
1

 CHAPTER ONE

INTRODUCTION

1.1 Background of the Study.

Computational and data intensive e-Science and e-Collaboration applications involve

special class of scientific services or instrument (located across various organizations)

that are geographically distributed. These resources could be computational systems

(such as super computers, clusters, or even powerful ultra-high end engineering

workstations), special class of devices (such as remote sensors) and even storage systems.

A number of data and computational intensive applications need more computing power

than can be offered by a single resource in order to solve problems within

feasible/reasonable time and cost. The LAN/SWITCH connected clusters (of computers)

platform has been employed to solve computationally intensive problems (Buyya. R,

1999) however, they alone cannot offer the computational power demanded by such

applications. All these means that these geographically distributed resources need to be

logically coupled together to make them work as a unified resource. This led to the

popularization of a field called grid computing – i.e. grid computing is a computational

technique to harness distributed resources as a unified process. Grids consist of the

aggregation of numerous dispersed computational, storage and network resources, able to

satisfy even the most demanding computing jobs (Pieter, T et.al, 2007). Grids using

optical transport networks are commonly referred to as Lambda Grids.

2

E-science project like Nigeria Communication Commission (NCC) project requires

several hundreds of data file on the initiative to connect/linkup all the federal universities

with their teaching hospitals referencing “Nnamdi Azikiwe University link establishment

to the Nnewi Teaching hospital”. This project could be referenced direct point link via

fiber optics (Lambda connection) on 4mbps capacity and not a Grid infrastructure. Since

other Nigeria Universities are not yet in connectivity with one another in other to

showcase its full scale infrastructure of grid framework, in other to enhance research

work, e-collaboration, result computation and school portal security academic

architecture.

Many data-intensive e-science applications like electronic Very Long Baseline

Interferometry (e-VLB (Wolfgang, S and Behrend, D, 2007) and Genomes – to – life

(GTL) require aggregating several hundred Gigabytes of data files from distributed

databases to computing resources (such as super computers) frequently in real time. Since

data is aggregated at the time of computation, the time required to transfer the data over

the network may be the main computational bottleneck. Even a single second of idle

time, during which the data is being aggregated, may result in the loss of several teraflops

of computational power. Therefore, minimizing the delay in data aggregation is the key

to improving the overall system throughput (Shen, S. et.al., 2008) (Savera. T.W et.al.,

2008). A reliable and dedicated infrastructure available on demand is a key resource for

3

data intensive e-science application. Lambda Grid, which are backbone networks

supported on optical fiber technology can provide such an infrastructure – since it offers

end – to – end optical circuit (also called wavelength or lambda – an optical connection

established over a certain wavelength) between two end points (Shen, S. et.al.,2008).

However, a number of networking problems need to be solved before lambda grid can

fully and optimally support such data intensive e-science applications (Lee, H., et.al.,

2003). These include:

(i) Dynamic provisioning of end – to – end circuit i.e. Lambda.

(ii) Authentication, Authorization, Accounting (AAA) for user request.

(iii) Transport protocols in those end – to – end circuits for different types of

applications, and

(iv) Algorithm to schedule circuits (Brown, M.D., 2003): notes that “Lambdas” are

resources to be scheduled like any other computer or storage resource). It is

established in the literature that on Lambda Grids different time scheduling and

fair sharing schemes for data transmission will tremendously affect the

aggregation finish time and throughput.

Resource scheduling algorithm for the lambda grid such as machine scheduling, have

been studied extensively in the literature. Surveys of this topic can be found in (Garey,

M.R. and David, S.J., 1979) and (Hall N.G and Sriskandarajah .C, 1996). Such problems

4

include single processor scheduling, multi-processor scheduling, and open-shop, flow -

shop, and job-shop scheduling problems to name but a few. However, these are not

applicable to the proposed problem setting of the dissertation since the resources

(lambda) that is considered in the dissertation are not independent; rather, they have

connectivity relationship among them. The closest problem setting as described in the

literature considers scheduling file transfers over a network when file sizes and the

maximum number of file transfers possible from each node are given (Coffman, E.G.

et.al., 1985). This problem considers a fully connected mesh network, and hence, the

algorithms described are not applicable to lambda grids, which have sparse connectivity.

Independently, the problem of reserving bandwidth in a lambda grid for a prescribed

connectivity has been studied by many researchers as available literatures show. A

bandwidth scheduling algorithm that computes the available time slots on a lambda grid

between the source and destination has been studied in [Nageswara, S.V. et.al., 2005].

Same authors have proposed algorithms for computing the quickest paths, with a

minimum end – to – end delays, to transfer a message for a given size from its source to a

destination when bandwidth and delay constraints on the links are specified (Nageswara,

S.V. et.al., 2004). In the literature, the virtual finish (ViFi) (Floyd. S and Nageswara, S.V,

2008) heuristic schedules file transfer over a shared path, depending on the earliest finish

time for each file determined from a fair sharing scheme. A Varying Bandwidth List

Scheduling (VBLS) heuristic to compute circuit over a lambda grid was studied in

5

(Vecrarghavan, M., et.al., 2003). Reports from the references (Buyya, R., 1999) (Pieter,

T. et.al., 2007) indicate that the basic problem with most of these grid scheduling

algorithms is that they assume an ideal communication system where all the resources are

fully connected and communication between two resources can be used whenever

needed. However, a few record studies (She, O et.al., 2007) (Banerjee, A. et.al., 2008)

(Adami, D. et.al., 2006) have proposed the framework where the optical network has

been considered as a resource in a similar way to a computing node, or storage resources

and investigated the joint scheduling model for optical grid applications. (Banerjee,.A.

et.al., 2008) Propose a hybrid approach that combines online and offline scheduling.

Based on the transfer time of the file, the network resources are reserved.

Unfortunately, none of the above lambda grid scheduling algorithms dynamically

readjusts the schedule to accommodate the actual amount of time that is required to

transfer a file. Hence to minimize the delay in data aggregation in the lambda grid

network, an adaptive network resource scheduling technique for the lambda grid is

required. The lambda grid network resource scheduling technique has to dynamically

readjust the scheduling of the optical light paths (optical circuits i.e. the lambdas) in order

to re-provision idle lambdas to service urgent file transfer request from the grid

connected nodes (super computers).

6

Consequently, it becomes imperative to embark on a dissertation focused on the

investigation of an adaptive resource scheduling technique to minimize the delay in the

data aggregation task required by the computational and data intensive e- science

application running on the lambda grid network.

1.2 Statement of the Problem.

The problem of data aggregation delay in the lambda grid has enormous impact on the

viability of certain e-science applications that have critical timing requirements. The loss

of teraflops of super computing power as result of scheduling related delay has

substantial impact on R & D (research and development) cost. This problem not only

leads to delays in vital research breakthroughs for mankind but also, in some cases,

outright project cancellation and wasted investment.

The lambda grid scheduling problem impacts on the accuracy and validity of e-science

applications used in making vital forecasts related to natural disasters, evolving disease

posture, climate change, issues concerning related to deep space exploration etc. The

scheduling problem has far reaching consequences financially, politically and for

security.

Though resource scheduling algorithms have been studied extensively in the literature,

there are still shortcomings with these algorithms (Castillo. C. et.al., 2007)

7

The problem with virtual finish (ViFi) heuristic scheduler and the Varying Bandwidth

List Scheduling (VBLS) heuristic (which computes varying bandwidth levels for

different time ranges for a circuit over a lambda grid) (Veerarghavan, M. et.al., 2010)

(Floy, .S. and Nageswara, S.V, 2008) is that they assume an ideal communication system

where all the resources are fully connected and communication between two resources

can be used whenever needed which hardly is the case (Buyya, R., 1999)(Pieter, T. et.al.,

2008).

The Time – Path – Scheduling Problem (TPSP) technique (used to model the problem of

aggregating data from distributed databases to one centralized super computer on lambda

grid network) can not cover the situation where there might be data aggregation to more

than one location simultaneously.

(Hall, N.G and Sriskandarajah, .C., 1996). The machine scheduling algorithm (modeled

as single processor scheduling, multiprocessor scheduling, flow-shop, job-shop

scheduling) are not well adapted to scheduling lambda grid resources since lambdas are

not independent; rather, they have connectivity relationship among them.

Furthermore, none of the above lambda scheduling algorithms dynamically readjusts the

schedule to accommodate the actual amount of time that is required to transfer large files.

8

Hence to minimize the delay in aggregation in the lambda grid network, an adaptive

network resource scheduling technique for the lambda grid is required. The lambda grid

network resource scheduler has to dynamically readjust the scheduling of the optical light

paths (optical circuits i.e. the lambdas) in order to re-provision idle lambdas to service

urgent file transfer request from the grid connected nodes (i.e. super computers).

This dissertation is focused on the improvement of an adaptive resource scheduling

techniques to minimize the delay in the data aggregation task required by the

computational and data intensive e-science application running on lambda grid networks.

The proposed scheduling technique would minimize the blocking probability i.e. the

probability of not scheduling a request within its window, minimizes fragmentation in the

usage of each wavelength and maximizes network usage. The proof of concept is the

development of an adaptive lambda grid resource scheduler to be tested and evaluated via

simulation.

1.3 Aim and Objectives of the Study.

The aim of this dissertation is to develop an improved computational Lambda grid

using Adaptive resource scheduling Technique in other to optimize the

computational throughput. The aim would not be achieved without the

actualization of these stipulated objectives:

9

(i) To develop an adaptive resource scheduling algorithm that minimizes file

aggregation time for computational lambda grid.

(ii) Based on the algorithm developed, to develop and realize the algorithm in code

using C++ programming language.

(iii) To create a digital model of a 24-node lambda grid as a case study lambda grid

topology for evaluating the performance of the proposed scheduler using Packet

tracer 7.1

(iv) To integrate and interface the codes with the analytical model topology of the 24-

node lambda grid network using CORBA protocol.

(v) To carry out performance evaluation of the proposed system through comparative

analysis with other existing scheduler on MATLAB simulation testbed.

1.4 Justification/Significant of Project.

It is well known that resources; computing resource, storage resources specialized

devices (e.g. telescopes, sensors, etc) cannot be easily co-located: essentially being

geographically dispersed. Consequently, there is the need to harness these geographically

distributed resources to effect a computational task. The lambda grid is an answer to this

need. However due to the shortcoming with existing lambda grid scheduling algorithm, a

research project becomes necessarily to investigate the development of appropriate grid

algorithm to overcome the limitation of existing scheduling algorithm.

10

With the emergence of e-collaboration and e-science application a research work that

focuses on developing scheduling algorithm to fully harness the capability of existing

lambda grid, making full exploitation of e-science application becomes significant.

This dissertation makes important contributions:

(i) An adaptive grid scheduling algorithm based on the use of the time –path

scheduling problem abstraction.

(ii) A realization of the algorithm in (i) in code

The work should prove invaluable to researchers pursuing similar subjects.

1.5 Scope/ Limitation of the Study.

Though a comprehensive examination grid resource scheduling problem involves both

network and computing resource scheduling, this dissertation is focused on the

improvement of grid network resource scheduling specifically, the scope of this work is

limited to the dynamic provisioning of light paths (i.e. lambda) such as to speed up data

aggregation in lambda grid network.

11

CHAPTER TWO

LITERATURE REVIEW

2.1 Chapter Overview.

This chapter presents a review of the literature relevant to the research. It reviews

literature on the emergence of the lambda grid and the force pushing the development of

the lambda grid. Though the literature documents and comments from different authors

as to the key reason(s) for the emergence of the lambda grid, a diligent study of available

literature showed that grid computing emerged as a means of compiling together

numerous heterogeneous and geographically distributed computational and storage

resources to make them work as a unified resource.

Technical documentation relating to the modeling of grid scheduling problem is

reviewed. Though various literatures on the subject in one way or the other attempt at

describing the problem of resource scheduling for the lambda grid, this chapter noted that

two things were evident in the various documents;

(i) The representation of Lambda grid network topology as graphs (mathematical

modeling) and;

(ii) The formulation of the problem of aggregating large data files from distributed

database in a Lambda grid network as a Time-path Scheduling Problem

(TPSP).

12

(Coffman, E.C. et.al. 1985) (Taesombut, N. et.al.,2006) (Banerjee, A. et.al., 2006)

confirm TPSP to be NP complete. However, as reported, TPSP as a problem is

exceptionally hard as it cannot be solved within polynomial time. Consequently, the

literature reported the proposition of heuristics for its solution. Hence this chapter

presented literature on heuristics for TPSP and algorithms to determine route and

schedule.

2.2 Emergence of the Lambda Grid

Some authors (Bunya, R. et.al., 2002) commenting on the emergence of grid computing

expressed the view that grid computing is getting popular day by day with the emergence

of the internet as a media and the wide spread availability of powerful computers and

networks as low-cost commodity components. Through diligent study of available

literature, it can be summarized that grid computing emerged as a means of coupling

together numerous heterogeneous and geographically distributed computational and

storage resources to make them work as a unified resource.

By coupling numerous heterogeneous computational and storage resources distributed

over various locations, Grids are able to satisfy the ever increasing demand of both

processing and storage power, surpassing the capabilities of each of its individual

resources (Taesombut, N. et.al., 2006). This allows a Grid to accommodate even the

largest and most resource-demanding applications (Pieter, T. et.al., 2007). In the

13

available literature, it is noted that the most common types of grid resource include

computational resources, data storage resources and the transport network

interconnecting the various Grid sites. Research report (Larry, I. et.al., 2003) (Taesombut,

N. et.al., 2006) on the subject hold that as the computational requirements for typical

Grid application originate from the large amounts of data they need to process the

transportation of this data between the involved grid resource is an important factor when

it comes to cost and time efficient scheduling of the Grid‟s workload.

Research reports have shown that this enormous transport bandwidth requirement can

best be met by optical circuit-switched transport networks. Optical circuit-switched

transport networks allows for high-bandwidth end-to-end transfers capable of low latency

delivery of these large amount of data, and thus are well suited to interconnect the various

Grid resources. The relevance of optical networks in Grid is illustrated by the recent

increase in research activities into the “super networks” (Larry, I. et.al., 2003)

(Taesombut, N. et.al., 2006) (Defanti, T. et.al., 2003). Grids making use of optical circuit-

switched transport networks are usually denoted as Lambda Grids.

A careful survey of current literature including articles, journals, and research conference

reports shows that one of the areas said to be pushing the current increases in the

development of Lambda grid networks is the resource intensive requirements of e-science

applications. The authors (Smarr, I. et.al., 2003) (Taesombut, N. et.al., 2006) (Defanti, T.

14

et.al., 2003) (Banerjee, A. et.al., 2008) hold that the next generation of large-scale

scientific computing applications will involve expensive resources such as super

computers, storage systems, and experimental facilities, which are distributed across

domains and geographical locations. Some examples of such applications, which are

being developed, include the Genomes-to-life (GTL) project of the Department of Energy

(DOE) USA (Elizabeth, P., .2003), Teragrid (Kate, C. 2007), and the Opt/Pater (Larry, S.

2004) project. Such projects typically require real-time transfer of gigabytes or terabytes

of data from remote experiential sites and data warehouses across wide-area networks to

a central computation site for data aggregation, processing, visualization, and other

analysis. The argument in (Coffman, E.G, et.al., 1985) is that, this real-time transfer of

huge amount of data required by such e-science applications are better addressed by

Lambda grid networks.

(M. Veerarghavan et.al., 2004) worked on the Varying Bandwidth List Scheduling

(VBLS) algorithm. The VBLS builds on the basic List Scheduling (LS) algorithm. In

developing this scheduling algorithm the authors considered the works on admission

control for blocking ahead shared resources (D. Wischik and A. Greenberg, 1998) and

resource sharing for book-ahead and instantaneous request calls (A. Greenberg, R.

Srikant, W.Whilt, 1999)

15

In the VBLS algorithm, the scheduler maintains an available capacity function γ(t). Given

it knows the Time Range Capacity (TRC) allocations for all scheduling light paths, it

knows when and how much link Capacity is available for a new request. Capacity

allocation for a new request is made on a round- by-round basis, where a round consists

of the procedures used to allocate capacity for a time range that extends between two

consecutive changes points in γ(t). In a time range between two consecutive change

points, determination is made whether the entire remaining file can be transferred or the

holding time ends within this time range and whether the available capacity is greater

than or less than/equal to the maximum rate requested for the number of channels.

A dedicated network is represented as a graph G= (V, E) with n node and m links, where

each link Ɩ ϵ E maintains a list of residual bandwidths specified as segmented constant

functions of time. In the algorithm, a 3-triple of time bandwidth (tὶ[i], t1[i+1], b1[i]) is

used to represented the residual bandwidth b1[i] of links Ɩ at time interval [ti[i], t1[i+1]],

i=0,1, 2……., Ti-1, where Ti is the total number of time slots of link Ɩ. ti[0] denotes the

current time point and t1[i] (i >1) denotes a future time point. Setting ti[T1] = t ∞

indicates that there is no bandwidth reservation on link Ɩ after ti[Ti-1] and therefore bi[Ti-

1] has the full bandwidth of link Ɩ.

