total displacements u; to uy4 at the
nodal points of a segment of the vibrating fixed-pinned beam. The equations represent
the summation of an infinite series but an evaluation of the first few terms of the

series provides values of very good precision.

From Table 3.5

apL? [-2(sinh B;L—sin BL) = 12(cosh BjL—cos B;L)  24(sinh B;L—sin B;L)
A]' = . 3;3 474 - 515

M; BlL B;L ;L

do: —2(cosh BjL—cos [)’jL) n 12(sinh BjL—sin ﬂ]-L) _ 24(cosh BjL+cos [)’]—L—Z)
2j 3;L3 ﬂfL4 ﬁfLS

(4.85)

The values of BjL, dyj, and dsj for j =1, 2, 3, 4, 5, 6, 7 can be obtained from Table 3.5.
The formula for calculating the generalized mass M; can also be picked from Table
3.5.

For this beam the process of calculating the stiffness modification factors is similar to
the one for fixed-fixed beam. The values of the fixed end forces F1, F», F3 and F4 are
evaluated using the equations provided in Table 3.5 while the values of the nodal
displacements uy, Uy, uz and uy are calculated from equations (4.84a) — (4.84b). These
are substituted into the equations for nodal forces (equations (4.35) — (4.38)) from
which the nodal forces P4, P», P; and P, are obtained.

Equations (4.84a) — (4.84d) are evaluated for the first mode, j = 1 to obtain the nodal
displacements ujj, U1, Usp and ug due to the first mode. These together with the
calculated nodal forces P; to P, are substituted into equation (4.49) in order to obtain

the stiffness modification factors ¢1, ¢z, ¢3 and ¢4.
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Having presented the methods of calculating the stiffness modification factors for a
fixed-free beam, some numerical demonstrations of these steps are presented below.

For clarity the calculations will be presented in a tabular form.

Table 4.31: Calculation of the Stiffness modification factor for an element positioned

at & =0, & = 1 on a fixed-free beam under lateral vibration

$1=0, =1
A Fy Fy Fy Fy

-1.52008168387560 | -3.34067504559817 | -0.8178837164478 | -11.373151156019 | 1.50177401221623
-0.02145008105734 | -3.80341494562209 | -0.7924919339710 | -0.7157747526374 | 0.56298369678467
-0.00160413375147 | -1.66615863638835 | -0.2290528034721 | 0.11258451007437 | -0.0814728758508
-0.00029865709609 | -0.76184503745894 | -0.0626642896686 | -0.0322403070909 | 0.02268816645668
-0.00008500158509 | -0.49271451399008 | -0.0377634546137 | 0.01238012128935 | -0.0085934208140
-0.00003126635674 | -0.31685307070100 | -0.0168837081853 | -0.0057325350555 | 0.00394675488356
-0.00001421912502 | -0.24529756186162 | -0.0128492968622 | 0.00314305482716 | -0.0021522468612

Total -10.6269588116202 | -1.9695892032207 | -11.998791064611 | 1.99917408681513

Al Hj Uz Us; Usj

-1.52008168387560 0 0 -3.0401633706258 | -4.1848015528847
-0.02145008105734 0 0 0.04290016504320 | 0.20509617176097
-0.00160413375147 0 0 -0.0032082675054 | -0.0251806202208
-0.00029865709609 0 0 0.00059731419220 | 0.00656801290244
-0.00008500158509 0 0 -0.0001700031704 | -0.0024033599594
-0.00003126635674 0 0 0.00006253271341 | 0.00108048778402
-0.00001421912502 0 0 -0.0000284382501 | -0.0005807190825

Total 0 0 -3.0000100676028 | -4.0002215797000

upp =0 Uz = -3.0401633706258
Uy =0 Uy = -4.1848015528847

From Table 3.5
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F, = 10.62695881162024

F, = 1.96958920322065

From equations (4.35) — (4.38)

P, = 22.62575014465383

P, = 11.96920644943740

From equation (4.49) taking El

¢, = 1.39816304291937

¢, = 1.28305273103156

=1

F; =11.99879106461140

F,=-1.99917408681513

P; = -2.6842219114087 x 10’

P, = 1.715960706860642 x 1072

¢3 = 1.56649109790865

¢, = 1.37493242687651

Table 4.32: Calculation of the Stiffness modification factor for an element positioned

at & =0, &, = 0.5 on a fixed-free beam under lateral vibration

$1=0, & =05

i Aj Fyj Faj Fs Faj
-1.52008168387560 | -0.48308887562856 | -0.0598254327852 | -1.7985449116688 | 0.11518435690387
-0.02145008105734 | -1.11346066394695 | -0.1327306939295 | -2.9773818843250 | 0.21569568578587
-0.00160413375147 | -1.12001531648915 | -0.1251760620645 | -1.5325279827593 | 0.14791128388993
-0.00029865709609 | -0.83398742239521 | -0.0822457526386 | 0.04315451235387 | 0.04114386769791
-0.00008500158509 | -0.52110689712795 | -0.0407710132156 | 0.38042045709329 | -0.0135630638691
-0.00003126635674 | -0.31833615354616 | -0.0176075071317 | -0.0041923547408 | -0.0121385762947
-0.00001421912502 | -0.23229927629899 | -0.0102159415230 | -0.1810843238668 | 0.00328550464345
Total -12.1099115227902 | -0.4685724032880 | -6.0701564879136 | 0.49751905875728

Al Uy Uzj Us;j Uyj
-1.52008168387560 0 0 -1.0322057314524 | -3.5358755383026
-0.02145008105734 0 0 -0.0306163797522 | 0.01943986981316
-0.00160413375147 0 0 -0.0000631630698 | 0.01781229808071
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4 | -0.00029865709609 0 0 0.00042237200171 | 0.00002690143067

5 | -0.00008500158509 0 0 -0.0000001447471 | -0.0016994333570

6 | -0.00003126635674 0 0 -0.0000442173071 | 0.00000019124271

7 | -0.00001421912502 0 0 -0.0000000010464 | 0.00041063040123
Total -0.25002809516252 | -0.2501752736690 | -1.0625072653733 | -3.4998850806912

ET Us1 = -1.0322057314524

Upt = -0 Ugy = -3.5358755383026

From Table 3.5

F, = 4.62229460543298

F, = 0.46857240328801

From equations (4.35) — (4.38)

P, =22.62575014467687

P, = 11.96920644948130

From equation (4.49) taking El = 1

1 = 2.21557484234068

¢, = 2.40890082732463

Fs; = 6.07015648791363

F, =-0.49751905875728

P; =-11.93329905133027

P, =-2.99642533532860

¢3 = 1.25639506293829

4 = 1.20046452551605

Table 4.33: Calculation of the Stiffness modification factor for an element positioned

at & = 0.5, & = 1.0 on a fixed-free beam under lateral vibration

fl = 05, 52 =1.0

j Aj Fyj Fai Fs Fy
1| -1.52008168387560 | -4.96450921635365 | -0.4644782862649 | -7.4676831979656 | 0.56906876387313
2 | -0.02145008105734 | -2.09707074997230 | -0.1138770427682 | 1.66872359998485 | -0.0458682217481
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-0.00160413375147 | 1.22405946857281 | 0.11336142464737 | -0.1250902956381 | -0.0547132629898
-0.00029865709609 | 0.13823105918218 | -0.0287769338101 | -0.1414834936900 | 0.04845309637066
-0.00008500158509 | -0.4218085831993 -0.0191612335917 | 0.08216063055100 | -0.0219480109423
-0.00003126635674 | 0.01563119814659 | 0.01496280219283 | -0.0156882951774 | 0.00608266678954
-0.00001421912502 | 0.16987693708827 | 0.00164422355375 | 0.00135214757295 | -0.0023207382242

Total -6.60409544409049 | -0.5690256019924 | -5.9977089043624 | 0.49875429312898

Al Uy Uzj Usj Uy

-1.52008168387560 | -1.03220573145244 | -3.5358755383026 | -3.0401633706258 | -4.1848015528847
-0.02145008105734 | -0.03061637975215 | 0.01943986981316 | 0.04290016504320 | 0.20509617176097
-0.00160413375147 | -0.00006316306981 | 0.01781229808071 | -0.0032082675054 | -0.0251806202208
-0.00029865709609 | 0.00042237200171 | 0.00002690143067 | 0.00059731419220 | 0.00656801290244
-0.00008500158509 | -0.00000014474706 | -0.0016994333570 | -0.0001700031704 | -0.0024033599594
-0.00003126635674 | -0.00004421730713 | 0.00000019124271 | 0.00006253271341 | 0.00108048778402
-0.00001421912502 | -0.00000000104636 | 0.00041063040123 | -0.0000284382501 | -0.0005807190825

Total -1.06250726537325 | -3.4998850806912 | -3.0000100676028 | -4.0002215797000

Uy = -3.5358755383026

From Table 3.5

F, = 5.93558988653541

F, = 0.49632504604100

up; = -1.03220573145244

F; =5.99770890436235

F, =-0.49875429312898

From equations (4.35) — (4.38)

P, =11.93329905118384

P, =2.99642533522072

Uz = -3.0401633706258

Uy = -4.1848015528847

P, = -2.602861002287682 x 10”

P, = 1.552535877635819 x 10

From equation (4.49) taking El = 1

¢, =1.01642802444861

$3 = 1.01490275693350

271




¢, = 1.00584030019720

¢, = 1.00946349670344

Table 4.34: Calculation of the Stiffness modification factor for an element positioned

at & = 0.5, &, = 0.8 on a fixed-free beam under lateral vibration

{1 = 05, {2 = 08

j Al Fyj Fi Fsj Faj
1 | -1.52008168387560 | -2.53754305197243 | -0.1375125778971 | -3.4114270846113 | 0.15938931191541
2 | -0.02145008105734 | -1.81230484003075 | -0.0813120361971 | -0.8129250959937 | 0.05615897916132
3| -0.00160413375147 | 0.68250088526875 | 0.04364876265484 | 1.03367218732848 | -0.0528296174527
4 | -0.00029865709609 | 0.42971511615191 | 0.01033201399443 | -0.4767067798360 | 0.01405662526632
5 | -0.00008500158509 | -0.45167962124413 | -0.0248332700103 | -0.0563715809027 | 0.01360674930991
6 | -0.00003126635674 | -0.05545949556406 | 0.00710391405670 | 0.26373431775862 | -0.0168112150316
7 | -0.00001421912502 | 0.22682087454497 | 0.00837148019507 | -0.2267515443707 | 0.00709372245167
Total -3.51795013284574 | -0.1742017132035 | -3.6867755806273 | 0.18066455562036
j Aj Ugj U Us; Uy
1 | -1.52008168387560 | -1.03220573145244 | -3.5358755383026 | -2.2055707048045 | -4.1381378773295
2 | -0.02145008105734 | -0.03061637975215 | 0.01943986981316 | 0.00300455195851 | 0.18394031403512
3 | -0.00160413375147 | -0.00006316306981 | 0.01781229808071 | 0.00126686038451 | -0.0151924993847
4 | -0.00029865709609 | 0.00042237200171 | 0.00002690143067 | -0.0003840955140 | 0.00109116172477
5 | -0.00008500158509 | -0.00000014474706 | -0.0016994333570 | 0.00010207807821 | 0.00070044382380
6 | -0.00003126635674 | -0.00004421730713 | 0.00000019124271 | -0.0000190873900 | -0.0006636944469
7 | -0.00001421912502 | -0.00000000104636 | 0.00041063040123 | -0.0000033851557 | 0.00040068558120
Total -1.06250726537325 | -3.4998850806912 | -2.2016037824429 | -3.9678614659962

Uy = -1.03220573145244

Uy = -2.2055707048045

From Table 3.5

Us; = -3.5358755383026

Ugy = -4.1381378773295
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F, = 3.51795013284574

F,=10.17420171320345

From equations (4.35) — (4.38)

P; = 11.93329905132885

P, =2.99642533532619

From equation (4.49) taking EI = 1

¢, = 0.89670920379525

¢, =0.89634218110213

F3; = 3.68677558062730

F, =-0.18066455562036

P; =-4.72857333785578

P, =-0.47828350219818

¢3 = 0.89752780657083

¢, = 0.89577528454164

Table 4.35: Calculation of the Stiffness modification factor for an element positioned

at & = 0.8, & = 1.0 on a fixed-free beam under lateral vibration

=08, &=10

Aj Fy Fs Fy Fa
-1.52008168387560 | -3.03513805200607 | -0.1046062437585 | -3.4480842257295 | 0.11149004221555
-0.02145008105734 | 0.70893573100767 | 0.03000826162572 | 1.48794705502932 | -0.0430153871327
-0.00160413375147 | 0.03951999552946 | -0.0040436238453 | -0.6567238951921 | 0.01573178522022
-0.00029865709609 | -0.27949913605781 | -0.0052720507610 | 0.32323836523339 | -0.0049395806331
-0.00008500158509 | 0.32108770241990 | 0.00837555511122 | -0.1526844529580 | -0.0002505736636
-0.00003126635674 | -0.26824307318398 | -0.0084241237301 | 0.05991115391168 | 0.00272979574560
-0.00001421912502 | 0.18173438131982 | 0.00717638027610 | -0.0105746162333 | -0.0038495614701

Total -2.33160245097101 | -0.0767858450818 | -2.3969706159385 | 0.07789652028189

Al Uy Uzj Us;j Uyj
-1.52008168387560 | -2.20557070480445 | -4.1381378773295 | -3.0401633706258 | -4.1848015528847
-0.02145008105734 | 0.00300455195851 | 0.18394031403512 | 0.04290016504320 | 0.20509617176097
-0.00160413375147 | 0.00126686038451 | -0.0151924993847 | -0.0032082675054 | -0.0251806202208
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-0.00029865709609 | -0.00038409551400 | 0.00109116172477 | 0.00059731419220 | 0.00656801290244
-0.00008500158509 | 0.00010207807821 | 0.00070044382380 | -0.0001700031704 | -0.0024033599594
-0.00003126635674 | -0.00001908739002 | -0.0006636944469 | 0.00006253271341 | 0.00108048778402
-0.00001421912502 | -0.00000338515570 | 0.00040068558120 | -0.0000284382501 | -0.0005807190825

Total -2.20160378244294 | -3.9678614659962 | -3.0000100676028 | -4.0002215797000

Uy = -2.20557070480445

Uy = -4.1381378773295

From Table 3.5

F, = 2.33160245097101

F,=0.07678584508183

From equations (4.35) — (4.38)

P, =4.72857333629486

P, =0.47828350213275

From equation (4.49) taking El = 1

¢, = 0.77135265793859

¢, =0.77098907611122

Uz = -3.0401633706258

Uy = -4.1848015528847

F3; =2.39697061593850

F,=-0.07789652028189

P, = -2.693852820812026 x 10”

P, =-2.681161959117162 x 10™*°

3 = 0.77112957607026

4 = 0.77113934157876

Tables 4.31 to 4.35 provide illustrations on how the inherent nodal forces P; to P4 and

the stiffness modification factors ¢; to ¢4 for an element of a fixed-free beam under

lateral vibration are calculated. Using the methods presented in the Tables above, the

values of stiffness modification factors at different values of &; and &, for the lateral

vibration of a fixed-free beam are presented in Table 4.36. A sample matlab program

for the calculation of the stiffness modification factors for a segment of a fixed-fixed

beam can be found in Appendix G.
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Table 4.36: Stiffness modification factors for the lateral vibration of a fixed-free beam

0 0.05 0.10 5.215 0.20 0.25 0.30
@, - 1.071905 | 1.017044 | 0.961068 | 0.906933 | 0.849510 | 0.774592
0 @, R 1.066470 | 1.005492 | 0.943900 | 0.884905 | 0.821986 | 0.738272
73 R 1.133808 | 1.147308 | 1.160371 | 1.173158 | 1.185861 | 1.198696
@, R 1.129009 | 1.137682 | 1.145848 | 1.153621 | 1.161137 | 1.168542
@, | 1.071905 - 1.944790 | 2453196 | 2.427962 | 2.139531 | 1.874784
005 | @, | 1.066470 - 1.991825 | 2584192 | 2.586096 | 2.279186 | 1.989061
@, | 1133808 - 1.924067 | 2315523 | 2.181436 | 1.872797 | 1.636011
@, | 1129009 - 1.880491 | 2207457 | 2.064233 | 1.777101 | 1.560254
@, | 1017044 | 1.944790 R 1492052 | 1.491886 | 1.464626 | 1.425453
010 | @, | 1.005492 | 1.991825 R 1501784 | 1.515706 | 1.497953 | 1.463630
@, | 1147308 | 1.924067 - 1490731 | 1.483252 | 1.445001 | 1.398987
@, | 1137682 | 1.880491 R 1481223 | 1.460882 | 1.415587 | 1.364655
@, | 0961068 | 2453196 | 1.492052 - 1.372580 | 1.343215 | 1.315239
015 | @, | 0943900 | 2584192 | 1.501784 - 1.376539 | 1.353658 | 1.331193
@, | 1160371 | 2315523 | 1.490731 - 1.372357 | 1.341613 | 1.311489
@, | 1145848 | 2207457 | 1.481223 - 1.368434 | 1.331395 | 1.295918
@, | 0906933 | 2427962 | 1.491886 | 1.372580 - 1.280274 | 1.252039
020 | @, | 0884905 | 2586096 | 1515706 | 1.376539 - 1.282170 | 1.257418
@, | 1173158 | 2181436 | 1483252 | 1.372357 - 1.280226 | 1.251683
@, | 1153621 | 2064233 | 1.460882 | 1.368434 - 1.278335 | 1.246313
@, | 0849510 | 2139531 | 1.464626 | 1.343215 | 1.280274 - 1.209020
g | 025 | @, | 0821986 | 2279186 | 1497954 | 1353658 | 1.282170 - 1.210041
@, | 1185860 | 1.872797 | 1445901 | 1.341613 | 1.280226 - 1.209009
@, | 1161137 | 1777101 | 1415587 | 1.331395 | 1.278335 - 1.207987
@, | 0774592 | 1874784 | 1425453 | 1.315239 | 1.252039 | 1.209020 -
030 | @, | 0738272 | 1989061 | 1.463630 | 1.331193 | 1.257418 | 1.210041 -
@, | 1198696 | 1636011 | 1.398987 | 1.311489 | 1.251683 | 1.209009 -
@, | 1168542 | 1560254 | 1.364655 | 1.295918 | 1.246313 | 1.207987 -
@, | 0655531 | 1.678222 | 1.382755 | 1.287632 | 1227582 | 1.184881 | 1.153670
035 | @, | 0603023 | 1771273 | 1422635 | 1.307481 | 1.236354 | 1187940 | 1.154273
@, | 1211901 | 1483629 | 1.353450 | 1.282245 | 1.226787 | 1.184812 | 1.153669
@, | 1176000 | 1.420427 | 1316989 | 1.262593 | 1217934 | 1.181730 | 1.153064
@, | 04098260 | 1528694 | 1336957 | 1.257592 | 1.202228 | 1.160759 | 1.129258
040 | @, | 0321299 | 1604642 | 1.376351 | 1.279744 | 1213682 | 1165940 | 1.131114
@, | 1225732 | 1385308 | 1311146 | 1.252476 | 1.201464 | 1.160727 | 1.129277
@, | 1183683 | 1.328951 | 1273290 | 1.229739 | 1.189607 | 1.155424 | 1.127401
@, | -0.822768 | 1409628 | 1289048 | 1.224627 | 1174496 | 1.134705 | 1.103135
045 | @, | -1100241 | 1471454 | 1326398 | 1.247668 | 1.187715 | 1.141627 | 1.106314
@, | 1240466 | 1321164 | 1273494 | 1.222796 | 1.175001 | 1.135190 | 1.103347
@, | 1191774 | 1267564 | 1234215 | 1.197542 | 1.160638 | 1.127856 | 1.100054
@, | 2215575 | 1317195 | 1244206 | 1.192534 | 1.147329 | 1.109243 | 1.077717
050 | @, | 2408901 | 1367368 | 1278533 | 1215337 | 1.161419 | 1.117344 | 1.081986
@, | 1256395 | 1282367 | 1244171 | 1197123 | 1.150772 | 1.111094 | 1.078538
@, | 1200465 | 1228205 | 1202713 | 1.169322 | 1.134087 | 1.101884 | 1.073848
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0.35 0.40 0.45 0.50 0.55 0.60 0.65
@, | 0655531 | 0409826 | -0.822768 | 2215575 | 1.384370 | 1.219207 | 1.161188

0 @, | 0603023 | 0321299 | -1.100241 | 2408901 | 1.447830 | 1.253100 | 1.179377
@, | 1211901 | 1225732 | 1.240466 | 1.256395 | 1.273833 | 1.293117 | 1.314608

@, | 1176000 | 1183683 | 1.191774 | 1200465 | 1.209956 | 1.220462 | 1.232211

@, | 1678222 | 1528694 | 1409628 | 1317195 | 1.251917 | 1.210850 | 1.186751
005 | @, | 1771273 | 1604642 | 1471454 | 1.367368 | 1.292434 | 1.242857 | 1.210391
@, | 1483629 | 1385308 | 1.321164 | 1.282367 | 1.264070 | 1.261351 | 1.269160

@, | 1420427 | 1328951 | 1.267564 | 1.228205 | 1.206504 | 1.198063 | 1.198343

@, | 1.382755 | 1.336957 | 1.289048 | 1.244206 | 1.208640 | 1.184841 | 1.170626
010 | @, | 1422635 | 1376351 | 1.326398 | 1.278533 | 1.239341 | 1211333 | 1.192110
@, | 1.353450 | 1311146 | 1273494 | 1244171 | 1226466 | 1.220550 | 1.223862

@, | 1316989 | 1273290 | 1.234215 | 1202713 | 1.181530 | 1.170671 | 1.167689

@, | 1287632 | 1257592 | 1.224627 | 1.192534 | 1.166599 | 1.149396 | 1.139602
015 | @, | 1307481 | 1279744 | 1247668 | 1.215337 | 1.188268 | 1.169091 | 1.156393
@, | 1282245 | 1252476 | 1.222796 | 1197123 | 1179773 | 1172182 | 1.172683

@, | 1262593 | 1.229739 | 1.197542 | 1169322 | 1.148820 | 1.137165 | 1.132658

@, | 1227582 | 1.202228 | 1.174496 | 1.147329 | 1.125359 | 1.110985 | 1.103139
020 | @, | 1236354 | 1213682 | 1187715 | 1161419 | 1139516 | 1.124423 | 1.115008
@, | 1226787 | 1201464 | 1175001 | 1150772 | 1.33195 | 1.124167 | 1.122425

@, | 1217934 | 1189607 | 1.160638 | 1134087 | 1113937 | 1.101783 | 1.096277

@, | 1184881 | 1.160759 | 1.134705 | 1109243 | 1.088651 | 1075195 | 1.067884

g | 025 [ @, | 1187940 | 1165940 | 1141627 | 1117344 | 1007335 | 1083832 | 107575
@, | 1184812 | 1160727 | 1.135190 | 1111094 | 1.092779 | 1.082321 | 1.078640

@, | 1181730 | 1155424 | 1.127856 | 1101884 | 1.081589 | 1.068812 | 1.062381

@, | 1153670 | 1129258 | 1.103135 | 1.077717 | 1.057135 | 1.043558 | 1.035989
030 | @, | 1154273 | 1131114 | 1106314 | 1.081986 | 1.062125 | 1.048824 | 1.041001
@, | 1153669 | 1129277 | 1.103347 | 1.078538 | 1.059111 | 1.047204 | 1.041792

