CHAPTER ONE
INTRODUCTION

1.1 Background to the Study

Cloud computing is a service delivery model whereby shared resources such as hardware,
software, platforms, and information are provided to consumers electronically as a utility over an
internet (Wang et al, 2009). Several trends are opening up the era of cloud computing. These
trends include ever cheaper and more powerful processors, together with the mainstream
computing architectures such as Software-as-a-Service (SaaS), Platform-as-a Service (PaaS) and
Infrastructure-as-a-Service (laaS). These trends are transforming data centers into pools of
computing service on a huge scale.

The increasing network bandwidth and reliable, yet flexible network connections make it even
possible that users can now subscribe for high quality services from data and software that reside
solely on remote data centers. Moving data into the cloud offers great convenience to users since
they do not have to care about the complexities of direct hardware management. Examples of
such well known services include Amazon Simple Storage Service (S3), and Amazon Elastic
Compute Cloud (EC2).

While these internet-based online services do provide huge amounts of storage space and
customizable computing resources, these computing platform shifts, however, are eliminating the
responsibility of local machines for data maintenance at the same time. As a result, users are at
the mercy of their cloud service providers (CSP) for the availability and integrity of their data
(Wang et al, 2009).

This research focuses on sensitive data generated from organizations globally such as IT
industries, banks, private and corporate organizations, and higher institutions. Academic data
generated from a university for example, which are the life wire of such organization and other
sensitive records such as students and staff records are being generated from different
departments and units to be stored and managed internally. Due to some known risks posed to
these data such as internal risks like fire and liquid hazards, conflicts of interest, political intent,
and financial baits, this research proposed outsourcing of these data to the cloud where it will be

devoid of these risks.

Successful data outsourcing to the cloud requires some facilities and logistics that are to be
provided which include: Internet facilities with required network equipments and technologies,
acquisition of bandwidth from an Internet Service Provider (ISP) of its choice. Logistics include
organizational policies to determine which Cloud Service Provider (CSP) to outsource to.
Moreover, there has to be a service level agreement between the CSP and the Organization to be
able to determine the quality of service that the CSP will provide for the organization. This
service level agreement contains the type of services the provider renders to its client and the
amount of money the clients pay for the services with legal backing.

Outsourcing of organizational data to the cloud should not be done without being cautious of
both the internal and external security threats to the outsourced data. An example of external
security threat considered in this research is man in the middle intercepting the data during
transmission. For mitigation of this threat, the research hashed the data into blocks using adapted
Merkle Hash Tree (MHT) (Qian et al, 2008), and encrypting the MHT root hash using improved
RC6 (IRC6) cryptosystem before outsourcing to the cloud. A broad range of internal threats to
data integrity still exist for outsourced data to the cloud. Examples of these internal threats
include; services failure or server failure and data loss incidents. These threats occur from time
to time and are worth noting. Again, since users may not retain a local copy of outsourced data,
there exist various incentives for a CSP to behave unfaithfully toward the cloud users regarding
the status of their outsourced data. For example, to increase the profit margin by reducing cost, it
is possible for CSP to discard rarely accessed data without being detected in a timely fashion.
Similarly, CSP may even attempt to hide data loss incidents so as to maintain a reputation.
Therefore, there is need for regular remote auditing of data outsourced to the cloud to ensure data
integrity and availability. This serves as a check to internal cloud data storage threats (Cong et al,
2012).

A Merkle Hash Tree (MHT) is a well-studied authentication structure, which is intended to
efficiently and securely prove that a set of elements are undamaged and unaltered using
homomorphic tokens. It is constructed as a binary tree where the leaves in the MHT are the
hashes of authentic data values (Qian et al, 2008).

IRC6 cryptosystem is an improvement on RC6 which was developed in the course of this
research to guard against crypto-analytical attack. This is achieved by doubling its security at

little or no computational cost. RC6 is an improvement on RC5, and RC5 was an improvement

on RC4. IRC6 is designed to meet the requirements of increased security and better performance.
IRC6 makes use of data dependent rotations. Another good feature of IRC6 is the use of four
working registers instead of two. RCS5 is a fast block cipher, it acts on 128-bit blocks using two
64-bit working registers. IRC6 modified its design to use four 32-bit registers rather than two 64-
bit registers. This has the advantage of performing two rotations per round rather than the one
found in a half-round of RC5. The improved cryptosystem (IRC6), is used in this research to
secure the MHT root hash before data outsourcing to the cloud.

For the purpose of achieving the aim of this study, this research has developed an enhanced
hybrid auditing model using MHT and IRC6 cryptosystem that will enable on-demand data
correctness verification. The verification of cloud storage correctness is conducted without
explicit knowledge of the whole data files on the cloud. The data stored in the cloud may not
only be accessed but also be frequently updated by the data owners. The updates include
insertion, deletion, modification and appending. These updates are dynamic operations that need

to be integrated into the cloud storage correctness assurance (Ren & Wang, 2012).

1.2 Statement of the Problems
From the viewpoint of data security/integrity, which has always been an important aspect of
quality of service, cloud computing certainly poses new challenges for a number of reasons:
i. Many organizations are yet to adopt and enjoy the rich advantages of cloud data storage
management capabilities due to fear of losing their data integrity.

ii. Formal Remote Data Auditing (RDA) models’ rootkey which is the main audit
parameter, has been left unsecured.

iii. Direct application of traditional or symmetric cryptosystem for data auditing is not
adequate due to the users’ loss of control of data outsourced to the cloud. There is need
for additional techniques to verify the correctness of data storage in the cloud without
explicit knowledge of the whole data.

iv. Data stored in the cloud may be frequently updated. Hence, the assurance of storage
correctness under dynamic data update is of paramount importance. However, this
dynamic feature also makes traditional integrity assurance techniques ineffective and this

requires new solutions.

Vi.

Vii.

13

14

Cloud computing deployment is composed of many data centers running in a
simultaneous, cooperated and distributed manner. Clients’data are stored in multiple
physical locations of these distributed data centers to further reduce the data integrity
threats. Therefore, outsourced data should be in blocks to support these distributed
protocols for various data centers for effective remote data integrity check.

The practice of employing the services of the Third Party Auditor (TPA) for periodic
remote data integrity check is faced with vulnerabilities which include interception of the
original data main auditing tokens, hacking of TPA server or data compromise by TPA
itself.

Aside the vulnerabilities associated with adopting TPA services, hiring and maintaining a

TPA is rather costly.

Aim and Objectives of the Study

The main aim of this research is to develop a hybrid model for dynamic remote data
auditing model on cloud computing. The specific objectives of the study are to:

present the design of an Enhanced Model for Dynamic remote Data Auditing;

develop an enhanced hybrid system to support dynamic remote data auditing and data
dynamic operations in the cloud by maintaining data integrity and availability even if
users modify, delete, insert or update their data files in the cloud;

build and apply an adversary data authentication model to evaluate the effectiveness of
the system;

compare performance of the new system with the existing system.

Significance of the Study

Broader knowledge of cyber attack mitigation and required techniques to chackemate cyber

activities against remote data stored on the cloud is established through this research. This model

helps to checkmate the wide spread of cyber-attacks in Internet environments tending to attack

and compromise data over a cloud network. The work will potentially restore the confidence that

organizations, both large and small, have on cloud services they engaged and use as most data

stored on the cloud can be critical to the enterprise. It will also lead to improved economy as

organization and individuals use the cloud services to maximize their profits by utilizing more
secured cloud services.

Development of an improved RC6 (IRC6) cryptosystem in this research also has great
siginificance to improved security of the main auditing parameter with respect to existing
system, as organizations focused more on profits making while using the cloud with less risk.
This research also helps organizations to adopt data management principle that is devoid of
internal data insecurity such as internal data threats.

The research develops an enhanced hybrid auditing scheme that adopts effective and flexible
distributed data preprocessing scheme with explicit dynamic data support such as insertion,
modification, deletion and appending; to ensure the correctness of users’ file in the cloud. It
relies on MHT and IRC6 encryption techniques in the file distribution preparation to guarantee
data integrity and dependability. This hybrid technique will drastically reduce the
communication and storage overhead as compared to the traditional replication-based file
distribution techniques. By utilizing the homomorphic token with distributed verification blocks
of data, this scheme will achieve the storage correctness assurance during RDA, as well as data
error localization. It will also eliminate the vulnerabilities that are posed to the outsourced data
by bypassing the TPA services.

The developed IRC6 in this research was implemented to double the security of the main
auditing key with little or no cost. Encryption module, decryption module and key generation
module were properly evaluated agaist their time lags and it was discovered that their time lags
were very negligible which shows a good significant economic and security improvement over
the previous models.

It was equally observed that its cipher text is not transparent during crypto-analysis thereby
survives any crypto-analytical attack.

Organizations and individuals that outsource data to the cloud and employs this new enhance
hybrid dynamic remote data auditing model for periodic data integrity check achieves great
economic importance over their business with little or no security challenges.

The main significant of the new auditing model lie on auditing outsourced big-data which is a
great task with great economic importance as it take few Auxilary Authentication Information

(AAI) or audit path to achieve effective audit results when compare to other replica base models.

1.5 Scope of the study

This research is based on cloud data security. It uses two techniques which are MHT and IRC6 to
remotely audit the outsourced data on cloud. RC6 cryptosystem is improved fundamentally to
yield IRC6 cryptosystem which doubles the level of data security. The developed IRC6 and
adapted MHT authentication techniques are used to produce a hybrid model which has the
capability of carrying out dynamic remote data auditing on cloud. The developed IRC6 was used
to secure the security limitation in existing RDA models.

The implementation is done on a Java platform. The research adopts both real and adversary
authentication modes as test cases during testing and validation.

1.6 Limitations of the study

The cost (in terms of transportation and access honorarium and time) of acquiring data for
analysis from different universities and other organizations during feasibility study was rather
high. Implementation of this hybrid remote dynamic data auditing system requires extra
expertise experience and steady power availability which was a challenge. In creating Java
applets, it has to be written in Java Language (because MHT is built on Java) which is more
difficult but must be done for possible integration with IRCG6.

1.7 Definition of terms

Amazon Elastic Compute Cloud (EC2): Amazon’s EC2 is a cloud computing service that
allows users to deploy and run their applications on rented virtual computers. Users can boot
what are called Amazon machine images and create an instance, also known as a virtual
machine, and pay for the amount of computing power they need by the hour.

Amazon Simple Storage Service (S3): Amazon’s S3 is a cloud storage service that provides
scalable, unlimited online archiving and backup for Amazon web service users.

Service Provider: This is a company or organization that provides a public or private cloud
service.

Byzantine failures: Are defined as arbitrary deviations of a process from its assumed behavior
based on the algorithm it is supposed to be running and the inputs it receives. Such failures can
occur, e.g., due to a software bug, a (transitional or permanent) hardware malfunction, or a
malicious attack.

Cloud computing: This refers to a model of network computing, where a program or application

runs on a connected server or servers rather than on a local computing device such as PC, tablet

or smartphone. Like the traditional client-server model or older mainframe computing, a user
connects with a server to perform task. The difference with cloud computing is that the
computing process may run on one or many connected computers at the same time, utilizing the
concept of virtualization.

Cloud Database: This is a database accessible to clients from the cloud and delivered to users
on demand via the internet from a cloud database provider’s servers. Also referred to as
Database-as-a-Service (DDaaS), cloud databases can use cloud computing to achieve optimized
scaling, high availability, multi-tenancy and effective resource allocation.

Cloud provider: A company that provides cloud-based platform, infrastructure, application, or
storage services to other organizations and/or individuals, usually for a fee.

Cloud Storage: This is a service that allows customers to save data by transferring it over the
internet or another network, to an offside storage system maintained by a third party.

Data Center: This is a facility built for the purpose of housing cloud-based data resources such
as servers and other service-based equipment. Many cloud-based companies own and operate
their own data centres which house the data stored for consumers and ensure the on-going
availability of their cloud.

Data Integrity: This refers to maintaining and assuring the accuracy and consistency of data
over its entire life-cycle, and is a critical aspect of the design, implementation and usage of any
system which stores, processes and retrieves data.

DO: Data owner that outsources his data to cloud and employs the services of the TPA for
constant auditing.

Homomorphic encryption: Is a form of encryption that allows computations to be carried out
on ciphertext, thus generating an encrypted result which, when decrypted, matches the result of
operations performed on the plaintext.

Infrastructure as a service (1aaS): It is a pay-per-use service where a cloud computing provider
offers storage space, software and network equipment as consumable resources. laaS offerings
include Amazon EC2, GoGrid and the Rackspace cloud.

Platform as a service (PaaS): This is a cloud computing model through which a computing
platform is delivered to users via the web. PaaS is often used for the development, deployment
and hosting of applications. Its offerings include Microsoft Azure, Force.com and google App

Engine.

RDA: Remote Data Auditing, this refers to a means of verifying the correctness of data stored in
remote cloud server.

Software as a service (SaaS): This is a software distribution model that provides applications to
customers via the internet. The most commonly used form of cloud computing, SaaS continues
to grow as web service and service-oriented architectures advance. The top sources of SaaS are
Netsuite, Adobe and salesforce.com.

Service-level agreements (SLAs): This is a contractual agreement by which a service provider
defines the level of service, responsibility, priorities, and guarantees regarding availability,
performance, and other aspects of the service.

TPA: Third Party Auditor that constantly audits the remote outsourced data base on some level

of agreements with the DO.

CHAPTER TWO
LITERATURE REVIEW

2.1 Theoretical Review

A large number of Information and Communication Technology (ICT) industries are migrating
to cloud computing as an emerging area of Information Technology (IT) with the intent of using
it to make their businesses more competitive and render more efficient services to their
customers.

Before the emergence of cloud computing, there were three options available for acquiring more
computational power to meet increasing demands. One option was to order for a more efficient
server from one of the big server manufacturers such as HP, IBM, Dell, etc., install it in already
established data center for the organization or in rented space reserved for it. The responsibility
for acquisition, installation, and maintenance are entirely on the organization (Dave, 2012). The
second option was to lease some of the needed equipment from a leasing company. The
organization still had the responsibility of installing and configuring it in their data center or a
provisioned space meant for it just as if they had purchased them. The third option was to rent a
server from a Managed Service Provider (MSP) such as Savvis, Rackspace, Terremark, etc. The
MSP would allocate a server from their own internal stock, deploy it for the organization in their
data center, and then grant the organization access to operate it. The line between the service
provider responsibilities and the organization’s responsibilities is flexible. MSPs offered a
variety of services as backup and “remote hands” being two likely supports in addition to simple

server rental services and supports (Dave, 2012).

Each of these options or models has advantages and disadvantages. If the organization acquired
the equipment, they naturally owned it through the full devaluation cycle of four to five years.
That might have been the cheapest option, but it is the least flexible. They gained some long-
term flexibility when they leased the equipment, but they paid more in trade and are still faced
with all the operational costs. Again, to lease an equipment for less than a 3-month time
prospect, or with a year span is not ideal, otherwise the overhead cost of receiving, configuring,
and then returning the equipment would be too high. Finally, if the organization rents the server,

they could get something with determined monthly terms, but will be facing some limitations in

the hardware choices and could not deploy it in their own data center. The advantage is that they
will be able to have it up and running in a very good short time (Dave, 2012).

These models form a variety to be considered thus: on one aspect, there is a “buy-and-own-
everything model”; on another aspect, there is a “own-nothing model”. In between the two
models, there is a wide variety of models where some things are owned and others not. Figure

2.1 shows the conceptual model for cloud computing in which these four models are depicted.

Own it A" Lease it

Manage it
e Lowest cost e High cost e High cost
e Reduced agility e Improved agility e Improved agility
e Slowest e Slow provisioning e 24 hours
provisioning times times provisioning times
® No elasticity e 6+ months timescale e Monthly timescales
® No elasticity e Minimal elasticity

Cloud Computing

e High cost for static
Lower cost for transient
Highest agility
Immediate provisioning
High elasticity

Increase in Agility

Figure 2.1: Conceptual model for cloud computing (Dave, 2012).

2.1.1 The birth of Cloud Computing

Cloud Computing can be described as a refinement of the own-nothing model, with smaller
periods for resource rental, and greater flexibility for the customer as a result.

To put it straight, cloud computing implies delivery of scalable IT resources over the internet, as
against the old tradition of hosting and using these resources locally within an individual or
organizational network such as a university network. These shared pool of resources provided by
cloud computing include computer processing power, data storage facilities and networks as
cloud infrastructure, applications and services that will run on the infrastructure. When these
cloud IT infrastructures and services are deployed over the network, an organization can

purchase these resources over the network on the basis of as and when needed in order to avoid

10

the capital costs of software and hardware. Cloud computing helps to adjust IT capacity easily
and quickly so as to accommodate changes in demand. The models of cloud computing grants
access to cloud information and computer resources from anywhere that a network connection is
available. Some other features that contribute to the emergence of cloud computing include
ubiquitous networks, maturing standards, the rise of hardware and software virtualization, and
the push to make IT costs variable and transparent (Educause, 2009).

According to The National Institute of Standards and Technology (NIST), cloud computing is a
model for enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction. This cloud model promotes availability and is composed of five essential
characteristics, three service models, and four deployment models (Peter et al, 2011).

2.1.2 The five essential characteristics of cloud computing according to NIST (Peter et al,
2011) are:

i. On-demand self-service: Resources are made available to customers in full
automation without the interaction of involvement of the service provider. The
ultimate goal is a resource to be available “instantly,” whenever a customer requires
it.

ii. Broad network access: Huge cloud computing resources and services that are
available over the network can be accessed by different customers or end-user
terminal systems such as laptops and desktop computers as well as other customers
on mobile terminal systems such as phones and tablets.

iii. Resource pooling: The cloud computing service providers are required to design the
cloud computing physical infrastructures in order to have all the resources located in
one or more common pools. This implies that the customers do not know the exact
location of their resources in the midst of cloud computing pool. In practice, most
providers offer some high-level location choices, such as a geographical region or
data center.

(\2 Rapid elasticity: Users should be able to quickly allocate and release resources as

required by applications. Ideally, users could request many resources immediately but

11

some resources such as new hardware still takes time to be received and configured
then leading to scale the services as soon as they are ready. Services can still be
scaled or delivered in elastic requests with enough or large common pool of resources
serving numerous customers. It is necessary to state at this point that elasticity request
is a two-way thing which demands that applications need to be able to allocate new
resources as well as release them when they no longer need them.

V. Measured service: Customers using cloud computing resources should be billed based
on a well-defined granularity scheme (hours/days vs. months/years) as they are
consumed, using appropriate units for the resource (GHz for CPU, GB for memory,

GB/TB for mass storage, and Mbps/Gbps or GB of transfer for network, etc.).
2.1.3 Three categories of cloud computing service models according to NIST:

This brief correlation below stands to give clearer understanding of the three cloud computing
models.

Cloud infrastructure as a service is not useful itself unless it is made useful by using it to solve a
particular problem. Consider the intercity transportation system in FCT Abuja, despite all the
good roads and perfect road networks, they would not be useful if cars and trucks are not on
them to move people and goods from one place to another.

In comparison, the infrastructure can be seen as the roads while the means of transportation such
as cars and trucks are the platform that sits on top of the infrastructure for the purpose of
transportation. Goods and people being transported can be considered as the software and
information in the technical form (Ben, 2011). Figure 2.2 shows in some details, the pictorial

representation of the three models of cloud computing services.

12

laaS PaaS SaaS

>
o)
— Application ° Application Application m
?'P[
Fy Data S Nata Nata
©
S =
[eT0] . .
© Runtime Runtime = Runtime
©
= . .
Middleware Middleware Middleware
<
3
— 18]S Nn< z N< &
Q D
a o
Virtualization = Virtualization % Virtualization g
Z o
Q O
Servers 3 Servers < Servers
[0)¢]
3
Storage = Storage Storage
~<<
Networking - Networking - Networking -

Figure 2.2: Cloud Computing Model (Ben, 2011).

I Software as a Service
Software as a Service (SaaS): This is software deployed over the internet to support cloud

computing customers. Cloud computing providers grant their customers’ access to licensed
applications as a service resident on their cloud either through subscription, on demand, on
instantaneous model known as pay-as-you-go model or free of charge if there are other ways to
generate income from cloud users such as advertisement or sales of user list.

Recent reports that envisage the ongoing double digit growth according Ben (2011) have shown
that SaaS is a rapid growing market in cloud computing field. This indicates that SaaS is fast
gaining ground in every organization which makes it vital to establish at this point the suitability
of SaaS to the consumers of cloud computing technology.

Characteristics of SaaS
The uniqueness of SaaS cannot be over emphasized, and it is good to ensure that software sold as

SaaS complies with generally known classifications of Cloud Computing. The following are the
characteristics of SaaS (Peter et al, 2011):
i. Internet access to commercial software.

ii. Central management of software from a central location.

13

iii. There is “one to many” model for delivery of cloud software model.

iv. Software upgrades and patches are centrally handled by cloud providers and the users.

v. Application Programming Interfaces (APIs) permit for incorporation of different pieces
of software on cloud computing.

SaaS Suitability
SaaS as a model of Cloud Computing is a fast emergent means of delivering technology. For this
fact, there is need to consider the type of application that will be suitable to move to cloud by
individual organizations that have decided to move to cloud. The following applications will be
good for initial move to SaaS:

i. “Vanilla” is a good SaaS that provides solutions that are largely homogeneous. A typical
example of vanilla is an email services where on different occasions competitors use the
same software precisely because this fundamental technology is a requirement for doing
business, but does not itself confer a competitive advantage.

ii. Software that requires important interaction between the organization and its external
collaborators or customers. For example, email newsletter campaign software.

iii. Software that requires important internet or mobile access. An example is mobile sales
management software.

iv. Software that is only required on short term basis for usage. Collaboration software for a
specific project is an example.

v. Software with significant increase in demand, tax or billing software used once a month
is an example.

Salesforce Customer Relationship Management (CRM) product introduced SaaS to the business

world due to it is wide acceptance. As one of the earliest entrants it is not surprising that CRM is

the most popular SaaS application area according Peter et al (2011), however e-mail, financial

management, customer service and expense management have also become good through SaaS.
Unsuitability of SaaS

For the fact that SaaS is a very resourceful tool, does not imply that it does not have its down

side, listed below are some examples where SaaS may not be suitable which include:

i. Software that requires real-time data process at a very high speed of processing.

ii. Software that is bound by legislative policies or other regulations which permits only

internal domicile of data.

14

iii. Software where an internal existing data or solution satisfies all the organization’s
demands.
The best known aspect of Cloud Computing is the SaaS, but Cloud Developers and organizations
are bringing in Platform as a Service, such that the simplicity of SaaS with the power of laaS,
helps to drive Cloud Computing to a great extent.
. Platform as a Service
Platform as a Service (PaaS) is very advantageous for SaaS in Cloud Computing. PaaS is a
computing platform which helps in easily and timely creation of network or internet software
without the complexity of buying and maintaining the software and its infrastructure unto which
it is built.
PaaS is similar to SaaS, the only difference between them is while SaaS is software delivered
over the internet, PaaS is a platform for the creation of software, delivered over the internet
(Peter et al, 2011).

Characteristics of PaaS
These are basic characteristics of PaaS (Peter et al, 2011):

i. It is the required platform for developing, testing, deployment, hosting and maintaining
applications in one integrated development environment. It contains all the different
services needed to fulfill the application development process.

ii. Internet based user interface creation tools help to create, modify, test and deploy
different User Interface scenarios.

iii. It has multi-tenant architecture which helps multiple concurrent users to adapt and utilize
the same development application.

iv. It has built in scalability for software deployment such as load balancing and failover.

v. It has common standard for integration of databases and internet services.

vi. It provides support for development team collaboration. Some of the supports for PaaS
solutions are communication and project planning tools.

vii. It has tools to manage billing and subscription.

PaaS is similar to Infrastructure as a Service (laaS), but it is being differentiated by the addition
of value added services which come in two forms:

1. It has a collaborative platform that enhances software development which is concentrated

on workflow management irrespective of the application’s data source. An example of

15

this approach is Heroku which is a PaaS that utilizes the Ruby on Rails development
language (Peter et al, 2011).

It has a platform that allows for the creation of software utilizing copyright data from an
application. This type of PaaS can be seen as a method to create applications with a
common data form or type. An example of this type of platform is the Force.com PaaS
from Salesforce.com which is used to develop applications that work with the
Salesforce.com CRM.

PaasS Suitability

PaaS is suitable for multi-platform development environment which permits multiple
developers to develop a project or allow for other external parties to interact with a
project development process. It is very resourceful for those that have an existing data
source such as sales information from a customer relationship management tool, and wish

to develop an application to manage the data.

. PaaS is also suitable where developers wish to automate testing and deployment services.

The general acceptance of agile software development, a group of software development
methodologies based on iterative and incremental development, will also increase the
suitability of PaaS as it reduces the challenges with rapid development and iteration of
software. Examples of PaaS include Google App Engine, Microsoft Azure Services, and
the Force.com platform according to Peter et al (2011).

Unsuitability of PaaS

PaaS is expected to become the widely used means of software development. Its capability to
automate application development processes, use of predefined components and building blocks
and automatic deployment of software over the internet make it very valuable, but there are
certain areas where it may not be suitable which include:

Situation where the portability of an application is highly required in terms of where it is
hosted.
Situation where software development process will be influenced by proprietary

languages.

iii. Situations where there will be hindrance for transfer of service to another provider due to

a proprietary language such as vendor lock-in (Peter et al, 2011).

16

iv. Situations where customization of application’s software and hardware is required to
improve its performance.
iii. Infrastructure as a Service
Infrastructure as a Service (laaS) is a means of delivering Cloud Computing infrastructures such
as servers, storage, network and operating systems as an on-demand service. Instead of buying
all cloud computing infrastructures such as servers, software, datacenter space and other network
equipment, organizations or customers purchase these cloud computing infrastructural resources
as a completely outsourced service on demand (Ben, 2011).
Characteristics of laaS
As the case is with SaaS and PaaS, laaS is equally an emerging and rapidly developing field in
IT world. laaS is generally agreed to conform to the following (Ben, 2011):
i. Itsresources are distributed as a service
ii. It permits for self-motivated scaling
iii. It has a flexible cost, utility pricing model
iv. It usually comprises several users on a single piece of hardware
There are many laaS providers at present in Cloud Computing world such as Amazon Web
Services and Rackspace.
The difference between PaaS and laaS is becoming more indistinct as cloud computing providers
or merchants are introducing tools as part of 1aaS that help with cloud deployment such as the
ability to deploy multiple kinds of Clouds (Ben, 2011).
laaS Suitability
The suitability of laaS is what bring about some benefits of Cloud Computing. Conditions that
are predominantly suitable for Cloud infrastructure include:
i. Situation where demand is very unstable, that is whenever there are substantial increase
and decrease in demand for cloud computing infrastructure.
ii. Situation where there are new organizations without the enough money to acquire
required infrastructure such as hardware.
iii. Situation where there is rapid growth of a client or an organization with increase in
hardware demand which may be difficult to achieve.
iv. Situation where there is pressure on a client to reduce capital spending and to move to

operating spending

17

v. Situation where there is need for infrastructure to support a particular line of business,
trial or temporary need for infrastructure.
Unsuitability 1aaS
Scalability and quick availability have been the greatest advantages of laaS but there are
situations limitation posses a challenge. Such situations include (Ben, 2011):
i. Where there is strict compliance to a regulation that makes it difficult for outsourcing of
data storage and processing.
ii. Where the maximum levels of performance are needed, and internal or dedicated hosted
infrastructure has the capability to meet the client’s needs
2.1.4 Type of Deployment Models
There are four different types of deployment models outlined in the NIST definition of cloud

computing as shown in figure 2.3 which include:

‘ Private

Cloud

Other

Organization Community O

Cloud

General
Public

Figure 2.3: Cloud Deployment models (Peter et al, 2011)

18

2.1.4.1 Private cloud

Private clouds are types of cloud computing deployment model that are created for use by a
single organization. Private clouds are created and operated by that organization as well, which
did not depict the true value of cloud computing. Examples are private clouds that based on
VMware or OpenStack, which are created by individual enterprises.

