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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

The vision of manufacturers is to minimize human intervention in handling 

critical environmental applications with so much advancement and research 

works carried out across the world. This vision can be absolutely made into 

reality in the age of automation with the current technology (Shweta and 

Sanjay, 2012). Development in various fields of engineering have resulted in 

very sophisticated machines, devices and manufacturing processes. 

Successful operation of these devices and process require: very short 

response time, repetitious analytical and mechanical operations, low 

tolerance to errors, and insensitivity to disturbances that are well beyond 

human abilities. This is achieved majorly with automatic control systems in 

the form of robotic manipulators and full mobile robots. Panich (2015) 

defined robotic arm as a type of mechanical arm, which can usually be 

programmed with similar functions to a human arm. The reliance on the 

robots in the industries, military, etc has increased in recent times and most 

of these robots are engaged in remote and harsh environments to carry out 

a particular work for a long time. Robotic manipulators have also taken over 

in the marine industries with the use of Under Water Vehicles such as 

Remotely Operated Vehicles (ROV) used by most oil industries in their oil 

exploration works in the ocean and other deep waters. These robots are 

expected to work accurately without reduction in performance or breaking 

down in a short while. Therefore, the robots are supposed to be designed 

robustly to perform satisfactorily despite uncertainties in any environment. 
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Many research works have been carried out on the study of robotic 

manipulator development over the years. Building humanoid robots that can 

do useful things in the real world, not just research labs, is very difficult 

(Crowe, 2019). However, in recent years the attention of the researchers 

has been drawn towards improvement of the manipulators especially in 

performance and robustness due to the high rate of failure of commercial 

robots as recorded in (Carlson et al, 2004) and the high need for robots that 

can perform optimally despite disturbances in the system. The improvement 

in the robotic manipulator development can only be achieved by identifying 

the problems associated with the failures. Alassar (2010) identified two 

essential problems in the development of robotic manipulators: the first 

problem is the mathematical modeling of the manipulator and the actuators 

and the second problem is the control of the manipulator. Analyses in 

(Carlson et al, 2004) show that the control system is the most common 

source of robot failures followed by the mechanical platform which is 

attributed to the difference between the physical system and its 

mathematical model i.e. uncertainty. Hence, the modeling and control of 

manipulators have become a continuous research interest. 

 

The problem of the dynamic model of the robotic manipulator was also 

identified in Fateh (2008) to be the joint torque control problem. Many 

advanced control strategies have been proposed to control robotic 

manipulators by controlling the joint torques. However, the inability of the 

commercial robots to control joint torques is a well known problem (An and 

Hollerbach, 1988; Schiller, 1996). The general robot arm dynamic control 

law proposed in (Spong, 1992; Chiu et al, 2004; Torres et al, 2007) was 

described by Fateh (2008) as complex and complicated. As a result, there 

are too many assumptions in the model and the control law cannot be 

applied to the inputs of the actuators in practice. Since the control law used 
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in the joint torque control of the robotic manipulator is supposed to be 

applied at the inputs of the actuator, therefore it becomes necessary to 

adopt the actuator dynamic control law to control the torque produced at the 

joints of the manipulator because it can easily be applied at the motor 

inputs. Actually, for a manipulator driven by DC motors, the currents of the 

DC motors are directly controlled to implement the torque control law (Miro 

and White, 2002; Reyes and Kelly, 2001). Most industrial robots are 

controlled by independent joint control strategy (Spong and Vidyasagar, 

1989). In (Spong et al, 2006) independent joint control law was used for 

robotic manipulator model by considering the actuator dynamics and the 

arm dynamics. Most of the recent robotic manipulator control designs 

treat each joint of the manipulator as a simpler linear servomechanism with 

simple controller like an Independent Joint Control (IJC) (Helal et al, 2015).  

 

Robotic manipulators are highly nonlinear dynamic systems with unmodelled 

dynamics and other uncertainties (Ren et al, 2007). This problem of 

uncertainties can be solved by the application of robust control to the plant 

model. The design of a robust control for the robotic manipulator involves 

the development of a dynamic model considering every non-negligible 

dynamics and designing a controller based on robust controller design 

specifications. Robustness has gained more and more attention (Fallahi et al, 

2011) due to its importance in the realization of physical systems that can 

perform optimally and satisfactorily in real world. The goal of robust design 

is to retain assurances of system performance in spite of model inaccuracies 

and changes. A system is robust when the system has acceptable changes in 

performance due to model changes or inaccuracies (Dorf and Bishop, 2008). 

Piltan et al (2012) opined that disturbance rejection is used to test 

robustness.   
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Robust control for robotic manipulators is a typical control scheme to achieve 

good tracking performance in the presence of model uncertainties such as an 

unknown payload and unmodeled friction (Abdallah et al, 1991; Sage et al, 

1999). Model uncertainties to be frequently encountered in manipulators 

working under an unstructured environment or handling variable payloads 

must be taken into account to solve the tracking problem of robotic 

manipulators. The estimated uncertainty bounds are often very 

conservative, leading to degradation of control performance due to 

unnecessarily high feedback gain selection (Kim et al, 2011). Several robust 

control strategies for robot manipulators have been introduced (Abdallah et 

al, 1991; Sage et al, 1999; Dawson et al, 1990; Su et al, 1993).  

 

A Proportional-Integral-Derivative (PID) control scheme can eliminate the 

steady-state errors, but it can only ensure local asymptotic stability. 

Moreover, to guarantee the stability, the gain matrices must satisfy 

complicated inequalities (Arimoto and Miyazaki, 1984). Robust controller 

design requires both robustness against model uncertainty, as well as good 

disturbance and noise rejection properties and good performance. 

Considerable advancements in control system design led to the introduction 

of H-Infinity (H∞) synthesis. This approach makes use of weights to achieve 

desired robustness and performance characteristics loop shape for the 

controller design. There are many advantages of this method such as high 

disturbance rejection, high stability and many more (Bansal, 2013). Today 

controller design based on robust H-Infinity control is the standard 

procedure for control systems where high demands on control quality exist. 

Han et al., (2011) applied H-Infinity in robust coordinated motion control of 

an underwater vehicle-manipulator system. Therefore, H-Infinity (H∞) 

controller is applied in this work and compared with PID controller design 

method.  
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Many research works have been done on the design of controllers for robust 

control of robotic manipulators. From the review, the most common research 

gap in the robust controller design is the problem of robustness design 

specifications. Dorf and Bishop (2008) stated that a system is robust when it 

has low sensitivity, it is stable over the range of parameter variation and 

performance continues to meet the specification in the presence of a set of 

changes in the system parameters. Hence, robustness is the minimized 

sensitivity to effects that are not considered in the analysis and design phase 

for example, disturbances, measurement noise, and unmodeled dynamics.  

 

The motivation for this work came from the interest for local content 

development and improvement. Most of the locally constructed automated 

systems especially the robots and other systems that are moved by electric 

motors were observed to perform poorly or fail completely within a short 

period of time after initial testing. This is as a result of poor design practice 

especially in the development of mathematical model or control law, wrong 

actuator selection and the effects of unresolved uncertainties. 

 

1.2. Statement of Problem 

The mathematical model of the manipulator has been one of the major 

problems in the development of robots. Every robotic manipulator consists of 

actuators and links; however from the review some of the manipulator 

dynamic models neglected either the actuator or link dynamics. This method 

increases the level of error in the system. 

 

The robotic manipulator as a physical system contains uncertainties which 

can cause the system to function unsatisfactorily in practice or real 

environment. Therefore, the robust controller which is designed to address 
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the effects of uncertainties should be based on robust design specifications 

such as minimized sensitivity, and good disturbance rejection characteristics 

etc. However, the neglect of these robust controller design specifications 

leads to non-robust controller. A controller is robust only if it satisfies the 

robustness and performance characteristics. The characteristics are as 

follows: stability, disturbance rejection, noise suppression, minimized 

sensitivity, and minimized reference tracking error. 

 

Actuator selection without proper torque calculation is a common critical 

problem affecting robotic manipulator design works.  Different joints of a 

robotic manipulator carry different sizes of loads and experiences different 

torques. Hence, the actuators for the joints must be selected based on the 

total torques calculated at the respective joints. However, if the manipulator 

is designed and the joint actuators are selected without proper calculation of 

the total torques at the joints then the manipulator will not function properly 

even at no load when the torque generated at a joint goes beyond the 

torque produced by the actuator.  

 

1.3. Aim and Objectives 

The aim of this research is to develop a robust controller for an articulated 

3DOF robotic manipulator under uncertainties based on H-Infinity Controller 

Technique compared with PID controller. 

 

The objectives of the research are: 

a. To develop a torque control model based on independent joint control 

method. 

b. To develop a model error (or model uncertainty) based on the torque 

control model. 
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c. To determine the total joint torques and select actuators based on the 

calculated torques. 

d. To determine the parameters of the joint torque model.  

e. To develop 3D model of the manipulator using Autodesk Inventor and 

generate an equivalent SimMechanics model in matlab. 

f. To develop a simulink model based on the joint dynamic model. 

g. To design a robust controller using H-Infinity synthesis and compare it 

with PID controller. 

h. To evaluate the robustness and performance characteristics of the 

controllers  

 

1.4. Significance of the Study 

The increased importance of the robot manipulators in the industries has 

made the system a vital topic of research. Furthermore, the fact that most 

robot manipulator systems work independently or remotely monitored, made 

it possible to locate them in unfriendly environments especially sometimes 

where human beings would find it difficult to work. There has been increased 

reliance on the capabilities of robotic manipulator in the industries which 

made it necessary to develop robots that can carry out their duties 

satisfactorily despite disturbances in the system.  Therefore, the robotic 

manipulator should be designed to achieve its set goals despite the level of 

faulty conditions or environmental aggressions it may be facing. This hearty 

capability of the system depends on the joint torque control ability and 

robustness of the controller. Hence, the need for the development of a 

robust control for robotic manipulators becomes very significant. 

 

1.5. Scope of the Study 

The robotic manipulator comprises of links connected together by joints; the 

joint torque is produced by the actuator and controlled by the controller. 
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This research work covers the following: modeling of the robotic manipulator 

dynamics, actuator selection, joint model parameter derivations and robust 

controller design. The decentralized control method was introduced to enable 

the formulation of joint torque control dynamic model that can be applied to 

the joint actuators. This model involves actuator dynamics and arm 

dynamics. The 3DOF articulated robotic arm 3D structure was achieved 

using AutoDesk Inventor professional and converted into SimMechanics 

model. However, the SimMechanics model of the manipulator does not 

provide means for joint actuator design. The joint dynamic model was 

implemented in SIMULINK for the simulation.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Related Literature 

According to Melchiorri (1995), the dynamic model obtained using the 

Langrange-Euler method is simpler, more intuitive and more suitable to 

understand the effects of changes in the mechanical parameters. The links 

are considered altogether, and the model is obtained analytically. He 

however pointed out that the drawback of the model is that it is obtained 

from the kinetic and potential energies (non intuitive); the model is not 

computationally efficient. He continued to state that the Newton Euler 

method is based on a computationally efficient recursive technique that 

exploits the serial structure of an industrial manipulator. On the other hand, 

its mathematical model is not expressed in closed form. Although, the two 

techniques are equivalent (provide the same results). Iqbal and Author 

(1995) suggested that there should be an improvement in the dynamics 

model of the robotic manipulator by adding the complete model of the 

selected drives (actuators) in the model. Melchiorri declared that the 

actuation system has several effects on the dynamics: if motors are installed 

on the links, then masses and inertia are changed, and it introduces its own 

dynamics (electromechanical, pneumatic, hydraulic, etc) that may be non-

negligible. It also introduces additional nonlinear effects such as backslash, 

friction, and elasticity. 

 

Lui (2011) presented a research work which was focused only on the design 

of a 3 DOF robotic manipulator with a 2 DOF dexterous wrist mechanism. 

From the review, this manipulator configuration provides precise, dexterous 

and flexible movement of the manipulator. The dynamic model applied in 

(Liu and Peng, 2000; Wang et al, 2008, Lochan and Roy, 2015; Lui et al, 
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2016) is basically the dynamical description of the mechanical arm of the 

manipulator. Kim and Lee (2011) proposed a robust control model of robotic 

manipulators under parametric uncertainty using only robot link dynamic 

model based on the Langrange-Euler equation of motion of robot links which 

comprises of inertia matrix, centripetal and coriolis vector and the 

gravitational vector of the link. This method of robot dynamic model was 

used in many research works but recently, it has been criticized in Fateh 

(2008), due to its limitations in feedback application and drawback in its 

application to the actuator inputs. The only parameter in this model that can 

be fed back is the position q, which is not sufficient for robust control where 

signal disturbances and dynamic perturbations such as mistakes in choosing 

the coefficients, unmodeled dynamics, friction, wear and won etc. are 

involved. The actuator current which determines the desired force produced 

by the joint was not considered in this model. Since the ability of the robotic 

arm to maintain precise and desired position even in the presence of 

uncertainty depends on the force produced by the joint and this force 

depends on the actuator current, therefore, the robust control law should 

involve current i and position q. Secondly, the friction vector was not 

included in their dynamic model, however, non-parametric uncertainties 

cannot be avoided in robotic manipulators. Biradar et al (2012) investigated 

Lagrange-Euler method and suggested a future work for an improved model 

that can be implemented in the controller of the manipulator, and optimized 

for a specific job task. 

 

In zadbakhsh et al., (2007), the Langrange model was used when 

considering the equation of motion of robot links (Eqn. 3.36). However, a 

complete model of the actuator was used for the robust controller design 

simulation in their work; they did not consider the arm in the model used in 

the simulation. Secondly, total torques at the joints was not calculated for 
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proper joint actuator selection. Instead they arbitrarily chose big actuators 

for the first major joints and small actuators for the last minor joints.   

 

Lewis et al (2004) stated that to obtain a complete dynamical description of 

the arm plus the actuator (which make up the robotic manipulator), it is 

required to add the actuator dynamics to the arm dynamics. This is because, 

the torque produced by the robotic arm is controlled by the voltage applied 

to the motor armature which represents the control input to the system. 

Therefore, neglecting the actuator dynamics as unmodeled parameters 

makes the dynamic model of the robotic manipulator incomplete.  

 

Talole et al proposed a mathematical model of a single rigid link manipulator 

based on the link (or arm) dynamics plus the actuator dynamics. In their 

model, they considered the link plus actuator inertias as J, and the actuator 

damping B. In (Dong and Zhu, 2013), the dynamic model of a single rigid 

link flexible joint robotic manipulator was presented as:  

� 𝐽𝐽𝑞̈𝑞 + 𝐽𝐽𝑚𝑚𝜃̈𝜃 = 𝜏𝜏
𝐽𝐽𝑞̈𝑞 + 𝑘𝑘(𝑞𝑞 − 𝜃𝜃) = 0

 

Where 𝐽𝐽 is link inertia, 𝐽𝐽𝑚𝑚 is actuator inertia, k is the stiffness of the flexible 

joint, 𝑞𝑞 is the link angle, and 𝜃𝜃 is the actuator angle. However, in their work, 

the system damping and friction were not considered. Other parameters 

were considered as unmodeled dynamics. In this model the independent 

joint control law approach was adopted. The distinguishing factor in this 

model of the flexible joint robotic manipulator is the stiffness constant k. 

 

According to Helal et al (2015), actuators model are computed to merge it 

with the dynamic model of the robot as: 

�
𝜏𝜏1
𝜏𝜏2� = �𝑘𝑘𝑚𝑚1𝑘𝑘𝑚𝑚2

� �𝐼𝐼1𝐼𝐼2
� − �𝐵𝐵𝑚𝑚1𝑛𝑛

2

𝐵𝐵𝑚𝑚2𝑛𝑛2
� �𝜃̇𝜃1
𝜃̇𝜃2
� − �𝐽𝐽𝑚𝑚1𝑛𝑛

2
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𝜃̈𝜃2
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where 𝐼𝐼 is motor current, 𝑘𝑘𝑚𝑚 is motor constant, 𝐵𝐵𝑚𝑚 is friction/damping 

constant including links, 𝐽𝐽𝑚𝑚 is motor inertia, 𝑘𝑘𝑒𝑒 is back-emf constant, 𝑅𝑅 is 

motor resistance, 𝐿𝐿𝑎𝑎 is motor inductance, n is the gear box ratio, 𝑉𝑉 is the 

input voltage to the motors. Conversely, the dynamic model they presented 

did not include the inertia of the robot link. Thus, the consideration of the 

manipulator link inertia into this model will give a more complete dynamical 

description of the robotic manipulator. In addressing the problems in robot 

force control as presented in (Eppinger and seering, 1992), the actuator 

model is coupled to the rigid body model of the robotic manipulator. The 

effective inertia (total moving mass) of the axis and effective viscous 

damping to the ground were considered in the model.  

 

Agrawal et al (2012) modeled a controller for an articulated robotic arm. 

𝜃𝜃𝐿𝐿(𝑠𝑠)
𝑉𝑉𝑎𝑎(𝑠𝑠) =

𝑛𝑛𝐾𝐾𝑎𝑎
𝑠𝑠�𝑠𝑠𝑅𝑅𝑎𝑎𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑅𝑅𝑎𝑎𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐾𝐾𝑎𝑎𝐾𝐾𝑏𝑏�

 

Where 𝜃𝜃𝐿𝐿(𝑠𝑠) is the link position, 𝑉𝑉𝑎𝑎(𝑠𝑠) is the input voltage into the actuator, 

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 is the effective viscous friction coefficient, n is gear reduction ratio. 

They identified precise control upon each degree of freedom of a robotic arm 

as a great challenge in the implementation of industrial works. Hence, their 

modeling approach was based on the actuator dynamics instead of the 

Lagrange model of robotic arm dynamics. Fateh (2008) presented a research 

work titled “On the Voltage-Based Control of Robotic Manipulators”, where 

he used the independent joint control which is based on the joint actuator 

dynamic model and the torque due to link, to model and control a robotic 

manipulator. According to him, using this method obtains simplicity, 

accuracy, speed of calculation and robustness to the manipulator control 
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system. Alassar (2010) carried out a research on the modeling and control 

of 5DOF robot arm using supervisory control. He adopted the independent 

joint control (IJC) technique where the joint dynamic model relating the 

current and the developed torque in the motor shaft were considered instead 

of using only the Lagrangian-Euler (inertia matrix, coriolis and gravitational 

vectors) of robot arm dynamic model. 

𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝜃𝜃(𝑠𝑠)
𝑉𝑉(𝑠𝑠)

=
𝐾𝐾𝑡𝑡

𝑠𝑠[𝐽𝐽𝑚𝑚𝑙𝑙𝑎𝑎𝑠𝑠2 + (𝐿𝐿𝑎𝑎𝐵𝐵𝑚𝑚 + 𝐽𝐽𝑚𝑚𝑅𝑅𝑎𝑎)𝑠𝑠 + 𝐾𝐾𝑡𝑡𝐾𝐾𝑏𝑏] 

The motor dynamic model enabled the achievement of precise results in the 

performance of each robot joint. The actuator selection should be 

determined by the calculated torque at each joint. However, in his work, the 

torque at each joint was not calculated; therefore the motors were not 

selected appropriately. Secondly, the torques at the joints of the 5DOF 

robotic arm cannot be the same; hence using the same motor parameters to 

simulate the 5DOF joints should be faulty during physical implementation of 

his design. Thirdly, the motor derived parameters such as the torque 

constant and the damping coefficient etc were not derived based on the 

torque at the joint and the current specification of the motor. Ovy et al 

(2011) designed an articulated robot arm for precise positioning using joint 

dynamic model instead of the Lagrangian-Euler robot dynamic model.  

𝜔𝜔(𝑠𝑠)
𝑉𝑉(𝑠𝑠) =

𝐾𝐾𝑡𝑡
(𝐽𝐽𝐽𝐽 + 𝐷𝐷)(𝐿𝐿𝐿𝐿 + 𝑅𝑅) + 𝐾𝐾𝑒𝑒𝐾𝐾𝑡𝑡

= 𝐺𝐺(𝑠𝑠) 

Where D is the viscous frictional coefficient, 𝜔𝜔(𝑠𝑠)is the speed. 