@, | 1153064 | 1127401 | 1.100054 | 1.073848 | 1.052953 | 1.039352 | 1.031942

@, - 1102514 | 1.075399 | 1.049174 | 1.027925 | 1.013735 | 1.00525
035 | @, - 1102886 | 1.076542 | 1.051122 | 1.030521 | 1.016710 | 1.008513
@, - 1.102516 | 1.075451 | 1.049452 | 1028736 | 1.015423 | 1.008445

@, - 1.102143 | 1.074286 | 1.047363 | 1.025630 | 1.011130 | 1.002741

@, | 1102514 - 1.047165 | 1019831 | 0.997710 | 0.982767 | 0.973775
040 | @, | 1.102886 - 1.047390 | 1.020514 | 0.998860 | 0.984264 | 0.975400
@, | 1102516 - 1.047168 | 1019887 | 0.997958 | 0.983408 | 0.975041

@, | 1102143 - 1.046941 | 1019172 | 0.996627 | 0.981324 | 0.972042

@, | 1075399 | 1.047165 - 0.989049 | 0.966131 | 0.950469 | 0.940633
045 | @, | 1076542 | 1.047390 - 0989179 | 0.966521 | 0.951113 | 0.941426
@, | 1075451 | 1.047168 - 0.989052 | 0.966175 | 0.950642 | 0.941061

@, | 1074286 | 1.046941 - 0.988910 | 0.965745 | 0.949803 | 0.939700

@, | 1049174 | 1.019831 | 0.989049 - 0.936304 | 0.919949 | 0..909140
050 | @, | 1.051122 | 1.020514 | 0.989179 - 0.936378 | 0.920168 | 0.909486
@, | 1049452 | 1019887 | 0.989052 - 0.936306 | 0.919975 | 0.909241

@, | 1047363 | 1019172 | 0.988919 - 0.936230 | 0.919719 | 0.908726
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0.70 0.75 0.80 0.85 0.90 0.95 1.00
(o) 1.137236 1.131436 1.144870 1.181049 1.238777 1.312599 1.398163
0 d, 1.142500 1.123612 1.122484 1.141446 1.178267 1.226960 1.283053
s 1.338702 1.365833 1.396486 1.431205 1.470612 1.515426 1.566491
() 1.245454 1.260466 1.277557 1.297086 1.319472 1.345218 1.374932
(o) 1.172950 1.168129 1.176270 1.202046 1.246295 1.305911 1.377876
0.05 d, 1.187566 1.172465 1.168393 1.179206 1.205073 1.242625 1.288816
D 1.284022 1.304988 1.332874 1.368631 1.412307 1.463330 1.521561
D 1.204174 1.214649 1.230470 1.252471 1.280633 1.314308 1.353212
(o] 1.162728 1.161074 1.169547 1.192714 1.232050 1.285574 1.351120
0.10 () 1.178130 1.168976 1.167983 1.179033 1.203078 1.237976 1.281578
D 1.233805 1.249929 1.273774 1.306991 1.349822 1.401349 1.461031
D 1.170119 1.177487 1.191188 1.212750 1.242369 1.279090 1.322261
(o] 1.134776 1.135064 1.144052 1.166070 1.202825 1.252924 1.314722
0.15 d, 1.147582 1.142537 1.144368 1.156800 1.181084 1.215703 1.259030
s 1.179096 1.191257 1.211162 1.240991 1.281280 1.331060 1.389639
D 1.133157 1.138441 1.150351 1.170941 1.200702 1.238643 1.283978
@, | 1.099680 1.100763 1.109730 1.130715 1.165536 1.213163 1.272294
0.20 d, 1.109010 1.106361 1.109981 1.123465 1.148218 1.183084 1.226762
s 1.125974 1.134785 1.151128 1.177573 1.214935 1.262295 1.318917
o) 1.095420 1.099113 1.109482 1.128973 1.158361 1.196711 1.243213
&, 1.064684 1.065700 1.074088 1.093857 1.126907 1.172462 1.229479
& 0.25 a, 1.071019 1.069468 1.073910 1.087871 1.112873 1.147998 1.192179
s 1.079802 1.085811 1.099112 1.122573 1.157266 1.202364 1.257146
o) 1.060341 1.062632 1.071568 1.089905 1.118679 1.157056 1.204261
&, 1.032389 1.032785 1.040206 1.058596 1.089949 1.133692 1.188999
0.30 ad, 1.036508 1.035191 1.039754 1.053719 1.078726 1.114049 1.158806
s 1.040911 1.044545 1.055250 1.076148 1.108557 1.151767 1.205117
() 1.028741 1.029675 1.037191 1.054309 1.082315 1.120506 1.168182
(o] 1.001177 1.000625 1.006815 1.023695 1.053371 1.-095457 1.149325
0.35 @, | 1..003706 1.002054 1.006228 1.019803 1.044562 1.0799500 1.125256
s 1.005744 1.007242 1.015585 1.034130 1.064442 1.105955 1.158096
D 0.998392 0.997965 1.004011 1.019799 1.046868 1.084666 1.132602
(o)) 0.968483 0.966727 0.971426 0.986593 1.014483 1.054884 1.107357
0.40 d, 0.969910 0.967482 0.970799 0.983556 1.007708 1.042870 1.088493
s 0.970656 0.970098 0.976101 0.992265 1.020415 1.060143 1.110995
D 0.970656 0.964727 0.969175 0.983435 1.009310 1.046416 1.094297
@, | 0.934205 0.930943 0.933804 0.946934 0.972772 1.011282 1.062206
0.45 d, 0.934947 0.931305 0.933258 0.944685 0.967756 1.002253 1.047796
s 0.935055 0.932402 0.935951 0.949566 0.975352 1.013077 1.062423
D 0.933059 0.929642 0.932243 0.944662 0.968985 1.005006 1.052422
(o)) 0.901291 0.896126 0.896709 0.907402 0.930862 0.967227 1.016428
0.50 d, 0.901662 0.896313 0.896342 0.905888 0.927376 0.960762 1.005840
D 0.901548 0.896640 0.897528 0.908384 0.931615 0.967175 1.014903
D 0.900707 0.895399 0.895775 0.905955 0.928327 0.962875 1.009464
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$2

0 0.05 0.10 0.15 0.20 0.25 0.30

] 1.384370 1.251917 1.208640 1.166599 1.125359 1.088651 1.057135

0.55 a, 1.447830 1.292434 1.239341 1.188268 1.139516 1.097335 1.062125
s 1.273833 1.264070 1.226466 1.179773 1.133195 1.092779 1.059111

D, 1.209956 1.206504 1.181530 1.148820 1.113937 1.081589 1.052953

&, 1.219207 1.210850 1.184841 1.149396 1.110985 1.075195 1.043558

0.60 a, 1.253100 1.242857 1.211333 1.169091 1.124423 1.083832 1.048824
s 1.293117 1.261351 1.220550 1.172182 1.124167 1.082321 1.047204

D 1.220462 1.198063 1.170671 1.137165 1.101783 1.068812 1.039352

, 1.161188 1.186751 1.170626 1.139602 1.103139 1.067884 1.035989

0.65 a, 1.179377 1.210391 1.192110 1.156393 1.115008 1.075775 1.041001
s 1.314608 1.269160 1.223862 1.172683 1.122425 1.078640 1.041792

D 1.232211 1.198343 1.167689 1.132658 1.096277 1.062381 1.031942

(o)) 1.137236 1.172950 1.162728 1.134776 1.099680 1.064684 1.032389

0.70 () 1.142500 1.187566 1.178130 1.147582 1.109010 1.071019 1.036508
D 1.338702 1.284022 1.233805 1.179096 1.125974 1.079802 1.040911

D 1.245454 1.204174 1.170119 1.133157 1.095420 1.060341 1.028741

(o)) 1.131436 1.168129 1.161074 1.135064 1.100763 1.065700 1.032785

0.75 () 1.123612 1.172465 1.168976 1.142537 1.106361 1.069468 1.035191
s 1.365833 1.304988 1.249929 1.191257 1.134785 1.085811 1.044545

& d, 1.260466 1.214649 1.177487 1.138441 1.099113 1.065632 1.029675
, 1.144870 1.176270 1.169547 1.144052 1.109730 1.074088 1.040206

0.80 d, 1.122484 1.168393 1.167983 1.144368 1.109981 1.073910 1.039754
s 1.396486 1.332874 1.273775 1.211162 1.151128 1.099112 1.055250

d, 1.277557 1.230470 1.191188 1.150351 1.109482 1.071568 1.037191

, 1.181049 1.202046 1.192714 1.166070 1.130715 1.093857 1.058596

0.85 d, 1.141446 1.179206 1.179033 1.156800 1.123465 1.087871 1.053719
s 1.431205 1.368631 1.306991 1.240991 1.177573 1.122573 1.076148

d, 1.297086 1.252471 1.212750 1.170941 1.128973 1.089905 1.054309

, 1.238777 1.246295 1.232050 1.202825 1.165536 1.126907 1.089949

0.90 d, 1.178267 1.205073 1.203078 1.181084 1.148218 1.112873 1.078726
D 1.470612 1.412307 1.349822 1.281280 1.214935 1.157266 1.108557

D 1.319472 1.280633 1.242369 1.200702 1.158361 1.118679 1.082315

(o)) 1.312599 1.305911 1.285574 1.252924 1.213163 1.172462 1.133692

0.95 a, 1.226960 1.242625 1.237976 1.215703 1.183084 1.147998 1.114049
D 1.515426 1.463330 1.401349 1.331060 1.262295 1.202364 1.151767

D 1.345218 1.314308 1.279090 1.238643 1.196711 1.157056 1.120506

(o)) 1.398163 1.277876 1.351120 1.314722 1.272294 1.229479 1.188999

1.00 a, 1.283053 1.288816 1.281578 1.259030 1.226762 1.192179 1.158806
D 1.566491 1.521561 1.461031 1.389639 1.318917 1.257146 1.205117

D,y 1.374932 1.353212 1.322261 1.283978 1.243212 1.204261 1.168182
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0.35 0.40 0.45 0.50 0.55 0.60 0.65
] 1.027925 0.997710 0.966131 0.936304 - 0.894940 0.882868
0.55 a, 1.030521 0.998860 0.966521 0.936378 - 0.894983 0.882993
s 1.028736 0.997958 0.966175 0.936306 - 0.894941 0.882881
D, 1.025630 0.996627 0.965745 0.936230 - 0.894896 0.882727
&, 1.013735 0.982767 0.950469 0.919949 0.894940 - 0.862758
0.60 a, 1.016710 0.984264 0.951113 0.920168 0.894983 - 0.862784
s 1.015423 0.983408 0.950642 0.919975 0.894941 - 0.862758
D 1.011130 0.981324 0.949803 0.919719 0.894896 - 0.862731
, 1.005525 0.973775 0.940633 0.909140 0.882868 0.862758 -
0.65 a, 1.008513 0.975400 0.941426 0.909486 0.882993 0.862784 -
s 1.008445 0.975041 0.941061 0.909241 0.882881 0.862758 -
D 1.002741 0.972042 0.939700 0.908726 0.882727 0.862731 -
(o)) 1.001177 0.968483 0.934205 0.901291 0.873175 0.850655 0.831363
0.70 () 1.003706 0.969910 0.934947 0.901662 0.873353 0.850727 0.831379
D 1.005744 0.970656 0.935055 0.901548 0.873231 0.850663 0.831364
D 0.998392 0.966570 0.933059 0.900707 0.872924 0.850570 0.831347
(o)) 1.000625 0.966727 0.930943 0.896126 0.865609 0.840115 0.817224
0.75 () 1.002054 0.967482 0.931305 0.896313 0.865728 0.840189 0.817258
s 1.007242 0.970098 0.932402 0.896640 0.865756 0.840149 0.817229
& d, 0.997965 0.964727 0.929642 0.895399 0.865258 0.839967 0.817174
, 1.006815 0.971426 0.933804 0.896709 0.863431 0.834669 0.807976
0.80 d, 1.006228 0.970799 0.933258 0.896342 0.863250 0.834610 0.807970
s 1.015585 0.976101 0.935951 0.897528 0.863691 0.834740 0.807992
d, 1.004011 0.969175 0.932243 0.895775 0.862939 0.834435 0.807879
, 1.023695 0.986593 0.946934 0.907402 0.871285 0.839309 0.808998
0.85 d, 1.019803 0.983556 0.944685 0.905888 0.870386 0.838845 0.808793
s 1.034130 0.992265 0.949566 0.908384 0.871565 0.839361 0.808994
d, 1.019799 0.983435 0.944662 0.905955 0.870455 0.838869 0.808786
, 1.053371 1.014483 0.972772 0.930862 0.892090 0.857241 0.823782
0.90 d, 1.044562 1.007708 0.967756 0.927376 0.889859 0.855936 0.823095
D 1.064442 1.020415 0.975352 0.931615 0.892109 0.857086 0.823643
D 1.046861 1.009310 0.968985 0.928327 0.890523 0.856329 0.823289
(o)) 1.095457 1.054884 1.011282 0.967227 0.926159 0.888948 0.852965
0.95 a, 1.079950 1.042870 1.002253 0.960762 0.921805 0.886209 0.851373
D 1.105955 1.060143 1.013077 0.967175 0.925473 0.888260 0.852463
D 1.084666 1.046416 1.005006 0.962875 0.923317 0.887182 0.851930
(o)) 1.149325 1.107357 1.062206 1.016428 0.973621 0.934792 0.897180
1.00 a, 1.125256 1.088493 1.047796 1.005840 0.966215 0.929888 0.894130
D 1.158096 1.110995 1.062423 1.014903 0.971682 0.933138 0.895986
D,y 1.132602 1.094297 1.052422 1.009463 0.968896 0.931717 0.895273
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0.70 0.75 0.80 0.85 0.90 0.95 1.00
@, | 0873175 | 0.865609 | 0.863431 | 0.871285 | 0.892090 0.926159 0.973621
055 | @, | 0873353 | 0865727 | 0.863250 | 0.870388 | 0.889859 0.921805 0.966215
@, | 0873231 | 0.865756 | 0.863691 | 0.871565 | 0.892109 0.925473 0.971682
@, | 0872924 | 0.865258 | 0.862939 | 0.870455 | 0.890523 0.923317 0.968896
@, | 0850655 | 0.840115 | 0.834669 | 0.839309 | 0.857241 0.888948 0.934792
060 | @, | 0850727 | 0840189 | 0.834610 | 0.838845 | 0.855936 0.886209 0.929888
@, | 0.850663 | 0.840149 | 0.834740 | 0.839361 | 0.857086 0.888260 0.933138
@, | 0.850570 | 0.839967 | 0.834435 | 0.838869 | 0.856329 0.887182 0.931717
@, | 0.831363 | 0.817224 | 0.807976 | 0.808998 | 0.823782 0.852965 0.897180
065 | @, | 0831379 | 0817258 | 0.807970 | 0.808793 | 0.823095 0.851373 0.894130
@, | 0.831364 | 0.817229 | 0.807992 | 0.808994 | 0.823643 0.852463 0.895986
@, | 0.831347 | 0817174 | 0.807879 | 0.808786 | 0.823289 0.851930 0.895273
@, - 0.794117 | 0.780528 | 0.777450 | 0.788636 0.814823 0.856946
070 | @, - 0.794125 | 0.780533 | 0.777380 | 0.788325 0.813993 0.855204
@, - 0.794117 | 0.780529 | 0.777440 | 0.788547 0.814506 0.856162
@, - 0.794108 | 0.780498 | 0.777368 | 0.788406 0.814276 0.855859
@, | 0794117 R 0.752746 | 0.745074 | 0.752053 0.774437 0.813486
075 | @, | 0794125 R 0.752748 | 0.745059 | 0.751945 0.774075 0.812611
@, | 0794117 - 0.752746 | 0.745069 | 0.752011 0.774268 0.813025
& @, | 0.794108 - 0.752742 | 0.745053 | 0.751972 0.774201 0.812949
@, | 0780528 | 0.752746 - 0.716725 | 0.718913 0.736584 0.771353
080 | @, | 0780533 | 0.752748 - 0.716724 | 0.718890 0.736465 0.770989
@, | 0780529 | 0.752746 - 0.716724 | 0.718902 0.736517 0.771130
@, | 0780498 | 0.752741 - 0.716723 | 0.718896 0.736509 0.771139
@, | 0.777450 | 0.745074 | 0.716725 - 0.695970 0.708163 0.737671
085 | @, | 0777380 | 0.745059 | 0.716724 - 0.695968 0.708139 0.737558
@, | 0.777440 | 0.745069 | 0.716724 - 0.695969 0.708147 0.737593
@, | 0777368 | 0.745053 | 0.716723 - 0.695969 0.708149 0.737609
@, | 0788636 | 0.752053 | 0.718913 | 0.695970 - 0.693376 0.716869
090 | @, | 0788325 | 0.751945 | 0.718890 | 0.695968 - 0.693375 0.716847
@, | 0788547 | 0.752011 | 0.718902 | 0.695969 - 0.693375 0.716852
@, | 0788406 | 0.751972 | 0.718896 | 0.695969 - 0.693375 0.716858
@, | 0814823 | 0.774437 | 0.736584 0.708163 | 0.693376 - 0.707168
095 | @, | 0813993 | 0.774075 | 0.736465 | 0.708139 | 0.693375 - 0.707167
@, | 0814506 | 0.774268 | 0.736517 | 0.708147 | 0.693375 - 0.707167
@, | 0814278 | 0.774201 | 0.736509 | 0.708149 | 0.693375 - 0.707167
@, | 0.856946 | 0813486 | 0.771353 | 0.737671 | 0.716869 0.707168 -
1.00 | @, | 0.855205 | 0.812611 | 0.770989 | 0.737558 | 0.716847 0.707167 -
@, | 0856162 | 0.813025 | 0.771130 | 0.737593 | 0.716852 0.707167 -
@, | 0.855859 | 0.812949 | 0.771139 | 0.737609 | 0.716858 0.707168 -
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425 Free-free beams

These are beams not restrained from lateral vibration at both ends. From section 3.2.5

the fundamental or lowest natural frequency w for such a bar is given as
w =0 (4.86)
Likewise
up = u(xy,0) =275, 4 (cosh Bjx1 + ez sinh B;xq + cos fx1 + ey sin,Bjxl)
= Z}X’Zl A; (cosh B;L&1 + ey; sinh B L, + cos B LE; + ey sin f; Lfl)
(4.87a)
u; = u'(x1,0) = X7, AjﬁjL(sinh Bjx1 + eyj cosh B;x; — sin B;x; + ey; cos ﬁjxl)
= Z}X’Zl Aj[)’L(sinh Bi L&y + ey cosh B;LE; — sin B LE; + ey; cos,Bijl)
(4.87b)
uz = u(x,0) = Y72, A (cosh B x, + ey sinh B x; + cos Bjx, + ey sin fix;)
= %721 A; (cosh B L&, + ey sinh B; L&, + cos B; L&, + ey sin B LE,)
(4.87c)
Uy =u(x2,0) = X%, AjﬁL(sinh Bjx; + €5 cosh Bix; — sin B x; + ey cos,B]-xz)
=Yj=1 AjﬁjL(sinh Bi L&, + eyj cosh B;LE; — sin B LS, + ey cos fi; LEZ)

(4.87d)
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Equations (4.87a) — (4.87d) are used to evaluate the total displacements u; to u,4 at the
nodal points of a segment of the vibrating free-free beam. Though the equations
represent the summation of an infinite series, an evaluation of the first few terms

provides values of very good precision.

From Table 3.6

2ud 13 [—12(sinh BjLi—sin B;Ly) + 24(cosh BjLi+cos BjLy) _ 24(sinh B;Ly+sin B;L1) _

373 414 573
Mj ﬂle ﬁle ﬁjl‘l

12(cosh BjLy+cos [)’le) _ 24(sinh BjLy+sin [)’]-Ll) 24(cosh BjL1—cos Ble)
&2 ( B3 BiLY * BL® (4.88)

L =L/, (4.89)

The values of BjL, ey, and e4 for j = 0,1, 2, 3, 4, 5, 6, 7 can be obtained from Table
3.6. The values of the fixed end forces Fi, F,, F3 and F4 are evaluated using the
equations provided in Table 3.6. These are substituted into the equations for nodal
forces (equations 4.35) — (4.38) from which the nodal forces P1, P,, P3 and P4 are
obtained.

Equations (4.87a) — (4.87d) are evaluated for the first mode, j = 1 to obtain the nodal
displacements uj1, Up1, Us; and ug due to the first mode. These together with the
calculated nodal forces P; to P4 are substituted into equation (4.49) in order to obtain

the stiffness modification factors ¢1, ¢z, ¢3 and ¢a.

It is important to note that since the lowest frequency of a free-free beam (w = 0)
correspond to a rigid body motion, it is not possible to evaluate equation (4.49) for a

free-free beam when w = 0. From Table 3.6 we would observe that the lowest
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frequency, BjL = 0, w = 0 and A; is undefined. Hence equation (4.49) can only be

evaluated for values of natural frequency w close to zero.

Because this frequency correspond to a rigid body motion, what is of essence is the
stiffness modification factor for the full length of the beam (ie when & = 0 and
&, = 1). The calculated values of the stiffness modification factors at different values

of natural frequency w are presented in the Table 4.37.

Table 4.37: Calculated values of stiffness modification factors for a Free-free beam at

different values of natural frequency

Natural
frequency w @, @, Bs D
(Hz)
0.5 5.000681 4.998074 5.000678 5.002418
0.4 4.993327 4.992262 4.993328 4.994038
0.3 4974148 4973813 4974150 4974373
0.2 4.866563 4.866499 4.866565 4.866607
0.1 2.863414 2.863412 2.863416 2.863416
0.05 -29.18560 -29.185598 -29.185599 -25.185601
0.01 -18298.68 -18298.68 -18298.68 -18298.68
0.005 37611.44 37611.44 37611.44 37611.44
0.001 -1668.115 -1668.115 -1668.115 -1668.115

From Table 4.37 it would be observed that the calculated values of stiffness
modification factors vary widely with the natural frequency. As the value of w tend to

zero the values of the calculated stiffness modification factors for each value of
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4.2.6

natural frequency becomes equal. Therefore the calculated value of the stiffness

modification factor for a free-free beam will be taken to be a constant.
P1 =0, =3 =y = ¢frfr (4.90)
Pinned-free beams

These are beams pinned at one end and completely unrestrained at the other. From

section 3.2.6 the fundamental or lowest natural frequency w for such a bar is given as
w; =0 (491)
Likewise
w; = u(x,0) = %72, A (sinh Bx; + fi; sin B x;)

= Y%, A (sinh B LE; + fy; sin B L&) (4.92a)
up = u'(x1,0) = X721 A By L(cosh B x1 + fi; cos B x;)

= %721 A BL(cosh B; L& + fy; cos L&) (4.92b)

uz = u(xy, 0) = Y7l 4 (sinhﬁsz + f4j sin ,Bsz)
= Y71 A (sinh B L&, + fy; sin B, L) (4.92c)
uy = u'(x2,0) = X724 Aj,BL(cosh B x; + fa; cos ,B]-xz)
= Y721 A B;L(cosh B LE; + fi; cos B;LE,) (4.92d)

Equations (4.92a) — (4.92d) are used to evaluate the total displacements u; to u, at the
nodal points of a segment of the vibrating pinned-free beam.
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From Table 3.8

A = dHL% [—10 cosh 2f;L1 19sinh 261 24 cosh 21 24 sinh 2814 _

. 2 3,3 4
J M; BjlL1 BiLY BjLy BiLY
24 cosh 2B;Lq +ﬁ;' (10 cos 2Ly _ 19sin 28;Ly 24 cos 2f;Lq 24sin 2B;Lq
7L AN BrLY BiL3 piLe

24 cosh 2Ly ] dul} [ 24 24 sinh B;Ly (—6sin BjL1 24 24 sin ,6’]-L1>]
— + +fy + — 4,93
7L ) T VT piLt Jaj BFLA BT BILY (4.93)

j
Note L, =L/,

The values of BjL, fo5, and fs5 for j = 0,1, 2, 3, 4, 5, 6, 7 can be obtained from Table
3.8.