2.1.4.2 Community cloud

Community clouds are created to be used by a small set of known clients that have certain
requirements in common such as performance, security, cost, etc. These clients are selected from
same type of business or industry such as financial services, although this did not depict the real
value of cloud computing. Examples are the NYSE Capital Markets Community Platform and
Amazon’s GovCloud.

2.1.4.3 Public cloud

Public clouds are owned and operated by large external providers and deliver service to all
clients. Examples are Amazon Web Services EC2 and Google AppEngine.

2.1.4.4 Hybrid cloud

The combination of other cloud computing deployment models gave rise to hybrid deployment
model. Hybrid model is built on a cloud environment that spans each of these various models.
Each part of a hybrid cloud can be possessed and operated by a different entity with management
software providing integration across the environment.

The NIST service and deployment models form a matrix as shown in the table 2.1 below.

Table 2.1: Cloud Computing service and deployment models matrix according NIST (Educause,
2009)

countries such as
Canada, USA, Japan

Markets Community

Platform

SaaS PaaS laaS
Private Cloud Internal enterprise Apprenda, Stackota | VMware, Hyper-V,
applications, e.g., OpensStack,
cooperate emails, CloudStack
payroll, etc.
Community Cloud | Health regions in NYSE Capital NYSE Capital

Markets Community

Platform

Public Cloud

Salesforce.com,

Google AppEngine,

Amazon EC2,

19

http://aws.amazon.com/govcloud-us/

Quickbooks online, Microsoft Azure, Rackspace
Office 360 VMware
CloudFoundry.com

Hybrid Cloud Custom Custom, Rackspace

CloudFoundry

Table 2.1 shows hybrid clouds in the matrix, which are really a mixture of the several public,
private, and community cloud types. Thus, it is possible to construct a motivating hybrid cloud
environment from a combination of a private laaS cloud based on VMware, a public 1aaS cloud
based on Amazon EC2, and a public PaaS cloud based on Google AppEngine (Dave, 2012).
Some big organizations create a hybrid cloud environment of some kind, with several public and
private clouds, and perhaps a community cloud forms the mixture. Some clouds will provide
enhanced security; others will provide enhanced performance; still others will offer optimized
pricing. Organizations will thereafter deploy application workloads within a suitable cloud to
create an optimized outcome. Management software are equally deployed which helps to match
application capabilities to the right clouds given optimization goals, risk and compliance
restrictions (Dave, 2012).

2.1.5 Cloud Computing Architecture

Cloud architecture extends to the client where web browsers and/or software applications are
used to access cloud applications. The majority of cloud computing infrastructure currently
consists of reliable services delivered through data centres that are built on computer and storage
virtualization technologies. The services are accessible anywhere in the world, with The Cloud
appearing as a single point of access for all the computing needs of consumers. Cloud storage
architecture is loosely coupled where metadata operations are centralized enabling the data nodes
to scale into the hundreds, each independently delivering data to applications or users. The figure
2.4 below shows cloud computing architecture where clients/users access cloud systems using a
web browser regardless of their location or what device they use (e.g. Desktops, Laptops,

Servers, Tablets, mobile phones etc.).

20

Laptops

Desktops

@@

Finance

Monitoring Collaboration

Content Communication
Platform

25 . =

Identtty Q Queue (e

Object Storage Runtime Database

Infrastructure
2 X8
i Compute Network
Block Storage

Tablets

Phones

Cloud Computing

Figure 2.4: Cloud Computing Architecture (Sam, 2009)

2.1.6 Components of Cloud Computing Service

Components of cloud computing services are shown in figure 2.5, explanation on each of the

components are given thereafter.

21

Clients

Services

Application

Platform

Storage

Infrastructure

N\,

Figure 2.5: Cloud computing Components according to NIST Definition (Peter et al, 2011)

1. Application: A cloud application influences the Cloud model of software architecture,
often eliminating the need to install and run the application on the customer's own
computer, thus reducing software maintenance, ongoing operations, and support. For
example:

i. Peer-to-peer/volunteer computing (Bittorrent, SETI@home, Skype);
ii. Web application (Facebook);
iii. Software as a service (Google Apps, Salesforce);

iv. Software plus services (Microsoft Online Services).

2. Client: A cloud client is computer hardware and/or computer software which relies on
the Cloud for application delivery, or which is specifically designed for delivery of cloud
services, and which is in either case essentially useless without a Cloud. For example:

i. Mobile (Android, iPhone, Windows Mobile);
ii. Thin client (CherryPal, Zonbug OS based systems);
iii. Thick client/Web browser (Google Chrome, Mozilla Firefox).

22

3.

Infrastructure: Cloud infrastructure (e.g. Infrastructure as a service) is the delivery of
computer infrastructure (typically a platform virtualization environment) as a service. For
example:
i. Full virtualization (GoGrid, Skytap);
ii. Grid computing (Sun Grid);
iii. Management (RightScale);
iv. Paravirtualization (Amazon Elastic Compute Cloud).
Platform: A cloud platform (e.g. Platform as a service) (the delivery of a computing
platform and/or solution stack as a service) facilitates deployment of applications without
the cost and complexity of buying and managing the underlying hardware and software
layers. For example:
I. Web application frameworks:
a. Python Django (Google App Engine);
b. Ruby on Rails (Heroku).

ii. Web hosting (Mosso);
iii. Proprietary (Azure, Force.com).
Service: A cloud service (e.g. Web Service) is "software system(s) designed to support
interoperable machine-to-machine interaction over a network™ which may be accessed by
other cloud computing components, software (e.g. Software plus services) or end users
directly. For example:

i. ldentity (OAuth, OpenID);

ii. Integration (Amazon Simple Queue Service);

iii. Mapping (Google Maps, Yahoo! Maps);

iv. Payments (Amazon Flexible Payments Service, Google Checkout, PayPal);

v. Search (Alexa, Google Custom Search, Yahoo! BOSS);

vi. Others (Amazon Mechanical Turk).

6. Storage: Cloud storage is the delivery of data storage as a service (including database-

like services), often billed on a utility computing basis (e.g. gigabyte per month). For
example:

i. Database (Amazon SimpleDB, Google App Engine's BigTable datastore);

ii. Network attached storage (MobileMe iDisk component, Nirvanix CloudNAS);

23

iii. Synchronization (Live Mesh Live Desktop component, MobileMe push
functions);

iv. Web service (Amazon Simple Storage Service, Nirvanix SDN).

2.1.7 Mobile Cloud Computing

The concept of mobile cloud computing implies running an application such as Google’s Gmail
for mobile version, on a remote resource server such as Google server, while mobile devices
work like a client connecting to the remote server through high connection network such as 3G
or 4G. Other examples are mobile version of twitter, mobile version of facebook and facebook’s
location awareness services, mobile weather widgets.

Recently, applications designed for mobile devices are becoming popular and numerous in
different categories such as entertainment, health, games, business, social media, travel and
news, mobile applications, download centers such as Apple’s iTune and Nokia OVI suite have
made this popularity well known.

The major success achieved in this regard is the provision of computing tool by mobile
computing devices where and when needed in spite of user movement thereby supporting
location independence. This is one of the characteristics of a pervasive computing environment
where the user is able to carry out his/her work continuously despite his/her movement.

Though, there are some problems associated with mobility such as low connectivity, finite
energy and resource (Satyanarayanan, 1996). These problems of mobility limit execution of
many applications that would have being of great help to users to create a good pervasive
environment.

A research carried out by Siegele (2008) indicates that future computing will depend on real-time
system response either by human or non-human sensor. Real-time mobile applications that
depend on high level of responsiveness require computing resources as well (Siegele, 2008).
Location based social networking as a mobile application carries out its processing using various
mobile devices sensor data, and extensive use of sensors on mobile devices are very expensive in
terms of energy such as obtaining GPS rendering. This limitation hinders many provisions of

better location based services to the user through its embedded sensors.

24

Again, other applications that require extensive processing or computational power such as
speech synthesis, natural language processing, image processing for video games and other
graphical analysis are difficult to develop and deploy on mobile devices due to the limitations in
mobile device architecture and battery.

The limitations in mobile device architecture and battery are fundamental to mobility according
to Satyanarayanan (1993) and require to be solved in order to achieve full benefit of mobile
computing. These limitations have been addressed through Cloud Computing recently by
different researchers. Cloud computing as earlier stated in this work is the aggregation of
computing as a utility, where SaaS implies being delivered over the internet as services
(Armbrust et al, 2009). The basic idea behind Cloud Computing is to offload computation to
remote Cloud providers.

The concept of offloading data and extensive computation to the Cloud Computing addresses
essential challenges that exist in mobile architecture by utilizing resources provided by cloud
computing providers rather than hosting and executing mobile applications and other extensive
computational works on mobile devices.

Those infrastructures where data storage and processing could occur outside the mobile devices
is called mobile cloud. By exploiting the computing and storage capabilities of the mobile cloud,
computer intensive applications can be executed on low resource mobile devices.

Recently, different mobile applications are connected to the cloud which include Apple iCloud,
Google’s Gmail for mobile and Google Goggles (Sasaki et al, 2012).

Current mobile applications are connected to the cloud where most of the extensive
computations are carried out. The mobile devices serve as clients that connect to the remote
cloud computing server providing extensive service. It has been noted that these mobile devices
perform very well with high speed network connections. For the fact that high speed network
connections are not always available in most developing countries, this poses another challenge
in mobile computing which necessitates the creation of local cloud server for interconnection of
local resources. Some other key factors facing mobile computing such as data access fees
affordability, good response time and limited energy source are addressed with local
interconnection of resources through local cloud server since short range communication
consumes less energy, fastens connectivity and better availability (Satyanarayanan et al, 2009).

An example of local cloud server is called Cloudlet. Mobile devices within this cloud

25

environment offload their workload to the local cloudlet(s). These cloudlets consist of several
multi-core computers with high connecting power to the remote cloud servers. These cloudlets
are positioned strategically while other mobile devices connect to them and serve as thin client
(Satyanarayanan et al, 2009).

With recent technological enhancement in mobile smart phones and other mobile devices which
improves their computational power, the future mobile cloud will be hybrid where users of the
mobile cloud will serve as cloud resources, with the ability to connect to the remote cloud
servers when there is good network connection, active access fees, available strong battery and
good response time, else connect to the local cloudlets.

2.1.8 Explanation of the model on Merkle Hash Tree

A Merkle Hash Tree (MHT) is a well-studied authentication structure, which is intended to
efficiently and securely prove that a set of elements are undamaged and unaltered. It is
constructed as a binary tree where the leaves in the MHT are the hashes of authentic data values
(Qian et al, 2008).

Merkle developed a Signature Scheme based on a binary tree of hashes in (Merkle, 1980). A
typical example of a MHT is illustrated using figure 2.6. Each leaf node holds the hash of a data
block. For instance, H(1) holds the hash of the data block 1. Internal nodes hold the hash of the
concatenated hashes of their children such as H(1,2) = H(H(1) | H(2)) where ’|’ indicates

concatenation.

Hllg:hash(h114lh5,g)

y Sw Hss=hash(hselh;,s)
h1,2=h05h(h1|h2) H3I4=hGSh(h3|h4) H5,5:h05h(h5|h5) H7,8:h05h(h7|h8)

SN N

hi=hash(B,) h=hash(B;) p,=hash(B,) ha=hash(B.) hs=hash(Bs) hs=hash(Bs) h,=hash(B,) Hs=hash(Bs)

Figure 2.6: Merkle Harsh Tree (Qian et al, 2008)

26

The existing scheme is based on the assumption that there is a safe or trusted way to share the
root of the tree between the signer which is the data owner and the verifier which is the
vulnerable TPA. Our research focused on this point where we encrypt the root hash for security
purpose and eliminate the use of TPA which can be hacked. To verify the integrity of any data
block, the whole tree of hashes does not need to be transmitted to the verifier.

A signer transmits the hashes of only those nodes which are involved in the authentication path
of the data block under consideration. For example, if the receiver needs to verify the integrity of
data block 2 then only H(1), H(3,4) and H(5,8) need to be transferred to the receiver. The
receiver can calculate the H(2) from data block 2. H(1,2) can then be calculated by using the
received H(1) and calculated H(2). In the same way, H(1,4) can be calculated and then H(1,8).
The receiver then can compare the calculated H(1,8) with the already shared H"(1,8) and if both
the hashes match, then the integrity of data block 2 is confirmed.

Another example, Suppose a user has obtained the root hash h(1,8) from a trusted server and then
retrieved data block 4 from an untrusted host. To verify the integrity of data block 4, the user
needs the untrusted host to also send it the hashes [h(3); h(1,2); h(5,8)], so that it can reconstruct
the path leading from H(4) to the root hash, as depicted in figure 2.7.

His=hash(hy4lhsg)

h; s=hash(h;,lhs,) Hs g=hash(hs sh; s)

hy ,=hash(hjlh;) Hs4=hash(hslh,)

hs=hash(B;) h,=hash(B,)

Figure 2.7: Authentication path for Data block 4 (Qian et al, 2008)

Hence, verifying that any given data block is in fact the authentic data block 4 only requires

transmitting and computing 3 hashes, not the full tree.

27

Some important facts regarding Merkle’s Signature Scheme are as follows:
i Security of this signature scheme depends on the security of the hash function.
ii. Only one hash needs to be maintained/shared securely.
iii. To authenticate any data block only log? n hashes need to be transferred, where n
denotes total number of data blocks.
iv. In case of integrity checking of a continuous range of blocks, even less than logzn
hashes need to be transferred.
The selection of Merkel hash tree for our model has been mainly due to its data rendering
capabilities on large datasets. The hashes are obtained at node level which helps in swift error
detection. In case of server failures or data corruption, unlike existing models which recover
entire file, only the effected nodes have to be recovered which will facilitate rapid file recovery
on every iteration. The following features distinguish MHT from other techniques;
A. Consistency Proofs
Blocks grow with time as new blocks are been uploaded. However, they are only appended to
record, that is, blocks may not be modified, deleted, or inserted in the middle. Once a block is
uploaded and appended, its presence must be noted.

Suppose a user already has the root hash of the record after n blocks, and now the blocks have
been extended to m > n blocks. It can be shown to the user that the new record has only
appended blocks to the old record, without the user needing to check the full Merkle trees.
Consider the Merkle tree in figure 2.8 with n = 6 blocks.

Hl,g:hash(h1,4|h516)

y SQ N
hy,,=hash(h;lh;) Hs s=hash(hslh,) Hs= hash(Bs) Hg= hash(Bg)

h1=h05h(31) h2=hash(32) hszhash(Bs) h4:hash(B4)

Figure 2.8: Merkle tree with 6 blocks (Qian et al, 2008)

28

To prove that the root hash h(1,8) for the record with m = 8 elements strictly extends the record
with n = 6 elements, it is enough to provide the user with the three hashes (h(1,4); h(5,6); h(7,8).
Using these hashes, the user can reconstruct both root hashes h(1,6) and h(1,8) and be assured
that the second corresponds to a tree that extends the first. This sequence of hashes is called a
consistency proof.

B. Design for Blockless and Stateless Verification

The simple way of realizing data integrity verification is to make the hashes of the original data
blocks as the leaves in MHT, so the data integrity verification can be conducted easily. This
method only requires the server to return only the challenged blocks for authentication. To
improve on these method, this research on remote data checking adopts a blockless strategy for
data integrity verification by asking the server only to return block tag of the requested block for
verification instead of the whole blocks. We secure both the block tags and the original data
blocks in the verification process. The R metadata is encrypted and stored both on server and at
the client side for stateless verification operation.

C. Dynamic Data Operation with Integrity Assurance

It shows how the scheme can explicitly and efficiently handle fully dynamic data operations
including data modification (M), data insertion (1) and data deletion (D) for cloud data storage. It
assumes that the file and the signature have already been generated and properly stored at server.
The root metadata R has been signed by the client and stored at the cloud server, so that anyone
who has the client’s public key (the root hash) can challenge the correctness of data storage. The
following are the descriptions of the data dynamic operations:

1. Data Modification

We start from data modification, which is one of the most frequently used operations in cloud
data storage. A basic data modification operation refers to the replacement of specified blocks
with new ones.

Suppose the client wants to modify the i block of m; to m’;. Based on the new block m’;, the
client generates the corresponding signature o'; = (H(m’;). Then, he constructs an update request
message “update = (M, m;,m’;, 6'i)” and sends to the server, where M denotes the modification
operation. Upon receiving the request, the server runs ExecUpdate(F, ®, update). Specifically,

the server

29

Q) replaces the block m; with m’; and outputs F’;

(i) replaces the o; with o'; and outputs @;

(iti) replaces H(m;) with H(m’;) in the Merkle hash tree construction and generates the new
root R'.

Figure 2.9 shows the diagrammatic description of update operation.

h, ' Root h’,' Root’

/ h(n,) is replaced with h(n’,) /
A B > A B

ha hb h,a hb

h(ny) h(n, h(ns h(na) h(ny) h(r, h(ns h(n,)

Sequence of ordered set of leaf nodes are accessed from left to right

Figure 2.9: Example of MHT update under block modification operation. Here, n; and n’; are
used to denote H(m;) and H(m’;), respectively (Qian et al, 2008).

2. Data Insertion
Compared to data modification, which does not change the logic structure of client’s data file,
another general form of data operation, data insertion, refers to inserting new blocks after some
specified positions in the data file F.
Suppose the client wants to insert block m* after the i block of m;. The protocol procedures are
similar to the data modification case but in this case, m’ can be seen as m*. Based on m* the
client generates the corresponding signature o* = (H(m*). Then, he constructs an update request
message “update = (I, m;m*, o*)” and sends to the server, where | denotes the insertion
operation. Upon receiving the request, the server runs ExecUpdate(F, @, update). Specifically,
the server

Q) stores m* and adds a leaf h(H(m*)) “after” leaf h(H(m')) in the Merkle hash tree and

outputs F';
(i) adds the o* into the signature set and outputs @',

(i) generates the new root R’ based on the updated Merkle hash tree.

30

An example of block insertion is illustrated in Figure 2.10, to insert h(H(m*)) after leaf node
h(H(m2)), only node h(H(m*)) and an internal node C are added to the original tree, where hc =

h(h(H(m2))||[h(H(m*))), after receiving the proof for insert operation from server.

h Root ' ,
" h', ' Root

h(n") is inserted after h(n,)
> A B

hy

h(ny)

Sequence of ordered set of leaf nodes are accessed from left to right

Figure 2.10: Example of MHT update under block insertion operation. Here, n; and n* are used to
denote H(m;) and H(m*), respectively (Qian et al, 2008).

3. Data Deletion

Data deletion is just the opposite operation of data insertion. For single block deletion, it refers to

deleting the specified block and moving all the later blocks, one block forward. Supposing that

the server receives the update request for deleting block m;, it will delete m; from its storage

space, delete the leaf node h(H(m;)) in the MHT and generate the new root metadata R’ as

illustrated in figure 2.11.

31

h{n) h(ny) h(ny) h(ny) hins) h(ng) h(ns) hng) h(ns) h(ny)

e e e ks ek e 4 s — ot —t — — s _}

Sequence of ordered set of leaf nodes are accessed from left to right

Figure 2.11: Example of MHT update under block deletion operation (Qian et al, 2008).

2.1.9 Further explanation of the model on RC6 Algorithm

RC6 is an improvement over RC5, and RC5 is an improvement over RC4. RC6 was designed to
meet the requirements of increased security and better performance. RC6 makes use of data
dependent rotations. One new feature of RCG6 is the use of four working registers instead of two.
While RC5 is a fast block cipher, extending it to act on 128-bit blocks using two 64-bit working
registers. RC6 modified its design to use four 32-bit registers rather than two 64-bit registers.
This has the advantage that it can be done two rotations per round rather than the one found in a
half-round of RC5. The following descriptions illustrate the features of enhanced RC6
techniques;

A. Description of RC6

RC6 is a fully parameterized family of encryption algorithms. A version of RC6 is also specified
as RC6-w/r/b where the word size is w bits, encryption consists of a number of rounds r, and b
denotes the encryption key length in bytes.

RC6 is targeted at w = 32 and r = 20, the parameter values specified as RC6-w/r are used as
shorthand to refer to such versions. For all variants, RC6-w/r/b operates on four w-bit words

using the following six basic operations:

a + b: Integer addition modulo 2w

a — b: Integer subtraction modulo 2w

32

a @ b: Bitwise exclusive-OR of w-bit words

a x b: Integer multiplication modulo 2w

a <<< b: Rotate the w-bit word a to the left by the amount given by the least significant Ig w bits
of b

a >>> p: Rotate the w-bit word a to the right by the amount given by the least significant Ig w

bits of b (where Ig w denotes the base-two logarithm of w).

RC6 exploits data-dependent operations such that 32-bit integer multiplication is efficiently
implemented on most processors. Integer multiplication is a very effective diffusion, and is used
in RC6 to compute rotation amounts so that these amounts are dependent on all of the bits of
another register. As a result, RC6 has much faster diffusion than RC5 and RC4.

B. Key Schedule

The key schedule of RC6-w/r/b is practically identical to that of RC5-w/r/b. In fact, the only
difference is that in RC6-w/r/b, more words are derived from the user-supplied key for use

during encryption and decryption.

The user supplies a key of b bytes, where 0 < b < 255. Sufficient zero bytes are appended to give
a key length equal to a non-zero integral number of words; these key bytes are then loaded into
an array of ¢ w-bit words L[0], L[1], . .., L[c — 1]. The number of w-bit words generated for
additive round keys is 2r + 4, and these are stored in the array S[0, 1, ..., 2r + 3].
The key schedule algorithm is as shown as follows:
Key Schedule for RC6-w/r/b
Input: User-supplied b byte key preloaded into the c-word array L[O, 1, .. ., ¢ — 1] Number of
rounds, r
Output: w-bit round keys S[0, 1, ..., 2r + 3]
Key expansion:
Definition of the magic constants:
Pw = Odd((e — 2)2"%)
Qu = Odd((e — 2)2")
Where:
e = 2.71828182 . . . (base of natural logarithms)

33

C.
RC6 encryption works with four w-bit registers A, B, C and D which contain the initial input
plaintext. The first byte of plaintext is placed in the least significant byte of A. The last byte of
plaintext is placed into the most significant byte of D. The arrangement of (A,B,C,D) =
(B,C,D,A) is like that of the parallel assignment of values (bytes) on the right to the registers on

the left, as shown in Figure 2.12. The RC6 encryption algorithm is shown as follows:

[0) = 1.618033988 . . . (golden ratio)

Converting the secret key from bytes to words:
fori=b—1downto0do
L[i/u] = (L[i/u] <<< 8 + K]i]

Initializing the array S
S[0] = Pw
fori=1to2r+3do
S[i] = S[i —1] + Qu

Mixing in the secret key S
A=B=i=j=0

v = 3 x max{c, 2r + 4}
fors=1tovdo

{
A=S[i]=(S[i]]+A+B)<<<3
B=L[]=(L[]+A+B)<<<(A+B)
i=(i+1)mod (2r +4)
j=(+1)modc

}

Encryption

Encryption with RC6-w/r/b

Input: Plaintext stored in four w-bit input registers A,B,C,D

Number of rounds, r
w-bit round keys S[0, 1, ..., 2r + 3]

34

Output: Cipher text stored in A,B,C,D
Procedure:
B =B + S[0]
D=D +S[1]
fori=1tordo
{
t=(Bx (2B +1))<<<1lgw
u=(Dx (2D +1))<<<lgw
A=((APt)<<<u)+ 9[2i]
C=((CPu)<<<t)+9[2i+1]
(A, B,C,D)=(B,C,D,A)
}
A=A+ S[2r+ 2]
C=C+9S[2r+3]

35

— i _ -
. N TN . 7
(F)—{ « =1 (e« —(_ i’)—

lgw

Repeat for
i rounds

Figure 2.12: RC6-w/r/b encryption scheme (Rhee, 2003).

D. Decryption
RC6 decryption works with four w-bit registers A,B,C,D which contain the initial output
ciphertext at the end of encryption. The first byte of ciphertext is placed into the least significant
byte of A. The last byte of ciphertext is placed into the most significant byte of D. The RC6
decryption algorithm is illustrated below:
Decryption with RC6-w/r/b
Input: Ciphertext stored in four w-bit input registers A,B,C,D

Number of rounds, r

w-bit round keys S[0, 1, ..., 2r + 3]
Output: Plaintext stored in A,B,C,D
Procedure:

C=C-9[2r+3]

36

A=A-S[2r+2]
for i =rdownto1do
{
(A, B,C,D) = (DA, B,C)
u=(Dx (2D +1))<<<1gw
t=(Bx (2B +1))<<<1gw
C=((C-9[2i+1]>>>t) D u
A=((A-S[2i])>>u) Dt
}
D=D-9[1]
B =B - S[0]

The decryption of RC6 is depicted as shown in Figure 2.13

37

_§[2i +3] ~§[2i+2]
— T— -

—S[2i + 1]
Repeat for
i rounds
lg w
i u _
— Ve ‘-'\-_\'
=+ A
t
Ty
'M,_E__x" lgw
™~
(e
—5[0] ¥ =5[1]
+ +]
¥ ¥
A B C D

Figure 2.13 RC6-w/r/b decryption scheme (Rhee, 2003).

2.2 Review of Related Works

Juels and Kaliski (2007) describe a formal “proof of retrievability” (POR) model for ensuring the
remote data integrity. Their scheme combines spot-checking and error-correcting code to ensure
both possession and retrievability of files on archive service systems. The limitation of this
scheme lies on communication overhead and the use of TPAs which are vulnerable.

Shacham and Waters (2008) built on this model and constructed a random linear function based
homomorphic authenticator which enables unlimited number of queries and requires less

communication overhead.

38

Bowers, et al (2009) developed an improved framework for “proof of retreivability” (POR)
protocols that generalizes the works of both Juels & Kaliski and Shacham & water’s work. Later
in their subsequent work, they extended POR model to distributed systems. However, all these
schemes are focusing on static data without dynamic data operations. The effectiveness of their
schemes rests primarily on the pre-processing steps that the user conducts before outsourcing the
data file. Any change to the contents of data file, even few bits, must propagate through the
error-correcting code, thus introducing significant computation and communication complexity.
Ateniese et al. (2007) define the “provable data possession” (PDP) model for ensuring
possession of file on untrusted storages. Their scheme utilizes public key based homomorphic
tags for auditing the data file, thus providing public verifiability with services of TPA which can
be vulnerable. However, their scheme requires sufficient computation overhead that can be
expensive for an entire file. In their subsequent work, they described a PDP scheme that uses
only symmetric key cryptography. This method has lower-overhead than their previous scheme
and allows for block updates, deletions and appends to the stored file, which will also be
supported in this research. However, their scheme focuses on single server scenario and does not
address small data corruptions, leaving both the distributed scenario and data error recovery issue
unexplored.

Curtmola, et al (2008) aimed to ensure data possession of multiple replicas across the distributed
storage system. They extended the PDP scheme to cover multiple replicas without encoding each
replica separately, providing guarantees that multiple copies of data are actually maintained. It
lacks full dynamic data operation capabilities.

In other related work, Lillibridge et al (2003) presented a Peer-2-Peer (P2P) backup scheme in
which blocks of a data file are dispersed across m+k peers using an (m+k,m)-erasure code. Peers
can request random blocks from their backup peers and verify the integrity using separate keyed
cryptographic hashes attached on each block. Their scheme can detect data loss from free riding
peers, but does not ensure all data is unchanged.

Filho and Barreto (2007) developed a system to verify data integrity using RSA-based hash to
demonstrate uncheatable data possession in peer-to-peer file sharing networks. However, their
proposal requires exponentiation over the entire data file, which is clearly impractical for the

server whenever the file is large.

39

Shah, et al (2007) proposed allowing a TPA to keep online storage honest by first encrypting the
data then sending a number of precomputed symmetric-keyed hashes over the encrypted data to
the auditor. However, their scheme only works for encrypted files and auditors must maintain
long-term state. The TPA services can be vulnerable and the scheme lacks dynamic data
operations on cloud.

Schwarz and Miller (2006) developed a scheme to ensure file integrity across multiple
distributed servers, using erasure-coding and block-level file integrity checks. However, their
scheme only considers static data files and does not explicitly study the problem of data error
localization, which is under consideration in this research.