The achievement of high precision capability of the robotic arm was 

attributed to the joint dynamic modeling method. However, in their work, 

they did not calculate the torques at the joint before choosing the motors for 

the joint design and this could cause poor system performance or total 

failure when implemented physically. The controller design for the robotic 

manipulator in (Lui, 2011) was based on joint actuation (i.e., the joint 

motors) which was carried out independently.  



14 
 

In the robust control methods, the controller is designed based on the 

nominal model plus uncertainty. Uncertainty can be in any parameter, such 

as the load carrying by the end effector (Alashqar, 2007). Many researchers 

have proposed and developed many methods of achieving a robust 

controller. The major objective of the robust controller design is to obtain 

controller gains that can achieve the desired output trajectory in the 

presence of significant uncertainties. Ahuja and Tandon (2013) presented a 

robust PID and Polynomial controllers for DC motor speed control. The 

uncertainty caused by the parameter changes of motor resistance, motor 

inductance and load are formulated in their work as multiplicative 

uncertainty weight, which are used in the objective function in the design.  

 

Kim and Lee (2011) applied dynamic compensation which is similar to lag 

compensation. According to Salem (2013), lag compensation is a soft 

approximation of Proportional-Integral (PI) controller whereby large gain 

values introduce or increase overshoot and transient oscillation. System 

sensitivity is a vital measure of robustness of a control system however; the 

results in Kim and Lee (2011) did not show any sensitivity reduction or 

stability robustness characteristics. 

 

According to Dorf and Bishop (2008), the design of a control system in the 

presence of significant uncertainty requires the designer to seek a robust 

system. They developed many robust controllers for different physical 

systems using closed loop PID controller method. In recent advances, robust 

control design methodologies can address stability robustness and 

performance robustness in the presence of uncertainty. The derivative gain 

function of the controller solves the problem of rate of change in error 

thereby maintaining stability and performance robustness. Ackermann et al 
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presented the design of robust PID controllers for improved performance of 

a robustly decoupled car steering control system.  

 

Bansal and Sharma (2013) applied H∞ controller design method in their 

work. They stated that H∞ control synthesis is found to guarantee 

robustness and good performance and also provides high disturbance 

rejection. Baslamish (2007) applied H∞ controller in Linear Parameter 

Varying (LPV) Modeling and Robust Control of Yaw and Roll Modes of Road 

Vehicles. Yadav and Singh (2015) carried out a design on the robust control 

of two link rigid manipulator. In their work, H-Infinity controller design 

method was applied and it achieved good system performance and 

robustness. However, the controller results showed high system overshoot 

and this could be as a result of the system modeling method used in their 

work and the joint torque calculations. Wang et al (2008) carried out a 

research work on robust tracking control of robotic manipulator using 

dissipativity theory based on H∞ controller technique. It was confirmed in 

their work that the scheme improved the robustness of the system. Sato et 

al (2008) presented a work on adaptive H∞ control for robotic manipulator 

with compensation of input torque uncertainty; which examines the problem 

of link position tracking control for robot manipulators with input toque 

uncertainty. They stated that, an approximated error of input nonlinearities 

and external disturbances are attenuated by means of H∞ control 

performance. Yim and Park (1999) in their work titled “Nonlinear H-infinity 

Control of Robotic Manipulator”, designed a nonlinear H-infinity controller for 

a two degree-of-freedom planar robot manipulator with uncertainty in its 

mass. However, the source of uncertainties cannot be only in the mass of 

the plant as a physical system in real environment. 
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However, the H-infinity controller design method applied in these works for 

the compensation of input torque uncertainty was based only on the 

reference tracking performance of the manipulator arm angle, which is not 

enough point to ascertain the ability of system to address the problem of 

uncertainty. 

 

2.2 Robotic Manipulator 

A robot is a reprogrammable multifunctional machine designed to move 

material, parts, tools, or specialized devices through variable programmed 

motions for the performance of a variety of tasks. Gupta et al (2013) defined 

robotic arm as a mechanical arm which is designed to perform a function 

similarly as a human arm does. A robotic manipulator is usually 

programmable and the arm may be a sum total of the mechanism or can be 

part of a complex robot. Manipulators are composed of links (or arms) 

connected by joints into a kinematic chain. The force that moves the links is 

produced by the actuator which is housed in the joint mechanism. Joints are 

typically rotary (revolute) or linear (prismatic). A revolute joint is like a 

hinge and allows relative rotation between two links. A prismatic joint allows 

a linear relative motion between two links. The convention (R) is used for 

representing revolute joints and (P) for prismatic joints. Figure 2.1 shows 

the symbolic representation of robot joints in two and three dimensional 

drawings.  
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Figure 2.1: Symbolic representation of robot joints (Spong et al, 2006) 

 

Each joint represents the interconnection between two links, say li and li+1. 

The axis of rotation of a revolute joint, or the axis along which a prismatic 

joint slides is denoted by zi if the joint is the interconnection of links li and 

li+1. The joint variables, denoted by θi for a revolute joint and di for the 

prismatic joint, represent the relative displacement between adjacent links. 

 
Figure 2.2: Types of arms used with actual robot manipulators (Pires, 2007) 
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2.3. Robotic Manipulator Kinematic Arrangements  

The industrial robots are basically composed of rigid links, connected in 

series by joints, having one end fixed (base) and another free to move and 

perform useful work when properly tooled (end-effector). The structure of 

the robot consists of a number of links and joints, a joint will allow relative 

motion between two links (Crowder, 1998). The different arrangements of 

the rigid links and the type of joints applied in the design of a robotic arm 

gave rise to the types of arms of the manipulator. There are five types of 

arms commonly used by actual industrial robot manipulators as shown in 

figure 2.2: cartesian, cylindrical, polar, SCARA and revolution. Although 

there are many possible ways prismatic and revolute joints are used to 

construct kinematic chains, in practice only a few of these are commonly 

used (Spong et al, 2006). Crowder (1998) stated that the basic robot arm 

has three joints, this allows the tool at the end of the arm to be positioned 

anywhere in the robots working envelope. Even though there are a large 

number of robot configurations that are possible, only five configurations are 

commonly used in industrial robotics as summarized in table 2.1. 

  

Table 2.1: Configurations commonly used in industrial robots (Crowder, 

1998) 

Polar 

 

The linear extending 

arm is capable of 

being rotated around 

the horizontal and 

vertical axes. 
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Cylindrical 

 

The linear extending 

arm can be moved 

vertically up and down 

around a rotating 

column. 

Cartesian and 

Gantry: 

 

Three orthogonal 

sliding or prismatic 

joints. 

Jointed Arm or 

Articulated 

 

Three joints arranged 

in an anthropomorphic 

configuration. 

Selective Compliance 

Assembly Robotic 

Arm, SCARA 

 

Two rotary axes and a 

linear joint. 

 

The robotic manipulator arrangements that are most typical in the industries 

are briefly described as follows. 

 

2.3.1. Articulated manipulator (RRR) 

This type of robotic manipulators comprises of revolute joints and the 

linkages. Articulated robotic manipulators are very useful in the industries 

due to their small cross section and projected ability to change elevation and 
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maneuver over obstacle (Pachaiyappan et al, 2014). The small cross section 

and the loads associated with suspension of the Robot while changing 

elevation or maneuvering over obstacles require large joint torque to weight 

rations for joint actuation. The articulated manipulator shown in figure 2.3 is 

also called a revolute or anthropomorphic manipulator. This kind of 

manipulator is known as an elbow manipulator. The structure and 

terminology associated with the elbow manipulator are shown in Figure 2.5. 

Another common revolute joint design is the parallelogram linkage shown in 

Figure 2.4. The revolute manipulator provides for relatively large freedom of 

movement in a compact space. The parallelogram linkage is typically less 

dexterous or agile than the elbow manipulator. 

 
Figure 2.3: The articulated revolute manipulator (Spong et al, 2006) 

 

 

Figure 2.4: The parallelogram revolute manipulator (Spong et al, 2006) 
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Figure 2.5: Structure of the elbow manipulator (Spong et al, 2006) 

 

 

 

2.3.2 Spherical Manipulator (RRP) 

The spherical (polar) manipulator was obtains by replacing the third or elbow 

joint in the revolute manipulator by a prismatic joint, as shown in figure 2.6. 

The term spherical manipulator is derived from the fact that the spherical 

coordinates defining the position of the end-effector with respect to a frame 

whose origin lies at the intersection of the three z axes are the same as the 

first three joint variables.  

 
Figure 2.6: The spherical manipulator (Spong et al, 2006) 

 

2.3.3 SCARA Manipulator (RRP) 

The SCARA (Selective Compliant Articulated Robot for Assembly) arm shown 

in Figure 2.7 has an RRP structure but it is quite different from the spherical 



22 
 

manipulator in both appearance and in its applications. Unlike the spherical 

design, which has z0 perpendicular to z1, and z1 perpendicular to z2, the 

SCARA has z0, z1, and z2 mutually parallel.  

 
Figure 2.7: The SCARA (Selective Compliant Articulated Robot for Assembly) 

(Spong et al, 2006) 

 

 

2.3.4 Cylindrical Manipulator (RPP) 

In the cylindrical manipulator is shown in Figure 2.8, the first joint is 

revolute and produces a rotation about the base, while the second and third 

joints are prismatic. As the name suggests, the joint variables are the 

cylindrical coordinates of the end-effector with respect to the base. 

 
Figure 2.8: The cylindrical manipulator (Spong et al, 2006) 

 

2.3.5 Cartesian manipulator (PPP) 

A manipulator whose first three joints are prismatic is referred to as a 

Cartesian manipulator, shown in figure 2.9. For the Cartesian manipulator, 

the joint variables are the Cartesian coordinates of the end-effector with 
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respect to the base. Cartesian manipulators are useful for table-top 

assembly applications and, as gantry robots, for transfer of material or 

cargo. 

 

 
Figure 2.9: The Cartesian manipulator (Spong et al, 2006) 

 

 

 

2.4 Robotic Manipulator Kinematics  

The kinematics model in (Banga et al, 2011; Iqbal et al, 2005; Elfasakhany 

et al, 2011; Ghuffar et al, 2006; Gupta et al, 2013; Spong et al, 2006) is 

useful in the trajectory planning of the robotic manipulator movements 

within its work envelop. With the assumption made by Spong et al (2006) 

that each joint has a single degree-of-freedom, the action of each joint can 

be described by a single real number; the angle of rotation in the case of a 

revolute joint or the displacement in the case of a prismatic joint. Kucuk et 

al (2006) opined that kinematics studies the motion of bodies without 

consideration of the forces or moments that cause the motion. Robot 

kinematics refers the analytical study of the motion of a robot manipulator. 

Formulating the suitable kinematics models for a robot mechanism is very 

crucial for analyzing the behaviour of industrial manipulators. The 

transformation between two Cartesian coordinate systems can be 

decomposed into a rotation and a translation.  The robot kinematics can be 

divided into forward kinematics and inverse kinematics.  
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2.4.1 Forward Kinematics 

A manipulator is composed of serial links which are affixed to each other 

revolute or prismatic joints from the base frame through the end-effector. 

Al-Tabey (2012) stated that the forward kinematics problem is to determine 

the position and orientation of the end effector, given the values for the joint 

variables of the robot. The objective of forward kinematic analysis is to 

determine the cumulative effect of the entire set of joint variables, that is, to 

determine the position and orientation of the end effector given the values of 

these joint variables. The joint variables are the angles between the links in 

the case of revolute or rotational joints, and the link extension in the case of 

prismatic or sliding joints. Hence, calculating the position and orientation of 

the end-effector in terms of the joint variables is known as forward 

kinematics (Kucuk et al, 2006). It is customary to establish a fixed 

coordinate system, called the world or base frame to which all objects 

including the manipulator are referenced.  

 

2.4.2 Inverse Kinematics 

The objective of inverse kinematic analysis is, in contrast, to determine the 

values for these joint variables given the position and orientation of the end 

effector frame. Kucuk and Bingul, (2006) stated that solving the inverse 

kinematics is computationally expansive and generally takes a very long 

time in the real time control of manipulators. Tasks to be performed by a 

manipulator are in the Cartesian space, whereas actuators work in joint 

space. Cartesian space includes orientation matrix and position vector. 

However, joint space is represented by joint angles. The conversion of the 

position and orientation of a manipulator end-effector from Cartesian space 

to joint space is called as inverse kinematics problem. In order to command 

the robot to move from one location to another, the inverse kinematics is 

needed. This is the problem of inverse kinematics.  
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2.4.3 Robotic Manipulator Dynamics 

Dynamics of the robotic manipulator studies the motion of bodies with the 

consideration of the forces or moments that cause the motion. The dynamic 

equation of the manipulator describes the relationship between torque and 

motion. In robotics, the link dynamic model is obtained starting from well 

known physical laws like the Newtonian mechanics and the Lagrange 

mechanics (Goldstein, 1980; Symon, 1987). Different robot arm dynamic 

models have been developed: Lagrange-Euler, Newton-Euler, D'Alembert 

(Craig J.J, 1989; Sciavicco and Siciliano, 1996; Fu et al, 1989; De Wit, 

1996). Nevertheless, they are equivalent to each other because they define 

the same physical phenomenon, i.e., the dynamics of rigid bodies assembled 

together to constitute a robot. Obviously, the structure of the motion 

equations is much different because each formulation was developed to 

achieve different objectives such as computation efficiency, simplicity to 

analyze and/or to simulate the structure, etc. 

 

The development of a dynamic model for the torque control of a robotic 

manipulator continues to attract more research attention. The Lagrange-

Euler model applied in (Asada, 1998; Spong et al, 2006; Yadav and Singh, 

2015) considered only the dynamics of the rigid bodies (arm) which 

comprises of the mass, length, inertia, angular position, velocity and 

acceleration of the links without considering the joint actuator dynamics. On 

the other hand, In (Izadbakhsh and Fateh, 2007; Bellicoso et al, 2013; 

Jaiswal and Kumar, 2014; Zhu and Fan, 2012; Spong et al, 2006; Fateh, 

2008), the joint actuator dynamics was considered in the development of 

dynamic model for joint torque control of the robotic manipulator.  Actually, 

since the torque needed to move the rigid bodies are generated by the 

actuators and the torque control law must be applied to the actuator as 

input voltage, therefore neglecting the actuator dynamics in the joint torque 
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control dynamic model makes the model to be incomplete and difficult to be 

applied. The robot link dynamics is very important as well as the joint 

actuator dynamics in the dynamic model of the robotic manipulator. Hence, 

the combination of the arm dynamics and the actuator dynamics yields a 

complete dynamic model for joint torque control of the manipulator as 

suggested in (Lewis et al, 2004). The independent joint control strategy in 

(Assada, 2010; Lewis et al, 2004; Spong et al, 2006) helps to apply this 

model for better precision and efficiency. This model is more preferred for 

the robust control of the manipulator since it involves a better dynamical 

description of the system.  

However, despite the improvements in the mathematical models of the 

manipulator, there exist different ranges of problems in the form of 

uncertainties in the models caused by frictional forces, payloads, and the 

mistakes in the parameters of the model or unmodelled parameters etc.   

 

2.5 Manipulator Joint Actuator 

Pachaiyappan et al., (2014) described robot actuator as the mechanism that 

provides the necessary forces to move the mechanical structure. Muhammad 

(2013) opined that, in order to control the parameters of industrial 

processes, there are various kinds of actuators on field. Actuator is a driver 

that runs some mechanical activity. For example, if a process needs to open 

a valve for fluid motion or move a robotic arm for some appropriate action, 

there will be a motor with specific applied controls such as the speed and 

angular position control. The proper selection of actuator will dictate how 

effective a robot can perform a specific task. Actuators can be either 

mechanical or electrical and have varying strengths and weaknesses as 

demonstrated in table 2.2. The basic actuators used for controlling motion 

include: air, hydraulic, clutch/brake, stepper and servo motors. The 

mathematical models are as follows: 
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Air Motors (Luo et al, 2008): 

𝑉𝑉𝑎𝑎(0) = 1
2
𝐿𝐿(𝐵𝐵2 − 𝑟𝑟2)𝜋𝜋 + 𝑉𝑉𝑛𝑛    𝑉𝑉𝑏𝑏(0) = 1

2
𝐿𝐿(𝐵𝐵2 − 𝑟𝑟2)𝜋𝜋 − 𝑉𝑉𝑛𝑛 

Where V is volume of chambers, r is rotor radius, L is vane active length. 

Hydraulic Motors (Madanipour, 2014): 

𝐷𝐷𝑚𝑚(𝑃𝑃𝑙𝑙𝑙𝑙 − 𝑃𝑃𝑟𝑟𝑟𝑟) = 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐽𝐽
𝑑𝑑𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

 

Where 𝐷𝐷𝑚𝑚 is motor displacement, P is pressure, T is torque, 𝐽𝐽 is inertia, w is 

speed. 

Clutch/Brake (Quang, 1998):  

𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑚𝑚 + 𝜔̇𝜔𝑚𝑚𝜃𝜃𝑚𝑚 

Where 𝑇𝑇𝑐𝑐 is torque of clutch, 𝑇𝑇𝑚𝑚 is torque of driven machine, 𝜃𝜃𝑚𝑚 is inertia of 

driven machine, wm is angular speed of driven machine. 

Stepper and servo motors use same mathematical model and the model is 

stated and applied in chapter three. 

 

Table 2.2: Comparison of Actuators (Pachaiyappan et al, 2014) 

Actuator 
Types 

Strength Weakness 

Air Motor Low Cost, Easily 
Maintained, Simple to 
Operate 

Audible Compressor Noise, 
Inefficient System, Difficult 
to Regulate Speed 

Hydraulic 
Motor 

High loads possible, 
Simple to operate 

Slow System, Inefficient 
System, High maintenance 
Requirement 

Clutch/ 
Brake 

Low Cost, Effective for 
Light Load, Easy to 
Perform System Matching 

Uncontrolled Acceleration, 
Components Prone to Wear, 
Non-repeatable System 

Stepper 
Motor 

Simple Control, Constant 
Load, Accurate Position 

Cannot Vary Load, Can Lose 
Steps, Resonance Problem 

Servo Motor High Performance, Small 
motor Size, Can Operate 
at High Speed 

High Cost System, 
Performance Limited by 
Controls, Speed Limited by 
Electronics 
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According to Pachaiyappan et al (2014), Steppers can be grouped into three 

categories that differ in terms of internal construction based on the use of 

permanent magnets and/or iron rotors with laminated steel stators: 

Permanent magnet, Variable reluctance, Hybrid. The term “servomotor” does 

not refer to one single kind of motor. Instead it refers to any type of motor 

that receives a command signal from a controller. In this same respect, any 

closed loop system can be referred to as a servo system. 

 

According to Farhan (2013), motion control is a sub-field of control 

engineering, in which the position or velocity of a given machine are 

controlled using some type of actuating device. Most used actuating devices 

in mechatronics applications are electric actuating machines (DC motors), 

which are used in many, if not most, modern machines (e.g. electric cars, 

locomotives, fans, turbines, and drills), robotics (e.g. Mobile robot and robot 

arm). Two main motion control applications are of concern namely, mobile 

robots and robotic arms. The motion of robotic manipulators are described in 

Degrees of Freedom (DOF) which is the number of possible movements a 

robotic arm is capable of completing. Shweta and Sanjay, (2012) designed 

an articulated 5-DOF robotic arm by direct and inverse kinematic analysis 

methods which is capable of completing five degrees of freedom in different 

directional movements. The possibility of the number of DOF depends on the 

number of the actuators or motors used to complete the possible number of 

different movements. In the 5DOF (five functions) robotic arm, each 

movement or DOF has a DC motor (Kumar and Raja, 2014) and a controller 

attached to it.  

 

Direct Current (DC) motors are often used in various industrial applications 

where a wide range of responses are required to follow a predetermined 
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trajectory of speed or position under variable load (Faramarzi & Sabahi, 

2011). According to Fateh (2013), single joint robot arm system consists of 

three parts; arm, connected to actuator through gear train with gear ratio, 

n. The DC motor is an example of electromechanical systems with electrical 

and mechanical components, a simplified equivalent representation of DC 

motor's two components are shown in figure 2.10a. DC motor turns 

electrical energy into mechanical energy and produces the torque required to 

move the robotic bodies or linkages to the desired angular position, θ, or 

rotate with the desired angular speed, ω. 