The values of the fixed end forces Fi, F,, F3 and F,4 are evaluated using the equations
provided in Table 3.7. These are substituted into the equations for nodal forces
(equations (4.35) — (4.38)) from which the nodal forces P1, P2, P3 and P, are obtained.

Just as in the fixed-fixed beam, equations (4.92a) — (4.92d) are evaluated for the first
mode, j = 0 to obtain the nodal displacements uii, Up1, U3 and Uy due to the first

mode. These together with the calculated nodal forces P; to P4 are substituted into

equation (4.49) in order to obtain the stiffness modification factors ¢1, ¢2, ¢z and ¢4.

The lowest frequency of a pinned-free beam (w = 0) corresponds to a rigid body
motion. Just as in the case of a free-free beam it is not possible to evaluate equation
(4.49) for a pinned-free beam when w = 0. We would observe that for the first mode
of vibration, BjL = 0, w = 0 and A; is undefined. Hence equation (4.49) can only be

evaluated for values of natural frequency w close to zero.

Because this frequency correspond to a rigid body motion, what is of essence is the

stiffness modification factor for the full length of the beam (i.e. when & = 0 and
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&, =1). The calculated values of the stiffness modification factors at different values

of natural frequency w are presented in the Table 4.38.

Table 4.38: Calculated values of stiffness modification factors for a Pinned-free beam

at different values of natural frequency

Natural
frequency @, @, B @
(Hz)
0.5 41.027407 41.012268 41.046107 41.047888
0.4 41.006295 41.000103 41.013965 41.014684
0.3 40.996305 40.994347 40.998733 40.998959
0.2 40.992598 40.992211 40.993078 40.993122
0.1 40.991743 40.991719 40.991773 40.991776
0.05 40.991688 40.991688 40.991688 40.991688
0.01 40.991730 40.991730 40.991730 40.991730
0.005 40.990614 40.990614 40.990614 40.990614

From Table 4.38 it would be observed that as the value of w tends to zero the values
of the calculated stiffness modification factors for each value of natural frequency
becomes equal. Therefore the calculated value of the stiffness modification factor for

a free-free beam will be taken to be equal to 40.991.
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Chapter 5
ANALYSIS AND DISCUSSION OF RESULTS

In the previous chapter the fixed end forces were used to calculate the stiffness
modification factors for beams of different end conditions and for both longitudinal
and lateral vibrations. The modification factors will now be applied in the analysis of
the free vibration of lumped-massed beams using Lagrange equation. This will enable
us see the effect of the stiffness modification factors on the calculated results. In order

to carry out this comparative study some set of beams were selected and are presented

below.
1 ( > 2 1 CD 2 (D 3
L L 2L 3L 3L
5 i > >
¥ ¥ 2 K n” 5 e 10 n” 10 n"
(@) (d)
L 2L L L L L
3 3 4 4 4 4
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3 3 3 10 5 5 10
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(© )

Figure 5.1: Some lumped massed beams
constrained at both ends used for illustration of

Lagrange equation
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5.1
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Figure 5.2: Some lumped massed beams fixed
at one end and free at the other used for

illustration of Lagrange equation

Some of the beams of Figure 5.1 and Figure 5.2 have an even distribution of lumped
masses while the others have uneven distribution of lumped masses. The natural and
mode shapes of these beams will be analyzed twice using Lagrange equations. In the
first analysis the system will be analyzed using the ordinary stiffness of the structure
while in the second analysis the stiffness modification factors will be applied. The

results of the two analyses will then be compared.

Longitudinal Vibrations

The analysis of systems under longitudinal vibrations using the Lagrange equations

was presented in section 2.7.1. From equation (2.37) the dynamical matrix is the
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5.11

product of the flexibility matrix and the inertia matrix which is the same as the

product of the stiffness inverse and the inertia matrix.
[D] = [k]~*[m] (5.1)

where [D] is the dynamical matrix, [K] is the stiffness matrix and [m] is the inertia
matrix. By substituting equation (5.1) into the eigenvalue problem of equation (2.39)

we obtain

([k]7'[m] — AUD{¢} = 0 (5.2)
Equation (5.2) is evaluated to obtain the natural frequencies w = \E and mode shapes

{¢}.

The two cases of fixed-fixed bars and fixed-free bars will be considered.
Fixed-fixed/Fixed-pinned/pinned-pinned bars

For the beam of Figure 5.1a (if restrained at both ends) the stiffness matrix and inertia

matrix of the bar with respect to the coordinate of the lumped mass are
k=— (5.33)
m =yl (5.3b)

By substituting equations (5.3a) and (5.3b) into equation (5.2) and solving we obtain

j =M (5.42)
{p} =1 (5.4b)

w = 2.8284 /f—; (5.4¢)
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From Table 4.7 the stiffness modification factors of the two segments/elements of the

bar are
For element 1: £, =0, & =0.5, a1 = 1.233701, a, = 1.859611
For element2: §; = 0.5, & =1, ap = 1.233701, o = 1.859611

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

__ 4.934804EA

k
L

(5.5)
By using this modified stiffness on equation (5.2) the new values of A, natural
frequency and mode shape obtained are

_0.1013211467 uL?

A
EA

(5.6a)

{p} =1 (5.6b)

w = 3.14159 /% (5.6¢)

For the beam of Figure 5.1b (if restrained at both ends) the stiffness matrix and inertia

matrix of the bar with respect to the coordinate of the lumped mass are

I = 4.5LEA (5.73)

m=1uL (5.7b)

By substituting equations (5.3a) and (5.3b) into equation (5.2) and solving we obtain

01111111111 plL?
N EA

A (5.8a)
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{p} =1 (5.8b)

w = 3.0000 /% (5.8¢)

The stiffness modification factors of the two segments/elements of the bar cannot be
obtained with precision from Table 4.7 because there was no provision for &; = 1/3.
The modification factors can be obtained for any of &; and & using the attached
matlab program in Appendix A. Using this matlab program program the stiffness

modification factors of the two segments/elements of the bar were obtained as
For element 1: & =0, & = 1/3, oy = 1.040150, a, = 1.143529
For element2: & = 1/3, & =1, a3 = 1.209568, a, = 2.863058

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

_ 4.934802FA
- L

k (5.5)

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.10132118776 uL?
- EA

A (5.6a)

{p}=1 (5.6b)

w = 3.1416 /% (5.6¢)

These were repeated for the bars of Figures 5.1(c), 5.1(d), 5.1(e) and 5.1(f) and a

summary of the obtained natural frequencies presented in Table 5.1
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Table 5.1: Comparism of the obtained natural frequencies of different lump-massed

fixed-fixed bar under longitudinal vibration with the exact results.

Mode | Hamilton | Lagrange | Percentage | Lagrange
No Error with
(Exact) (Hz) modified Percentage
(Hz) (%) stiffness | E"TO"
(H2) (%)
Figure 5.1(a) |1 3.1416 |2.8284 |9.97 3.1416 |0
Figure 5.1(b) |1 3.1416 |3.0000 |4.51 3.1416 |0
Figure 5.1(c) |1 3.1416 |3.0000 |4.51 3.1416 |0
2 6.2832 5.1962 17.30 5.4486 13.28
Figure 5.1(d) |1 3.1416 | 29646 |5.63 31416 |0
2 6.2832 5.4863 12.68 5.6096 10.72
Figure 5.1(e) |1 3.1416 |3.0615 |2.55 3.1416 |0
2 6.2832 5.6569 9.97 5.6593 9.93
3 9.4248 7.3910 21.58 7.3611 21.90
Figure 5.1(f) |1 3.1416 |2.9940 [4.70 31416 |0
2 6.2832 5.7735 8.11 5.6649 9.84
3 9.4248 8.6237 8.50 8.2736 12.21

From Table 5.1, it would be observed that the natural frequencies obtained from the
use of Lagrange equation on the continuous system had some measure of errors as
seen from its comparison with exact results (results from the use of Hamilton’s
principle). However when the stiffness of the system was modified using the stiffness
modification factors, the use of Lagrange equation was able to predict accurately the
fundamental frequencies hence their percentage errors were zero. However the values

of the higher frequencies remained approximate.
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5.1.2 Fixed-free bars

For the beam of Figure 5.2a the stiffness matrix and inertia matrix of the bar with

respect to the coordinate of the lumped mass are

k = — (578.)

m =yl (5.7b)

By substituting equations (5.7a) and (5.7b) into equation (5.2) and solving we obtain

1= % (5.8a)
{p} =1 (5.8b)

w = 1.4142 /% (5.8¢)

From Table 4.13 the stiffness modification factors of the element of the bar are
&1=0,&=1, a3 =1.233701, a = 1.894303

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

_ 1.233701EA
- L

k (5.5)

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.405284586784 pL?
- EA

2 (5.9a)

{p} =1 (5.9b)
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w = 1.5708 /#E—fz (5.9¢)

For the beam of Figure 5.2b the stiffness matrix and inertia matrix of the bar with

respect to the coordinate of the lumped mass are

k=[_42 _22]% (5.10a)
- [0(')5 0(_’5] ul (5.10h)

By substituting equations (5.10a) and (5.10b) into equation (5.2) and solving we

obtain

_ 0.42677669529664 ul? __0.07322330470336 ulL?

A= EA Ay = EA (511a)
_ (0.5773503 _ (—0.5773503
()= {0.8164966}’{¢2} - { 0.8164966 } (5.11b)

EA EA
w; = 1.5307 /m w, = 3.6955 /#7 (5.11c)

The stiffness modification factors of the two segments/elements of the bar can be

obtained from Table 4.13 as
For element 1: £ =0, & = 0.5, a1 = 0.995936, a, = 1.339475
For element2: & = 0.5, & =1, oy = 0.995936, a, =0.972287

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

(5.12)

= [ 3983744 —1.944574]g

—1.944574 1991872 1L
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By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

0.40528456176396 ulL? 0.07425242373351 ulL?
A = — oA, = — = (5.13a)

_ (0.5773503 _ (—=0.5773503
()= {0.8164966}'{¢2} - { 0.8164966 } (5.13b)

w, = 1.5708 /% , w, = 3.6698 /% (5.13¢)

These were repeated for the bars of Figures 5.2(c), 5.2(d), 5.2(e) and 5.2(f) and a

summary of the obtained natural frequencies presented in Table 5.2.

Table 5.2: Comparison of the obtained natural frequencies of different lump-massed

fixed-free bar under longitudinal vibration with the exact results.

Mode | Hamilton | Lagrange | Percentage | Lagrange | Percentage
No Error with Error
(Exact) | (H2) modified
(H2) (%) stiffness (%)
(Hz)
Figure5.2(a) |1 1.5708 1.4142 9.95 1.5708 0
Figure 5.2 (b) | 1 1.5708 1.5307 2.55 1.5708 0
2 4.7124 3.6955 21.43 3.6698 22.12
Figure5.2(c) |1 1.5708 1.4749 6.11 1.5708 0
2 4.7124 4.9824 -5.73 4.6750 0.79
Figure5.2(d) | 1 1.5708 1.5529 1.14 1.5708 0
2 4.7124 4.2426 9.97 4.1054 12.88
3 7.8540 5.7956 26.21 5.5171 29.75
Figure5.2(e) | 1 1.5708 1.5755 -0.30 1.5708 0
2 4.7124 3.7558 20.30 3.7100 21.27
3 7.8540 6.1708 21.43 6.2305 20.67
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5.2

5.2.1

From Table 5.2, it would be observed that the natural frequencies obtained from the
use of Lagrange equation on the continuous system had some measure of errors as
seen in the percentage error column. But when the stiffness of the system was
modified using the stiffness modification factors, the use of Lagrange equation was
able to predict accurately the fundamental frequencies hence their percentage errors
were zero. However the values of the higher frequencies remained approximate. Some
of its predictions for higher frequencies where less accurate than that obtained without

the application of the stiffness modification factors.

Lateral Vibrations

The analysis of systems under lateral vibrations using the lagrange equations is the
same as that for longitudinal vibration and was presented in section 2.7.1. The only
different is that the stiffness matrix [K] will now be for a beam element. For a beam
element the stiffness matrix is a 6 x 6 matrix but when axial deformation/vibration is
ignored it reduces to a 4 x 4 matrix. Just like in the analysis for longitudinal vibration,
the natural frequency and mode shapes for the lateral vibration of a beam is obtained

by evaluating equation (5.2).

Fixed-fixed beams

The stiffness matrix for beams with respect to any set of arbitrary coordinate is

obtained by the by implementing the matrix calculations presented in section 2.6.2.

For the beam of Figure 5.1a (if restrained at both ends) the stiffness matrix and inertia

matrix of the bar with respect to the coordinate of the lumped mass are

_ 192EI

k 3

(5.14a)
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m =yl (5.14b)

By substituting equations (5.14a) and (5.14b) into equation (5.2) and solving we

obtain

__0.00182898948331 ulL*

2 — (5.15a)
(¢} =1 (5.15h)
w = 19.5959 \% (5.15¢)

From Table 4.18 the stiffness modification factors of the two segments/elements of

the beam are

For element 1: & = 0, & = 0.5, ¢1 = 1.303552, ¢, = 0.663259, ¢3 = 1.731522, ¢4 =

1.293649

For element2: & = 0.5, & = 1, ¢1 = 1.303552, ¢, = 0.663259, ¢z = 1.731522, ¢4 =

1.293649

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

__ 250.281984 E1

k=220 (5.16)

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.00199774666961 uL*
o El

2 (5.17a)

{p}=1 (5.17b)

297



w = 22.3733 /;% (5.17¢)

For the beam of Figure 5.1b (if restrained at both ends) the stiffness matrix (using the
method of section 2.6.2) and inertia matrix of the bar with respect to the coordinate of

the lumped mass are

_ 2187EI
T 8L3

(5.18a)
m =yl (5.18b)

By substituting equations (5.3a) and (5.3b) into equation (5.2) and solving we obtain

_0.00182898948331 pL*
N EI

A

(5.19a)

{p} =1 (5.19b)

w = 23.3827 /;% (5.19¢)

The stiffness modification factors of the two segments/elements of the beam cannot
be obtained with precision from Table 4.18 because there was no provision for &; =
1/3. The modification factors can however be obtained for any value of &; and &
using the attached matlab program in Appendix C. Using this matlab program
program the stiffness modification factors of the two segments/elements of the bar

were obtained as

For element 1: & = 0, & = 1/3, ¢1 = 1.017826, ¢, = 0.968328, ¢3 = 1.294663, ¢4 =

1.197040

For element2: & = 1/3, & = 1, ¢; = -2.180818, ¢, = 4.078733, ¢p3 = 8.584341, ¢4 = -
3.117611
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By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

250.282095508 EI
= (5.20)

k

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.00199774577955 uL*
- El

1 (5.21a)

{p}=1 (5.21b)

w = 22.3733 /l% (5.21c)

These were repeated for the bars of Figures 5.1 (c), 5.1(d), 5.1(e) and 5.1(f) and a

summary of the obtained natural frequencies presented in Table 5.3.

Table 5.3: Comparison of the obtained natural frequencies of different lump-massed

fixed-fixed beam under lateral vibration with the exact results.

Mode | Hamilton | Lagrange | Percentage | Lagrange | Percentage
No Error with Error
(Bxact) | (Hz) 0 modified |
(Hz) (%) stiffness | (%)
(Hz)
Figure5.1(a) |1 22.3733 | 19.5959 | 1241 22.3733 0
Figure 5.1 (b) | 1 22.3733 | 23.3827 |-451 22.3733 0
Figure5.1(c) | 1 22.3733 | 22.0454 | 1.47 22.3733 0
2 61.6728 |51.2289 | 16.93 51.8139 15.99
Figure 5.1 (d) | 1 22.3733 | 21.2230 |5.14 22.3733 0
2 61.6728 |56.0138 |9.18 56.1097 9.02
Figure5.1(e) | 1 22.3733 | 22.3024 |0.32 22.3733 0
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5.2.2

2 61.6728 | 59.2525 | 3.92 59.0436 4.26

3 120.9034 | 97.3992 | 19.44 96.5191 20.17
Figure5.1 (f) |1 22.3733 | 21.2654 | 4.95 22.3733 0

2 61.6728 |57.1662 | 7.31 56.2869 8.73

3 120.9034 | 121.4176 | -0.42 116.9119 |3.30

Just like in the longitudinal vibration of beams from Table 5.3, it would be observed
that the natural frequencies obtained from the use of Lagrange equation on the
continuous system had some measure of errors as seen from its comparison with exact
results (results from the use of Hamilton’s principle). However when the stiffness of
the system was modified using the stiffness modification factors, the use of Lagrange
equation was able to predict accurately the fundamental frequencies hence their
percentage errors were zero. However the values of the higher frequencies remained

approximate.
Fixed-pinned beams

For the beam of Figure 5.1a (if rigidly fixed at the left side and pinned at the other)
the stiffness matrix and inertia matrix of the bar with respect to the coordinate of the

lumped mass are

_ 768EI

k
713

(5.22a)
m =L (5.22b)

By substituting equations (5.22a) and (5.22b) into equation (5.2) and solving we

obtain

_0.00455729 uL*
o EI

1 (5.23a)
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{p} =1 (5.23b)

w = 14.8131 /;% (5.23c)

From Table 4.24 the stiffness modification factors of the two segments/elements of

the beam are

For element 1: § =0, & = 0.5, ¢; = 1.115022, ¢, = 0.902300, ¢3 = 1.437344, ¢, =

1.246787
For element2: §; = 0.5, & =1, ¢1 = 1.310192, ¢, = 0.292258, ¢35 = 2.185060, ¢4 =1

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

_ 5111EI

k= 4313 (524)

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.00420661120098 uL*
- El

A

(5.25a)

{p} =1 (5.25b)

w = 15.4182 /;% (5.25¢)

For the beam of Figure 5.1b (if rigidly fixed at the left side and pinned at the other)
the stiffness matrix and inertia matrix of the bar with respect to the coordinate of the

lumped mass are

2187El
k= 3
11L

(5.26a)
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m =yl (5.26h)

By substituting equations (5.3a) and (5.3b) into equation (5.2) and solving we obtain

_0.00251486053955 pL3

A El

(5.27a)

{p} =1 (5.27h)

w = 19.9408 /;% (5.27¢)

The stiffness modification factors of the two segments/elements of the beam cannot
be obtained with precision from Table 4.24 because there was no provision for &; =
1/3. The modification factors can however be obtained for any value of &; and &
using the attached matlab program in Appendix D. Using this matlab program
program the stiffness modification factors of the two segments/elements of the bar

were obtained as

For element 1: & = 0, & = 1/3, ¢; = 1.022661, ¢ = 1.015457, ¢ = 1.242908, ¢4 =

1.176598
For element2: & = 1/3, & = 1, ¢1 = 0.573564, ¢, = -0.312006, 3 = 7.004386, ¢; = 1

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

__ 118860132 El

k= (5.28)

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.00420662496832 p13
- El

A

(5.29)
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{p} =1 (5.29b)

,EI
w = 15.4182 na

These were repeated for the bars of Figures 5.1(c), 5.1(d), 5.1(e) and 5.1(f) and a

(5.29¢)

summary of the obtained natural frequencies presented in Table 5.4.

Table 5.4: Comparison of the obtained natural frequencies of different lump-massed

fixed-pinned beam under lateral vibration with the exact results.

Mode | Hamilton | Lagrange | Percentage | Lagrange | Percentage
No Error with Error
(Exact) | (H2) modified
(Hz) (%) stiffness (%)
(Hz)
Figure 5.1(a) |1 15.4182 |14.8131 [3.92 15.4182 |0
Figure 5.1 (b) | 1 15.4182 |19.9408 |-29.33 15.4182 |0
Figure 5.1 (c) | 1 15.4182 |15.3490 | 0.45 15.4182 |0
2 49.9648 | 45.6317 | 8.67 45.6569 8.62
Figure 5.1 (d) | 1 15.4182 |14.8844 |3.46 15.4182 |0
2 49.9648 | 47.0247 | 5.88 47.3280 5.28
Figure5.1(e) | 1 15.4182 15.4017 | 0.11 15.4182 0
2 49.9648 |49.0541 |1.82 43.3764 13.19
3 104.2477 | 91.5297 | 12.20 80.4687 22.81
Figure 5.1 (f) | 1 154182 |14.9382 |[3.11 15.4182 |0
2 49.9648 |49.4204 | 1.09 48.4931 2.95
3 104.2477 | 160.0251 | -53.50 114.7123 | -10.04

Table 5.3 shows the natural frequencies obtained by Hamilton’s principle, the
lagrange equations and the Lagrange equations with modified stiffness, it would be

observed that the natural frequencies obtained from the use of Lagrange equation on
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5.2.3

the continuous system had some measure of errors as seen from its comparison with
exact results (results from the use of Hamilton’s principle). However when the
stiffness of the system was modified using the stiffness modification factors, the use
of Lagrange equation was able to predict accurately the fundamental frequencies
hence their percentage errors were zero. The modification factors generally did not

improve the values of the higher frequencies hence they remained approximate.
Pinned-pinned beams

For the beam of Figure 5.1a (if both ends are pinned) the stiffness matrix and inertia

matrix of the bar with respect to the coordinate of the lumped mass are

_ 48EI

m =yl (5.30h)

By substituting equations (5.30a) and (5.30b) into equation (5.2) and solving we

obtain
1= 0.010416;16667 uL? (5.31a)
(¢} =1 (5.31b)

w = 9.7980 /;% (5.31¢)

From Table 4.30 the stiffness modification factors of the two segments/elements of

the beam are
For element 1: £, =0, & = 0.5, ¢1 = 1.014678, ¢, = 0.796187, ¢3 = 1.513519, ¢4 =1.0

For element2: & = 0.5, & = 1, & = 1.014678, &, = 0.796187, 3 = 1.513519, ¢, = 1.0
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By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

k = 48.704544 E1 (532)

L3

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.0102659825744 ul*
- El

1 (5.33a)

{p}=1 (5.33b)

w = 9.8696 /% (5.33¢)

For the beam of Figure 5.1b (if pinned at both ends) the stiffness matrix and inertia

matrix of the bar with respect to the coordinate of the lumped mass are

_ 60.75E1

k=20 (5.34a)

m =L (5.34b)

By substituting equations (5.3a) and (5.3b) into equation (5.2) and solving we obtain

_0.00823045267490 uL*
- El

A

(5.35a)

(¢} =1 (5.35b)

w = 11.0227 /;% (5.35¢)

The stiffness modification factors of the two segments/elements of the beam cannot

be obtained with precision from Table 4.30 because there was no provision for &; =
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1/3. The modification factors can however be obtained for any value of &; and &
using the attached matlab program in Appendix E. Using this matlab program
program the stiffness modification factors of the two segments/elements of the bar

were obtained as

For element 1: & =0, & = 1/3, ¢1 = 0.954445, ¢, = 0.940740, ¢3 = 1.108716, ¢4 = 1.0

For element2: & = 1/3, & = 1, ¢1 = 0.073842, &, = 1.365440, ¢3 = 2.933404, ¢4 = 1.0

By applying these stiffness modification factors, the modified stiffness matrix of the

beam with respect to the coordinate of the lumped mass becomes

__ 48.70449256158826 EI
= 3

K (5.36)

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

__0.01026599341668 A

2 = (5.37a)
(¢} =1 (5.37h)
w = 9.8696 \/% (5.37¢)

These were repeated for the bars of Figures (c), (d), (e) and (f) and a summary of the

obtained natural frequencies presented in Table 5.3.

