

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

An object database (also known as object-oriented database) is a database model in which

information is represented in the form of objects as used in object-oriented programming.

Object-oriented databases are designed and built according to the object-oriented paradigm in

which everything is modeled as objects including the data (Hibatullah, 2016). This type of

data model helps in tackling complex data structures, for instance multimedia content, in a

more natural way and provides a seamless transition from design to conception. According to

object-oriented database system manifesto (Atkinson et. al. 1989), an Object-Oriented

Database Management System (OODBMS) must satisfy two criteria:

i) It should be a Database Management System (DBMS)

ii) It should be an object-oriented system

When database capabilities are combined with Object-Oriented (OO) programming language

capabilities, the result is an Object Database Management System (ODBMS).

Today‟s trend in programming languages is to utilize objects, thereby making Object Oriented

Database Management System (OODBMS) ideal for Object-Oriented programmers because

they can develop the product, store them as objects, and can replicate or modify existing

objects to make new objects within the OODBMS. Information today includes not only text

data but video, audio, graphs, spatial data and photos which are considered complex data

types.

In many cases non-experts confuse Object-based Databases (OBD), Object-Relational

Databases (ORD) with Object-Oriented Datases (OODB) the three may sound similar but

http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Object-oriented_programming

2

they are different and must not be mixed. According to Ogunlere and Idowu (2015) the

different is always there in their features and each have distinct implementation objective.

Many data stored in data warehouses contain mixture of simple and complex data. A

warehouse is a subject-oriented, integrated, non-volatile, time-variant collection of data in

support of management's decisions. It is a collection of decision support technologies, aimed

at enabling the knowledge worker, such as executive, manager, and analyst, to arrive at better

and faster decisions. Data warehouses provide access to data for complex analysis, knowledge

discovery, and decision-making. They support high performance demands on an

organization's data and information. It provides an enormous amount of historical and static

data from three tiers:

1. Relational databases

2. Multidimensional Online Analytical Processing (OLAP) applications

3. Client analysis tools

A data warehouse by itself does not create value, but value comes from the use of the data in

the warehouse.

Advances in hardware and software capability have enabled these complex data to be

captured and manipulated in a digital format. Almost any kind of complex data such as

images, audio, video, geographic maps and three-dimensional graphics can be digitally stored.

For instance an image can be represented as a two-dimensional array of pixels (picture

element) where each pixel contains a numeric property representing its colour or shade of

gray. Digital storage is usually cheaper and more reliable than traditional means such as

paper, film or slides. In addition, digital storage allows easier retrieval and manipulation.

Digital images can be manipulated in an image editor with operations such as cropping,

texturing and colour funning.

3

The ability to store and manipulate complex data does not by itself drive the demand for

object database technology. Rather the need to store large amounts of complex data and

integrate complex data with simple data drives the demand for object database technology and

its communication with object-oriented codes in various applications. Many modern and

computerized organizations and business applications require large amounts of complex data.

For instance JAMB, WAEC, NECO, INEC and even universities records whether online or

off-line require large amount of complex data. Insurance claims, medical records, real estates

and other identity based records can involve large amount of image data. The ability to

simultaneously retrieve complex and simple data is becoming important in many business

applications. For instance to review patient‟s condition, a physician may request x-ray along

with vital statistics. Without integration two separate programs are required to display the

data; an image editor to display the x-rays and a Database management system (DBMS) to

retrieve the vital statistics. The ability to retrieve both image and vital statistics in a single

query is a large improvement. Besides retrieving complex data, new operations also may be

necessary. For instance a physician may want to compare the similarity of a patient‟s x-rays

with x-rays that show abnormalities. In this work new design model will be presented for use

in the development of systems that provids readily solution to the issues of complex and

simple data integration in an organizational system.

1.2 Statement of the Problem

The availability of complex data and the need to integrate it with simple data in a single

DBMS is the main problem calling for the study. The problem of mismatch between the data

types in a Relational Database Management System (RDBMS) and the data types of modern

programming languages makes software more complex and difficult to develop. This

mismatch is more prominent in complex data. Object-oriented programming languages often

4

have richer and dynamic type systems than most Relational Database Management System

(RDBMS) which often have fixed types. Data stores or warehouses need direct matches to

enable it support speedy retrieval required in decision making data content systems. The

problem of the present textual representation of data and file storage of complex data creates

challenge of delayed fetch and reinterpretation of data before use in today‟s data warehouses.