Taking as input graph G= (V, E) with a List of all links Ɩ ϵ E, source Vs and destination

Vd file size δ, and a time slot rang [P,q], VBLS determine if there is a path from Vs to Vd

such that data of size δ can be transferred within the time slot range [P, q]. where P is file

transfer start time q is file transfer end time.

16

The following donations are used to facilitate explanation of the VBLS algorithm:

E (P, β): a subset of E consisting of links whose residual bandwidth in time slots P are

less than β.

G
1

= G - E (P, β): the operation of removing the links in E (P, β) from G and producing a

new graph G
11

.

Q p: a queue storing the bandwidth of links Ɩ ϵ E sorted in a decreasing order for time slot

P

The VBLS algorithm starts from time slot P and recursively calls itself by modifying the

network G, advancing to the next time slot and adjusting the residual data size. Once the

link with residual bandwidth less than β are removed from G, and there exists a path P

from Vs to Vd in the remaining network G
1
, the bandwidth of the P is at β.

For the current time P, three cases are considered: (i) if the bandwidth of Φ optical light

path P is greater than or equal to the residual data size, the algorithm computes tend and

finishes successfully; (ii) otherwise if P ≡ q, the algorithm fails to find a feasible path;

(iii) otherwise, the algorithm calls itself after increase data size δ. The VBLS algorithm

examines all possible permutations of bandwidth at different time slots to obtain the

minimum file data transfer end time.

With VBLS, before a transfer begins, the scheduler estimates the bandwidth that will be

available for the entire transfer, and makes that allocation. This avoids having to

17

determine how much bandwidth is available during the actual file transfer (C.Jin, D.Wei,

and S. Low, 2004) and (L. Brakmo, L.Peterson. 1995). The penalty (limitation) with

VBLS is that network switches have to perform more bookkeeping, tracking information

on file size to know when all ongoing transfer will complete, unlike in IP networks where

routers do not maintain such state information. Further the added complexity of the

switched is a limitation of the algorithm. First a switch needs to maintain the available

capacity as a time-varying function for all interfaces, unlike in TDM/FDM switches that

only maintain current available capacity information. The need for optical switches to use

timer mechanisms to reconfigure the cross connection at time range boundaries for all

ongoing connection increase the job blocking rate and leads to increase in file transfer

scheduling delays.

(A.Banerjee, et.al 2008) worked on the Virtual Finish (ViFi) algorithm, this builds on the

List Scheduling algorithm. In ViFi, before a circuit for transfer is established two

scenarios may occur; either the file is completely transferred within the circuit holding

time, that is referred to as initial finish time, or it is not fully transferred which is referred

to as incomplete finish transfer

Scenario 1: Initial finish deals with utilization on the reserved links. When there is an

early finish, the present circuit may be torn down as the lambdas that this circuit was

making use of are now free and will not be in use because of the pre-allotted time slots

for the entire job finish thereby causing redundancy.

18

Algorithm Incomplete _ File _Transfer

1) In the lines of the LFF heuristics; choose K different paths along which this file

maybe transmitted.

2) The predicted transfer time is chosen as the highest transfer time (or lower

transfer bandwidth) of past transfer profiles. The idea here is to avoid an

incomplete transfer again.

3) Determine the path along which the file maybe scheduled at the earliest. Add

this to the online schedule.

Senario11: Assume that the holding time of the current circuit may not be extended, as

the links may be reserved for transfer of a different file of the same application or for a

different application. For an incomplete file transfer, two different options are available;

the first option is to retransmit the entire file after establishing a new circuit. The second

option is to transmit only the remaining portion of the file, which could not be transmitted

the first time. The former is simple to implement and also does not require any

application-level fragmentation and reassembly of file components however, the time

duration in which the file was being originally transmitted is completely lost. The latter

requires marking of correctly transmitted sequence number. Alternatively check-pointing

tools, which are available in many operating systems to maintain persistence of data and

19

recover from failures (Y. Wang et.al, 1995) maybe employed. Note that both approaches

require establish a new circuit and hence require new link reservation to be established.

Algorithm Modify Schedule _ Early _Finish

(Circuit, Actual _ Finish _Time, Scheduling _ Finish _Time)

//All three parameters above refer to the file transferred early//

1. Consider a particular virtual link on the circuit.

2. If a file transfer is scheduled to begin at scheduled Finish _Time on this link:

a. Identify other virtual links for this file.

b. Check if this file maybe scheduled to start transfer between Actual _Finish

_Time and scheduled _ Finish _Time on these links. If yes, modify the offline

schedule to start file transfer at this time.

3. Repeat above steps for all virtual links in the circuit.

The algorithm does not alter the virtual link reservations which had been made by the

offline schedule. It only alters the circuit start time. Moreover, if a circuit is indeed

modified to start earlier than its scheduled time, the end time is kept the same. Thus

circuit holding time will increase.

20

(Smith .W. et.al, 2000) and (Foster. I. et.al, 2000) worked on the performance of Advance

reservation based scheduling as a part of Global Architecture for reservation and

allocation (GARA) to guarantee resource availability at the execution time of the

application. This ensures that all resource would be simultaneously available at the

execution time of the application. As by reserving resource in advance one can provide

an upper bound on the response time. ARs can also be used for ensuring end-to-end

quality of service. For jobs with sequential tasks, the response time of the reservation for

the second resource and so on, thus guaranteeing the end-to-end response time. Advance

reservation have been studied in numerous contexts such as Architecture for ensuring

end-to-end quality of service and for network applications. (Foster. I. et.al 2000)

architecture for data-intensive collaboration, (Foster.I. et.al 2003) scheduling of data

placement activities, job scheduling for clusters and supercomputers, equally Grid based

architecture for dynamic optical network.

However, this work assumes that there is no laxity in the reservation window and hence

rejects all incoming request that overlap with any of the previously committed

reservation.

(Ranganathan et.al, 2003) studied independent CPU- allocation and data set replication

through simulation, this work focuses on the allocation of data sets, but does not address

network resources allocations that may be needed to access the data within a

deterministic time frame.

21

(Bayya et.al, 2002) Market-driven and incentive-based parameter sweep applications

scheduling on computational resources has been studied extensively, where resource

selection policies depending on the notions of budgets and deadline are investigated.

These notions influence the amount of work performed by the Grid. In contrast, this work

focuses on performing all jobs submitted to the Grid (the workload demand) in a steady-

state, and dimensioning the grid accordingly. Interdependent resource allocation (e.g)

network bandwidth availability can influence each other and use the concept of division

load to keep the combined dimensioning and scheduling problem manageable.

The effects of co-allocating CPU and network resource to a single job have been studied

in (Thysebaert.P. et.al, 2004). Grid sites are connected through a VPN in which fine-

grained bandwidth pipes can be setup. In reality, it is difficult to image a scenario in

which such pipes with guarantees concerning delays, jitter and bandwidth availability can

be setup over the internet.

In contrast, the use of optical transport network does offer the reality of high-capacity

bandwidth pipes between the various grid sites and is therefore a focal point in this work.

2.3 Modeling Grid Scheduling Problem

Various literatures on file aggregation on lambda grid, one way or the other attempt at

describing the problem of resource scheduling for the Lambda grid. Two things evident

in these writings are the representation of lambda grid network topology as graphs and

the formulation of the problem of aggregating large data files from distributed data bases

22

in a lambda grid network as a time-path scheduling problem (TPSP). Furthermore,

available research reports (due to somewhat shot comings in TPSP) describe the

modification of TPSP, calling the new problem N-destination TPSP (NDTPSP).

However, (Coffman, E.G, et.al., 1985) (Taesombut, N. et.al., 2006) (Banerjee, A. et.al.,

2008] hold that both TPSP and NDTPSP (being NP-complete problems) cannot be solved

in polynomial time necessitating the need for the proposition of heuristics for large scale

file transmission tasks in a lambda grid.

2.3.1 Lambda Grid Network Topology Model

Graph representations of the networks topology of the lambda grid abound in the

literature. A lambda-grid networks topology, an example of which is the VSN

(www.net.gov/ultranet, 2007), may be represented as a graph G (V, E), where each node

V represents a core switch, and the edge „E‟ represents the connectivity between core

switches. Core switches are connected with single or multiple lambdas (a lambda is an

optical connection established over a certain wavelength). A core switch is attached to a

Multi Service Provisioning Platform (MSPP).

MSPPs provide a Synchronous Optical Network (SONET)/Synchronized Digital

Hierarchy (SDH) and Ethernet channels at sub-lambda granularities to end devices such

as Storage Area Networks (SANs), data warehouses, or host computers. Thus, a lambda

may provide an end-to-end connection between two end-to-end machines via the MSPPs

23

and core switches (Nageswara, S.V, et.al., 2004). The connection from the core switch to

the MSPP to the end lost is not represented in graph „G‟.

The layout of the end-to-end connectivity is shown in figure.2.1 for example; a simple

way by which an end host may connect to a lambda grid is by using a Gigabit Ethernet

Interface Card over a Local Area Network (LAN) connected to the MSPP. Alternatively,

it may be connected via a 2.5 Gbps (OC-48) SONET connection. This connection from

the MSPP to the end host is termed as a sub-lambda connection. It is suggested in

(Banerjee, A. et.al., 2008) that in order to simplify the problem setting, that the

assumption should be made that all end hosts are connected to the MSPPs with the same

connection bandwidth (that is 1, or 2.5 Gbps), and therefore, the granularity of each sub-

lambda connection is the same.

24

 End Host End Host

Figure: 2.1 Illustration of a Lambda Connection between two end hosts deploying lambda grid

2.3.2 Data Aggregation Problem Formulation in a Computational Grid Network

Discussed extensively in the literature is the mathematical representation of the problem

of data aggregation in a lambda grid. In (Shen, S. et.al., 2008) (Pieter, T. et.al., 2007) the

problem of aggregating large data files from distributed databases in a lambda grid

networks had been formulated as a Time-path Scheduling Problem (TPSP).

Core

Switch

Core

Switch

Lambda grid connection

(e.g., OC – 192)

MSPP

Sub-lambda connection

(e.g., OC – 48, 1 Gig E)

MSPP

25

An illustration of the problem formulation on a six-node network is shown in figure 2.2

below:

Figure 2.2 Problem formulation of TPSP on an example eight-node network.

Though differences exist mainly in notation used by different authors, the mathematical

representation is given as follows;

At each core switch v∈V, there exists a set of files Sv = {fv1,fv2……..fv2} corresponding to

the end hosts that it is connected to, whose estimated transfer time over the lambda grid

to the destination, d, Tf is known and is denoted by the set Tv = {Tfv1, Tfv2……….Tfvl},

were Tƒvl is the transfer time for file ƒv1. The objective of this problem formulation as

understood in the literature is to determine the following:

v

i

2
d

G {V1Є}

S1 = {ƒ11, ƒ12, ƒii}
T1 = {Tƒ11, Tƒ12, Tƒi}i

S2 = {ƒ21, ƒ22, ƒ23}

T2 = {Tƒ21, Tƒ22, Tƒ23}

Sv = {ƒv1, ƒv2……… ƒvq}
Tv = {Tƒv1, Tƒv2….Tƒvq}

h g

26

1. Route: This is the path on the lambda grid, via, which a file should be transferred

from the source to the destination.

2. Time Schedule: This is the time at which a connection must be reserved on the

lambda grid for the corresponding file. This is important because it may not be

possible to transfer all the files simultaneously on the lambda grid due to link

capacity constraints.

3. Minimum finish time: The objective is to minimize the total time required to

aggregate all the data by using the lambda grid. The last file to reach the destination

may be the bottle neck for the super computer to connect to the MSPP (see figure.

2.1). Since computation cannot be completed unless all the data is aggregated.

In a lambda grid, a super computing machine has high bandwidth connection to the

MSPP (see Figure. 2.1) and, thus, has access to all connections arriving at the MSPP that

is connected to. The nodes on the graph to which the super computer is attached is

marked as dЄv. At a certain step in the computation, the super computers may require

data aggregated from multiple end hosts (data warehouses, SANs etc) before it resumes

computation. This process is modeled as the transfer of files from each and host to be

destination super computer. All the data that must be transmitted from one end host is

modeled as one file.

27

The literature showed that the two dimensions of determining both the path and time

schedule make TPSP as a problem exceptionally hard, and it differentiates TPSP from

other machine scheduling problems that have been reported in the literature (Pinedo,

M.L., 2008). However, proves reported in the literature show that TPSP is NP complete

by reducing it to the Multiprocessor Scheduling Problem (MSP) (Garey, M.R and

Johnson, D.S, 1990).

2.4 Heuristics for Routing and Scheduling

As recorded in the literature, TPSP is an NP-complete problem which cannot be solved

in polynomial time (Banerjee A. et.al., 2008) (Garey M.R and Johnson, D.S, 1990). And

in consequence heuristics should be proposed for large scale file transmission tasks.

Extensively discussed in the literature is the proposition of a greedy approach for solving

TPSP. The greedy approach chooses one file at a time and determines the route along

which this file may be scheduled at the earliest. The file is scheduled along this route.

Though a number of heuristics is documented in the literature for choosing the best file,

two heuristics seem to stand out. These are the Largest File First (LFF) and the Most

Distant File First (MDFF). Similarly, a number of algorithms are recorded in the

literature for determining the route and schedule. However, most papers extensively

described. „All Possible Time Slots (APT) Algorithm and K-Randomized Paths (KRP)‟.

28

2.4.1 Largest File First (LFF)

This approach is based on the intuition that the largest file (having the largest estimated

transfer time) is the bottleneck for scheduling because it requires more resources in

terms of the amount of time required to be free on the links of the lambda grid. Thus, the

largest file remaining to be scheduled is picked as the greedy choices.

2.4.2 Most Distant File First (MDFF)

This approach is based on the intuition that files are located at nodes far away from the

destination in terms of number of hops must be given higher priority for scheduling

because they require more links to be free for files to be transferred. Files are chosen in

the order of the number of hops that they are located away from the destination.

2.4.3 Algorithms to Determine Route and Schedule

After a file „F‟ is chosen using one of the above heuristics, it may be routed and

scheduled on the lambda grid by using one of the following algorithms.

29

2.4.4 All Possible Time Slots (APT) Algorithms

This Algorithm first computes all time slots that are available between the file source

[N(f)] (denoted as source S) to the destination „d‟ for the duration estimated for

transferring file f (Tf).

The technical Community recommends the use of the bandwidth scheduling algorithm

reported in (Nageswara S. V, et.al, 2004) which is based on the Bellman-ford shortest

path algorithm (Thomas H. C., et.al., 2014) applied to the disjoint time intervals at

which the links are available. The algorithm is described in brief in Figure 2.3.

Figure .2.3: Bellman-ford Algorithm to determine all possible time slots.

Algorithm: find – All-possible – Time-slots (source,

destination, duration, v)

1. Initialize

L [i, j] = Set of available time intervals of long

 greater duration of i and j are connected.

 Null set Ø after wise.

2. D(s) = RT , D (V) = Ø V v ≠ s

3. For K = 1, 2………………., |V| do

for each edge (u, v) do

D(v) = D(v) (D(u) L(U,V)]

4. return D(d)

30

 Where denotes margin, and denotes inter section 2 lists.

If time slots of duration Tf or greater are available before the current finish time, then

best fit available time slots is chosen, or else, the earliest available time slot is chosen.

Site ƒ is scheduled on the chosen time slots and routed along the corresponding path.

The complexity of the algorithm described in figure 2.3 may be written as;

 O (|V| * |E| * (O)) + O ()]. where O () and O () are function of the numbers

of disjoint time intervals on the links () denotes the operation of merging the disjoint

time interval and () denotes the operation of interaction of the disjoint time intervals).

2.4.5 K. Randomized Paths (KRP) Algorithm

This algorithm chooses the best path among K randomly chosen paths. The steps are

outlined in figure 2.4. It is important to choose random paths because if a fixed set of

paths are chosen (for example, K shortest paths), then a few links in the lambda grid

may get increasingly congested and the finish time may be poor.

 Figure.2.4 K-Randomized Path Algorithm.

.

Algorithm: K-Randomized Paths (source, destination, f,v,k)

1. Find random K-alternate paths from the source to destination. Random K-attracts

paths may be achieved by randomly picking weights of the links and applying

Djikstran‟s Algorithm to compile shortest path (Nageswara S. V, et.al 2004).