Table 5.5: Comparism of the obtained natural frequencies of different lump-massed

pinned-pinned beam under lateral vibration with the exact results.

Mode | Hamilton | Lagrange | Percentage | Lagrange | Percentage
No Error with Error
(Bxact) | (Hz) modified
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(Hz) (%) stiffness (%)
(Hz)

Figure 5.1(a) |1 9.8696 9.7980 0.73 9.8696 0
Figure 5.1 (b) | 1 9.8696 11.0227 | -11.68 9.8696 0
Figure5.1(c) | 1 9.8696 9.8590 0.11 9.8696 0

2 39.4784 |38.1838 |3.28 38.9967 | 15.99
Figure 5.1 (d) | 1 9.8696 9.7308 141 9.8696 0

2 39.4784 | 419185 |-6.18 41.1390 9.02
Figure5.1(e) | 1 9.8696 9.8666 0.03 9.8696 0

2 39.4784 |39.1918 |0.73 38.1782 4.26

3 88.8264 | 83.2128 |6.32 80.0893 | 20.17
Figure5.1(f) | 1 9.8696 9.6076 2.65 9.8696 0

2 39.4784 |40.8248 |-3.41 39.5599 8.73

3 88.8264 | 109.7147 | -23.52 104.1448 | 3.30

From Table 5.3, it would be observed that the natural frequencies obtained from the
use of Lagrange equation on the continuous system had some measure of errors as
seen from its comparison with exact results. However when the stiffness of the system
was modified using the stiffness modification factors, the use of Lagrange equation
was able to predict accurately the fundamental frequencies hence their percentage

errors were zero.

5.2.4 Fixed-free beam

For the beam of Figure 5.2a the stiffness matrix and inertia matrix of the beam with

respect to the coordinate of the lumped mass are

_3EI
=

K (5.38a)

mzl,uL

) (5.38b)
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By substituting equations (5.38a) and (5.38b) into equation (5.2) and solving we

obtain

_ uid
A= (5.39a)
{p} =1 (5.39h)

w = 2.4495 /% (5.39¢)

From Table 4.36 the stiffness modification factors of the element of the bar are

E1=0,&=1.0, ¢, = 1.398163, ¢, = 1.283053, ¢s = 1.566491, ¢4 = 1.374932

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

__ 6.18117650627788 EI
= 3

k

(5.40)

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are

_0.08089074943778 pL*
- EI

A

(5.41a)
{p} =1 (5.41b)

w = 3.5160 /% (5.41c)

For the beam of Figure 5.2b the stiffness matrix and inertia matrix of the beam with

respect to the coordinate of the lumped mass are
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109.714285714  —34.2857142857]EL

k= [—34.2857142857 13.714285714 113 (5.42a)
_[05 0
= oslet (5.42b)

By substituting equations (5.10a) and (5.10b) into equation (5.2) and solving we

obtain

__0.003783237003 ulL? __0.100383429664 ulL*

A, = = A = = (5.433)
_ (—0.836633177 _ (—0.3111155645

{¢2} = {0.5477635685}’{¢1} - { —0.950372088 } (5.430)

w, = 16.2580 % w; = 3.1562 /ﬂ% . (5.43¢)

The stiffness modification factors of the two segments/elements of the bar can be

obtained from Table 4.36 as

For element 1: § = 0, & = 0.5, ¢; = 2.215575, ¢, = 2.408901, ¢3 = 1.256395, ¢4 =

1.200465

For element2: & = 0.5, & = 1, ¢, = 1.016428, ¢, = 1.005840, ¢3 = 1.014903, ¢4 =

1.009464

By applying these stiffness modification factors, the modified stiffness matrix of the

bar with respect to the coordinate of the lumped mass becomes

150.180625308 —488.912284903] k!

- 44
—488.912284903 196.90304822991 L3 (5.44)

|

By using this modified stiffness on equation (5.2) the new values of A, natural

frequency and mode shape obtained are
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_0.0808910725 puL* 0.00272657745 uL*

Al = £l ,/12 = £l (545&)
_ (—0.32149839252 _ (—0.827292804247
(b} = {—0.94691012436}'{¢2} B { 0.561770964042 } (5.45b)
El EIl
w; = 3.5160 /m , w, = 19.1510 /m (5.45c)

These were repeated for the bars of Figures 5.2(c),5.2 (d), 5.2(e) and 5.2(f) and a

summary of the obtained natural frequencies presented in Table 5.2

Table 5.6: Comparism of the obtained natural frequencies of different lump-massed

fixed-free beam under lateral vibration with the exact results.

Mode | Hamilton | Lagrange | Percentage | Lagrange | Percentage
No Error with Error
(Exact) | (Hz) modified
(H2) (%) stiffness (%)
(Hz)
Figure5.2(a) |1 3.5160 2.4495 30.33 3.5160 0
Figure 5.2 (b) | 1 3.5160 3.1562 10.23 3.5160 0
2 22.0345 |16.2580 | 26.22 19.1510 13.09
Figure5.2(c) |1 3.5160 3.1241 11.15 3.5159 0
2 22.0345 | 20.0833 | 8.86 20.5869 6.57
Figure 5.2 (d) | 1 3.5160 3.3457 4.84 3.5159 0
2 22.0345 |18.8859 |14.29 18.2887 17.00
3 61.6972 | 47.0284 | 23.78 43.1194 30.11
Figure5.2(e) | 1 3.5160 3.2374 7.92 3.5160 0
2 22.0345 | 16.8688 | 23.44 18.1657 17.56
3 61.6972 | 69.7577 | -13.06 76.6552 -24.24

From Table 5.2 followed the same pattern as the ones before it. The natural

frequencies obtained from the use of Lagrange equation on the continuous system
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were not exact as seen in the percentage error column. But when the stiffness of the
system was modified using the stiffness modification factors, the use of Lagrange
equation was able to predict accurately the fundamental frequencies hence their
percentage errors were zero. However the values of the higher frequencies remained
approximate, some of its predictions for higher frequencies where less accurate than

that obtained without the application of the stiffness modification factors.

Systems under both longitudinal and lateral vibration

So far we have considered systems under either longitudinal or lateral vibration. But
systems can be under both longitudinal and lateral vibration simultaneously. From the
model for longitudinal vibration and that for lateral vibration, the stiffness equation

for an element under both longitudinal and lateral vibration can be written as

_ %al 0 0 —%az 0 0
1261 6EI 12E1 6EI
0 —=b ¢ 0 ——3 %3 7 Pa
6E1 4E1 6E1 2E1
0 =% T 0 — 2% T P3
(k] =] ¢4 £A (5.46)
—Taz 0 0 T(Xl 0 0
12E1 6E1 12E1 6E1
0 —3 93 —jzPs O L ENTAL
6EI 2E1 6E1 4E1
0 —z Pa - ¢3 0 — Q=P b1

The values of the stiffness modification factors can be picked from the relevant
Tables depending on the element position on the vibrating system and the system’s
end conditions. Consider the beam of Figure 5.1a with both ends fixed for the case of
both longitudinal and lateral vibration occurring simultaneously. The lumped mass
will then have two coordinates of vibration. Let the first coordinate (coordinate 1) be

for the vertical vibration and coordinate 2 for the horizontal vibration, then the
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stiffness matrix of the system with respect to these coordinate 1 and 2 can be written

as
4
_ K1 K2l _ |1
K_[Km Kzz]_ 0 % (5:47)

Recall that kj; is the force in coordinate i due to a unit deformation in coordinate j.
The inertia matrix can likewise be written as

[0.5 0

2 5] ul (5.48)

By substituting equations (5.47) and (5.48) into the eigenvalue problems of equation

(5.2) and solving for the natural frequencies we obtain
w, = 2.8284 (5.49a)
w, = 19.5959 (5.49b)

Notice that w; correspond to the natural frequency obtained for the case of the beam
under only longitudinal vibration only (equation (5.4c)) and w; correspond to the case
of the beam under only lateral vibration (equation (5.15c)). These values were not
altered despite the fact that we considered both lateral and longitudinal vibration to be

occurring simultaneously. We now introduce the stiffness modification factors
For the first element

a; = 1.233701,a, = 1.859611 (from Table 4.7)

¢, = 1.303552, ¢, = 0.663259, 3 = 1.731522, ¢, = 1.293649 (from Table 4.18)

These same values of stiffness modification factors apply for the second element.
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After introducing the stiffness modification factors the new stiffness of the beam with

respect to coordinates 1 and 2 becomes

4934804 EA

0
L
K= 0 250.281984 EI (5.50)
L3

The inertia matrix will remain unchanged. By substituting equations (5.50) and (5.48)

into the eigenvalue problems of equation (5.2) and solving for the natural frequencies

we obtain
w; = 3.1416 (5.51a)
w, = 22.3733 (5.51b)

Notice that w; is the exact fundamental frequency for the longitudinal vibration of
fixed-fixed beam (see Table 5.1) and w, is the exact value of the fundamental
frequency for the lateral vibration of the fixed-fixed beam (see Table 5.3). Hence the
modification factors though derived for cases of only longitudinal and lateral
vibration occurring separately, can be applied when both type of vibration occur

simultaneously. This can be extended to systems with more degrees of freedom.

Frames

The stiffness modification factors can be extended to frames. This is done by using
fixed-free to represent elements fixed at one end and which are capable of undergoing
rotation and translation at the other end. Pinned-free for elements pinned at one end
and which are capable of undergoing rotation and translation at the other end. Free-
free for elements capable of undergoing rotation and translation at both ends. For the

free-free beam, the value of the nodal forces at their ends is zero. The value of the
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nodal forces for a fixed-free beam is also zero at the free end. With this arrangement
elements are connected to each other at their free ends where their nodal forces P are
zero. Recall that the stiffness coefficients were derived by equating the nodal forces
and displacements of a vibrating beam with that of an equivalent lumped massed
beam. To achieve equality of displacement for two dissimilar beams at their
connecting ends the modification factors for one of the connecting members need to
be multiplied by a constant. These were determined by trial and error. When
connecting a fixed free beam with a free-free beam divide the stiffness modification
factor of the fixed-free beam with the ratio of the length of the free-free beam to the
fixed free beam. Likewise when connecting a pinned-free beam with a free-free beam,

multiply the stiffness modification factors of the free-free beam by 1.7885.

Consider the portal frame of Figure 5.3a

El, El,
A A
L, El, El Lo Ely El,
74 777777 7777717 74 8 3
L Ly L L Ly L
7 7 A 7
b
@ (b)

Figure 5.3: Portal frames constructed of prismatic

elements.
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In order to use the proposed model in frames it might the necessary to present it in the
form of a Table of end forces due to unit deformation of prismatic members. This

information is presented in Table 5.7.

Table 5.7: End forces caused by end displacement of lumped-massed elements

showing the stiffness modification factors.

S/No | Beam Force
1
M M. 12E1 12E1
1 3
Fl = L3 ) FZ = L3
J]d=1
_ 6El¢, oy, _ SEIs
F, L le 1= 2 27 2
]
2
Mo 12El s 12E1p,
Ml Fl = L3 ) FZ = L3
:é } d=1
2:)—/ 6Eld, 6Elp,
< F M=—T— M=
I ! L Fa
‘ 1
3
M, M, 6El ¢, 6El¢,
Q’% (é>‘ = L 2= 12
AEI, 2El ¢,
My=—— M=
F
1 L Fz
! v
4
M
! M, 6EI ¢, 6EI¢,
> Fl ) - FZ - 12
2E1 s 4EIp,
I \ Ml i L ’ MZ i L
F
1 L Fz
1
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5
3EI, 3Elps
1= I3 F, = I3
3El,
1= LZ
6
M _ 3El¢, _ 3El¢
<A d=1 1 R 2 13
3El,
= = 1
F, 1 2’ ¢4—
L F,
3 1
.
3El¢, 3EI,
<Al T Fo=—"
j— , — 1
TFl L [Fz ' L b
1 v

5.4.1 Comparison of Results with that from Standard Books (Structural Engineering
Handbook)

The portal frames of figure 5.4 have three degrees of freedom (ignoring axial

deformation). These are illustrated in Figure 5.4.
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Figure 5.4: The three degrees of freedom of a planar
portal frame.

Using the values of Table 5.7, the stiffness matrix of the portal frame of figure 5.4 can
be formulated as

Kll Klz K13
K=|Ky Ky K (5.52)
K31 Kz Ksz3
Ky = 2oy 2t (5.53a)
Kip = 202 (5.53)
Kiz = =% (5.53¢)
Kyp = T2 4 L0 (5.53d)
Kog = = (5.53¢)
gy = 2t (5.53f)
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From Maxwell’s Reciprocal theorem or Betti’s law (Das et al, 2011; Numayr and Al
Rjoub, 2012) Kj; = Kji hence Kiz = Ka1, K31 = Ky etc. ¢;; is ¢; for element j. Element

1 is treated as a fixed-free beam why element 2 is treated as a free-free beam.

Using the matrix transformation introduced in section 2.6.2 the stiffness with respect
to coordinate 3 is obtained and together with the structure’s inertia matrix the frame’s

natural frequency is obtained.

A comparison of the result obtained from the use of the stiffness modification factors

with that obtained from structural engineering handbooks is presented in Table 5.8

Table 5.8: A Comparison of the Estimated Fundamental frequencies for the fixed

portal frame with that from standards

Structural Using Stiffness
Without Using Stiffness
Engineering Modification factors
La/Ly Modification factors
Handbook (SMFs)

(Hz) Frequency | % Error Frequency | % Error

8 0.5606 0.9912 76.8 0.5693 1.6

4 1.0773 14771 37.1 1.0801 0.3

2 2.0295 2.1381 5.4 1.9719 2.8
1 3.5564 2.8983 -18.5 3.4155 -4.0

0.8 3.9267 3.1393 -20.1 4.0252 2.5
04 4.2779 3.7995 -11.2 6.4547 50.9
0.2 4.4293 4.2703 -3.6 9.8597 122.6
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From the Table 5.8 it would be seen that the error in the analysis of the rigidly fixed
portal frame with lumped masses is high at high values of the ratio of the portal’s
length to the height (L./L;). The error gradually reduces with increase in the ratio
L,/L;. By using the stiffness modification factor the error is found to be minimal at
high values of the ratio L,/L; and remained consistently low for values 8>L,/L;>0.8

before increasing sharply. These are better observed from Figure 5.5

140 T T T T T T T
—&&— Lagrange
—— Lagrange with SMFs

120

100

80

% Error

60

40

20

L2711

Figure 5.5: Percentage error in natural frequency against the portal’s

length to height ratio

Figure 5.5 above is a plot of the % error in estimated values of fundamental frequency
against the portal’s length to height ratio. From the graphs it would be observed that
the curve for the percentage error from the use of Lagrange equations was generally

high. By introducing the stiffness modification factors the percentage error became
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very low if not insignificant. However for L,/L; values less than 0.8, the error from
the use of the stiffness modification become very high and much higher than the error
incurred when the stiffness modification was not used. This shows that the stiffness
modification factors are not suitable in rigidly fixed portal frames of L,/L; values less

than 0.8. This can be extended to the hinged portal frame.

The contribution of the stiffness modification factors can also be appreciated from a
statistical analysis of the results obtained from standard Tables, lumped mass without
SMF and lumped mass with SMF. An F test was carried out on the results from
Standard Tables and that from lumped-mass fixed portal frame without SMF using

Microsoft excel software and the results are presented below

Table 5.9: F-test Analysis of the results from standard Tables and that of rigidly fixed

lumped mass portal frame without SMF

For rigidly fixed portal frame F-Test Two-Sample for Variances
L2/L1 Standard without SMF

= N b

0.8
0.4
0.2

Variable  Variable

0.5606 0.9912 1 2
1.0773 1.4771 Mean 2.836814 2.6734
2.0295 2.1381 Variance 2.541199 1.438885
3.5564 2.8983 Observations 7 7
3.9267 3.1393 df 6 6
4.2779 3.7995 F 1.766089
4.4293 4.2703 P(F<=f) one-tail 0.253324

F Critical one-

tail 4.283866

From the results of the F test it would be seen that F is less than Fcritical; 1.766 <
4.284. We therefore reject the null hypothesis which states that the variance of the

results from standard Tables is equal to that from lumped mass frame with SMF. The
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results can also be obtained from the p-value which is greater than 0.05. These show
that there is significant different between the results obtained by the standard Tables
and that for lumped mass without SMF. By introducing the stiffness modification

factors (SMF) and repeating the F-test the results below are obtained

Table 5.10: F-test Analysis of the results from standard Tables and that of rigidly

fixed lumped mass portal frame with SMF

For rigidly fixed portal frame F-Test Two-Sample for Variances
L2/L1  with SMF Standard
Variable  Variable
8 0.5693 0.5606 1 2
4 1.0801 1.0773 Mean 3.910914 2.836814
2 1.9719 2.0295 Variance 10.84284 2.541199
1 3.4155 3.5564 Observations 7 7
0.8 4.0252 3.9267 df 6 6
0.4 6.4547 4.2779 F 4.266823
0.2 9.8597 4.4293 P(F<=f) one-tail 0.050434
F Critical one-
tail 4.283866

From this result of Table 5.10 it would be seen also that F<Fcritical and so we reject
the null hypothesis that states that the variance of the results from standard Tables and
that from lumped mass with SMF are equal. This might sound like there was no
benefit from the use of the SMF. But before we rule out the benefit of using the SMF
it is important to note that F is only slightly lower than Fcritical unlike in Table 5.9
where the difference was much. This is further buttressed by the p-value which is
0.0504 (approximately 0.05). With these we can conclude that the use of SMF did

improve the result of the analysis to almost a significant level.
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Using the values of Table 5.7, the stiffness matrix of the portal frame of figure 5.3b
can be formulated as

Ki1 Kz Kis
K =|Kx Kz K3 (5.54)
K31 Ksp Kss
Kiy = 2R 4 220 (5.55a)
Ky = 2202 (5.55b)
Ky = 2200 (5.55¢)
Ky = 20z | 3Py (5.550)
Koy = 0t (5.55€)
Ky = 2><3li1%1¢11 (5.55f)

Kij = Kji (Maxwell’s theorem) hence Kip = Ka;, K31 = Ky etc. ¢;; is ¢; for element j.
Element 1 is treated as a pinned-free beam why element 2 is treated as a free-free

beam.

By applying the matrix transformation introduced in section 2.6.2 the stiffness with
respect to coordinate 3 is obtained and together with the structure’s inertia matrix the

frame’s natural frequency is obtained.

A comparism of the result obtained from the use of the stiffness modification factors

with that obtained from structural engineering handbooks is presented in Table 5.11
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Table 5.11: A Comparism of the Estimated Fundamental frequencies for the hinged

portal frame with that from standards

Structural Using Stiffness
Without Using Stiffness
Engineering Modification factors
La/Ly Modification factors
Handbook (SMFs)
(Hz) Frequency | % Error Frequency | % Error
8 0.5525 0.3651 -33.9 0.5430 -1.7
4 1.0540 0.6325 -40.0 1.0248 -2.8
2 1.9633 1.000 -49.1 1.8513 -5.7
1 3.1416 1.4142 -55.0 3.1416 0
0.8 3.2864 1.5430 -53.0 3.6658 11.54
0.4 3.4845 1.8898 -45.8 5.6090 60.97
0.2 3.6240 2.1320 -41.2 7.8905 117.7

From the Table above it would be seen that the error in the analysis of hinged portal
frames with lumped masses is very high at all values of the ratio of the portal’s length
to the height (L,/L;). The error does not show any remarkable increase or decrease
with increase in the ratio L,/L;. By using the stiffness modification factor the error is

found to be minimal at high values of the ratio L,/L;
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Figure 5.6: Percentage error in natural frequency against the portal’s breadth

to height ratio for the hinged portal frame

Figure 5.6 is a plot of the absolute % error in estimated values of fundamental
frequency against the portal’s breadth to height ratio. The graph shows that the
percentage error from the use of Lagrange equations for hinged portal frame was
generally high. By introducing the stiffness modification factors the percentage error
was significantly reduced. However as observed in the case of fixed portal frame, for
L,/L; values less than 0.8, the error from the use of the stiffness modification become
very high, and much higher than the error incurred when the stiffness modification
was not used. This shows that the stiffness modification factors are not suitable in

portal frames of L,/L; values less than 0.8.
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Likewise statistical analyses were carried out to compare the results from the use of
standard Tables and that from lumped mass frame. The first was an F-test to compare
the results from the use of standard tables and that for lumped mass frames without

SMF and the results are presented below

Table 5.12: F-test Analysis of the results from standard tables and that of hinged

lumped mass portal frame without SMF

For hinged portal frame F-Test Two-Sample for Variances
L2/L1 Standard Without SMF
Variable  Variable
8 0.5525 0.3651 1 2
4 1.054 0.6325 Mean 2.443757 1.282371
2 1.9633 1 Variance 1.568711 0.419933
1 3.1416 1.4142 Observations 7 7
0.8 3.2864 1.543 df 6 6
0.4 3.4845 1.8898 F 3.735624
0.2 3.624 2.132 P(F<=f) one-tail 0.066855
F Critical one-
tail 4.283866
From the result it would be seen that F is less than the Fcritical (3.736<4.284) we
therefore reject the null hypothesis that states that the variance of the two results are
equal. This is further stressed by the p-value which is more than 0.05. By introducing
the SMFs we obtained an improved result which is presented below
Table 5.13: F-test Analysis of the results from standard tables and that of hinged
lumped mass portal frame with SMF
For hinged portal frame F-Test Two-Sample for Variances
L2/L1  With SMF Standard
Variable  Variable
8 0.543 0.5525 1 2
4 1.0248 1.054 Mean 3.389429 2.443757
2 1.8513 1.9633 Variance 6.897234 1.568711
1 3.1416 3.1416 Observations 7 7
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0.8
0.4
0.2

54.2

3.6658 3.2864 df 6 6

5.609 3.4845 F 4.396752
7.8905 3.624 P(F<=f) one-tail 0.047249
F Critical one-
tail 4.283866

From the results it would be observed that F>Fcritical. Hence we uphold the null
hypothesis which states that the variance of the results from standard Tables and that
from lumped mass with SMFs are equal. This is further validated by the p-value of
0.0472 which is less than 0.05. The results show that the use of the SMF was able
reduce the seemly significant difference between the results from use of standard

tables and that from lumped mass frames.

Comparison of Results with Experimental and Professional Software Results

Supreeth et al (2015) carried out experimental studies on a three-storied aluminum
frame consisting of columns and slabs. The section of the column was rectangular and
measured 3 mm by 25.11 mm. There were four columns. The length of the slab was
300 mm and its width was 150 mm. The slab thickness was 12.7 mm. These slabs
were attached to the column at intervals of 400 mm. Using MILDAQ Data
Acquisition, accelerometers and a horizontal shake Table, the natural frequencies of
vibration of the frame was obtained. They also modeled and analysed the same frame
with ANSYS version 11 using SOLID187 elements (a higher order 3D, 10 node

element) to obtain the frame’s natural frequencies.