The objective in the development of the mathematical model for joint torque 

control is to relate the voltage applied to the armature of the actuator to the 

position of the link. In the same vein, the objective in the development of 

the mathematical model for the actuator is to relate the voltage applied to 

the armature of the actuator to the position of the shaft. Two balance 

equations can be developed by considering the electrical and mechanical 

characteristics of the system (Atlas, 2007) for the formulation of the joint 

actuator dynamic model. The torque produced by the joint is equal to the 

product of torque constant and actuator current.  

 
Figure 2.10a: A simplified equivalent representation of the PMDC motor's 

electromechanical components (Ahmad et al, 2013; Salem, 2013) 
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The joints of the manipulator experience different amount of torques 

depending on their locations in the structure of the manipulator. Joint 

actuators are designed and manufactured in different sizes and with different 

torque ratings and other parameters such as voltage, current, inertia etc. 

Since the actuator generates the force that moves the link, then it must 

produce a force greater or equal to the force produced due to link and 

possible payload. Therefore, the selection of the joint actuators becomes 

very vital in the development of a robust manipulator. 

2.5.1 Joint Actuator (Motor) Selection  

Every possible movement of the robotic manipulator is determined by the 

joints, and the performance of the joint is influenced by the motor torque 

and the total torque generated at that joint due to load. Thus, it becomes 

necessary to design the joint properly for adequate joint torque control. The 

design of the joint involves calculating the torque due to the load connected 

at every joint, selecting the motors based on the calculated load torques at 

the respective joints and deriving the parameters that are not given based 

on the given parameters of the selected motors. This method of joint design 

was carried out in Kafuko et al (2015). 

In the steps for actuator selection, first it is necessary to determine the 

maximum torque required for each joint motor. The torques are calculated 

by estimating the weight the motor shaft would have to be holding and 

multiplying it by the distance from the center of gravity of the weight back 

to the motor shaft. The weight included motors farther up the arm, the 

weight of the link arm etc. The calculated maximum torques for each joint 

motor is as shown in Table 2.3 (Emerich, 2007). 

The second step is choosing joint motors based on the calculated torque 

values at the respective joints, so a solid model of the design could be made 
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in Autodesk Inventor. The motors chosen by Emerich (2007) are high torque 

stepper motors from Anaheim Automation. The specific motor model 

numbers are shown in Table 2.3. Stepper motors output good amount of 

torque as well as high precision. These motors are small and light weight 

which is crucial in keeping the torque lower for the motors father back in the 

arm. 

Table 2.3: Torque requirements and motor selections (Emerich, 2007) 

Joint Maximum 
Required  
Torque 

(oz.-in.)  

Motor  
Selected  
(Anaheim Automation 

Model #)  

Motor Maximum 
Torque Rating  
(oz.-in)  

1 4315 42N3 4365 

2 983 34K2 1535 

3 109 23L1 126 

4 83 17Y4 100 

5 59 17L1 61 

6 19 14Y1 25 

End-Effector 10.7 GM12 14 

 

2.6 Robotic Manipulator Control Schemes 

Milchiorri (2006) stated that the robot performances are mainly influenced 

by the mechanical design and by the actuation system. He also explained 

that there are two types of robot control schemes: Decentralized (or 

independent) control schemes and Centralized control schemes. The 

decentralized control scheme also known as independent joint control (IJC) 

model has Single Input Single Output (SISO) configuration while the 

centralized control scheme has a Multiple Input Multiple Output (MIMO) 

configuration. From the review, SISO configuration (which can equally be in 
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the form of multiple SISO) is more common and simpler than the MIMO in 

practice. According to Alassar (2010), the basis of IJC is that the robotic 

manipulator is treated as a set of independent actuators working 

independently. This means that each link of the robotic manipulator is 

considered as single input single output (SISO) system with an independent 

controller. 

Independent joint control scheme is widely adopted in most industrial 

manipulator controller because of its simplicity (Voung and Ang, 2009). 

According to Richter, to derive the independent joint control model, it is 

assumed that the DC motor is connected to a gear reduction of ratio r : 1 

and moment of inertia Jg. The reduced-speed shaft drives a rotational inertia 

Jl, which represents the link driven by the motorized joint. The motion of the 

other links should influence the DC motor as well. For the independent joint 

model, however, the influences of the other links are treated as disturbances 

and then the controller is designed to be robust (tolerant) against them ( 

Richter). When applying the decentralized control scheme, Melchiorri (2006) 

stated that each joint of the robotic manipulator is considered 

independently, and the term d (= 𝜏𝜏𝑙𝑙 𝑟𝑟� ) is considered as an external 

disturbance. These considerations can be applied with proficiency when 

there is no direct coupling between the actuator and the joint (i.e., when 

there are gears). 

 

Figure 2.10b: The lumped model of a single link with actuator/gear train 

(Melchiorri, 2006; Spong, 2006; Bozma, 2015) 
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Figure 2.10b illustrates the independent control scheme where the actuator 

and link dynamics are considered. Where Ja, Jg and Jl are respectively, the 

actuator, gear, and load inertias. Bm is the coefficient of motor friction and 

includes the friction in the brushes and gears. 𝜏𝜏𝑙𝑙 is the link torque, r is the 

gear ratio.  Considering a DC motor actuator, the independent joint model of 

the robotic manipulator is derived in (Melchiorri, 2006; Spong, 2006; 

Bozma, 2015). Figure 2.10c shows the block diagram of a robotic 

manipulator. Figure 2.10d represents a third order system from input 

voltage V(s) to output position 𝜃𝜃𝑚𝑚. 

 
Figure 2.10c: Robotic manipulator block diagram (SISO)    

 

 

Figure 2.10d: Block diagram of actuator model with link (Melchiorri, 2006; 

Spong et al, 2006; Bozma, 2015) 

2.7 Robotic Manipulator System Uncertainties  

The robotic manipulator is a physical system which is modeled 

mathematically in many research works for control purpose and to enhance 

the performance of the system. Garulli et al stated that when modeling 

physical systems for control purposes, it is necessary to provide model 
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descriptions that capture the main features of the system behavior and are 

mathematically tractable at the same time. An extremely accurate model of 

a physical process may turn out to be unsuitable for application of the 

available analysis and design techniques. By contrast, an over-simplified 

model, which misses significant information on the system structure, may 

lead to unacceptable design performance. They opined that the discrepancy 

between the system and the adopted nominal model is usually represented 

as a perturbation on the nominal model. The resulting model, which is 

therefore composed of the nominal one and the perturbation, is usually 

referred to as the uncertain model or model set.  

 

Uncertainties are unavoidable in physical systems and they are classified 

into two categories: disturbance signals and dynamic perturbations. The 

former includes input and output disturbance, sensor noise and actuator 

noise, etc. The latter represents the discrepancy between the mathematical 

model and the actual dynamics of the system in operation. A mathematical 

model of any real system is always just an approximation of the true, 

physical reality of the system dynamics. Typical sources of the discrepancy 

include unmodelled (usually high-frequency) dynamics, neglected 

nonlinearities in the modeling, effects of deliberate reduced-order models, 

and system-parameter variations due to environmental changes and torn-

and-worn factors. These modeling errors may adversely affect the stability 

and performance of a control system. The consideration of the uncertainties 

in the design of a control system gave rise to the development of the robust 

control. Dynamic perturbations are usually described so that they can be 

well considered in system robustness analysis and design. 

 

Scherer (2001) stated that all mathematical models of a physical system 

suffer from inaccuracies that result from non-exact measurements or from 
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the general inability to capture all phenomena that are involved in the 

dynamics of the considered system. Even if it is possible to accurately model 

a system, the resulting descriptions are often too complex to allow for a 

subsequent analysis, not to speak of the design of a controller. Hence one 

rather chooses for a simple model and takes a certain error between the 

simplified and the more complex model into account. Therefore, there is 

always a mismatch between the model and the system to be investigated. In 

control engineering this mismatch is referred to as uncertainty.  The 

uncertainties in a physical system model can be classified into disturbance 

signals and dynamic perturbation. However, the dynamic perturbation is 

used to describe the mismatch between the model and the system. 

According to Gu et al (2005), many dynamic perturbations that may occur in 

different parts of a system can, however, be lumped into one single 

perturbation block Δ, for instance, some unmodelled, high-frequency 

dynamics which is referred to as “unstructured” uncertainty. The 

unstructured dynamics uncertainty in a control system can be described in 

different ways, such as shown in figures 2.11 and 2.12, where Gp(s) denotes 

the actual, perturbed system dynamics and Go(s) a nominal model 

description of the physical system. 

 

Figure 2.11: Additive perturbation (Gu et al, 2005) 
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Figure 2.12: Input multiplicative perturbation configuration (Gu et al, 2005) 

The additive uncertainty represents the absolute error between the actual 

manipulator dynamics and the nominal model representation of the system, 

while the multiplicative representations show relative errors. According to 

Garulli et al, the unstructured uncertainty representation is used to describe 

unmodelled or difficult to model dynamics and it is usually given as a bound 

on some measure of the error signal between system and nominal model 

outputs for a chosen class of input signals. However, dynamic perturbations 

in many industrial control systems may also be caused by inaccurate 

description of component characteristics, torn-and-worn effects on plant 

components, or shifting of operating points, etc. Such perturbations may be 

represented by variations of certain system parameters over some possible 

value ranges. They affect the low-frequency range performance and are 

called parametric uncertainties (Gu et al, 2005). The structured uncertainty 

is a dynamic uncertainty represented by an element such as a finite 

dimensional vector or an operator, in some pre-specified uncertainty set of a 

suitable space. The uncertain elements in this case may be the coefficients 

of a transfer function, or the components of system matrices in a state-

space realization.  

2.8. Basic Control Systems 

There are key basic subsystems of a control system based upon whether it is 

a closed or open loop system. In the open loop control system the basic 
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subsystems are input, controller, plant and the output. It is simple and 

economical but lacks feedback element which makes it suffer from 

inaccuracies and optimization becomes impossible. However, a closed loop 

control system solves most problems of the open loop control system. The 

basic closed loop control subsystems are: reference input, controller, plant, 

measured output (actual output), transducer (or sensor) (Norman, 2011; 

Tarek et al). In the closed loop control system the output is compared with 

the reference input and error signal is generated. The error signal generated 

is fed to the controller to compensate the error so that the desired output is 

produced. Therefore, the controller becomes a key factor in the design of a 

control system. 

 

The joint torque at every joint of the robotic manipulator is optimized by the 

application of feedback subsystem and a controller designed based on the 

parameters of that joint and its motor. The term controller design refers to 

the process of selecting feedback gains that meet design specifications in a 

closed-loop control system. Most controller design methods are iterative, 

combining parameter selection with analysis, simulation, and insight into the 

dynamics of the plant (Ahmad et al, 2013; D'Azzo et al, 1988; Hedaya, 

2011; Farhan, 2013). A controller is a device which can sense information 

from linear or nonlinear system (e.g., robot manipulator) to improve the 

systems performance (Kurfess, 2005; Slotine et al, 1991; Ogata, 2009; 

Cheng et al, 2008). Harry et al (2002) opined that any physical controller 

device that has a feedback structure is called a feedback controller. In terms 

of its mathematical model, the feedback structure of a controller is often 

represented by certain variables (representing what the controller ‘sees’) 

being mapped to other variables (representing the influence that the 

controller exerts on the system). The first kind of variables are called 

measured outputs of the system, the second kind of variables are called 
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control inputs to the system. Typically, the input variables are considered to 

be caused by the measured outputs. Often, designing a controller for a given 

joint can be formulated as the problem of finding a suitable map between 

measured outputs of the joint and control inputs. It is always difficult for the 

joint to reproduce its input (desired output) at its output (actual output) due 

to uncertainties existing in the system. Thus, the performance of the joints 

is much affected by uncertainties.  

 

2.8.1. Open Loop Control System 

An open-loop control system is a control system which uses a controller and 

an actuator to obtain the desired output response, as shown in figure 2.13. 

An open-loop control system has no feedback sub-system; hence it cannot 

measure the nature of the actual output response to use it to control the 

input response. 

 

 

 

 

Figure 2.13: Block diagram of an open-loop control system 

 

The output and the transfer function of an open-loop control system are 

generally express as follows: 

𝑌𝑌(𝑠𝑠) = 𝑅𝑅(𝑠𝑠)𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)          (2.1) 

 

𝑇𝑇𝑇𝑇(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

= 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)         (2.2) 

Where 

Y(s) = output 

R(s) = Input  

Controller 

Gc(s) 

Process 

Gp(s) 

Input (R (s)) Output (Y (s)) 
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Tf = Transfer function of the open-loop control system 

 

2.8.2. Closed-Loop Control System 

A closed-loop control system is a system which utilizes an additional 

measure of the actual output to compare it with the input (desired output) 

response. A simple closed-loop control system is shown in figure 2.14. The 

measure of the actual output is called the feedback signal. Feedback control 

system is a control system that tends to maintain a prescribed relationship 

of one system variable to another by comparing the functions of these 

variables and using the difference called error signal, as a measure of 

control. With an accurate sensor, the measured output is a good 

approximation of the actual output of the system.  

 
Figure 2.14: A block diagram of a closed-loop control system 

 

The transfer function of the simple closed-loop control system is given as 

follows: 

𝑇𝑇𝑇𝑇 = 𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

= 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)
1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝐻𝐻(𝑠𝑠)

        (2.3) 

 

Where H(s) is the feedback gain 
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According to Kambiz and Augustin, (2012), feedback control is a control 

mechanism that uses information from measurements. In a feedback control 

system, the output is sensed and fed back into the system. In the positive 

feedback control, the measured output Y(s) is fed back into the system and 

adds to the reference input to give the error e(s) which is fed into the 

controller. This approach increases the error signal. However, in the negative 

feedback control, the measured output Y(s) is fed into the system and 

compared with the reference input R(s) to produce the error e(s) signal 

which is fed into the controller. This method reduces the error signal. The 

negative feedback systems are usually stable. 

 

DC motors are quite popular in process industry due to various control 

characteristics. However due to some disadvantages, the robotic 

manipulators are mostly developed using stepper motors and induction 

motors. The operation of stepper motors is open-loop which ultimately 

produces very low performance results. The step response is very poor 

having significant overshoot and long settling time. Therefore, feedback 

control systems have been proposed for stepper motor position control 

systems. The same is also applicable on DC motor position control systems 

with acceptable results (Muhammad, 2013). The negative feedback was 

applied in (Farhan, 2013; Muhammad, 2013) for the control of DC motor for 

speed and position control. 

 

According to Jaiswal and Kumar (2014), controlling robot manipulator is 

essential problem to guarantee the robot executing the desired task with 

minimum error. Many control techniques have been used to enhance the 

performance of the robot manipulators in different fields starting from 

conventional controllers such as Proportional integral derivative (PID) 

controller to intelligent controller such as neural network (NN) and fuzzy 
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Logic controllers (Al-Khedher and Alshamasin, 2012; Alshamasin et al, 

2012). However, considering the presence of uncertainties in the physical 

system and its model representation, the system controller design does not 

only base on the performance specifications such as settling time and 

overshoot but focuses on achieve system robustness in order to cancel the 

effects of the uncertainties and perform optimally in the presence of the 

uncertainties. This leads directly to the requirement of control design 

robustness, which demands that satisfactory performance is achieved for the 

uncertain model, i.e., the nominal model and the class of possible 

perturbations (Garulli et al). 

 

2.9 Robust Control 

In physical systems theory mathematical representation, output control is a 

problem of choosing the input u of the plant G such that the output y of this 

system approaches some specified reference input signal r with time. This is 

achieved in the presence of disturbance signals w. In the feedback control 

system in figure 2.15, K is an error feedback controller, which produces the 

input u of the system G using the control error e=y-r. In robust control, it is 

required that the output y of the system G converges to the reference signal 

r even if the parameters of the plant experience some perturbations. 

Robustness is an essential property for the controllers used in practical 

applications or physical systems, because the mathematical modeling of the 

physical system often require making approximations and linearization, and 

also assumptions which brings about mismatch or uncertainty between the 

real physical system and the model. The system uncertainties can be in two 

forms: unknown disturbances affecting the process, and incompletely known 

plant dynamics, i.e., model uncertainties. 
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Figure 2.15: Feedback control structure of a physical system 

 

The feedback control system can be restructured as illustrated in figure 

2.16. In order to compensate for the uncertainties in the system the natural 

approach is to use measurements (y) from the process, and let the 

manipulated variable u be a function of the measured process outputs y as 

well. In figure 2.16, v represents disturbance, y represents measured 

output, and K represents controller. 

 

Figure 2.16: Feedback control system (Toivonen, 1998) 

Gu at el (2005) stated that a control system is robust if it remains stable and 

achieves certain performance criteria in the presence of possible 

uncertainties. The robust design is to find a controller, for a given system, 

such that the closed-loop system is robust. Scherer (2001) opined that the 

main goal of robust control techniques is to take the uncertainties in a 
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systematic fashion into account when analyzing a control system or when 

designing a controller for it.  

The ultimate objective of the robust control is to minimize the effect of 

disturbance on output; the sensitivity S and the complementary function T 

are to be reduced (Bansal and Sharma, 2013). Considering G (s) and K(s) as 

the open loop transfer function of the plant and controller transfer function 

respectively, this will ensure robustness and good performance of closed 

loop system (Bansal and Sharma, 2013).  

 

The design of a controller for the robotic manipulator involves generating the 

controller gains which can compensate the feedback error to produce a 

control signal u, which is then fed into the system in order to produce 

satisfactory performance of the manipulator. There are many controller 

design approaches that have been applied depending on the control goal and 

the functions of the robotic manipulator. In this work, the goal is to design a 

robust controller for the manipulator joint torque control and the two 

controller design techniques employed are: the H-Infinity synthesis and the 

PID controllers.  

 

In robust controller design, it is well-known that a well-designed control 

system should meet the following requirements besides the nominal stability 

(Tan et al, 1999):  

• Disturbance attenuation,  

• Set-point tracking,  

• Robust stability and/or robust performance.  

 

2.9.1 Proportional-Integral-Derivative (PID) Controller 

PID controller has been implemented in many controller designs for 

automatic control systems. Shuaib and Ahmed, (2014) presented a work on 
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robust PID control system design using Integral Time Absolute Error (ITAE) 

performance Index. Ahuja and Tandon (2013) designed a robust PID 

Controller Tuning for DC Motor Speed Control. In these works, PID controller 

was implemented to compensate the error due to the mismatch between the 

desired output and actual output for the improvement of the system 

performance. The PID controller design method is a common and effective 

method of controller gain selection approach. The controller gains are 

selected based on the system dynamics in order to compensate the error 

generated through feedback system and improve the system output. This 

approach employs three factors in its control technique: Proportional, 

Integral and Derivative. These factors contribute to the achievement of good 

control ability of the approach. The mathematical function of PID controller is 

represented as: 

 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑃𝑃 �𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝐼𝐼 ∫ 𝑒𝑒(𝑡𝑡).𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐷𝐷
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

�      (2.6) 

𝑢𝑢(𝑡𝑡) = 𝐺𝐺𝐺𝐺. 𝑒𝑒(𝑡𝑡)          (2.7) 

Where u(t) is the controller output, e(t) is the error signal. 

 

The PID controller model can be represented as follows:   

𝐺𝐺𝐺𝐺 = 𝐾𝐾𝑃𝑃 �1 + 1
𝑇𝑇𝐼𝐼𝑠𝑠

+ 𝑇𝑇𝐷𝐷𝑠𝑠�         (2.8) 

where KP is the proportional gain, TI is the integral time constant, TD is the 

derivative time constant, KI =KP /TI is the integral gain and KD =KP/TD is the 

derivative gain. The terms KP, TI and TD definitions are: 

• The proportional term: providing an overall control action proportional 

to the error signal through the all pass gain factor. 

• The integral term: reducing steady state errors through low frequency 

compensation by an integrator. 

• The derivative term: improving transient response through high 

frequency compensation by a differentiator. 
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These three variables KP, TI and TD are usually tuned within given ranges. 

Therefore, they are often called the tuning parameters of the controller. By 

proper choice of these tuning parameters a controller can be adopted for a 

specific plant to obtain a good behaviour of the controlled system. The 

transfer function of the PID controller is give as: 

 

𝐺𝐺𝐺𝐺(𝑠𝑠) = 𝑈𝑈(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

= 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
𝑆𝑆

+ 𝐾𝐾𝐷𝐷𝑠𝑠 =  𝐾𝐾𝐷𝐷𝑆𝑆
2+𝐾𝐾𝑃𝑃𝑆𝑆+𝐾𝐾𝐼𝐼
𝑆𝑆

     (2.9) 

 

There are several prescriptive rules used in PID tuning. The most effective 

methods generally involve the development of some form of process model, 

and then choosing P, I, and D based on the dynamic model parameters.   