2. Out of these K paths, choose the one in which file f may be scheduled at the earliest.

31

The complexity of step 1 may be stated as O (K*|v| log |v|), since for a suppose graph,

(|E| < |v| log |v|) and the complexity of Djikistra‟s algorithm is O (|v| log |v|). The

complexity of step 2 may be written as O (k*|v|), since |v| is the maximum length of a

path in a graph, and we assume that the cost of merging the disjoint time intervals is a

constant. The overall complexity of the algorithm is O (K *|v| log |v|). Typically, the

number of alternate paths that needs to be chosen is much less than the number of

vertices (K << |v|). Therefore, the complexity is O (|v| log |v|),

2.5 Performance Evaluation Metrics for Lambda Grid Scheduling Algorithm.

The references (Veeraraghavan, M. et.al., 2003) (Michael L. Pinedo, 2008) (Garey M.R,

and Johnson, D.S, 1990) (Thomas H. Cormen, et.al., 2014) indicate that the performance

of lambda grid resource scheduling algorithm are evaluated based on metrics such as job

blocking rate, fairness and effectiveness;

- Job blocking rate – it is the percentage of jobs blocked divided by the total number

of jobs submitted.

- Fairness – it is the metric that shows performance of the heuristics for smaller and

large jobs.

32

- Effectiveness – it is calculated as the percentage of latest finish time of the job

scheduled and the blocking rate of the maximum time slots S. The higher the

percentage, the more effective the heuristics.

Effectiveness = [1 – (Job Blocking Rate X Latest Finish Time of the Jobs Submitted)/

(100% x maximum Timeslot)] x 100………………………………………………… (2.1)

2.6 Summary of Related Literature and Research Gaps

 (Liu, X. et.al., 2009), proposed an algorithm that uses Deadline constant for task

scheduling and light path establishment in the lambda grid. This was reported to be

effective in minimizing the lambda grid resource usage and improving file aggregation

time. However, in (Page, A.J, et.al., 2005),

- It was considered unviable since it is based on the assumption that edge node and

computing node have unlimited buffer to store sets which cannot be realized in

practice. ***This will be solved using the exchange of information on the

transmission task Analyzer and Link Resource Analyzer of the proposed.

Work done by the author (Castillo, C. et.al., 2007), focused on the use of advanced

reservation of resources using Best Fit strategy for lambda grid resource scheduling.

Results obtained indicate a substantial improvement of grid resource utilization. However

as reported in reference (Lakshmiraman, V. and Ramamurity, B. 2009), the job blocking

33

rate based on this scheduling technique increases (though marginally) with every newer

scheduling cycle.

- The shortcoming of this technique is that the job blocking rate based on this

scheduling technique increases with every newer scheduling cycle. *****This

will be resolved using the network state information module of the proposed.

In (Ho, P.H and Mouftah, H.T, 2003), the authors proposed a grid scheduling technique

which is based on exchanging information about critical optical paths (i.e. links) in the

network and avoiding those links during wavelength assignment. It was shown that this

method reduces the blocking probability compared to a fixed wavelength assignment

scheme. However, the limitation of the scheduling method has to do with the overhead

imposed by the exchange of network link-state information.

- Limitation of this scheduling method has to do with the overhead imposed by non-

exchange of network link state information. ****Resolved by the Adaptive

scheduler module of the proposed.

(Coffman E.G et al 1985) Considers scheduling file transfers over network when file size

and the maximum numbers of file transfers possible from each node are given.

- Considers a fully connected mesh network, but lambdas have sparse connectivity.

*****This will be resolved by automatic re-provisioning of idle lambdas.

34

(Nageswara, S.V. et.al., 2004), Proposed scheduling algorithm that compute the quickest

path with a minimum end-to-end delay to transfer file of a given size from its source to

destination when bandwidth and delay constraints on the links are specified. Using

similar assumption, a Varying Bandwidth List Scheduling (VBLS) heuristic to compute

circuit over a lambda grid was studied in (Veeraraghavan, M. et.al., 2003). (Buyya, R.

(ed), 1999) (Pieter, T. et.al., 2008) showed that the basic problem with most of these grid

scheduling algorithms is that they assume an ideal communication system where all the

resource is fully connected and communication between two resource can be used

whenever needed.

(Garey, M.R et al 1979), (Hall, N G et al 1996), Machine scheduling modeled as single

processor scheduling, multi-processor, open-shop, flow-shop, and job-shop scheduling.

 - The problem, however, is that it is not applicable to the proposed problem since the

resource Lambda are not independent, rather, they have connectivity relationship among

them. ****Resolved at the layer 4 framework of the proposed.

(M. Veerarghavan et.al., 2004) The penalty (limitation) with VBLS is that network

switches have to perform more bookkeeping, tracking information on file size to know

when all ongoing transfer will complete, unlike in IP networks where routers do not

maintain such state information. Further the added complexity of the switched is a

35

limitation of the algorithm. First a switch needs to maintain the available capacity as a

time-varying function for all interfaces, unlike in TDM/FDM switches that only maintain

current available capacity information. The need for optical switches to use timer

mechanisms to reconfigure the cross connection at time range boundaries for all ongoing

connection increase the job blocking rate and leads to increase in file transfer scheduling

delays.

- The problem is that they assume an ideal communication system where all the

resource is fully connected and communication between two resource can be used

when ever needed. ***Resolved using the Adaptive scheduler module of the

proposed Algorithm

(A.Banerjee, et.al 2008) pitfall of ViFi is that the algorithm does not alter the virtual link

reservations which had been made by the offline schedule. It only alters the circuit start

time. Moreover, if a circuit is indeed modified to start earlier than its scheduled time, the

end time is kept the same. Thus circuit holding time will increase.

36

 CHAPTER THREE

MATERIALS AND METHOD

3.1 Chapter Overview.

This chapter presents the method that would be used in achieving the work, the reason for

the particular method to be used and design of the adaptive lambda grid resource

scheduling algorithm. The lambda grid scheduling problem is formulated as a time-path

scheduling problem (TPSP). The scheduler is composed of three main algorithms.

Algorithm 1 is run to allocate lambdas; the function of algorithm 2 is to determine the file

transmission path in the lambda grid. Algorithm 3 implements the lambda grid resource

scheduler. The scheduler is the module that schedules the actual file transfer. Every run

of the path determination algorithm (Algorithm 2) is integrated with the running of the

lambda allocation algorithm i.e (Algorithm 1).

The scheduler iteratively runs the path algorithm to dynamically re-establish the shortest

path from the source to the destination (with the consequent re-allocation of

wavelengths). This reallocation of wavelengths ensures that idle lambdas can be re-

provisioned for ongoing or later file transfer task in the lambda grid.

37

3.2 Description of Materials/Tools Used

 Cisco Packet tracer 7.1

 C++ Source Code

 CORBA Protocol

 System Model: Hp Elite book 8440P, Intel® core™ i7 cpu, Memory

6144MB RAM, Page file 5862.

 Matlab m-file.

 Operating System: Windows 7 Ultimate 64 bits (6.1, Build 7600)

3.3 Methodology

Methodology is the set of technique/procedures that is followed in the analysis and or the

design of a system. In the design of the proposed lambda grid scheduling system graph

theory is used in the representation of the lambda grid network topology, modeling and

simulation was used for the result presentation. The proposed scheduling algorithm is

formulated as a time path scheduling problem. The schedule adaptation is realized in the

algorithm by varying the allocation of lambdas. This technique allows the proposed

scheduler to backfill any holes left in wavelength allocation from other request. This

inefficient is a reallocation of idle lambdas i.e. effectively adjusting the schedule.

38

The design will be implemented into computer program using the C++ programming

language with MATLAB m-file code integration for the simulation of the lambda grid

network to test the performance of the proposed lambda grid scheduling system, the 24-

node National Lambda Rail would be used as case study lambda grid network. Details of

this will be presented in the simulation to be carried out in the next chapter from the

results of the simulation; the performance of the proposed algorithm will be compared

with those of the Varying Bandwidth List Scheduling algorithm and the Virtual Finish

First algorithm. The adopted methodology is dependent on the nature and scope of the

system project.

3.3.1 Graph Theoretic Methods.

This method is also simply called graph theory or network analysis. The methodology

employs the use of graphs. Graphs are mathematical objects that can be used to model

networks, data structure, process scheduling, competitions and a variety of other systems

where the relationship between the objects in the system play dominant role. (Olaf

Sporns, 2010)

39

3.3.2 Method Used.

Graph theory is adopted for the systems analysis, then modeling and simulation for result

presentation. The system fundamentally being a network scheduling and routing

algorithm makes graph theoretic method most suitable for its analysis. Graph theory is

best suited to the analysis and development of network routing algorithm (Bart, S. et.al.,

1992). Furthermore, specifically the formulation of the TPSP problem is basically based

on graph algorithm. (Banerjee et.al., 2004)

40

3.4 Analysis of Existing System.

The depiction and analysis of the existing grid scheduling algorithm is facilitated by the

use of the graph and the pseudo code for the List scheduling algorithm.

 S6

Figure 3.1 Analysis of Existing Lambda Gird Scheduling Algorithm. (Pinedo M.L.2008)

Legend

Data base

Super Computer

Optical

Switch

Mode

C5

 f v 6 , d

S4

 f v 6 , d
D

C6

S5 C4

 f v 4, d

S3 S2

S1

 f v l, d

C1

 f v2, d

C2

D

3

41

The optical network of lambda grid with attached computational and storage resources is

denoted by the graph G (V, L) as shown in the figure.3.1, V and L represent nodes and

optical links in the graph respectively. V can be denoted as {S, C, D} in which S, C and

D are respectively sets of switch nodes, computational resources and databases, each link

ι ϵ L support only one single wavelength capacity C. Databases and super computers are

directly connected to switch nodes. At databases D there exist a set of files to be

aggregated to different computational resources C. Access networks connecting databases

and computational resources to switch nodes provide large enough bandwidth which can

be shared simultaneously by many transmissions. Thus switch directly connect with

databases and super computers can be seen as the source and destination for every file

transmission task.

The existing grid scheduling algorithm is the LIST scheduling algorithm. As shown in the

figure 3.2, the existing LIST scheduling algorithm includes two main steps: list and

schedule. In step 1LIST, all file transmission tasks are sorted into a scheduling list LIST

according to certain priority scheme. Step II schedule is loop of three sub-steps (1), (2),

(3) shown in figure 3.2. Route and time scheduling of a certain file transmission task can

be determined independently.

42

Figure. 3.2 Process of the Existing LIST Scheduling Algorithm. (Micheli, De. 1994).

The algorithm iterates over the LIST. An unscheduled task is selected from the LIST with

the highest priority of Longer file first. And then allocate optical link resources which

build up its route for time interval equal to ƒ
n
, s transmission time, as to determine the

time interval for ƒ
n
. strategies for steps and sub-steps:

STEP I: List priority scheme for longer files scheduled earlier – longer file first (LFF).

Sort all transmission tasks by their aggregation request arriving time – First Arrive First

Serve (FAFS).

STEP II: This sub-step just selects transmission tasks with the highest priority from

LIST, it is implemented independently. Along with independent Step II (1) the loop

I. LIST transmission tasks in LIST

11. Allocate resource:

do

(1) Select a task from LIST

(2) determine route

(3) determine time schedule

loop while there is unscheduled task.

43

operation makes the algorithm iterates over the LIST and do a sequential scheduling for

the list.

STEP II (2): The routing scheme is determined i.e. routing schemes generally used for

light path establishment in optical networks: fixed Routing (FR), Fixed Alternative

Routing (FAR).

STEP III (3): Most commonly used scheme for time scheduling of transmission tasks is

Idle Time Interval Insertion (ITII). For a certain transmission task selected from LIST the

algorithm searches potential idle time internal equal to or longer than task transmission

time.

3.4.1 Limitation of the Existing Algorithm

Does not use network state information at the time of light path establishment, hence step

II (2) of the list algorithm cannot be implemented as adaptive routing scheme.

- Does not minimize delays in data aggregation due to the high job blocking rates of

the algorithm.

- Does not dynamically readjust the schedule online during the actual file transfer to

accommodate the actual amount of time that is required to transfer a file.

- Does not automatically provision idle lambdas to service current resource request

from grid applications.

44

- Does not provide more time within the schedule for incompletes file transfer

event-since the online reconfiguration module of the algorithm does not attempt to

adjust the schedule of the next file transfer – making the algorithm somewhat

behave like the best effort format of step111(3).

3.5 Data Analysis.

The analysis of the lambda grid data is done to find parameters for accommodating the

variance in file transfer times. (in order to predict optimal circuit holding time). To do

this different number of standard deviation () away the mean (m) (i.e. mean of past data

transfers), which would correspond to the upper limit of a confidence interval in a normal

distribution is computed.

An analogy of the situation, calculating two points and bearing configuration of Nnamdi

Azikiwe University Awka and Nnewi Teaching hospital was done using the link of

Nigeria Communication Commission NCC project for federal Universities and their

Medical Teaching Hospital.

45

Distance Calculation between two points on earth.

This uses the „haversine‟ formula to calculate the great-circle distance between two

points – that is, the shortest distance over the earth‟s surface – giving an „as-the-crow-

flies‟ distance between the points (ignoring any hills they fly over, of course!).

Haversine

formula:

a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)

c = 2 ⋅ atan2(√a, √(1−a))

d = R ⋅ c

Where

φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);

note that angles need to be in radians to pass to trig functions!

The haversine formula
1
 „remains particularly well-conditioned for numerical computation

even at small distances‟ – unlike calculations based on the spherical law of cosines. The

„(re)versed sine‟ is 1−cosθ, and the „half-versed-sine‟ is (1−cosθ)/2 or sin²(θ/2) as used

above. Once widely used by navigators, it was described by Roger Sinnott in Sky &

Telescope magazine in 1984 (“Virtues of the Haversine”): Sinnott explained that the

angular separation between Mizar and Alcor in Ursa Major – 0°11′49.69″ – could be

accurately calculated on a TRS-80 using the haversine.

http://en.wikipedia.org/wiki/Haversine_formula
http://mathforum.org/library/drmath/view/51879.html
https://www.shopatsky.com/product/sky-and-telescope-august-1984-digital-issue/sky-and-telescope-digital-issues-1980-1989
https://www.shopatsky.com/product/sky-and-telescope-august-1984-digital-issue/sky-and-telescope-digital-issues-1980-1989
https://www.shopatsky.com/product/sky-and-telescope-august-1984-digital-issue/sky-and-telescope-digital-issues-1980-1989
http://en.wikipedia.org/wiki/TRS-80#modeliii

46

For the curious, c is the angular distance in radians, and a is the square of half the chord

length between the points.

If atan2 is not available, c could be calculated from 2 ⋅ asin(min(1, √a)) (including

protection against rounding errors).

Using Chrome on a middling Core i5 PC, a distance calculation takes around 2 – 5 micro-

seconds (hence around 200,000 – 500,000 per second). Little to no benefit is obtained by

factoring out common terms; probably the JIT compiler optimises them out.

NOTE:

This is adopted from https://www.movable-type.co.uk/scripts/latlong.html

You can find other calculations on that site and the java script for doing this calculation is

also freely available on that site.

USED Bearings

Nnamdi Azikiwe University, Awka; Latitude: 6.247826
o
 East

 Longitude: 7.117259
o
 North

Nnamdi Azikiwe University Teaching Hospital, Nnewi; Latitude: 6.026075
o
 East

 Longitude: 7.913929
o
 North

Calculated distance between Nnamdi Azikiwe University, Awka and Nnamdi Azikiwe

University Teaching Hospital, Nnewi = 33.37KM.

Direction of Nnamdi Azikiwe University Teaching Hospital, Nnewi from Nnamdi

Azikiwe University = 222.37 degrees.

https://www.movable-type.co.uk/scripts/performance/latlong-spherical.html
https://www.movable-type.co.uk/scripts/performance/latlong-spherical.html

47

Direction of Nnamdi Azikiwe University from Nnamdi Azikiwe University Teaching

Hospital, Nnewi = 42.34 degrees.

48

Figure 3.3: Straight Line between two Points (Unizik and Nnewi Teaching Hospital)

49

Figure 3.4 Bearing coordinate of Nnewi Teaching Hospital and Unizik via Lambda link

 Analysis included estimating the following parameters.

 Targ: average offline schedule finish time

 Tmax: Maximum observed actual finish time in N transfers

50

 Nmax: Number of incomplete files transfers when Tmax was measured.

 Tmin: Minimum observed actual finish time in N transfers.

 Nmin: Number of incomplete files transfer when Tmin was measured.

 Job Blocking Rate: Percentage of jobs blocked divided by the

total number of jobs submitted.

 Fairness: Metric that shows performance of the heuristic for smaller and larger

jobs.

 Effectiveness: It is calculated as the percentage of latest finish time of the job

scheduled and the blocking rate to the maximum time slot S.

51

3.6 DATA / INFORMATION GATHERING

The Lambda grid being the next generation of scientific computing platform is mainly

found at government science project sites around the world – the developed economies.