Zion and Kavitha in 2012 developed a new solution to compute signatures instead of Message
Authentication Codes (MACSs) to obtain public auditability. In their scheme, the data owner
precomputes the signature of each block m; (i € [1, n]) and sends both F and the signatures to the
cloud server for storage. To verify the correctness of F, the data owner can adopt a spot-checking
approach, i.e., requesting a number of randomly selected blocks and their corresponding
signatures to be returned. This basic solution can provide probabilistic assurance of the data
correctness and support public auditability. Their new scheme in which the file F is divided into
blocks and compute signatures for each block and sends both the signatures and the blocks F to
the cloud server for storage using Merkle hash tree suffers a huge set back in terms of the
security of their root hash which is not established in their work. Their scheme also adopts the
services of TPA which can be hacked.

Gosavi and Umale (2014) built a system to ensure remote data integrity with support of both
public audit ability and dynamic data operations using homomorphic authenticator with random
mask techniques. The scheme considered concurrently handling of multiple audit sessions from
different users for their outsourced data files as well as support for data dynamic operation such
as block modification, insertion, deletion, verification and taking log history of client performed
operation with the help of TPA. This TPA which is an external cloud operator can be
compromised and the entire scheme becomes vulnerable.

Srijanya and Kasiviswanath (2013) presented an auditing model based on Merkle Hash Tree. In
their work, they conducted a study on possible auditing mechanisms which can be offered as a
service over hybrid or public clouds in which they adopted TPA services. This TPA services can

be subscribed by the users to verify the integrity of the data stored in the public clouds. Their

40

scheme also supports public auditability for storage correctness assurance to allow anyone, not
just the clients who originally stored their files on cloud servers, to have the capability to verify
the correctness of the stored data on demand. It also supports dynamic data operation which
allows the clients to perform block-level operations on the data files while maintaining the same
level of data correctness assurance and blockless verification in which no challenged file blocks
should be retrieved by their TPA which is an external body, during verification process for
efficiency concern. The vulnerability of this scheme lies on the fact that they have failed to
provide adequate security for their root hash which is the main security component of the scheme
and adoption of TPA which can be compromised.

Khaba and Santhanalakshmi (2013) presented an effective and flexible Batch Audit scheme with
dynamic data support to reduce the computation overheads using MHT. To ensure the
correctness of users’ data, the scheme adopts the services of a third party auditor (TPA), to verify
the integrity of the data stored in the cloud on behalf of the cloud client, their scheme also uses
symmetric encryption for effective utilization of outsourced cloud data. Their scheme also uses
data reading protocol and data management algorithm to process integrity of data before and
after entering data into the cloud in which the actual size of data is ascertained and maintained
even though the user has carried out some dynamic operations on the data. This gives the user
full control of data stored in cloud apart from TPA. To avoid server failure and any unexpected
error their scheme decides to putting one server restore point in cloud server database for
efficient data back up or restore using multi server data comparison method though the process is
CSP dependent. The data reading protocol and data management algorithm used in this scheme
to ascertain and maintain the actual size of stored data will cause extra computational overhead.
There is no provision for adequate security for MHT root hash and services of a TPA can be
vulnerable.

Karthikeyan (2015) carried out a research on a particular kind of distributed database called
audit logs that are used to log security events in a distributed system, such as granting access to a
sensitive resource. The research depicted a scenario in which a hacker can be detected when it
breaks into an enterprise network by logging the attacker’s activities on machines across the
network. For an attacker to escape detection, it may try to erase or tamper with the log, and
hence making the integrity of this log to be security-critical. The scheme decides to publish a

cryptographically strong hash of the full log to the cloud using Merkle Hash Tree (MHT)

41

techniques. A user can use this scheme to verify the integrity of a part of a log retrieved from an
untrusted server or cloud by downloading and verifying that the hash of the retrieved log
matches the hash of the expected value or log retrieved from a trusted TPA server. The scheme
emphasizes that all attacks on the logs will be detected If the hash function is collision resistant,
but forgets the fact that TPA as an external body with root hash of the MHT can be biased and
make the scheme vulnerable as the scheme does not provide any means of securing the root hash
from the TPA.

Karthika et al (2015) in their research developed a scheme of remote user secret image
authentication using the concept of Merkle Hash Tree (MHT). In this scheme, the data owner
stores the file in an encrypted form using Advanced Encryption Standard (AES) in the cloud
server. The cloud user is expected to register with the owner along with the personal credentials
and a generated secret image. The user name, password and root signature will be sent to the
user’s registered email account. At the client side, the secret image template is split into eight
shares using image processing technique Boundary Splitting Algorithm. The split eight shares
are given as inputs to MHT in which root hash signature is generated and stored in the cloud
server. The user has to submit the root signature for authentication purpose. Though the scheme
tries to secure the root hash using symmetric encryption at the TPA called Jelastic server, this
Jelastic server can suffer from code manipulation masterminded by the server manager. The
scheme also does not support cloud data dynamic operations.

Avinash et al (2015) carried out research on cloud data integrity authentication in which large
data set are outsourced in encrypted form to the cloud. This encryption hides the connection
between the documents and in turn, makes the ciphertext search critical which can suffer from
different form of attack at the server side. Thus, a verifiable method should be provided for users
to verify the accuracy of the search results. This research developed a hierarchical clustering
method in order to get a better clustering result. Their method is based on k-means clustering
algorithm. The research adopts the backtracking algorithm as a new search technique on the
above clustering method. For the fact that data increases in volume with time, the scheme adopts
Merkle hash tree and cryptographic signature as a verification mechanism to ensure the accuracy
and perfectness of query results from untrusted cloud. Their scheme reduces the entire search
time which only increases sequentially and not exponentially. It equally solves the problem of

multi keyword search problems and also showcases any irregularities in the retrieved documents

42

and raises the search efficiency but did not support cloud data dynamic operations and there is no
adequate security measure for the MHT root hash.

Anmol et al (2015) and Snehal et al (2014) recognized the efficacy of RC6 cryptosystem in their
respective researches by adopting it to encrypt and decrypt data in their models. Their models
separate Encryption-Decryption services from the actual cloud storage. Because of this
separation method, the original data and decryption key will be stored at different storage area so
that the attackers will get either encrypted data or decryption key. The model with Encryption-
Decryption services only encrypts the data and this encrypted data is sent to cloud storage and
then original data is deleted from Encryption-Decryption scheme. Both researches tried to get rid
of TPA services due to its vulnerabilities. The limitation of these models exists due to the fact

that they do not support dynamic cloud data operations.

2.3 Summary of Literature Review and Knowledge Gap

The Proof of Retrievability (POR) scheme developed by some researchers especially by Juels
and Kaliski (2007) as reviewed has a limitation which lies on communication overhead and the
use of TPA services which is vulnerable. It also has a limited number of queries it can address
during auditing process and it is based on non-distributed system. Bowers, et al (2009) and other
previous researches as reviewed still focus on static auditing scheme which introduces a

significant computation and communication complexity.

Some reviewed works also define the “provable data possession” (PDP) scheme that uses only
symmetric key cryptography to achieve lower-overhead but focuses only on a single server
scenario and does not address small data corruptions, leaving both the distributed scenario and
data error recovery issue unexplored.

Zion and Kayitha (2012), Srijanya and Kasiviswanath (2013) and other researchers as reviewed
presented an auditing model based on Merkle Hash Tree. The vulnerability of these schemes lies
on the fact that they have failed to provide adequate security for their root hash which is the main
security component of the scheme and adoption of TPA which can be compromised.

Anmol et al (2015) and Snehal et al (2014) recognized the efficacy of RC6 cryptosystem in their
respective researches as reviewed by adopting it to encrypt and decrypt data in their new models

but the limitation of these models is that they do not support dynamic cloud data operations.

43

Having observed all these limitations, this research develops an enhanced and secured hybrid
cloud data storage auditing model that support both public auditability and dynamic data
operation with MHT and IRC6 encryption algorithms. The MHT that is adapted as data
authentication structure addresses the full cloud dynamic data operation which in turn addresses
computational and communication overhead, while the developed IRC6 cryptosystem addresses
the security of MHT root key which is the strength of the auditing scheme. It also bypasses the
risk and cost of adopting TPA.

44

CHAPTER THREE

SYSTEM ANALYSIS AND METHODOLOGY

3.1 System Analysis

3.1.1 Analysis of the Existing System

In order to achieve the assurances of cloud data integrity and availability and then enhance the
quality of cloud storage service, efficient methods that enable on-demand data correctness
verification on behalf of cloud users have to be designed. However, the fact that users no longer
have physical possession of data in the cloud prohibits the direct adoption of traditional
cryptographic primitives for the purpose of data integrity protection. Hence, the verification of
cloud storage correctness must be conducted without explicit knowledge of the whole data files.
The data stored in the cloud may not only be accessed but may also be frequently updated
including insertion, deletion, modification and appending. Thus, it is also imperative to support

the integration of this dynamic feature into the cloud storage correctness assurance.

Hypothesis obtained in this research from pre-analysis of data collected globally through review
of existing literature on recent global RDA operations obtained over the internet, structured
interview and interactions with staff of different universities and other organizations in Nigeria,
showed that many organizations globally have been carrying out RDA activities with one
challenge or the other, either insecurity of the root harsh (Avinash et al, 2015) or vulnerability of
the TPA. While some organizations in Nigeria such as universities, banks, companies and NGOs
have been battling to manage their huge data storage internally though with high risks and not
cost effective, others have had high level of data storage challenges such as conflict of interest,
self-motivated compromise, political motivation, internal risks and fire or liquid hazard (Sadoya
et al, 2004). It is very important to state here that academic data from higher institutions for
example, is the life-wire of every institution and must be properly stored with highest level of

security.

3.1.1.1 The Organization and Its Environment
The organization in focus as case study for this research is one of the Federal Universities in

Nigeria Known as Federal University Wukari (FUW), Taraba State.

45

Federal Universities in Nigeria are established by the Federal Government of Nigeria to be
student centered and community engaged institutions to provide an enabling environment that
enhances intellectual growth, a strong commitment to academic excellence, integrity and
entrepreneurship; creating new knowledge and using ICT and other enabling technologies to
solve practical problems that benefit humanity; preparing their students as well as professionals
in their community for ethical leadership; and promoting service to community and enduring

sense of global citizenship.

Currently there are forty (40) Federal Government approved Federal Universities in Nigeria. The
majority of which have been in existence for years, carrying out both academic, administrative
and community development activities thereby generating tremendous amount of data for

storage, of which Federal University Wukari (FUW) as a case study is not an exemption.

FUW was founded in 2011 and the stages of the structure of academic programmes of the
university was planned to have five (5) developmental stages with duration of five (5) years for
each stage. Therefore, the faculties, colleges, schools, departments and programmes of the
university shall be established in stages covering a period of twenty five (25) years. Each stage
of academic development shall be characterized by the establishment of faculties, departments,

and/or programmes at the undergraduate and postgraduate levels.

Currently, FUW has three (3) faculties namely Faculty of Pure and Applied Sciences, Faculty of
Agriculture and Life Sciences and Faculty of Humanities, Management and Social Sciences;
with a total of 24 departments. It equally has non-academic departments and units including the

administrative arm of the University which will be shown on the organogram.

Each of these departments and units both academic and non-academic generates huge amount of
data on a daily basis that require adequate security which necessitates the research. Figure 3.1

below shows the organogram of FUW,

46

VISITOR

NIGERIA UNIVERSITIES

COMMISSION
CHANCELLOR
PRO-CHANCELLOR
COUNCIL

SENATE SENATE VICE CHANCELLOR |———|—\

AD-HOC COUNCIL COUNCIL AD-HOC
COMMITTEES COMMITTEES COMMITTEES

[I I
COMMITTEES DEPUTY VICE CHANCELLOR (S) MANAGEMENT LEGAL UNIT
OF DEANS COMMITTEES
[I []

DEANS REGISTRY BURSARY LIBRARY DIRECTORS

| |

[| | I
FACULTY BOARDS STUDENT EXAMS AND ACADEMIC
AFFAIRS RECORDS SECRETARY
HEADS OF A
DEPARTMENT L INFORMATION
| HEALTH CONSULT AND
CENTER COMMUNICATION
DEPARTMENTAL
UNIT
BOARDS |
PROCUREMENT
ICT UNIT
MIS UNIT WEB
DEVELOPMENT
UNITT
CENTRAL
ADMINSTRATION
NETWORKING TRAINING UNIT
UNIT HARDWARE
UNIT

Figure 3.1: FUW Organogram (Marketing & Communication Unit, FUW)

47

3.1.1.2 Data Flow Diagram of the Existing System
The data flow diagram in figure 3.2 shows the basic operations that exist in various universities

for data generation and storage management for example.

48

STUDENTS STAFF

A 4 \ 4
4 1.0)
INPUT STUDENTS
AND STAFF
INFORMATION

_ REGISTER y,

|
DEPARTMENTS UNITS l CENTRES \ VC OFFICE
1 A

€—

T~ | A
; 20) 4 o 3.0 \Il\
INPUT STUDENTS INPUT STUDENTS
ACADEMIC DATA AND STAFF
/ RESULTS INFORMATION
COMPUTE PROCESS

EXAMS &
RECORDS

REGISTRY

ICT UNITS

i

INTERNAL
DATABASE

D1

Figure 3.2: Data Flow Diagram showing conventional data generation and storage in Federal

Universities

49

Data are generated from different academic and non-academic departments, units and centres
within the university and other organizations, which go through some levels of processing,
validations, authentications and necessary approvals from one section of the organization to
another until its final storage point at the ICT unit where a local server or central storage device

is made available for long time data storage and management.

It was equally observed through the analysis of data collected that some universities and other
organizations do not have centralized data storage management system thereby storing data at
different sections of the organization as generated, which are managed ineffectively and are

prone to errors, compromise and risk of hazards.

Considering all these limitations, this research tends to proffer solution by proposing outsourcing
of these sensitive data to the public cloud which provides unlimited storage resources and other

technologies for real time data access.

Many existing cloud data storage security techniques have also been studied and their limitations
include provision of only binary results about the storage status across the distributed servers;
storing data redundantly across multiple physical servers which causes the loss of data integrity
and availability threats like Byzantine failure, malicious data modification attack, and even
server colluding attack. Dynamic data support is not maintained at the same level of storage
correctness assurance even if users modify, delete or append their data files in the cloud.

Authentication Handshakes are not available in existing systems.

Also the worst case scenario that can happen on an existing cloud storage system is on the case
of Third Party Auditor (TPA) server being compromised as it houses the main secret key
entrusted to it by the Data Owner (DO) for subsequent auditing. This will be disastrous as the
integrity and confidentiality of the stored data at the cloud can be compromised without the
knowledge of both the TPA and DO. Figure 3.3 shows a model of existing cloud architecture

with an option to eliminate the services of the TPA.

50

Cloud
Servers

-
% Data auditing to enforce
service-level agreement

Figure 3.3: Existing Cloud Model Architecture (Gosavi and Umale, 2014)

3.1.1.3 Weaknesses of existing system

Vi.

Vii.

The services of the TPA can be a loophole to the original data if hacked or compromised
by TPA itself.

There is no proper security of the MHT root hash which is the backbone of the auditing
scheme.

Computation overhead on replica base auditing scheme as the entire blocks are required
before remote integrity check is carried out.

Provision of only binary results about the storage status across the distributed servers.
Storing data redundantly across multiple physical servers which causes the loss of data
integrity and availability threats like Byzantine failure, malicious data modification
attack.

Dynamic data support is not maintained at the same level of storage correctness
assurance.

Authentication Handshakes are not available in existing systems

3.1.2 Analysis of the New System

Having observed all these limitations, this research then developed an enhanced and secured

hybrid cloud data storage and auditing model that supports both public auditability and dynamic

51

data operation with MHT and IRC6 homomorphic encryption algorithms. It also bypasses the

risk and cost of adopting TPA.

This developed system supports an effective and flexible distributed storage verification scheme
with explicit dynamic data support to ensure the correctness and availability of users’ data in the
cloud. It relies on homomorphic encryption with Merkle Hash Tree (MHT) and IRC6 encryption
techniques in the file distribution preparation to guarantee the data dependability against
Byzantine servers, where a storage server may fail in arbitrary ways as contained in the service
level agreement with the CSP. The hybrid model is achieved by combining MHT and enhanced
RC6 cryptosystem to strengthen the auditing scheme. The MHT is used to achieve remote data
auditing on blocks of files and other dynamic operations on files in remote cloud storage. The
life wire of MHT depends on the security of the root hash. The security of the root hash is
properly secured using IRC6 encryption to solve the problem that exists in the previous work.
This solution drastically reduces the communication and storage overhead as compared to the
traditional replication-based file distribution techniques. By utilizing the homomorphic token
with distributed verification of homomorphic encryption techniques, this scheme supports the
storage correctness insurance as well as data error localization in case of server failure as also
contained in service level agreement with the CSP. Whenever data corruption has been detected
during the storage correctness verification, the CSP can almost guarantee the simultaneous
localization of data errors, i.e., the identification of the misbehaving server(s). In order to further
improve the security of system, computation resources, and even the related online burden of
users, this system also provides public auditability scheme that avoids the services of TPA which
can cause tremendous damage to the organizational data if hacked.

Triangular Handshake Authentication Scheme (THAS) is equally adopted in this research to
further strengthen the security of data communication between the DO and other organizational
users and between the DO and CSP using simple but highly secured authentication scheme based
on encrypted shared secret and a clock value for time stamp.

The developed enhanced hybrid model is depicted in figure 3.4 while the user subsystem of the

model is represented in figure 3.5.

52

/ (" SECURITY SUB svsmm
HOMOMORPHIC

MHT
ENCRYPTION
SYSTEM
IRC6

J
M~
/ DATA AUDITING
/ SC E C
/]
/ SECLU
Users|”

& USER SYSTEM
_ J

2 /

Figure 3.4: New Cloud Storage Service Architecture with Enhanced Hybrid Auditing Scheme

L
Es

-
PON?E

CcspP

53

VISITOR

NIGERIA UNIVERSITIES

COMMISSION
CHANCELLOR
PRO-CHANCELLOR
COUNCIL
SENATE SENATE VICE CHANCELLOR r——|—|
AD-HOC COUNCIL COUNCIL AD-HOC
COMMITTEES [~ COMMITTEES COMMITTEES
I I
COMMITTEES DEPUTY VICE CHANCELLOR(S) MANAGEMENT LEGAL UNIT
OF DEANS COMMITTEES
[I []
DEANS REGISTRY BURSARY LIBRARY DIRECTORS
| | |
[| | I
FACULTY BOARDS STUDENT EXAMS AND ACADEMIC
AFFAIRS RECORDS SECRETARY
HEADS OF |
DEPARTMENT L INFORMATION
| HEALTH CONSULT AND
CENTER COMMUNICATION
DEPARTMENTAL
UNIT
BOARDS | |
PROCUREMENT
» ICT UNIT
MIS UNIT WEB
DEVELOPMENT
UNITT
ALIRELESS ACCESS TO THE CENTRAL
ENCRYPTED ADMINSTRATION
CONSUMABLE DATA AND
OUTSOURCING
NETWORKING TRAINING UNIT
UNIT HARDWARE
UNIT

Figure 3.5: Conceptual Model of the New User System with Enhanced Hybrid Auditing Scheme

(EHAS)

54

Representative network of the new cloud storage service architecture with enhanced auditing

scheme is illustrated in Figure 3.4 with notable four different network entities while figure 3.5

shows the conceptual model of the user system. The components of these models are explained

as follows:

Vi.

Users: The users consist of both individual consumers and organizational Data Owner
(DO), who have data to be stored in the cloud and rely on the cloud for data computation.
Consumer users: The user or client sends the query to the server. Based on the query the
server sends the corresponding file to the client on read-only format. Before this process,
the client authorization step is involved. In the server side, it checks the client’s name and
its password for security process. If it is satisfied, it will then receive the queries from the
client and searches the corresponding files in the database and send to the client. If the
server finds the intruder means whose authentication parameters do not match, it set the
alternative Path to that intruder. It should also be noted that access to the server has time
stamp.

Enhanced Hybrid Auditing Scheme: The developed auditing scheme can be handled by
either the DO or any trusted staff of the organization who has the expertise and
capabilities other data users may not have, to assess and expose risk of cloud storage
services on behalf of the DO upon request by remotely challenging the cloud server
without necessarily downloading the audited block using a well structured query. The
process is made possible with the MHT auditing architecture.

Homomorphic Encryption Subsystem: The MHT subsystem carries out the job of
hashing the organizational data into blocks of cipher text for optimal transmission and
effective storage at the cloud server while IRC6 security subsystem provides adequate
security for the MHT root hash by encrypting and decrypting the root hash.

Cloud Service Provider (CSP): A CSP, who has significant resources and expertise in
building and managing distributed cloud storage servers, owns and operates live Cloud
Computing systems.

Cloud Storage Server (CSS): CSP achieves provision of data storage service to clients
by managing Cloud Storage Server which is divided into two components. Management

Server, which manages the server and Data Server, which Stores the clients’ data.

55

Vii.

viii.

Cloud Data Storage: In cloud data storage, a user stores his data through a CSP into a
set of cloud servers, which are running in a simultaneous, cooperated, and distributed
manner. Data redundancy can be employed with a technique of homomorphic encryption
to further tolerate faults or server crash as user’s data grow in size and importance.
Thereafter, for application purposes, the user interacts with the cloud servers via CSP to
access or retrieve his data. In some cases, the user may need to perform block level
operations on his data. The most general forms of these operations considered in this
research are block update, delete, insert, and append.

As users no longer possess their data locally, it is of critical importance to ensure users
that their data are being correctly stored and maintained as contained in the services level
agreement between the Do and CSP. That is, users should be equipped with security
means so that they can make continuous correctness assurance (to enforce cloud storage
service-level agreement) of their stored data even without the existence of local copies.

In case those DOs do not necessarily have the time, feasibility or resources to monitor
their data online, they can delegate the data auditing tasks to a trusted and experienced
staff of the organization rather than TPA which can be hacked.

New Local Data Centre: Using university system scenario as depicted in figure 3.5,
Data which are generated from different academic and non-academic departments, units
and centres within the university and go through some levels of processing, validations,
authentications and necessary approvals from one section of the university to another are
moved to the new data processing Centre at the ICT unit where they will be preprocessed
by the homomorphic encryption subsystem before outsourcing. It is also at this new
Centre that the remote auditing of the outsourced data to cloud will be carried out with
the developed enhanced auditing scheme.

Cloud Authentication Server Scheme: The Authentication Server (AS) functions as any
AS would with a few additional behaviors added to the typical client-authentication
protocol. The first addition is the sending of the client authentication information to the
masquerading router. The AS in this model also functions as a ticketing authority,
controlling permissions on the application network. The other optional function that

should be supported by the AS is the updating of client lists, causing a reduction in

56

authentication time or even the removal of the client as a valid client depending upon the

request.

3.1.2.1 Overall Object Diagram of the New System

Some aspects of the new system are modeled in this subsection using Unified Modeling

Language (UML). Figure 3.6 depict UseCase diagram for data auditing and dynamic data

operations for the new system 3.7. shows the UseCase for the new system administration while

figure. Figure 3.8 shows the collaboration diagram of the new system for contents/data auditing

and dynamic operations.

-

Data Auditor Audit Data

o

Access the
Enhance Hybrid
Svstem

Challenge the CSP

Get Proof and AAI

Generate Audit
Report

~

/

Figure 3.6: UseCase Diagram for Data Auditing

57

Admin/Data Owner
(DO)

Admin/Data Owner
(DO)

Data Encryption
and Decryption

Key Generation and
Management

Data Access
Management

TN

Manage Data
Auditing

Manage User
Access Control

Manage Data
Preprocessing and
Outsourcing

Manage Data
Dynamic

Operations

_ /

Figure 3.7: UseCase for the New System Administration

58

7\
Data Auditor

Initialization

Object
/ Authentication

: Data Owner/User |¢ Parameters

1: Upload Content ()

: Contents

l 2: Download Content () M
3: Upload Content () FeRage

: Data Dynamic

Operations _|

4: Modify Content ()
5: Delete Content ()

6: Insert Content () Message
7: Append Content ()

: Audit Contents —
8: Audit Content () < Message

End Process

Figure 3.8: Collaboration Diagram of the new System for Data Auditing and Dynamic

Operations

59

3.1.2.2 Advantages of the New System

The developed system provides adequate means of remotely auditing outsourced data to the
cloud by using MHT and IRC6 cryptosystem which is an improvement on existing auditing
schemes. Auditing based on MHT reduces computation overhead during auditing process while
IRC6 cryptosystem secures the MHT root hash which is the main auditing key. The security of
the root hash has been problematic in most reviewed researches on RDA. The developed system
further strengthens the data integrity assurance to the DOs by eliminating the services of
vulnerable TPA and allows the auditing to DOs by themselves.

3.2 Methodology Adopted

Methodology adopted in this Research is Object Oriented Analysis and Design Methodology
(OOADM) with MHT and IRC6 techniques. Object-oriented analysis and design methodology
(OOADM) was adopted in this research together with Merckle Hash Tree (MHT) authentication
technique and Improved Revester Code Version 6 (IRC6) cryptographic technique, to achieve
the research goal. IRC6 was developed and used in this research. OOADM stages include system
analysis through which the existing system has been analyzed and a new system is developed.
Other stages utilized in the cause of this research include system design, object design and
implementation.

Using Object Oriented Analysis and Design methodology (OOADM) to develop real-time
systems has the potential to produce safer, more reliable and maintainable system or solution
(Fredrickson et al, 1998). Instead of using functional decomposition of the system, the OOADM
approach focuses on identifying objects and their activities (Wang et al, 1996). This

methodology is adopted in this research based on the following advantages:

i. User centered advantage: The analysis phase of OOADM ensures that the user(s) of the
system is carried along by taking priority of the system user requirements, analyzing
possible data that will help to achieve the aim of the research and development of suitable
dynamic interface for accessing the system.

ii. Reduced Maintenance: The primary goal of the adopted methodology is the assurance
that the system will enjoy a longer life while having far smaller maintenance
costs. Because most of the processes within the system will be encapsulated, the

behaviors may be reused and incorporated into new behaviors.

60

iii. Real-World Modeling: The methodology will help in modeling the new system in a
more complete fashion than do traditional methods. Objects which will constitute the
components of the new solution are organized into classes of objects, and objects are
associated with behaviors. The model will be based on objects, rather than on data and
processing.

iv. Improved Reliability and Flexibility: The adopted methodology is more reliable than
traditional systems, primarily because new behaviors can be "built" from existing objects.
Because objects can be dynamically called and accessed, new objects may be created at
any time. The new objects may inherit data attributes from one, or many other
objects. Behaviors may be inherited from super-classes, and novel behaviors may be
added without effecting existing systems functions.

v. High Code Reusability: When a new component or object of the new solution is
created, it will automatically inherit the data attributes and characteristics of the class
from which it was reproduced. The new object will also inherit the data and behaviors

from all superclasses in which it participates.

3.3 Justification of the New System

The new system provides adequate means of remotely auditing outsourced data to the cloud by
using MHT and improved RC6 (IRC6) cryptosystem which is an improvement on existing
auditing schemes.

Auditing based on MHT reduces computation overhead during auditing process while IRC6
cryptosystem secures the MHT root hash which is the main auditing key. The security of the root
hash has been problematic in most reviewed researches on RDA. The proposed system further
strengthens the data integrity assurance to the DOs by eliminating the services of vulnerable TPA
and allows the auditing to DOs.

The proposed Triangular Security Handshake (TSH) with timestamp, intrusion dection model

through access log and adversary data authentication model will improve access control security.
3.4 High Level Model of the New System
Figure 3.9 shows the high level model of the new system. The model clearly shows the various

aspects of the new system, the key actors and their respective activities.