 

2.9.2 H-Infinity Synthesis 

As presented by Toivonen (1998), robustness against model uncertainties is 

classically handled by phase and gain margins to ensure closed-loop stability 

in spite of modeling errors. The classical methods are, however, not readily 

generalized to multivariable plants, and they do not handle the problem of 

simultaneously achieving good performance against disturbances as well as 

robustness against model uncertainties. The modern approach to design 

controllers which are robust against model uncertainties is provided by the 

so-called H-Infinity control theory. This theory has been developed largely 

during the 1980's. In this approach, it is assumed that the plant is 

represented as: 

 

𝐺𝐺𝑃𝑃 = 𝐺𝐺0(𝑠𝑠) + ∆(𝑠𝑠)          (2.10)  

 

where G0 is the 'nominal' plant model (often linear), and ∆ represents a 

model uncertainty. The uncertainty is unknown but assumed to belong to 
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some kind of uncertainty set D, i.e., ∆ Є D. For example, even though the 

nominal model may be linear, the uncertainty ∆ may be nonlinear. In this 

way nonlinearities around a nominal linearized model G0 valid at an 

operating point may be captured in the uncertainty ∆. The control system in 

figure 2.17 is called robustly stable with respect to the uncertainty D if it is 

stable for all ∆ Є D. For an important and realistic class of bounded 

uncertainties, it turns out that the condition that the closed loop is stable for 

all possible ∆ Є D is equivalent to a bound on the so-called H-Infinity norm 

of the closed-loop transfer function. 

 

The condition that the closed loop is stable for all possible ∆ Є D is 

equivalent to a bound on the H-Infinity norm of the closed-loop transfer 

function. The H-Infinity norm of the stable scalar transfer function G(s) is 

defined as: 

 

||𝐺𝐺||∞ = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜔𝜔 |𝐺𝐺(𝑗𝑗𝑗𝑗)|         (2.11) 

 

This means that, the H-Infinity norm is the largest gain of the system taken 

over all frequencies. This can be traceable from the Bode plot of the 

controlled system gains. 

 

According to Nawash (2001), the real problem in robust multivariable 

feedback control system is to synthesize a control law which maintains 

system response and error signals to within pre-specified tolerances despite 

the effects of uncertainty on the system. Uncertainty may take many forms 

but among the most significant are noise, disturbance signals and transfer 

function modeling errors. Another source of uncertainty is unmodelled 

nonlinear distortion. These forms of uncertainties have different negative 
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effects on the performance of the system, therefore they must be considered 

in the design of the system controller.  

 

Two categories of uncertainties in robotic arm are the disturbance signals 

and dynamic perturbations. The disturbance signals include input and output 

disturbance, sensor noise and actuator noise, etc. The dynamic perturbation 

(also known as model uncertainty or error) results from unmodelled 

dynamics, neglected nonlinearities in the modeling, effects of deliberate 

reduced-order models, and system-parameter variations due to 

environmental changes and torn-and-worn factors.  

 
Figure 2.17: Control of uncertain plant (Toivonen, 1998). 

Conventionally, H∞ controller synthesis employs two transfer functions 

which divide a complex control problem into two separate sections, one 

dealing with stability and disturbance rejection, the other dealing with 

performance and noise suppression: The sensitivity function, S, and the 

complementary sensitivity function, T, which are required for the controller 

synthesis and are given in (Bansal and Sharma, 2013; Nair, 2011). 

 
Sensitivity function is the ratio of output to the disturbance of a system and 

complementary sensitivity function is the ratio of output to input of the 

system (Bansal and Sharma, 2013; Nair, 2011). 
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Figure 2.18: Plant model for the H-infinity synthesis (Bansal and Sharma, 

2013) 

 

 
Figure 2.19: General control problem (Bansal and Sharma, 2013) 

 

Now the objective is to find a controller K, which, based on the information 

in y, generates a control signal u, which counteracts the influence of w on z, 

thereby minimizing the closed loop norm w to z.  The ultimate objective of 

the robust control is to minimize the effect of disturbance on output; hence 

the sensitivity S and the complementary function T are to be reduced. This 

can be achieved by minimizing the magnitude of |S| and |T| by making 

|𝑆𝑆(𝑗𝑗𝑗𝑗)| < 1
𝑊𝑊𝑠𝑠(𝑗𝑗𝑗𝑗) and |𝑇𝑇(𝑗𝑗𝑗𝑗)| < 1

𝑊𝑊𝑡𝑡(𝑗𝑗𝑗𝑗) 

𝑊𝑊𝑠𝑠 is the performance weighting function to limit the magnitude of the 

sensitivity function and 𝑊𝑊𝑡𝑡 is the robustness weighting function to limit the 

magnitude of the complementary sensitivity function. This technique known 

as loop shaping technique is widely used for selecting the weight functions 

for the synthesis of the controller. The loop shaping follows the trajectories 

for the plot of S and T as shown in figure 2.20 and figure 2.21. 
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Figure 2.20: Sensitivity graph (Nair, 2011) 

 

 
Figure 2.21: Complementary sensitivity graph (Nair, 2011) 

 

Loop shaping is done to make the frequency response of the plant with the 

weight functions to come in the desired manner. In loop shaping the 

parameters of the weight functions are changed to make the frequency 

response of the whole system to remain within limits. The control synthesis 

requires the plant transfer function, controller transfer function and the 

various weight functions to augment together. Thus an augmented plant 

model is made as shown in figures 2.18 and 2.19. The generalized plant P(s) 

is given as (Bansal and Sharma, 2013; Nair, 2011): 

 

�
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
𝑒𝑒

� = �

𝑊𝑊𝑠𝑠 −𝑊𝑊𝑠𝑠𝐺𝐺
0 𝑊𝑊𝑘𝑘𝑘𝑘
0 𝑊𝑊𝑡𝑡𝐺𝐺
𝐼𝐼 −𝐺𝐺

� �𝑤𝑤𝑢𝑢�         (2.12) 

A possible state space realization for P(s) can be written as 



50 
 

𝑃𝑃 = �

𝑊𝑊𝑠𝑠 −𝑊𝑊𝑠𝑠𝐺𝐺
0 𝑊𝑊𝑘𝑘𝑘𝑘
0 𝑊𝑊𝑡𝑡𝐺𝐺
𝐼𝐼 −𝐺𝐺

�         (2.13) 

From (2.13) a mixed sensitivity problem or the optimization problem is 

written as follows: 

𝑃𝑃 = �
𝑊𝑊𝑠𝑠𝑆𝑆
𝑊𝑊𝑘𝑘𝑘𝑘𝐾𝐾𝐾𝐾
𝑊𝑊𝑡𝑡𝑇𝑇

�           (2.14) 

Where Ws, Wks and Wt are the tuning parameters called weights and it 

typically requires some iteration to obtain the weights which will yield a good 

controller.  

 

As stated by Bansal and Sharma (2013) and Nair (2011), in case of 

optimization problem the objective is to find a rational function controller 

K(s) to make the closed loop system stable, optimize performance and 

satisfying the following expression 

min‖𝑃𝑃‖ = min �
𝑊𝑊𝑠𝑠𝑆𝑆
𝑊𝑊𝑘𝑘𝑘𝑘𝐾𝐾𝐾𝐾
𝑊𝑊𝑡𝑡𝑇𝑇

� = 𝛾𝛾 

 
Where P is the transfer function from w to z i.e 

|𝑇𝑇𝑧𝑧𝑧𝑧| = 𝛾𝛾 (is the cost function) 

 

H-infinity optimization problem is formulated as the task of designing a 

stabilizing controller K(s), which internally stabilizes the closed-loop system 

with good reference tracking, reduces sensitivity to disturbances and 

suppresses noise; thereby achieving a robust and performance optimized 

system. 

In summary, the robot suffers from the problem of uncertainties which limits 

its performance due to large tracking error; to solve this, a robust controller 

which can reduce the error and maintain stability of the system is required. 
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CHAPTER THREE 

DESIGN METHODOLOGY  

The materials/tools, modeling methods and analysis employed in the 

development of a robust control for an articulated robotic manipulator under 

uncertainties are discussed in this chapter. The mathematical models for the 

robotic manipulator are very important for the development of the system. 

In order to achieve robust joint torque control, the robot manipulator 

analysis must involve the source of the joint torque. Most existing models 

applied either only the arm or the actuator dynamics. Some of the existing 

works neglected some actuator or arm dynamics. The development of 

mathematical model for joint torque control of the manipulator must involve 

a complete dynamical description of the entire system comprising of the 

links (rigid bodies) and the actuators. Therefore, a complete dynamic model 

comprising of the link dynamics and actuator dynamics was proposed in this 

work for torque control of the manipulator. Independent joint control 

strategy was adopted in order to separately control the joint torques to 

enable precise robust controller design for every joint of the manipulator.  

However, due to the mismatch between the manipulator and the 

mathematical model, robust control was introduced to address the problem 

of uncertainties in the system by designing a controller for the joint torque 

control based on strict robustness design specifications (i.e. Reference 

tracking, sensitivity etc.) that can annul the effects of the uncertainties.  

Computer Aided Design (CAD) model of the 3DOF articulated robotic 

manipulator is generated using Autodesk inventor application software. The 

purpose of employing this software is to provide a 3D model representation 

of the system and generate equivalent digital block diagram representation 

called SimMachanics model of the robot manipulator in Matlab with 
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SimMachanics add-on for simulating the 3D robot manipulator mechanical 

system. The SimMechanics model provides mass properties of the 

manipulator parts designed in 3D and also allows attachment of the 

designed controller gains to the manipulator joints of the SimMechanics 

model through the joint actuators. The actuator model for the 3DOF 

articulated robotic manipulator was developed and implemented in Simulink 

model.  

3.1 Materials/Tools 

There are basically three application software used in the realization of this 

research work namely: Autodesk Inventor Professional 2015, Simmechanics 

add-on Toolbox, and Matlab/Simulink. Table 1 shows a detailed summary of 

the materials. 

Table 3.1: Summary of materials/Tools 

Material/Tool Description Purpose 

Autodesk 

Inventor 

Professional 2015 

Autodesk Inventor, 

developed by U.S. 

based software 

company Autodesk, is 

a computer-aided 

design application for 

creating 3D digital 

prototypes used in the 

design, visualization 

and simulation of 

products 

To create an accurate 3D 

design of the articulated 

robotic manipulator. 

To enable digital model 

conversion of the robot arm 

from the 3D model for analysis 

and control 

SimMechanics SimMechanics is an 

add-on toolbox in 

The purpose of SimMechanics 

is the engineering design and 
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Matlab. It is a part of 

Physical Modeling. 

Physical Modeling runs 

within the Simulink 

environment and 

interfaces seamlessly 

with the rest of 

Simulink and with 

MATLAB 

simulation of mechanical 

systems of rigid bodies 

connected by joints, with the 

standard Newtonian dynamics 

of forces and torques. 

To provide a suite of tools to 

specify bodies and their mass 

properties, their possible 

motions, kinematic constraints, 

coordinate systems, and the 

means of initiating and 

measuring motions 

Simulink/Matlab 

R2014a 

Simulink is a block 

diagram environment 

for multi-domain 

simulation and Model-

Based Design in 

Matlab.  

Its purpose is to create block 

diagram environment of the 

design for simulation, 

automatic code generation, 

and continuous test and 

verification. 

 

3.2. Robotic Manipulator Parameters 

The robotic manipulator parameters angular position, velocity, and the 

acceleration of the arms, these parameters are attributed to the torque 

produced by the actuators moving the arms. 

  

3.2.1 Angular Velocity 

Motors are devices that convert electrical energy into mechanical energy. 

The D.C. motors convert electrical energy into rotational energy. That 

rotational energy is then used to lift, propel, or turn objects, etc. When 

specified voltage is supplied to a motor, it rotates the output shaft that 
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carries the link of the manipulator at some speed. This rotational speed or 

angular velocity (𝜔𝜔 = 𝜃𝜃), is typically measured in radians/second {rad/s}, 

revolutions/second {rps}, or revolutions/minute {rpm} 

 

3.2.2 Power 

When a torque (with respect to the axis of rotation) acts on a body that 

rotates with angular velocity, its power (which is defined as the rate of doing 

work) is the product of the torque and angular velocity and it is calculated 

using the following relationship: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜏𝜏 ×  𝜔𝜔           (3.1) 

 

3.2.3 Torque 

Torque is defined as the turning or twisting force and it is calculated using 

the following relationship: 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝜏𝜏) = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹) × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ (𝐿𝐿)        (3.2) 

𝜏𝜏 = 𝐹𝐹 × 𝐿𝐿            (3.3) 

𝐹𝐹 = 𝑊𝑊 = 𝑚𝑚 × 𝑔𝑔           (3.4) 

Where W is the weight, m is the mass, and g is the acceleration due to 

gravity, therefore, 

𝜏𝜏 = 𝑚𝑚 × 𝑔𝑔 × 𝐿𝐿           (3.5) 

𝜏𝜏 = 𝑊𝑊 × 𝐿𝐿            (3.6) 

 

In order to estimate the torque required at each joint, the worst case 

scenario must be chosen. In figure 3.1, a link of length L is rotated 

clockwise. Only the perpendicular component of length between the pivot 

and the force is taken into account. We observe that this distance decreases 

from L3 to L1 (L1 being zero). Since the equation for torque is length (or 

distance) multiplied by the force, the greatest value will be obtained using 
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L3, since F does not change. The link can be similarly rotated 

counterclockwise and the same effect will be observed. 

 

 

Figure 3.1: Rotation of link length (Benson, 2013) 

This means that a joint revolving vertically is not involved in weight lighting 

and thus has a zero torque. 

 

3.2.4 Calculations of Joint Torques  

The major purpose of joint force calculations in figure 3.2 is for motor 

selection. In most robot arm designs the weight of the robot arm and the 

weight of a possible load are considered in choosing a motor in order to 

achieve a good design that can support the weight of the arm and the load.  

 

 

 

 

 

 

Figure 3.2: Force calculation of joints 
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To carry out a moment arm calculation, multiplying downward force times 

the linkage lengths. This calculation must be done for each lifting actuator. 

The manipulator design in this work has two DOF that requires lifting, and 

the center of mass of each linkage is assumed to be Length/2. The 

remaining degree of freedom does not require lifting. For the manipulator to 

function properly the following point must be met: 

• The total torque about a joint must be equal or less than the torque 

produced by the actuator 

 

∑𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎      (3.7) 

The robotic manipulator joint torque is determined as follows: 

Torque about Joint 1:  

𝑀𝑀1 = 𝐿𝐿1
2
∗ 𝑊𝑊1 + 𝐿𝐿1 ∗ 𝑊𝑊4 + �𝐿𝐿1 + 𝐿𝐿2

2
� ∗ 𝑊𝑊2 + (𝐿𝐿1 + 𝐿𝐿3) ∗ 𝑊𝑊3     (3.8) 

Torque about Joint 2:  

𝑀𝑀2 = 𝐿𝐿2
2
∗ 𝑊𝑊2 + 𝐿𝐿3 ∗ 𝑊𝑊3          (3.9) 

 

Where: 

m1=mass of link1 

m2=mass of link2 

m3=mass of load 

m4=mass of actuator2  

 

W1 = Weight of link1  

W2 = Weight of link2  

W3 = Weight of load  



57 
 

W4 = Weight of actuator (servo) 2 

 

L = Length 

L1 = Length of link1 

L2 = Lenth of link2 

LLoad = Length of the load (end-effector) 

L3 = Length2 + (½*LLoad) 

 

M0 = Base Actuator (Cylindrical movement)  

M1 = Actuator 1 (Joint I)  

M2 = Actuator 2 (Joint II)  

 

The above equations for torque calculation only deal with the case where the 

robot arm is being held horizontally (not in motion). For the arm to move 

from a rest position, acceleration is required. To solve for this added torque, 

it is known that the sum of torques acting at a pivot point is equal to the 

moment of inertia (J) multiplied by the angular acceleration (a): 

 

𝜏𝜏 = 𝐽𝐽 × 𝑎𝑎           (3.10) 

 

To calculate the extra torque required to move (i.e. create an angular 

acceleration) the moment of inertia of the part from the end to the pivot is 

calculated using the equation (Benson, 2013): 

𝐽𝐽 = 𝑚𝑚 ×𝐿𝐿2

2
           (3.11) 

 

Where m is the mass of the robot arm link and L is the length of the link. 

Note this equation calculates the moment of inertia about the center of 

mass.  
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Therefore, when choosing an actuator for the manipulator, the added torque 

to the static or holding torque also known as the detent torque is 

considered. Detent torque is the torque required to rotate the motor‘s output 

shaft with no current applied to the windings. As with all dynamic tools, 

inefficiencies in the actuators and joints themselves must also be taken into 

consideration. This way, the motor at each joint will be able to provide more 

than the required torque to keep the arm stationary. The required torque to 

accelerate the weight being support by an actuator from a static position can 

be calculated using the following relation (Benson, 2013): 

 

∑𝜏𝜏 = 𝜏𝜏ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐽𝐽 ∗ 𝑎𝑎        (3.12) 

3.3 Forward Kinematics Model 

Forward kinematics as illustrated in figure 3.3 is the method for determining 

the orientation and position of the end effector, given the joint angles and 

link lengths of the robot arm. Hence the end effector location is calculated 

with given joint angles and link length of links.  

 

Figure 3.3: kinematics of a two-link 3DOF planar arm 
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Assume that the base is located at x=0 and y=0. The first step would 

be to locate x and y of each joint.  

Joint 0 (with x and y at base):  

x0 = 0  

y0 = L0 = 0  

Joint 1 (with x and y at J1):  

cos 𝜃𝜃1 = 𝑥𝑥1
𝐿𝐿1

          (3.13)  

𝑥𝑥1 = 𝐿𝐿1 cos 𝜃𝜃1         (3.14) 

 

sin𝜃𝜃1 = 𝑦𝑦1
𝐿𝐿1

          (3.15) 

𝑦𝑦1 = 𝐿𝐿1 sin𝜃𝜃1         (3.16)  

 

Joint 2 (with x and y at J2):  

sin𝜃𝜃2 = 𝑥𝑥2
𝐿𝐿2

          (3.17) 

𝑥𝑥2 = 𝐿𝐿2 sin𝜃𝜃2         (3.18) 

cos 𝜃𝜃2 = 𝑦𝑦2
𝐿𝐿2

          (3.19) 

𝑦𝑦2 = 𝐿𝐿2 cos 𝜃𝜃2         (3.20) 

End Effector Location:  

𝑥𝑥0 + 𝑥𝑥1 + 𝑥𝑥2  

or  
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0 + 𝐿𝐿1 cos 𝜃𝜃1 + 𝐿𝐿2 sin𝜃𝜃2  

𝑦𝑦0 + 𝑦𝑦1 + 𝑦𝑦2  

or  

0 + 𝐿𝐿1 sin𝜃𝜃1 + 𝐿𝐿2 cos 𝜃𝜃2  

 

z = α (alpha), in cylindrical coordinates  

 

The coordinates (x, y) of the tool are expressed in this coordinate frame as 

𝑥𝑥 = 𝑥𝑥2 = 𝐿𝐿1 cos 𝜃𝜃1 + 𝐿𝐿2 cos(𝜃𝜃1 +𝜃𝜃2)        (3.21) 

𝑦𝑦 = 𝑦𝑦2 = 𝐿𝐿1 sin𝜃𝜃1 +𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)       (3.22) 

 

L1 and L2 are the lengths of the two links, respectively. Also the orientation 

of the tool frame relative to the base frame is given by the direction cosines 

of the x2 and y2 axes relative to the x0 and y0 axes, that is: 

𝑥𝑥2. 𝑥𝑥0 = cos(𝜃𝜃1 + 𝜃𝜃2) ; 𝑥𝑥2.𝑦𝑦0 = − sin(𝜃𝜃1 + 𝜃𝜃2) 

𝑦𝑦2. 𝑥𝑥0 = sin(𝜃𝜃1 + 𝜃𝜃2);  𝑦𝑦2.𝑦𝑦0 = cos(𝜃𝜃1 + 𝜃𝜃2) 

 

which we may combine into an orientation matrix 

�
𝑥𝑥2. 𝑥𝑥0 𝑦𝑦2. 𝑥𝑥0
𝑥𝑥2.𝑦𝑦0 𝑦𝑦2.𝑦𝑦0� = �

cos(𝜃𝜃1 + 𝜃𝜃2) − sin(𝜃𝜃1 + 𝜃𝜃2)
sin(𝜃𝜃1 + 𝜃𝜃2) cos(𝜃𝜃1 + 𝜃𝜃2) �     (3.23) 

 

Equations (3.21), (3.22) and (3.23) are referred to as the forward kinematic 

equations for this arm.  