Technical data on the operations and problems of the lambda grid is best obtained from

report and review documentation. Hence the data gathering technique for this work

entails review of documentation on the HS department of Energy‟s Ultra-Science Net

(DOE: Ultra Science Net Test bed. www.csm.ornl.gov/ultranet/overview.pdf), the

National Lambda Rail (NLR) networks (Doug, H., 2003), and the Teragrid now replaced

with Extreme Science of Engineering Digital Environment (XSEDE) (Travostino, F.,

et.al., 2006). The data obtained from the lambda grid project document are:

 The file transfer profiles at each transmitting node to super computers.

 File sizes and associated transfer times in the gird.

 Mean transfer time



 Link utilization and link capacity (OC – 192 10Gbps, each sub

lambda OC – 48 2.5Gbps

 Sample lambdas grid network topologies.

52

3.6.1 Design of the Proposed System.

The proposed grid resource scheduling algorithm is conceptualized to overcome the

pitfalls in the existing LIST scheduling algorithm for the lambda grid network.

 The proposed algorithm is to meet these specifications:

- Will dynamically readjust the scheduler online during the actual file transfer to

accommodate the actual amount of time that is required to transfer a file.

- Speeds up data aggregation by minimizing the blocking probability of the

schedule window with the lambda grid network.

- Automatically re-provision idle lambdas to service current request from lambda

grid nodes.

- Uses network state information at the time of light-path establishment: uses

adaptive routing in the implementation of step 11 of existing LIST algorithm. In

this algorithm (1),(2),(3) of step11 in the existing LIST algorithm will be

implemented.

- Uses idle time interval insertion (ITII) scheme for time scheduling of transmission

tasks. This ensures the provision of more time within the scheduler for

incomplete file transfer event i.e enabling the file aggregation process to recover

from file transfer error by re-adjusting the scheduler of the next file transfer.

- Supports advance reservation request. i.e upon request from grid nodes come

scheduler lambdas and sub-lambdas in advance.

53

BLOCK DIAGRAM OF THE PROPOSED LAMBDA GRID SCHEDULING ALGORITHM.

Figure.3.5: Block Diagram Overview of the Proposed Adaptive Lambda Grid Scheduling

Algorithm.

Referring to the block diagram, the transmission task analyzer module carries out

computation to find all transmission task in the lambda grid, sort all transmission tasks by

their aggregation request arriving time and builds a transmission task LIST i.e ƒ={ ƒ1, ƒ2,

ƒ3-------- ƒk}. where ƒ= set of file to be transferred in the grid.

Transmission task Analyzer

module.

f={f1,f2…fk}

Task Coordinator

(Heuristic Engine)

Link resource analyzer

module

l={l1,l2…lk}

TPSP Solution module

Scheduler

Network State Analyzer

File Transfer Time Estimator

54

The link resource analyzer module computes for available lambda resource to be

scheduled. It analyzes the grid structure, finds the available link and builds a link set. The

transmission analyzer handshakes with the link resource analyzer module to find resource

requirements for file transfer task.

The task coordinator provides an abstraction of the task; it exchanges data with the task

analyzer module using parameter passing. It evaluates and set file transmission task

priority based on heuristics. Due to the difficulty of the TPSP problem solution, this

engine loads and runs the heuristics function steps- based on the nature of the task.

The network state analyzer analyses the state of the network for latency, delays, hops,

events, exceptions and dynamically builds the link state information table.

The scheduler rates over the LIST built by the combination of the transmission task

analyzer and task coordinator object (i.e the heuristic engine) communicates with the link

resource analyzer (i.e the routing algorithm), the TPSP solution module, the network state

analyzer (in order to decide route based on network state information at the time of light-

path establishment) and uses the offline schedule (i.e the outcome of the TPSP solution

module) to schedule the file transfer on an reserved lambda grid link corresponding to the

schedule. Adaptive technique is proposed for the schedule to dynamically adapt the

offline schedule to accommodate the actual file transfer time.

55

3.6.2 Modeling the proposed Lambda Grid Scheduling Problem

A lambda grid network topology can be represented as a graph G(V, E), as shown in

Figure 3.6. Vertices V represent switch nodes, and the edges E represent optical links

connecting the switch nodes. The assumption is made here that all the optical link has the

same capacity C (say OC-192), and support a single wavelength. Each data warehouse

(database) and supercomputers are connected to switch nodes through dedicated link of

capacity C

Figure 3.6 A Lambda Grid Network Topology. (Banerjee A, 2004)

At a certain step in the computation, the supercomputer may require data aggregated from

multiple data warehouses before it resumes computation. This process is modeled in this

design as the transfer of files which require to be sent from the source switch node (to

56

which the corresponding data warehouses are connected) to the destination

supercomputer. A query is first issued by the supercomputer to all data warehouses to

determine the file size required from each warehouse. The file size provides information

on its expected transmission delay. The time that it takes to transfer a file along a route is:

Where and denote the total file transfer time and the size for file f, respectively,

and C denotes the capacity of each link. is the maximum value of end-to-end

propagation delay, and is the control packet overhead. At each switch node v, there

exist a set of files = whose is pre-computed and denoted by the

set = } (shown in Figure 3.4). The node the supercomputer is

connected is as d, where all the files are destined to.

The objective is to determine the following:

1) Route: The path through which a file should be transferred from the source to the

destination.

2) Time schedule: The time at which a file has to be transmitted in a single burst so that it

can be transferred through the route determined in Step 1. This is important because two

files which share a link on their routes should not be transmitted at the same time to avoid

collision due to the constraints defined for the scheduler.

57

The aim is to minimize the total time for data aggregation. This is assuming that the last

file to reach the destination is indeed the bottleneck, since computation cannot begin

unless all the data is accumulated.

The objective of the system design is to determine Route and time schedule given the

following:

1) Set R of switch nodes in the network.

2) The destination switch node at which the supercomputer is located, d.

3) Set M of files which have to be transferred to the destination d.

4) Physical-connectivity adjacency matrix, takes two values, 0

and 1. P(i, j) = 1 denotes connectivity.

5) Switch nodes at which the files are located (and to which the corresponding data

warehouses are connected), N(m)∈ R, ∀m∈ M.

6) Transfer Time for each file, T(m)∈ Z+, ∀m ∈ M. This can be pre-computed using

Equation (3.1).

 Subject Variables:

1) Virtual-connectivity matrix, V mi,j , ∀ i, jϵR,mϵM, takes two values, 0 and 1. V m

i,j = 1 denotes that the file m is routed along a path which contains the link from i to j.

58

2) Start time τ (m), ∀m ϵM, denotes the time at which the file m is transmitted. File m is

transferred along the determined route from time τ (m) till time τ (m) +T(m).

 Constraints:

1) Connectivity constraints: These constraints ensure proper virtual connectivity.

Constraint (3.2) ensures that a virtual link may exist only if a physical link exists.

Constraint (3.3) ensures that a virtual link must exist from the source node of each file to

59

the next node. Constraint (3.4) ensures that the destination must have one incoming

virtual link for each file. Constraint (3.5) ensures that there is no splitting in the path for a

particular file. Constraint (3.6) is flow-constraint equation for balanced flows. The

number of incoming virtual links at a node for a particular file should equal the number

of outgoing virtual links for that file.

2) No time-overlap constraints: These constraints ensure that, if a link is utilized for

transferring one file, then it can be used for another file only after or before the file has

been transmitted, but not during. At least one of the following three constraints must be

satisfied.

For any link (i, j) and pair of files (m,m_):

Constraint (3.7) implies that link (i, j) is not shared by the two files (m,m_). Constraint

(3.8) implies that link (i, j) is used for transferring file m_ only after file m has been

transferred. Constraint (3.9) implies that link (i, j) is used for transferring file m only after

file m_ has been transferred.

60

1) Subject variable constraints:

0)

 Objective function:

The objective function of the proposed lambda grid scheduler is aimed at minimizing the

time at which the last file is received at the destination (i.e. the finish time)

For the Lower bound on finish time, let the number of optical links through which

destination d is connected to its neighboring switch nodes be l. Since only one file may

be transferred along a link at a time, d may receive only l files simultaneously.

Thus, a lower bound on the finish time may be stated as:

61

3.6.3 Wavelength Allocation Scheme for the Proposed System.

The design uses a varying bandwidth technique in the reservation of lambdas for file

aggregation task in the lambda grid. This allocation scheme is specified in algorithm 1.

 The problem is formulated as follows:

End host applications request lambdas for file transfers by specifying a three-tuple ,

 where is the file size of the request, is a maximum rate limit for

this request, and , is the desired start time for the request. Requested rate

(also means number of lambdas). This request emanates from the grid application to

which the scheduler will have to allocate transmission resources (lambdas). The

scheduler is to allocate varying amount of bandwidth (varying numbers of lambdas). This

varying lambdas is represented as a vector. A varying allocation is characterized as

follows: ,),k=1,… }, where is the start of the Kth time range, is the

end of the Kth time range, while is the capacity allocated for the transfer in the Kth

time range. The reason for making such a varying allocation is that it allows the scheduler

to backfill any holes left in wavelength allocations from other requests (by reallocating

idle lambdas).

The scheduler maintains available capacity function .

 = Capacity availability function: Total number of available lambdas at time t.

 is expressed in the following form:

62

By keeping a count of the allocations of all scheduled light paths (lambdas), the scheduler

knows when and how much link capacity is available for a new request. A file transfer

request specifies , ,) .The scheduled resource is

which is an allocation of capacity for different time ranges

for request. Capacity allocation for a new request is made on a round-by-round basis,

where a round consists of the procedures used to allocate capacity for a time range that

extends between two consecutive change points in . In a time range between two

consecutive change points, the scheduler determines whether the entire remaining file can

be transferred or the holding time ends within this time range, and whether the available

capacity is greater than or less than/equals to . The design specifies four cases

corresponding to the four possible outcomes of these two decisions. At the end of each

round, the scheduler computes the remaining size of the file and starts the next round.

ALGORITHM 1: Wavelength Allocation Scheme for the Proposed Scheduler.

 Start algorithm:

Set time , and remaining file size

63

Repeat loop (start next round):

Find z such that in the capacity availability function

If then reset continue

Repeat loop (start next round):

Case 1: Number of available channels is less than/equal to and the whole file can

be transmitted before the next change in the available capacity curve, i.e.

 , and (, then

 Set

 ,

 (the begin time, end time and capacity allocation for the Kth range of file

transfer i). Set

 (Total number of time ranges allocated to file transfer i)

Terminate

repeat loop.

64

Case 2: Number of available channels is less than/equal to but the whole file

cannot be transmitted before the next change in the available capacity curve, i.e.

 and , then

set

set

 and

 continue

Repeat loop (start next round):

Case 3: Number of available channels is greater than and the whole file can be

transmitted before the next change in the available capacity curve, i.e.

 Set

65

.Set

Terminate

repeat loop.

Case 4: Number of available channels is greater than , and the whole file cannot be

transmitted before the next change in the available capacity curve, i.e.,

 and

 then

Set

Set

and

 continue

Repeat loop (start next round):

End repeat loop

66

 is expressed in the following form:

 where .

 denotes the number of Times changes value before reaching (m) at

after which all (m) channels of the link remain available.

3.6.4 Path Determination Technique for the Proposed System

 ALGORITHM 2

Consider a Network Topology Graph G (V, ,W) where V is the set of nodes, is the set

of links and W is the set of wavelengths(lambdas) supported by each link. A grid

application file transfer request (which entails scheduling light paths (lambdas) between

any two nodes on G).

As specified earlier, each host application on the grid request lambdas for file transfer by

specifying three tuples: (, ,). Adding extra information, this request is

further expanded as:

Request = [source, destination, , e, d,] where d is reservation duration. This is

estimated using equation (1), and e are the starting and ending time of the schedule

window respectively as illustrated in figure.3.5

67

Figure3.7 Scheduling Window

The end time of the Scheduling window is estimated using equation (3.12). The time is

slotted with a slot size equal to t. The scheduling window defines the time period within

which the resource reservation is made. The scheduling window must be bigger than the

reservation duration d. Thus the scheduler must check if a path is available during

interval [+ t, + t + d] where t = 0, 1, 2,, e - - d.

Recall that the lambda grid resource scheduling problem is formulated as TPSP. The path

determination scheme used here is that when a request arrives, the scheduler first try to

find the shortest available path starting at time for d slots. This is done by first

finding the shortest path, using Dijkstra‟s algorithm. Then, the scheduler checks if all the

links on this path have a free wavelength for d slots starting at time where =0.

If any link is busy along the path, the topology is updated by removing that link and the

next shortest path is determined. This step is repeated until either a path is available or a

68

maximum of k different paths have been considered. If a path cannot be determined, the

scheduler repeats the whole process with a start time equal to , where =1. is

incremented by one slot each time until an available path is found or = e − − d,

whereupon a request is blocked.

NOTE: in checking for links and determining path, the algorithm imposes the constraints

defined earlier in this chapter (constraints (3.2),(3.3),(3.4),(3.5)) on the schedule

69

Figure 3.8 Flow Chart for the Path Determination Algorithm

70

3.6.5 The Proposed Scheduler

 ALGORITHM 3

The algorithm sorts all file transmission tasks (see figure 3.4) into a scheduling list LIST

according to certain priority scheme. The route (path) of a file transmission is determined

by algorithm 2. The algorithm iterates over the list. An unscheduled task is selected from

the LIST with the highest priority, then allocate optical link resources which builds up its

route for time interval equal to fn‟s transmission time (as determined using equation (3.1).

The priority scheme used in the algorithm is the longer file first (LFF). The LFF is a

heuristic that is based on the intuition that the longest file (having the largest transfer

time) is the bottleneck for scheduling, because it requires more resources in terms of the

amount of time required to be free on the links to be transferred. The LFF algorithm aims

at scheduling the longest files first so that they get the priority to be scheduled earlier.

71

Figure 3.9 Scheduler flow chart.

72

CHAPTER FOUR

 SIMULATION AND RESULT ANALYSIS

4.1 Chapter Overview

In this chapter simulation is setup and carried out to test and evaluates the proposed

lambda grid scheduling algorithm. The case study (sample) lambda grid topology

modeled for simulation is the 24-node National Lambda Rail (NLR). The NLR is lambda

grid network owned and operated by the U.S. Research and education community

(Travostino, F. et.al., 2006). The NLR is primarily oriented to aid tera scale computing

efforts and is used as a network test bed for experimentation with large-scale networks.

NLR aims to enhance system-level integration of new technologies that cut across

traditionally defined network layers and enable critical applications like resource

management (such as the lambda grid scheduling algorithm proposed in this work) and

security. In terms of traffic measurement and data analysis, NLR provides the network

research community with visibility and access to underlying transmission, switching and

routing fabrics in a way that is not possible to achieve in pure production or commercial

environment (Guerin, RA, et.al., 2000).

The foundation of NLR is the dense wave division multiplexing (DWDM) based national

optical footprint using Cisco systems 15808 optical electronic system with a capacity of

40channel (wavelength) per fiber pair. Each wavelength can support transmission at 10

billion bits per second! (10Gbps).

73

The single line diagram of the NLR 24-node lambda grid sample network topology used

in the simulation carried out in this chapter is given in Figure 4.1.

Figure 4.1 Single line diagram of the NLR 24-node lambda grid sample network topology

used in the simulation.

The Cisco packet tracer 7.1 (Wang Xia-hong., 2012). is used to create the digital model

of the 24-node lambda grid network topology. This is shown in figure 4.2.

74

The nodes in figure 4.2 are multilayer switches. These nodes perform layers 2, 3and other

upper layer networks functions. The lines between nodes are 0C-192, while that

between node and super computers are 0C-48 specification.

The Cisco network simulator has application programming interface (API) support for

the C++, java and C programming languages. For this work the C++ programming

language was used. The proposed lambda grid scheduler is coded in the C++ language.

It interfaces and communicates with the kernel of the Cisco packet tracer network

simulator using inter procedural communication based on the CORBA protocol (common

object request broker architecture). C++ code is used to automate the scripting of file

transfer and file aggregation jobs between nodes in the network during the simulation

run. The source code is given on appendix C. and the Simulation processing trace file is

given on appendix D.

75

Figure 4.2: Model of the 24-Node Lambda Grid network topology for evaluating the

performance of the proposed adaptive lambda Grid Scheduling Algorithm

76

4.2 File Transfer Time

In the simulation, the program code increases the number of files gradually from 50 to

300. For each setting, the program measures the file transfer finish time. All link

capacities are C= O C-192 (10 Gigabytes). Source and destination node where the super

computer exists are automatically selected by the program. A specified number of files of

sizes are randomly distributed between 5 Gigabytes and 20 Gigabytes and are located

randomly across and the remaining nodes in the lambda grid network.