61

Remote Dynamic Data Auditing

System

r

User Login

Data Owner Login

User Activity List

e Download Decrypted Data
e Consume Decrypted Data

Data Owner Activity List

Generate Data
Generate Key

Encrypt Data

Encrypt Key

Outsource Data
Download Data

Decrypt Data

Decrypt Key

Data Dynamic Operations
Audit Data

Authentication for
Dynamics Operations
and Data Auditing

Dynamic Data Operation Activity List

Download Decrypted Data
Modify

Insert

Delete

Append

Upload Encrypted data

Remote Data Auditing Activity List

Download Decrypted Data Block
Generate the Audit Path
Generate the Root Harsh

Audit the Data Block

Report the Outcome

Figure 3.9: High Level Model of the New System

62

CHAPTER FOUR

SYSTEM DESIGN AND IMPLEMENTATION

4.1 Objectives of the Design

The new system is aimed at improving the security of data outsourced to the public cloud. It
assures the DO of the integrity of its data through the process of remote dynamic data auditing
and data dynamic operations in the cloud by maintaining the same level of storage correctness
assurance even if users modify, delete, insert or append their data files in the cloud.

It will equally eliminate vulnerabilities that are posed to the outsourced data by TPA services,

secure the main auditing key (root hash) using IRC6 cryptosystem.

4.2 Control Centre/Main Menu

The main menu of the new system controls two major subsystems namely the user subsystem
and Data Owner subsystem. The main menu controls the security access to these subsystems and
logs number of failed login attempts to checkmate the intruders into the system. It gives the
system users optional opportunity to keep track of their login credentials. Figure 4.1 shows the

main menu of the new system.

| 2 Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = ﬂ

C&B Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

.
& .

Students Login Auditor's Login

sername - sername

Ph.D Dissertation Software by Agu Edward

Figure 4.1: Main Menu

63

4.3 The Submenus/Subsystems

There are three subsystems in the new system namely the user subsystem, audit subsystem and
admin subsystem. The user subsystem handles user data consumption in which valid stored data
are retrieved and displayed to only authentic users. The audit subsystem handles the
authentication of valid auditors, retrieval and integrity proof of the data stored at the cloud.
Public auditability function of this system is achieved only when the task attached to this
subsystem is assigned to personnel other than the DO within the organization.

The admin subsystem handles the data collection, preprocessing, key generation, data

outsourcing to the cloud, user management, access level definition and management.

4.4 System Specifications

4.4.1 Database Development Tools

Computer Assisted Software Engineering (CASE) tool is the database development tool used for
this system which provides extensive functionality for database development. Microsoft Visio
2016 is used in designing this new system. Microsoft Office Visio is a Studio.Net Enterprise
Architect Edition that is a forward and reverse engineering tool for databases and UML design
and development. It supports data dictionary to accompany entity relationship template and also
supports name, data type, required, primary and notes properties.

4.4.2 Database Design and Structure

Three database design phases are adopted in this new system database design and structure
namely the conceptual data modeling, logical data model and Physical data model for database
design. The conceptual data modeling, logical and physical data modeling phases for database
design focus on the information content of the database and their relationship in order to achieve
efficient implementation of the system.

i Conceptual Data Model:- The conceptual data model for this system recognizes the
relationship levels between the database entities. Features of this data model include
the important entities and the relationship among them. Attribute or relationship keys
such as primary or foreign key are not specified in this model. The conceptual data

model for this system is shown in Figure 4.2.

64

Assessement
Hash
Personel
"""""""""""""""""""" Files
Audit
Education I —
_______________________________ Data

Figure 4.2: Conceptual Data Model showing relationship between entities

The rectangles (Assessment, Personnel, Hash, File, Audit, Education and Data) represent entity

types while label lines shows relationship between entities.

65

Logical Data Model:- The logical data model for this new system describe the
conceptual data model in details without regard to its physical implementation in the
database. Identified features in this design include all entities and relationships among
them, attributes for each entity are specified, primary and foreign keys are specified.
To ensure that there is no redundancy; normalization is carried out in the table design
constraints which entail dependencies among columns. Figure 4.3 shows the logical

data model for this system.

66

Assessement
ID Hash
User_id SN _____________________
04
Assignment S file_id
Eest id
xam
Personel Total hash_data
ID
first_name Files 1 .
last_name ID Audit
B N R B S ID
user_name User_id | | [
password PR - file_id . file_id
email " file_name User_id
PK
age type
state gl type
date
photo .
Education
date
@ o Data
user_id ID
registration_no 4 f|Ie|d ----------------
level SN
department block
Faculty

Figure 4.3: Logical data model showing attributes, primary and foreign keys for each entity

Attributes or properties of these entities are itemized inside the rectangle while the primary keys

for each entity and foreign key that connects entities are also in the diagram.

67

iii. Physical Data Model:- The physical implementation of the data model in the database
is described using physical data model. It shows table structures with column names
and data types used for database implementation. Figure 4.4 shows the physical data
model for this system.

Assessement
D ; Int(11) Hash
: m SN ! int11)
User_id Int(11) E
o4 i T .
Assignm Varchar(10) L 3¢ file_id rInt(12)
ent H
Test Int(100) id i Int(11)
Exam Int(100) H
Personel hash_data H text
D ' Int(11) 1
‘::Zt—”a Varchar(50) Blles
. : Audit
PK ID H Int(11)
I:]‘Zt-na Varchar(50) : !
""""""""""" e D ; Int(11)
user_n Varchar(50) m User_id i INt(11) | | | e S —
ame y i
_ ' file_id i Int(11)
:)dasswo Varchar(50) [H———]—1< g:z_na Varchar(100) ['
: < User_id ! Int(11)
email E Varchar(100) [type Varchar(5) '
i . PK text
e E Int(14) date datetime E
: 21§ file_id Int(11) type E Varchar(5)
state 1 Varchar(100) E
i date i datetime
photo i Varchar(300) , 3
: Education
date i datetime :
: D i Int(11) Data
I‘ijse’— ! Int(1) m D i Int(11)
" re?st i Varchar(A . E. ----------
ra:]cl)on : 100) - file_id i Int(11)
level E Varchar(E
evel 10) SN i Int(11)
depar i Varchar(H
tment i 200) block E longtext
Facul E Varchar(
ty | 400

Figure 4.4: Physical data model showing data types

68

4.4.3 Program Module Specification

This new system basically has three main program modules namely the Admin module, the

Auditor module and the Student module.

a. The Admin Module: this module handles many functions such as:

iv.

Vi.

Vii.

Add Students: It handles students’ enrollment into the system.

Create Students Data/Score: It helps in creation of students’ instant results.
Upload Data: It helps to upload any existing result (data) to the system.

Dynamic Data Auditing: This sub module function handles the audit of any
legitimate file modification within the system and reports appropriately.
Adversary Mode: This function checkmates the authenticity of the audit functions
carried out by the auditor module. It achieves its function by creating room for the
generated root key to be alterable and checks the results of the altered data in
return.

View Students: This is a report function that displays the current students’
assessments within the system.

Change Login: This aspect of the module function gives opportunity for login

credentials to be changed.

b. The Auditor Module: This modules also handles many functions such as:

Check Data Authenticity: This is the main function of the auditor. This is equally
the pivot of this research and when compromised, the essence is lost. This module
handles the audition of the data outsourced to the cloud and reports appropriately
to the DO. The module enables the auditor to achieve this function using the
MHT algorithm with the security of the main root key using IRC6 encryption
algorithm.

Change Login: This aspect of the module function gives opportunity for login

credentials to be changed as well for the auditor.

c. The Student Module: This module of the program handles selection and display of

respective students’ activities within the system. Successfully registered individual

student’s data are viewed through this module.

69

4.4.4 Input/Output Format
The system is designed to accept several input details efficiently through input forms and user
clicks as earlier stated. The data captured through the user keystrokes and clicks are received by
specific modules on the system and relayed to the back-end of the system for processing. Input is
collected using the following page modules:

I. Add Students Sub Module;

ii. Create Students Data/Scores Sub Module;

iii. Upload Data Sub Module;

iv. Dynamic Data Auditing Sub Module.
The Upload sub module is used to input data into the system. These data may be existing files in
word, excel, text file and will be preprocessed into blocks of data as soon as it is inputted.
The output data format will be in two forms. The encrypted data after preprocessing will be in
cypher text especially in auditor sub system due to security reasons while consumable output
data will be in plain text form either in e-copy or printed copy, readable to individual users
through the output sub module such as:

I View Student Sub Module

ii. Adversary Mode Sub Module

iii. Dynamic Data Auditing Sub Module

v, Check Data Authenticity Sub Module

445 Algorithm

The algorithm used to develop this new hybrid system is in two folds. First is the improved RC6
algorithm design which is used to secure the main auditing key as specified in the objectives of
this research. The second is the new hybrid algorithm designed to achieve the aim of this
research.

4.4.5.1 Improved Rivester Code Version 6 (IRC6) Cryptographic Technique Design

Il Encryption/Decryption with IRC6-w/r/b

I/l Input: Plaintext stored in four w-bit input registers A, B, C & D

I r is the number of rounds

I w-bit round keys SO0, ..., 2r + 3]

I/ Output: Ciphertext stored in A, B, C, D

70

/[""Encryption Procedure:™

B =B + S[0]

D=D +S[1]

fork=1tordo

{
i = hash(hash(k))
t=(B*(2B + 1)) <<<Igw
u=(D*(2D + 1)) <<<Igw
A=((ADt)<<<u)+9[2i]
C=((COu)<<<t)+9[2i+1]

(A,B,C,D) = (B,C,D,A)

}

A=A+ S[2r+ 2]

C=C+9[2r+3]

// ""Decryption Procedure:"

C=C-S[2r+3]
A=A-S[2r+2]

for k =r downto 1 do

{
i = hash(hash(k))
(A,B,C,D)=(D,A B,QC)
u=(D*(2D +1)) <<<Igw
t=(B*(2B + 1)) <<<Igw
C=((C-S[2i+1])>>>t) D u
A=((A-S[2i])>>u) Pt

}

D=D-9[1]

B =B - S[0]

71

The strength of the improved version of the techniques is based on the double cryptographic
hashing of the key which is denoted by “key = hash(i)” to sustain crypto-analytical attack on
cypher text during transmission of data to the cloud.

4.4.5.2 The Enhanced Hybrid Auditing Scheme Using MHT and Improved RC6 (IRC6)
Algorithm

The detail of the algorithm used for the new auditing scheme in this research using MHT and
IRC6 is given below:

The methodology adopted uses a scheme in which the client file F is divided into blocks and
compute signatures for each block of the file. Both the signatures and the blocks F are sent to the
cloud server for storage. This is done using Merkle hash tree (MHT) technique.

The client File F is preprocessed using MHT and sent to the public cloud and the copy of the
required signature is encrypted using IRC6 and sent to the private cloud for authentication
process. During auditing process, the internal auditor who has a copy of the signature asks the
public cloud to send required signatures of the blocks of file to be verified and verifies it by
comparing the result of the computed signature from the cloud with local copy which it has and
then reports the audit result to the data owner.

Algorithm 4.1 describes MHT file preprocessing steps through which files are being processed
into blocks of data. The blocks are arranged in left-to-right order and are used to build immediate

internal block. The process continues until the root node is obtained.

Algorithm 4.1: File Preprocessing

Open event <MHT Preprocessing>
Construct the binary tree structure of the supplied file in blocks of data
Organize the blocks in a left-to-right order
Hash each block of the leaf node
Concatenate each left and right node to obtain immediate internal node. imm_int_node =
Hash(L||R)

Continue until the root node is formed

72

Keep each of the internal node and its position with respect to the root node which forms
the AAI for the purpose of auditing.

End event

Algorithm 4.2 describes a computational algorithm called key generator KeyGen (.), is used in
generating client’s public key used by the internal auditor to access the cloud and private key
used in IRC6 to encrypt the MHT root hash.

Algorithm 4.2: Key Generation

Open event < KeyGen(.) >
Generate a random signing key by:
{
Choose o < Zp
Compute v « g*
Compute sk = (va) // key used to encrypt the RH
Compute pk = (v*) // key used by internal auditor to access the cloud
]
Zis a source group of prime numbers of order P to a large chosen digit
g is a generator in a range of (2,..,p-2)

End event

Algorithm 4.3 is another computational algorithm called SigGen (.). By running the algorithm,
the data file F is pre-processed, and the homomorphic authenticators together with metadata are

produced.

Algorithm 4.3: Signature Generation

Open event < SigGen(.) >
GivenF=(mg, my..., my)
Choose a random element u«—G

[
Whereu € G

73

]

Compute t =t =filename || n||u // tis file tag or id

Compute o; « (H(m;)um;)* // o for each block m;

Compute ® = {ci} Il @ is set of all the signatures from individual blocks
where
[
I1<i<n
]
End event

Algorithm 4.4 is used to bring in the improved RC6 (IRC6) techniques developed in this research
to encrypt the root key of the adapted MHT. The secured RH and internal auditor’s access key is
sent to the auditor while the preprocessed file blocks and its corresponding hashes and signatures

are sent to the cloud.

Algorithm 4.4: Generation and encryption of the Root Hash (RH)

Open event < GenEnc(RH) >
Call algorithm 4.1 to generate the RH
Encrypt the RH using IRC6 with sk as the encryption key
[
Sigsk(RH) = IRC6(RH)
]
Send {F, t, ®} to the server
Send {sigsk(RH), pk} to the internal auditor
Delete { F, t, @, sigsk(RH)} from the local storage

End event

Algorithm 4.5 is used to handle data integrity request from internal auditor who is the verifier to
the server who is the prover. The Internal Auditor verifies the integrity of outsourced data by

challenging the server. Before challenging the server, the Internal Auditor first uses spk to verify

74

signature on t. If verification fails, reject by emitting FALSE else recover u. To generate the
message “chal” The message chal specifies the positions of the blocks to be checked in the

Merkle hash tree. The verifier sends the message chal {(i, ci)}

Algorithm 4.5: Data Integrity Request

Open event < Challenge the server, Chal (.) >
Verify signature on t using pk

If (verification of t fails)

[
Reject the file by emitting FAILS
]
Else
[
Recover u from t
]
Pick a random c-element from ¢;
Where
[
Ci€u,ucZp,
1<i<n
]
Send Chal {(i, c;)} to the prover
End event

Algorithm 4.6 is used to generate proof by the prover as requested from the verifier after after
receiving the challenge chal = {(i, c;)} message. The server finds the corresponding or specified
file in the cloud according to the challenge details. It is good to note that both the data blocks and

the corresponding signature blocks are combined into single block at this point. The prover will

75

also send to the verifier the auxiliary authentication information (AAl) required to compute the

root hash for the purpose of auditing.

Algorithm 4.6: Server Generates Proof

Open event < GenProof (F, @, Chal) >
Upon receiving the Chal {(i, ¢;)}
Find the corresponding or specified file in the cloud according to the chal details
Combine the data blocks and the corresponding signature blocks into single block as
Proof P
Send P to the Verifier
Also send Q = AAI required to compute the RH

End event

Algorith 4.7 handles the verification of the received computed RH. If the verification fails, the

Internal Auditor (Verifier) rejects by emitting False.

Algorithm 4.7: Data Authenticity Proof Verification

Open event < VerifyProof (pk, Chal, P) >
Upon receiving P from the prover

Generate RH by computing

{
H(m;, Qi) 11Q=AAl
1<i<n
}
Authenticate the received and computed RH, against the original computed RH
If (RH. == RH)
{
Inform the DO that the integrity of the data is undamaged.
}

76

Else

Reject by emitting FALSE and inform the DO
}

End event

4.4.6 Data Dictionary

This subsection of the research defines the most data objects of each user in the database and the
entire system. This definition helps various users to know most of the objects which exist in the
database and other parts of the system and who can access it.

Data dictionary is used to give detailed information about data elements used in designing the
new system, their meanings and allowable values. It gives information about each attribute of a
data model. Seven entities from our data model generate the data dictionary for this new system
as depicted in Table 4.1 to Table 4.7.

Table 4.1: Assessment

Column Data Type | Constraints Notes
Name (Keys)
ID int(11) Primary It identifies individual assessment file with

respect to its use and auditing.

user_id int(11) Foreign It identifies each user to its assessment record
assignment | varchar(10) | Not Null It keeps CA values

Test varchar(100) | Not Null It keeps CA values

Exam varchar(100) | Not Null It keeps exam values

Total int(11) Not Null It keeps individual assessment records

Table 4.2: Audit

Column Data Constraints Notes

Name Type (Keys)

ID int(11) Primary It keeps track of audit jobs for the system.
file_id int(11) Foreign It identifies individual file/block for auditing.

77

user_id int(11) Foreign It identifies each user to its audit record

Pk text Not Null It keeps the secured root key

Type varchar(5) | Not Null It keeps track of file type been audited either
uploaded or generated file

Date datetime Not Null It keeps track of the time the audit is done

Table 4.3: Data

Column Data Constraints Notes
Name Type (Keys)
ID int(11) Primary It keeps track of split blocks of files for the
system
file_id int(11) Foreign It identifies individual file block for storage
and auditing.
Sn int(11) Not Null It keeps track of block index
Block longtext Not Null It keeps the actual encrypted blocks
Table 4.4: Education
Column Data Type | Constraints Notes
Name (Keys)
ID int(11) Primary It keeps track of education details files for
the system
user_id int(11) Foreign It identifies each user to its educational
record
registration_no | varchar(100) | Not Null It tracks students’ registration number
Level varchar(10) | Not Null It tracks students’ academic level
department varchar(200) | Not Null It tracks students’ department
faculty varchar(400) | Not Null It tracks students’ faculty

78

Table 4.5: File

Column Data Type | Constraints Notes

Name (Keys)

ID int(11) Primary It keeps track of the files before splitting into
blocks for the system

user_id int(11) Foreign It is a candidate key that identifies individual file
and its blocks for storage and auditing.

filename varchar(100) | Not Null It keeps track of file names

Type varchar(5) Not Null It keeps track of the type of files either uploaded
of generated

Date datetime Not Null It keeps track of time of operation for the files of
the system

Table 4.6: Hash

Column Data Constraints Notes

Name Type (Keys)

SN int(11) Primary, It keeps track of the files of the split blocks for the

Foreign system
file_id int(11) Foreign It is a candidate key that identifies individual block
hash for storage and auditing.
Id int(11) Foreign It maps each block to its hash as its index
hashdata text Not Null It keeps track of the actual block hashes

79

Table 4.7: Personal

Column Data Type | Constraints Notes

Name (Keys)

ID int(11) Primary It keeps track of students’ biodata file for the
system

firstname varchar(50) | Not Null It keeps track of students’ first name

lastname varchar(50) | Not Null It keeps track of students’ last name

username varchar(50) | Not Null It keeps track of students’ login identity

password varchar(50) | Not Null It keeps track of students’ login password

Email varchar(100) | Not Null It keeps track of students’ email address

Age int(11) Not Null It keeps track of students’ age

State varchar(100) | Not Null It keeps track of state of origin

photo varchar(300) | Not Null It keeps track of students’ passport
photograph

Date datetime Not Null It keeps record of time operation is been
performed on this file

45 System Flowchart

Figure 4.5 shows the system flowchart in which all the new system processes are depicted in
graphical form for easy understanding and subsequent implementation. System flowchart
symbols are adequately utilized with appropriate connectors, on-page connectors are used to
show the connection between the Auditor and Admin login decision symbol and login timestamp
of which the system uses to track multiple suspicious access attempts. Process symbols are used
to depict all the processes while label symbols are used to label appropriate functions of the
system. Internal and external storage symbols are used to depict both internal and cloud storage
respectively. Audit path generation, data auditing and audit report generation are done by the
auditor and the report is sent to the admin. Data capturing and preprocessing, key generation and
management, dynamic data operation and system access control are handled by admin which is
the DO. The timestamp logs any failed login attempt by thrice as an intruder. Access to the

system is granted only with valid login parameters controlled by decision symbols.

80

Login Time
Stamp

!

System Main Menu

A

NO

Auditor

Data Capturing &
Preprocessing

Using MHT

Cloud Data
Storage

C

Key Generation

Data & Key Encryption
Using IRC6

v

Key Storage

v

@

—

Password
Correct

Audit Path Generation

v

Data Auditing

v

L

Generation Report

Is User
ID &

CLOUD MGNT SERVER

A

v

Key Decryption

v

Data Decryption

:

Dvnamic Data Operations

Consumable Data

Figure 4.5: System Flowchart

81

4.6 System Implementation

The new system after proper analysis and design was implemented to ascertain the authenticity
of the outsourced data to the cloud thereby restoring the integrity of cloud storage services, and
bestow confidence to the prospective clients especially the Nigerian Federal Universities.

4.6.1 Proposed System Requirements

4.6.1.1 Hardware Requirements

Hardware Specification
Processor Speed: 1.70 GHz and Above
Main Memory: 512 MB (minimum).
Hard Disk: 40 GB.

Disk Space: 100 MB and Above.
Keyboard: ANY

Mouse: ANY

Monitor: ANY

4.6.1.2 Software Requirements

Software Specification
Operating System: Windows 8.1
Browser: Firefox.

Software (Prog. languages used): Java

IDE: Nebeans

Administrative Software tool: ~ phpMyAdmin, and Apache 10 collections.
DataBase: MySql

Local Server: XAMPP

4.6.2 Program Development
Various tools, procedures and methods required to build software, manage its complexity and its
subsequent maintenance are discussed as program development. This will be considered under

choice of programming environment and justification for the language used.

82

4.6.2.1 Choice of Programming Environment

NetBeans Integrated Development Environment (IDE) is used to develop this system together
with Java programming language from Oracle Java Development Kit (JDK 1.7). Windows
Software Development Kit (SDK) environment is also used to support the running of this new
system which is a .NET Framework Software Development Kit (SDK) from Microsoft with
useful components such as documentations, header files, libraries and tools required for
developing this new system. To successfully run this application on Windows, Maven Protocol
Buffers Plugin, which is a tool that helps generate Java source files from .proto which is a
protocol buffer definition was also adapted.

4.6.2.2 Language Justification

The programming used to develop this new system is Java programming language because
adapted MHT architecture was effectively implemented using java programming language. Also
for effective improvement over RC6 core architecture and its integration with MHT to achieve
the research objectives, Java Programming language is still the option. Though there are IDEs for
Java development, NetBeans IDE supports scripting language like PHP and HTMLD5, which is
key in the development of Web Ul for this application. It also supports Maven and is cross-
platform that runs on Microsoft Windows, Mac OS X, Linux, Solaris and other platforms
supporting a compatible JVM. Windows SDK was installed to help build windows native
component (winutils.exe). Other notable advantages of Java language as choice for developing
this system over other languages are:

i. Platform- Independent: The key characteristic of java is its ability to build applications
that can run on variety of computer systems (i.e. develop on one platform, run on any)
which makes it platform independent.

ii. Simple: Java is a simple, close to human language, elegant and easy programming
language compared to other object oriented programming languages such as C++. Java
replaced the complexity of multiple inheritances in C++ with a simple structure called
interface. It also uses automatic memory allocation and garbage collection. It has a clean
syntax which makes it easy to read, compile, debug, learn and write.

iii. Object oriented: Java is object oriented because it is centred in creating objects,
manipulating objects and making objects work together. Object oriented programming

provides greater flexibility, modularity and reusability.

83

iv.

Vi.

Vil.

4.6.3

Robust: Java puts a lot of emphasis on early checking for possible errors. Java compilers
provide several levels of additional checks to identify type mismatches and other
inconsistencies. The Java runtime system duplicates many of the checks performed by the
compiler and performs additional checks to verify that the executable byte-codes form a
valid Java program.

Secure: The Java language compatible browsers, compiler, and interpreter all contain
several levels of security measures that are designed to reduce the risk of security
compromise, loss of data and program integrity, and damage to system users. Java
platform allows users to download insecure code over a network and run it in a secure
environment without it causing any damage.

Portable: Java can run on any platform without having to be recompiled. The Java
environment is portable to new hardware and operating systems. It ensures that there are
no platform-specific features on the java language specification. For example the size of
integer in Java is the same on every platform, as is the behaviour of arithmetic.

Dynamic: In Java, new methods and properties can be added freely in a class without it
affecting their clients. Java can load classes as needed at runtime i.e. An application can

decide as it is running what classes it needs and can load the when it needs them.

System Testing:

4.6.3.1 Test Plan:
Introduction: This section of the research will describe the scope, approach, resources and

schedule of intended test activities. It will identifies amongst others test items, the features to be

tested, the testing tasks, which human resource will do each task, extent of tester independence,

the test environment etc. it is a record of the test planning process.

Test Item: Hybrid Model for Remote Dynamic Data Auditing Application Software

version 1.0.

. Features to be tested: Output display through Student module and View Students sub-

module in Admin module, data capturing through Add student module, Create Student
Data/Scores module, and Upload Data module. Dynamic Data Auditing functionality,
Adversary mode. Check Data Authenticity in Auditor Module. Login and Logout
features, and Change login features.

84

iii. Approach: The method adopted in this test plan include master test plan in which some

modules of the new system to be tested constitutes the major functions of the system.

White box testing type is equally adopted which specifies that the internal modules of the

new system are working according to specification.

Table 4.8: Item Pass/Fail Criteria:

Items Pass Criteria Fail Criteria
Output display through Decrypted data shown If blank
student module properly

View Students sub-module in | Decrypted data shown If blank
Admin module properly

Data capturing through Add

student module

If the captured data uploaded

successful to the its database

Data not seen in the database

Create student data/scores

module

If the captured data uploaded
successful to its database

Data not seen in the database

Upload data module

If the preprocessed data file

uploaded successfully

File Id not seen in the database

Dynamic data auditing module

Modifications on uploaded file
authenticates correctly

Modifications on uploaded file
fails to authenticate correctly

Adversary mode

Data authentication fails due
to alteration of the original
root key

Data authentication go
successfully even with
alteration of the original root

key

Check data authenticity

Authenticate successfully with

correct root key

Fails to authenticate if the root

key is invalid

Login and Logout features

Grant access to the new
system if the valid login

parameters is supplied

Deny access to the new
system if the invalid login

parameters is supplied

Change login parameter

Grant opportunity to the
change existing login
parameters only if old valid

login parameters is supplied

Deny or grant opportunity to
the change existing login
parameters if old invalid login

parameters is supplied

85

Cryptosystem

If the main root key in the
audit panel is displayed in
cypher text

If the main root key in the
audit panel is displayed in
plain text

MHT preprocessing module

If the file content is displayed
in blocks of data in the audit

panel.

If the file content is not
displayed in blocks of data in

the audit panel.

Test Environment: The new system will be tested locally using phpMyAdmin version 5.4.1,

XAMPP server version 3.2.2, MySql database, Window 8.1 Operating System running on Core

i7 Dell Inspiron 15R with one terabyte of internal storage and four gigabyte RAM memory.

4.6.3.2 Test Data:

This is essentially the input data given to this new system. It represents data that spurs the system

to function according to specification. Some data may be used for positive testing, typically to

verify that a given set of input to a given function produces an expected result.

Selected test data is a word document with filename called “Eddy.docx’ shown in table 4.9.

86

Table 4.9: Test Data (Eddy.docx)

1.1 Background of the Study

Database Creation and Management is a broad research area in the field of Computer Science
which include Cloud Data Storage and Management. Cloud computing is a service delivery
model whereby shared resources such as hardware, software, platforms, and information are
provided to consumers electronically as a utility over an internet network (Wang et al, 2009).
Several trends are opening up the era of cloud computing, which is an Internet-based
development and use of computer technology. The ever cheaper and more powerful
processors, together with the mainstream computing architectures such as Software-as-a-
Service (SaaS) Platform-as-a Service (PaaS) and Infrastructure-as-a-Service (laaS), are
transforming data centers into pools of computing service on a huge scale (Ben, 2011). The
increasing network bandwidth and reliable, yet flexible network connections make it even
possible that users can now subscribe for high quality services from data and software that
reside solely on remote data centers. Moving data into the cloud offers great convenience to
users since they do not have to care about the complexities of direct hardware management.
Examples of such well known services include Amazon Simple Storage Service (S3), and
Amazon Elastic Compute Cloud (EC2). While these internet-based online services do provide
huge amounts of storage space and customizable computing resources, these computing
platform shifts, however, are eliminating the responsibility of local machines for data
maintenance at the same time. As a result, users are at the mercy of their cloud service
providers (CSP) for the availability and integrity of their data (Wang et al, 2009).