 

3.4 Inverse Kinematics Model 

Inverse kinematics is referred to as the opposite of forward kinematics. This 

is when the desired end effector position is known, but the joint angles 

required to achieve the desired position is to be calculated.  
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Using the Law of Cosines, the angle θ2 is given by: 

 

cos 𝜃𝜃2 = 𝑥𝑥2+𝑦𝑦2−𝐿𝐿12−𝐿𝐿22

2𝐿𝐿1𝐿𝐿2
= 𝐷𝐷         (3.24) 

 

θ2 can be determined as 

𝜃𝜃2 = cos−1(𝐷𝐷)          (3.25) 

 

Alternatively, if cos(θ2) is given by equation (2.4) then sin(θ2) is given as: 

sin(𝜃𝜃2) = ±√1 − 𝐷𝐷2         (3.26) 

 

and, hence, θ2 can be found by 

𝜃𝜃2 = tan−1 ±√1−𝐷𝐷2

𝐷𝐷
          (3.27) 

 

The advantage of this alternative approach is that both the elbow-up and 

elbowdown solutions are recovered by choosing the positive and negative 

signs in equation (3.27), respectively. θ1 is now given as 

𝜃𝜃1 = tan−1�𝑦𝑦 𝑥𝑥� � − tan−1 � 𝐿𝐿2 sin𝜃𝜃2
𝐿𝐿1+𝐿𝐿2 cos𝜃𝜃2

�       (3.28) 

 

Notice that the angle θ1 depends on θ2.  

Inverse kinematics is difficult in implementation because of the following 

points:  

• It involves non-linear simultaneous equations  

• There is the very likely possibility of multiple, sometimes infinite, 

number of solutions. How would the robot arm choose which is 

optimal, based on torques, previous arm position, gripping angle, etc.?  
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• There is the possibility of zero solutions. Maybe the location is outside 

the workspace, or maybe the point within the workspace must be 

gripped at an impossible angle. 

• Singularities, a place of infinite acceleration, can blow up equations 

and/or leave motors lagging behind.   

The kinematic models are not involved in the joint torque control of the 

robotic manipulator 

3.5. Robot Arm Dynamic Model 

The dynamics of an n-DOF robot manipulator is governed by the following 

equation (Cheng et al, 2008; Kurfess, 2005; Vivas and Mosquera, 2005):  

𝑀𝑀(𝑞𝑞)𝑞𝑞 ̈ + 𝑁𝑁(𝑞𝑞, 𝑞̇𝑞) = 𝜏𝜏             (3.35) 

 

Where τ is actuation torque, M (q) is a symmetric and positive define inertia 

matrix, N is the vector of nonlinearity term.  

 

𝑁𝑁(𝑞𝑞, 𝑞̇𝑞) = 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 + 𝑔𝑔(𝑞𝑞) 

 

Hence 

 

𝑀𝑀(𝑞𝑞)𝑞𝑞 ̈ + 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 + 𝐺𝐺(𝑞𝑞) = 𝜏𝜏        (3.36) 

Where q is the joint variable vector, M(q) is the completed inertia matrix, 

𝑪𝑪(𝒒𝒒, 𝒒̇𝒒) is the centripetal and Coriolis torque vector, G(q) is the gravitational 

torque vector. Adopting the model in Liu and Liu (2016), the robot arm 

dynamic equation for 2DOF that requires lifting is: 

 

�
𝑀𝑀11(𝑞𝑞) 𝑀𝑀12(𝑞𝑞)
𝑀𝑀21(𝑞𝑞) 𝑀𝑀22(𝑞𝑞)� �

𝑞̈𝑞
𝑞̈𝑞�+�

𝐶𝐶11(𝑞𝑞, 𝑞̇𝑞 𝐶𝐶12(𝑞𝑞, 𝑞̇𝑞
𝐶𝐶21(𝑞𝑞, 𝑞̇𝑞 𝐶𝐶22(𝑞𝑞, 𝑞̇𝑞� �

𝑞̇𝑞
𝑞̇𝑞� + �

𝑔𝑔1(𝑞𝑞)
𝑔𝑔2(𝑞𝑞)� = �

𝜏𝜏1
𝜏𝜏2�   (3.37) 
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Where 𝜏𝜏1 and 𝜏𝜏2 are the total torques at joint I and II respectively. 

 

The robot manipulator has two joint variables that require lifting: two angles 

q1 and q2. The inertia matrix is represented as: 

𝑴𝑴(𝒒𝒒) = �𝑀𝑀11 𝑀𝑀12
𝑀𝑀21 𝑀𝑀22

� 

where 

𝑀𝑀11 =
1
4
𝑚𝑚1𝐿𝐿12 + 𝑚𝑚2𝐿𝐿12 + 𝐽𝐽1 

𝑀𝑀12 = 𝑀𝑀21 =
1
2
𝑚𝑚2𝐿𝐿1𝐿𝐿2 cos(𝑞𝑞1 − 𝑞𝑞2) 

𝑀𝑀22 = 𝐽𝐽2 +
1
4
𝑚𝑚2𝐿𝐿22  

 

The centripetal and coriolis matrix is: 

𝑪𝑪(𝒒𝒒, 𝒒̇𝒒) = �𝐶𝐶11 𝐶𝐶12
𝐶𝐶21 𝐶𝐶22

� 

Where  

𝐶𝐶11 = 0 

𝐶𝐶12 =
1
2
𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin(𝑞𝑞1 − 𝑞𝑞2)𝑞̇𝑞2 

𝐶𝐶21 =
1
2
𝑚𝑚2𝐿𝐿1𝐿𝐿2 sin(𝑞𝑞2 − 𝑞𝑞1)𝑞̇𝑞1 

𝐶𝐶22 = 0 

 

Due to the complexity of this method of robotic manipulator dynamics 

analysis, Lin et al (1997) assumed that G(q) = 0. However, Kim et al (2010) 

and Liu et al (2016) did not take such assumption. 

𝐺𝐺1 = �
1
2
𝑚𝑚1 + 𝑚𝑚2�𝑔𝑔𝐿𝐿1 cos 𝑞𝑞1 

𝐺𝐺2 =
1
2
𝑚𝑚2𝑔𝑔𝐿𝐿2 cos 𝑞𝑞2 
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Lin et al (1997) added the friction vector in their dynamic model and ignored 

gravitational vector, while in Kim et al, (2010), and Liu et al (2016), friction 

vector was ignored. There are too many inconsistencies in the Lagrange-

Euler dynamic model as used in different works due to the complexities in 

the model. Secondly, the model as used in many works deals with only the 

arm parameters (mass, length, angular position, velocity, and acceleration 

of the arm) without involving the actuator parameters.  

 

3.6 Actuator Dynamic Model 

The dynamic terms in the equation 3.35 and 3.36 are only manipulator 

positions. However, the fact that the manipulator is driven by actuator 

(which in this work is motor), the dynamic equation of a manipulator driven 

by DC motors (Spong, 1996; Fateh, 2008) is formulated as follows: 

 

𝑀𝑀(𝑞𝑞)𝑞𝑞 ̈ + 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 + 𝐺𝐺(𝑞𝑞) = 𝐾𝐾𝑡𝑡𝑖𝑖             (3.38) 

 

where i is the armature current vector, and Kt is the diagonal matrix of 

motor torque constant.  

 

The actuator nominal model is derived from the motor internal structure as 

shown in figure 3.4. In the nominal model, it is assumed that the system has 

no disturbance. Hence, the model is derived without considering 

disturbances. 
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Figure 3.4: The actuator internal structure 

 

𝜏𝜏𝑚𝑚  = 𝐾𝐾𝑡𝑡𝑖𝑖          (3.38) 

 

Sum of torques at the motor gear is equal to zero, that is: 

 

𝐽𝐽𝑚𝑚
𝑑𝑑2𝜃𝜃𝜃𝜃
𝑑𝑑𝑡𝑡2

+ 𝐵𝐵𝑚𝑚
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝑡𝑡𝑖𝑖         (3.39) 

𝐽𝐽𝑚𝑚
𝑑𝑑2𝜃𝜃𝜃𝜃
𝑑𝑑𝑡𝑡2

= 𝐾𝐾𝑡𝑡𝑖𝑖 − 𝐵𝐵𝑚𝑚
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

          

𝑑𝑑2𝜃𝜃𝜃𝜃
𝑑𝑑𝑡𝑡2

= 1
𝐽𝐽𝑚𝑚
�𝐾𝐾𝑡𝑡𝑖𝑖 − 𝐵𝐵𝑚𝑚

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�         (3.40) 

Taking the Laplace transform of equation 3.39 yields; 

𝐽𝐽𝑚𝑚𝜔𝜔𝑚𝑚𝑠𝑠(𝑠𝑠) + 𝐵𝐵𝑚𝑚𝜔𝜔𝑚𝑚(𝑠𝑠) = 𝐾𝐾𝑡𝑡𝐼𝐼(𝑠𝑠)         (3.41) 

 

The electrical circuit of the actuator provides the following equation (Spong 

and Vidyasagar, 1989): 

 

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅 + 𝐿𝐿𝑎𝑎
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝐾𝐾𝑒𝑒
𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

         (3.42) 

 

𝐿𝐿𝑎𝑎
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑅𝑅𝑅𝑅 + 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝐾𝐾𝑒𝑒
𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

         (3.43) 

Taking the Laplace transform of equation 3.42 



66 
 

𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠) =  𝑅𝑅𝑅𝑅(𝑠𝑠) + 𝐿𝐿𝑎𝑎𝑠𝑠𝑠𝑠(𝑠𝑠) + 𝐾𝐾𝑒𝑒𝜔𝜔(𝑠𝑠)       (3.44) 

Where ω is the angular velocity 

 

 

Figure 3.5: Block diagram for DC motor system (Alassar, 2010) 

 

Resolving the equations with the help of the actuator block diagram in figure 

3.5 and solving for relationship between voltage input and the position of the 

shaft in the closed loop system yields the actuator dynamic model as derived 

in (Ovy et al, 2011; Alassar, 2010; Salem, 2013; Fateh, 2008). When the 

motor is not connected to the robotic manipulator joint mechanism (i.e. 

Tl=0), its dynamic model does not include the inertia due to the connected 

linkage or load. Combining the mechanical and electrical subsystem 

dynamics of the motor, therefore motor dynamic model becomes: 

� 𝐽𝐽𝐽𝐽𝜔𝜔𝑚𝑚 + 𝐵𝐵𝜔𝜔𝑚𝑚 = 𝐾𝐾𝑡𝑡𝐼𝐼
𝑉𝑉𝑖𝑖𝑖𝑖 =  𝑅𝑅𝑅𝑅 + 𝐿𝐿𝑎𝑎𝑠𝑠𝑠𝑠 + 𝐾𝐾𝑒𝑒𝜔𝜔m   

The model for the variable 𝜃𝜃𝑚𝑚(𝑠𝑠) becomes: 

𝜃𝜃𝑚𝑚(𝑠𝑠) = (𝐿𝐿𝑎𝑎𝐽𝐽𝑚𝑚𝑠𝑠3 + (𝑅𝑅𝑎𝑎𝐽𝐽𝑚𝑚 + 𝐵𝐵𝑚𝑚𝐿𝐿𝑎𝑎)𝑠𝑠2 + (𝑅𝑅𝑎𝑎𝐵𝐵𝑚𝑚 + 𝐾𝐾𝑡𝑡𝐾𝐾𝑒𝑒)𝑠𝑠)−1𝐾𝐾𝑡𝑡𝑉𝑉𝑖𝑖𝑖𝑖(𝑠𝑠)   (3.45) 

Where,  
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Jm is the motor inertia,  

Ra is the actuator resistance, 

La is the actuator inductance, 

Kt is the torque constant, 

Ke is the back emf constant, 

Bm is the frictional damping coefficient of motor 

ωm = θ̇m is the velocity of the motor 

 

3.7 Robotic Manipulator Joint Dynamic Model 

According to Fateh (2008), there are some problems in implementing the 

control law presented in equation 3.36. This control law is not complete 

since some terms such as frictional torques have been omitted for simplicity 

and reducing the computing time, and some terms are not precise. 

Therefore, applying this control law cannot provide a perfect linear and 

decoupled system, and due to inaccuracy in model, errors will be produced. 

Moreover, implementing the control law requires feedbacks of all joint 

positions and their derivatives. Also, the control strategy is complex since 

the system is highly coupled and multi-input/multi-output. The tracking error 

increases as velocity increases. 

 

Fateh (2008) also stated that the dynamic model involving the actuator 

dynamics is preferred to equation 3.36 in the robot manipulator design. This 

is because all feedbacks are belonging to the actuator (motor) Also, 

manipulator model is not required to form the control law. As a result, the 

control law is simple, fast, and more accurate in comparison with the 
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equation 3.36. The control law requires only a feedback of actuator current 

and current of the actuator. Moreover, the electrical signals can be 

measured more convenient and more precise than mechanical signals. This 

control law can be used for tracking control of a high-speed robot since this 

approach is free of manipulator model. In facts, the dynamical effects are 

compensated by currents of motors in high-speed applications. The actuator 

dynamic equation is used for precise control of each degree of freedom (or 

each independent joint) of a robotic arm as applied in (Agrawal et al, 2012; 

Aung et al, 2008; Salem, 2013). 

 

The manipulator is made up of links connected together by joints and each 

joint consists of actuator and gears (motor and link gears) connecting the 

arm to the joint as shown in figure 3.6, thus, a complete dynamic model of 

the system must consists of the robot arm dynamics plus the actuator 

dynamics. Since these two vital dynamics are derived at the joint, then it is 

termed joint dynamics model. Also contained as part of every joint is the 

feedback subsystem which measures the joint outputs (e.g. position of 

link) and sends the measured quantity back to the joint system for 

improvement of the joint performance with the help of a controller designed 

for that particular joint and connected to the joint motor. Applying the 

independent joint control and considering the link connected at the joint as a 

load whose inertia sums with the inertia of the motor to form the inertia of 

the joint. The gear ratio of the motor and gear ration of link are related to 

the position of the motor θm(t) and the position of the link q(t) as expressed 

in the gear kinematics in equation 3.50. 
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Figure 3.6: Internal structure of the joint 

 

3.7.1 Mechanical Subsystems 

The mechanical subsystems of the actuator and the robot arm are connected 

at the actuator and robot arm gears as shown in figures 3.6 and 3.7. 

 

Figure 3.7: Mechanical subsystems of the motor and link gears 

Note: i. The Sum of torques acting at a point is equal to the moment of   

 inertia (J) multiplied by the angular acceleration.  

 ii. Inertia of the link is determined using its mass and length 
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The sum of torques at the motor gear gives: 

∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐽𝐽𝑚𝑚𝜃̈𝜃𝑚𝑚  

𝜏𝜏 − 𝐵𝐵𝑚𝑚𝜃̇𝜃𝑚𝑚 − 𝑟𝑟𝑚𝑚𝐹𝐹 = 𝐽𝐽𝑚𝑚𝜃̈𝜃𝑚𝑚  

𝐽𝐽𝑚𝑚𝜃̈𝜃𝑚𝑚 + 𝐵𝐵𝑚𝑚𝜃̇𝜃𝑚𝑚 + 𝑟𝑟𝑚𝑚𝐹𝐹 = 𝜏𝜏        (3.46) 

 

The sum of torques at the robot arm gear gives: 

∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐽𝐽𝑙𝑙𝑞̈𝑞  

𝑟𝑟𝑙𝑙𝐹𝐹 − 𝐵𝐵𝑙𝑙𝑞̇𝑞 = 𝐽𝐽𝑙𝑙𝑞̈𝑞  

𝐽𝐽𝑙𝑙𝑞̈𝑞 + 𝐵𝐵𝑙𝑙𝑞̇𝑞 = 𝑟𝑟𝑙𝑙𝐹𝐹          (3.47) 

𝐹𝐹 = (𝐽𝐽𝑙𝑙𝑞̈𝑞 + 𝐵𝐵𝑙𝑙𝑞̇𝑞)/𝑟𝑟𝑙𝑙         (3.48) 

Substituting equation into equation 3.48 into equation 3.46 yields; 

𝐽𝐽𝑚𝑚𝜃̈𝜃𝑚𝑚 + 𝐵𝐵𝑚𝑚𝜃̇𝜃𝑚𝑚 + 𝑟𝑟𝑚𝑚
𝑟𝑟𝑟𝑟

(𝐽𝐽𝑙𝑙𝑞̈𝑞 + 𝐵𝐵𝑙𝑙𝑞̇𝑞) = 𝜏𝜏       (3.49) 

The gear kinematics for the motor and link (robot arm) gears is as follows 

𝑟𝑟𝑚𝑚
𝑟𝑟𝑙𝑙

= 𝑁𝑁𝑚𝑚
𝑁𝑁𝑙𝑙

= 𝑞̇𝑞
𝜃̇𝜃𝑚𝑚

= 𝑞𝑞
𝜃𝜃𝑚𝑚

         (3.50) 

Where 

rm is the radius of motor gear  

rl is the radius of link gear  

Nm is the number of teeth of the motor gear 

Nl is the number of teeth of the link gear 
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F is the contact force 

𝐽𝐽𝑙𝑙 is the link or arm inertia 

𝐵𝐵𝑙𝑙 is the link or arm damping coefficient  

 

Therefore, the angular position of the link is derived from the motor position 

and the gear ratio of motor and link gears as: 

𝜃𝜃𝑚𝑚  = �𝑁𝑁𝑙𝑙
𝑁𝑁𝑚𝑚
� 𝑞𝑞          (3.51) 

𝜃̇𝜃𝑚𝑚  = � 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
� 𝑞̇𝑞         (3.52) 

𝜃̈𝜃𝑚𝑚  = � 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
� 𝑞̈𝑞         (3.53) 

 

Substituting equations 3.51, 3.52 and 3.53 into equation 3.49, yields: 
𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐽𝐽𝑚𝑚𝑞̈𝑞 + 𝑟𝑟𝑙𝑙

𝑟𝑟𝑚𝑚
𝐵𝐵𝑚𝑚𝑞̇𝑞 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
(𝐽𝐽𝑙𝑙𝑞̈𝑞 + 𝐵𝐵𝑙𝑙𝑞̇𝑞) = 𝜏𝜏  

𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐽𝐽𝑚𝑚𝑞̈𝑞 + 𝑟𝑟𝑙𝑙

𝑟𝑟𝑚𝑚
𝐵𝐵𝑚𝑚𝑞̇𝑞 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐽𝐽𝑙𝑙𝑞̈𝑞 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐵𝐵𝑙𝑙𝑞̇𝑞 = 𝜏𝜏  

� 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐽𝐽𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐽𝐽𝑙𝑙� 𝑞̈𝑞 + � 𝑟𝑟𝑙𝑙

𝑟𝑟𝑚𝑚
𝐵𝐵𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐵𝐵𝑙𝑙� 𝑞̇𝑞 = 𝜏𝜏     (3.54) 

These equations describe the model for torque control. Combining the 

mechanical and electrical subsystems of the actuator and arm dynamics 

yields:           

�
� 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐽𝐽𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐽𝐽𝑙𝑙� 𝑠𝑠2𝑞𝑞 + � 𝑟𝑟𝑙𝑙

𝑟𝑟𝑚𝑚
𝐵𝐵𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐵𝐵𝑙𝑙� 𝑠𝑠𝑠𝑠 = 𝐾𝐾𝑡𝑡𝐼𝐼

𝑉𝑉𝑖𝑖𝑖𝑖 =  𝑅𝑅𝑅𝑅 + 𝐿𝐿𝑎𝑎𝑠𝑠𝑠𝑠 + 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐾𝐾𝑒𝑒  𝑞̇𝑞 

     (3.55) 

The dynamic model for joint torque control relating angular position of the 

link and the voltage input into the actuator becomes: 

𝐺𝐺 = �𝑠𝑠 ��� 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐽𝐽𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐽𝐽𝑙𝑙� 𝑠𝑠 + � 𝑟𝑟𝑙𝑙

𝑟𝑟𝑚𝑚
𝐵𝐵𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐵𝐵𝑙𝑙�� (𝐿𝐿𝑎𝑎𝑠𝑠 + 𝑅𝑅) + 𝐾𝐾𝑒𝑒𝐾𝐾𝑡𝑡��

−1

Κ𝑡𝑡         (3.56) 
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𝑞𝑞 = �𝑠𝑠 ��� 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐽𝐽𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐽𝐽𝑙𝑙� 𝑠𝑠 +  � 𝑟𝑟𝑙𝑙

𝑟𝑟𝑚𝑚
𝐵𝐵𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐵𝐵𝑙𝑙�� (𝐿𝐿𝑎𝑎𝑠𝑠 + 𝑅𝑅) + 𝐾𝐾𝑒𝑒𝐾𝐾𝑡𝑡��

−1

Κ𝑡𝑡𝑉𝑉(𝑠𝑠)           

 

Simplifying the joint mechanical subsystem dynamics yields: 

 

�
𝐽𝐽𝑇𝑇𝑞̈𝑞+𝐵𝐵𝑇𝑇𝑞̇𝑞 = 𝜏𝜏 

𝑉𝑉𝑖𝑖𝑖𝑖 =  𝑅𝑅𝑅𝑅+ 𝐿𝐿𝑎𝑎𝑠𝑠𝑠𝑠+ 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐾𝐾
𝑒𝑒
 𝑞̇𝑞        (3.57) 

Where 𝐽𝐽𝑇𝑇 = 𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐽𝐽
𝑚𝑚

+ 𝑟𝑟𝑚𝑚
𝑟𝑟𝑙𝑙
𝐽𝐽𝑙𝑙 is the total inertia at the joint and 𝐵𝐵𝑇𝑇 =

𝑟𝑟𝑙𝑙
𝑟𝑟𝑚𝑚
𝐵𝐵𝑚𝑚 + 𝑟𝑟𝑚𝑚

𝑟𝑟𝑙𝑙
𝐵𝐵𝑙𝑙 

is the total torsional viscous damping coefficient  

 

Applying independent joint control for the torque control of the two joints of 

the robotic manipulator requires deployment of multiple SISO configurations. 