Figure 4.3 compares the performance of the proposed adaptive lambda gird scheduling

algorithm; the Varying Bandwidth List Scheduler (VBLS) and the Virtual Finish time

(ViFi) grid scheduler. It can be observed from figure4.3 that the proposed adaptive

scheduler performs better than the VBLS and the ViFi algorithms. The VBLS algorithm

performs better than the ViFi algorithm. Furthermore, it can be noticed that the

difference in performance gets even more distinct as the number of files increases. In

other words, with increasing number of files, the performance of the proposed adaptive

algorithm increases and the margin with which it outperforms the other two algorithms

widens. This is to be expected: that as the number of files to be transferred between nodes

increases, the algorithm adapts by rerouting data and re-provisioning idle lambdas (i.e

wavelengths) in order to effectively service the additional work loads. This gives the

proposed algorithms an edge over the other two algorithms. The finish time for

transferring same amount of data is less for the proposed adaptive scheduler compared to

the other two schedulers.

77

Figure 4.3: Comparison of the File Transfer Finish Time of the Proposed Adaptive

Lambda Grid Scheduler, the Varying Bandwidth List Scheduler and the Virtual Finish

 Scheduler

To compute and compare averages for the three schedulers, ten readings are taken off the

graph of figure 4.3. The readings are taken at intervals of 25 along the horizontal axis

(number of files) starting from 50. The outcome is tabulated in table 4.1.

78

Table 4.1 File Size versus Finish Time for File Aggregation using the Proposed Adaptive

Schedule, the various Bandwidth List Schedule and the Virtual Finish Heuristic

Scheduling Algorithms

Finish time (sec.).

 Proposed Adaptive Gird

Schedule Algorithm

VBLS

algorithm

ViFi

algorithm

50 161.80 189.40 199.50

75 249.60 284.80 322.40

100 307.30 390.10 447.80

125 397.70 485.50 555.70

150 513.10 615.50 678.70

175 628.50 718.80 922.00

200 723.80 829.20 1125.30

225 836.00 944.60 1300.90

250 944.60 1077.60 1353.60

275 1037.50 1208.10 1376.30

.

79

From the tabulation, the average finish time for the aggregation of the files randomly

distributed between 5 Gigabytes and 20 Gigabytes is computed.

From the tabulation, the average finish time for the file aggregation using the proposed

adaptive lambda grid scheduling algorithm, the VBLS scheduling algorithm and the

Virtual Finish (ViFi) algorithm are 579.99 seconds, 674.36 seconds and 828.22 seconds

respectively. With this average, the proposed adaptive lambda grid scheduler provides;

For % improvement on Varying Bandwidth List Scheduling (VBLS);

674.36 -579.99=94.37, then % improvement becomes 94.37/674.36*100/1=13.999%.

For % improvement on Virtual Finish (ViFi);

828.22-579.99=248.23, then % improvement becomes 248.23/828.22*100/1=29.97%.

approximately 14% and 30% improvements in grid file aggregation finish over the VBLS

algorithm and the virtual finish algorithm respectively.

4.3 Evaluation of Effect of Late Arrival Rate on Blocking Probability

The rate of arrival of request for allocation of optical wavelengths (lambdas) has impact

on the job blocking probability (i.e. the probability of not scheduling a request within its

window). As this is an online scheduling problem, the request arrives dynamically and

80

for each request, the scheduling algorithms must compute a path (routing) and then check

if a wavelength (i.e. a lambda) on each link of this path can be reserved for a duration

within the scheduling window (the scheduling window is specified by the schedule start

time and end time). The scheduling algorithm allocates a lambda on each link along a

path from the source to the destination nodes. If a lambda along the path for the specified

period of time is not available, another path has to be determined.

The objective of the algorithm is to determine the schedule to route each incoming

light-path connection request dynamically while minimizing the probability that a

connection request will be refused due to lack of available light path and maximizing the

overall network throughout. Figure 4.4 shows the effect of the arrival blocking

probability.

81

Figure 4.4: Effect of lambda grid request arrival rate on blocking probability

The general observation from the graph is that blocking probability increases with

increase in request arrival rate. It seems to increase exponentially. It can be observed for

the three algorithms that the probability of not scheduling a lambda request within its

window is very infinitesimal (almost zero in this case) for arrival rate below 14

request/slot. With low values of arrival rate, the blocking probabilities of the three

82

algorithms seemed almost equal. However, with increasing arrival rates the difference in

the performances of the algorithms in terms of blocking probabilities begin to

significantly stand out.

Even more prominent is the significant difference in the blocking probabilities of the

proposed adaptive scheduler with those of the VBLS and ViFi. This means that, at

increasing arrival rate, for the algorithm to meet its objective of minimizing blocking

probabilities it has to bring in adaptability.

To compute and compare averages of blocking probabilities of the three algorithms,

readings are taken off the graph of figure 4.4 at 10, 16, 22 and 28 along the horizontal

axis. The outcome is given in table 4.2.

83

Table 4.2: Tabulation of Request/Slot for Allocation of Optical Wavelength against the

Blocking Probabilities of the Proposed Adaptive Scheduling Algorithm, the VBLS

Algorithm and the ViFi Algorithm.

Request/slot Blocking probability

Proposed Adaptive

Grid Scheduling

Algorithm

VBLS Algorithm ViFi Algorithm

10 0.0007 0.0007 0.0012

16 0.0047 0.0078 0.0100

22 0.0658 0.0886 0.1007

28 0.1958 0.2185 0.2355

Based on table 4.2, the average blocking probabilities for the proposed scheduler, the

VBLS scheduler and the ViFi scheduler are 0.0667, 0.0789 and 0.0866 respectively. It is

clear the proposed adaptive scheduler was the lowest blocking probability.

For % improvement on VBLS:

0.0789-0.0667=0.0122, 0.0122/0.0789*100/1=15.4%

84

For % improvement on ViFi:

0.0866-0.0667=0.0199, then % improvement is 0.0199/0.0866*100/1=22.97%

This value indicates a 15.4% and 23% improvement over the VBLS algorithm and the

ViFi algorithm respectively

4.4 Evaluation of Effect of Connection Functions on Blocking Probability.

Figure 4.5 gives the effect of the connection duration d on the blocking probability. It can

be seen that the blocking probability increases as connection duration increases. It can

also be observed that the blocking probability significantly increases for connection

duration >5 for the considered topology. As can be observed the proposed adaptive

scheduler gives the best performance of the three, followed by the VIBLS algorithm.

85

Figure 4.5: Connection Duration Verses Blocking Probability.

86

Table 4.3 is setup by taking readings at location 6, 10, 14 and 18 along the horizontal axis in

figure 4.5

Table 4.3: Comparison of the Effect of Connection Duration on Blocking Probability on

File Aggregation for the Proposed Adaptive Scheduler, the Virtual Bandwidth List

Scheduler and the Virtual Finish Heuristic Scheduling Algorithms.

Connection

duration (sec)

Blocking probability

 Proposed Adaptive

Gird Scheduling

Algorithm

VBLS

Algorithm

ViFi

Algorithm

6 0.0174 0.0228 0.0371

10 0.1469 0.1710 0.1960

14 0.2879 0.3121 0.3478

18 0.3969 0.4121 0.4549

Based on table 4.3, the average blocking probabilities as a result of the impact of

connection duration are 0.2122, 0.2295 and 0.2589 for the proposed adaptive scheduler,

the VBLS and the ViFi algorithms respectively. These figures indicate that the proposed

algorithm has the lowest blocking probability.

87

For % improvement on VBLS:

0.2295-0.2122=0.0173, then % improvement; 0.0173/0.2295*100/1= 7.5%

For % improvement on ViFi:

0.2589-0.2122=0.0467, then % improvement; 0.0467/.2589*100/1= 18%

These values represent a 7.5% and 18% improvement over the VBLS algorithm and the

ViFi algorithm respectively.

4.5 Evaluation of light-path Reservation Delay as a Function of Wavelength

Request Arrival Rate.

Figure 4.6 shows the reservation delay, i.e. the time elapsed from the requested start time

s to the time equal to the start time plus the time slot, as a function of lambda request

arrival rate for the proposed adaptive algorithm, the VBLS algorithm and the ViFi

algorithms.

88

Figure 4.6: Reservation Delay as a function of wavelength Request Arrival Rate

It can be observed that for arrival rates below the threshold point of 20, the reservation

delay algorithms are almost equal. Then around 25 request/slot of the reservation delay

for each of the algorithms rises rapidly. It can be seen that based on the reservation; the

proposed algorithms stand out from the other two algorithms. In comparison, it gives the

least reservation delay as per impact of request for lambda arrival rate. This means that

the proposed adaptive algorithm always tries to schedule close to the start time of the

scheduling window as possible.

89

4.6 Evaluation of Job Blocking Rate

The numbers of jobs simulated are varied up to 200. The number of tasks per job is

varied in the program code up to 6. The job size was determined in program code based

on the number of jobs that were submitted to the scheduler. Figure 4.7 shows the job

blocking rates of the three grid scheduling algorithms. The job blocking rate is the

percentage of jobs blocked divided by the total number of jobs submitted.

Figure 4.7: Average Job Blocking Rate

90

As can be observed, the proposed adaptive scheduler clearly out performs the other two

algorithms. As can be observed, the job rates using the VBLS and ViFi algorithms are

more than that using the proposed algorithm. That is, the proposed algorithm has minimal

blocking rate compared to the other two algorithms. It is also evident from figure 4.7 that

the blocking rate of all three algorithms increases dramatically with the increase in job

size. However, from the result; it is evident that the proposed algorithm reduces the

blocking rate in comparison. Furthermore, it can be observed from figure 4.7 that the job

blocking rate using the proposed adaptive algorithm does not vary and oscillate as those

of the VBLS and ViFi algorithms.

To estimate the average for job blocking rate, readings are taken off the graph at 20, 60,

100, 140 and 180 positions along the horizontal axis. Table 4.4 gives the readings for the

three algorithms.

91

Table 4.4: Job Blocking Rate versus Job Size.

Job size Job blocking rate

 Proposed adaptive grid scheduling

algorithm

VBLS

algorithm

ViFi

algorithm

20 0.1786 0.9643 1.4643

60 0.2500 0.8214 1.3214

100 3. 6071 4.6786 5. 7500

140 10.2500 11.8214 14.0357

180 23.3643 20.8214 30.6071

From the tabulation, the average job blocking rates is calculated using the formula:

Job blocking rate = % of jobs blocked /Total nos. of jobs submitted

 are 7.53%, 9.02%, and 10.64% for the proposed adaptive algorithm, the VBLS

algorithms and the ViFi algorithms respectively.

Then, % improvement on VBLS regarding job blocking rate:

9.02-7.53=1.49; 1.49/9.02*100/1= 16%

92

For % improvement on ViFi regarding job blocking rate:

10.64-7.53=3.11; 3.11/10.64*100/1= 29%

The computed average for the proposed adaptive scheduling algorithm represents a 16%

and 29% improvement over the VBLS and the ViFi algorithms respectively.

4.7 Evaluation of the Effectiveness of the Scheduling Algorithms

The effectiveness is calculated as the percentage of latest finish time of the job scheduled

and the blocking rate to the maximum time slots. The higher the percentage, the more

effective the algorithm.

The algorithm computes the effectiveness using equation (2.1)

93

Figure 4.8: Shows the variation of effectiveness with job size for the three algorithms.

It can be observed from the graph that effectiveness reduces with increase in job size. The

simulation result indicates that the proposed adaptive scheduling algorithm has the best

effectiveness of the three algorithms. As can be seen the effectiveness of the algorithms

reduced from almost 100% to about 83%, 65% and 61% from the graph for the

proposed adaptive algorithm, the VBLS and the ViFi algorithms respectively. The higher

the %, the more effective the proposed algorithm becomes.

94

Then, the improvement of the algorithm against VBLS is calculated as;

83% - 65% = 18%

83% - 61% = 21%

It can be inferred from this that the proposed adaptive algorithm performs 18% better

than the VBLS algorithm and 21% better than the VIFI heuristic grid scheduling

algorithm respectively.

95

CHAPTER FIVE

CONCLUSION, CONTRIBUTION TO KNOWLEDGE AND

RECOMMENDATION

5.1 Conclusion

This dissertation focused on the development of an adaptive resource scheduling

technique to minimize the delay in the data aggregation task in a computational lambda

grid network.

The problem of data aggregation delay in the lambda grid has enormous impact on the

viability of certain e-science application that have critical timing requirements, the loss of

teraflops of super computer computing power as a result of the scheduling related delay

in the lambda grid has the impact of increase in research and development (R & D) cost,

delays in proceeding with vital research (especially related to chronic disease research

etc.). This problem not only leads to delays in vital break through for mankind but also,

in some cases outright project cancellation and wasted investment. The lambda grid

scheduling problem has far reaching impact on the accuracy and validity of e-science grid

applications required in making vital forecast relating to natural disaster, evolving disease

postures, climate change, technical issues relating to our ability to explore deep space etc.

Grid computing emerged as a means of coupling together numerous heterogeneous and

geographically distributed computational and storage resource to make them work as a

unified resource. By coupling numerous heterogeneous computational and storage

96

resource distributed over various locations, Grids are able to satisfy the ever increasing

demand of both processing and storage power, surpassing the capabilities of each of its

individual resources. This allows a grid to accommodate even the largest and most

resource- demanding applications. Grids making use of optical circuit switched transport

network are usually denoted as lambda grids.

One is said to be pushing the current increase in the development of lambda grids

networks to the resource intensive requirements of e-science application. Many of these

data-intensive, e-science Gids applications like electronic very long Baseline

interferometry (e-VLB) and Genomes to life (GTL) requires aggregating several hundred

Gigabytes of data files from distributed databases (usually geographically separated) to

computing resource (such as supercomputers) frequently in real time since data is

aggregated at the time of computation, the time required to transfer the data over the

network is the main computational bottleneck.

The design of the proposed adaptive lambda grid scheduling was carried out in this work.

In this work the lambda grid scheduling problem is formulated as a time-path scheduling

problem. The design carried out constructed the scheduler as a three algorithm system.

Algorithm 1 is designed to allocate lambdas, the formation of algorithm 2 is to determine

the file transmission path in the lambda grid, and Algorithm 3 implements the lambda

grid resource scheduler. The scheduler is the module that schedules the actual file

transfer. Every run of the path determination algorithm (Algorithm 2) is integrated with

the running of the lambda allocation algorithm (i.e Algorithm 1). The scheduler

97

iteratively runs the path algorithm to dynamically re-establish the shortest path from the

source to the destination (with the consequent re-allocation of wavelength). This re-

allocation of wavelength ensures that idle lambdas can be re-provisioned for ongoing or

later file transfer in the lambda grid. The proposed scheduler design is coded in the C++

programming language.

In the work, simulation was setup and carried out to test and evaluate the proposed

lambda grid scheduling algorithm, for the required data, the 24-node National Lambda

Rail (NLR) lambda grid topology was used. Cisco packet tracer for network modeling

software was used to create the digital model of the 24-node lambda grid network

topology. The Cisco network simulator with application programming interface (API)

support for the C++, java and C programming languages.

In the simulation, the program code increases the number of file gradually from 50 to 30.

For each setting, the program measures the file transfer finish time. All link capacity is

OC-192 (10 Gigabytes). Source and destination node where the supercomputer exists are

automatically selected by the program. A specified number of file size are randomly

distributed between 5Gigabytes and 20Gigabytes and are located randomly across and the

remaining node in the lambda grid network.

The performance of the proposed adaptive lambda grid scheduling algorithm was

analogically compared with the varying Bandwidth List scheduler (VBLS) and the virtual

finish (ViFi) grid scheduler. The observation is that the proposed adaptive scheduler

98

performs better than the VBLS and the ViFi algorithms. The VBLS algorithm performs

better than the ViFi algorithm. The difference in performance gets more destruct as the

number of file was increased as during the simulation carried out. With increasing

number of file, the performance of the proposed adaptive algorithm increased and the

margin with which it outperforms the other two algorithms widened. This is to be

expected, that as the amount of data to be transfer between nodes in the lambda grid

increases, the proposed algorithm adopts by searching data and re-provisioning idle

lambdas (i.e. wavelength) in other to effectively service the additional work loads. This

gives the proposed algorithm an edge over the other two algorithms.

The finish time for transferring same amount of data is less for the proposed adaptive

scheduler compared to the two schedulers.

Result obtained by the evaluation of the average finish time for file aggregation showed

that the proposed algorithm achieved 14% and 30% improvement over the VBLS

algorithm and the ViFi algorithm respectively.