By modeling the frame as a 9-degree of freedom undamped lumped mass system (see

Figure 5.7) we can determine the natural frequencies of the frame with and without

the stiffness modification factors.
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frame

Using the values of Table 5.7, the stiffness matrix of the portal frame of figure 5.3b
can be formulated as

K =|Ks1 Ks; Ks3 Kss Kss Ksg Ks7 Ksg Ksg (5.56)

4El1¢p11 | 4EDR¢12
Kll = +

h L




Ky, = 2E12¢31 , Ky = 6EI}:;P41 , Ky = 4E1;l¢11 n 4E12¢12

Kys = —6E}2¢21 Kye = 2E1;1¢>21 , Ky 6E1hlg>41

Ky = 24E}1ng¢>11 Kay = %;dm, Ky = 6E]2¢21 , Ky = —24i131¢>31

Ky, = 4E12¢11 + 4E12¢13 + 4Eli¢12 Kys 2Eli¢32 Ky = 6EI;;1)21 6EI;;¢)23
K47 — % K49 — 6E13¢43 K55 — 4—E12¢11 + 4—512(1)13 + 4E12L¢12

Ksg = 651221721 _ 6E1}2;ﬁ23 Keg = 2E12¢33 Kso = 6151;#

Ko = 24E}1113¢11 4 24E233¢13 Ky = %,K@ _ —6E:;¢43 Keo = —6E}g¢33
Ky, = 4E12¢13 + 4-E12¢14 + 4-Eli¢12 K 2Eli¢32 Kyq = 6EI};;;;7.')23 _ 6EI;:;7,’)24

__4ER3p13 | 4Elsp1a | AEL P12 6EI3¢23  6El4¢s
Keg = o TR T K79 = h2 h2

24EI3¢13 24El4d1a

K99 = h3 PE

(5.57)

From Maxwell’s theorem Kj; = Kj; hence Ky, = Ky, K31 = Kys etc. The other stiffness
coefficients not listed in equation (5.57) are equal to zero. ¢;; is ¢; for element j.
Element 4,3 and 1 are treated as segments of a fixed-free beam why element 2 is

treated as a free-free beam.

From Table 4.36 or using the attached program the stiffness modification factors for

the elements of the multistory frame can be obtained as
For element 1: ¢; = 1.070403, ¢, = 1.068451, ¢; = 1.070402, ¢, = 1.070223

Forelement 2: ¢; = 1.0, ¢, = 1.0, ¢35 = 1.0, ¢p, = 1.0
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For element 3: ¢; = 1.026731, ¢, = 1.025416, ¢3 = 1.026564, ¢, = 1.025759

For element 4: ¢; = 0.980749, ¢, = 0.975733, ¢; = 1.002985, ¢, = 1.002269

The frame’s inertia matrix M is

‘Lllh + [lzL 0 0
0 0 Zﬂlh + ‘leL_
1.705762 0 0
= [ 0 1.868474 0 (5.58)
0 0 1.8684741

where Yy and [, are the mass per unit length of the columns and beams respectively.
They can be calculated knowing that the young’s modulus and density of aluminum

are 6.9 x 10° Pa and 2700 kg/m® respectively.

By applying the matrix transformation introduced in section 2.6.2 the stiffness with
respect to coordinates 3, 6 and 9 is obtained and together with the structure’s inertia
matrix obtained by lumping all masses at the respective joints (see equation 5.58) the
frame’s natural frequencies are obtained. In order to express the frequency in hertz the
obtained values are divided by 2n. These were also done without applying the
stiffness modification factors (i.e by making all the stiffness modification factors
equal to one) and the results compared with the Supreeth et al’s experimental and

ANSYS results. Table 5.14 is a summary of the results obtained.
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Table 5.14: Results of the Analysis of the three-story frame

Mode Experimental ANSYS Lumped mass without Lumped mass with
SMF SMF
o (Hz)
o(Hz) % Error o(Hz) % Error o(Hz) % Error
1 3.0 3.0473 1.577 3.3359 11.197 2.9738 0.873
2 8.30 8.6142 3.786 8.5441 3.065 6.8970 16.904
3 12.15 12.566 3.424 9.6557 20.529 8.1468 32.948

The results presented in Table 5.14 show that ANSYS was able to predict the natural

frequencies to accuracy less than 3.5%. By lumping the masses at the frame’s joints

and solving we were able to estimate the fundamental frequency of the as 3.34Hz and

with an error of 11.2%. This error was reduced to 0.873% by the introduction of the

stiffness modification factors. The percentage errors were calculated with respect to

the values of natural frequency obtained by experimental studies. The use of the

stiffness modification factors did not improve the accuracy of the frequencies of the

higher modes of vibration.
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Figure 5.8: Percentage Error for the different modes of vibration

There were further illustrated by Figure 5.7. From the bar chart we observe that the
use of lumped mass with stiffness modification factors gave the least percentage error
of 0.87% for mode 1 (fundamental frequency). However for the higher modes of
vibration (modes two and three), there was no improvement in the results from the use
of the stiffness modification factors. In fact the use of the stiffness modification
factors for the higher modes of vibration increased the margin of errors in the
calculated results. Hence in calculating the frequency of frames for higher modes of

vibration it is not advisable to use the stiffness modification factors.

We now extend the use of the stiffness modification factors to the dynamic analysis of
frames including axial effects. Virgin and Lyman (2011) considered the free vibration
of a plane rectangular portal frame consisting of very slender members to determine
how the natural frequency of frames is influenced by the addition of masses at the
corners of the frame. The experimental set up consisted of a simple portal frame
composed of polycarbonate beams of cross-sectional dimensions 2.554 x 0.154 cm
and density 1157 kg/m3. The bottom supports of the column were clamped. The

columns measured L; = 15.24 cm in length and the cross beam was L, = 45.72 cm.

T P(D El, OP

L;=15.24cm
' El, El,
7£ 777777 777777
L L,=45.72cm L
7 71

Figure 5.9: Virgin and Lyman ‘s experimental set up

(Virgin and Lyman (2011))
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Modal data were taken using an Ometron VH300+ laser doppler vibrometer and an
Endevco 2302-50 modal impact hammer. The data were recorded with a pulse data
acquisition software. They also ran simulations of the frame using the commercial
finite element software package ANSYS, first without considering beam column
effect (effect of axial load on the geometric stiffness of axially loaded elements) and

later by considering beam-column effect.

Using the portal frame of Figure 5.3, the stiffness matrix can be formulated as

Kii Ki; Kz
K =|Ky1 Ky K (5.59)
K31 K3z Kz

The effect of axial force on the stiffness of beam can be captured by the inclusion of
stability functions in the matrix of equation (5.59). The stiffness modification factors
will still be represented with @ while the @ functions will be represented with . (see

Table Al in Appendix A for a list of the stability functions).

Ky = =y Bt (5.60aa)
Kip = 202 (5.60h)
Kys = % (5.60c)
e e (5.600)
Ky = % (5.60€)
e (5.60)
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From Betti’s law Kjj = Kji hence Kyz = Ky, Ks; = Kyz etc. bij is ¢; for element j while
Yj; is; for element J. ¥;; is equal to unity when beam column effects is ignored.
Element 1 as before is treated as a fixed-free beam why element 2 is treated as a free-
free beam. For element 1 the value of the stability functions from Table A (in the

appendices), is given as

z2(1—cos z)

Y = (5.61a)

- 6(2—2cos z—zsin z)

l/)3 __ z(sin z—zcos z) (561b)

- 4(2—2cos z—zsin z)

2

Where z = % (5.62)

P is the axial force on the vertical column of length L, El; is the flexural rigidity of

the column.

By applying the matrix transformation introduced in section 2.6.2 the stiffness with
respect to coordinate 3 is obtained and together with the structure’s inertia matrix the

frame’s natural frequency is obtained.

A comparism of the result obtained from experiment with that from ANSYS and
lumped mass with and without stiffness modification factors are presented in the

Table 5.15.
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Table 5.15: Results of the Analysis of the loaded portal frame without any

consideration for beam-column effects

Axial Lumped mass Lumped mass
Experiment ANSYS

Load without SMF with SMF
(k)

o(Hz) o(Hz) % Error o(Hz) %Error o(Hz) %Error
0.05 3.80 3.90 2.63 5.82 53.16 4.09 7.63
0.10 2.60 2.78 6.92 4.35 67.31 3.02 16.15
0.15 1.92 2.25 17.18 3.63 89.06 2.50 30.20
0.20 1.51 1.92 27.15 3.18 | 110.60| 2.18 44.37
0.25 1.25 1.80 44.00 2.86 |128.80| 1.96 56.80
0.30 1.01 1.62 60.40 2.62 |15941| 1.80 78.22
0.35 0.78 1.50 92.31 244 | 21282 | 1.67 | 114.10

Table 5.15 shows the experimental results of the loaded portal frame together with the
results of an ANSYS simulation of the model and that of a lumped mass model of the
frame with and without stiffness modification factor. The results show a steady
decrease in the fundamental frequency of the frame with increase in nodal mass/load.
At lower nodal loads the difference in estimated fundamental between the
experimental and that from ANSYS and lumped mass is lower. These increased
progressively as the nodal load was increased due to beam column effects. The use of
stiffness modification factors reduced significantly the errors in estimated
fundamental frequencies. For instance at a nodal mass of 0.05 kg, the percentage error
without stiffness modification was 53.16%. This was reduced to 7.63% with the use
of stiffness modification factor. This however is higher than 2.63% obtained from the

use of ANSYS. These are better observed graphically.
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Figure 5.10: Fundamental frequency against the nodal load on frame without consideration

for beam column effects

Figure 5.10 shows a graph of the fundamental frequency against the nodal loads on
the frame. From the graph it would be observed that the fundamental frequencies
obtained from experiment, using ANSYS, using lumped mass (without SMF) and
using lumped mass (with SMF) all exhibit the same trend. The value obtained by
experiment was the lowest followed by that from ANSYS and then the results from
Lumped mass with SMF but finally the results from lumped mass without SMF. The
stiffness modification factors (SMF) had the effect of shifting the curve for lumped

mass downwards hence improving its accuracy.
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Figure 5.11: Percentage error in natural frequency against the nodal load on frame without

consideration for beam column effects

This is better illustrated by Figure 5.11. From the figure it would be seen that the use of
ANSYS recorded the least error for all the value of axial load. This was followed by the
results from the use of lumped mass with stiffness modification factors. However at very low

values of axial load the prediction from use of lumped mass with SMF and that of ANSYS are

very close.

These observations were further buttressed by a statistical analysis of the results from

experiment and that from lumped mass frame. Table 5.16 is the output of a t-test carried out

on the results.
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For rigidly fixed portal frame

Axial
load

0.05
0.1

0.15
0.2

0.25
0.3
0.35

Table 5.16: Results of a t-test on the results of experimental studies and that of lumped mass

without SMF

withoutSMF Experiment

5.82
4.35
3.63
3.18

2.86
2.62
2.44

3.8
2.6
1.92
1.51

1.25
1.01
0.78

t-Test: Two-Sample Assuming Unequal Variances

Variable  Variable
1 2

Mean
Variance
Observations

Hypothesized Mean
Difference

df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

3.557143 1.838571
1.418157 1.115848
7 7

0

12
2.85636
0.007226
1.782288
0.014451
2.178813

From the results it is seen that t stat is greater than t-critical hence we reject the null

hypothesis which states that the mean of the two results are equal. This conclusion can also be

drawn from the P-value which is 0.014 and so less than 0.05. Hence we can state that the

experimental results differ significantly from the results obtained from the use of lumped

mass without stiffness modification factors.

By introducing the stiffness modification factors and then comparing the results obtained with

that from experimental studies we obtained the result shown in Table 5.17.
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Table 5.17: Results of a t-test on the results of experimental studies and that of lumped mass

with SMF

For rigidly fixed portal frame
Axial

load Experiment withSMF
0.05 3.8 4.09

0.1 2.6 3.02

0.15 1.92 2.5

0.2 1.51 2.18

0.25 1.25 1.96

0.3 1.01 1.8

0.35 0.78 1.67

t-Test: Two-Sample Assuming Unequal Variances

Variable  Variable
1 2

Mean 1.838571 2.46
Variance 1.115848 0.7267
Observations 7 7
Hypothesized Mean
Difference 0
df 11
t Stat -1.21124
P(T<=t) one-tail 0.125591
t Critical one-tail 1.795885
P(T<=t) two-tail 0.251182
t Critical two-tail 2.200985

From the results of Table 5.16 it would be seen that t stat is less than t-critical hence we do

not reject the null hypothesis. This means that the difference between the experimental results

and that of lumped mass with SMF is not significant. This shows that the use of SMF has

significantly improved the result of the analysis.

The error margin in the graph of Figure 5.11 was big because the effect of axial load on

geometric stiffness was not considered. By considering beam column effect in the

implementation of the calculations using ANSYS and that for lumped mass we generate a

new set of fundamental frequencies that are more accurate. These are presented in Table 5.17.
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Table 5.18: Results of the Analysis of the loaded portal frame with consideration for

beam-column effects

Axial Lumped mass Lumped mass
Experiment ANSYS

Load without SMF with SMF
(kg)

o(Hz) o(Hz) % Error | o(Hz) | %Error | o(Hz) | %Error
0.05 3.80 3.65 3.95 5.80 52.63 4.08 7.37
0.10 2.60 2.42 6.92 4.33 66.54 3.01 15.77
0.15 1.92 1.80 6.25 3.60 87.50 2.49 29.69
0.20 151 1.40 7.28 3.14 |10795| 217 43.71
0.25 1.25 1.23 1.60 2.82 | 12560 | 1.94 55.20
0.30 1.01 0.83 17.82 258 | 15545 | 1.78 76.24
0.35 0.78 0.67 14.10 239 |206.41| 164 |110.26

Unlike in Table 5.15, Table 5.18 contains the results of the analysis of the portal
frame with consideration for beam column effect. Since the frame has slender sections
the consideration of beam column effect reduced the error margin (with respect to
experimental results) slightly. For the case of lumped mass the use of stiffness
modification factors more than halved the error in calculated frequencies. By
considering beam column effect for the case of lumped mass with SMF the error
reduced slight from 7.63% to 7.37% for 0.05 kg axial load. The same trend was

observed for other values of axial load.
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Figure 5.12: Percentage error in natural frequency against the nodal load on frame with

consideration for beam column effects

From Figure 5.12 it would be observed that the percentage error in the results from
ANSYS was consistently low for all values of the axial load. The result from the use
of lumped mass with SMF was very low at low values of axial load but increased
progressively with increase in axial load. This shows that the SMF needs some
modification if it must be used for studies on bucking analysis. The same trend was
shown in the use of lumped mass without stiffness modification factors. As observed
earlier the use of the stiffness modification factors moved the error curve downwards

and so reduced the calculated error in a uniform way.

Just as was done earlier a t-test was also carried out on the results of the analysis, first
by comparing the experimental results with that of lumped mass without SMF and

then with that of lumped with SMF the results are presented in Table 5.19.
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Table 5.19: Results of a t-test on the results of experimental studies and that of lumped mass

without and with SMF

For rigidly fixed portal frame

Axial
load

0.05
0.1
0.15
0.2

0.25
0.3
0.35

withoutSMF

5.8
4.33
3.6
3.14

2.82
2.58
2.39

Experiment

3.8
2.6
1.92
1.51

1.25
1.01
0.78

For rigidly fixed portal frame

Axial
load

0.05
0.1
0.15
0.2

0.25
0.3
0.35

Experiment

3.8
2.6
1.92
151

1.25
1.01
0.78

withSMF

4.08
3.01
2.49
2.17

1.94
1.78
1.64

t-Test: Two-Sample Assuming Unequal Variances

Variable  Variable
1 2

Mean
Variance
Observations

Hypothesized Mean
Difference

df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-talil
t Critical two-tail

3.522857 1.838571
1.442624 1.115848
7 7

0

12
2.785958
0.008234
1.782288
0.016468
2.178813

t-Test: Two-Sample Assuming Unequal Variances

Variable  Variable
1 2

Mean
Variance

Observations
Hypothesized Mean
Difference

df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

1.838571 2.444286
1.115848 0.735895
7 7

0

12
-1.17768
0.130877
1.782288
0.261754
2.178813

From Table 5.19 it would be seen that when the experimental results were compared

with that of lumped mass without SMF that the t-stat > t-critical hence we reject the

null hypothesis that states that the means of the two data are equal. This shows that

there is significant difference between the results from experiment studies and that
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from the lumped mass portal frame. By using the SMF we generated improved results
which were also compared with experimental data. The result from Table 5.19
showed that in this case t-stat < t-critical, hence we do not reject the null hypothesis.
This means that the difference between the experimental results and that from the use
of lumped mass with SMF is not significant. Hence we conclude that the use of the

SMF significantly improved the results of the analysis.

Comparison of Results with that from Finite Element Analysis

a) Stiffness and mass matrices for an axial element
This is an element under longitudinal vibration. It can be taken as an element pinned

at both ends. By taking the two ends of the axial member to be displaced by u; and u,

and the normalized displacement at any point § = %assumed to be a straight line. The

normalized mode shapes are then

p1=1-¢ (5.63)
0, =¢ (5.64)
The expression for displacement u is the superposition of the two mode shapes
u=1-8uy +&u, (5.65)
The kinetic energy of the element can be written as

T_l

= 2 wPudx (5.66)

Where u is the mass per unit length of the element, dx = ld¢

w7 = f 1A= i + i ]ldg

1 (l.p 1. . 1.
= El“d (gu% + 3l +§u%) (5.67)
The generalized mass from the Lagrange’s equation can be obtained from % . %
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da oy _pul . .
dt " 9w =% (Zul + UZ)

da oy ol . .
EE =% (u1 + ZuZ) (568)

Which can be written in matrix form as

d oy _ 2 11[i
wa=5l ol (5.69)
From equation (5.69) the generalized mass is obtained as

I 51

This matrix can also be derived indirectly by substituting the shape functions ¢4 and
@, into the equations of kinetic energy and writing the equations for discrete
elements.

The strain energy of a prismatic axial element can be written as
2 !
U= [ dx =212 dx (5.71)

02EA 270

Where EA is the axial rigidity and u = Z—Z
U =512 4y
2 Y0
1 l roor
=22 X Uil Jy EAp;p;dx

1
= 521'2] w; Uk (5.72)

From equation (5.72) k;; in normalized coordinate is

EA (1 1
ki = Tfo Pip;dé (5.73)

By substituting equations (5.63) and (5.64) into (5.73) we obtain
EA (1 1 EA (1 EA
ki = Tfo P1p1dE = Tfo (-1?%d¢ = T
EA (1 + 1 EA (1 EA
ki == Jy 0102d§ == [{(-D)(D)d§ = ——

ky1 =kip = -
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EA 1 + EA (1 EA
koo =22 [} @hpzd =2 [ (Ddg =22 (5.74)

Put in matrix form

_ [k k12]_ﬂ 1 -1
K_[km kool 1 [—1 1] (5-73)

Equation (5.75) is the stiffness matrix of an axial element of length 1.

b) Stiffness and mass matrices for a beam element

We consider a planar structure in which each joint will have a lateral displacement
and a rotation thus each element will have four degrees of freedom.

Let the equation for deflection of the beam be a cubic polynomial expressed as
u=ay; +a&+asé? + a8 (5.76)
Where a; = constants and & = %

By differentiating equation (5.76) we get the slope
lu = a, + 2a3& + 3a,&? (5.77)
If we apply the boundary conditions ¢ = 0 and ¢ = 1 the boundary equations can be

expressed in matrix form as

Uy 1 0 0 01/

luy 01 0 0f)a

us (T (11 1 1])as (5.78)
luy 0 1 2 3i\a

By inverting the matrix of equation (16) we obtain

a; 1 0 0 0 51

a(_[o 1 0 o0f)u

az(=|-3 -2 3 -—1|)us (5.79)
ay 2 1 -2 31\l

From equation (5.79) we can obtain the values of the constants a; for each of the
displacements equated to unity with all others equal to zero. For example for u; =1

with all the other displacements equal to zero, the first column gives
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a,=1a,=0,a3=—-3and a, =2

Substituting these into equation (5.79) gives the shape function for the first
displacement u;. The other three shape functions are obtained in a similar manner and
in summary we have the following four beam shape functions

o1 =1- 3¢+ 283

¢y = I — 2087 +1¢°

@3 = 38* =283

04 = —1E% + 163 (5.80)

The displacement in general is a superposition of the four shape function and is
presented as

U= QUy + @Up + QP3Us + Paliy (5.81)

To determine the generalized mass equation (5.81) is substituted into the equation for

the kinetic energy
T = %faz pdx

:%ZiZj i [ @;p;udx

= %ZiZ]’ m; u; (5.82)
The generalized mass m;jwhich forms the elements of the mass matrix is equal to
my = [y @ip;udx = pl [, @i, dg (5.83)

1 1
myy = ul [ rp1dé=pl [ (1 — 38> +28%)*d¢

_39ul
~ 105

My, = ul [} @102dE= pl [ (1 — 382 + 263) (1§ — 218 + 1€3)d¢§

_ 11pl?
T 210

mys = pl [ @193dé=pl [ (1 — 382 +26%) (32 — 26%)d¢
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_27ul
T 210

Myg = pl ) @14dé=pl [/(1 — 362 + 283) (~1€2 + 1e3)d¢

_ —13ul?
T 420

Mgy = ul [ @0,d€= pl [ (1€ — 2162 + 1£3)2d¢

_ut
105

My = ul f) @203dE= ul f (1€ — 2162 + 163)(3¢2 — 26%)d¢

_ 13p12
T 420

Moy = ul [ @rpadé= pl [ (I€ — 2187 + 18%) (~1€2 + 1€3)d¢

_ —nt?
T 140

maz = ul [ pspsdé=pl [} (362 — 26%)7d¢

_39ul
" 105

My = Ul [ @204dE= pl [ (362 — 263)(~1€% + 16%)dE

_ —11ul?
T 210

Myq = il f| @4padg= pl f (~1€% + 163)2d¢

_u
~ 105

These give rise to the mass matrix

156 221 54 —13l

_ou | 221 4l? 131 -3I?
M=% 54 131 156 —22I (5.84)

—131 =312 =221 4[>

This matrix is called the consistent mass because it is based on the same beam

functions used for the stiffness matrix.
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When a beam element is pinned at one end there is need to modify this matrix as the
shape functions for such an element will no longer be the same. Because one end (the

far end) is pinned. The bending moment there is zero and the shape function ¢, = 0

Let the equation for deflection of the beam be a cubic polynomial expressed as
u=a; + a,& + as&? (5.85)
Where a; = constants and & = %

By differentiating equation (5.85) we get the slope

lu=ay+2a3¢ (5.86)

If we apply the boundary conditions ¢ = 0 and ¢ = 1 the boundary equations can be

expressed in matrix form as

Uq 1 0 0](%

{luz} = [0 1 0] {az} (5.87)
Uus 1 1 1llas

By inverting the matrix of equation (5.87) we obtain
aq 1 0 0](%™

{az} = [ 0 1 o] {luz] (5.88)
as -1 -1 11\u3

From equation (5.88) we can obtain the values of the constants a; for each of the
displacements equated to unity with all others equal to zero. For example for u; =1
with all the other displacements equal to zero, the first column gives

a;=1,a,=0, andaz = —1

Substituting these into equation (5.85) gives the shape function for the first
displacement u;. The other two shape functions are obtained in a similar manner and

in summary we have the following four beam shape functions

P =1-¢&
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P =18 — 157

@3 =¢&°

@, =0 (5.89)

The displacement in general is a superposition of the four shape functions and can be
presented as

U= QUy + QaUy + Q3Us + Qauly (5.90)
From equation (5.90) the generalized mass m;; which forms the elements of the mass

matrix is obtained as
l 1
my = [ pipsudx = pl [ @;¢;dé (5.91)

myy = pl f, prprd€=pl [ (1 - §2)2d¢

_ sul
T 15

myy = ul [ @19ydé=pl [ (1 — €)1 — 12)dE

_49ul?
210

mys = pl [ @1 @3dé=pl [ (1 — £2)(£2)d¢

__28ul
210

Myy = pl [ @14dé=pl [ (1 — £2)(0)d¢
=0
My, =l f prpode=pl [ (1€ — 1€2)2dE

_ 7ul3
210

M3 = pl f, prp3dé=pl [ (1€ — 1€2)(£)dE

My = ul [} @204dé=pl [ (1€ — 1) (0)d€
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=0

Mas = ul [ @33d= pl [} (§)2d€

My =l f| 9204d€= pl [ (£2)(0)d€

=0

May = il f, paadé=pl f, (0)2dg
=0
These give rise to the mass matrix
224 491 56 0

_ul |491 1412 211 0
=20 56 211 84 0 (5.92)

0 O 0 O

This matrix is also a consistent mass because it is based on the same beam functions

for the stiffness matrix.

c) Transformation matrices

In the finite element method the requirement for displacement compatibility is
simplified by resolving the element displacements and forces into common coordinate
system known as the global coordinate. In shorter notation we can write the
transformation equations form local to global coordinates as (Leet 2002)

r=Tr

F=TF (5.93)
Where T is the transformation matrix r, F and 7, F are the displacement and force in
the local and global coordinates respectively.