 

�
𝐽𝐽𝑇𝑇1𝑞̈𝑞1 +𝐵𝐵𝑇𝑇1𝑞̇𝑞1 = 𝜏𝜏1  

𝑉𝑉1 =  𝑅𝑅1𝐼𝐼1 + 𝐿𝐿𝑎𝑎1𝑠𝑠𝐼𝐼1 + 𝑟𝑟𝑙𝑙1
𝑟𝑟𝑚𝑚1

𝐾𝐾
𝑒𝑒1
𝑞̇𝑞1        (3.58)  

�
𝐽𝐽𝑇𝑇2𝑞̈𝑞2 +𝐵𝐵𝑇𝑇2𝑞̇𝑞2 = 𝜏𝜏2  

𝑉𝑉2 =  𝑅𝑅2𝐼𝐼2 + 𝐿𝐿𝑎𝑎2𝑠𝑠𝐼𝐼2 + 𝑟𝑟𝑙𝑙2
𝑟𝑟𝑚𝑚2

𝐾𝐾
𝑒𝑒2
𝑞̇𝑞2

      (3.59) 

Where  𝜏𝜏1 and 𝜏𝜏2 are torques at joint I and II respectively. 

 

The joint general variable becomes: 

𝑞𝑞1 = �𝑠𝑠 ���
𝑟𝑟𝑙𝑙1
𝑟𝑟𝑚𝑚1

𝐽𝐽𝑚𝑚1 +
𝑟𝑟𝑚𝑚1

𝑟𝑟𝑙𝑙1
𝐽𝐽𝑙𝑙1 + 𝐽𝐽𝑙𝑙2� 𝑠𝑠 + �

𝑟𝑟𝑙𝑙1
𝑟𝑟𝑚𝑚1

𝐵𝐵𝑚𝑚1 +
𝑟𝑟𝑚𝑚1

𝑟𝑟𝑙𝑙1
𝐵𝐵𝑙𝑙1�� (𝐿𝐿𝑎𝑎1𝑠𝑠 + 𝑅𝑅1) + 𝐾𝐾𝑒𝑒1𝐾𝐾𝑡𝑡1��

−1

Κ𝑡𝑡1𝑉𝑉(𝑠𝑠)  

𝑞𝑞2 = �𝑠𝑠 ���
𝑟𝑟𝑙𝑙2
𝑟𝑟𝑚𝑚2

𝐽𝐽𝑚𝑚2 +
𝑟𝑟𝑚𝑚2
𝑟𝑟𝑙𝑙2

𝐽𝐽𝑙𝑙2� 𝑠𝑠 +  �
𝑟𝑟𝑙𝑙2
𝑟𝑟𝑚𝑚2

𝐵𝐵𝑚𝑚2 +
𝑟𝑟𝑚𝑚2
𝑟𝑟𝑙𝑙2

𝐵𝐵𝑙𝑙2�� (𝐿𝐿𝑎𝑎2𝑠𝑠 + 𝑅𝑅2) + 𝐾𝐾𝑒𝑒2𝐾𝐾𝑡𝑡2��
−1

Κ𝑡𝑡2𝑉𝑉(𝑠𝑠)  

These describe the angular position of the robotic manipulator links I and II. 
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Figure 3.8 shows the internal structure of the 3DOF articulated robotic 

manipulator. It also shows the respective link load on the joints. 

 

Figure 3.8: Internal structure of the 3DOF articulated robotic manipulator 

 

3.8 Uncertainty Model for Robotic Manipulator 

The robust control law here solves the robust control problem which is the 

uncertainty in the manipulator. Since the uncertainties are unavoidable, thus 

the robust control goal here is to involve all the non-negligible dynamics and 
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consider the unmodeled dynamics as uncertainties. Any coupling effect due 

to the motion of the other links is treated as a disturbance. Considering the 

uncertainties in the manipulator arm movement, the dissipative torques such 

as frictional torques and the provided load torque can be added to the left 

hand of the general dynamic model. Taking the nominal model of the robot 

arm dynamic model as: 

 

𝑀𝑀𝑛𝑛(𝑞𝑞)𝑞𝑞 ̈ + 𝐶𝐶𝑛𝑛(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 + 𝑔𝑔𝑛𝑛(𝑞𝑞) = 𝜏𝜏              (3.60) 

Under external disturbances and plant uncertainties, the true link dynamics 

are assumed to be: 

𝑀𝑀(𝑞𝑞)𝑞𝑞 ̈ + 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 + 𝑔𝑔(𝑞𝑞) = 𝜏𝜏 − 𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡)             (3.61) 

Where 𝑀𝑀(𝑞𝑞) = 𝑀𝑀𝑛𝑛(𝑞𝑞) + ∆𝑀𝑀(𝑞𝑞), 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞) = 𝐶𝐶𝑛𝑛(𝑞𝑞, 𝑞̇𝑞) + ∆𝐶𝐶(𝑞𝑞, 𝑞̇𝑞), 𝑔𝑔(𝑞𝑞) = 𝑔𝑔𝑛𝑛(𝑞𝑞) + ∆𝑔𝑔(𝑞𝑞), 

and 𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡) represents the disturbance input. 

 

Therefore,  

 

 𝑞𝑞 ̈ = 𝑀𝑀(𝑞𝑞)−1(𝜏𝜏 − 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 − 𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡) − 𝑔𝑔(𝑞𝑞))            (3.62) 

𝑞𝑞𝑑̈𝑑 = 𝑀𝑀𝑛𝑛(𝑞𝑞)−1(𝜏𝜏 − 𝐶𝐶𝑛𝑛(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 − 𝑔𝑔𝑛𝑛(𝑞𝑞))             (3.63) 

where 𝑞𝑞𝑑̈𝑑 is the desired joint variable derived from the nominal model 

Therefore, the error model based only on the mechanical arm becomes: 

𝑒𝑒 ̈ = −𝑞𝑞𝑑̈𝑑 +𝑀𝑀(𝑞𝑞)−1(𝜏𝜏 − 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞)𝑞̇𝑞 − 𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡) − 𝑔𝑔(𝑞𝑞))           (3.64) 

Considering the complete dynamic model for the joint torque control, the 

nominal model becomes equation 3.57. The presence of the gears introduces 

friction, drive train compliance and backlash in the robotic arm joints. In the 

case of a direct-drive robot, the problems of backlash, friction, and 

compliance due to the gears are eliminated. However, the coupling among 
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the links becomes significant, and the dynamics of the motors themselves 

may be much more complex. Under external disturbances and plant 

uncertainties, the true mechanical dynamics of the complete torque control 

model are assumed to be: 

𝐽𝐽𝑞̈𝑞 + 𝐵𝐵𝑞̇𝑞 =  𝜏𝜏 − 𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡)         (3.65) 

Where 𝐽𝐽 = 𝐽𝐽𝑇𝑇1 + ∆𝐽𝐽, 𝐵𝐵 = 𝐵𝐵𝑇𝑇1 + ∆𝐵𝐵, and 𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡)  is the disturbance input 

such as unmodeled dynamics. 

The model can be represented as: 

(𝐽𝐽𝑇𝑇1 + ∆𝐽𝐽)𝑞̈𝑞 + (𝐵𝐵𝑇𝑇1 + ∆𝐵𝐵)𝑞̇𝑞 =  𝜏𝜏 − 𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡)         

Hence, 

𝑞̈𝑞 = (𝐽𝐽)−1�𝜏𝜏 − 𝐵𝐵𝑞̇𝑞 −  𝐷𝐷(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡)�       (3.66) 

Ignoring the uncertainty, the model becomes 

𝑞̈𝑞𝑑𝑑 = (𝐽𝐽)−1(𝑘𝑘𝑡𝑡𝐼𝐼 − 𝐵𝐵𝑞̇𝑞)         (3.67) 

The difference between the desired 𝑞̈𝑞𝑑𝑑 and actual joint variables 𝑞̈𝑞 is the 

error in the robotic manipulator model. The uncertainty model or error 

model (e) based on the robotic arm plus actuator dynamics model becomes: 

𝑒𝑒 =  −𝑞̈𝑞𝑑𝑑 + (𝐽𝐽)−1(𝜏𝜏 − 𝐵𝐵𝑞̇𝑞)         (3.68) 

3.9 Robust Controller Design 

The second problem in the robotic manipulator development is the control 

problem due to effects of the uncertainties. Solving the problem involves 

designing a controller that can cancel the effects of the uncertainties by 

generating a control signal input into the actuators. To achieve a robust 

control, the system must sense its output through feedback control 
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technique in order to compare the perturbed output with the desired output. 

Due to the presence of uncertainties in physical systems, the output is 

termed perturbed. The effects of the possible perturbations in the system 

can be canceled in the robust system with the introduction of controller 

gains to compensate the error signal. The design objective here is to choose 

the compensator in such a way that the plant (robotic manipulator joint) 

output “tracks” or follows a desired output, given by the reference signal. 

The control signal, however, is not the only input acting on the system. 

Considering the robotic manipulator in a real environment in figure 3.9, with 

uncertainties the inputs to the system becomes the reference input r, and 

uncertainty inputs: the disturbance D, and measurement noise N.  

 

Figure 3.9: Control system with disturbance and noise inputs in real 

environment 

 

The general transfer function of the feedback controlled system is 

represented as follows: 

𝑌𝑌(𝑠𝑠) = 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)
1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)

(𝑅𝑅(𝑠𝑠) − 𝑁𝑁(𝑠𝑠)) + 1
1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝐷𝐷(𝑠𝑠)     (3.69) 

𝑌𝑌(𝑠𝑠) = 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)

1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝑅𝑅(𝑠𝑠) − 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)

1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝑁𝑁(𝑠𝑠) + 1
1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝐷𝐷(𝑠𝑠)    (3.70) 

𝐸𝐸(𝑠𝑠) = 1
1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠) (𝑅𝑅(𝑠𝑠) − 𝐷𝐷(𝑠𝑠) + 𝑁𝑁(𝑠𝑠))       (3.71) 
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𝐸𝐸(𝑠𝑠) = 1
1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝑅𝑅(𝑠𝑠) − 1

1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝐷𝐷(𝑠𝑠) + 1
1+𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)𝑁𝑁(𝑠𝑠)    (3.72) 

From equation 3.69, the following functions are derived 

𝑇𝑇(𝑠𝑠) =
𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠)
 

𝑆𝑆(𝑠𝑠) =
1

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠) 

𝐿𝐿𝐿𝐿(𝑠𝑠) = 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺𝑝𝑝(𝑠𝑠) 

T(s) (i.e. complementary sensitivity function) is the transfer function 

between the output and the reference input of the system through the 

feedback. S(s) (i.e. Sensitivity function) is the transfer function between the 

output and disturbances of a system. Lg(s) is the open loop function. 

The robust controller design and analysis will be based on the three 

functions T, S and Lg. T is also called closed loop transfer function. A robust 

system must have the following characteristics: 

i. Good set-point or reference tracking 

ii. Good disturbance rejection 

iii. Good noise suppression 

iv. Robust stability 

3.9.1 Robust Controller Design Objectives/Specifications 

The following objectives must be met for the system to achieve full 

robustness characteristics.  

i. For good set-point tracking |T(jw)| must follow the zero gain line at 

low frequencies. This can also be achieved if |Gc(jw)Gp(jw)|>>1 

i.e., Loop gain transfer function must be very much greater than 

one at low frequencies. 
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ii. For good disturbance rejection, S(s) or |S(jw)|<<1, i.e., sensitivity 

must be very much less than one. This can be achieved if 

|Gc(jw)Gp(jw)|>>1 i.e., Loop gain transfer function must be very 

much greater than one at low frequencies. 

If |S(jw)|=0 yields perfect output disturbance rejection 

iii. For good noise suppression, |T(jw)|<<0 at frequencies of noise i.e., 

T(s) must be very much less than zero at high frequencies. 

3.10 Robustness Analysis 

 This involves the examination of control system design to understand the 

system behavior considering the uncertainties and changes the system may 

face in real environment. The areas of interest include the reduction of 

sensitivity to model uncertainties, disturbance rejection, measurement noise 

attenuation, steady state errors and transient response characteristics (Dorf 

and Bishop, 2008). This will involve the use of some mathematical models 

such as Bode plot and reference tracking to analyze the system for stability, 

performance and robustness. The transient responds is the output response 

of the system as a function of time and it must be adjusted (through the 

controller) to be satisfactory in order to achieve desired goal of the control 

system design. The robust controller design is based on shaping the 

sensitivity and complementary sensitivity transfer functions graphs to the 

desired shape. The singular value plot for S and T for robustness analysis in 

(Nair, 2011) was simplified and modified in figures 3.10a and 3.10b. 

 

3.10.1 Sensitivity/Tracking Error Signal  

The sensitivity of a control system to parameter variations is very important. 

A main advantage of a closed-loop feedback system is its ability to reduce 

the system’s sensitivity. Robustness is the low sensitivity of the controlled 

system to effects that are not considered in the analysis and design phase 

such as disturbances, measurement noise and unmodeled dynamics. The 
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system should be able to withstand these uncertainty effects when 

performing its operations. The relationship between complementary 

sensitivity function T(s) and sensitivity function S(s) of the closed-loop 

controlled robot manipulator are as follows: 

 

𝑇𝑇(𝑠𝑠) + 𝑆𝑆(𝑠𝑠) = 1          (3.73) 

The ability of the controlled system output to track the input to the system 

determines the performance of the system. The tracking error e, of the 

closed-loop control system can be related to the reference input r(s) and the 

actual output y(s) of the controlled system as follows: 

𝐸𝐸(𝑠𝑠) = 𝑌𝑌(𝑠𝑠) − 𝑅𝑅(𝑠𝑠)  

One of the objectives in designing a control system is that the controlled 

system’s output should exactly and instantaneously reproduce its input (Dorf 

and Bishop, 2008). This implies that y(s)= r(s). Hence, error e(s) will tend 

to zero. 

 

The function Lg(s), is known as the loop gain and it plays a fundamental role 

in control system design and analysis. In terms of the loop gain Lg(s), 

tracking error e(s) function becomes: 

 

𝐸𝐸(𝑠𝑠) = 1
1+𝐿𝐿𝐿𝐿(𝑠𝑠)𝑅𝑅(𝑠𝑠) − 1

1+𝐿𝐿𝐿𝐿(𝑠𝑠)𝐷𝐷(𝑠𝑠) + 1
1+𝐿𝐿𝐿𝐿(𝑠𝑠)𝑁𝑁(𝑠𝑠)      (3.74) 

The magnitude of the loop gain Lg(s) can be described by considering the 

magnitude |𝐿𝐿𝐿𝐿(𝑗𝑗𝑗𝑗)| over the range of frequencies, ω, of interest. Considering 

the tracking error, for a given Gp(s), to reduce the influence of the 

disturbance D(s) on the tracking error e(s), Lg(s) should be made large over 

the range of frequencies that characterize the disturbances. In that way, the 

transfer function 1/(1+GC(s)GP(s)) will be small and it implies that the 

controller GC(s) (or K) should be designed to have a large magnitude. 
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Conversely, to attenuate the measurement noise, N(s), and reduce the 

influence on the tracking error, Lg(s) should be made small over the range 

of frequencies that characterize the measurement noise. Hence, the transfer 

function GCGP/(1+GC(s)GP(s)) will be small, thereby reducing the influence of 

N(s) and this implies that the controller GC(s) should be designed to have 

small magnitude. The conflict that exists in making the controller GC(s) to be 

large to reject disturbances and at the same time making GC(s) to be small 

to attenuate measurement noise can be addressed in the design phase by 

making the loop gain, Lg(s) = GC(s)GP(s), to be large at low frequencies 

(associated with frequency range of disturbances), and making Lg(s) small 

at high frequencies (associated with measurement noise). 

 

Figure 3.10a: Complementary sensitivity (T) graph 

For good reference tracking, the complementary sensitivity graph must 

follow the zero dB magnitude at low frequencies and for good noise 

rejection, the graph must reduce very much below zero with sharp slope 

(roll-off) at high frequencies as shown in figure 3.10a; (Nair, 2011). 
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Figure 3.10b: Sensitivity (S) graph 

For good disturbance rejection, the sensitivity graph must be very much less 

than zero as shown in figure 3.10b, and the peak sensitivity must be 

reduced as much as possible (peak sensitivity of zero is perfect). 

The goal of the design should be to minimize the sensitivity and steady state 

error in order to achieve robustness and optimization of the controlled 

system. The system should continue to maintain a zero steady state error.  

3.10.2 Stability Robustness Analysis 

In control system engineering, it is imperative to study the stability of 

control systems in order to be equipped with the behavior of the system 

under both steady and transient conditions (Dukkipati, 2006). In order to 

investigate system stability, Root-locus, Bode and Nyquist plots are applied. 

Bode plot is used in this work to demonstrate stability of the robot 

manipulator because it shows more clearly the stability margins: gain 

margin and phase margin. It also illustrates the stability robustness behavior 

of the system in the magnitude graph by showing the loop gain levels at low 

and high frequencies. Stability robustness must be achieved in the design of 

a controlled system to withstand unforeseen significant uncertainties 

neglected during the design phase of the robot manipulator. 
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Gain and phase margins are common terms to describe how stable a system 

is and the behavior of the system at high frequencies. Gain and phase 

margins are used more because they are simple and ideal measurements of 

stability. Gain margin (GM) is the reciprocal of the magnitude when the 

phase of the open-loop transfer function crosses -180. Good value of GM > 

5dB and for high robustness GM ≥ 20dB. Phase margin (PM) is the difference 

between the phase angle minus 180 when the magnitude of the open-loop 

transfer function crosses 0dB. Good value of PM ≥ 40degrees. From the 

illustration in figure 3.10c, the higher the loop gain at low frequencies, the 

better the performance of the controlled system and the lower the loop gain 

at high frequencies the lower the sensitivity to sensor noise and model 

uncertainty i.e., high robustness. 