The rate of arrival on blocking probability (ie the probability of not scheduling a request

within the window) was evaluated. Comparative analysis carried out show that the

proposed scheduler has the lowest blocking probability. The blocking probability of the

proposed algorithm, the VBLS algorithm and the ViFi algorithm are 0.0667, 0.0789 and

0.0866 respectively. This value showed that the proposed algorithm achieved a 15.4%

and 22.9% improvement in blocking probability over the VBLS and ViFi algorithm

99

respectively. It was observed that the blocking probability increases with increase in

request arrival rate. The increase seemed to be exponential. With low values of arrival

rate the blocking probability of the algorithm seemed almost equal. However, with

increasing arrival rates the difference in the performances of the algorithm in terms of

blocking probability begins to significantly stand out.

The effect of connection duration on blocking probability was evaluated. Result obtained

indicates that blocking probability increases as connection duration increases. The

proposed algorithm has the least blocking probability with increase in connection

duration. Numerical results show that the proposed algorithm achieved 7.5% and 18%

improvement over the VBLS algorithm and the ViFi algorithm respectively.

Light-path reservation delay as a function of wavelength request arrival rate was

evaluated. Result obtained indicates that the proposed algorithm gives the lowest

reservation delay as per impact of request for lambda arrival rate. This means, of the

three algorithms compared, the proposed adaptive algorithm always tries to schedule

close to the start time of the scheduling windows as possible.

The proposed algorithm was found to have the least blocking rate in comparison with the

other two algorithms. Furthermore, findings indicate that the job blocking rate of the

proposed algorithm does not vary and oscillate as those of the VBLS and ViFi algorithm.

The average blocking rates are 7.55%, 9.02% and 10.64% for the proposed algorithm, the

VBLS and the ViFi algorithm respectively. These values show that the proposed

100

algorithms achieved a 16% and 29% improvement over the VBLS and the ViFi algorithm

respectively.

Evaluation of the variations of effectiveness of the algorithm with job size was carried

out. Finding show that the effectiveness reduces with increase in job size, Simulation

results indicates that the proposed adaptive algorithm performs 18% better that the VBLS

algorithm and 21% better than the ViFi heuristic grid scheduling algorithm.

5.2 Contribution to Knowledge

The main contribution of this work is the algorithm for the adaptation of the LIST

scheduling algorithm to blend the Dijikistra algorithm and TPSP algorithm.

This scheme is found to improve on the large file first and to optimize the light path

determinations computation.

5.3 Recommendation

It is of vital importance that a high end national optical transport is made available to

Nigerians and international researchers for measurement, experimentation and business

operation purposes. A key recommendation here is that a national lambda grid network

(probably with the code name NigerGrid) should be constructed. Specific wave length

should be allocated for intensive e-science project, specific computational grids, Tele-

101

presence or other scientific experiments. NigerGrid is to provide the real physical

environment not only to move the algorithm proposed in this work to operational status,

but to also enable research in to innovative optical transport technique and to aid high

end, complex e-science research and enhance e- collaboration among Nigeria

Universities and research centers across the country.

This project report recommends that the management of NigerGrid be constituted under a

joint arrangement comprising Nigerian Universities, Research Centers and Nigeria

Defense incorporation.

In the present work minimization of finish time is the main objective function in the

design of the adaptive lambda grid scheduling algorithm, it is here recommended that

further work should expand on the objective function to include minimization of

transmission energy consumption and the compute cycles on the OC 192 core network

node device during file aggregation.

102

References

Aanchal Bawa, Sonam Bhata and Varinder Kamr. (April,2015) Altr: “A review of Agent

Oriented software engineering” International Journal of advanced Research in

computer and communication Engineering Vol.4, issue 4.

Adami, D., Giordana, S., Repeti, M., Coppola, M., Laforenza, D. and Tonellotto, N.

(2006). Design and Implementation of a grid network- aware resource broker. In:

proceeding of the IASTED international Conference on parallel and distributed

computing and networks as part of the 24
th

 IASTED International Multi-

conferences on Applied information.

Banerjee, A et.al, (2004) “A time –path scheduling problem (TPSP) for aggregating large

data file from Distributed database using an optical Burst-Switched Network”,

Proc. ICC 2004, parts, france.

Banerjee, A., Ferg, W., Ghosal, D. and Mukherejee, B. (2008). Algorithms for integrated

 Routing and Scheduling for aggregating data from distributed resources on a

 Lambda grid.IEEE Transaction on parallel and Distributed Systems.(19) pp.14-34

Banerjee, A., Wu-Chon, F. Senior member IEEE., Dipak, G., Biswanath, M., (2008)

 Algorithm for integrated Routing and Scheduling for Aggregating data from

Distributed Resources on a Lambda Grid. IEEE Transactions on Parallel and

 Distributed Systems 19(1)

Bart, S., Levesque, HJ. And Mitchell, DG. (1992). A New Method for Solving hard.

Satisfiability Problem. In: proceedings of the Tenth National Conference on

Artificial Interlligence. (AAA1-92), San Jose, CA 440-446.

Brakmo, L., Peterson, L. (Oct. 1995) “Tcp Vegas: End to End Congestion Avoidance on

a

 Global Internet”. IEEE Journal on selected Area in Communications, Vol.B.

 no.8,pp.1465-1480,

103

Brown, MD. (Nov.19, 2003). Blue Print for the Future of High Performance Networking

Introduction. Communications ACM. 46(3).

Bunya, R. (1999). High Performance Cluster Computer: Architecture and Systems.

 Vol.1 and 2. PTR upper saddle River, NJ, USA: Prentice Hall

Buyya, R., David, A. and Jonathan, G., (April10, 2002). Grid resource management

Scheduling and Computational Economy. In: School of Computer Science and

Software Engineering, Monash University, Australia.

Castillo, C., Rouskas, G.N and Hanfoush, K. (2007). On the design of online Scheduling

Algorithm for Advance Reservation and Qos in Grids. In: Processing of 21
st
 IEEE

Termination Parallel and Distribution Processing Symposium, Aveiro, Portugal.

Coffman, E.G., Garey, M., Johnson, D and Lapaugh, S. (Aug.,1985) Scheduling File

Transfers. SIAM Journal on Computing. 14(3)

Defanti, T., LOAT, C., Mambretti, J., Naggers, K., Arnomd, B., and Ranslight, T. (2003)

Global scalar Lambda grid for e-science. In: Communication of Association of

computing machinery. (46)

DOE: Ultra Science Net Testbed. http://www.csm.ornl.gov/ultanet/overview.pdf.

Doug,H.(2003).National Lambda Rail Inc. Available at:

www.internet2.edu/news/detail/3695

Elizabeth, P., (2003). Genomes to life Refiners New life from Networks, US Dept. of

Energy (DOE) Workshop. Available at http://www.csm.ornl.gov/ghpn/genome-

wk. April14, 2016.

Floyd, S. and Nageswara,.S.V. (Nov.,2008) Dedicated Channels as an Optimal Network

Support for Effective Transfer of Massive Data, In: Proceeding of the 4
th

ACM/IEEE Symposium on Architectures for Networking and communication

system, San José, California.

Garey, M.R. and David, S.J. (1979). Computers and Intractability: A Grid to the Theory

of NP – Completeness.2
nd

 ed. USA: W.H Freeman

http://www.csm.ornl.gov/ultanet/overview.pdf
http://www.internet2.edu/news/detail/3695
ttp://www.csm.ornl.gov/ghpn/genome-w
ttp://www.csm.ornl.gov/ghpn/genome-w

104

Garey, MR and Johnson, D. (1990). Computers and intractability: A Grid to the theory of

NP-completions.2
nd

 ed., USA: W.A Freeman.

Green, A., Srikant, R., Whitt, W., (Feb. 1999) “Resource sharing for book-ahead and

instantaneous request calls” IEEE/ACM Transaction on networking, Vol.7,

no.1,pp.10-22.

Gu, Y., Grossman RL., (2004). UDT: UDP- based data transfer for high speed area

Network. Journal of Grid Computing 1(4), 377-386, In: proceeding of the 2004

ACM/IEEE Conference on Super Computing.

Guerin, R. A. and Orda, A. (2000). Network with Advance Reservations: The Routing

Perspective In: Proceeding of Information Communication. Tel Aviv, Israel.

Hall, N.G and Sriskandarajah, C. (June,1996). A Survey of Machine Scheduling

Problems with blocking and no – wait in process. Journal operations Research

44 (3), pp. 510-525.

He, E., Leigh, J., Yu, O. and Defanti T.A. (2002). Reliable Blast UDP: Predicable high

performance bulk data transfer. IEEE 1
st
 Conference on Cluster Computing.

Ho, P-H., and Mouftah, H.T. (2003). A Novel Distributed Protocol for Path Selection in

Dynamic Wavelength-Route WDM Network. Kluwer Photonic Network

Communication. (1): pp 23-32.

Jim, C., Wei, D., and Low, S., (March,2004) “FAST TCP”: Motor ton, architecture,

algorithm, performance,: In proc. of IEEE infocom, Hong-kong.

Kate, C. (2007). Grid Computing and the tera-Grid Gi Science Gateway: 22S-295 High

Performance Computing Seminar.

Lakshmiraman, V. and Ramamurity, B. (2009). Joint Computing and Network Resource

Scheduling in a Lambda Grid Network. In: Proceedings of IEEE International

Conference on Communications (ICC 2009).

Larry, S. (2004). Optiputer: Universty of Califonia, San Diego, Ismarr@ucsd.edu.

Availble at http://www.evl.uic.edu/cavern/optiputer.

mailto:Ismarr@ucsd.edu
http://www.evl.uic.edu/cavern/optiputer

105

Lee, H., Veeraraghavan, M., Li, H. and E.K. P. Chong (2004). Lambda Scheduling

 Algorithm for file transfers on high speed optical circuits. Available at

http://www.ece.virginia.edu/mv/pdf-files/ccgrid-gan04.pdf

Liu, X., Wei, W., Qiao, C., Wang, T., W.Hu, Guo, W., and Hu, W. (2008). Task

Scheduling and Light path Establishment in 0ptical Grid. In: proceeding of the

INFOCOM 2008 Mini. Conference Program. Phoenix, Arizona, USA.

Nagaswara, S.V. Rao, William, R. W, Steven, M. C, and Qishi, W. (2005). Ultra Science

Net: Network Testbed for large-Scale Scince Application.

DOI:10.1109/MCMOM.2005.1541694. Source: IEEE Xplore.

Nagaswara, S.V.Rao, William, G, Bang, Y and Redhakrishnan, S. (2004). Algorithm for

Quickest Path under Different Routing modes. IEICE Transaction on

Communication. 87(4).

Nageswara, .S.V., Wing, W.R., Carter, S.M and Wu, O. (2005). Ultra Science Net:

Network Testbed for large – Scale Science Applications. In: IEEE Communication

Magazine. 43(4)

Nageswara, S.V., Grimmell, W. C., Bang, Y. and Radhakrishnan, S (2004). On

Algorithm for Quicka paths under different Routing Modes. In: IEICE

Transaction on Communication, E87-B 4(3) pp 1002-1006.

 Olaf Sporns. (2010) “Graph theory methods for the Analysis of neural connectivity

patterns” Idiana University, Bloomington, IN47405.

Page, A.J., and Naughton, T.J. (2005). Dynamic task Scheduling using Genetic

Algorithm for Heterogeneous Distributed Computing: Artificial Intelligence

Review. (24).

106

Pieter T. S, Marc, D. L., Bruno V, Filip, D. T, Bart D, Piet, D. (2007). Scalable

dimensioning of resilient Lambda Grids Science one. Available at

www.sciencedirect.com. April 12, 2015

Pieter, T., Marc, D.L., Bruno, V., Filip, D.T., Bart, Dhoedt., and Piet, D. (2007). Scalable

dimensioning of resilient Lambda Grid. Available at

http://www.dx.doi.org/10.1016/j.future.2007.08.003.

Pinedo, M. L. (2008) Scheduling: Theory Algorithm and Systems. 2
nd

 ed. USA:

 Prentice Hall.

Roger S.(2001) Pressman “Software Engineering Practitioners Approach” Mic Graw

hill, fifth edition.

Savera T. W., Lina, B., Harry, P. and Gigi, K. E. (2008). Dynamic scheduling of Network

 Resources with Advance Reservation in Optical Grids. In: Department of

Computer Science Ninth Carolina State University NC, UBA

She, O., Huang, X., Kannasoot, N., and Zhang, O. (2007). Multi-resource many cost over

optical burst switched network. In: Proceedings of 16
th

 National Conference on

Computer Communications and Networks (ICCCN 2007), Honolulu, Hawaii,

USA.

Shen, S., Wei, G., Weiqiang, S., Yaohu, J., Weisheng, H., (Nov.19, 2008) Scheduling and

Routing Algorithm for Aggregating Large Data Files from Distributed Databases

to Super Computers on Lambda Grid. In: Proceeding on Network Architectures,

management and Applications V1, 71372D.

Smarr, L., Chien, A., Defanti, T., Leigh, J., Philip, M., and Papadopoulos. (Nov.2003).

The Optiputer Communication of the Association for Computing Machinery.

46(11), 58-67.

Taesombut, N., Wu, XR., Chien, A., Nayak, A. Smith, B., D.kilb, T.lm, Kent, D., kent,

G., and Orcutt, J. (2006). Collaborative data visualization for Earth Science with

the optiputer future Generations Computer system. 255-63.

http://www.sciencedirect.com/

107

Thomas, H. C., Charles, E. Leiserson, Ronald L. Rivest and Clifford, S. (2014).

Introduction to Algorithm, 2ed. USA: MIT Press.

Travostino, F., Mambretti, J., and Karmons, G.(2006). Grid Network: Enabling grids

with Advanced Communication Technology. Books.google.com

Veerarghavan, M., Xuau, Z. and Wu, C. (2003) Scheduling and Transport for File

Transfers on high-Speed Optical Circuits. Journal of Grid Computing. 1 (4)

Veerarghavan, M., Lee, H., Chong, E.K.P., and Li, H. (July, 2004) “A varying-

 Bandwidth List Scheduling heuristic for file transfer” Researchgate DOT:

 10.11081cc.

Wang Xia-hong. (2012). Application of Cisco Packet Tracer Simulation software in

Network project Teaching. pp.32-25. en.cnki.com.cn/Article en/CJFDTOTAL-

DNKF201205024.htm.

Wisuik, D. and Greenberg, A., (March, 29-April 2, 1998)”Admission control for

booking ahead shared resource”. In proceedings of IEEE Infocom, Sam

Francisco, CA.

Wolfgang, S. and Behrend, D. (2007). The International VLB1 Service for Geodesy and

 Astrometry (IVS): Current Capabilities and Future prospects. Journal of Geodesy.

WWW.movable-type.co.uk/scripts/latlong.html

http://en.cnki.com.cn/Article_en/CJFDTOTAL-DNKF201205024.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-DNKF201205024.htm

108

APPENDIX A

 Scheduler Pseudo code

1: Set of transmission tasks

2: Set of link resources

3: last time interval ‟s transmission time is

4: Step1:

5: Sort tasks into list LIST, according to specified priority scheme.

6: Step2:

7: do

8: Sort links into LIST , according to scheme that with earlier is prior

9: for all in LINK ‟s priority order

 10: for all in LINK ‟s priority order

11: if f’s path exists at (by running algorithm 2)

12: schedule f to begin transmission at

13: remove f from LIST

109

14: for all

15:

16: endfor

17: break

18: endif

19: endfor

20: endfor

21: loop while there exit tasks in LIST

110

 APPENDIX B

Pseudo code for the Path Determination Algorithm.

1: Function FINDPATH (REQUEST R, TOPOLOGY T)

2: i = 1;

3: start time =

4: end time = + d

5: //call transfer time estimate to estimate transfer time using equation (3.1) and (3.12) to

find = d (file transfer duration)

6: //and finish time, e respectively.