This research focuses on sensitive data generated from organizations globally such as IT
industries, banks, private and cooperate organizations, and high institutions with Federal
University Wukari (FUW) as a case study. Academic data for example which are the life wire
of such organizations and other sensitive records such as students and staff records are being
generated from different departments and units to be stored and managed internally. Due to
some known risks posed to these data such as domestic accidents like fire and liquid hazards,
conflicts of interest, political intent, and others, it has become so important for this research to
propose outsourcing of these data to the cloud where it will be devoid of these risks.

4.6.3.3 Actual Test Result Versus Expected Test Result:
I. Output Display: Figure 4.6 shows an expected display result of the chosen test data
before preprocessing and outsourcing while figure 4.7 shows the actual display test result of the

chosen test data after reprocessing and decryption.

87

References

12 - A AT

Aa- | B 1=~ = -

Eddy.docx - Microsoft Word

Mailings

=
W=

= Paragraph = Styles

AaBbCcDe | AaaBbCecDc | AaBbC: AaBbCc Aa]j AaBbCc. Ac
T Mormal Mo Spacing | Heading 1 Heading 2 Title Subtitle Su

1.1 Background of the Study

Database Creation and Management is a broad research area in the field of Computer Science
which include Cloud Data Storage and Management. Cloud computing is a service delivery
model wherebwy shared resources such as hardware., software, platforms, and information are
provided to consumers electronically as a utility over an intemet network (Wang et al, 2009).
Several trends are opening up the era of cloud computing., which is an Intemet-based
devllopment and use of computer technology. The ever cheaper and more powerful processors.
together with the mainstream computing architectures such as Software-as-a-Service (SaaS)
Platform-as-a Service (PaaS) and Infrastructure-as-a-Service (IaaS). are transforming data
centers into pools of computing service on a huge scale (Ben. 2011). The increasing network
bandwidth and reliable, wvet flexible network connections make it even possible that users can
now subscribe for high quality services from data and software that reside solely on remote data
centers. Moving data into the cloud offers great convenience to users since they do not have to
care about the complexities of direct hardware management. Examples of such well known
services include Amazon Simple Storage Service (S3), and Amazon Elastic Compute Cloud
(EC2). While these internet-based online services do provide huge amounts of storage space and
customizable computing resources. these computing platform shifts. howewver. are eliminating the

responsibility of local machines for data maintenance at the same time. As a result, users are at
the mercy of their cloud service providers (CSP) for the awvailability and integrity of their data
(Wang et al, 2009

™.

Figure 4.6: Expected Test Result

Eddy.docx - Microsoft Word

References Mailings Review
- = T - (AL A s 3
12 A AT Aa = 2l | T naebcepe | aaBbcend | AaBbCi AaBbce AADB aasbee ac
e X, X° - 87 - A - = T Mormal Mo Spacing | Heading 1 Heading 2 Title Subtitle Su
Font = Paragraph = Styles

1.1 Background of the Study

Database Creation and Management is a broad research area in the field of Computer Science
which include Cloud Data Storage and Management. Cloud computing is a service delivery
model wherebwv shared resources such as hardware, software, platforms, and information are
provided to consumers electronically as a utility over an intemet network (Wang et al, 2009}
Several trends are opening up the era of cloud computing. which is an Intemet-based
devlalopmen.t and use of computer technology. The ever cheaper and more powerful processors,
together with the mainstream computing architectures such as Software-as-a-Service (SaaS)
Platform-as-a Service (PaaS) and Infrastructure-as-a-Service (IaaS). are transforming data
centers into pools of computing service on a huge scale (Ben. 2011). The increasing network
bandwidth and reliable, vet flexible network connections make it even possible that users can
now subscribe for high guality services from data and software that reside solely on remote data
centers. Moving data into the cloud offers great convenience to users since they do not have to
care about the complexities of direct hardware management. Examples of such well known
services include Amazon Simple Storage Service (S3). and Amazon Elastic Compute Cloud
(EC2). While these internet-based online services do provide huge amounts of storage space and
customizable computing resources. these computing platform shifts. however. are eliminating the
responsibility of local machines for data maintenance at the same time. As a result, users are at
the mercy of their cloud service providers (CSP) for the awvailability and integrity of their data
(Wang et al, 2009).

Figure 4.7: Actual Test Result

88

ii. View Students sub-module in Admin module: Figure 4.8 shows the actual display test

result of the decrypted students’ data which is also the same as the expected display test result.

E2 Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = = f

/brid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing 1

data Dynamic Data Auditing Adve: node View Studenis

SN FIRSTHAME LASTHAME ASSIGMMENT TEST EXAMS TOTAL DEPARTMENT FACULTY
Ermenike Cealine 5 18 62 85 Computer Science |(Information and
1 Communication
Technology

Bou Cravid & 19 67 a4 Computer Science |(Information and
2 Communication
Technology
Bou Craniella T 18 53 78 Computer Science |(Information and
3 Communication
Technology
Bou Craniel & 17 62 8T Computer Science |(Information and
4 Communication
Technology

Figure 4.8: Actual Test Result for View Students sub-module in Admin module

iii. Data Upload Module: Figure 4.9 shows the filename or the ID of the chosen test data file
as stipulated in the data plan pass condition. This is the actual test result of the data upload

module of the new system which is the same as the expected result.

2] Hybrid Madel for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - o

! Eddy.txt Download
2 Elugwu P U Exco txt Download
3 Eddy.docx Download

Figure 4.9: Actual Test Result for Data Upload Module

89

iv. Remote Data Auditing (Check data authenticity): This is the main function of this new
system. The evaluation of this module is in two folds.

First is to check if the Auxiliary Authentication Information (AAI) or the audit path supplied
from the cloud for the chosen test data corresponds to the expected AAI according to the MHT
algorithm used.

Expected Test Result: If the chosen audit block is ‘8™ block’, the expected AAI is shown in
figure 4.10.

Actual Test Result: Figure 4.10 shows the actual test result for the chosen audit block and its

corresponding AAL.

2 Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - a

CI:‘ Hybtid Model for Remaote Dynamic Data Auditing (RDDA) on Cloud Computing

Check Data Authenticity Change Login

Enter fizname/siudent ragisiration number

Eddy fxt Search
~

) |hkE ~ () | KB8TYQSbp3IWOBPhRY3Q/NxpNTHI4xFHAVG ™ O |1LuHRTg " () | SDylgxnBGoByHwwiC "~

1faRtaMWIMF1HIUW+W6yZ/\WB-+I9DnfdqO 817 rgHX+ytdIwHwXcpKSPWaPagesm/dakMflod lkxp TilaJhYiLRIgwUEK32H14Q YifdPRRTCAU vfdruBqO4wYdWHNxI65tddu0MIGZZLz

uljefxh2QgqXwB0ZRez7K+mZWP3GuSh6BDa quUYZwcHhX1wLmS3UrlGMeaPtvBb7 +znlckR hG25/Q8bg YexRvHStgMa/ESKxZ fFMIro/ttt BAQ7RWIUT 3+ 1yWOVQDwWIWENKUY

37IMvil 3 g XvCKNmi/1fxoh62wpB

47PKfmuef3cuhw== v kIBdd5GSsnKenA== v BsgXczsfMMazlg== v UH43h358QwhwQ== hd
O |MpBysC ~ O | q/+2ytdsSNkOA29ZBKECWyIUHU4IFZOMBLAQB O |PBWwE ~| ® |6L4BBHGORUK7FonSCWT QA==

ho24/ESxWHNbett+AUFLBILUDIIY4E2C2qMh rbiCftLG3BWVSDVy8hSg9ceullMasnpznMLwul XbfOMv/8p6IbYwGWVWEIEa03VOVHCEBazyG

10gIE6CQI TPLI34r+il 014+8iD58fH19cHaEfVq ke1RWS5YHRpalo40Zg4DhSAaZVRIGZIRC2GOR] wioiC1Lwx3EBNbPeYMuIgQAQEUIMN4Qiu

X C4piveVSxw03DT6IE29akVIFBEWIGZX2tSiShS NCaSRIk

z0qo1pKoiC35Lw== v B+ZvY¥25i05/gUA== v iOxbsTg2XscNZQ== v

e oo

9de036e78566adbf0c109cd2182135126334838d5af30bc171774c69c32834f

11d2063277d9b674d3d6697 1787 Seaceetar ee29c4adattbl eae7 e048f2e7841 I 03e01a4f483b577bb288400badal c09844fe33162cdd293b5945007598f0c213a
I 230311e020e9394ch122ce52bc7743329f9b79cBead6 I 36075c32e452f74c6adf1308c941f48428883586d7h
I I I SRIk i8xbsTg2XscNZQ== I Wk77orxScWFgA==

Figure 4.10: Actual Test Result for the Chosen Audit block and its Corresponding AAL.

The second aspect of this module evaluation is to check the authenticity of the remote data with
respect to its IRC6 encrypted root key. The secured root will be generated using the AAI after
which the data auditing will be carried out. The generated root key for the chosen test data is
shown in figure 4.11. Figure 4.11 also shows the actual result of the remote data audit which is
the same as the expected result, by showing the match result between the original key and the

generated key.

90

0de036e78566adbf0c109cd2182135126334838d5af30bc171774c69C3f2824f

11d2063277d9b674d3d6697 1787 5eaceebasee29c4aBabEbl eae7e48f2e7841 I 02e0124f483b577bb988400balal c09844fe33162cdd293b5945097598fac21a
I 3ad311e02029394cb122ce52bc7743329f0b79c8ead6 I 3607 5C3ae452f74C6adf1 308c04148428883586d7b
I I I SRIk 9xbsTg2XscNZQ== I Wk77orxScWT7gA==

ORIGINAL KEY: ?de034278544adbf0c109cd21821351263a4838d5af20be 17177 40490 32834f
GENERATED KEY: 9de(356e78566adbf0c109cd2182135126304838d3af30bc 17177 4c69c3f2834F

MATCHED! File has net been altered by an adversary

V.
Dynamic data integrity check achieved in this new system deals the capability of this new system
to authenticate legitimately modified file after processing and decrypting it back to plain text.
This is achieved through the download buttons implemented in the outsourced file menu which
decrypts any selected file to its original content on issuing a download request. Figure 4.12

shows the actual test result obtained after encrypting and decrypting the modified file, which is

ORIGINAL KEY: 2de034e7854646adbflc10%cd21821351 26304838d5af30be 17177 46328341
GEMERATED KEY: 2del346e785446adbf0c109cd21 821351 25304838d5af30be 1 7177 404903283 4F

MATCHED! File has not been altered by an adwversary

Figure 4.11: Actual Result of the Remote Data Audit

Dynamic Remote Data Auditing (Check Modified Data Authenticity):

still the same as the expected result.

91

WIad S5 = Eddy.doox - Microsoft Word - IEd
Home | Inset Pagelayout References Mailings Review View = @
@ Find -

23 Replace

B #cu N
j oo Times New Rom = 12 = A" A" | Aa~

T AaBbCcDe | AaBbCeDe | AaBbCi AaBbCe Aa]j AaBbCc. AaBbCCD(| | %

—— 33 copy
= — Change
 Format Painter Normal | No Spacing | Heading 1 Heading 2 Title Subtitle Subtle Em.. et | 1y seledt -

Clipboard & Fant & Paragraph & Styles 5| Editing

B I U -abe x, X

Paste WA

1y &1

Dalabase Creation and Management is a broad research area in the field of Computer Science
which include Cloud Data Storage and Management. Cloud computing is a service delivery
model whereby shared resources such as hardware, software, platforms, and information are
provi to i as a utility over an intemet network (Wang et al, 2009).
Several trends are opening up the era of cloud computing, which is an Internet-based

and use of

. The ever cheaper and more powerful processors,
such as Soft Service (SaaS)
Platform-as-a Service (PaaS) and Infrastructure-as-a-Service ([aaS). are transforming data £
centers into pools of computing service on a huge scale (Ben, 2011). The increasing network
bandwidth and reliable, yet flexible network connections make it even possible that users can
now subscribe for high quality services from data and software that reside solely on remote data
centers. Moving data into the cloud offers great convenience to users since they do not have to
care about the lexities of direct hard > les of such well known
services include Amazon Simple Storage Service (S3), and Amazon Elastic Compute Cloud
(EC2). While these internet-based online services do provide huge amounts of storage space and
izabl i . these ing platform shifts, however, are eliminating the
ponsibility of local his for data mais at the same time. As a result, users are at
the mercy of their cloud service providers (CSP) for the availability and integrity of their data
(Wang et al, 2009).

together with the mai computing ar

This research focuses on sensitive data generated from organizations globally such as IT

Page: 10f 1 | Words: 367 | B English (US) |

2408 L)

Figure 4.12 Actual Dynamic Audit Test Result Obtained after Decryption

Figure 4.13 also shows actual test result obtained after updating a block of data during dynamic

operation.

MH9- ™= Narumantd - Micracnft Ward - a
Home T Files in Blocks 5@
B % cut T = A = ! < il 34 Find -
7j B ca 5 |Solutions R
oy o | ago Provide a provide an &€"everywhers you goi€? pl “ac Replace
& Format Painter Summary of Activates atform for both business owners and buyers lg Select -
Clipboard] Our proposed solutions to these requirements are aptly s a€c Provide on spot training/education for SMEsS own Editing
unmarized below: ers)
age Easy access to SMEs products anywhere, anytime A
aec Setting up of a computer center for v age Trusted platform to buy made-in-Ab v |
UWSIIUD GUuLs - o mETEgE empTOyeTsy; wI = e -
2 with a familiar and consistent user experience. & |ago Business Tips
age 211 employee information easily aceessible in on Order
e central location mbaSnop will be the easisst way to purchase made-in-Aba
a€e Transition from a reactive to a proactive employ products. Simply pick a product, select either to buy
ees management = the business owner or through AbaShop. Di 3
v
s activities. @ [Block 8] updated and TV Commercials. Viral ads campaign us
io stations and TV channels to ensure targ
4. Data Processing and Integration
Data processing is highly technical and re = year launch svent. Hosting of yearly eve =
zed skills. Our well trained and experienced scaff proce | |Ats to imtroduce new innovation in the business growch.
ss, collate organize and integrate captured and verified 211 stakeholders would be invited. This is to ensure p
data of each worker into the central databank alongside t ublic hype, trust and growth of SMEs.
he pa v v
4 Training and Documentation *| g |Testing the update submenu
Basic and advanced training for both administrators and e
nd users is designed for maximum effectiveness and capaci
ty building.
AbaShop 1s an online wholesale and retail service platfor
m (mobile and web) v

Page: 1 of 1 | Words: 0 | 5 engusn u.s.

Figure 4.13 Actual Dynamic Block Update Test Result

92

Vi, Adversary mode:

Figure 4.14 shows the actual test result of adversary mode operation obtained in which remote
data authentication fails due to alteration in the root key. This test result is the same as the
expected result of this module.

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

f_‘-?fl' Hybrid or Remote Dynamic Data Auditing (RDDA) ©

Check Data Authenticity

Enter fiename/studant registration numbar

Eddy hxt Search
~
© |MpBysC @) |a/+3ytdsSNK9AZOZBKBCWYILHU4IFZOMGL3QsE ~ | @ |pBWWE ~| O |6L4BBHGORUKF 7orXSCWT7gA==

h024/EBxWHbett+AUF1811UDIrY4E2c2gMh rhiCftLG3BwVSDVyBhSg9ceullMaSnpznMLwulN XbfoMv/8p6Ib YvGWVWEIED3VOvHCtBazyG

10gIE6CQITPLI34r+10)4+8)D58fHI9cHaEfVq ke1lRWS5YHRpal040Zg4DhSAaZVRIOZIRCZGOP] WoICG1LWx3E8NbPe YMUIgQAQEU1MN4Q1u

X C4piveVSxw03DTEIE29akVIFBEWIGZX2ESiShS HCaSRIk

z0q01pKoiC35Lw== v B+ZvY25i05/qUA== v i9xbsTg2XscNZQ== ~

B Clear

9de036e78566adbfc109cd21821351263a4838d5af30bc171774c60c3f2834f

11d2063277d9b674d3d669717875eacee6a7 ee29c4a8a66b10ae7 e048f2e7841 I 0ae01a4f483b577bbo88400ba8al c09844fe33162cdd293b5945007598fac21a
I 22d311e020e9394ch122ce52bc7743329f0b7 9cBead6 I 36d75C3ae4 52174 c6adf1 30804 1748428883586d7b
I I I SRIk i9xbsTa2XschZQ== I W77 oxSOWTgA==

ORIGINAL KEY: 9de036e78566adbf0c109cd21821351286304838d5af30bc 17177 4c69c312834
GENERATED KEY: 9de036e78586adbflc109cd21821251246204838d5020bc 17177 4c4903i2834F

0 UNMATCHED! File has been altered by an adversary

€ 9« solElel N E S el a5 e S

ORIGIMNAL KEY: 2de0346e78566adbflc10%cd2182135124304838d5af30bc 17177 442312834
GEMERATED KEY: ?de0346e78546adbf0c109cd21 821351 2463048384 5af20be 1 7177 404903283 4F

0 LMNMATCHED! File hos been altered by an adwersary

Figure 4.14 Actual Test Result of Adversary Mode Operation

vii. MHT preprocessing module:
Figure 4.15 shows the actual result of data file been preprocessed into data blocks according

MHT algorithm. The expected result is also the same as the actual result obtained.

93

L& Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - o

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Check Data Authenticity

Entar Flarama/studant ragisration rumbar

Edidy.xi| Search
I TRKE 7 RBSTy(8bp3WOBPIRRY 3/ NpH7H14xFHAVG TJILUFARTY T [5DYIqxnBGaByNwyOC N
1faRtoMWIMF1HIUW+W6YZ/WB+I9Drvfdg0 817rgHX+ytdIwHwWXcpKSPWaPgesm/dakmfigd lkexp TiloJh YiLRIgwUEK32H14Q YIfdPRRTCAU vfdru6gO4wYdwWNxI65tddu0MIGZZL2
u0jefxh2QgXwB0ZRez7K+mZIVP3GuSbEBDa quUylZwcHhX1wLmS3UrJGMeaPtVBb7 +znlckR hG25/Q8kgY6xRvHStgMa/ESKx7 fFMIro/ttt BAQ7RWIU7 3+/1yWOVQDW3IWENKUY
37IMvil a [+] XvCKNmix/ 1fxoh62wpB
4ZPKfmuef3cuhw== v kIBdd5GSsnKenA== v BsgXczsfMNgzlg== v uH43h958QwhwQ== v
O |MpBysC ~ O |g/+3ytdsSNkOA297BKBCWYILUHUAIFZOMEL3QsE A ® pBwwE ~| (O |6L4BBHGORUKZ70nXSCW7 QA==
h024/E8xWHbett+AUF1811UDIrY4E2c2gMh rbiCftLG3BwVSDVy8hSq9ceullMasnpznMLwuN XbfOMv/8p6Ib YvGWWwWEIEaD3VOvHCtBazyG
10gIE6CQITPLI34r+i1014+8jD58fH19cHaEfVq ke1RW5YHRpalo40Zg4DhSAaZVR9ZRCzGOp] woiCq1Lwx3EBNbPe YMUIgQAQEU1MN4Q1u
X C4piveVSxw03DToIt29akVIF8EWIGZX2ESiabS NCaSRlk
zggo1pKoiC35Lw== v B+ZvY25i05/gUA== v i9xbsTg2XscNZQ== ~
Audit Clear
9de036e78566adbfc109cd21821351263a4838d5af30bc171774c60c3f2834F
11d2063277d9b674d3d669717875eaceeba7 ee29c4a8a66h10ae7 e048f227841 I 0ae01a4f483b577bb988400baBal c09844fe33162cdd293b5845007598f9c21a
I 73d311e02009394ch122ce52bc7743329f0b79¢8ead6 I 36d75c3ae452f74c6adf1308c941f48428883586d7h
I I I SRIk 9xbsTg2XscNZQ== I%uk??urxScWﬂlA::
ORIGINAL KEY: 9de0346e78544adbf0c109cd2182135124304838d5af30be 171774069 312834
GENERATED KEY: 9de036e78566adbflc109cd2182135126304838d5a30bc 17177 406903128341 v

g« MOl CIENE B e a3 6 = mhe
Figure 4.15 Actual Result of MHT Preprocessed Data Blocks

viii. IRC6 Cryptosystem:
Figure 4.16 shows that the main root key is encrypted using the IRC6, and it is masked against
the auditor. Actual result of the encrypted root key which is the main audit parameter is the same

as the expected result which is shown in figure 4.16.

94

s

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

Hybrid h 2| for Re amic Data Audifing (R

Dynamic Data Auditing

Dynamic Data Auditing Data Editing
1-F 2018-06-01 22:52:350 |3420242785660dbi0c 1 09cd 21821351 24304838d50f20be 1 7177 406903 2834F Modify Delete
2-F 2018-06-01 2257430 | 522351 5234601 2023571203%bcibacedal Sdieadsd] e 12a420dec2asaidss Modify Delste
3-F 2018-06-01 2308100 | p9za0dad0asba? 54741 Bab398M4632e09d572679 1 0941 THIB47003293d3d Modify Delete
4-3 2018-06-01 23:34:090 | 41 545428377 20287 bod 205f251 33027 6573fcd2381244231 59491 f62i344fca Madify Delete
3-3 2018-06-01 23:35:450 |775430b807206925201287106d 1 4abdeal 40287002k] 7384f059a02467920 Modify Delete
é-3 2018-06-01 23:36:14.0 | 43704937 07472541 512919447 0 4Bebb744b78dbad 5050 4257084159826 3%b ca Modify Delete
7-3 2018-06-01 23:36390 375300de1bed1 201 cel cfeBed7 3oadbs7i74b45] cboeDal039d4cec] 33807 Madify Delete

Figure 4.16 Actual Result of the Encrypted Root Key

iX. Login and Logout features:
Figure 4.17 and figure 4.18 show the actual test result of the login and logout features of the new

system respectively.

95

B Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

- (Hylbrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud puting

Dashboard Add Studenis Cre enis Dala Upload data Dynamic Data Auditing Adversary dents Change Login Logout

3 4

Number of Files Nurmber of Users

Last Date of Upload: Jun 1, 2018 10:58:28 PM

Figure 4.17: Actual Test Result of the Login Feature

|4 Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = “

C?) Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

L ;’

Students Login Auditor's Login

Email Address Username i Username

Password | F Password T Password

Ph.D Dissertation Software by Agu Edward

Figure 4.18: Actual Test Result of the Logout Feature

96

97

98

99

Performance Metrics between NRC6 and IRC6
0.8
0.6 | 1=0:609 S— 0609
0.5 g =
«=4==NRC6 Time Lags , , M%V/ 0 0438
#=IRC6 Time Lags (3 0.344
0.2
0.1
0
1 2 3 4 |
*NRces Time Lags 0.438 0.344 0.609 0.703 \
\ W=IRC6 Time Lags 0.609 0.578 0.563 0.438 \

Figure 4.19: Performance Metrics between NRC6 and IRC6

Again, the encrypted cipher of IRC6 is quite difference from that of NRC6. It is not transparent
and survives crypto-analytical attacks during data transmission.

A. Comparison between the new method and other notable RDA protocols
The techniques adopted and implemented in this research is based on a random sampling strategy
to reduce the workload on the CSP. The input file (F) is divided into numerous blocks (m) by the
sampling techniques and randomly selects a number of challenge blocks (c) to perform batch
processing.
Evaluating the experimental result, Table 4.11 shows a comparison between the new method and
other notable RDA protocols based on three important parameters which includes;
Communication Cost, Computation Cost of data auditing, and Computation Cost of dynamic
data update:
I. Communication cost: the feature of communication cost shows the amount of data
transfer between the Data Owner, the Auditor and the Server in different phases of the auditing
scheme.
ii. Computation cost of data auditing: each step of the data auditing method is responsible
for performing a specific task, and this puts some computational weight on the auditor or server.

From the verifier’s point of view, computational cost of data auditing indicates the computational

100

resources that are used by the auditor to verify the integrity of the outsourced data. From the
server’s point of view, the computational cost of data auditing indicates the required time to
process and generate the proof message in the response step.

iii. Computation cost of dynamic data update: dynamic data auditing methods allow data
owners to update the outsourced data by using insert, delete, append, and modify operations.
During dynamic data update operation, the data owner needs to accomplish some tasks such as
finding the location of a requested block, generating new tag, and re-balancing the applied data
structure based on the update operation. As a result, the required time to execute the update
operations, such as insert, delete, append, and modify is called the computation cost of dynamic
data update. In the reviewed work of Wang et al (2011) scheme, the maximum computational
overhead is incurred during dynamic data update because the MHT data structure is used to
check the integrity or perform the update operations on the outsourced data blocks. Also in the
reviewed work of the Yang et al (2012) scheme, it improves the previous works of Wang et at
(2011) to (O(c)) with respect to modifying and appending a block. But to insert a block after i or
delete a specific block (fi]), the verifier must shift (m—i) entities in the data structure. As a result
of this, the computational overhead of this method during the insert and delete operations is
O(m). To address this problem and improve the auditing scheme, Sookhak et al (2015) designed
a new Divide and Conquer Table data structure (DCT) to reduce computational overhead. To
insert or delete a data block using their scheme, the verifier has to shift a part of the outsourced
data blocks (n/k — 1) that incurs O(n/k) computational overhead on the verifier. It is important to
mention that to find a block (f[i]) in the DCT structure, the verifier has to divide the location of a
block to k and find the appropriate DCT which also incurs computational overhead on the
verifier though less when compare to the earlier scheme. To reduce this dynamic computational
overhead cost on server to a minimum point, we implemented a system that will support offline-
online dynamic update using MHT techniques. In the implemented scheme, the specific
signature of block and the encrypted block to be updated is located, retrieved from the server and
decrypted after which the update is affected offline without any cost on the server, after which it
will be uploaded to the server.

Table 4.11 shows performance analysis comparison of data auditing schemes by Wang et al,
Yang et at (2012), Sookhak et al (2015) and our new scheme, where m is the number of blocks,

n is the number sectors of a block, ¢ is the number of challenge blocks in each auditing query,

101

and k is the number of the DCTs structure as applied in Sookhak scheme. c, in our scheme

indicates that the update is applied only to the selected challenged blocks offline with limited or

No cost.

Table 4.11: Performance comparison of different RDA schemes

Metric Schemes
Wang et al (2011) | Yang et al (2012) | Sookhak etal | Our Scheme
(2015)
Communication O(clogm) 0O(c) 0O(c) O(cp)
Computation Auditing | Server | O(clogm) O(cn) O(cn) O(cp)
Verifier | O(clogm) 0O(c) 0O(c) O(cp)

Computation Modify Verifier | O(clogm) 0O(c) 0O(c) O(cp)
Computation Insert Verifier | O(clogm) O(m) O(m/k) O(cp)
Computation Delete Verifier | O(clogm) O(m) O(m/k) O(cp)
Computation Append | Verifier | O(clogm) 0O(c) 0O(c) O(cp)

B Algorithm to show the O(Cp) Computation

1. Finding Cp (F, n, k)

2 Begin

3 Selected_block = block (n)

4, K=1

5 Repeat

6 Choose corresponding blocks

7. Selected_block = block(n — 1)

8 N=n-1

9 K=k+1

10. Until (k=3)

102

Consider statement line (7) in the above algorithm. The selection process is backward
substitution. Also, statement line (3) is executed once before the loop, the time complexity is
o(1).

Therefore,
Cp(n) = 1+Cp(n-1) 1)

For the second iteration
Cp(n-1) = 1+Cp(n-2) 2 [statement line (8) shows that n decreases

for each iteration]

Third iteration
Cp(n-2) = 1+Cp(n-3) 3)

Combining equation (1) and (2)
Cp(n) = 1+1+Cp(n-2), remember that Cp(n—1) =1 + Cp(n - 2)
= 2+Cp(n-2) (4)

Combining equation (3) and (4)
= 2+1+Cp(n-3)

= 3+ Cp(n-23)
= k + Cp(n—K)
But
Cp(n-k) = 1+Cp(n—-k-1)
Hence
n-k = 1+n-k-1
n-k = 1+8-3-1
n-k = 5
8-k = 5

103

Hence
k = @)
= O(k)
= O(Cp)
= O(3)
Therefore, the general time slice spent per block retrieval is O(1). Whereby the previous model
O(C) = O(n/2) which implies their k = 4 while our k = 3, shows there is improvement over our

model.