 

 
Figure 3.10c: Demonstration of system behavior on Bode plot (Dorf and 

Bishop, 2008) 

 

3.11. H-Infinity Controller Design 

The H-Infinity controller design method here involves the control of the joint 

models with weights W1 and W2 based on the joint parameters. The weight 
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parameters are varied in order to improve the iteration results. The 

weighting functions have been chosen according to industrial performance 

specifications (Filardi et al, 2003): 

Wp (W1): the inverse of the weighting function Wp(s) is used to impose a 

performance specification in terms of the sensitivity function S. Wp is 

chosen: 

𝑊𝑊𝑊𝑊(𝑠𝑠) =
𝑠𝑠
𝑀𝑀𝑠𝑠� +𝑤𝑤𝑤𝑤

𝑠𝑠+𝑤𝑤𝑏𝑏∗𝐴𝐴𝑠𝑠
          (3.75) 

where Ms is to introduce a margin of robustness on the peak of S, wb helps 

to have a sensible attenuation of disturbances and As helps to reduce the 

steady-state position error. 

 

Wu (W2): the control output u is weighted according to the actuator 

limitations. Wu(s) is set to: 

𝑊𝑊𝑊𝑊(𝑠𝑠) = 𝑠𝑠+𝜔𝜔𝑏𝑏𝑏𝑏
𝑀𝑀𝑀𝑀�

𝑠𝑠∗𝜀𝜀+𝜔𝜔𝑏𝑏𝑏𝑏
         (3.76) 

where Mu helps to impose limitations on the maximum value of the controller 

output signal, wbc helps to limit the effect of measurement noise and plant 

uncertainties at high frequencies, and ε helps to ensure a high-frequency 

controller gain. 

Proposed H-Infinity Algorithm: 

• Establish the joint model G(s) for joint I and II 

• Apply weight W1 to control the joint sensitivity to disturbance 

• Apply moderate control W2 on the control signal u 

• Ignore the closed loop system (T) control by applying no control, 

W3=0 

• Augment or connect the plant G(s) with weighting functions 

W1(s), W2(s) and W3(s) (design specifications) to form an 

“augmented plant” P(s) 
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• Apply H-Infinity synthesis for loop shaping and generate K  

• Form the loop gain (Lg) = K*P 

• Form the system sensitivity function S = (1+Lg)-1 

• Form T, (1-S) 

• Analyze Lg, S and T for performance and robustness of the 

controlled system 

This technique allows very precise loop shaping via suitable weighting 

strategies and thereby achieves robust control. Augmenting the joints with 

frequency dependent weights W1, W2 and W3, the Matlab script hinfsyn will 

find a controller that ”shapes” the signals to the inverse of these weights. 

The Matlab function augw (or connect) forms the augmented joint plant 

function. H-Infinity synthesis technique does not require simulation turning, 

rather it is achieved in computation using Matlab program codes and the 

results were noted as the weights were varied. Appendix D presents the 

program codes for the computation of H-Infinity controller design in Matlab 

m.file. 

3.12. Proportional-Integral-Derivative (PID) Controller Design 

The proportional-integral-derivative controller algorithm is derived as 

follows: 

𝑈𝑈(𝑡𝑡) = 𝐾𝐾𝑃𝑃𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝐼𝐼 ∫ 𝑒𝑒 (𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐷𝐷
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑒𝑒(𝑡𝑡)      (3.77) 

Applying Laplace transformation; 

𝑈𝑈(𝑠𝑠) = 𝐾𝐾𝑃𝑃𝑒𝑒(𝑠𝑠) + 𝐾𝐾𝐼𝐼
1
𝑠𝑠
𝑒𝑒(𝑠𝑠) + 𝐾𝐾𝐷𝐷𝑠𝑠 𝑒𝑒(𝑠𝑠)      (3.78) 

𝑈𝑈(𝑠𝑠) = (𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
1
𝑠𝑠

+ 𝐾𝐾𝐷𝐷𝑠𝑠)𝑒𝑒(𝑠𝑠)        (3.79) 

Hence, 
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𝐺𝐺𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
1
𝑠𝑠

+ 𝐾𝐾𝐷𝐷𝑠𝑠         (3.80) 

Generating the loop gain of the controlled system for robust control analysis: 

𝐿𝐿𝐿𝐿(𝑠𝑠) = (𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
1
𝑠𝑠

+ 𝐾𝐾𝐷𝐷𝑠𝑠 ) 𝐺𝐺𝑃𝑃        (3.81) 

Proposed PID Algorithm: 

• Establish the joint model G(s) for joint I and II, 

• Select the controller gains with the help of PID turner in MATLAB 

• Form the controller model with the gains 

• Form the loop gain (Lg) = K*P 

• Form the system sensitivity function S = (1+Lg)-1 

• Form T, (1-S) 

• Analyze Lg, S and T for performance and robustness of the controlled 

system 

Appendix E presents the program codes for the computation of PID 

controller design in Matlab m.file. 

3.13. Implementation/Simulation   

The implementations involved realization of the 3DOF articulated robotic 

manipulator in 2D and 3D models, conversion of the 3D model into 

SimMechanics model and determining the masses of the rigid bodies, 

determining the total torques at the joints and selecting proper actuators for 

the respective joints. Other parameters involved in the dynamic modeling 

and control of the joint torques of the manipulator are to be derived here. 

The experiment for the determination of total damping coefficient of the 

joints and the application of the controller design techniques were carried 

out. 
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3.13.1 Robotic Manipulator 2D and 3D Structures 

The robotic manipulator was designed in autodesk inventor application 

software using the dimensions as shown in figure 3.11. The figures 3.12a, 

3.12b, and 3.12c show different orientations of the robotic manipulator links 

positions in autodesk inventor software. The purpose of these models is to 

achieve the physical image of the manipulator, import and convert the 3D 

model into the SimMechanics model and get the mass of the rigid bodies. 

 

Figure 3.11: Robot arm 2D structure and dimensions 
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Figure 3.12a: 3D structure of the manipulator showing vertical position of 

first link, vertical and horizontal positions of the second link.  

 

 

Figure 3.12b: 3D structure of the manipulator showing horizontal positions 

of first link, horizontal and vertical positions of the second link.  
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Figure 3.12c: 3D structure of the manipulator showing angular positions 

 

3.13.2 Joint Torque Calculation 

The total torques at the manipulator joints are determined as follows 

applying equations 3.8 and 3.9.  

 

m1=1.09kg, m2=0.058kg, m3=0.012kg, m4=0.004Kg, W1 = 10.9N, W2 = 

0.58N, W3 = 0.12N, W4 = 0.04N, L1 = 1.249m, L2 = 0.998m, LLoad = 

0.7089m, L3 =1.3524m 

 

M0 = Base Actuator  

M1 = Actuator 1  

M2 = Actuator 2  
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Torque at Joint 0: M0 

:- 0 (It is not affected by gravity) 

 

Torque at Joint 1: M1 
12.49

2
∗ 0.109 + 12.49 ∗ 0.004 + �12.49 +

9.98
2
� ∗ 0.058 + (12.49 + 13.524) ∗ 0.012 

= 2.0567kg-cm 

= 2056.71g-cm 

 

Torque at Joint 2: M2 
9.98

2
∗ 0.058 + 13.524 ∗ 0.012 

= 0.4517kg-cm 

= 451.7g-cm 

 

3.14 Parameter Calculations for Joints Design 

The implementation of the proposed robust control in the development of 

robotic manipulator is based on the joint torque control. Considering the 

uncertainties in the physical system, the torque of the actuator selected 

must be greater than calculated torque at each of the joints. The difference 

between the selected actuator torque and the calculated torque will help to 

counteract the effects as a result of other unmodeled torques.  

The purpose of joint design is to select the proper joint actuator and derive 

the parameters needed to complete the joint model. From the joint torque 

calculations above, the calculated torques at the two joints that require 

lifting and the selected actuators for the respective joints are shown in table 

3.2.  
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Table 3.2: Calculated and Selected Torques for the Joints I and II 

Joint Calculated Torque (g-cm) Selected Actuator Toque (g-cm) 

I 2056.7 2200 

II 451.7 500 

 

With the calculated joint torques, the joint actuators were selected from the 

actuator step motor manufacturer’s catalog of NMB Corporation and the 

selected motors are shown in Appendix B. 

In order to derive other parameters of the joint actuator such as the torque 

constant kt, and electromotive constant Ke, for the joint analysis, the torque 

and inertia of the actuators were converted to the standard units. Table 3.3 

shows the parameter values of joints I and II. 

 

Joint I: 

Actuator I Torque (𝜏𝜏) = 2200g-cm = 0.022Kg-m = 0.2157N.m 

Actuator Inertia (JActuator) = 56g-cm2 = 0.0000056Kg-m2 

 

To calculate the inertia generated by the arm at joints 1 

Inertia of link1 (J) = (m1 x (L1)2)/2 

𝐽𝐽𝑙𝑙1 =
𝑚𝑚1 ∗ 𝐿𝐿12

2
 

𝐽𝐽𝑙𝑙1 =
0.109 ∗ 0.12492

2
 

=0.0008502 Kg-m2 
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Inertia of link II 

𝐽𝐽𝑙𝑙2 =
𝑚𝑚2 ∗ 𝐿𝐿22

2
 

𝐽𝐽𝑙𝑙2 =
0.058 ∗ 0.0982

2
 

=0.0002889 Kg-m2 

 

m3 = Mass of load3 = Mass of load = 0.012Kg 

L3 = Length of load = 7.089cm = 0.07089m 

𝐽𝐽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝑚𝑚3 ∗ 𝐿𝐿32

2
 

𝐽𝐽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿3 =
0.012 ∗ 0.070892

2
 

=0.0000302 Kg-m2 

Total load inertia at joint1 = Jl1 + Jl2 + JLoad 

= 0.0008502 + 0.0002889 + 0.0000302 

= 0.0012Kg-m2 

 

Total Inertia (J) at joint1 = JActuator + Jl  

= 0.0000056 + 0.0012 

= 0.0012056Kg-m2 

 

Torque constant (Km or kt) = Torque/Current 



92 
 

=0.2157/1.2 

=0.1798N.m/A 

Electromotive force constant (Ke) = Kt = 0.1798 V.s/rad 

 

Joint II: 

Actuator Torque (𝜏𝜏) = 500g-cm = 0.005Kg-m = 0.049N.m 

Actuator Inertia (JActuator) = 13g-cm2 = 0.0000013Kg-m2 

 

Total load inertia at joint II = Jl2 + JLoad3 

= 0.0002889 + 0.0000302 

 = 0.0003191Kg-m2 

 

Total Inertia (J) at joint II = JActuator + Jl2  

= 0.0000013 + 0.0003191 

= 0.0003204Kg-m2 

 

Torque constant (Kt) = Torque/Current 

=0.049/0.9 

=0.0544N.m/A 

Electromotive force constant (Ke) = Km = 0.0544 V.s/rad 
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Taking 𝑟𝑟𝑚𝑚 = 𝑟𝑟𝑙𝑙 

Table 3.3: The parameters of designed joints I and II 

Parameters Joint I Joint II 

Inertia (J) 0.0012061Kg-m2 0.0003204Kg-m2 

Resistance (R) 3Ω 4.4Ω 

Inductance (𝐿𝐿𝐿𝐿) 0.0044H 0.0016H 

Current (i) 1.2A 0.9A  

Torque Constant (km) 0.1798N.m/A 0.0544N.m/A 

Electromotive Force 

Constant (Ke) 

0.1798 V.s/rad 0.0544 V.s/rad 

 

3.15 Determination of Joint Damping Coefficients 

Damping which according to Mizrahi (2015) is important in determining the 

performance of many tasks assigned to the links and in counteracting 

undesired effects of applied loads and disturbances. Damping coefficient 

gives a force based on how fast the joint is moving. It is used to control the 

speed of the joint such that it can balance or reject the effects of 

disturbances.  

Shamrao et al (2013) stated that viscous damping coefficient of the robotic 

joints has to be found from experiment for complete dynamic modeling of 

the robotic joint. In this work, the open loop gain plot of the plant was 

used in MATLAB to determine the damping coefficient for stability.  

 

The first stage of the simulation is to determine the damping coefficient such 

that the system will be stable, |Gp(jw)|>>0 at low frequencies and 

|Gp(jw)|<<0 at high frequencies. In Dorf et al (2008), it was presented that 
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a system with loop gain of |Gp(jw)|>>0 at low frequencies will achieve good 

performance and with loop gain of |Gp(jw)|<<0 at high frequencies it will 

achieve good robustness. Appendix C shows the damping coefficient 

experiment codes computed in Matlab. 

Stability criteria for joint design: 

• Peak gain>>0 

• Both Gain Margin (GM) and Phase Margin (PM) must exist 

• PM should be greater than GM 

 

3.16 Robotic Manipulator SimMechanics Model  

In order to demonstrate the need for independent joint control of the robotic 

manipulator, the SimMechanics model is employed. Actually, the model uses 

the langragian principle of robotic manipulator modeling whereby, the 

system is designed based on the parameters such as the inertia matrix and 

coriolis vectors without considering the dynamic model of the actuator. The 

SimMechanics model of the robotic arm is generated from the 3D model of 

autodesk inventor professional by importing the 3D model vectors from 

autodesk inventor into Matlab/Simulink environment. The SimMechanics 

model represents equivalent model of the 3D autodesk inventor design of 

the robotic manipulator. The purpose of this method is to obtain an 

equivalent model of the 3D design of the robotic manipulator which can be 

controlled by adding compensators to the model. However, in this model, 

the controller output is meant to be connected to the inputs of the revolute 

joints. This technique helps to study the performance of the robotic 

manipulator designed without considering the parameters of the joint 

actuators. The figure Ai in appendix A shows the equivalent SimMechanics 

models of the 3D robotic manipulator designed in Autodesk inventor and 
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figure Ai shows a practical application of feedback control based on the 

independent joint control law.  Table 3.4 shows the description of some 

SimMechanics components. 

Table 3.4: Description of some SimMechanics components 

Name Description 

Env The block Machine Environment defines environment for 

calculation of the scheme. Each SimMechanics model 

contains one such block that is connected with the block  

Ground. Except of inputting the precision of 

calculation and parameters of the environment, the 

required analysis type can be set up: 

• Forward Dynamics – based on initial values and forces 

in the system the program calculates values of positions 

and speeds. 

• Linearization – this mode calculates the system linear 

model. 

• Trimming – finds the machine steady states. 

• Inverse Dynamics for open loop In this mode the 

SimMechanics calculates forces necessary for 

performing the motion forced by kinematic excitation. 

• Kinematics does the same for closed loop systems by 

including extra internal invisible constraints arising from 

those structures. 

Ground The Ground block represents a fixed point having 

infinite mass. At least 

one block  Ground connected with the  Machine 

Environment must be involved. 

Body The block Body in SimMechanics replaces all fixed rigid 
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bodies among which the degrees of freedom are added. 

The bodies are defined by their final and non-zero 

masses, inertia, positions, directions, and by coordinate 

systems that are connected to them. 

Weld The blocks Joints interconnect blocks of the Body type 

and they are added degrees of freedom. The blocks 

determine direction and type of motion. In difference to 

the physical joints, in SimMechanics they present 

massless bodies and a physical connection of the bodies 

is not required. In the block there are shown ports: B-

Base and F-Follower which means, the Follower 

performs a motion regarding to the  Base. The block 

Weld– means a body without any degree of freedom 

Revolute The Revolute block from the  Joints group represents 

one degree of freedom (rotation) 

Driver Actuator Sensors and Actuators are the blocks used as interfaces 

between non- SimMechanics Simulink blocks and 

SimMechanics blocks. By the Actuators it is possible to 

transform a Simulink signal into physical one actuating 

the bodies in SimMechanics diagram. The Sensors 

perform reverse functions – they transform signal from 

SimMechanics into Simulink environment. These blocks 

can be connected to Joints, Drivers and Constraints 

(only Sensors) into special purpose- oriented ports. In  

Bodies they are connected directly to the chosen CS. 

Outputs from the sensors are: positions, speeds, 

accelerations, reaction forces, etc. 

Parallel 

Constraints 

The Parallel Constraint block ensures that vectors of 

axes of two bodies are parallel 
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However, SIMMECHANICS does not provide the means for complete 

modeling of the actuator; hence it can easily suffer from constraints due to 

the presence of unmodeled parameters. Secondly, it does not provide any 

means to input the electrical parameter configurations of the motors, 

therefore the physical model of the joints will vary greatly when compared to 

the mathematical model of the system.  

3.17 Simulink Model of the Joint Model 

Since the SimMechanics does not provide a means of modeling the actuator 

parameters based on the physical features of the motor used at the joints, 

the SIMULINK model is employed to model the actuator parameters for 

proper implementations of the robust control through independent joint 

control. The manipulator joint was modeled in two stages connected 

together; the actuator electrical dynamics and the actuator plus rigid-body 

mechanical dynamics. The angular acceleration 𝑑𝑑
2𝑞𝑞
𝑑𝑑𝑡𝑡2

 is equal to (I/J) multiplied 

by the sum of Kti and −𝐵𝐵 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Similarly, the derivative of the current is equal 

to 1/ 𝐿𝐿𝑎𝑎 multiplied by the sum of three terms; –𝑅𝑅𝑅𝑅,𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐾𝐾𝑒𝑒
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Hence, the 

joint model was realized in SIMULINK as illustrated in figure 3.13. Figure 

3.14 shows the simulation model of the PID controlled joint. 
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Figure 3.13: Manipulator Joint simulink model  

 

 

Figure 3.14: Manipulator Joint simulink model with PID controller 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1. Robot Arm Dynamics Computation Results 

The results of the computation of the rigid-bodies based on the Lagrange-

Euler equation of robot arm model (equation 3.37) in appendix F are as 

shown in figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6. Figures 4.1 and 4.2 show 

the results of the angular velocity and position against time for joints I and 

II with the initial values of: q1=30, q2=30, 𝑞̇𝑞1=𝑞̇𝑞2=0. Figures 4.3 to 4.6 show the 

angular positions of joints I and II with varied initial conditions. 

 

 

Figure 4.1: Examining velocity and position of the robot arm for joint I with 
initial values; q1=30, q2=-30, 𝑞̇𝑞1=𝑞̇𝑞2=0 

Figure 4.1 examines the movement of the link I and that of its velocity. 

Since they changed with time, then the computation is acceptable. 
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Figure 4.2: Examining velocity and position of the robot arm from joint II 
with initial values; q1=30, q2=-30, 𝑞̇𝑞1=𝑞̇𝑞2=0 

Figure 4.2 examines the movement of the link I and that of its velocity. 

Since they changed with time, then the computation is acceptable. 

 

 

Figure 4.3: Comparing the positions of Joints I and II of the robot arm with 
initial values; q1=30, q2=-30, 𝑞̇𝑞1=𝑞̇𝑞2=0 

Figure 4.3 shows that with the initial positions, joint I and II are not going 
on same graph because Joint II adds to joint I position for its own position. 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

4

Time

P
os

iti
on

, V
el

oc
ity

 

 
Position
Velocity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time

P
os

iti
on

 

 
Joint I
Joint II



101 
 

 

Figure 4.4: Comparing the positions of Joints I and II of the robot arm with 
initial values; q1=30, q2=30, 𝑞̇𝑞1=𝑞̇𝑞2=0 

Figure 4.4 shows that with the initial positions, joint I and II are not going 
on same graph because Joint II adds to joint I position for its position. 

 

 

Figure 4.5: Comparing the positions of Joints I and II of the robot arm with 
initial values; q1=-30, q2=-30, 𝑞̇𝑞1=𝑞̇𝑞2=0 

Figure 4.5 shows that with the initial positions, joint I and II are not going 
on same graph because Joint II adds to joint I position for its own position. 
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Figure 4.6: Comparing the positions of Joints I and II of the robot arm with 
initial values; q1=45, q2=45, 𝑞̇𝑞1=𝑞̇𝑞2=0 

Figure 4.6 shows that with the initial positions, joint I and II are not going 
on same graph because Joint II adds to joint I position for its position.  