7: e call Transfer Time Estimate

8: While(end time ≤ e) do

9: While(i ≤ k) do

10: find shortest path using Dijkstra’s Algorithm

11: if a path is found then

12: if lambda is available on all links during start time and end time

 Then

111

13: run algorithm 2 to locate lambdas

14: return

15: else

16: delete busy link from topology

17: i++

18: endif

19: endif

20: end While

21: Start time = start time + t

22: Start time = start time + d

23: end While

24: end function

112

APPENDIX C

Lambda Grid Scheduler Source Code

shortest_path.h:

lambda_schedule.h:

File_aggregation_calculat.h:

#ifndef LAMBDA_GRID_ROUTING_SHORTEST_PATH_H

#define SHORTEST_PATH_H

#include <queue>

#include <string>

#include <unordered_map>

#include <unordered_set>

#include <vector>

namespace lambdaGridNetworkScheduler {

 template<class NodeType>

 class TransmissionTaskAnalyzer {

 protected:

113

 using Set = std::unordered_set<NodeType*>;

 public:

 float job_Blocking_Rate;

 float Tmin; #minimum file aggregation time from supercomputer

 String Target;

 Float Route_Scheduler_metric;

 Float Total_File_Transfer_Time;

 TransmissionTaskAnalyzer(std::string name) : m_name{name} {}

 virtual void CreatFileTransmissionFileList(NodeType* other) = 0;

 virtual bool LambdaGrid_is_connected_to(NodeType* other) const = 0;

 virtual void LambdaGrid_disconnect_from(NodeType* other) = 0;

 virtual typename Set::iterator begin() const = 0;

 virtual typename Set::iterator end() const = 0;

#Create iterator for File transfer Aggregation # File transfer begin time && file transfer

end time

114

 class ParentIterator {

 public:

 ParentIterator() : mp_set{nullptr} {}

 typename Set::iterator begin()

 {

 return mp_set->begin();

 }

 typename Set::iterator end()

 {

 return mp_set->end();

 }

 void set_list(Set* p_list)

 {

 this->mp_set = p_list;

 }

 private:

 std::unordered_set<NodeType*>* mp_set;

115

 };

 virtual ParentIterator* parents() = 0;

 bool operator==(const NodeType& other) const

 {

 return m_name == other.m_name;

 }

 std::string& get_name() {return m_name;}

 protected:

 std::string m_name;

 };

 template<class T, class FloatType = double>

 class AbstractLambdaGridWeightFunction {

 public:

 virtual FloatType& operator()(T* Lambda_node1, T* Lamda_node2) = 0;

116

 };

 template<class FloatType>

 class File_Aggregation_Vector {

 private:

 const FloatType m_x;

 const FloatType m_y;

 const FloatType m_z;

 public:

 Point3D(const FloatType x = FloatType(),

 const FloatType y = FloatType(),

 const FloatType z = FloatType())

 :

 m_x{x},

 m_y{y},

 m_z{z} {}

 FloatType x() const {return m_x;}

 FloatType y() const {return m_y;}

 FloatType z() const {return m_z;}

117

 #Initialize link access with Supercomputer

 int Tf, sF, Pdf. Oc;

 };

 template<class FloatType>

 class Routing_AbstractMetric {

 public:

 virtual FloatType operator()(coderodde::Point3D<FloatType>& p1,

 coderodde::Point3D<FloatType>& p2) = 0;

 };

 template<class FloatType>

 class EuclideanMetric : public coderodde::AbstractMetric<FloatType> {

 public:

 FloatType operator()(coderodde::Point3D<FloatType>& p1,

 coderodde::Point3D<FloatType>& p2) {

 const FloatType dx = p1.x() - p2.x();

118

 const FloatType dy = p1.y() - p2.y();

 const FloatType dz = p1.z() - p2.z();

 return std::sqrt(dx * dx + dy * dy + dz * dz);

 }

 };

 template<class T, class FloatType = double>

 class LayoutMap {

 public:

 virtual coderodde::Point3D<FloatType>*& operator()(T* key)

 {

 return m_map[key];

 }

 ~LayoutMap()

 {

 typedef typename std::unordered_map<T*,

 coderodde::Point3D<FloatType>*>::iterator it_type;

 for (it_type iterator = m_map.begin();

119

 iterator != m_map.end(); iterator++)

 {

 delete iterator->second;

 }

 }

 private:

 std::unordered_map<T*, coderodde::Point3D<FloatType>*> m_map;

 };

/* File transfer conversion computation */

int file_Transfer_socket (FILE *fp, int sockfd, long fsize)

{

 LARGE_INTEGER freq, start, end;

 double speed, rate, eta;

 char buf[16*1024];

 long tot;

 int i, n;

 /* Schedule & Frequency */

120

 if (!QueryPerformanceFrequency(&freq))

 return -1;

 /* Start time */

 if (!QueryPerformanceCounter(&start))

 return -1;

 /* Main loop */

 for (tot = 0; tot < filesize;)

 {

 if ((n = fread(buf, 1, sizeof(buf), fp)) <= 0)

 {

 if (feof(fp))

 break;

 else

 return -1;

 }

 /* Sendall */

 if ((i = sendall(sockfd, buf, n)) != n)

 return -1;

121

 /* End time */

 if (!QueryPerformanceCounter(&end))

 return -1;

 /* Calculate */

 tot += i;

 speed = (double)(end.QuadPart - start.QuadPart) / (double)freq.QuadPart;

 rate = (double)(tot / speed) / 1024; // KiB/s

 eta = (double)(fsize - tot) / (double)rate / 60; // Minutes

 printf("log: Sent: %ld of %ld Prog: %.2f%% Rate: %.1fKiB/s ETA:

%.1f\r",

 tot, fsize, ((double)tot *100.0) / (double)fsize, rate, eta);

 fflush(stdout);

 }

 return tot;

}

122

 template<class NodeType, class DistanceType = double>

 class LambdaGrid_Network_State_Analyzer{

 public:

 LambdaGrid_Network_State_Analyzer(NodeType* Supercomputer_node,

LinkCapacity distance) :

 mp_node{p_node},

 m_route_distance{distance} {}

 NodeType* get_node()

 {

 return FileTransferLink_node;

 }

 DistanceType get_FileTransferLink_node()

 {

 return m_FileTransferLink_node;

 }

 private:

123

 NodeType*

distination_node;

 DistanceType distination_distance;

 };

 template<class NodeType, class DistanceType = double>

 class TPSP_Route_Computation {

 public:

 bool operator()(HeapNode<NodeType, LambdaGrid_DistanceType>* p_first,

 LambdaGrid_DistanceTyp<NodeType, DistanceType>* p_second)

 {

 return p_first->get_distance() > p_second->get_distance();

 }

 };

 template<class NodeType, class FloatType = double>

 class TaskCoordinator {

 public:

 FloatType& operator()(const NodeType* p_node)

124

 {

 return m_map[p_node];

 }

 private:

 Tf=

 std::unordered_map<const NodeType*, FloatType> m_map;

 };

 template<class NodeType>

 class ParentMap {

 public:

 NodeType*& operator()(const NodeType* p_node)

 {

 return m_map[p_node];

 }

 bool has(NodeType* p_node)

 {

125

 return m_map.find(p_node) != m_map.end();

 }

 private:

 std::unordered_map<const NodeType*, NodeType*> m_map;

 };

 template<class NodeType>

 std::vector<NodeType*>* traceback_path(NodeType* p_touch,

 ParentMap<NodeType>* parent_map1,

 ParentMap<NodeType>* parent_map2 = nullptr)

 {

 std::vector<NodeType*>* p_path = new std::vector<NodeType*>();

 NodeType* p_current = p_touch;

 while (p_current != nullptr)

 {

 p_path->push_back(p_current);

 p_current = (*parent_map1)(p_current);

 }

126

 std::reverse(p_path->begin(), p_path->end());

 if (parent_map2 != nullptr)

 {

 p_current = (*parent_map2)(p_touch);

 while (p_current != nullptr)

 {

 p_path->push_back(p_current);

 p_current = (*parent_map2)(p_current);

 }

 }

 return p_path;

 }

 template<class T, class FloatType = double>

 class HeuristicFunction {

 public:

127

 HeuristicFunction(T* p_target_element,

 LayoutMap<T, FloatType>& layout_map,

 AbstractMetric<FloatType>& metric)

 :

 mp_layout_map{&layout_map},

 mp_metric{&metric},

 mp_target_point{layout_map(p_target_element)}

 {

 }

 FloatType operator()(T* element)

 {

 return (*mp_metric)(*(*mp_layout_map)(element), *mp_target_point);

 }

 private:

 coderodde::LayoutMap<T, FloatType>* mp_layout_map;

 coderodde::AbstractMetric<FloatType>* mp_metric;

 coderodde::Point3D<FloatType>* mp_target_point;

 };

128

 template<class NodeType, class WeightType = double>

 std::vector<NodeType*>*

 astar(NodeType* p_source,

 NodeType* p_target,

 coderodde::AbstractWeightFunction<NodeType, WeightType>& w,

 coderodde::LayoutMap<NodeType, WeightType>& layout_map,

 coderodde::AbstractMetric<WeightType>& metric)

 {

 std::priority_queue<HeapNode<NodeType, WeightType>*,

 std::vector<HeapNode<NodeType, WeightType>*>,

 HeapNodeComparison<NodeType, WeightType>> OPEN;

 std::unordered_set<NodeType*> CLOSED;

 coderodde::HeuristicFunction<NodeType,

 WeightType> h(p_target,

 layout_map,

 metric);

 DistanceMap<NodeType, WeightType> d;

 ParentMap<NodeType> p;

129

 OPEN.push(new LambdaHeapNode<NodeType, WeightType>(p_source,

WeightType(0)));

 p(p_source) = nullptr;

 d(p_source) = WeightType(0);

 String file_schedule ;

 while (!OPEN.empty())

 {

 LambdaHeapNode<NodeType, WeightType>* p_heap_node = OPEN.top();

 NodeType* p_current = Lambda_p_heap_node->get_Supercomputer_node();

 OPEN.pop();

 delete p_heap_node;

 if (*p_current == *p_target)

 {

 // Found the path.

 return traceback_path(p_target, &p);

 }

 CLOSED.insert(p_current);

130

 // For each child of 'p_current' do...

 for (NodeType* p_child_Supercomputer : *p_current)

 {

 if (CLOSED.find(p_child) != CLOSED.end())

 {

 // The optimal distance from source to p_child is known.

 continue;

 }

 WeightType cost = d(p_current) + w(p_current, p_child);

 if (!p.has(p_child) || cost < d(p_child))

 {

 WeightType f = cost + h(p_child);

 OPEN.push(new HeapNode_Supercomputer<NodeType,

WeightType>(p_child, f));

 d(p_child) = cost_Supercomputer;

 p(p_child) = p_current;

 }

131

 }

 }

 // p_target not reachable from p_source_Supercomputer.

 return nullptr;

 }

 template<class T, class FloatType>

 class ConstantLayoutMap_Supercomputer_File_Transfer_Schedule : public

coderodde::LayoutMap<T, FloatType> {

 public:

 ConstantLayoutMap() : mp_point{new Point3D<FloatType>()} {}

 ~ConstantLayoutMap()

 {

 delete mp_point;

 }

 Point3D<FloatType>*& operator()(T* key)

 {

 return mp_point;

132

 }

 private:

 Point3D<FloatType>* mp_point;

 };

/***

**

 * This function template implements Dijkstra's shortest path algorithm. For the

Lambda Grid Schedulling *

**

**

/

 template<class NodeType, class WeightType = double>

 std::vector<NodeType*>*

 dijkstra(NodeType* File_Transfer_source,

 NodeType* File_Transfer_target,

 coderodde::AbstractWeightFunction<NodeType, WeightType>& w)

 {

133

 ConstantLayoutMap_Supercomputer_File_Transfer_Schedule<NodeType,

WeightType> layout;

 EuclideanMetric_Supercomputer_File_Transfer_Schedule<WeightType> metric;

 return astar(p_source,

 p_target,

 w,

 layout,

 metric);

 }

 template<class NodeType, class WeightType = double>

 std::vector<NodeType*>*

 bidirectional_dijkstra(

 NodeType* p_source,

 NodeType* p_target,

coderodde::AbstractWeightFunction_Supercomputer_File_Transfer_Schedule<No

deType, WeightType>& w)

 {

 std::priority_queue<Lambda_HeapNode<NodeType, WeightType>*,

134

 std::vector<HeapNode<NodeType, WeightType>*>,

 HeapNodeComparison<NodeType, WeightType>> OPENA;

 std::priority_queue<ambda_HeapNode<NodeType, WeightType>*,

 std::vector<HeapNode<NodeType, WeightType>*>,

 HeapNodeComparison<NodeType, WeightType>> OPENB;

 std::unordered_set<NodeType*> CLOSEDA;

 std::unordered_set<NodeType*> CLOSEDB;

 DistanceMap<NodeType, WeightType> DISTANCEA;

 DistanceMap<NodeType, WeightType> DISTANCEB;

 ParentMap<NodeType> PARENTA;

 ParentMap<NodeType> PARENTB;

 OPENA.push(new HeapNode<NodeType, WeightType>(p_source, 0.0));

 OPENB.push(new HeapNode<NodeType, WeightType>(p_target, 0.0));

 DISTANCEA(p_source) = WeightType(0);

 DISTANCEB(p_target) = WeightType(0);

135

 PARENTA(p_source) = nullptr;

 PARENTB(p_target) = nullptr;

 NodeType* p_touch = nullptr;

 WeightType best_cost = std::numeric_limits<WeightType>::max();

 while (!OPENA.empty() && !OPENB.empty())

 {

 if (OPENA.top()->get_distance() +

 OPENB.top()->get_distance() >= best_cost)

 {

 return traceback_path(p_touch, &PARENTA, &PARENTB);

 }

 if (OPENA.top()->get_distance() < OPENB.top()->get_distance())

 {

 Lambda_HeapNode<NodeType, WeightType>* p_heap_node = OPENA.top();

 NodeType* p_current = p_heap_node->get_node();

 OPENA.pop();

 delete p_heap_node;

136

 CLOSEDA.insert(p_current);

 for (NodeType* p_child : *p_current)

 {

 if (CLOSEDA.find(p_child) != CLOSEDA.end())

 {

 continue;

 }

 WeightType g = DISTANCEA(p_current) + w(p_current, p_child);

 if (!PARENTA.has(p_child) || g < DISTANCEA(p_current))

 {

 OPENA.push(new HeapNode<NodeType,

 WeightType>(p_child, g));

 DISTANCEA(p_child) = g;

 PARENTA(p_child) = p_current;

 if (CLOSEDB.find(p_child) != CLOSEDB.end())

 {

137

 WeightType path_len = g + DISTANCEB(p_child);

 if (best_cost > path_len)

 {

 best_cost = path_len;

 p_touch = p_child;

 }

 }

 }

 }

 }

 else

 {

 Lambda_HeapNode<NodeType, WeightType>* p_heap_node = OPENB.top();

 NodeType* p_current = p_heap_node->get_node();

 OPENB.pop();

 delete p_heap_node;

 CLOSEDB.insert(p_current);

 typename coderodde::AbstractGraphNode<NodeType>::ParentIterator*

138

 p_iterator = p_current->parents();

 for (NodeType* p_parent : *p_iterator)

 {

 if (CLOSEDB.find(p_parent) != CLOSEDB.end())

 {

 continue;

 }

 WeightType g = DISTANCEB(p_current) +

 w(p_parent, p_current);

 if (!PARENTB.has(p_parent) || g < DISTANCEB(p_parent))

 {

 OPENB.push(new HeapNode<NodeType,

 WeightType>(p_parent, g));

 DISTANCEB(p_parent) = g;

 PARENTB(p_parent) = p_current;

 if (CLOSEDA.find(p_parent) != CLOSEDA.end())

 {

139

 WeightType path_len = g + DISTANCEA(p_parent);

 if (best_cost > path_len)

 {

 best_cost = path_len;

 p_touch = p_parent;

 }

 }

 }

 }

 }

 }

 return nullptr;

 }

 class DirectedGraphNode : public

coderodde::AbstractGraphNode_Supercomputer_File_Transfer_Schedule<Directe

dGraphNode> {

 public:

140

 DirectedGraphNode_Supercomputer_File_Transfer_Schedule(std::string name) :

 coderodde::AbstractGraphNode<DirectedGraphNode>(name)

 {

 this->m_name = name;

 }

 void connect_to(coderodde::DirectedGraphNode* p_other)

 {

 m_out.insert(p_other);

 p_other->m_in.insert(this);

 }

 bool is_connected_to(coderodde::DirectedGraphNode* p_other) const

 {

 return m_out.find(p_other) != m_out.end();

 }

 void disconnect_from(coderodde::DirectedGraphNode* p_other)

 {

 m_out.erase(p_other);

 p_other->m_in.erase(this);

141

 }

 ParentIterator* parents()

 {

 m_iterator.set_list(&m_in);

 return &m_iterator;

 }

 typename Set::iterator begin() const

 {

 return m_out.begin();

 }

 typename Set::iterator end() const

 {

 return m_out.end();

 }

 friend std::ostream& operator<<(std::ostream& out,

 DirectedGraphNode& node)

 {

142

 return out << "[DirectedGraphNode " << node.get_name() << "]";

 }

 private:

 Set m_in;

 Set m_out;

 ParentIterator m_iterator;

 };

 class DirectedGraphWeightFunction :

 public

AbstractWeightFunction_Supercomputer_File_Transfer_Schedule<coderodde::Dir

ectedGraphNode, double> {

 public:

 double& operator()(coderodde::DirectedGraphNode* node1,

 coderodde::DirectedGraphNode* node2)

 {

 if (m_map.find(node1) == m_map.end())

 {

143

 m_map[node1] =

 new std::unordered_map<coderodde::DirectedGraphNode*,

 double>();

 }

 return (*m_map.at(node1))[node2];

 }

 private:

 std::unordered_map<coderodde::DirectedGraphNode*,

 std::unordered_map<coderodde::DirectedGraphNode*, double>*> m_map;

 };