4.6.3.5 Limitations of the System:
The limitation observed in this research system includes a little increase in communication

overhead cost during initial data upload.

4.6.4 System Security:
The security of this system encompasses the processes and procedures involve in keeping the
developed system itself, its data and information it contains confidential, available, and assuring
its integrity. It also deals with:
4.6.4.1 Password Protection
i. Access controls, which prevent unauthorized personnel from entering or accessing the
system using strong password security.
ii. Unauthorized access to the system is guard against with the implementation of strong
Triangular Security Handshake (TSH) between the user, the auditor and cloud service

provider using strong password securiy.

4.6.4.2 Authentication
The integrity of the outsourced data to the cloud is equally periodically authenticated using
MHT.
4.6.4.3 Cryptography
i. Outsourced data blocks from the system are equally protected using cryptosystem against

any form of network attack as it is being transmitted across the network medium.

104

ii. The confidentiality and integrity is further achieved by masking the auditor from the real
audit token which is encrypted using the developed IRC6.

In securing the new developed system, an adversary data authentication model was development

and used to ascertain the effectiveness of the developed model. An intrusion detection

mechanism was equally implementation through access log for access control. Infrastructural

security measures such as setting up and maintaining firewalls and antivirus engines are also put

in place. The system security also includes discovery of security breaches, as well as their proper

documentation.

4.6.5 Training:
The Training will empower the end-users in terms of the knowledge, skills, and/or abilities
required to support the new roles and/or technology. It will ensure that all impacted staff receives
relevant training to prepare them for any new working practices. Training method to be adopted
in this research is Blended Training Approach which includes Instructor-Led training approach
and Job-aids training approach. This method of training enhances learners’ retentive memory or
retention of learning. It is obvious that blend of training delivery methods will best meet the
needs of our project.
It is recommended that there will be one Training lead from the project team, and one from the
deployment firm. They will be responsible for completing and managing the training program,
including the development of instructional materials and training delivery.
The following section describes the distinct training environments:
i. Training Development Environment: will be used for creating training materials; this
environment is for the exclusive use of the project team.
ii. Training Production Environment: will be used to deliver Instructor-Led Classroom
Training
iii. Training Practice Environment: will be used by end-users to practice in the new system;
concurrently with the deployment of e-learning.
To evaluate the effectiveness of training delivery, information will be obtained from the
following areas:
I. The outcomes of competency tests completed by trainees at the end of each module.

ii. Feedback from trainees on confidence level at the end of each module.

105

iii. Feedback from trainers on training problems or individuals with who have experienced
learning difficulties.

4.6.6 Documentation:
This new system allows users a simple way to protect and manage the outsourcing of their internal
generated data/information from a remote device. This documentation describes the instructions
for installing and accessing the system.
The local installation of this newly developed application is done by installing and configuring a
XAMP version 3.2.2 local server and it is running on MySQL database, with Netbeans version
8.2 IDE.
To open the system on a computer, first step is to turn on the local server. Next step is to launch
the system interface by double clicking the application icon. Access to the system is granted to
only authorize users through the login main menu as shown in figure 4.20.

& Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - o IEM

Cfb Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

.
B M

Students Login Auditor's Login

Email Address Username

Password

Ph.D Dissertation Software by Agu Edward

Figure 4.20: System Main Menu

106

The admin logins into the system through admin login interface with his login credentials to

unlock admin system functionalities as depicted in figure 4.21.

o |2/ Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =
t

f’_f_ Hybrid Model for Remote Dynamic Data Auditing (RDDA} on Cloud Computing

Dashboard

3 23 4

MNumber of Files Number of Blocks Number of Users

Last Date of Upload: Jun 1, 2018 10:58:28 PM

Figure 4.21: Admin Functionality window
Once a user has being granted legitimate access as the admin, the user has the power to create
and manage students data which include their bio-data and results, preprocess these data and
upload, execute dynamic data auditing operations and carry out adversary mode operation to
ascertain when the system is in its right state of operation. All these functionalities are performed

by the admin user through its respective submenus as indicated with the following figures.

107

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

Add Student

Firstname

Emenike

Lostname

Celine

Email Address
celine@yahoo.com
State of Origin

Imo

Age

28

Add Student

Faculty

Information and Communication Technology v

Department

Computer Science v
Lewvel

400L v
Possword

Registration Number

UR20130001

Figure 4.22: Add Student Submenu
This submenu depicted by figure 4.22 helps the admin to enroll students into the new system and
providing the students with legitimate access parameters.

Figure 4.23 shows a confirmation message after adding a student successfully.

108

| |

& Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - =

Hybrid Model for Remote Dynamic Data Auditing

Add Students Create Students Data Upload data Dynamic Data Avditing Ad

Add Student

Firstname Faculty

Information and Communication Technology v

Message
Lastname

—~
|'0'| Mew student registered successfully ~ 2NCe b
o

Emaoil Address
linenni

State of Origin Password
Abia 2
Age Registration Number
Add Student
Figure 4.23: Add Student Confirmation window
Acquisition of the students’ assessment data is done through figure 4. 24.
gl.““ o T Hy}md Moagll%or Remote Dynamic Data Auditing (RDDA) on Cloud Computing - 7

Hybrid Model for Remote Dynamic Data Auditing (RDDA) © 1

Create Students Data Upload data Dynamic Data Avditing A

[[3] Firstname Lastname Assignment Test Exam

4 Agu Daniel 8 17 62 Update

Message

Success

<-- Back

Figure 4.24: Create Students Data/Scores Submenu
Figure 4.24 submenu helps the admin during data capturing. Students’ data are acquired through

this submenu.

109

Figure 4.25 shows the upload interface while figure 4.26 shows the confirmation that file has

being uploaded successfully.

|£f Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

ybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Create Studenis Data Upload data Dynamic Data Auditing Adversary mode View Students

Student File Upload

Select File and Upload

Select Department

Computer Science v

Upload Input

C:\Users\Edward Agu'Documents\Thesis\FhD These\Original Thesis\Original Thesis\Corrected Thesis'{Test Data\Eddy. doox

Upload

Figure 4.25: Data Upload Submenu

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

[

Hybrid Model for Remote Dynamic Data Auditing (RDDA] on Cloud Computing

Create Students Data Uplocad data Dynamic Data Avditing Adversary mode Vi

Student File Upload

Select File and Upload

Sel Message

c '0:' File uploaded successfully, and its root data key generated
k.

e

Upload

Figure 4.26: File Upload Confirmation
Figure 4.26 Submenu is used as an interface to preprocessed and outsourced data to the cloud.
Data uploaded through this medium is preprocessed into blocks of data outsourced to the cloud.

110

Dynamic Data Auditing Data Editing

1-F 2018-06-01 2252350 ;420342785660dbi0c109cd21 821351 26304838d50730b 1 7177 40490362824 Madify Delete
2-F 2018-06-01 2257430 | 2023514234401 222357F203%bcfbacPelal SdfeedBd] e 1 30420dec 2asafdés Modity Delete
3-F 2018-06-01 23:08:100 | 59540dad0nsba7 5474186b39814632eb9d 5726791 c094 1 7TH984700329c3dAd Medify Delete
4-3 2018-06-01 23:34090 | 4) 545421377 c20e87bad2b%ie5] 32302745130 d 23824623 594911422460 Modify Delste
5-3 2018-06-01 23:35:450 |77542ab86072049353a1 28¢104d 1 4abdcal 4a287c0b2b | 7344ia59ac 244920 Modity Delete
6-3 2018-06-01 23:36:140 | 43124937 0F 473911 512979467 c 4Bebb7 66b78dbed 5050 4257084159522 3%bca Medify Delete
7-3 2018-06-01 23:36390 375300de1be3120] ool cPeBsd72cadbe?i9dbes | choaDall39ddcec] 33807 Modify Delste

Figure 4.27: Dynamic Data Auditing Submenu

The dynamic data auditing operation as depicted in figure 4.27 is done through this window. Each
of the outsourced data can be modified further through this submenu re-outsourced with valid

audit key.

| £ Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

(_Tf' Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Add Students Create Students Data Upload data Dynamic Data Avditing Adversary mode View Students

SN FILE ID ROOT KEY
1 ! 9de034e785660dbflc109cd2182135124304838d5af30bc171 774c69:3:25341 Alter
2 2 158ced516234601c23571203%befboc?e3al Sdfeeddd] e13a420dec2acafdés Alter
3 3 329f62dodladba? 34141 86b376fbE432eb?do7 2679 1c09417b204700329c3d8d Alter
4 4 41ed542f377c20e87bad2b%1e5133027 65f3fod 2381246231 5969 1142f346fca Alter
5 5 2775d3ab8b072049353a126f106d | 4obdoal 402587 c0b2b173464fa5?ac246f920 Alter
é 6 43fe 493747391 5i29f9467 c4Bebb7 66b78dbed505c4e 570841595 2e3%bea Alter
7 7 2037530cde1bedl 201celcPeBsd73fcabbéii94b651 cbeelall3?d4cec] 33807 Alter

Figure 4.28: Adversary Mode Submenu
Figure 4.28 is the adversary mode submenu which is used to keep track of the system normal
working state. If any of the file main audit key is altered through this submenu, it supposed to

reflect in the system audit result; else the system integrity is questionable.

111

£4) Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

2| for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

View Studenis

SM FIRSTMNAME LASTNAME ASSIGNMENT TEST EXAMS TOTAL DEPARTMENT FACULTY

Ermenike Celine 5 18 G2 a5 Computer Science (Infarmation and
1 Communication
Technology
Aau Doavid i 19 67 94 Computer Science |Information and
2 Communication
Technalogy
L 10) Daniella T 18 53 78 Computer Science (Infarmation and
3 Communication
Technology
gL Daniel g 17 62 ar Computer Science (Information and
4 Communication
Technology

Figure 4.29: View Students Submenu

Figure 4.29 is used to have overview of the students’ data on the system, while Figure 4.30 shows
the dashboard or menu through which the Auditor checks the integrity of the outsourced data to
cloud.

£ Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = B

35 Sat Jun 02 01:30:45 WAT 2018

Number of Blocks Last Date of Check

Figure 4.30: Auditor Menu
Figure 4.31 is the auditor submenu called Check Data Authenticity. The process of data auditing

is done through this submenu by selecting the file to be audited.

112

& Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - g -

(RDDA) ¢

k Data Authenticity

Enter flenameystudent registration number

Eddy.txt Search
O |hke ~) | KBSTYQObp3WOBPINRY3Q/NxpN7H14xFHAVG » (O |1LuHRTg " O |sDylqxnBGoByNwwyiC "~
1faRtoMWIMFLHILW-+WEYZ/WB+19DnvfdqO 817rgHX+ytd)wHwXcpKSPWaPgesm/dgkMflad lloep TiloJh YiLRllgwUEK32H14Q YifdPRRTCAU vfdri6gO4w YdWNXI6StdduOMIGZZLz
uljefxh2QaXwB0ZRez7K+mZNP3GuSh6BDa quUyZwecHhX1wLm53UrIGMeaPtVBb7 +znlckFj hG25/Q8kqY6xRvH5tgMg/ESKx7fFMIra/tht BAQ7RWU73+/ 1yWOVQDW3IWENKUV
37IMvil a g XvCKNmix/1fxoh62wpB
4ZPKfmuef3cuhw== v kIBdd5GSsnKenA== v BsgXczsfMNgzig== ~ UH43W058QwhwQ== v
) |MpBysC -~ (O | qf+3ytds5NKOA2Z9ZBKECWyIUHU4IFZOMEL3QsE O | PBWWE ~| (O |6L4BBHGORUK77oSCWTgA==
h024/E8x\WNbett+AUF18I1UDIrY4E2c2gMh rhiCftLG3BwVSDVy8hSg9ceullMasnpznMLwuM XbfOMv/8p6lb YvGW\WEIERD3VOVHCBazyG
10GIE6CITPLI34r+11014+8jD58fH19cHaEfVq kellRW5YHRpalo40Zg4DhSAaZVRISZrRCzGOP] woiCq1Lwx3ESNbPeYMulgQAQEU1Mn4Q1u
X C4piveVSxw03DT6It29akVIFBEWIGZX2tSiShS NCaSRIk
7gqo1pKoiC35Lw== v B+ZvY25i05/gUA== v BxbsTg2XscNZQ== ~
Audit Clear

Figure 4.31: Auditor Submenu

Figure 4.32 show the selected audit path through which the main root key is generated.

] Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - o Il

N «

Check Data Authenticity

Enter fiename/studant registration numbar

Eddy hxt Search
O |hke ~) |KBSTYQObp3WOBDINRY3Q/NXpNT7H14xXFHAVG » ® |1LuHRTY ~ O | SDylqxnBGoBYNWWOC ~ "
1faRtoMWIMFIHIUW+W6yZ/WB+I9DrvfdgO 817rgHX+ytdIwHwXcpKSPWaPgesm/dgkMflgd lkexp TiloJh YiLRIgwUEK32H14QYifdPRRTCAU vfdrU6gO4wYdWNxI65tddu0MIGZZLz
uljefxh2QqXwB0ZRez7K+mZIVP3GuShEBDa quUylZweHhX1wlmS3UrIGMeaPtVBb7 +znlckR hG25/Q8bqY6xRvH5tgMa/ESKx7 fFMIro/ttt 8AQ7RWjU73+/1yWOVQDWIWENKUY
37IMviL 2 9 XVCKNmix/ 1fxoh62wpB
4ZPKfmuef3cuhw v kIBdd5GSsnKenA: BsgXczsfMNgzig== ~ uH43W958Qwhw v
) |MpBysC A O | g/+3ytdsSNkOA29ZBKBCWYILHU4IFZOMEL3QsB A~ O |PBWWE A| (O |6L4BBHGORUKI70rXS W7 gA==
h024/EBxWNbett+AUF1811UDIrY4E2c2gMh rhiCftLG3BWVSDVyBhSq9ceullMaSnpznMLwulN XbfoMv/8p6Ib YvGWWWEIED3VOvHCtBazyG
10gIEBCQITPLI34r+1014+8D58HI9cHaEMNV g ke1RRwW3YHRpalo40Zg4DhSAaZVRI9ZIRC2GOD] woiCq1Lwx3E8NbPeYMUIgQAQEUIMN4Q1u
% C4piveVSxw03DT6IE29akVIFBEWIGZX2L5i5hS NCa5RIk
70001 pK0IC35LwW== v B+ZvY25i05/qUA== v OxbsTg2XscNZQ== v
Audit Clear
9den36e78566adbfic109cd2182135126334838d5af30bc171774c69c3f2834f
11d2063277d9b674d3d66971787 5eaeeeba’ ee29c4a8ab6bleac7e048f2e7841 I 0ae01a4f483b577bb988400ba8a1 c09844fe33162cdd293b5945097598f9c21a
eB8e1c150b1c317fcfb40d1ae67173a228e4127e8c3291d43aff8a5f0eb20f50a I 59341cf88822f1826e24340283ba87b2551c5¢5287f590 I
I -0/ttt9 BsgXczsfMNgzig= I 3B uH43W958QwhwQ== I I
ORIGINAL KEY: 9de036e78566adbi0c 109cd 21821351 26304838d5af30bc 17177 4c69c372834F v
< >

= [a0

_e g < SEIe]) & B i a3
Figure 4.32: Audit Path

Figure 4.33 displays students’ successful login page with its bio-data, while figure 4.34 shows

the successfully logged in students’ scores.

113

CT Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Dashboard

Dashboard | Scores.

Student Dashboard First Name Emenike
Last Name Celine
Department Computer Science
Faculty Information and Cemmunication Technolegy
Level 400L
Email Address celine@ychoo.com

Change Photo Age o8

State of Origin Imo
Reg. Number UR20130001

Figure 4.33: Students’ login page Dashboard

|5 Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

a CI Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Dashboard

Dashboard || Scores,

Assignment 5

Test 18
Exams 62
Total 85

Figure 4.34: Students’ logged in Scores
Figure 4.35 shows the list of files currently outsourced to cloud and the download operational
buttons attached to each file is used to decrypt the files their original contents when required.

114

a - Hybrid Model for Remote Dynamic Data Auditing (RDDA) on C

Dashbeard

Metrics| Files | Log

! Eddy.txt Download
2 Elugwu P U Exco.txt Download
2 Eddy docx Download
8 teststxt Download
? tetut Download
10 textotuxt Downlood
Message
:l File downloaded at C:\Users\Edward Agu\Documents\DATA_AUDITOR\texto. bt

Figure 4.35: Outsourced File List

Figure 4.36 shows the log of all attempted access to the system. This is one of the security

measures embedded to secure this system. It logs the user out after three failed attempts.

Insert Fage Layout Heterences Mailings Heview View
| £ Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

(_T_' Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Dashboard

Metrics | Files Log
SN USER ACTIVITY STATUS DATE
1 admin Login attempt Success 2018-05-26 20:38:19.0
2 admin Login attempt Success 2013-05-27 02:06:17.0
3 admin Login attempt Success 2013-06-01 22:14:56.0
4 admin Login attempt Success 2013-06-01 22:37:11.0
5 admin Login attempt Success 2013-06-01 23:06:26.0
6 admin Login attempt Success 2018-06-02 01:05:21.0
7 admin Login attempt Success 2013-06-0201:21:16.0
B8 admin Login attempt Success 2013-00-0201:26:49.0
9 admin Login attempt Success 2013-06-02 01:37:13.0
10 admin Login attempt Success 2018-06-02 02:09:53.0
11 admin Login attempt Success 2013-06-03 04:14:22.0

Figure 4.36: System Access Logs
Figure 4.37 is the new system metric window which shows the number of files outsourced,
number of preprocessed blocks already in existence and number of registered users within the

new system.

115

Insert Page Layout Heterences Mailings Heview WIEW

B Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

) Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Dashboard

Metrics | Files | Log

10 57 4

Number of Files Number of Blocks Number of Users

Last Date of Upload: Jun 3, 2018 4:16:34 AM

Figure 4.37: System Metrics

4.6.7 System Conversion:
4.6.7.1 Changeover Procedures:
There are five procedures or plans for converting from the old system to the new system and they
are listed as follows:

i. Direct changeover.

ii. Parallel conversion.

iii. Gradual, or phased, conversion.

iv. Modular conversion.

v. Distributed conversion.
4.6.7.2 Recommended Procedure:
The recommended changeover method or plan to be adopted in this research is gradual or phased
conversion plan. This method of conversion is chose by putting into consideration, the
sensitiveness of the data to be outsourced. The method attempts to combine the best features of
direct and parallel conversion plans, without incurring all the risks. In this plan, the volume of
transactions handled by the new system is gradually increased as the system is phased in. The
advantages of this approach include allowing users to get used to the system gradually, the

116

possibility of detecting and recovering from errors without a lot of down time, and the ability to

add features one-by-one.

117

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION
5.1 Summary
Previous models for Remote Data Auditing (RDA) were found to be weak to security attacks due
to insecurity of their rootkey, vulnerability of Third Party Auditor (TPA) and lack of dynamic
data auditing. Huge amount of sensitive data are generated and managed internally on a daily
basis by different organizations globally. Cloud computing services provide huge amounts of
storage space and customizable cheap and very easy to adapt computing resources. But it
eliminates the responsibility of local machines for data maintenance and auditing. As a result, the
availability and integrity of clients’ outsourced data are solely determined by Cloud Service
Providers (CSP) which require periodic remote integrity audit, hence this study.
The aim of this research was to develop an enhanced hybrid model for dynamic remote data
auditing on cloud computing. The objectives of the study were to; present the design of an
Enhanced Model for Dynamic remote Data Auditing; develop an enhanced hybrid system to
support dynamic remote data auditing and data dynamic operations in the cloud by maintaining
data integrity and availability even if users modify, delete, insert or update their data files in the
cloud; build and apply an adversary data authentication model to evaluate the effectiveness of the
system; and compare performance of the new system with the existing system.
Object Oriented Analysis and Design Methodology (OOADM) was employed for systematic
study of the existing system and implementation of the secured hybrid dynamic remote data audit
model. Merkle Hash Tree (MHT) authentication data technique was used to develop a model that
implements dynamic remote data auditing and dynamic remote data operations. Improved
Revester Code version 6 (IRC6) cryptographic technique was used to secure the MHT rootkey
which is the main auditing key. MHT techniques was also employed to develop an adversary
data authentication model; vulnerabilities associated with TPA services were eliminated using
combined MHT and IRC6 techniques. Maven Protocol Buffers Plugin was used to implement
access log as intrusion detection mechanism.
An enhanced hybrid model for dynamic remote data auditing was developed to ensure
availability and integrity of outsourced data; IRC6 subsystem was developed to secure the MHT

rootkey which is the main auditing parameter; an adversary data authentication model was

118

developed to audit the activities of the internal data auditor; a model that bypasses the risk and
cost of adopting vulnerable TPA services was also implemented; an intrusion detection
mechanism through access log and a Triangular Security Handshake (TSH) with timestamp was
implemented to improve access control to the new system. the performance of the new system
was evaluated to be an improvement over the existing systems.

The implementation of the secured hybrid dynamic remote data auditing model was able to
strengthen the confidence and business relationship between the CSP and its prospective clients.
It also improved the security of the outsourced data and strengthened the security of the previous
RDA models with IRC6. The developed IRC6 was evaluated to survive any crypto-analytical
attack at little or no cost. This work is recommended for organizations where huge amount of
data are generated on a daily basis and requires high level of economic means of preservation
and security.

52 Conclusion

Benefits of cloud computing platform are now extended as confidence has being restored on
more organizations who intend to outsource their sensitive organizational data to the cloud as a
result of the development of this new improved data auditing system. The outlined problem
statements in this research were achieved as the research objectives deliverables were
implemented as part of the result discussed.

5.3 Recommendation

5.3.1 Application Areas

This research is applicable in data security areas such as organizations like higher institutions,
financial institutions, government parastatals and corporate bodies where large amount of
sensitive data are generated on a daily basis and requires high level of economic means of
preservation and security.

5.3.2 Suggestion for Further Research

We suggest further development of a byzantine failures tracking reporting sub system that will
be reporting directly from the cloud to the auditor in terms of arbitrary deviations of a process
from its assumed behavior based on the algorithm it is supposed to be running and the inputs it
receives. Byzantine failures sometimes occur due to a software bug, hardware malfunction, or a

malicious attack.

119

5.4

Contribution to Knowledge

Implementation of an enhanced hybrid cloud data storage auditing model that support
both public auditability and dynamic data operation with MHT and IRC6 encryption
algorithms.

Implementation of IRC6 to secure the root key, its performance evaluation in terms of
cost against security achieved

Implementing the security of MHT root key which is the strength of the auditing scheme.

Implementation of a model that bypass the risk and cost of adopting vulnerable TPA.

120

References

Alan, D., and Barbara, H. W. (2008). Systems Analysis and Design, 4th Edition, John
Willey, New York

Anmol, A., Priyanka, V., Rajeshwari, and A., Meera, C., (2015). Public Auditing for the Shared
Data in the Cloud, International Journal of Computing and Technology (IJCAT), Volume
2, Issue 4, ISSN : 2348 — 6090, www.lJCAT.org

Armbrust M., Fox A., Griffith R., Joseph A., Katz R., Konwinski A., Lee G., Patterson D.,
Rabkin A., and Stoica I., (2009). Above the clouds: a Berkeley view of cloud computing,
Technical Report UCB/EECS-2009-28.

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Petrson, Z., and Song, D., (2007).
Provable data possession at untrusted stores. Cryptology ePrint Archive, Report
2007/202.

Avinash, C., Hasritha, P., and Abhinay J., (2015). A Dynamic K-means Algorithm for Searching
Conserved Encrypted Data in a Cloud, International Journal of Computer Applications
(0975 — 8887) Volume 129 — No.5, Pp 33-38

Ben, K., (2011). Understanding the Cloud Computing Stack SaaS, PaaS, laaS, Diversity LTD,
A white paper developed by CloudU and sponsored by Rackspace Inc. United States of
America.

Bowers, K. D., Juels, A., and Oprea, A., (2009). Proofs of Retrievability: Theory and
Implementation. Proceedings of ACM Workshop Cloud Computing Security
(CCSW), pp. 43-54.

Cong, W., Qian, W., Kui, R., and Wenjing L. (2012). Towards Secure and Dependable Storage

Services in Cloud Computing. IEEE Transactions on Services Computing.

Curtmola, R., Khan, O., Burns, R., and Ateniese, G. (2008). MR-PDP:Multiple-replica
provable data possession. Proceedings of ICDCS’08. IEEE computer society Washington
DC, USA, pp. 411-420.

Dave, R., (2012). What is Cloud Computing? — A tutorial, Leverhawk

http://leverhawk.com/what-is-cloud-computing-tutorial-2012120519. Accessed on 10th May,
2015 by 19:12 GMT.

121

Educause, (2009). 7 things you should know about cloud computing. From
http://creativecommons.org/licenses/by-nc-nd/3.0/educause.edu. Accessed on 25" May,
2017

Filho, D. L. G., and Barreto, P. S. L. M., (2007). Demonstrating data possession and
uncheatable data transfer. IACR Cryptology ePrint Archive 2006/150.

Fredrickson, N., (1998). Up-front Investment for OOAD Can Pay Off, Electronic Engineering
Times,

Gosavi H. A., and Umale M. R., (2014). Public Auditing and Data Dynamics for Storage
Security in Cloud Computing. International Journal of Engineering Trends and
Technology (IJETT) — Volume 11 Number 4.

Juels, A., and Kaliski, B., (2007). PORs: Proofs of retrievability for large files. ACM CCS,
pp. 584-597.

Karthikeyan B., ((2015). Merkle Hash Trees for Distributed Audit Logs. Retrieved from
https://www.enseignement.polytechnique.fr/informatique/INF441/projets/merkle/merkle.
pdf on 28th May, 2016 by 03:57 GMT.

Karthika R., Archana D. R., Suganya T., and Nivethitha K., (2015), Efficient Authentication
Using Merkle Hash Tree Algorithm In Jelastic Server, International Journal of
Engineering Research-Online, Vol.3., Issue.2, ISSN: 2321-7758

Kayalvizhi S., and Jagadeeswari S., (2012), Data Dynamics for Storage Security and Public
Auditability in Cloud Computing, Journal of Computer Applications ISSN: 0974 — 1925,
Volume-5, Issue EICA2012-1,

Khaba M.V., and Santhanalakshmi M., (2013). Remote Data Integrity Checking in Cloud
Computing. International Journal on Recent and Innovation Trends in Computing and
Communication, ISSN 2321 — 8169 Volume: 1 Issue: 6

Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M., and Isard, M., (2003). A Cooperative
internet Backup Scheme. Proceedings of the 2003 USENIX Annual Technical conference
(General Track), Vol. 34, pp. 29-41.

Martin, J., (1992). Rapid Application Development. Englewood Cliffs, Prentice-Hall, New
Jersey, USA.

Merkle R. C., (1980). Protocols for public key cryptosystems, Proceedings of IEEE Symposium
on Security and Privacy, pp. 122-133.

122

Paul B.D., (1998). Rapid Application Development: A Review and Case Study, Kane
Thompson Centre.

Paul F., James M., and Peter H., (2001). System Development Life Cycle Models and
Methodologies: Canadian Society for International Health Certificate Course in Health
Information System, Canada.

Peter M., and Timothy G., (2011). The NIST Definition of Cloud Computing, NIST Special
Publication 800-145. Computer Security Division, Information Technology Laboratory,
National Institute of Standards and Technology, Gaithersburg, MD 20899-8930.

Qian W., Cong W., Jin L., Kui R., and Wenjing L., (2008). Enabling Public Verifiability and
Data Dynamics for Storage Security in Cloud Computing. Illinois Institute of
Technology, Chicago IL 60616, USA, {qwang,cwang,jin.li,kren}@ece.iit.edu.