 

4.2. Damping Coefficient Results for Joint I and II 

The results in figures 4.7, 4.8, 4.9, 4.10 and 4.11 illustrate the bode plots of 

joint 1 model loop gain to determine the joint model damping coefficient for 

the best performance. The figures examine the gain margin, phase margin 

and the peak gain of G for the values of K. In order to make clearer analysis, 

the Bode plots of the joint 1 model were compared in figure 4.12 for 

different values of damping coefficient. 
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Figure 4.7: Bode plot for Joint 1 model G when B = 10 

 

 

Figure 4.8: Bode plot for Joint 1 model G when B = 0.1 
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Figure 4.9: Bode plot for Joint 1 model G when B = 0.01 

 

 

Figure 4.10: Bode plot for Joint 1 model G when B = 0.001 
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Figure 4.11: Bode plot for Joint 1 model G when B = 0.00001 

 

Figure 4.12: Comparing the Bode plots of the joint 1 model for B values 
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Table 4.1: Damping Coefficient experiments for joint 1 

Damping 

Coefficient 

(B) 

Peak Gain  Gain Margin 

(GM)  

Freq. at 

GM 

Phase 

Margin 

(PM) 

Freq. at 

PM 

10 356 124 2380 - - 

0.1 395 63 250 89.6 0.541 

0.01 409 47.6 108 80.5 2.85 

0.001 414 42.6 81.6 64.6 4.61 

0.00001 415 41.8 78.1 61.2 4.89 

 

From the table 4.1, with the damping coefficient B = 10, the joint model 

achieved a high peak gain and gain margin. However, it did not record a 

phase margin value because the gain did not cross the 0dB line. When 

B=0.1, 0.01, 0.001, and 0.00001, the system met the design stability 

criteria. However, the system achieved highest value of peak gain at low 

frequencies when B = 0.00001, hence it was most accepted. 

 

The results in figures 4.13, 4.14, 4.15, 4.16 and 4.17 illustrate the bode 

plots of joint 2 models loop gain to determine the joint model damping 

coefficient for the best performance. Figure 4.18 compares the Bode plots of 

the joint II model for B values. 
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Figure 4.13: Bode plot for Joint II model G when B = 10 

 

 

Figure 4.14: Bode plot for Joint II model G when B = 0.1 
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Figure 4.15: Bode plot for Joint II model G when B = 0.01 

 

 

Figure 4.16: Bode plot for Joint II model G when B = 0.001 
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Figure 4.17: Bode plot for Joint II model G when B = 0.0001 

 

 

Figure 4.18: Comparing the Bode plots of the joint II model for B values 
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Table 4.2: Damping coefficient experiment results for joint II 

Damping 

Coefficient 

(B) 

Peak Gain  Gain Margin 

(GM)  

Freq. at 

GM 

Phase 

Margin 

(PM) 

Freq. at 

PM 

10 342 149 9260 - - 

0.1 382 87.9 930 - - 

0.01 401 67.6 303 88 1.16 

0.001 417 51.4 120 44.9 5.23 

0.0001 424 44.7 81.4 21.8 5.98 

 

From the results in table 4.2, the system (joint II) recorded no phase margin 

values when B = 10 to 0.1 because the gains did not cross the 0dB line. 

When B = 0.01, the system recorded the best and acceptable values for 

robust stability with phase margin of 88dB greater than the gain margin of 

67.6dB. However, when B = 0.001 and 0.0001, the phase margins are less 

than the gain margins which makes the system unstable. 

 

4.3. Joint I Controller Design Results 

The results of the two methods of controller design applied in the 

manipulator joint I controller design are presented as follows: 

 

4.3.1 PID Controller Results for Joint1 

The PID controller selected gains for joint I are as follows: 

P = 11.70, I = 6.79, D = 1.51, and N = 153.27.  
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Hence, substituting the values into equation, and simplifying, yields 

𝐾𝐾 = 11.7 + 6.79
1
𝑠𝑠

+ 1.51
153.27

1 + 153.27 1
𝑠𝑠
 

𝐾𝐾 =
243.1𝑠𝑠2 + 1800𝑠𝑠 + 1041

𝑠𝑠2 + 153.3𝑠𝑠
 

 

Figure 4.19 shows the reference tracking for PID controlled joint I. These 

show that the system achieved a good transient and steady state 

trajectories. Figure 4.20 shows the bode plot of the loop gain to determine 

the gain and phase margins and figure 4.21 shows the sigma plot of L, S and 

T of the PID controlled joint I.  

 

 

Figure 4.19: Reference tracking plot of PID controlled Joint I 
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Figure 4.20: Bode plot of loop gain for PID controlled joint I 

 

 

Figure 4.21: Sigma plot of L, S and T for PID controlled joint I 
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Table 4.3: Performance and robustness results for PID controlled joint I 

Parameter Value 

Loop gain at high freq. for T  -134 

System sensitivity at low frequency  -107 

Peak Sensitivity  3 

Settling Time  0.0518 

Overshoot  7.27 

Steady state Error (SSE) 0.117 

Gain Margin 20.4 

Phase Margin 60.1 

 

4.3.2 H-Infinity Controller Design Results for Joint I 

Three experiments were carried out by varying the values of the weights 

especially W1 to determine the best performance and robustness parameter 

values for the system. Figures 4.22 to 4.30 show the reference tracking 

response, loop gain bode plot and the sigma plots of the H-Infinity controller 

design.  

 

Experiment 1 

 

𝑊𝑊1 =
𝑠𝑠 + 1000
100𝑠𝑠 + 1

 

𝑊𝑊2 = 0.1 

𝑊𝑊3 = 0 

Applying H-Infinity synthesis yields: 

𝐾𝐾 =
119901.7𝑠𝑠3 + 81715151.28𝑠𝑠2 + 890033510.41𝑠𝑠 − 3409110783.96
𝑠𝑠4 + 15540.01𝑠𝑠3 + 10483353.54𝑠𝑠2 + 330407574.02𝑠𝑠 + 3263467.3
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Figure 4.22: Reference tracking response plot of H-Infinity controlled Joint I 

for Exp.I 

 

Figure 4.23: Bode plot of loop gain for H-Infinity controlled joint I for Exp.I 
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Figure 4.24: Sigma plot of L, S and T for H-Infinity controlled joint I for 

Exp.I 
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Figure 4.25: Reference tracking response plot of H-Infinity controlled Joint I 

for Exp.II 

 

 

Figure 4.26: Bode plot of loop gain for H-Infinity controlled joint I for Exp.II 
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Figure 4.27: Sigma plot of L, S and T for H-Infinity controlled joint I for 

Exp.II 

 

Experiment III 
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Figure 4.28: Reference tracking response plot of H-Infinity controlled Joint I 

for Exp.III 

 

Figure 4.29: Bode plot of loop gain for H-Infinity controlled joint I for Exp.III 
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Figure 4.30: Sigma plot of L, S and T for H-Infinity controlled joint I for 

Exp.III 

 

Table 4.4: Comparing the H-Infinity joint I results for the three experiments  

Parameter Exp.I Exp.II Exp.III 

Loop gain at high frequency -277 -224 -220 

System sensitivity at low frequency -86.9 -76.9 -114 

Peak Sensitivity  1.82 1.83 0.817 

Settling Time 0.189 0.197 0.0913 

Overshoot 1.38 0.545 0.62 

Steady state Error (SSE) 0 0 0 

Gain Margin 34.7 32.6 43.6 

Phase Margin 69.6 70.2 75.1 
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From table 4.4, experiment II recorded the best overshoot of 0.545% but 

has the highest value of peak sensitivity. However, one of the main goals of 

robust control is to reduce the level of sensitivity. The system achieved the 

best performance and robustness parameters values in the third experiment. 

 

4.3.3 Comparing PID and H-Infinity Controller Results for Joint I 

Table 4.5 summarizes the performance and robustness parameters results 

for the PID and H-Infinity controllers at joint I. 

Table 4.5: Summary of PID and H-Infinity controller results for joint I 

Parameter PID H-Infinity 

Loop gain at high frequency -134 -220 

System sensitivity at low frequency -107 -114 

Peak Sensitivity  3 0.817 

Settling Time 0.0518 0.0913 

Overshoot 7.27 0.62 

Steady state Error (SSE) 0.117 0 

Gain Margin 20.4 43.6 

Phase Margin 60.1 75.1 

 

From the results in table 4.5, the H-Infinity controller design method 

recorded the best performance and robustness parameter values compared 

to PID controller design method for the manipulator joint I. 

4.4. Controller Design Results for Joint II 

The controller design methods applied to joint II control are the PID and H-

Infinity methods. 
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4.4.1 PID Controller Design Results for Joint II 

The PID controller gains selected for joint II control are as follows: 

P = 1.9765, I = 0.5066, D = 0.9177 and N = 92.0282 

Hence, substituting the values of P, I, D and N into the equation and 

simplifying, yields 

𝐾𝐾 = 1.9765 + 0.5066
1
𝑠𝑠

+ 0.9177
92.0282

1 + 92.0282 1
𝑠𝑠
 

𝐾𝐾 =
86.43𝑠𝑠2 + 182.4𝑠𝑠 + 46.62

𝑠𝑠2 + 92.03𝑠𝑠
 

Figure 4.31 illustrates the reference tracking graph and figures 4.32 shows 

the bode plot of the open loop gain and figure 4.33 shows the sigma plot of 

the PID controlled for joint I. 

 

Figure 4.31: Reference tracking response plot of PID controlled Joint II  
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Figure 4.32: Bode plot of loop gain for PID controlled joint II 

 

 

Figure 4.33: Sigma plot of L, S and T for PID controlled joint II 
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Table 4.6: Performance and robustness results for PID controlled joint II 

Parameter Value 

Loop gain at high frequency for T -153 

System sensitivity at low frequency -97.4 

Sensitivity peak gain 1.86 

Settling Time 0.0635 

Overshoot 1.86 

Steady State Error (SSE) 0.061 

Gain Margin 37.9 

Phase Margin 69 

 

Table 4.2 shows the performance and robustness parameters of the joint II 

of the manipulator with PID controller.  

4.4.2 H-Infinity Controller Design Results for Joint II 

Figures 4.34 to 4.42 show the reference tracking response, loop gain bode 

plot and the sigma plots of the H-Infinity controller design for joint II. 

The results are organized in three experiments as follows: 

Experiment I: 

𝑊𝑊1 =
0.1(𝑠𝑠 + 1000)

100𝑠𝑠 + 1
 

𝑊𝑊2 = 0.1 

𝑊𝑊3 = 0 

Applying the H-Infinity Synthesis yields: 

𝐾𝐾 =
205.42𝑠𝑠3 + 564945.24𝑠𝑠2 + 1204793.35𝑠𝑠 − 57473.34

𝑠𝑠4 + 2869.01𝑠𝑠3 + 333784.44𝑠𝑠2 + 4170522.97𝑠𝑠 + 35522.12
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Figure 4.34: Reference tracking response plot of H-Infinity controlled Joint II 

for Exp.I 

 

 

Figure 4.35: Bode plot of loop gain for H-Infinity controlled joint II for Exp.I 
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Figure 4.36: Sigma plot of L, S and T for H-Infinity controlled joint II for 

Exp.I 

Experiment II 
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Figure 4.37: Reference tracking response plot of H-Infinity controlled Joint II 

for Exp.II 

 

Figure 4.38: Bode plot of loop gain for H-Infinity controlled joint II for Exp.II 
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Figure 4.39: Sigma plot of L, S and T for H-Infinity controlled joint II for 

Exp.II 

Experiment III 
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Figure 4.40: Reference tracking response plot of H-Infinity controlled Joint II 

for Exp.III 

 

Figure 4.41: Bode plot of loop gain for H-Infinity controlled joint II for 

Exp.III 
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Figure 4.42: Sigma plot of L, S and T for H-Infinity controlled joint II for 

Exp.III 

Table 4.7: Comparing the H-Infinity results for the three experiments for 

joint II 

Parameter Exp.I Exp.II Exp.III 

Loop gain at high frequency for T -248 -267 -310 

System sensitivity at low frequency -90.1 -76 -82.9 

Peak Sensitivity  2.05 1.81 1.79 

Settling Time 0.431 0.206 0.0971 

Overshoot 1.85 1.04 1.17 

Steady state Error (SSE) 0 0 0 

Gain Margin 26.9 46.2 41.1 

Phase Margin 68.2 69.6 69.8 
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From table 4.7, experiment II recorded the best overshoot of 1.04% but has 

a higher value of peak sensitivity compare to experiment III. However, 

considering peak sensitivity, settling time and other parameters, experiment 

III achieved the best results.  

 

4.4.3 Comparing PID and H-Infinity Controller Results for Joint II 

Table 4.8 summarizes the performance and robustness results for the PID 

and H-Infinity controllers. 

Table 4.8: Summary of the PID and H-Infinity controllers results for joint II 

Parameter PID  H-Infinity 

Loop gain at high frequency -153 -310 

System sensitivity at low frequency -97.4 -82.9 

Peak Sensitivity  1.86 1.79 

Settling Time 0.0635 0.0971 

Overshoot 1.86 1.17 

Steady state Error (SSE) 0.061 0 

Gain Margin 37.9 41.1 

Phase Margin 69 69.8 

 

From the results in table 4.8, the H-Infinity recorded the best performance 

and robustness results with lower values of peak sensitivity, settling time, 

overshoot, and steady state error; and higher values of gain and phase 

margins. 

4.5. Summary of Discussions 

In summary, at joint I, it was observed that the H-Infinity controller 

achieved better performance and robustness with peak sensitivity of 
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0.817dB, gain margin of 43.6dB, phase margin of 75.1degrees, steady state 

error of zero and overshoot of 0.62%, compared to the PID controller results 

that recorded peak sensitivity of 3dB, gain margin of 20.4dB, phase margin 

of 60.1degrees, steady state error of 0.117 and overshoot of 7.27%. 

 

At joint II, it was observed that the H-Infinity controller achieved better 

performance and robustness with peak sensitivity of 1.79dB, gain margin of 

41.1dB, phase margin of 69.8degrees, steady state error of zero and 

overshoot of 1.17%, compared to the PID controller results that recorded 

peak sensitivity of 1.86dB, gain margin of 37.9dB, phase margin of 

69degrees, steady state error of 0.061 and overshoot of 1.86%. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

The dynamic model of robotic manipulator for robust joint control was 

achieved based on decentralized control with multiple SISO configurations. 

This control scheme made it simpler to realize a coupled model of the 

actuator plus arm dynamics for the robust control. The joint torques due to 

the arm (link(s)) connected to the joints were determined using the link(s) 

parameters, and the actuators for the respective joints were selected based 

on the determined joint torques. Secondly, the actuators were selected to be 

at least 45g-cm higher than the calculated joint torques. This provides an 

extra input torque for unplanned torques produced due to uncertainties such 

as payloads. Other dynamic parameters of the joint actuator such as the 

torque and electromotive constants that were not given in the 

manufacturer’s catalog but were needed in the formulation of the joint 

torque control model were determined. 

 

The 2D and 3D models of the articulated 3DOF robotic manipulator were 

realized in Autodesk Inventor Professional software application and the 

equivalent SimMechanics model was achieved from the Autodesk inventor 

3D model in Matlab environment. The SimMechanics model produced the 

masses of the links corresponding to the dimensions of the links used. The 

simulink model of the joint model was realized successfully for the controller 

design. 

 

The viscous damping coefficient of the joint was derived from the simulation 

experiment and analysis of the results in the bode plot. It was confirmed 
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from the results that joint I and II performed best with damping coefficients 

of 0.00001 N.m/rad /sec and 0.01 N.m/rad /sec respectively.  

 

The robust controller design was achieved using H-Infinity synthesis method 

and compared with PID controller. This robust controller for the joint torque 

control was designed based on the independent joint control method. The 

joint torque control model achieved based on the decentralized control 

method enabled a simpler way of designing the robust controllers and 

applying the torque control law. It also enabled a possible and easier way of 

implementing H-Infinity synthesis. 

  

Good reference tracking means that the output of the manipulator joint 

tracks the input with little or zero difference. This determines the 

performance and stability of the system and it depends on the 

complementary sensitivity transfer function, T. From the results, the T graph 

at low frequencies for H-Infinity controller followed the zero dB line with zero 

difference at joint I and II, while the T graph at low frequencies for PID 

controller followed the line with a difference of 0.117 and 0.061 for joints I 

and II respectively. Therefore, H-Infinity controller recorded higher 

performance than the PID controller. 

 

Disturbance rejection characteristic depends on the sensitivity transfer 

function, S. The sensitivity transfer function graph for H-Infinity recorded 

peak sensitivity of 0.817dB and 1.79dB at joints I and II respectively while it 

recoded 3dB and 1.86dB at joints I and II respectively for PID controller. 

Thus, the H-Infinity controller achieved better disturbance rejection 

characteristics than PID controller. 
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Noise attenuation or rejection characteristic depends on the complementary 

sensitivity transfer function. From the T graph, the H-Infinity recorded lower 

gains of -220dB and -310dB at joints I and II respectively at high 

frequencies than the PID which recorded -134dB and -153dB gains at joints 

I and II respectively at high frequencies. Therefore, H-Infinity controller 

achieved better noise rejection characteristics than the PID controller.  

 

The controllers maintained good stability all through the experiment, 

however, the H-infinity showed better robust stability with higher stability 

margins (gain and phase) and also maintained zero tracking error than the 

PID controller at the joints I and II.  

 

Finally, from the results, it was concluded that H-Infinity controller 

guarantees more robustness with better noise and disturbance rejection 

characteristics, good performance and robust stability characteristics than 

PID controller.  

5.2 Contribution to Knowledge 

In this work, reference tracking error of zero was achieved at low 

frequencies for the robotic manipulator joints I and II using H-infinity 

synthesis. Hence, this produces high performance stability, and good error 

management characteristics. 

 

Reduced sensitivities to disturbance were achieved up to 0.817dB and 

1.79dB respectively for the manipulator joints using H-infinity synthesis. 

Thus, this produces good disturbance rejection characteristics for the 

manipulator to work adequately in the presence of disturbances. 

 

Very low gains up to -220dB and -310dB were achieved at high frequencies 

in the complementary sensitivity function using H-infinity synthesis for the 
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manipulator joints. This produces good noise attenuation characteristics for 

good error control and performance improvement. 

 

Therefore, with the achievements of zero reference tracking error, good 

disturbance rejection and noise attenuation using H-infinity synthesis, a 

robust controller was developed for the robotic manipulator to perform 

effectively in the presence of significant uncertainties. 

 

5.3 Recommendation 

The robust H-infinity controller and the independent joint control scheme are 

recommended to be applied in the development of differential drives for the 

mobile robots and humanoids. This is because these robots can go through 

rough terrains and can work under high level of uncertainties therefore they 

are required to posses robust stability and good noise and disturbance 

rejection characteristics with very low sensitivity in order to perform 

adequately. 

 

The robotic manipulator is a physical system which cannot avoid 

uncertainties, therefore every control technique such as the intelligent 

control in the form of Artificial Neural Network, Fussy Logic Control, Genetic 

Algorithm etc., to be applied for the torque control of the robotic 

manipulator should incorporate the robustness scheme so that the system 

will be able to perform satisfactorily in real environments.  

 

Based on the performance and robustness characteristics of the H-Infinity 

controller, it is recommended for the control of industrial manipulators, 

remotely operated vehicles used in deep sea works, medical surgery robots, 

and space vehicles. The performance and robustness specifications are 

recommended to be strictly followed in the robust controller design.  
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The decentralized control model is recommended for the medical surgery 

robots and other robots used in the nuclear energy works etc. that require 

high precision and accuracy. 

 

5.4. Suggestion for Further Study 

The PID controller produced large loop-gains at low frequencies which can 

improve performance of the controller. The advantages of the two controllers 

can be utilized by hybridizing the H-Infinity and PID controllers to achieve a 

stronger system. Therefore, more research work should be carried out on 

the combination of the H-Infinity controller and the PID controller to form a 

hybrid controller.  

 

The Autodesk inventor professional and the SimMechanics tool box are vital 

materials that help companies to design and test run physical systems such 

as manipulators. The SimMechanics demonstrates the practical way of 

applying the control law. However, both the inventor and SimMechanics 

application programs do not have any means of inputting or adjusting the 

parameters of the joint actuator and this makes it difficult to complete the 

robotic manipulator design using these platforms. Since the joint torque 

control model was achieved in Simulink therefore, further work should be 

carried out to combine the SimMechanics blocks and the Simulink blocks for 

the manipulator design by substituting the revolute blocks of the 

SimMechanics with the Simulink joint model subsystem. 

 

A possible extension of this work would be implementation for the 

development of a 6 DOF articulated space robot.  
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