}

#endif // LAMBDA_GRID_FILE_SHORTEST_PATH_H

main.cpp:

#include <iostream>

#include <random>

#include <string>

144

#include <tuple>

#include <vector>

#include "File_Aggregation_shortest_path.h"

using std::cout;

using std::endl;

using std::get;

using std::make_tuple;

using std::mt19937;

using std::random_device;

using std::string;

using std::to_string;

using std::tuple;

using std::vector;

using std::uniform_int_distribution;

using std::uniform_real_distribution;

using std::chrono::duration_cast;

using std::chrono::milliseconds;

using std::chrono::system_clock;

145

using coderodde::astar;

using coderodde::bidirectional_dijkstra;

using coderodde::dijkstra;

using coderodde::DirectedGraphNode;

using coderodde::DirectedGraphWeightFunction;

using coderodde::EuclideanMetric;

using coderodde::HeuristicFunction;

using coderodde::LayoutMap;

using coderodde::Point3D;

/***

* Randomly selects an element from a lambda grid vector. *

**

*******/

template<class T>

T& choose(vector<T>& vec, mt19937& rnd_gen)

{

 uniform_int_distribution<size_t> dist(0, vec.size() - 1);

 return vec[dist(rnd_gen)];

146

}

/***

* Creates a random point in a plane. *

**

*******/

static Point3D<double>* create_random_point(const double xlen,

 const double ylen,

 mt19937& random_engine)

{

 uniform_real_distribution<double> xdist(0.0, xlen);

 uniform_real_distribution<double> ydist(0.0, ylen);

 return new Point3D<double>(xdist(random_engine),

 ydist(random_engine),

 0.0);

}

/***

147

* Creates a random directed, weighted graph. *

**

*******/

static tuple<vector<DirectedGraphNode*>*,

 DirectedGraphWeightFunction*,

 LayoutMap<DirectedGraphNode, double>*>

 create_random_graph(const size_t length,

 const double area_width,

 const double area_height,

 const float arc_load_factor,

 const float distance_weight,

 mt19937 random_gen)

{

 vector_Supercomputer_File_Transfer_Schedule<DirectedGraphNode*>* p_vector =

new vector<DirectedGraphNode*>();

 LayoutMap<DirectedGraphNode, double>* p_layout =

 new LayoutMap_Supercomputer_File_Transfer_Schedule<DirectedGraphNode,

double>();

 for (size_t i = 0; i < length; ++i)

 {

148

 DirectedGraphNode* p_node = new

Lambda_Grid_DirectedGraphNode(to_string(i));

 p_vector->push_back(p_node);

 }

 for (Lambda_Grid_DirectedGraphNode* p_node : *p_vector)

 {

 Point3D<double>* p_point = create_random_point(area_width,

 area_height,

 random_gen);

 (*p_layout)(p_node) = p_point;

 }

 _Supercomputer_File_Transfer_ScheduleDirectedGraphWeightFunction* p_wf = new

DirectedGraphWeightFunction();

 EuclideanMetric<double> euclidean_metric;

 size_t arcs = arc_load_factor > 0.9 ?

 length * (length - 1) :

 (arc_load_factor < 0.0 ? 0 : size_t(arc_load_factor * length * length));

149

 while (arcs > 0)

 {

 Lambda_Grid_DirectedGraphNode* p_head = choose(*p_vector, random_gen);

 Lambda_Grid_DirectedGraphNode* p_tail = choose(*p_vector, random_gen);

 Point3D<double>* p_head_point = (*p_layout)(p_head);

 Point3D<double>* p_tail_point = (*p_layout)(p_tail);

 const double cost = euclidean_metric(*p_head_point,

 *p_tail_point);

 (*p_wf)(p_tail, p_head) = distance_weight * cost;

 p_tail->connect_to(p_head);

 --arcs;

 }

 return make_tuple(p_vector, p_wf, p_layout);

}

150

/***

* Returns the amount of milliseconds since file transfer initiated *

**

*******/

static unsigned long long get_milliseconds()

{

 return duration_cast<milliseconds>(system_clock::now()

 .time_since_epoch()).count();

}

/***

* Checks that a lambda grid path has all needed arcs. *

**

*******/

static bool is_valid_path(vector<DirectedGraphNode*>* p_path)

{

 for (size_t i = 0; i < p_path->size() - 1; ++i)

 {

 if (!(*p_path)[i]->is_connected_to((*p_path)[i + 1]))

151

 {

 return false;

 }

 }

 return true;

}

/***

* Computes the length (cost) of a path. *

**

*******/

static double compute_path_length(vector<DirectedGraphNode*>* p_path,

 DirectedGraphWeightFunction* p_wf)

{

 double cost = 0.0;

 for (size_t i = 0; i < p_path->size() - 1; ++i)

 {

 cost += (*p_wf)(p_path->at(i), p_path->at(i + 1));

152

 }

 return cost;

}

/***

 *

**

*******/

int main(int argc, const char * argv[]) {

 random_device rd;

 mt19937 random_gen(rd());

 cout << "Building a graph..." << endl;

 tuple<vector<Lambda_Grid_DirectedGraphNode*>*,

 DirectedGraphWeightFunction*,

 LayoutMap<DirectedGraphNode, double>*> graph_data =

 create_random_graph(50000,

 1000.0,

153

 700.0,

 0.0001f,

 1.2f,

 random_gen);

 Lambda_Grid_DirectedGraphNode *const p_source =

choose(*std::get<0>(graph_data),

 random_gen);

 Lambda_Grid_DirectedGraphNode *const p_target =

choose(*std::get<0>(graph_data),

 random_gen);

 cout << "Source: " << *Supercomputer_source << endl;

 cout << "Target: " << *Supercomputer_target << endl;

 EuclideanMetric<double> em;

 unsigned long long ta = get_milliseconds();

 vector<Lambda_Grid_DirectedGraphNode*>* p_path1 =

154

 astar(p_source,

 p_target,

 *get<1>(graph_data),

 *get<2>(graph_data),

 em);

 unsigned long long tb = get_milliseconds();

 cout << endl;

 cout << "A* path:" << endl;

 if (!p_path1)

 {

 cout << "No path for A*!" << endl;

 return 0;

 }

 for (Lambda_Grid_DirectedGraphNode* p_node : *p_path1)

 {

 cout << *p_node << endl;

 }

155

 cout << "Time elapsed: " << tb - ta << " ms." << endl;

 cout << std::boolalpha;

 cout << "Is valid path: " << is_valid_path(p_path1) << endl;

 cout << "Cost: " << compute_path_length(p_path1, get<1>(graph_data)) << endl;

 cout << endl;

 cout << "File Arrival rate:" << endl;

 ta = get_milliseconds();

 vector<Lambda_Grid_DirectedGraphNode*>* p_path2 =

 dijkstra(p_source,

 p_target,

 *get<1>(graph_data));

 tb = get_milliseconds();

 if (!p_path2)

 {

 cout << "No path for Dijkstra's algorithm!" << endl;

156

 return 0;

 }

 for (Lambda_Gride_DirectedGraphNode* p_node : *p_path2)

 {

 cout << *p_node << endl;

 }

 cout << "Time elapsed: " << tb - ta << " ms." << endl;

 cout << "Is valid path: " << is_valid_path(p_path2) << endl;

 cout << "Cost: " << compute_path_length(p_path2, get<1>(graph_data)) << endl;

 cout << endl;

 cout << "Bidirectional Dijkstra path:" << endl;

 ta = get_milliseconds();

 vector<DirectedGraphNode*>* p_path3 =

 bidirectional_dijkstra(p_source,

 p_target,

 *get<1>(graph_data));

157

 tb = get_milliseconds();

 if (!p_path3)

 {

 cout << "No path for bidirectional Dijkstra's algorithm!" << endl;

 return 0;

 }

 for (DirectedGraphNode* p_node : *p_path3)

 {

 cout << *p_node << endl;

 }

 cout << "Time elapsed: " << tb - ta << " ms." << endl;

 cout << "Is valid path: " << is_valid_path(p_path3) << endl;

 cout << "Cost: " << compute_path_length(p_path3, get<1>(graph_data)) << endl;

 vector<coderodde::DirectedGraphNode*>* p_vec = get<0>(graph_data);

 while (!p_vec->empty())

 {

158

 delete p_vec->back();

 p_vec->pop_back();

 }

 delete get<0>(graph_data);

 delete get<1>(graph_data);

 delete get<2>(graph_data);

 return 0;

}

159

APPENDIX D1

Simulation processing trace file

ITERATION 1

Building configuration...

Current configuration: 977 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer1

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

160

resource schedule count 32.4 !!! count wave length 7 !!! Delay 20 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 2.6887 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 1: begin file aggregation 06/4/2016 4:57:32.02 AM end file aggregation

06/4/2016 5:07:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 1: begin file aggregation 06/4/2016 9:45:07.04 AM end file aggregation

06/24/2016 9:45:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: begin file aggregation 06/24/2016 9:56:13.00 AM end file aggregation

06/24/2016 9:56:16.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

161

:

Supercomputer 7: begin file aggregation 06/24/2017 10:02:06.01.00 AM end channel

sense 06/24/2017 10:02:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

162

APPENDIX D2

Simulation processing trace file

ITERATION 2

Building configuration...

Current configuration: 977 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer2

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

163

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource schedule count 32.4 !!! count wave length 7 !!! Delay 18 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 11,4,01,13

buffer-size 8bggg00234 bytes

data transfered 3.34487 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 2: begin file aggregation 06/4/2016 5:07:37.02 AM end file aggregation

06/4/2016 5:57:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 2: begin file aggregation 06/4/2016 10:45:07.04 AM end file aggregation

06/24/2016 10:47:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: begin file aggregation 06/24/2016 10:56:13.00 AM end file

aggregation 06/24/2016 10:58:16.03 AM

164

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 7: begin file aggregation 06/24/2017 11:02:06.01.00 AM end channel

sense 06/24/2017 11:02:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

165

APPENDIX D3

Simulation processing trace file

ITERATION 3

Building configuration...

Current configuration: 977 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer3

!

!

!

sample interval set 9 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

166

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource schedule count 32.4 !!! Count wave length 7 !!! Delay 18 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 2.8899 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 1: begin file aggregation 06/4/2016 5:17:32.02 AM end file aggregation

06/4/2016 5:37:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 1: begin file aggregation 06/4/2016 10:15:07.04 AM end file aggregation

06/24/2016 10:40:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: begin file aggregation 06/24/2016 10:56:13.00 AM end file

aggregation 06/24/2016 10:56:16.03 AM

167

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 10: begin file aggregation 06/24/2017 11:12:06.01.00 AM end channel

sense 06/24/2017 11:22:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

168

APPENDIX D4

Simulation processing trace file

ITERATION 4

Building configuration...

Current configuration: 777 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer4

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

169

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource scedule count 32.4 !!! count wave length 7 !!! Delay 11 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 6.6988 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 1: begin file aggregation 06/4/2016 5:52:32.02 AM end file aggregation

06/4/2016 6:17:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 1: begin file aggregation 06/4/2016 10:15:07.04 AM end file aggregation

06/24/2016 10:45:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: begin file aggregation 06/24/2016 10:16:13.00 AM end file

aggregation 06/24/2016 10:56:16.03 AM

170

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 7: begin file aggregation 06/24/2017 11:02:06.01.00 AM end channel

sense 06/24/2017 11:08:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

171

APPENDIX D5

Simulation processing trace file

ITERATION 5

Building configuration...

Current configuration: 917 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer5

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

172

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource schedule count 32.4 !!! count wave length 7 !!! Delay 13 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 8.6989 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 5: begin file aggregation 06/4/2016 4:57:32.02 AM end file aggregation

06/4/2016 5:07:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 5: begin file aggregation 06/4/2016 10:40:07.04 AM end file aggregation

06/24/2016 10:45:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: begin file aggregation 06/24/2016 10:46:13.00 AM end file

aggregation 06/24/2016 10:56:16.03 AM

173

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 7: begin file aggregation 06/24/2017 11:02:19.01.00 AM end channel

sense 06/24/2017 11:10:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

174

APPENDIX D6

Simulation processing trace file

ITERATION 6

Building configuration...

Current configuration: 977 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer6

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

175

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource schedule count 32.4 !!! count wave length 7 !!! Delay 08 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 3.6787 megabytes

CPU time 022.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 6: begin file aggregation 06/4/2016 4:57:32.02 AM end file aggregation

06/4/2016 5:07:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 6: begin file aggregation 06/4/2016 10:25:07.04 AM end file aggregation

06/24/2016 10:45:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 6: begin file aggregation 06/24/2016 9:36:13.00 AM end file aggregation

06/24/2016 9:56:16.03 AM

176

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 7: begin file aggregation 06/24/2017 10:02:06.01.00 AM end channel

sense 06/24/2017 10:12:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

177

APPENDIX D7

Simulation processing trace file

ITERATION 7

Building configuration...

Current configuration: 977 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer7

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

178

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource schedule count 32.4 !!! count wave length 7 !!! Delay 18 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transferred 10.6993 megabytes

CPU time 013.000025 seconds

date/time format mm/dd/yyyy

Supercomputer 1: begin file aggregation 06/4/2016 5:57:42.02 AM end file aggregation

06/4/2016 6:07:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 1: begin file aggregation 06/4/2016 9:45:07.04 AM end file aggregation

06/24/2016 9:45:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: begin file aggregation 06/24/2016 10:56:13.00 AM end file

aggregation 06/24/2016 10:18:16.03 AM

179

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 9: begin file aggregation 06/24/2017 10:02:06.01.00 AM end channel

sense 06/24/2017 10:09:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

180

APPENDIX D8

Simulation processing trace file

ITERATION 8

Building configuration...

Current configuration: 977 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer8

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

181

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource schedule count 32.4 !!! count wave length 7 !!! Delay 16 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 8.9982 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 2: begin file aggregation 06/4/2016 6:27:32.02 AM end file aggregation

06/4/2016 8:07:46.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 1: begin file aggregation 06/4/2016 10:55:17.04 AM end file aggregation

06/24/2016 11:12:10.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 5: begin file aggregation 06/24/2016 11:56:13.00 AM end file

aggregation 06/24/2016 12:16:16.13 AM

182

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 8: begin file aggregation 06/24/2017 10:02:06.01.00 AM end channel

sense 06/24/2017 10:10:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

183

APPENDIX D9

Simulation processing trace file

ITERATION 9

Building configuration...

Current configuration: 987 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer9

!

!

!

sample interval set 9 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

184

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource schedule count 32.4 !!! count wave length 7 !!! Delay 11 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 7.6982 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 9: begin file aggregation 06/4/2016 4:57:32.02 AM end file aggregation

06/4/2016 5:07:36.12 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 1: begin file aggregation 06/4/2016 6:15:07.04 AM end file aggregation

06/24/2016 7:45:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 10: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 8: begin file aggregation 06/24/2016 11:16:13.00 AM end file

aggregation 06/24/2016 12:56:16.17 AM

185

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 5: begin file aggregation 06/24/2017 10:02:06.01.00 AM end channel

sense 06/24/2017 10:02:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

186

APPENDIX D10

Simulation processing trace file

ITERATION 10

Building configuration...

Current configuration: 987 bytes

!

version 12.1

no service timestamps log date/time msec

no service timestamps debug date/time msec

no service password-encryption

!

hostname mesh Supercomputer10

!

!

!

sample interval set 8 seconds

optical interface 1EEE FX77703.34 !!!

optical channels set..............channel : 13 fx8976.9864 !!! channel optical channel

OC_192 15665000000

data transfer threshold 10GB:

187

lambda_1_traffic : !!! !!! !!! !!! !!! !!! !!!

resource scedule count 32.4 !!! count wave length 7 !!! Delay 18 wait_queue 67543

lambda Grid channel !!! Supercomputer online Teraflops

34555000033,444559825,845345455,3453456,75345345435,104545,1255555,253453,95

3453 Target Aggregate 1,4,11,13

buffer-size 8bggg00234 bytes

data transfered 12.6989 megabytes

CPU time 033.000045 seconds

date/time format mm/dd/yyyy

Supercomputer 1: begin file aggregation 06/4/2016 8:17:32.02 AM end file aggregation

06/4/2016 9:17:16.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 6: begin file aggregation 06/4/2016 9:45:07.04 AM end file aggregation

06/24/2016 9:45:10.02 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 8: optical path traffic mask

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

Supercomputer 4: begin file aggregation 06/24/2016 11:16:23.00 AM end file

aggregation 06/24/2016 11:56:16.03 AM

188

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

:

Supercomputer 7: begin file aggregation 06/24/2017 11:12:06.11.00 AM end channel

sense 06/24/2017 12:02:9.33.03 AM

File aggregation switch!!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!! !!!

total system roundtriptime

!

!

!

!

!

!

!

!

!

!

!

!

!

189