How can this be resolved? How can we design a system for storing complex data to allow

communication between object-oriented DBMS and object-oriented programming data. Many

research have been going on and some progress seem to have been made but there is no any

database that have provided solution to these challenge as at the time of this research.

1.3 Aim and Objectives of the Study

The aim of the research is to design models for object-oriented database and class object

communication in data storage system. The objectives of this research include to:

i) design a formal model for object-oriented database systems

ii) design an Object-Role Model for object-oriented database systems capable of handling

complex data problems in information representation in data store or warehousing

and easy data fetch and management.

iii) implement the Object-Role Model designed using Conference Management System

(CMS) as a Use Case and PHP Programming Language to simplify the integration

of the system.

iv) To evaluate the performance of the model in the conference Management system use

case

1.4 Significance of the study

Many modern business applications require large amounts of complex data. So there is need

to store large amounts of complex data and integrate the complex data with simple data in a

5

single application. There is equally a need to make databases easy to fit in the way modern

programs are developed so that data can be inherited, extended, polymorphed and hiding

(secured) from external programs. There have been attempts at achieving that but it seems that

the lack of a solid theoretical base for the development have made it difficult for the

development of fully object-oriented databases. Most attempts ended in relational database

improvement, object-relational databases and document-oriented databases. The gap that full

object-oriented database can fill still remains open due to the complex nature of modern

objects. Images for instance has moved from uneditable files (.gif), to editable files (.jpg) and

then now to programmable files (.svg) and serialization is changing the way objects and data

can be manipulated. Many developers know the benefits of efficiency in programming that

the combination of complex and simple data offer especially in todays networked computing

environment but most current database still separate them and manipulate them separately or

by using their properties. The major challenge in the development is the theoretical base in

which the system will be developed. The scarcity of foundation for development of fully

object-oriented database system is what the research intend to fill. The models developed in

this project offers clear road map which can be followed in the process of building a fully

object-oriented database. This proposes new ways of storing, manipulating and retrieving

complex and simple data simultaneously and also using Object-Role Modeling to simplify the

design and integration of such system. It also creates awareness of new expectations which

will spur DBMS vendors to create new DBMS‟s that can integrate the formal model

developed in this research in their products. The significance of data in modern life can be

likened to importance of water or air to human life. The biggest concern remains that the

nature of modern data are gradually increasing in images, videos, serialized files, encrypted

documents and other forms of complex data. This is a shift from simple text which older

6

databases have been handling efficiently. In recent time the objects have been handled

separately simply because they can not be integrated. The closet approach to integration have

been in the object-relational databases but the rise of MongoDB a document-oriented database

management system have simply proven that continued separation still holds. Modern

database development researchers and those working in the field of databases management

system development will find the work in this project as a sound base for the improvement on

their research in an attempt to overcome the challenges of complex data handling via object-

oriented database to object-oriented programming seemless communication. Developers will

also benefit by using the concept in the work in solving the new changes which are bound to

come with time so that their application should be compliant to future trends in object-

oriented developments, especially in the area of databases.

1.5 Scope of the Study

The research develops models through system conceptualization that can handle object

(complex) data in a database management environment. It is important to observe that the

work is not on object-relational databases, nor in object databases rather it is on object-

oriented database. The models will be implemented using available tools with an object-

oriented programming language PHP. The research work does not cover the development of

any commercial Object-Oriented Database Management System (OODBMS) or any language

for its communication need. It covers design of a formal model and an Object-role model

which will be the foundation of a real Object-Oriented database that meets with the object-

oriented database specified in the work.

1.6 Limitation of the Study

Object-oriented database management targets complex applications which are often a subject

of research than enterprenuer development; this hindered the sponsorship we would have

7

gotten from local enterprises. The challenge of implementation of the system using DBMS

that have our specification is there, since enterprise databases are not often made up of

complex data content and developing a new DBMS is out of the scope of the research. This

made us to extend functionaliries of available DBMS to accommodate the new specifications

made in the database schema. There are no pure Object-oriented DBMS for use, most are still

research work which we believe that our research will complement and also improve.