The transformation matrix for a beam element is given as
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[CSOOOO"

I—SCOOOOI

0 01 00 0
=10 00 ¢ s ol (5.94)
i000—sc0i

000 0 01

Where ¢ = cos a (the cosine of angle the element makes with the global x-axis), s =
sin a (the sine of angle the element makes with the global x-axis).

From equations (31) and the relationship between force and displacement it can be
shown that the stiffness matrix of an element in local coordinate k can be transformed
to the global coordinates by the equation

k=TTkT (5.95)
Where k is the element stiffness matrix in global coordinates, and T is the

transformation matrix.

d) Finite Element Analysis of a frame

Using the Matlab software a program for the implementation of the equations
developed above was written for the analysis of the portal frames of figure 5.3.
The calculated results were then compared with that from the use of Lagrange
equations with and without the use of stiffness modification factors. The results

are present in Tables 5.20 and 5.21.
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Table 5.20: A Comparison of the Estimated Fundamental frequencies for the fixed

portal frame with that from the finite element method

Using Stiffness
FEM of Without Using Stiffness
Modification factors

Lo/Ly same no of | Modification factors
elements (SMFs)
Frequency(Hz) | % Error Frequency(Hz) | % Error

8 |0.4855 0.9912 -104.16 0.5693 -17.26
4 11.2339 14771 -19.71 1.0801 12.46

2 | 2.6527 2.1381 19.40 1.9719 7.78

1 |4.8843 2.8983 40.66 3.4155 -0.1784
0.8 | 5.8092 3.1393 45.96 4.0252 -28.22
0.4 |9.2651 3.7995 58.99 6.4547 -69.88
0.2 | 13.0333 4.2703 67.24 9.8597 -130.89

Table 5.21: A Comparison of the Estimated Fundamental frequencies for the hinged

portal frame with that from the finite element method

Using Stiffness
FEM of Without Using Stiffness
Modification factors

Lo/Ly same no of | Modification factors
elements (SMFs)

Frequency(Hz) | % Error Frequency(Hz) | % Error
8 0.2265 0.3651 -61.19 0.5430 -139.77
4 0.6553 0.6325 -1.15 1.0248 -63.89
2 1.4946 1.000 33.09 1.8513 -23.87
1 2.9948 1.4142 52.78 3.1416 -4.90
0.8 3.5915 1.5430 57.04 3.6658 -2.07
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0.4 5.5575 1.8898 66.00 5.6090 -0.93

0.2 72585 2.1320 70.63 7.8905 -8.71

From tables 5.20 and 5.21 it would be seen that the results of the analysis improved
with the use of the stiffness modification factors though not to the extent expected.
The results might appear to conflict with the already established norm. This is so
because the results from the finite element analysis improve with increase in the
number of elements. The subdivision of each member (beam or column) into a
number of elements greatly enhances the results. Treating each beam or column as a
single element often does not lead to accurate results.

In the case above the number of elements where made the same as that for the lumped
mass frame hence accuracy of results was not emphasized. The results from the use of
the Lagrange equations with modified stiffness differ from that obtained from the

application of the finite element method.

e) Convergence of Results from finite element Analysis

By comparing the results from the use of Lagrange equations on lumped masses
with that from the finite element method for the portal frame of figure 5.3(a) for

different number of elements, table 5.22 was generated.
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Table 5.22: Calculated values of the first three natural frequencies for a rigidly fixed

portal frame (putting axial deformation into consideration). EA=1, EA=1, Ly = L,

First Mode Second Mode Third Mode
Number Finite Lagrange | Finite Lagrange | Finite Lagrange
of Element | Equations | Element | Equations | Element | Equations
Elements | Method on lumped | Method on lumped | Method on lumped
per (Hz) masses (Hz) masses (Hz) masses
member (H2) (H2) (Hz)
One 1.3064 0.9401 1.6463 1.2030 3.4251 1.6570
Two 1.2647 1.0063 1.5891 1.2427 3.0056 1.8979
Three 1.2558 1.0197 1.5762 1.2515 2.9004 1.9488
Four 1.2526 1.0245 1.5713 1.2546 2.8628 1.9673
Five 1.2510 1.0268 1.5689 1.2561 2.8454 1.9759
Six 1.2501 1.0280 1.5675 1.2570 2.8360 1.9806
Seven 1.2495 1.0287 1.5667 1.2575 2.8303 1.9835

Having already established that the results of the finite element method converge to

the exact solution, when applied in frames without the use of stiffness modification

factors it is observed from table 3.22 that the obtained values vary widely from that

obtained from Lagrange’s equation with lumped mass. This was due to the fact the

stiffness matrices were generated with respect to both translation and rotation at the

element ends and were never converted into translations only in the selected joints

seeing that it is difficult to determine the rotational inertia of the lumped masses. This

further necessitates the use of the stiffness modification factors. They help in
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cushioning the effect of the lumping and the neglect of the rotational inertia of the

lumped masses.
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6.1

Chapter 6

CONCLUSION AND RECOMMENDATION

Conclusion

Structural systems have continuous distribution of masses and are best modeled and
analyzed as systems with infinite number of masses and hence infinite degrees of
freedom. This can be achieved using the Hamilton’s principle which allows for the
analysis of structures as systems with a continuous distribution of mass. But this
method has a limitation. Using the Hamilton’s principle, it is very difficult to
formulate the necessary differential equations for complex structural systems. This
problem is partly offset by another energy theorem, the Lagrange equations. This
energy theorem allows structural systems to be modeled as an assemblage of discrete
masses connected by mass-less elements. The method makes it easier to formulate the
relevant equations for complex structural systems as attention is now focused on only
the positions of the discrete masses hence reducing the system to one of finite degrees
of freedom. The solution presented by the Lagrange equations is exact for such
systems, but when a continuous system is modeled as having discrete masses
connected by mass-less elements the results becomes approximate. The result can
however be improved by the addition of more discrete masses and by maintaining
even spacing between the masses but this places a limitation on the free selection of
points for lumping of masses. The core parameters of a dynamical system are the
mass distribution (inertia matrix) and the structure stiffness (stiffness matrix). Any
misrepresentation in either of them introduces an error in the result of the analysis.
Mass discretization as seen in the use of Lagrange equations for the analysis of

continuous systems introduces an error in the mass distribution. There is need to make
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a corresponding modification in the systems’ stiffness matrix and this was the crux of
this work. To achieve this, the force equilibrium equations of discrete elements of the
beam had to be formulated for such systems under free vibration (using the
Hamilton’s principle and the principle of virtual work) and the inherent forces causing
vibration obtained. This is then equated to the corresponding equation of motion of
the system (knowing that the equation is actually a force equilibrium equation) and
the stiffness matrix of the system necessary for such equality obtained. This was used
to generate Tables of stiffness modification factors for segments of beams of different
end conditions both for lateral and longitudinal vibration. By employing the Lagrange
equations to lumped massed beams using these modification factors, we were able to
predict accurately the fundamental frequency of the beams irrespective of the position

or number of lumped mass introduced.

This has been extended to frames by treating frames as structural systems consisting
of restrained beams connected together by beams. The fundamental frequencies
obtained from the use of stiffness modification factors on frames when compared with
that from experimental studies and from the finite element software ANSYS were
observed to be approximate. They however gave a significantly improved prediction
of the fundamental frequency than obtained without the use of the stiffness

modification factors.

6.1.1 Contribution to Knowledge

1. In order to obtain an accurate dynamic response from lumped massed beam
there must of necessity be a modification in the stiffness composition of the

structure.
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6.2

2. The project shows that no linear/simple modification of the stiffness
distribution of the lumped massed beams can cause them to be dynamically

equivalent to continuous beams.

3. The modification factors alter the equilibrium condition of each element and is

dependent on the end conditions of the structural system.

4. Tables of stiffness modification factors for segments of beams of different end

conditions for both longitudinal and lateral vibration are presented.

5. An extension of the use of the Tables to lumped massed frames significantly

improved the results of the analysis.

Recommendation

The use of the stiffness modification factors as a compliment on continuous systems
modeled as ‘lumped masses connected by mass-less elements’ has great potentials. It
combines the accuracy of Hamilton’s principle with the simplicity of the Lagrange’s
equations. So far accuracy was achieved in its application for lumped massed beams
but results for frames are still approximate. This might be due to the rotational inertia
of elements of connecting beams which were not put into consideration in calculating
the stiffness modification factors. The deformation due to shearing force might also

be responsible.

There is need to extend the work by incorporating the effect of shear and axial forces

in the stiffness of the beam elements.
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Table Al: End forces caused by unit end displacement of prismatic element under

APPENDIX A

axial forces.
S/No | Beam Force
1
M, M
2 12EIp, 12EIy,
% \ F = 3’ 2 = 13
P\ 7 =
g \ J d=1
77 P
_ 6EIY, _ 6EIY,
= L le 1= 2 27 2
! v
2
My M, 6EI, 6EI,
_ N(\ B‘ =
AET, 2EIY,
1= "5 i
L L
" L \Fz
! v
3
M 3EI 3EI
( ﬁil. Fl — L31/)6 ) FZ — L;rbﬁ
P S‘ a
\‘/d =1 3EII/)5
P 1= LZ
F, L F,
! v
4
3EIYs 3EIYs
M b= L=
S N3
S 3ENps
1= 7
i § F, L
1 ¥
_ z2(1—cos z) _ z2%sin z
ll)l - 6(2—2 cos z—z sin z) 1/)5 - 3(sin z—z cos z)
z3sin z 23 cos z
l/)z - 12(2—2 cos z—z sin z) 1/)6 - 3(sin z—z cos z)
l/) _ z(sin z—z cos z) 7z = kL
3 4(2—2cos z—zsin z)
ll)z _ z(z—sin z) — %

2(2—2cos z—z sin z)

Source: Osadede (2011)
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APPENDIX B

$Find the stiffness factor for a segment of a fixed fixed bar under free
%$longitudinal vibration

el =0
e2 = 0.9

for j=1:1:9
A§=2% (2-2% (=1) *3) / (3*3*3*pi*pi*pi);
Flj= Aj*(J*pi*e2*cos(j*pi*el) - j*pi*el*cos(j*pi*el) -...
sin(j*pi*e2)+sin(j*pi*el))/ (e2-el);
F2j= Aj* (-j*pi*cos (J*pi*e2) + j*pi*cos(j*pi*el)- (j*pi*e2*cos(j*pi*el)-

j*pi*el*cos (j*pi*el) - sin(Jj*pi*e2)+sin(j*pi*el))/ (e2-el));

ulj = Aj*sin(j*pi*el);
u2j = Aj*sin(j*pi*e2);
if j==1

ull = ulj;

uzl uz2ij;

end
Coll = sum(coll)
Col2 sum (col2) ;
Col3 sum(col3) ;
( )
( )

’

’

Col4 sum (col4
Col5 = sum(colb

’

if el==0 && e2<1

format long;
Table=[coll col2 col3 cold4 col5 ;Coll Col2 Col3 Col4 Colb5];

Fl =- Col2;
F2 = -Col3;
ul = Col4;
u2 = Colb5;

Pl = Fl+4+(ul-u2)/ (e2-el);

P2 = F2+ (-ul+u2)/ (e2-el);

Q1 = ((e2-el)*u2l* (P2+pi*pi* (e2-el)*u21/2) - .
(e2-el)*ull* (Pl+pi*pi* (e2-el)*ull/2))/ (u21*u2l-ull*ull)

Q2 = ((e2-el)*ull* (P2+pi*pi* (e2-el)*u21/2) - .
(e2-el)*u2l* (Pl+pi*pi* (e2-el)*ull/2))/ (u21*u2l-ull*ull)

format short;

elseif el>0 && e2<1
format long;
Table=[coll col2 col3 cold4 col5 ;Coll Col2 Col3 Col4d Col5 ];
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else

end

Fl = -Col2;

F2 = -Col3;
ul = Col4;
u2 = Colb5;
Pl = Fl+(ul-u2)/ (e2-el);
P2 = F2+ (-ul+u2)/ (e2-el);

Ql = ((e2-el)*u2l* (P2+pi*pi* (e2-el)*u2l1/2) -
(e2-el)*ull* (Pl+pi*pi* (e2-el)*ull/2))/ (u21*u2l-ull*ull)
Q2 = ((e2-el)*ull* (P2+pi*pi* (e2-el)*u2l1/2)
(e2-el)*ul2l* (Pl+pi*pi* (e2-el)*ull/2))/

(
(u21*u2l1-ull*ull)
format short;

format long;

Table=[coll col2 col3 cold4d col5;Coll Col2 Col3 Col4d Col5];
Fl = -Col2;

F2 = -Col3;
ul = Col4;
u2 = Colb5;

Pl = Fl+(ul-u2)/(e2-el);
P2 = F2+(-ul+u2)/ (e2-el);
Ql = ((e2-el)*u2l* (P2+pi*pi* (e2-el)*u2l/2) -
(e2-el)*ull* (Pl+pi*pi* (e2-el)*ull/2))/ (u2l*u2l-ull*ull)
Q2 = ((e2-el)*ull* (P2+pi*pi* (e2-el)*u2l/2) .
(e2-el) *u2l* (Pl+pi*pi* (e2-el)*ull/2))/ (u2l*u2l-ull*ull)

format short;
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APPENDIX C

$Find the stiffness mod. factor for a segment of a fixed free bar under
free
$vibration

el =0
e2 =1

4
i*i*i*pi*pi*pi);

Flj= Aj*(i*pi*e2/2*cos(i*pi*el/2) - i*pi*el/2*cos(i*pi*el/2)
- sin(i*pi*e2/2)+sin(i*pi*el/2))/ (e2-el);

F2j= Aj*(-i*pi/2*cos(i*pi*e2/2) + i*pi/2*cos(i*pi*el/2)-
(i*pi*e2/2*cos (i*pi*el/2) - i*pi*el/2*cos(i*pi*el/2) -...
sin(i*pi*e2/2)+sin(i*pi*el/2))/ (e2-el));

ulj = Aj*sin(i*pi*el/2);
u2j = Aj*sin(i*pi*e2/2);
if j==

ull = ulj;

uz22 = uz2j;

end
Coll = sum(coll)
Col2 = sum(col2);
Col3 = sum(col3);
( )
( )

’

’

Cold = sum(cold
Col5 = sum

if el==0 && e2<1

format long;
Table=[coll col2 col3 cold4 col5;Coll Col2 Col3 Col4d Col5];

Fl =- Col2;
F2 = -Col3;
ul = Col4;
u2 = Col5 ;

Pl = Fl+(ul-u2)/(e2-el);
P2 = F2+ (-ul+u2)/ (e2-el);
Q1 = ((e2-el)*u22* (P2+pi*pi* (e2-el) *u22/8) - .
(e2-el)*ull* (Pl+pi*pi* (e2-el)*ull/8))/ (u22*u22-ull*ull)
Q2 = ((e2-el)*ull* (P2+pi*pi* (e2-el)*u22/8) - .
(e2-el) *u22* (Pl+pi*pi* (e2-el) *ull/8))/ (u22*u22-ull*ull)
format short;

elseif el>0 && e2<1
format long;
Table=[coll col2 col3 cold4 col5 ;Coll Col2 Col3 Col4d Col5 1;
Fl = -Col2;
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else

end

F2 = -Col3;

ul = Col4;

u2 = Colb5;

Pl = Fl+4+(ul-u2)/ (e2-el);

P2 = F2+ (-ul+u2)/ (e2-el);

Ql = ((e2-el)*u22* (P2+pi*pi* (e2-el)*u22/8) -

(e2-el)*ull* (Pl+pi*pi* (e2-el)*ull/8))/
Q2 = ((e2-el)*ull* (P2+pi*pi* (e2-el)*u22/8)

(e2-el) *u22* (Pl+pi*pi* (e2-el)*ull/8))/
format short;

(u22*u22-ull*ull)
(

uz22*u22-ull*ull)

format long;
Table=[coll col2 col3 cold4d col5;Coll Col2 Col3 Col4d Col5];

Fl = -Col2;
F2 = -Col3;
ul = Col4;
u2 = Col5 ;

Pl = Fl+(ul-u2)/ (e2-el);

P2 F2+ (-ul+u2)/ (e2-el);

01 ((e2-el) *u22* (P2+pi*pi* (e2-el)*u22/8) - .

(e2-el)*ull* (Pl+pi*pi* (e2-el)*ull/8))/ (u22*u22-ull*ull)

Q2 = ((e2-el)*ull* (P2+pi*pi* (e2-el) *u22/8) .
(e2-el)*u22* (Pl+pi*pi* (e2-el)*ull/8))/ (u22*u22-ull*ull)

format short;
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APPENDIX D

%$Find the stiffness mod. factor for a segment of a fixed fixed beam under
free vibration

o\

D
iy
Il
o o
o N
. N

o
N

= 4.7300408;

= 7.8532047;

= 10.99560784;

= 14.1371655;

= 17.27875965739948;

= 20.42035224562606;

= 23.56194490204046;

.70353755550819;

= 29.84513020910326;

32.98672286269282;
= 36.12831551628263;
= 39.26990816987242;
(1) *BL (1) ;

R R P OO -Jo Ul b wiN - |

U oWwowwowowwowmww
e o o e o o o e e e
Il
N
o

[

H =
o}
=
-
|
-
—_
~J

aj=(cos(Bl) - cosh(Bl))/(sinh(Bl) - sin(Bl));

Cl = 1;

C2 = (cos(Bl)-cosh(Bl))/ (sinh(Bl)-sin(B1l));
C3 = -1;

C4 = (cosh(Bl)-cos(Bl))/ (sinh(Bl)-sin(B1l));

Mj = 0.5*%(C1*C1l*(1+sinh(2*B1l)/(2*Bl)) + C2*C2*(sinh(2*Bl)/(2*Bl)-1)

C3*C3* (1+sin(2*Bl)/(2*Bl)) + C4*C4* (1-sin(2*Bl)/(2*Bl)) +
2*C1l*C2* (sinh (Bl) *sinh (B1l) /Bl) + 2*Cl1*C3* (cosh(Bl)*sin(Bl)+...
sinh (B1l) *cos (Bl))/Bl...

+ 2*C1*C4* (1l-cos (Bl) *cosh(Bl)+sin(Bl) *sinh(B1l)) /Bl +

2*C2*C3* (sinh (B1l) *sin (B1l) +cosh (Bl) *cos (B1)-1) /B1...

+ 2*C2*C4* (cosh(Bl) *sin (Bl) -sinh (Bl) *cos (B1)) /Bl +
2*C3*C4* (sin (B1l) *sin (B1) /Bl)) ;

Aj= -2*(sinh(Bl)+sin(B1l))/ (B1*B1*Bl) + 12* (cosh(Bl)-...
cos(Bl))/(B1*B1*B1*Bl) - 24* (sinh(Bl)-sin(Bl))/(B1*B1*B1*B1*Bl) +
aj* (-2* (cosh(Bl)-cos (B1l))/(B1*B1*Bl) + 12* (sinh(Bl)-...
sin(Bl))/ (B1*B1*B1*Bl) - 24* (cosh(Bl)+cos(Bl)-2)/(BL*B1*B1*B1*Bl));

A3 = Aj/Mj;

Wl = B1*B1*Bl* ((e2+el)/2* (e2*e2-el*el)-2* (e2*e2*e2-el*el*el)/3)*...
(-sinh (Bl*el)-C2*cosh (Bl*el)+sin(Bl*el)+ C4*cos (Bl*el))+...
C2* (Bl* (el-e2) *cosh (Bl*e2)+2*sinh (Bl*e2)-Bl* (e2-el) *cosh (Bl*el) ...
-2*sinh (Bl*el)) -
C4* (-Bl* (el-e2) *cos (Bl*e2)-2*sin (Bl*e2)+Bl* (e2-el) *cos (Bl*el)+...
2*sin(Bl*el)) + Bl*(el-e2)*sinh(Bl*e2) -...
Bl* (e2-el) *sinh (Bl*el)+Bl* ((el-e2)) *sin(Bl*e2)-Bl* (e2-el) *...
sin(Bl*el)+2*cosh (Bl*e2)-2*cosh (Bl*el)-2*cos (Bl*e2)+2*cos (Bl*el) ;

Flj = -6*Aj*W1l/ (e2-el)"3;

W2 = Bl*Bl*Bl* ((2*e2+el) /2* (e2*e2-el*el) - (e2*e2*e2-el*el*el))*...
(-sinh (Bl*el)-C2*cosh (Bl*el)+sin(Bl*el)+ C4*cos (Bl*el))+...
B1*Bl1*Bl*el* (e2-el) * (e2-el) /2* (sinh (Bl*el)+C2*cosh (Bl*el) ...
-sin(Bl*el)-C4*cos (Bl*el)) -

377



end

Coll
Col2
Col3
Col4d
Col5
Colo
Col7
Cols8
Col?9

F27

F37

Fd

ulj
uzj
u3j
udj
if

B1*Bl* (e2-el) * (e2-el) /2* (cosh (Bl*el)+C2*sinh (Bl*el)+...
cos (Bl*el)-C4*sin(Bl*el)) +

Bl* (el-e2) *sinh (Bl*e2)-2*Bl* (e2-el) *sinh (Bl*el)+...