Ren, K., Wang, C., and Wang, Q., (2012). Security Challenges for the Public Cloud. IEEE
Internet Computing, vol. 16, no. 1, pp. 69-73.

Rhee M. Y., (2003). Internet security: cryptographic principles, algorithms, and
Protocols, John Wiley, John Wiley & Sons Ltd, The Atrium, South Date, Chichestre,
West Sussex PO09 8SQ, England. Pp 26-298.

Sadoya A.S., Ibrahim S. A., and Ajayi O. B., (2004). The State Of Information Security In
South-Western Nigerian Educational Institutions, Proceedings of the International
Conference on Science and National Development.

Sam, J., (2009). Cloud Computing Architecture. Web resource from
https://enwikipedia.org/wiki/cloud_computing#/media/file:cloud_computing.svg

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N., (2009). The case for VM-based
cloudlets in mobile computing, IEEE Pervasive Computing 8, pp.14-23.

Satyanarayanan, M., (1996). Fundamental challenges in mobile computing, in: Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC’96, ACM, New York, NY, USA, pp. 1-7.

Satyanarayanan M. (1993), Mobile computing, IEEE Pervasive Computing 26, pp. 81-82.
Sasaki Y., and Shibata Y., (2012), A disaster information sharing method by the mobile servers
in challenged networks, in: Advanced Information Networking and Applications

Workshops, WAINA, 26th International Conference on, pp. 1048-1053.
Schwarz, T.S.J., and Miller, E.L., (2006). Store, Forget, and Check: Using Algebraic Signatures

123

to Check Remotely Administered Storage. Proceedings of ICDCS’06, Vol. 26, pp. 12-12.

Shacham, H., and Waters, B., (2008). Compact proof of retrievability. Cryptology ePrint
Archive, Report 2008/073.

Shah, M. A., Baker, M., Mogul, J. C., and Swaminathan, R., (2007). Auditing to Keep
Online Storage Service Honest. Proc 11th USENIX Workshop on Hot Topics in
Operating systems (HOTOS’07), Vol. 13, pp.1-6.

Siegele, L., (2008). Let it rise: a special report on corporate it, http://www.economist.
com/node/12411882. Accessed on 25" May 2017.

Snehal, V. Z., Amruta, V. T., Shivangi, S. S., Rajashree, C. B., (2014). Data Integrity Checking
Protocol with Data Dynamics and Public Verifiability for Secure Cloud Computing,
International Journal of Computer Science and Information Technologies (1JCSIT), Vol.
5 (3), Pp 4062-4064.

Sookhak, M., Gani, A., Khan, M. K., and Buyya, R., (2015) Dynamic remote data auditing for
securing big data storage in cloud computing, Information Sciences, Elsevier, pp 1-16,
http://dx.doi.org/10.1016/j.ins.2015.09.004

Srijanya, A. K., and Kasiviswanath, N., (2013). Data Integrity Verification by Third Party
Auditor in Remote Data Cloud. International Journal of Soft Computing and Engineering
(JSCE) ISSN: 2231-2307, Volume-3, Issue-5.

Wang, C., Wang, Q., Ren, K., and Lou W., (2009). Ensuring Data Storage Security in Cloud
Computing. Proc. 17th Int’l Workshop Quality of Service pp. 1-9.

Wang, S., (1996). Two MIS Analysis Methods: An Experimental Comparison, Journal of
Education for Business, Vol. 71 Issue 3, p136.

Wang, Q. A., Wang C., Ren K., Lou W. J., and Li, J., (2011). Enabling public auditability and
data dynamics for storage security in cloud computing, IEEE Trans. Parallel Distr. pp
847-859.

Webster, S., (1996). Focus groups. RAD, JAD and DSDM Heathrow, London, Unicom
Seminars.

Yang, K., and Jia, X., (2012) An efficient and secure dynamic auditing protocol for data storage
in cloud computing, IEEE Trans. Parallel Distrib. PP (2012) 1717-1726.

Zion, D. G., and Kayitha, D., (2012). Remote Sensing Data as a Service in Hybrid Clouds:

124

Security Challenges and Trusted Third Party Auditing Mechanisms. International Journal

of Advanced Research in Computer and Communication Engineering Vol. 1, Issue 7.

125

Appendix A: Program Listings

MerkleTrees.java

import java.security.MessageDigest;
import java.util. ArrayList;
import java.util.List;

/**

*

* @author user
*/
public class MerkleTrees {
/[transaction List
List<String> txList;
/I Merkle Root
String root;
/Iholds all nodes of the merkle tree
private List<String> nodes;
/ldefault constructor
public MerkleTrees(){}

/**

* constructor

* @param txList transaction List

*/

public MerkleTrees(List<String> txList) {
this.txList = txList;

root ="",
this.nodes = new ArrayList<>();
}
/**
* execute merkle_tree and set root.
*/
public void merkle_tree() {
List<String> tempTxList = new ArrayList<String>();
for (inti=0; i < this.txList.size(); i++) {
tempTxList.add(this.txList.get(i));
}
print(tempTxList);
List<String> newTxList = getNewTxList(tempTxList);
while (newTxList.size() 1= 1) {
print(newTxList);
newTxList = getNewTxList(newTxList);
}

this.root = newTxL.ist.get(0);
nodes.add(this.root);

}
private void print(List<String> newTxList){
/ISystem.out.print(newTxList.size()+" - \t");
for(String tx: newTxList){
nodes.add(tx);
[/System.out.print(tx+"\t");
}

/ISystem.out.printIn();

126

/**
* return Node Hash List.
* @param tempTxList
* @return
*/
private List<String> getNewTxList(List<String> tempTxList) {
List<String> newTxList = new ArrayList<String>();
int index = 0;
while (index < tempTxList.size()) {
Neft
String left = tempTxList.get(index);
index++;

[right

String right = """

if (index !=tempTxList.size()) {
right = tempTxList.get(index);

/Isha2 hex value
String sha2HexValue = getSHA2HexValue(left + right);
newTxList.add(sha2HexValue);
index++;

}

return newTXxList;
}

/**
* Return hex string
* @param str
* @return
*/
public static String getSHA2HexValue(String str) {
byte[] cipher_byte;
try{
MessageDigest md = MessageDigest.getinstance("SHA-256");
md.update(str.getBytes());
cipher_byte = md.digest();
StringBuilder sb = new StringBuilder(2 * cipher_byte.length);
for(byte b: cipher_byte) {
sh.append(String.format("%02x", b&0xff));

return sh.toString();
} catch (Exception e) {
e.printStackTrace();
}

return '"";

}

/*-k

* Get Root

* @return

*/

public String getRoot() {
return this.root;

¥

127

public List<String> getNodes(){
return this.nodes;

¥
¥

RC6Algorithm.java

/**

*

* @author user
*/
public interface RC6AIlgorithm {

public static String ALGORITHM_NAME = "RC6";

public static String MODE_OF_OPERATION = "ECB";
public static String PADDING_SCHEME = "PKCS5Padding” ;
public final static int RC6_KEYLENGTH = 128;

public void setKey(String password);
public String rc6Encrypt(String encryptedText, String key) throws Exception;
public String rc6Decrypt(String decryptedText, String key) throws Exception;

RC6_Normal.java

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import javax.crypto.Cipher;

import java.lang.reflect.Constructor;

import java.lang.reflect.Field;

import java.lang.reflect. Modifier;

import java.util.Map;

import java.io.UnsupportedEncodingException;
import java.security.*;

import java.text.DateFormat;

import java.text.SimpleDateFormat;
import java.util.Arrays;

import java.util.Date;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.crypto.*;

import javax.crypto.spec.SecretKeySpec;
import javax.xml.bind.DatatypeConverter;
import sun.misc.BASE64Decoder;

import sun.misc.BASE64Encoder;

public class RC6_Normal implements RC6AIlgorithm{

static {
Security.addProvider(new BouncyCastleProvider());

128

}

private SecretKey secretKey;

private String startKey, startEncrypt, startDecrypt;
private String endKey, endEncrypt, endDecrypt;

private DateFormat df;

public RC6_Normal(){
fixKeyLength();
df = new SimpleDateFormat("dd.MM.yyyy HH:mm:ss.SSS");
startKey = ""; startEncrypt = ""; startDecrypt = """;
endKey = ""; endEncrypt = ""; endDecrypt = ",

try {
String plaintext = "edy";

String key = "admin";

String cipher = rc6Encrypt(plaintext, key);

Date sK = df.parse(startKey);

Date eK = df.parse(endKey);

long duration = eK.getTime() - sK.getTime();
double ms = ((double)duration)/1000.0 % 60.0;

System.out.printin("\n\ntime for key generation:);
System.out.printIn("start time: "+startKey);
System.out.printIn("end time: "+endKey);
System.out.printin("diff. in time: "+ms+" secs");

Date sk = df.parse(startEncrypt);
Date eE = df.parse(endEncrypt);
duration = eE.getTime() - sE.getTime();
ms = ((double)duration)/1000.0 % 60.0;

System.out.printin("\n\ntime for encryption: ");
System.out.printIn("start time: "+startEncrypt);
System.out.printIn("end time: "+endEncrypt);
System.out.printin("diff. in time: "+ms+" secs");
System.out.printIn(“cipher: "+cipher);

String text = rc6Decrypt(cipher, key);

Date sD = df.parse(startDecrypt);
Date eD = df.parse(endDecrypt);
duration = eD.getTime() - sD.getTime();
ms = ((double)duration)/1000.0 % 60.0;

System.out.printIn("\n\ntime for decryption: ");
System.out.printIn("start time: "+startDecrypt);
System.out.printIn("end time: "+endDecrypt);
System.out.printIn("diff. in time: "+ms+" secs");

129

System.out.printIn("plaintext: "+text);
} catch (Exception ex) {
Logger.getLogger(RC6_Normal.class.getName()).log(Level. SEVERE, null, ex);

}

@Override

public void setKey(String password)

{
startKey = df.format(new Date());
byte[] digestOfPassword = password.getBytes();//sha.digest(key);
byte[] keyBytes = Arrays.copyOf(digestOfPassword, RC6_KEYLENGTH);
secretKey = new SecretKeySpec(keyBytes, ALGORITHM_NAME);
endKey = df.format(new Date());

}

@Override
public String rc6Encrypt(String toEncrypt, String key) throws Exception{
setKey(key);
startEncrypt = df.format(new Date());
Cipher cipher = Cipher.getinstance(ALGORITHM_NAME + "/* + MODE_OF_OPERATION + "/[" +
PADDING_SCHEME);
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
byte[] byteCipherText = cipher.doFinal(toEncrypt.getBytes());
String strCipherText = new BASE64Encoder().encode(byteCipherText);
endEncrypt = df.format(new Date());
return strCipherText;

}

@Override
public String rc6Decrypt(String ecryptedText, String key) throws Exception {
setKey(key);
startDecrypt = df.format(new Date());
Cipher cipher = Cipher.getinstance(ALGORITHM_NAME + "/ + MODE_OF_OPERATION + "/" +
PADDING_SCHEME);
cipher.init(Cipher. DECRYPT_MODE, secretKey);
byte[] byteEncryptedText = new BASE64Decoder().decodeBuffer(ecryptedText);
byte[] decrypted = cipher.doFinal(byteEncryptedText);
endDecrypt = df.format(new Date());
return new String(decrypted);

public static void main(String[] args){
new RC6_Normal();

}

public void fixKeyLength() {

String errorString = "Failed manually overriding key-length permissions.";

int newMaxKeyLength;

try {

if ((newMaxKeyLength = Cipher.getMaxAllowedKeyLength("AES")) < 256) {

Class ¢ = Class.forName("javax.crypto.CryptoAllPermissionCollection");
Constructor con = c.getDeclaredConstructor();
con.setAccessible(true);

130

Obiject allPermissionCollection = con.newlnstance();
Field f = c.getDeclaredField("all_allowed");
f.setAccessible(true);
f.setBoolean(allPermissionCollection, true);

¢ = Class.forName("javax.crypto.CryptoPermissions™);

con = c.getDeclaredConstructor();

con.setAccessible(true);

Object allPermissions = con.newlnstance();

f = c.getDeclaredField("perms");

f.setAccessible(true);

((Map) f.get(allPermissions)).put("*", allPermissionCollection);

¢ = Class.forName("javax.crypto.JceSecurityManager");
f = c.getDeclaredField("defaultPolicy");
f.setAccessible(true);

Field mf = Field.class.getDeclaredField("modifiers");
mf.setAccessible(true);

mf.setint(f, f.getModifiers() & ~Modifier.FINAL);
f.set(null, allPermissions);

newMaxKeyLength = Cipher.getMaxAllowedKeyLength("AES™);
}
} catch (Exception e) {
throw new RuntimeException(errorString, €);
}
if (newMaxKeyLength < 256)
throw new RuntimeException(errorString); // hack failed

- -

RC6_Modified.java

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import javax.crypto.Cipher;

import java.lang.reflect.Constructor;

import java.lang.reflect.Field,;

import java.lang.reflect. Modifier;

import java.util.Map;

import java.io.UnsupportedEncodingException;
import java.security.*;

import java.text.DateFormat;

import java.text.SimpleDateFormat;
import java.util. Arrays;

import java.util.Date;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.crypto.*;

import javax.crypto.spec.SecretKeySpec;
import javax.xml.bind.DatatypeConverter;
import sun.misc.BASE64Decoder;

import sun.misc.BASE64Encoder;

131

public class RC6_Modified implements RC6AIlgorithm{

static {
Security.addProvider(new BouncyCastleProvider());

}

private SecretKey secretKey;

private String startKey, startEncrypt, startDecrypt;
private String endKey, endEncrypt, endDecrypt;

private DateFormat df;

/*
class constructor
*/
public RC6_Modified(){
fixKeyLength();
df = new SimpleDateFormat("dd.MM.yyyy HH:mm:ss.SSS");
startKey =""; startEncrypt = ""; startDecrypt = ""';
endKey =""; endEncrypt = ""'; endDecrypt = "";

try {
String plaintext = "Eddy improving RC6";
String key = "admin™;

String cipher = rc6Encrypt(plaintext, key);

Date sK = df.parse(startKey);

Date eK = df.parse(endKey);

long duration = eK.getTime() - sK.getTime();
double ms = ((double)duration)/1000.0 % 60.0;

System.out.printin("\n\ntime for key generation: ");
System.out.printin("start time: "+startKey);
System.out.printin("end time: "+endKey);
System.out.printin("diff. in time: "+ms+" secs");

Date sk = df.parse(startEncrypt);
Date eE = df.parse(endEncrypt);
duration = eE.getTime() - SE.getTime();
ms = ((double)duration)/1000.0 % 60.0;

System.out.printin("\n\ntime for encryption: ");
System.out.printIn("'start time: "+startEncrypt);
System.out.printIn("end time: "+endEncrypt);
System.out.printIn("diff. in time: "+ms+" secs");
System.out.printIn("cipher: "+cipher);

String text = rc6Decrypt(cipher, key);

Date sD = df.parse(startDecrypt);
Date eD = df.parse(endDecrypt);

132

duration = eD.getTime() - sD.getTime();
ms = ((double)duration)/1000.0 % 60.0;

System.out.printin("\n\ntime for decryption: ");
System.out.printIn("start time: "+startDecrypt);
System.out.printin(“end time: "+endDecrypt);
System.out.printIn("diff. in time: "+ms+" secs");
System.out.printin("plaintext: "+text);
} catch (Exception ex) {
Logger.getLogger(RC6_Modified.class.getName()).log(Level. SEVERE, null, ex);

}

/*
generate key
@param password

*/
@Override
public void setKey(String password)
{
startkey = df.format(new Date());
try{
MessageDigest md = MessageDigest.getInstance("MD5");
md.update(password.getBytes());
byte[] digest = md.digest();
String secret = DatatypeConverter.printHexBinary(digest).toString();

byte[] key = secret.getBytes("UTF-8");
MessageDigest sha = MessageDigest.getInstance("SHA-1");
byte[] digestOfPassword = sha.digest(key);
byte[] keyBytes = Arrays.copyOf(digestOfPassword, RC6_KEYLENGTH);
secretKey = new SecretKeySpec(keyBytes, ALGORITHM_NAME);
}
catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
catch (UnsupportedEncodingException e) {
e.printStackTrace();

}
endKey = df.format(new Date());

133

J*
encrypt plaintext
@param toEncrypt
@param key
*/
@Override
public String rc6Encrypt(String toEncrypt, String key) throws Exception {
setKey(key);
startEncrypt = df.format(new Date());
Cipher cipher = Cipher.getinstance(ALGORITHM_NAME + "/* + MODE_OF_OPERATION + "/[" +
PADDING_SCHEME);
cipher.init(Cipher. ENCRYPT_MODE, secretKey);
byte[] byteCipherText = cipher.doFinal(toEncrypt.getBytes());
String strCipherText = new BASE64Encoder().encode(byteCipherText);
endEncrypt = df.format(new Date());
return strCipherText;

J*
decrypt ciphertext
@param encryptedText
@param key
*/
@Override
public String rc6Decrypt(String ecryptedText, String key) throws Exception {
setKey(key);
startDecrypt = df.format(new Date());
Cipher cipher = Cipher.getinstance(ALGORITHM_NAME + "/* + MODE_OF_OPERATION + "/" +
PADDING_SCHEME);
cipher.init(Cipher. DECRYPT_MODE, secretKey);
byte[] byteEncryptedText = new BASE64Decoder().decodeBuffer(ecryptedText);
byte[] decrypted = cipher.doFinal(byteEncryptedText);
endDecrypt = df.format(new Date());
return new String(decrypted);

134

/-k

main method

*/

public static void main(String[] args){
new RC6_Modified();

J*
fixes key-length permissions. to be run once at the begining of the program
*/
public void fixKeyLength() {
String errorString = "Failed manually overriding key-length permissions.";
int newMaxKeyLength;
try {
if ((newMaxKeyLength = Cipher.getMaxAllowedKeyLength("AES")) < 256) {
Class ¢ = Class.forName("javax.crypto.CryptoAllPermissionCollection™);
Constructor con = c.getDeclaredConstructor();
con.setAccessible(true);
Object allPermissionCollection = con.newlnstance();
Field f = c.getDeclaredField("all_allowed");
f.setAccessible(true);

f.setBoolean(allPermissionCollection, true);

¢ = Class.forName("javax.crypto.CryptoPermissions");
con = c.getDeclaredConstructor();
con.setAccessible(true);

Object allPermissions = con.newlnstance();

f = c.getDeclaredField("perms");

f.setAccessible(true);

((Map) f.get(allPermissions)).put("*", allPermissionCollection);

¢ = Class.forName("javax.crypto.JceSecurityManager");
f = c.getDeclaredField("defaultPolicy");
f.setAccessible(true);

Field mf = Field.class.getDeclaredField("modifiers");
mf.setAccessible(true);

135

mf.setInt(f, f.getModifiers() & ~Modifier.FINAL);

f.set(null, allPermissions);

newMaxKeyLength = Cipher.getMaxAllowedKeyLength("AES");
}
} catch (Exception e) {
throw new RuntimeException(errorString, e);
}
if (newMaxKeyLength < 256)

throw new RuntimeException(errorString); // hack failed

DatabaseHelper.java

import Algorithm.RC6;

import Model.FileBlocks;

import Model.Filelnfo;

import Model.RootKey;

import Model.ScoreData;

import Model.Student;

import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

import java.sql.ResultSetMetaData;
import java.sql.SQLEXxception;
import java.sgl.Statement;

import java.util. ArrayList;

import java.util.List;

import java.util.Vector;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.JOptionPane;

import javax.swing.table.DefaultTableModel;

136

[
*
* @author user
*/
public class DatabaseHelper {
private static final String classname = "com.mysql.jdbc.Driver";
private static final String database = "DATA_AUDITOR_DB";
private static final String url = "jdbc:mysql://localhost;3306/"+database;
private static final String username = "root";

private static final String password ="";

private static final String PERSONAL = "personal”;
private static final String EDUCATION = "education";
private static final String ASSESSMENT = "assessment";
private static final String FILES = "files";

private static final String AUDIT = "audit";

private static final String DATA = "data";

private static final String HASH = "hash";

private static final String LOG = "log";

private static final String PERSONAL_TABLE = “create table if not exists "+PERSONAL+" (ID int
auto_increment not null primary key, firsthame varchar(50), lastname varchar(50), username varchar(50), password
varchar(50), email varchar(100), age int, state varchar(100), photo varchar(300), date datetime)";

private static final String EDUCATION_TABLE = "create table if not exists "+EDUCATION+" (ID int
auto_increment not null primary key, user_id int, registration_no varchar(100), level varchar(10), department
varchar(200), faculty varchar(400), FOREIGN KEY (user_id) REFERENCES "+PERSONAL+"(ID) ON DELETE
CASCADE ON UPDATE CASCADE)";

private static final String ASSESSMENT_TABLE = "create table if not exists "+ASSESSMENT+" (ID int
auto_increment not null primary key, user_id int, assignment varchar(10), test varchar(100), exam varchar(100),
total int, FOREIGN KEY (user_id) REFERENCES "+PERSONAL+"(ID) ON DELETE CASCADE ON UPDATE
CASCADE)";

private static final String FILES_TABLE = "create table if not exists "+FILES+" (ID int auto_increment not null
primary key, user_id int, filename varchar(100), type varchar(5), date datetime, FOREIGN KEY (user_id)
REFERENCES "+PERSONAL+"(ID) ON DELETE CASCADE ON UPDATE CASCADE)";

137

private static final String AUDIT_TABLE = “create table if not exists "+AUDIT+" (ID int auto_increment not
null primary key, file_id int, user_id int, pk TEXT, type varchar(5), date datetime, FOREIGN KEY (user_id)
REFERENCES "+PERSONAL+"(ID) ON DELETE CASCADE ON UPDATE CASCADE, FOREIGN KEY
(file_id) REFERENCES "+FILES+"(ID) ON DELETE CASCADE ON UPDATE CASCADE)";

private static final String DATA_TABLE = "create table if not exists "+DATA+" (ID int auto_increment not null
primary key, file_id int, sn int, block LONGTEXT, FOREIGN KEY (file_id) REFERENCES "+FILES+"(ID) ON
DELETE CASCADE ON UPDATE CASCADE)";

private static final String HASH_TABLE = "create table if not exists "+HASH+" (SN int auto_increment not null
primary key, file_id int, id int, hashdata TEXT, FOREIGN KEY (file_id) REFERENCES "+FILES+"(ID) ON
DELETE CASCADE ON UPDATE CASCADE)";

private static final String LOG_TABLE = "create table if not exists "+LOG+" (SN int auto_increment not null

primary key, user varchar(100), activity varchar(100), status varchar(50), date datetime)";

private Connection connection;

private RC6 rc6;

public DatabaseHelper(RC6 rc6){
this.rc6 = rc6;

try{
Class.forName(classname);

/[creating database file if not exist

connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/mysql”, username, password);
PreparedStatement pst = connection.prepareStatement(*create database if not exists "+database);
pst.execute();

pst.close();

connection = DriverManager.getConnection(url, username, password);
Statement stmt = connection.createStatement();
stmt.execute(PERSONAL_TABLE);
stmt.execute(EDUCATION_TABLE);
stmt.execute(ASSESSMENT_TABLE);
stmt.execute(FILES_TABLE);

stmt.execute(AUDIT_TABLE);

stmt.execute(DATA_TABLE);

stmt.execute(HASH_TABLE);

stmt.execute(LOG_TABLE);

138

stmt.close();
}catch(ClassNotFoundException c){
JOptionPane.showMessageDialog(null, c.getLocalizedMessage());
}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public boolean isStudent(String regNo){

String sql = "select * from "+EDUCATION+" where registration_no =

try{
Statement stmt = connection.createStatement();

+regNo+""";

ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
if(regNo.equalsignoreCase(rs.getString(“'registration_no")))
return true;
}
rs.close();
stmt.close();
}catch(SQLEXception sq)

{
sg.printStackTrace();

}

return false;

public boolean isUser(String username, String password){

String sgl = ‘"select * from "+PERSONAL+" where username = "-+username+™ and password =

"'+password+""";
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
if(username.equalslignoreCase(rs.getString("username")) && password.equals(rs.getString(*"password™)))
return true;

¥

rs.close();

139

stmt.close();
}catch(SQLEXception sq)

{
sq.printStackTrace();

}

return false;

/*

*/
public int addStudentPersonallnfo(String firstname, String lasthame, String username, String password, String

email, String age, String state){

String sql = "insert into "+PERSONAL+" (firsthame, lastname, username, password, email, age, state, photo,
date) values(™'+firsthame+™, "+lasthame+™, "'+username+", "'+password+", "+email+™, "+age+", "'+state+™, ",
now())";

try{

Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();
}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}
return getLastld(PERSONAL, "id™);

private int getLastld(String table, String id){

String sql = "select * from "+table;

intsn=1;

try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
if(rs.last()){

sn = rs.getint(id);

¥

rs.close();

140

stmt.close();
}catch(SQLEXception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}

return sn;

public void addStudentEducationInformation(int user_id, String level, String department, String faculty, String
registration_no){
String sql = "insert into "+EDUCATION+" (user_id, level, department, faculty, registration_no)
values("+user_id+", "'+level+", "'+department+", "'+faculty+", "'+registration_no+"")";
try{
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();
}catch(SQLEXxception s){

JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void addStudentAssessmentinformation(int user_id, int assignment, int test, int exams){
int total = assignment + test + exams;

String sql = "insert into "+ASSESSMENT+" (user_id, assignment, test, exam, total) values("+user_id+",

+assignment+"', "'+test+"",

try{
Statement stmt = connection.createStatement();

+9X8.mS+"', |||+t0ta|+n|)u;

stmt.executeUpdate(sql);
stmt.close();
}catch(SQLException s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public int addFileToStudentAccount(int user_id, String filename, String type){

String sql = "insert into "+FILES+" (user_id, filename, type, date) values("+user_id+", "'+filename+",

+type+"', now())";

141

try{
Statement stmt = connection.createStatement();

stmt.executeUpdate(sql);
stmt.close();
}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}
return getLastld(FILES, "id");

public void addAuditFile(int file_id, int user_id, String pk, String type){

String sql = "insert into "+AUDIT+" (file_id, user_id, pk, type, date) values("+file_id+", "+user_id+", "'+pk+"',

+type+

try{
Statement stmt = connection.createStatement();

» now())";

stmt.executeUpdate(sql);
stmt.close();
}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void addHash(int file_id, int index, String hash){
String sgl = "insert into "+HASH+" (file_id, id, hashdata) values("+file_id+", "+index+", "'+hash+"")";
try{
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();
}catch(SQLException s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void addBlock(int file_id, int id, String block){
String sql = "insert into "+DATA+" (file_id, sn, block) values("+file_id+", "+id+", "'+block+"")";

try{
Statement stmt = connection.createStatement();

142

stmt.executeUpdate(sql);

stmt.close();
}catch(SQLEXxception s){

s.printStackTrace();

JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void addLog(String user, String activity, String status){

String sgl = "insert into "+LOG+" (user, activity, status, date) values("'+user+", "+activity+", "'+status+",
now())";
try{
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();
}catch(SQLEXxception s){
s.printStackTrace();

JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public Student getStudent(String email){
Student student = new Student();
String sql = "select "+PERSONAL+" firstname, "+PERSONAL+".lasthame, "+PERSONAL+".username,
"+EDUCATION+".department, "+EDUCATION+" faculty, "+EDUCATION+".level, "
+PERSONAL+".age, "+PERSONAL+".email, "+PERSONAL+" state, "+PERSONAL+".photo,
"+EDUCATION+".registration_no, "+PERSONAL+".id from "+PERSONAL+" left join "+EDUCATION+" on
"+PERSONAL+".id = "+EDUCATION+".user_id"
+ " where "+PERSONAL+".username = "'+email+""";
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
student.setFirstname(rs.getString(1));
student.setLastname(rs.getString(2));
student.setUsername(rs.getString(3));

student.setDept(rs.getString(4));

143

student.setFaculty(rs.getString(5));
student.setLevel(rs.getString(6));
student.setAge(rs.getString(7));
student.setEmail(rs.getString(8));
student.setState(rs.getString(9));
student.setPhoto(rs.getString(10));
student.setRegNo(rs.getString(11));
student.setUser_id(rs.getInt(12));