Bl* (el-e2) *sin (Bl*e2) -

2*Bl* (e2-el) *sin (Bl*el)-3*cos (Bl*e2)+3*cos (Bl*el)+...
3*cosh (Bl*e2)-3*cosh (Bl*el) +

C2* (B1l* (el-e2) *cosh (Bl*e2)-2*Bl* (e2-el) *cosh (Bl*el)+...
3*sinh (Bl*e2)-3*sinh (Bl*el)) -

Cd* (-Bl* (el-e2) *cos (Bl*e2) +2*Bl* (e2-el) *cos (Bl*el)-3*sin (Bl*e2)+...
3*sin (Bl*el));

-2*AJ*W2/ (e2-el) " 2;

Aj/ (e2-el)"3* (6*W1l + B1l*B1l*Bl* (e2-el)"3* (sinh(Bl*e2)-sinh(Bl*el) -

sin(Bl*e2)+sin(Bl*el) + C2* (cosh(Bl*e2)-cosh(Bl*el)) -
C4* (cos (Bl*e2)-cos (Bl*el))));

= Aj/(e2-el)"2* (-6*W1l + 2*W2 - B1*Bl* (e2-el)"2* (Bl*e2*...
(-sinh (Bl*el)-C2*cosh (Bl*el)+sin(Bl*el)+C4d*cos (Bl*el)) +...
Bl*el* (sinh (Bl*el)+C2*cosh (Bl*el)-sin(Bl*el)-C4d*cos (Bl*el)) +
(cosh(Bl*e2)+C2*sinh (Bl*e2) +cos (Bl*e2)-C4*sin(Bl*e2)) -...
(cosh(Bl*el)+C2*sinh (Bl*el) +cos (Bl*el)-C4*sin(Bl*el))));

Aj* (cosh(Bl*el)+C2*sinh (Bl*el)-cos (Bl*el)+C4*sin(Bl*el));
Aj*Bl* (sinh (Bl*el) +C2*cosh (Bl*el)+sin (Bl*el)+C4*cos (Bl*el));
Aj* (cosh(Bl*e2)+C2*sinh (Bl*e2) -cos (Bl*e2)+C4*sin (Bl*e2));

= Aj*Bl* (sinh (Bl*e2)+C2*cosh (Bl*e2)+sin (Bl*e2)+C4*cos (Bl*e2));
j==

ull = ulj;

uz22 = uz2j;

u33 = u3j;

udd = u4dj;

’

coll
sum (col?2
sum(col3

sum (cold) ;

( )
( )
( )
( )
sum (colb) ;
( )
( )
( )
( )

sum

’

’

’

sum(col6
sum(col?7
sum(col8
sum(col9

’

’

’

if el>=0 && e2>=0
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format long;
Table=[coll col2 col3 cold4d col5 col6 col7 col8 col9;Coll Col2 Col3
Col4 Col5 Col6 Col7 Col8 Col9];

Fl = -Col2;
F2 = -Col3;
F3 = -Col4;
F4 = -Col5;
ul = Colé6;
uz2 = Col7;
u3 = Col8;
ud = Col9;

Pl = F1 + 12*ul/(e2-el)”3 + 6*u2/(e2-el)"2 - 12*u3/(e2-el)”"3 +...
6*ud/ (e2-el)"2;
P2 = F2 + 6*ul/(e2-el)”2 + 4*u2/(e2-el) - 6*u3/(e2-el)”"2 + 2*ud/ (e2-
el);
P3 = F3 - 12*ul/(e2-el)”3 - 6*u2/(e2-el)"2 + 12*u3/(e2-el)"3 —-...
6*ud/ (e2-el)"2;
P4 = F4 + 6*ul/ (e2-el)”2 + 2*u2/(e2-el) - 6*u3/(e2-el)”™2 + 4*ud/ (e2-
el);

A = [12*ull/ (e2-el) "3 6*u22/(e2-el)"2 -12*u33/(e2-el)”"3 6*udd/ (e2-
el)"2; ...
4*u22/ (e2-el) 6*ull/ (e2-el) "2 2*udd/ (e2-el) -6*u33/(e2-el)”2;...
12*u33/ (e2-el) "3 -6*udd/ (e2-el) "2 -12*ull/ (e2-el) "3 -6*u22/ (e2-
el)™2;.

4*udd/ (e2-el) -6*u33/(e2-el) "2 2*u22/(e2-el) o6*ull/(e2-el)"2];

P = [P1+0.5* (e2-el) *w*w*ull; P2; P3+0.5* (e2-el) *w*w*u33; P4];
Q = A\P

format short;
end
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APPENDIX E

$Find the stiffness factor for a segment of a fixed pinned beam under free
$vibration

el = 0.

e2 1

O 0 ~J oy U W

BL (
BL (
BL (
BL (
BL (
BL (
BL (
BL (
BL (

w

)
)
)
)
)
) =
)
)
)
B

95

3.92660232;
7.06858275;
10.210176123;
13.35176878;
16.49336143135;
19.634954084937;
22.77654673853;

= 25.91813939211580;

29.05973204570559;

L(1)*BL(1);

for §=1:1:7
B1=BL(J) ;
pj=Bl*Bl;
aj=(cos(Bl) - cosh(Bl))/(sinh(Bl) - sin(Bl));

c1
Cc2
c3
c4
M

AJ

= 1;
= (cos(Bl)-cosh(Bl))/ (sinh(Bl)-sin (B1l));

= —l;

= (cosh(Bl)-cos (Bl))/ (sinh(Bl)-sin(B1l));

= 0.5*(C1l*C1l* (1+sinh(2*B1l)/ (2*B1l)) + C2*C2* (sinh(2*Bl)/ (2*B1l)-1)

C3*C3* (1+sin(2*Bl)/ (2*Bl)) + C4*C4* (1-sin(2*Bl)/(2*Bl)) +
2*C1*C2* (sinh (Bl) *sinh (Bl) /Bl) + 2*C1l*C3* (cosh(Bl)*sin(Bl)+...
sinh (B1l) *cos (B1))/Bl...

+ 2*C1l*C4* (1l-cos (Bl) *cosh (Bl)+sin(Bl)*sinh(Bl)) /Bl +

2*C2*C3* (sinh (B1l) *sin (B1l) +cosh (Bl) *cos (B1)-1) /B1...

+ 2*C2*C4* (cosh(Bl) *sin (Bl) -sinh (Bl) *cos (B1)) /Bl +
2*C3*C4* (sin (B1l) *sin (B1l) /Bl)) ;

- (cosh (Bl)+cos (Bl))/ (B1*Bl) + 18* (cosh(Bl)-

cos(Bl))/ (B1*B1*B1*Bl) ...

AJ

- 48* (sinh(Bl)-sin(B1l))

aj* (- (sinh(B1l)+sin (B1))

sin(Bl))/ (B1*B1*B1*Bl)
= Aj/Mj;

/ (B1*B1*B1*B1*Bl) +
/(B1*Bl) + 18* (sinh(Bl)-...
- 48* (cosh(Bl)+cos (B1l)-2)/(B1*B1*B1*B1*Bl)) ;

W1l = B1*B1*Bl* ((e2+el)/2* (e2*e2-el*el)-2* (e2*e2*e2-el*el*el)/3)*...

Fl

]

(-sinh (Bl*el)-C2*cosh (Bl*el)+sin(Bl*el)+ Cd*cos (Bl*el))+...

C2* (Bl* (el-e2) *cosh(Bl*e2)+2*sinh (Bl*e2) -Bl* (e2-el)*...

cosh (Bl*el)-2*sinh (Bl*el)) -

C4* (-Bl* (el-e2) *cos (Bl*e2)-2*sin (Bl*e2)+Bl* (e2-el) *cos (Bl*el)+...
2*sin(Bl*el)) + Bl*(el-e2)*sinh(Bl*e2) -...

Bl* (e2-el) *sinh (Bl*el)+Bl* ((el-e2))*sin(Bl*e2)-Bl* (e2-el) *...
sin(Bl*el)+2*cosh(Bl*e2)-2*cosh (Bl*el)-2*cos (Bl*e2)+2*cos (Bl*el) ;

= -6*Aj*W1l/ (e2-el)"3;

W2 = B1*B1*Bl* ((2*e2+el)/2* (e2*e2-el*el) - (e2*%e2*e2-el*el*el))*...

(-sinh (Bl*el)-C2*cosh (Bl*el)+sin(Bl*el)+ C4d*cos(Bl*el))+...
B1*Bl1*Bl*el* (e2-el) * (e2-el) /2* (sinh (Bl*el)+C2*cosh (Bl*el)-...
sin(Bl*el)-C4*cos (Bl*el)) -

B1*Bl* (e2-el) * (e2-el) /2* (cosh (Bl*el)+C2*sinh (Bl*el)+cos (Bl*el)-...
Cd*sin (Bl*el)) +

Bl* (el-e2)*sinh (Bl*e2)-2*Bl* (e2-el) *sinh (Bl*el)+Bl*...

(el-e2) *sin(Bl*e2) -
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2*Bl* (e2-el) *sin (Bl*el)-3*cos (Bl*e2)+3*cos (Bl*el)+...
3*cosh (Bl*e2)-3*cosh (Bl*el) +

C2* (B1l* (el-e2) *cosh(Bl*e2)-2*Bl* (e2-el) *cosh (Bl*el)+...
3*sinh (Bl*e2)-3*sinh (Bl*el)) -

C4* (-Bl* (el-e2) *cos (Bl*e2)+2*Bl* (e2-el) *cos (Bl*el)-...
3*sin (Bl*e2)+3*sin (Bl*el)) ;

F29 = —2*Aj*W2/ (e2-el)"2;

F37

Aj/ (e2-el)"3*(6*W1l + B1*B1*Bl* (e2-el)”"3* (sinh(Bl*e2)-...
sinh (Bl*el)-sin(Bl*e2)+sin(Bl*el) + C2* (cosh(Bl*e2)-cosh(Bl*el)) -

Cd* (cos (Bl*e2)-cos (Bl*el))));

F4j = Aj/(e2-el)"2* (-6*W1l + 2*W2 - B1*Bl* (e2-el)"2* (Bl*e2*...
(-sinh (Bl*el) -C2*cosh (Bl*el)+sin (Bl*el)+C4*cos (Bl*el)) +...
Bl*el* (sinh (Bl*el)+C2*cosh (Bl*el)-sin(Bl*el)-Cd*cos (Bl*el)) +
(cosh (Bl*e2)+C2*sinh (Bl*e2)+cos (Bl*e2)-C4*sin(Bl*e2)) -

(cosh (Bl*el)+C2*sinh (Bl*el)+cos (Bl*el)-C4*sin(Bl*el))));

ulj = Aj*(cosh(Bl*el)+C2*sinh(Bl*el)-cos (Bl*el)+C4*sin(Bl*el));
u2j Aj*Bl* (sinh (Bl*el)+C2*cosh (Bl*el)+sin(Bl*el)+C4*cos (Bl*el));
u3j Aj* (cosh (Bl*e2)+C2*sinh (Bl*e2)-cos (Bl*e2)+C4*sin (Bl*e2));
udj = Aj*Bl*(sinh (Bl*e2)+C2*cosh (Bl*e2)+sin (Bl*e2)+C4d*cos (Bl*e2));
if j==

ull = ulj;

uz22 = uz2j;

u33 = u3j;

udd = udj;

’

Coll = sum( )
Col2 = sum/( )
Col3 = sum(col3)
Cold = sum(colid);
Col5 = sum(colb);
( )
( )
( )
( )

’

col2

’

’

Col6 = sum(col6
Col7 = sum(col7?
Col8 = sum(col8
Col9 = sum(col9

’

’

’

if el >-1 && e2<1

format long;
Table=[coll col2 col3 cold4 col5 col6 col7 col8 col9;Coll Col2 Col3...
Col4 Col5 Col6 Col7 Col8 Col9];

Fl = -Col2;
F2 = -Col3;
F3 = -Col4;
F4 = -Col5;

381



ul = Colé6;

u2 = Col7;
u3 = Col8;
ud = Col9;

Pl = F1 + 12*ul/(e2-el)”3 + 6*u2/(e2-el)"2 - 12*u3/(e2-el)"3
+ 6*ud/ (e2-el)"2;
P2 = F2 + 6*ul/(e2-el)”2 + 4*u2/(e2-el) - 6*u3/(e2-el)”™2 + 2*ud/ (e2-
el);
P3 = F3 - 12*ul/(e2-el)”3 - 6*u2/(e2-el)”2 + 12*u3/ (e2-el)"3
- 6*ud/ (e2-el)"2;
P4 = F4 + 6*ul/(e2-el)”2 + 2*u2/(e2-el) - 6*u3/(e2-el)”™2 + 4*ud/ (e2-
el);

$A = [12*ul/ (e2-el)"3 6*u2/ (e2-el)”2 -12*u3/(e2-el)”3 6*ud/ (e2-el)"2;
% 4*u2/ (e2-el) 6*ul/ (e2-el)”2 2*ud/ (e2-el) -6*ul3/ (e2-el)”™2;...
% 12*u3/ (e2-el) "3 -6*ud/ (e2-el) "2 -12*ul/ (e2-el)"3 -6*u2/ (e2-
el)"2; .
% 4*ud/ (e2-el) -6*u3/ (e2-el)"2 2*u2/(e2-el) 6*ul/ (e2-el)"2];
A = [12*ull/ (e2-el) "3 6*u22/ (e2-el)”2 -12*u33/(e2-el)”"3 6*udd/ (e2-
el)™2; ...
4*u22/ (e2-el) 6*ull/ (e2-el) "2 2*udd/ (e2-el) -6*u33/(e2-el)”2;...
12*u33/ (e2-el) "3 -6*udd/ (e2-el) "2 -12*ull/ (e2-el) "3 -6*u22/ (e2-
el)"2;.

4*udd/ (e2-el) -6*u33/(e2-el) "2 2*u22/(e2-el) 6*ull/(e2-el)"2];

P = [P1+0.5* (e2-el) *w*w*ull; P2; P3+0.5* (e2-el) *w*w*u33; P4];
QO = A\P
format short;
elseif e2==
format long;
Table=[coll col2 col3 cold4 col5 col6 col7 col8 col9;Coll Col2...
Col3 Col4d Col5 Col6 Col7 Col8 Col9];

Fl = -Col2;
F2 = -Col3;
F3 = -Col4;
F4 = -Col5;
ul = Colb6;
u2 = Col7;
u3 = Col8;
ud = Col9;

Pl = F1 + 12*ul/(e2-el)”3 + 6*u2/(e2-el)"2 - 12*u3/(e2-el)”"3 +...
6*ud/ (e2-el)"2;
P2 = F2 + 6*ul/(e2-el)”2 + 4*u2/(e2-el) - 6*u3/(e2-el)”"2 + 2*ud/ (e2-
el);
P3 = F3 - 12*ul/(e2-el)”3 - 6*u2/(e2-el)"2 + 12*u3/(e2-el)”3 -...
6*ud/ (e2-el)"2;
P4 = F4 + 6*ul/(e2-el)”2 + 2*u2/(e2-el) - 6*ul3/(e2-el)”"2 + 4*ud/ (e2-
el);

hd
Il

[3*ull/ (e2-el)”~3 3*u22/(e2-el) "2 -3*u33/(e2-el)"3;
3*u22/ (e2-el) 3*ull/(e2-el)”2 0;...

3*u33/(e2-el)”3 0 -3*ull/(e2-el)"3];

P = [P140.5*% (e2-el) *w*w*ull; P2-3*u33/(e2-el)”2; P3+...
0.5* (e2-el) *w*w*ul33+3*u22/ (e2-el)"2];

A\P

O
Il

end

format short;
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APPENDIX F

$Find the stiffness factor for a segment of a pinned pinned beam under free
$vibration

el =0

e2 = 1/3

BL(1) = 3.141592654;

BL(2) = 6.2831854;

BL(3) = 9.424777961;

BL(4) = 12.5663706144;

BL(5) = 15.70796326795;

BL(6) = 18.8495559215388;

BL(7) = 21.99114857513;

BL(8) = 25.1327412287835;
(9)

= 28.27433388230814;

w = BL(1)*BL(1);
for j=1:1:7
B1=BL(J);
pJj=Bl*Bl;
aj= —-sinh(Bl) /sin (Bl);

Cl = 0;
c2 = 1;
C3 = 0;
C4 = -sinh(Bl)/sin(Bl);

Mj = 0.5*%(C1l*Cl*(1l+sinh(2*Bl)/(2*Bl)) + C2*C2*(sinh(2*Bl)/(2*Bl)-1)

C3*C3* (1+sin(2*Bl)/(2*Bl)) + C4*C4* (1-sin(2*Bl)/(2*Bl)) +
2*C1*C2* (sinh (B1) *sinh (B1) /B1l) + 2*C1*C3* (cosh (B1)...
*sin (Bl)+sinh (Bl) *cos (B1l))/Bl...

+ 2*C1l*C4* (1l-cos (Bl) *cosh (Bl)+sin(Bl)*sinh(Bl)) /Bl +
2*C2*C3* (sinh (Bl) *sin (Bl) +cosh (Bl) *cos (B1)-1)/Bl...

+ 2*C2*C4* (cosh(Bl) *sin (Bl) -sinh (Bl) *cos (B1)) /Bl +
2*C3*C4* (sin (Bl) *sin (Bl) /Bl));

Aj= -sinh(B1l)/(B1*Bl) + 12*sinh(B1l)/(B1*B1*B1*Bl) - ..
24* (cosh(B1)-1)/ (B1*B1*B1*B1*Bl) +
aj*(-sin(Bl)/(B1*Bl) - 12*sin(Bl)/(B1*B1*B1*Bl)-...
24* (cos(Bl)-1)/(B1*B1*B1*B1*Bl)) ;

Aj = Aj/Mj;

W1l = BLl*Bl*Bl* ((e2+el)/2* (e2*e2-el*el)-2* (e2*e2*e2-el*el*el)/3)*...
(-sinh (Bl*el)-C2*cosh (Bl*el)+sin(Bl*el)+ C4d*cos(Bl*el))+...
C2* (B1l* (el-e2) *cosh (Bl*e2)+2*sinh (Bl*e2) -Bl* (e2-el) *...
cosh (Bl*el)-2*sinh (Bl*el)) -
C4* (-Bl* (el-e2) *cos (Bl*e2)-2*sin (Bl*e2)+Bl* (e2-el) *cos (Bl*el)+...
2*sin(Bl*el)) + Bl*(el-e2)*sinh(Bl*e2) -...
Bl* (e2-el) *sinh(Bl*el)+Bl* ((el-e2))*sin(Bl*e2)-Bl* (e2-el)*...
sin(Bl*el)+2*cosh(Bl*e2)-2*cosh (Bl*el)-2*cos (Bl*e2)+2*cos (Bl*el) ;
Flj = -6*Aj*W1l/ (e2-el)"3;

W2 = B1*B1*Bl* ((2*e2+el)/2* (e2*e2-el*el) - (e2*%e2*e2-el*el*el))*...
(-sinh (Bl*el)-C2*cosh(Bl*el)+sin(Bl*el)+ C4*cos (Bl*el))+...
B1*B1l*Bl*el* (e2-el) * (e2-el) /2* (sinh (Bl*el) +C2*cosh (Bl*el)~-...
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end

Coll
Col2
Col3
Col4d
Colb5
Colo
Col7
Cols8
Col?9

F27

F37

Fd

ulj
uzj
u3j
udj
if

sin(Bl*el)-Cd*cos (Bl*el)) - ...

B1*Bl* (e2-el) * (e2-el) /2* (cosh (Bl*el)+C2*sinh (Bl*el)+...
cos(Bl*el)-Cd4*sin (Bl*el)) +

Bl* (el-e2) *sinh (Bl*e2)-2*Bl* (e2-el) *sinh (Bl*el)+...

Bl* (el-e2) *sin (Bl*e2) -

2*Bl* (e2-el) *sin (Bl*el)-3*cos (Bl*e2)+3*cos (Bl*el)+...
3*cosh (Bl*e2)-3*cosh (Bl*el) +

C2* (B1l* (el-e2) *cosh(Bl*e2)-2*Bl* (e2-el) *cosh (Bl*el)+...
3*sinh (Bl*e2)-3*sinh (Bl*el)) -

C4* (-Bl* (el-e2) *cos (Bl*e2)+2*Bl* (e2-el) *cos (Bl*el)-...
3*sin (Bl*e2)+3*sin (Bl*el)) ;

—2*AJ*W2/ (e2-el) ~2;

= Aj/(e2-el)"3*(6*W1l + B1*B1l*Bl* (e2-el)”"3*...
(C2* (cosh (Bl*e2)-cosh (Bl*el)) -
C4* (cos (Bl*e2)-cos (Bl*el))));

= Aj/(e2-el)"2* (-6*W1l + 2*W2 - B1*Bl* (e2-el)"2* (Bl*e2*...
(-C2*cosh (Bl*el)+C4*cos (Bl*el)) +...

Bl*el* (C2*cosh (Bl*el)-C4*cos (Bl*el)) +

(C2*sinh (Bl*e2)-C4*sin(Bl*e2)) - (C2*sinh(Bl*el)-C4*sin(Bl*el))));

= Aj*(C2*sinh(Bl*el)+C4*sin (Bl*el));
Aj*Bl* (C2*cosh (Bl*el)+C4*cos (Bl*el));
Aj* (C2*sinh (Bl*e2) +C4*sin (Bl*e2));
Aj*Bl* (C2*cosh (Bl*e2)+C4*cos (Bl*e2)) ;

j==

ull = ulj;
uz22 uz2j;
u33 = u3j;
udd = u4dj;

sum
sum

col?);
sum(col3
sum (cold) ;

( )
( )
( )
( )
sum(colb) ;
( )
( )
( )
( )

’

’

’

sum(col6
sum(col?7
sum(col8
sum(col9

’

’

’

if el <1 && e2<l && el~=0 && e2~=0

format long;
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Table=[coll col2 col3 cold4d col5 col6 col7 col8 col9;Coll Col2...
Col3 Col4 Col5 Colb Col7 Col8 Col9];

Fl = -Col2;
F2 = -Col3;
F3 = -Col4;
F4 = -Col5;
ul = Colb6;
uz2 = Col7;
u3 = Col8;
ud = Col9;

Pl = F1 + 12*ul/(e2-el)”3 + 6*u2/(e2-el)"2 - 12*u3/(e2-el)”"3 +...
6*ud/ (e2-el)"2;
P2 = F2 + 6*ul/(e2-el)”2 + 4*u2/(e2-el) - 6*u3/(e2-el)”"2 + 2*u4d/ (e2-
el);
P3 = F3 - 12*ul/(e2-el)”3 - 6*u2/(e2-el)”™2 + 12*u3/ (e2-el)"3 -
6*ud/ (e2-el)"2;
P4 = F4 + 6*ul/ (e2-el)”2 + 2*u2/(e2-el) - 6*u3/(e2-el)”2 + 4*ud/ (e2-
el);

A = [12*ull/ (e2-el) "3 6*u22/(e2-el)”2 -12*u33/(e2-el)"3 6*udd/ (e2-
el)"2; ...
4*u22/ (e2-el) 6*ull/ (e2-el) "2 2*udd/ (e2-el) -6*u33/(e2-el)”2;...
12*u33/ (e2-el) "3 -6*udd/ (e2-el)”"2 -12*ull/ (e2-el)”3 -6*u22/ (e2-
el)™2;.