}

rs.close();

stmt.close();

}catch(SQLException s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}

return student;

public int getNumberOfBlocks(){
String sql = "select * from "+DATA,
int total = 0;
try{
Statement st = connection.createStatement();
ResultSet rs = st.executeQuery(sqgl);
while(rs.next()){
total += 1,
¥
rs.close();
st.close();
}catch(SQLException sq){
sg.printStackTrace();
}

return total;

public int getFileld(String filename){

String sql = "select * from "+FILES+" where filename = "'+filename+""";

intid =-1;

144

try{
Statement st = connection.createStatement();

ResultSet rs = st.executeQuery(sql);
while(rs.next()){
id = rs.getint("id");
}
rs.close();
st.close();
}catch(SQLEXception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}

return id;

public String getRootKey(int file_id){

String sgl = "select * from "+AUDIT+" where file_id = "+file_id+"";
String key =""";
try{

Statement st = connection.createStatement();

ResultSet rs = st.executeQuery(sql);

while(rs.next()){

key = rs.getString("pk");

}

rs.close();

st.close();
}catch(SQLException s){

JOptionPane.showMessageDialog(null, s.getLocalizedMessage());
}

return key;

public String getRegNo(int user_id){
String sql = "select * from "+EDUCATION+" where user_id = "+user_id+"";
String key ="";
try{
Statement st = connection.createStatement();

ResultSet rs = st.executeQuery(sql);

145

while(rs.next()){
key = rs.getString("registration_no");
}
rs.close();
st.close();
}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}

return key;

public ScoreData getScoreData(int user_id){
String sql = "select * from "+ASSESSMENT+" where user_id = "+user_id+"";
ScoreData score = new ScoreData();

try{
Statement st = connection.createStatement();

ResultSet rs = st.executeQuery(sqgl);

while(rs.next()){
score.setAssignment(rs.getString("'assignment™));
score.setTest(rs.getString("'test"));
score.setExams(rs.getString(“exam™));

}

rs.close();

st.close();

}catch(SQLException s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}

return score,

public int getNumberOfUsers(){
String sql = "select * from "+PERSONAL,;
int total = 0;
try{
Statement st = connection.createStatement();

ResultSet rs = st.executeQuery(sql);

146

while(rs.next()){
total += 1;

¥

rs.close();

st.close();
}catch(SQLException sq){

sq.printStackTrace();
}

return total;

public int getNumberOfFiles(){
String sql = "select * from "+FILES;
int total = 0;
try{
Statement st = connection.createStatement();
ResultSet rs = st.executeQuery(sqgl);
while(rs.next()){
total +=1;
}
rs.close();
st.close();
}catch(SQLException sg){
sg.printStackTrace();
}

return total;

public ArrayList<String> getFiles(){

String sgl = "select * from "+FILES;

ArrayList<String> files = new ArrayList<>();

try{
Statement st = connection.createStatement();
ResultSet rs = st.executeQuery(sql);
while(rs.next()){

files.add(rs.getString("filename™));

147

rs.close();
st.close();
}catch(SQLException sq){
sqg.printStackTrace();
}

return files;

public List<ScoreData> getStudentsScoresByEducation(String level, String dept, String faculty){
List<ScoreData> data = new ArrayList<>();

String sgl = ‘“select "+PERSONAL+".id, "+PERSONAL+"firstname, "+PERSONAL+".lastname,
"+ASSESSMENT+".assignment, "+ASSESSMENT+" test, "+ASSESSMENT+".exam "
+ " from "+PERSONAL+" left join "+ASSESSMENT+" on "+PERSONAL+"id =

"+ASSESSMENT+".user_id JOIN "+EDUCATION+" on "+PERSONAL+".id = "+EDUCATION+".user_id "
+ " where "+EDUCATION+".level = "'+level+" AND "+EDUCATION+".department = "'+dept+" AND
"+EDUCATION+" faculty = "'+faculty+"" ";
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
ScoreData obj = new ScoreData();
obj.setld((int)rs.getObject(1));
obj.setFirstname((String)rs.getObject(2));
obj.setLastname((String)rs.getObject(3));
obj.setAssignment((String)rs.getObject(4));
obj.setTest((String)rs.getObject(5));
obj.setExams((String)rs.getObject(6));

data.add(obj);
}

rs.close();

stmt.close();
}catch(SQLException s){

JOptionPane.showMessageDialog(null, s.getLocalizedMessage());
}

return data;

148

public List<RootKey> getAuditData(){
String sql = "select * from "+AUDIT,;
List<RootKey> data = new ArrayList<>();
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){

RootKey key = new RootKey(rs.getInt("id"), rs.getInt("file_id"), rs.getint("user_id™), rs.getString("pk"),

(String)rs.getObject(*date™).toString(), rs.getString(“'type"));
data.add(key);
¥
rs.close();
stmt.close();
}catch(SQLException sg){
JOptionPane.showMessageDialog(null, sq.getLocalizedMessage());
}

return data;

public List<Filelnfo> getAllFiles(){
String sql = "select * from "+FILES+" where type ='F";
List<Filelnfo> data = new ArrayList<>();
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){

Fileinfo key = new Filelnfo(rs.getInt("id"), rs.getint("user_id"),
rs.getString(*'filename"), (String)rs.getObject("date").toString());

data.add(key);

¥

rs.close();

stmt.close();
}catch(SQLException sq){
JOptionPane.showMessageDialog(null, sg.getLocalizedMessage());

}

return data;

149

rs.getString(“type"),

public String getFile(int file_id){
String sql = "select * from "+DATA+" where file_id = "+file_id+"";
StringBuilder sb = new StringBuilder();
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
sh.append(rc6.rc6Decrypt(rs.getString("block™), "admin™));
}
rs.close();
stmt.close();
Jcatch(Exception e){
JOptionPane.showMessageDialog(null, e.getLocalizedMessage());

}
return sh.toString();

public List<RootKey> getAuditData(int file_id){
String sql = "select * from "+HASH+" where file_id = "+file_id+"";
List<RootKey> data = new ArrayList<>();
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
RootKey key = new RootKey(rs.getInt("id"), rs.getint("file_id"), rs.getInt("sn"), rs.getString("hashdata™));
data.add(key);
¥
rs.close();
stmt.close();
}catch(SQLException sq){
JOptionPane.showMessageDialog(null, sg.getLocalizedMessage());
}

return data;

150

public List<FileBlocks> getFileBlocks(int file_id){
String sql = "select * from "+DATA+" where file_id = "+file_id+"";
List<FileBlocks> data = new ArrayList<>();
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
FileBlocks blocks = new FileBlocks(rs.getInt("'sn"), rs.getInt("file_id"), rs.getString("block™"));
data.add(blocks);
}
rs.close();
stmt.close();
}catch(SQLException sq){
JOptionPane.showMessageDialog(null, sg.getLocalizedMessage());
}

return data;

public final DefaultTableModel getTable(String table){
Vector columnNames = new Vector(), data = new Vector();
columnNames.clear();
data.clear();
try {
Statement stmtt = connection.createStatement();
ResultSet rs = stmtt.executeQuery(*'select * from "+table);
ResultSetMetaData mdx = rs.getMetaData();
int columnsx = mdx.getColumnCount();
for (inti=1;i<=columnsx; i++) {
columnNames.addElement(mdx.getColumnName(i).toUpperCase());
}
while (rs.next()) {
Vector rowx = new Vector(columnsx);
for (inti =1; i <= columnsx; i++) {
rowx.addElement(rs.getObject(i));
}

data.addElement(rowx);

151

rs.close();

stmtt.close();

} catch (SQLException ex) {

JOptionPane.showMessageDialog(null, ex, "Report”, JOptionPane. ERROR_MESSAGE);

return new DefaultTableModel(data, columnNames);

}

public final DefaultTableModel getStudentAssessment(){
String sql = "select "+PERSONAL+" firstname, "+PERSONAL+".lastname, "+ASSESSMENT+".assignment,
"+ASSESSMENT+" test, "+ASSESSMENT+".exam, "+ASSESSMENT+".total, "
+EDUCATION+".department, "+EDUCATION+".faculty = from "+PERSONAL+" left join
"+ASSESSMENT+" on "+PERSONAL+".id = "+ASSESSMENT+".user_id JOIN "+EDUCATION+" on
"+PERSONAL+".id = "+EDUCATION+".user_id ";

Vector columnNames = new Vector(), data = new Vector();
columnNames.clear();
data.clear();
try {
Statement stmtt = connection.createStatement();
ResultSet rs = stmtt.executeQuery(sql);
String[] metadata = new String[]{"S/N", "Firstname", "Lastname", "Assignment", "Test", "Exams", "Total",
"Department", "Faculty"};
for (inti = 0; i < metadata.length; i++) {
columnNames.addElement(metadata[i].toUpperCase());
}
intx =1;
while (rs.next()) {
Vector rowx = new Vector(metadata.length);
rowx.addElement(x);
for (inti=1; i <= metadata.length - 1; i++) {

rowx.addElement(rs.getObject(i));

152

data.addElement(rowx);

X++;
}
rs.close();

stmitt.close();

} catch (SQLEXxception ex) {
JOptionPane.showMessageDialog(null, ex, "Report", JOptionPane. ERROR_MESSAGE);

return new DefaultTableModel(data, columnNames);

}

public boolean isAssessment(int id){
String sgl = "select * from "+ASSESSMENT+" where user_id = "+id+"";
try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
if(id == (rs.getInt("user_id")))
return true;
}
rs.close();
stmt.close();
}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}

return false;

public boolean isFile(String filename){

String sql = "select * from "+FILES+" where filename = "'+filename+""';

try{
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){

if(filename.equals(rs.getString("filename™)))

153

return true;
}
rs.close();

stmt.close();

}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

}

return false;

public void deleteFile(int id){
String sql = "delete from "+FILES+" where id = "+id+"";
try{
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();
JOptionPane.showMessageDialog(null, "File deleted™);
}catch(SQLException sq){
JOptionPane.showMessageDialog(null, sg.getLocalizedMessage());

public void deleteStudent(int id){
String sgl = "delete from "+PERSONAL+" where id = "+id+"";
try{
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();
JOptionPane.showMessageDialog(null, "Student and its details deleted");
}catch(SQLException sq){
JOptionPane.showMessageDialog(null, sg.getLocalizedMessage());

public void clearLog(){
String sql = "TRUNCATE TABLE "+LOG;

154

try{
Statement stmt = connection.createStatement();

stmt.executeUpdate(sql);
stmt.close();
}catch(SQLException sq){
JOptionPane.showMessageDialog(null, sq.getLocalizedMessage());

public void updateAssessment(int id, String assignment, String test, String exams, int total){
String sql = "UPDATE "+ASSESSMENT+" SET assignment = "'+assignment+"', test = "'+test+", exam =
+exams+", total = "'+total+" WHERE user_id = "+id+"";

try{
Statement stmt = connection.createStatement();

stmt.executeUpdate(sql);
stmt.close();
}catch(SQLEXxception s){

JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void updateBlock(int id, int file_id, String block){
String sgl = "UPDATE "+DATA+" SET block = "'+block+" WHERE sn = "+id+" AND file_id = "+file_id+"

try{
Statement stmt = connection.createStatement();

stmt.executeUpdate(sql);
stmt.close();
}catch(SQLException s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void updatePhotoPath(int user_id, String path){
String sql = "UPDATE "+PERSONAL+" SET photo = "'+path+" where id = "+user_id+"";

try{
Statement stmt = connection.createStatement();

155

stmt.executeUpdate(sql);
stmt.close();
}catch(SQLEXxception s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void updateRootKey(int file_id, String data){
String sql = "UPDATE "+AUDIT+" SET pk = "'+data+"" where file_id = "+file_id+"";
try{
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();
/1JOptionPane.showMessageDialog(null, classname);
}catch(SQLEXxception s){

JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void updateHash(int id, int file_id, String hashdata){
String sql = "UPDATE "+HASH+" SET hashdata = "'+hashdata+" WHERE id = "+id+" AND file_id =
"+file_id+"";

try{
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);
stmt.close();

}catch(SQLException s){
JOptionPane.showMessageDialog(null, s.getLocalizedMessage());

public void closeConnection(){

try {
connection.close();

} catch (SQLException ex) {
Logger.getLogger(DatabaseHelper.class.getName()).log(Level. SEVERE, null, ex);

156

Student.java

/**

*

* @author user
*/
public class Student {
private int user_id;
private String firstname, lastname, username, password, email;

private String state, dept, faculty, level, regNo, age, photo;

public Student(){

public Student(int user_id, String firstname, String lastname, String username, String password, String email,

String state, String dept, String faculty, String level, String regNo, String age, String photo) {

this.user_id = user_id;

this.firstname = firstname;

this.lastname = lastname;

this.username = username;

this.password = password;

this.email = email;

this.state = state;

this.dept = dept;

this.faculty = faculty;

this.level = level;

this.regNo = regNo;

this.age = age;

this.photo = photo;

157

public int getUser_id() {

return user_id;

public void setUser_id(int user_id) {

this.user_id = user_id;

public String getFirstname() {

return firstname;

public void setFirstname(String firstname) {

this.firstname = firstname;

public String getLastname() {

return lastname;

public void setLastname(String lastname) {

this.lastname = lastname;

public String getUsername() {

return username;

public void setUsername(String username) {

this.username = username;

public String getPassword() {

return password,;

158

public void setPassword(String password) {

this.password = password;

public String getEmail() {
return email;

public void setEmail(String email) {

this.email = email;

public String getState() {
return state;

public void setState(String state) {

this.state = state;

public String getDept() {

return dept;

public void setDept(String dept) {
this.dept = dept;

public String getFaculty() {

return faculty;

public void setFaculty(String faculty) {
this.faculty = faculty;

159

public String getLevel() {
return level;

public void setLevel(String level) {

this.level = level;

public String getRegNo() {
return regNo;

public void setRegNo(String regNo) {
this.regNo = regNo;

public String getAge() {

return age;

public void setAge(String age) {

this.age = age;

public String getPhoto() {

return photo;

public void setPhoto(String photo) {
this.photo = photo;

ScoreData.java

160

[x
*
* @author user
*/
public class ScoreData {
private int id;
private String firstname, lastname;

private String assignment, test, exams;

public ScoreData(){

public ScoreData(int id, String firstname, String lastname, String assignment, String test, String exams) {
this.id = id;
this.firstname = firstname;
this.lastname = lastname;
this.assignment = assignment;
this.test = test;

this.exams = exams;

public int getld() {

return id;

public void setld(int id) {
this.id = id;

public String getFirstname() {

return firstname;

public void setFirsthame(String firstname) {

this.firstname = firstname;

161

public String getLastname() {

return lastname;

public void setLastname(String lastname) {
this.lastname = lastname;

public String getAssignment() {

return assignment;

public void setAssignment(String assignment) {

this.assignment = assignment;

public String getTest() {

return test;

public void setTest(String test) {
this.test = test;

public String getExams() {

return exams;

public void setExams(String exams) {

this.exams = exams;

162

RootKey.java

[

*

* @author user

*/

public class RootKey {
private int id, file_id;
private String datakey;
private String date;
private int user_id,;

private String type;

public RootKey(){

public RootKey(int id, int file_id, int user_id, String datakey, String date, String type) {
this.id = id;
this.file_id = file_id;
this.datakey = datakey;
this.date = date;
this.user_id = user_id;

this.type = type;

public RootKey(int id, int file_id, int user_id, String datakey) {
this.id = id;
this.file_id = file_id;
this.datakey = datakey;
this.user_id = user_id;

[lthis.type = type;

public int getld() {

return id;

163

public void setld(int id) {
this.id = id;

public String getDatakey() {
return datakey;

public void setDatakey(String datakey) {
this.datakey = datakey;

public String getDate() {

return date;

public void setDate(String date) {
this.date = date;

public int getUser_id() {
return user_id,;

public void setUser_id(int user_id) {
this.user_id = user_id,;

public int getFile_id() {
return file_id;

public void setFile_id(int file_id) {
this.file_id = file_id;

public String getType() {

164

return type;

public void setType(String type) {
this.type = type;

FileBlocks.java

[x
*
* @author user
*/
public class FileBlocks {
private int id;
private int file_id,;

private String blocks;

public FileBlocks(){

public FileBlocks(int id, int file_id, String blocks) {
this.id = id;
this.file_id = file_id;
this.blocks = blocks;

public int getld() {

return id;

public void setld(int id) {

165

this.id = id;

public int getFile_id() {
return file_id;

public void setFile_id(int file_id) {
this.file_id = file_id;

public String getBlocks() {
return blocks;

public void setBlocks(String blocks) {
this.blocks = blocks;

166

Appendix B: Sample Outputs

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing
CED Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

T
Students Login Auditor's Login

Email Address Username Username

Password Password Password

om

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing
Hybrid 2| for Rem ynamic Data Audifing (RD oly nputing

Dashboard Add Students Create Students Data Upload data Dynamic Data Avditing Adversary mode dents Change Login Logout

Files | Log

3 4

Number of Files

Number of Users

Last Date of Upload: Jun 1, 2018 10:58:28 PM

167

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

S Hybrid M

Add Studenis

Add Student

Firstname

Emenike

Lostname

Celine

Email Address
celine@yahoo.com
State of Origin

Imo

Age

28

Add Student

Faculty

Information and Communication Technology v
Department

Computer Science v
Lewvel

400L v
Possword

ssesses

Registration Number

UR20130001

» Hybrid Model for Re

Add Students d Data

Add Student

Firstname

Lastname

Email Address

Message

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

Faculty

Infermation and Communication Technology v

0 Mew student registered successfully =nce hid
wy

State of Origin
Abia w
Age
Add Student

1 B T i

168

FPassword

Registration Number

L& Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing

) Hybrid A

Create Students Data

11} Firsname Lastname Assignment Test Exam

4 Agu Daniel 8 17 42 Update

Message

'0" Success
=

< >
<-- Back
"W Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

: Hybrid Model for Remote Dynamic Data Auditing (RDDA Computing

Upload data

Student File Upload

Select File and Upload

Select Department

Computer Science

Upload Input

Wsers\Edward Agu'\Documents{Thesis\PhD These'\Criginal Thesis'Original Thesis\Corrected Thesis|Test Data\Eddy.docx

Upload

169

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing -

D Hybrid A

Student File Upload

Select File and Upload

Sel Message
C . . v
File uploaded successfully, and its root data key generated
e [ok]
Upload
4 Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing
) Hybrid Model for Remote Dynamic Data Auditing (RDDAJ on C
sad data Dynamic Data Avdifing Ad
Dynamic Data Auditing Data Editing
1-F 2018-06-01 2252350 3500340 785660dbi00109cd21 821351 26304820d50730ba 71 774069032834f Modify Delete
2-F 2018-06-01 22572430 | 522251 6234401 £c225712039bcfbac?ed0] Sdfeedid] e 20420dec2asaidés Modify Delete
3-F 2016-08-01 2308:100 59540dnd0askba7 54751 B8b39BIb4632eb9d57 2679 | o094 7984700329 c2d8d Madify Delete
4-3 2018-06-01 23:34:09.0 | 4124542377 20287 bad 29751 33027 65:310d 2381246231 5945 1 #4213 44Faa Modify Delete
5-5 2018-06-01 23:35:450 77543068507 20692530 1 2811 06d | 4abdoa 40287c0b2b | 7364f0590c246/920 Modify Delete
é-3 2018-06-01 23381140 | 43824937 74739¢1 52910467 c 43 bb7 6657 8dbed 5050 42 570841598122 39bca Modify Delete
7-3 2016-08-01 2336390 475300de 1bed] 201 ce | cPeBadT2icashe7i94bss | cboaladl29dicec] 23807 Madify Delete
£ Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = = -

Adversary mode

SN FILE ID ROOT KEY
1 ! 9d83368755660db:301C'9Dd2152]35126304838d5u:33bc17177406903"28341 Alter
2 2 158ce3516234601ec23572a37bcibac?e3al 5dfeedBd el 30420dec2aeaidés Alter
2 2 329f62dad0aéba’ 341561860398 6632eb9d 5726791 c0961 70984700329 3dEd Alter
4 4 41ed362f377c20e87bad2bPfel] 33027 65f3fcd 236246231 5967 | fo2f34éfca Alter
5 3 2775d30b8b07 2069353a1281106d 1 dabdcal 40287 c0b2b17364fa59ac 2456920 Alter
s é 43fe4937ci473911 32919447 c48ebb7 66b78dbedSadc4e5700415981263%bca Alter
7 7 2c37530cde1bed1201 celcPeB6d7 3icadbs7i? 46451 cbeelal039d4cec] 338a7 Alter

170

| Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

Hybrid Model for Remote Dynamic Datc iting (RDDA . uting ‘

View Studenis

SM FIRSTMNAME LASTNAME ASSIGNMENT TEST EXAMS TOTAL DEPARTMENT FACULTY

Ermenike Celine 5 18 G2 a5 Computer Science (Infarmation and
1 Communication
Technology
Aau Doavid i 19 67 94 Computer Science |Information and
2 Communication
Technalogy
L 10) Daniella T 18 53 78 Computer Science (Infarmation and
3 Communication
Technology
gL Daniel g 17 62 ar Computer Science (Information and
4 Communication
Technology

£ Hybrid Model for Remate Dynamic Data Auditing (RDDA) on Cloud Computing -

3 5 Jun 02 01:30:45 WAT

Number of Blocks Last Date of Che

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing g

Check Data Authenticity

Enter flename/student registration number

Eddy het Search
O |hke ~ O | KBSTyQObp3WOBPINRY3Q/NXpNTH14XFHAVG * O | 1LuHRTg ") |SDylqxnBGOByNwwWOC ~
1FaRtoMWIMF1 HILW+WEyZ/ WB+13DnvfdqO 817rgHX+ytdIwHWXcpKSPWaPaesmy dgkMflgd llosp TilaJh YiLRIgwUEK32H14Q YiFdPRRTCAU VFdrUBQO4wYdWNXIGStdduoMIGZZLz
uDjefxh2QaXwB0ZRez7K+mZIVP3GUSbEBDa QuuyZwcHhX1wlms3UrGMeaPtVBb7 +znickA hG25/Q8tka YexRvHItgMo/ESK7 frMiro/ttt BAQ7RWIUZ 3+ 1yYWOVQDW3IWENKUV
37IMvil a 9 XvCKNmix/1fxoh62wpB
4ZPKfmuef3cuhw== hd KIBddSGSsnKenA== hd BsgxczsfMNazig== hd UH43v958QwhwQ== @
O |mpBysC ~) | q/+3ytdsSNkOAZOZBKBCWYIUHU4IFZOMBL3QsE O |pPBWWE ~| (0 |6L4BBHGORUKZ 7087 gA==
h024/E8xWNbett+AUF18I1UDIrY4E2c2gMh rhiCftLG3BwWVSDVyBhSgSceullMasnpznMLwuN XbfOMv/8p6Ib YvGWVWEIEa03VOvHtBazyG
10gIE6CQITPLI34r+11014 +8jD58fHIGcHaEfVq kellRW5YHRpal040Zg4DhSAaZVRI9OZrRCZGOP] WoICg1Lwx3ES8NbPe YMuIgQAQEU1MN4Q1u
X C4piveVSxw03DT6It29akVIFBEWIGZX2tSi5hS NCaSRIk
70q01pKoiC35Lw== v B+ZvY25i05/gUA== v 9xbsTg2XscNZQ== v
Audit Clear

171

Z Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing - o Il

Hybrid) te Dynamic Data Auditing (RDDA) on ¢

ck Data Authenticity

Enter flenamalstudant regisrotion number

Eddy.txt Search
O |hkE -~) |KBSTyQ9bp3WOBDINRY3Q/NxpN7H14xFHAVG ~ ® |1LuHRTg -~) | 5DylqxnBGoByNwwy0c ~ ~
1faREoMWIMFIHIUW-+WEYZ/ WB+I9DrvfdaO 817rgHX+ytd)wHwXcpKSPWaPgesm/dakMflgd Ik TiloJhYiLRIgwUEK32H14QYifdPRRTCAU vdrU6a04wYdWNxI65tdduoMIGZZLz
u0jefxh2QgXwB0ZRez7K+mZIVP3GuSbEBDa quUylZwcHhX1wLmS3UrIGMeaPtVBb7 +znIckF) hG25/Q8kg Y6xRvH5tgMa/ESKx7 fFMIro/ttt BAQ7RWIUT3+/1yWOVQDW3IWENKUY
37IMvil 2 9 XvCKNmix/ 1fxoh62wpB
4ZPKfmuef3cuhw=: v kIBdd5GSsnKenA== v BsgXczsfMNgzig== b uH43W958QwhwQ== v
© |MpBysC 2 2 |a/+3vtdsSNK9AZOZBKBCWYIUHU4IFZOMGEL3QsE ~| O |PBWWE ~| O |6L4BBHGORUKF 7orXSCWT7gA==
h024/E8xWHbett+AUF1811UDIrY4E2c2gMh rbiCftLG3BwVSDVy8hSq9ceullMasnpznMLwuN XbfOMv/8p6Ib YvGWWwWEIEaD3VOvHCtBazyG
10gIE6CQITPLI34r+i1014 +8jD58fH10cHaEfVq ke1RW5YHRpalo40Zg4DhSAaZVROZRCzGOp] woiCq1Lwx3E8NbPeYMUIgQAQEU1MN4Q1u
X C4piveVSxw03DTEIE29akVIFBEWIGZX2ESiShS HCaSRIk
z0q01pKoiC35Lw== v B+ZvY25i05/qUA== v i9xbsTg2XscNZQ== ~
Clear
9de036e78566adbf0c109cd2182135126334838d5af30bc171774c69c3f2834F
11d2063277d9b674d3d669717875eacec6a7 ee29c4a8a66b1eac7 2048267841 I 0ae01a4f483b577bb988400ba8al c09844fe33162cdd293b5945007598fac21a
e8elc150b1c317fcfb40d1ae671732228e4127e8c3291d43af8a5f0eb20f50a I 39341cf88822f1826e24340283ba87b2551c5¢5287f390 I
I "0/ ttt9 BsgXezsfMNgzig=: I 1B uH43W958QwhwQ== I I
ORIGINAL KEY: 9de036e78566adbf0c109cd2182135126304838d5af30bc 17177 4c69c3f2834f 3
< >

Dynamic Data Auditing (RDDA) on Cloud Computin

Dashboard
Dashboard | Scores.
Student Dashboard First Name Emenike
Last Name Celine
Department Computer Science
Faculty Information and Cemmunication Technolegy
Level 400L
Email Address celine@ychoo.com
‘ Change Photo Age o8
State of Origin Imo
Reg. Number UR20130001

172

| Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =
a Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing
Dashboard

Assignment 5

Test 18
Exams 62
Total 85

Hybrid Model for Remote Dynamic Data Auditing (RDDA) on Cloud Computing = =

a Auditir uting

Dashboard

Metrics| Files | Log

I Eddy.txt Download
2 Elugwu P U Exco.txt Download
3 Eddy.docx Download
g teststut Download
? textxt Download
10 textofud Download
Message
File downloaded at C:\Users\Edward Agu\Documents\DATA_AUDITOR\texto. bt

173

SN USER. ACTIVITY STATUS DATE

1 admin Login attempt Success 2013-05-26 20:33:19.0
2 admin Login attempt Success 2018-05-27 02:06:17.0
3 admin Login attempt Success 2013-06-01 22:14:56.0
& admin Login attempt Success 2018-06-01 22:37:11.0
5 admin Login attempt Success 2013-06-01 23:06:26.0
5 admin Login attempt Success 2013-06-02 01:05:21.0
7 admin Login attempt Success 2018-06-0201:21:16.0
] admin Login attempt Success 2013-06-02 01:26:49.0
9 admin Login attempt Success 2018-06-0201:37:13.0
10 admin Login attempt Success 2013-06-02 02:09:53.0
11 admin Login attempt Success 2013-06-03 04:14:22.0

Dashboard

10

Number of Files

57

Number of Blocks

Last Date of Upload: Jun 3, 2018 4:16:34 AM

174

4

Number of Users