4*ud4/ (e2-el) -6*u33/(e2-el)"2 2*u22/(e2-el) 6*ull/(e2-el)"2];

P = [P1+0.5* (e2-el) *w*w*ull; P2; P3+0.5* (e2-el) *w*w*u33; P4];
Q0 = A\P
format short;

elseif el> 0 && e2==
format long;
Table=[coll col2 col3 cold4 col5 col6 col7 col8 col9;Coll
Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9];

Fl = -Col2;
F2 = -Col3;
F3 = -Col4;
F4 = -Col5;
ul = Colb6;
u2 = Col7;
u3 = Col8;
ud = Col9;

Pl = F1 + 12*ul/(e2-el)”3 + 6*u2/(e2-el)"2 - 12*u3/(e2-el)"3
+ 6*ud/ (e2-el)"2;
P2 F2 + 6*ul/ (e2-el)”"2 + 4*u2/ (e2-el) - 6*u3/(e2-el)”2 + 2*ud/ (e2-
el);
P3 = F3 - 12*ul/(e2-el)”3 - 6*u2/(e2-el)"2 + 12*u3/(e2-el)"3...
- 6*ud/ (e2-el)"2;
P4 = F4 + 6*ul/(e2-el)”2 + 2*u2/(e2-el) - 6*ul3/(e2-el)”"2 + 4*ud/ (e2-
el);

hd
Il

[3*ull/ (e2-el)”~3 3*u22/(e2-el) "2 -3*u33/(e2-el)"3;
3*u22/(e2-el) 3*ull/(e2-el)”2 0;...
3*u33/ (e2-el)”*3 0 -3*ull/ (e2-el)"3];

P = [P1+0.5% (e2-el) *w*w*ull; P2-3*u33/(e2-el)"2; P3+0.5* (e2-el) *w*w*...

u33+3*u22/ (e2-el)"2];
A\P

Q

elseif el==0 && e2<1
format long;
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Table=[coll col2 col3 cold4d col5 col6 col7 col8 col9;Coll Col2 Col3...
Col4 Col5 Col6 Col7 Col8 Col9];

Fl = -Col2;
F2 = -Col3;
F3 = -Col4;
F4 = -Col5;
ul = Colb6;
uz2 = Col7;
u3 = Col8;
ud = Col9;

Pl = F1 + 12*ul/(e2-el)”3 + 6*u2/(e2-el)"2 - 12*u3/(e2-el)"3
+ 6*ud/ (e2-el)"2;
P2 F2 + 6*ul/ (e2-el) "2 + 4*u2/ (e2-el) - 6*u3/(e2-el)”2 + 2*ud/ (e2-
el);
P3 = F3 - 12*ul/(e2-el)”3 - 6*u2/(e2-el)"2 + 12*u3/(e2-el)"3...
- 6*ud/ (e2-el)"2;
P4 = F4 + 6*ul/(e2-el)"2 + 2*u2/(e2-el) - 6*u3/(e2-el)”2 + 4*ud/ (e2-
el);

A = [3*ull/(e2-el)"3 0 -3*u33/(e2-el)"3; .
3*u33/ (e2-el) "3 -3*u4dd/ (e2-el) "2 -3*ull/ (e2-el)"3;...
3*ud4/ (e2-el) -3*u33/(e2-el)”2 01;

[P14+40.5* (e2-el) *w*w*ull-3*ud/ (e2-el)"2; P3+0.5* (e2-el) *w*w*u33; P4-

P:
3*ull/ (e2-el)"2];
Q = A\P

format short;
end
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APPENDIX G

$Find the stiffness factor for a segment of a fixed fREE beam under free

Svibration
el = 0;
e2 = 1;
$BL(1) = 4.7300408;
$BL(1) = 0.000001;
BL(1) = 4.7300408;
BL(2) = 7.8532047;
BL(3) = 10.99560784;
BL(4) = 14.1371655;
BL(5) = 17.27875965739948;
BL(6) = 20.42035224562606;
BL(7) = 23.56194490204046;
BL(8) = 26.70353755550819;
BL(9) = 29.84513020910326;
BL(10) = 32.98672286269282;
BL(11l) = 36.12831551628263;
BL(12) = 39.26990816987242;
w = BL(1)*BL(1);
for j=1:2:7
B1=BL(j);
pj=Bl*Bl;
aj=(cos(Bl) - cosh(Bl))/(sinh(Bl) - sin(Bl));
Cl = 1;
C2 = (cosh(Bl)-cos(Bl))/ (sin(Bl)-sinh(B1l));
C3 = 1;
C4 = (cosh(Bl)-cos(Bl))/(sin(Bl)-sinh(B1l));
M7 0.5* (C1*C1l* (1+sinh(2*Bl)/ (2*Bl)) + C2*C2* (sinh(2*Bl)/ (2*B1l)-1)
+.
C3*C3*(1+sin(2*Bl)/(2*Bl)) + C4*C4* (1-sin(2*B1l)/ (2*B1l)) +
2*C1*C2* (sinh (B1) *sinh (B1) /Bl) + 2*C1*C3* (cosh (B1) *sin (B1) +
sinh (Bl) *cos (Bl)) /Bl...
+ 2*C1*C4* (1l-cos (Bl) *cosh (B1l) +sin (B1l) * sinh( 1))/Bl +...
2*C2*C3* (sinh (Bl) *sin (Bl) +cosh (Bl) *cos (B1) )/Bl
+ 2*C2*C4* (cosh(Bl) *sin (Bl) -sinh (Bl) *cos (B1)) /Bl +...
2*C3*C4* (sin (Bl) *sin (B1l) /B1l))
B11=Bl/2;

Aj= -12*(sinh(B11)

-sin(B11l))/(B11*B11*B11)
/ (B11*B11*B11*B11)

C2* (12* (cosh (B11l)+cos (B11))/(B11*B11*B11)

+ 24* (cosh(Bll)+cos(B11l)) ...
- 24* (sinh(Bl1l)+sin(B11))/(B11*B11*B11*B11*B11)

24* (sinh (B11) +sin (B11)) ...
/ (B11*B11*B11*B11)

+ 24* (cosh(B11) -

cos (B11))/(B11*B11*B11*B11*B11));

Aj = AJ/(2*M3);

Wl = B1*B1l*Bl* ((e2+el)
(-sinh (Bl*el)
C2* (Bl* (el-e2)
-2*sinh (Bl*el))
C4* (-Bl* (el-e2)
2*sin (Bl*el))
Bl* (e2-el)

-C2*cosh (Bl*el)
*cosh (Bl*e2)+2*sinh (Bl*e?2)

*cos (Bl*e2)
+ Bl* (el-e2)
*sinh (Bl*el)
sin(Bl*el)+2*cosh (Bl*e2)

/2% (e2*e2-el*el)-2* (e2*e2*e2-el*el*el) /3) *
-sin(Bl*el)+ C4*cos (Bl*el))+

-Bl* (e2-el) *cosh (Bl*el) ...
-2*sin(Bl*e2)+Bl* (e2-el) *cos (Bl*el) +
*sinh (Bl*e2)
*sin(Bl*e2)+Bl* (e2-el) *

-2*cos (Bl*el) ;

-Bl* (el-e2)
-2*cosh (Bl*el)+2*cos (Bl*e2)
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Flj = -6*Aj*W1l/ (e2-el)"3;

W2 = Bl*B1*Bl* ((2*e2+el) /2% (e2*e2-el*el) - (e2*e2*e2-el*el*el))*...
(-sinh (Bl*el) -C2*cosh (Bl*el)-sin(Bl*el)+ Cd*cos (Bl*el))+...
Bl1*Bl*Bl*el* (e2-el)* (e2-el)/2* (sinh (Bl*el)+C2*cosh (Bl*el)+...
sin(Bl*el)-Cd*cos (Bl*el)) -

B1l*Bl* (e2-el) * (e2-el) /2* (cosh (Bl*el)+C2*sinh (Bl*el)-cos (Bl*el) ...
-C4*sin (Bl*el)) +
Bl* (el-e2) *sinh (Bl*e2)-2*Bl* (e2-el) *sinh (Bl*el)-Bl* (el-

e?2)*sin (Bl*e2) +
2*Bl* (e2-el) *sin (Bl*el)+3*cos (Bl*e2)-3*cos (Bl*el)+3*cosh (Bl*e2) ...
-3*cosh (Bl*el) +
C2* (B1l* (el-e2) *cosh (Bl*e2)-2*Bl* (e2-

el) *cosh (Bl*el)+3*sinh (Bl*e2) ...
-3*sinh (Bl*el))
C4* (-Bl* (el-e2) *cos (Bl*e2)+2*Bl* (e2-el) *cos (Bl*el) -3*sin(Bl*e2) ...
+3*sin(Bl*el)) ;

F29 = -2*Aj*W2/ (e2-el)"2;

F3j = Aj/(e2-el)”"3*(6*W1l + B1*B1*Bl* (e2-el)”3*(sinh (Bl*e2) -

sinh (Bl*el) ...
+sin (Bl*e2)-sin(Bl*el) + C2* (cosh(Bl*e2)-cosh(Bl*el)) -
C4* (cos (Bl*e2)-cos (Bl*el)))):

F4j7 = Aj/ (e2-el)"2* (-6*W1l + 2*W2 - B1*Bl* (e2-el)"2* (Bl*e2*...
(-sinh (Bl*el) -C2*cosh (Bl*el)-sin (Bl*el)+C4*cos (Bl*el)) +...
Bl*el* (sinh (Bl*el)+C2*cosh (Bl*el)+sin(Bl*el)-C4d*cos (Bl*el)) +
(cosh (Bl*e2)+C2*sinh (Bl*e2) -cos (Bl*e2)-C4*sin (Bl*e2)) -
(cosh(Bl*el)+C2*sinh (Bl*el)-cos (Bl*el)-C4*sin(Bl*el))));

ulj = Aj*(cosh(Bl*el)+C2*sinh (Bl*el)+cos(Bl*el)+C4*sin(Bl*el));
u2j = Aj*Bl* (sinh (Bl*el)+C2*cosh (Bl*el)-sin(Bl*el)+C4d*cos (Bl*el));
u3j = Aj*(cosh(Bl*e2)+C2*sinh (Bl*e2)+cos(Bl*e2)+C4*sin(B1l*e2));
ud4j = Aj*Bl* (sinh(Bl*e2)+C2*cosh (Bl*e2)-sin (Bl*e2)+C4*cos (Bl*e2));

if j==1
ull = ulj;
uz22 = uz2j;
u33 = u3j;
udd = u4dj;
end
coll(3,1)=AJ;
col2(j,1)=F1l3;
col3(j,1)=F27;
col4d (j,1)=F37;
col5(j,1)=F47;
col6 (j,1)=ulj;
col7(j,1)=u2j;
col8(j,1)=u3j;
col9(j,1)=udj;

end
Coll = sum(coll);
Col2 = sum(col2);
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Col3 = sum(col3);
Col4d = sum(cold);
Col5 = sum(colb);
Col6 = sum(col6);
Col7 = sum(col7);
Col8 = sum(col8);
Col9 = sum(col9);

if el>=0 && e2>=0

format long;
Table=[coll col2 col3 cold4d col5 col6 col7 col8 col9;Coll Col2 Col3
Col4 Col5 Col6 Col7 Col8 Col9];

Fl = -Col2;
F2 = -Col3;
F3 = -Col4;
F4 = -Colb;
ul = Colé6
u2 = Col7
u3 = Col38
ud = Col9

Pl = F1 + 12*ul/ (e2-el)”3 + 6*u2/(e2-el)”2 - 12*u3/(e2-el)”™3 +...
6*ud/ (e2-el)"2;
P2 = F2 + 6*ul/(e2-el)”2 + 4*u2/(e2-el) - 6*u3/(e2-el)”™2 + 2*u4d/ (e2-
el);
P3 = F3 - 12*ul/(e2-el)”3 - 6*u2/(e2-el)”"2 + 12*u3/(e2-el)”™3 —-...
6*ud/ (e2-el)"2;
P4 = F4 + 6*ul/(e2-el)”2 + 2*u2/(e2-el) - 6*u3/(e2-el)”"2 + 4*u4d/ (e2-
el);

$A = [12*ul/(e2-el) "3 6*u2/(e2-el) "2 -12*u3/ (e2-el) "3 6*ud/ (e2-el)"2;

o\°

4*u2/ (e2-el) 6*ul/ (e2-el)”2 2*ud/ (e2-el) -6*ul3/ (e2-el)”™2;...
12*u3/ (e2-el) "3 -6*ud/ (e2-el) "2 -12*ul/ (e2-el)”3 -6*u2/ (e2-

oe

el)"2; ...
% 4*ud/ (e2-el) -6*u3/ (e2-el)”2 2*u2/(e2-el) 6*ul/ (e2-el)"2];
A = [12*ull/ (e2-el)”"3 6*u22/(e2-el) "2 -12*u33/(e2-el)”3 6*udd/ (e2-
el)"2; ...
4*u22/ (e2-el) 6*ull/ (e2-el) "2 2*udd/ (e2-el) -6*u33/(e2-el)”2;...
12*u33/ (e2-el) "3 -6*udd/ (e2-el) "2 -12*ull/ (e2-el) "3 -6*u22/ (e2-
el)"2;.

4*ud4/ (e2-el) -6*u33/(e2-el)"2 2*u22/(e2-el) 6*ull/(e2-el)”"2];

P = [P1+0.5* (e2-el) *w*w*ull; P2; P3+0.5* (e2-el) *w*w*u33; P4];
Q = A\P

format short;
end
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Appendix H
Below is an empirical model of a single degree of freedom lumped mass beam under

longitudinal vibration.

kl k 2
%_/\/\/\/y —1 m — \V/\V/\VAV,_

L, L,

-~
—I<
N

Figure H1 (a): One degree of freedom longitudinally vibrating system

The free body diagram can be represented as

X
—>

ki «— "m j«—k;

Figure H1 (b): An isolated one degree of freedom longitudinally vibrating mass

From the equilibrium of forces
mix = —kix — kox (H1)
Let x = Asinwt (H2)

By substituting equation (H2) into (H1) and simplifying

w = /—"1;"2 (H3)

Butk, ===, k, = —andm =% (H4)
1 2

Where EA is the axial rigidity of the modeled bar and p is the mass per unit length
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By substituting equations (H4) into (H3) we obtain

0= |2EA
LiLou

(H5)

With equation (H5) the natural frequencies of the bar at different positions of the

lumped mass can be obtained. This is done by varying the values of L; and L,. The

calculated values are presented in Table H1. In the Table the value of EA and u were

taken as unity.

Table H1: Calculated values of natural frequency of the longitudinally vibrating bar at

different values of L; and L,

L1(m) Lo=1-L;(m) w (Hz)
0.1 0.9 4.714
0.2 0.8 3.536
0.3 0.7 3.086
0.4 0.6 2.887
0.5 0.5 2.828
0.6 0.4 2.887
0.7 0.3 3.086
0.8 0.2 3.536
0.9 0.1 4.714

We observe from Table H1 that the calculated natural frequencies vary with the

position of the lumped mass and are not constant as will be expected for a continuous

bar (the natural frequency of a continuous bar fixed at both ends under longitudinal

vibration w, is 3.142). The variation is better observed in a plot of natural frequency

against the L;.
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Figure H2: Fundamental frequency against L;

From the graph it would be seen that the fundamental frequency for the SOF lumped
mass beam under longitudinal vibration varied with the position of the lumped. The
value at lower values of L; was greater that the exact natural frequency. But as the
value of L; increase it reduced and finally became lower that the exact value before
increasing again. The variation in the calculated natural frequency is due to the
discretisation of the mass distribution by lumping. This can also be observed in a case
of a two-degree of freedom (2DOF) lumped mass beam under longitudinal vibration.
Below is an empirical model of a two-degree of freedom lumped mass beam under

longitudinal vibration.

X1 | X2
—>  —
kl kz k2

%_/\/W _AvAvAvA\/_ JVAVAVA\/ 4%

% Ly Vv L % Ls v
7 | 7 7

% L L
71 71

Figure H2a: Two degrees of freedom longitudinally vibrating system
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The free body diagram can be represented as

k, —— M, je—— k, <+— Mz Je—kaX

Figure H2a: Two degrees of freedom longitudinally vibrating free body mass system

From the equilibrium of forces

my ¥y = —kyxy — k(X2 —x1) (H6a)
myXy = ka(x1 — X2) — kax, (H6b)
Let

x; = A sinwt (H7a)
X, = Aj sin wt (H7b)

By substituting equations (H7a) and (H7b) into (H6a) and (H6b) and simplifying we

have
(kl + kz - mla)z)Al - szz =0 (H8a)
kZAl + (mza)z - kz - k3)A2 =0 (H8b)
kl + kz - m1w2 kz ] Al] 0
~ H9
kz mzwz - kz - k3 AZ [0] ( )

For a non- trivial solution the determinant of the coefficient has to be zero, hence

(kl + kz - mlwz)(mzwz - kz - k3) + k% =0

_ kl + kz(ml + mz) + k3m1 i \/(kl + kz(ml + mz) + k3m1)2 - 4m1m2(k1k2 + k1k3 + k2k3)

(1)2
2m1m2

(H10)

From the principles of strength of materials and Hooke’s law
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k1=

EA

_1k2

Ly

EA
= —and my
Ly

_ p(Litly)

_ u(lz+ly)

2 2

2

(H11)

Using equation (H10) the natural frequencies of vibration of the model of figure 2

were calculated for different values of L3, L, and Ls. There values were compared

with the exact value of a corresponding continuous bar. See Tables H2 and H3.

Table H2: Calculation of the natural frequency of the longitudinally vibrating bar at

Li=Ly L=1,EA=1landp=1

L1(m) Lo(m) | L(m) | mu(kg) m,(kg) o1(H2) ®o(H2)

0.05 00 | 09 0.0 0.47 29.02 3.14
0.1 01| 0.8 0.1 0.45 14.92 3.14
0.1 01| 07 0.1 0.42 10.27 3.14
0.2 02| 05 0.2 0.40 8.004 3.14
0.2 02| 04 0.2 0.37 6.721 3.14
0.3 03| 04 0.3 0.35 5.982 3.14
0.3 03| 03 0.3 0.32 5.654 3.14
0.4 04 | 0.2 0.4 0.30 5.814 3.14
0.4 04 | 0.1 0.4 0.27 7.099 3.14

Table H3: Calculation of the natural frequency for Ly = L3, L=1, EA=1landp=1

L1(m) Lo(m) | La(m) mu(kg) m,(kg) o1 (H2) ®o(H2)
00| 09 0.0 0.47 0.47 7.64 3.14
01| 08 0.1 0.45 0.45 6.01 3.14
01| 07 0.1 0.42 0.42 5.43 3.14
02| 05 0.2 0.40 0.40 5.21 3.14
02| 04 0.2 0.37 0.37 5.22 3.14
03] 04 0.3 0.35 0.35 5.43 3.14
03] 03 0.3 0.32 0.32 5.91 3.14
04 ] 02 0.4 0.30 0.30 6.88 3.14
04 ] 01 0.4 0.27 0.27 9.30 3.14

394




; and o are the calculated natural frequencies obtained from equation (H10) while
oo IS the exact natural frequency for a corresponding continuous bar (obtained using
the Hamilton’s principle).

From Tables H2 and H3 it would be seen that the values of calculated natural
frequencies vary with the position of the lumped mass. However at some positions the
calculation was very close to that of the exact solution. This is better appreciated in a

plot of the calculated natural frequencies against L1. The plot is presented below.

35
30

s |\
0 |\

Fundamental frequency (Hz)

——w1l
15
== wo
10 )
w
s _ __!/0
]
0
0 0.1 0.2 0.3 0.4 0.5
L1 (m)

Figure H3: Calculated Fundamental frequencies against L;

From the graph it would be seen that the calculated natural frequencies were higher
than the exact frequencies for all the chosen position of lumped mass. The values
were seen to be closer L; values of 0.3m to 0.35m. These are values at which the
spacing of the lumps is fairly uniform.

So far we have only looked at longitudinal vibrations. The same observation can be
made for lateral vibrations.

Below is an empirical model of a single degree of freedom lumped mass beam under

lateral vibration.
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Figure H4: One degree of freedom laterally

From the equation of motion for free undamped vibration
mi+kx =0 (H12)

By substituting equation (H2) into (H12) and simplifying

= Jg (H13)

From the principle of virtual work the deflection at the position of the lumped mass

can be obtained as

_ PLiL;
A= (H14)

Where P is the weight of the lumped mass

But k is the beam stiffness and can be obtained as

P 3EIL3
k= 1= 0 (H15)

L .
and m = ”7 as stated earlier.

By substituting equation (H15) into (H13)

6EIL?
w= /mgﬂ (H16)

Where El is the flexural rigidity of the modeled beam and p is the mass per unit

length
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Equation (H16) was used to generate a range of possible values of natural frequencies

at different position of the lumped mass. These were presented in Table 4 below.

Table H4: Calculated values of natural frequency of the laterally vibrating beam at

different values of L; and L,

L.(m) Lo =1— Ly(m) o (Hz) @ (H2)
0.1 0.9 90.722 22.373
0.2 08 38.273 22.373
0.3 0.7 25.454 22.373
0.4 0.6 20.833 22.373
05 0.5 19.596 22.373
0.6 0.4 20.833 22.373
0.7 03 25.454 22.373
0.8 0.2 38.273 22.373
0.9 0.1 90.722 22.373

From Table H4 above it can be seen that the calculated values of natural frequencies varied
with the position of the lumped mass. The pattern of variation can be appreciated in a plot of

the natural frequencies against L; presented in Figure H5.
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Figure H5: Calculated natural frequencies against lump position L;
From the graph above it is observed that the calculated frequency varied from the natural

frequency but was close at values of L; = 0.35m and 0.65m. At very high and very low values
of L; the error in the calculated frequency is magnified.
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APPENDIXJ

A mathematical proof that the axial forces (both applied and reactive forces) can be
represented as transverse forces and analysed as shearing forces (knowing fully well that they
are axial forces) without jeopardizing the accuracy of obtained results, provided that there

was no bending moment on the axially loaded bar.

1R, IR

2 V4 L
P
b b R, 15 12
L = l l Rl 2 /|V b R2
T 11 14y (174, ;
a
= A 7777
1 Figure J(b)
Ry The vertical bar represented as a
. horizontal bar with a concentrated load P
Figure J(a)

. . in istan from rtl
A vertical bar with a concentrated load P acting at a distance a from support

acting at a distance a from support 1

shown in the whole and decomposed state

Figure J(a) shows an axially loaded bar with a concentrated load P at a distance a from one of
the supports. The bar was decomposed into its constituent parts, showing the lower part
(below the concentrated load) and the upper part (above the concentrated load).

From the principle of vertical equilibrium of forces we can establish from figure J (a) that
Ri+R,=P (1)

i.e. the sum of all vertical forces are equal.

Hence in its decomposed state the condition of vertical equilibrium was also maintained.
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From Hooke’s law, the compression of the lower section of the bar A; due to the compressive

force Ry is
— Ria
A=K )

where EA is the axial rigidity of the bar.

In like manner the elongation A, of the upper section of the bar due to R, can be stated as

Ryb
Ay= ﬁ (3)

Since the upper section and the lower section are part of the same bar, the elongation of the
upper section will be equal to the compression of the lower section (compatibility condition).
A= 14, 4

By substituting equations (2) and (3) into equation (4) and simplifying we obtain

bk (5)
Equation (5) holds irrespective of the value of the concentrated load P, provided the bar is of

a uniform material (Young’s modulus E is constant) and constant cross section (prismatic).

By representing the vertical bar as a horizontal bar with the concentrated load P acting
transversely (see Figure J(b)) an equation similar to equation (5) can be obtained.

First, by taking moments about the two supports 1 and 2 we obtain the reactions R; and R; as
Ry =— (6)

RZ = — (7)

= ®

gz_ 9)
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By equating equation (8) and (9) we obtain

Rq Ry (10)

Notice that equation (10) is the same as the equation (5) we obtained for the vertical bar.
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