1.7 Definition of terms:

Data: are the values of subjects with respect to qualitative or quantitative variables, measured,

collected, analyzed and reported and can be visualized using graphs, images or other analysis

tools. Data as a general concept refers to the fact or pieces of information generated as

activities are carried out in organizations.

Raw Data: is a collection of numbers or characters before it has been "cleaned" and corrected

by researchers. Raw data needs to be corrected to remove outliers or obvious instrument or

data entry errors.

System Data: This is data represented or coded in some form suitable for better usage or

processing by the computer or any electronic system.

Database: Database is a collection of persistent data that can be shared and interrelated, it can

also be generally stored and accessed electronically from a computer system. Where databases

are more complex they are often developed using formal design and modelling techniques.

Database Management System: A database management system (DBMS) is a software that

interacts with end users, applications, the database itself to capture and analyze the data and

provides facilities to administer the database. DBMS are grouped based on the database

model that they support.

8

Data Warehouse: a central repository for summarized and integrated data from operational

database and external data sources. A data warehouse is a system used for reporting and data

analysis and is considered a core component of business intelligence. Data warehouse is a

central repositories of integrated data from one or more disparate sources. They store historic,

current, simple and complex data in one single place. When a different data model is

developed, the aggregation system or schema of the data warehouse is expected to change.

Simple Data: Simple data are often refered to as primitive data types, they are mostly in form

of the normal text data, number and the data form that need no further definition. It also refers

to an arrangement of data in a data base or file in which each grouping of data, such as a

record, is in a form that does not require further definition.

Complex Data: Complex data is often refered to as composite data type. They are any

Data type which can be constructed in a program using the programming language primitive

(simple) data types and other composite types. It is sometimes called a structure or

Aggregate data type, even a class or struct in some programming languages like Java or C.

The act of constructing a complex type is known as composition.

Object: An object can be a variable (data), a data structure, a function or a method. It is a

value in memory referenced by an identifier. It is an instance of a class which is a

combination of variables, functions and data structures. In relational database management, an

object can be a table or column or ab association between data and a database entity.

Object database: An object database is a database management system that represent data

using the basic capabilities for an object: identity, properties, and attributes inherent in object-

oriented paradigm but does not integrate methods with the attributes nor implements data

9

extension (inheritance) and polymorphism. This is often confused with object-oriented

databases.

Object-Oriented Database: An object-oriented database is a database management system

that represents data using both the basic capabilities for an object: identity, properties, and

attributes that are inherent in object-oriented paradigm and also integrate methods with the

attributes and also implements data extension (inheritance) and polymorphism. Data

extensions easily allow developers to build complex data defined as data classes which is not

possible with object databases.

Document-oriented Databases

A document-oriented database is a database management system designed for storing,

retrieving and managing document-oriented information (semi-structured data). They are

often referred to as NoSQL database management Systems. One of the most popular of

NoSQL include key-value store (KVS) and MongoDB. The difference between KVS and

MongoDB lies in the way the data is processed; in a key-value store, the data is considered to

be inherently opaque to the database, whereas MongoDB relies on internal structure in

the document in order to extract metadata that the database engine uses for further

optimization.

Object-relational Database:

Object-relational database is a hybrid of object database management system and relational

database management system that represent data in a table-oriented format using the basic

capabilities for an object: identity, properties, and attributes inherent in object-oriented

paradigm.

Programming Language is a vocabulary and set of grammatical rules for instructing a

computer or computing device to perform specific tasks.

10

Object-Oriented programming is a programming language model organized around objects

rather than “actions” and data rather than logic.

Object Role Modeling (ORM) is a powerful method for designing and querying database

models at the conceptual level, where the application is described in terms easily understood

by non-technical users.

Integration is the act of bringing together smaller components into a single system that

functions as one.

Conceptualization is the process of development and clarification of concepts. In other

words, clarifying one‟s concepts with words and examples and arriving at precise verbal

definitions.

Data integration is the combination of technical and business processes used to combine data

from disparate sources into meaningful and valuable information.

11

CHAPTER TWO

LITERATURE REVIEW

2.1 Theoretical Review

In this section, the theoretical concepts that are related to the research is reviwed. This

provides a clear understanding of both the main terminologies and the theoretical concept

which serve as the foundation upon which the research is based. These area include data,

databases and their past and present mode of design and the database management system that

drives their operations in academics and in the industry.

2.1.1 Data

Data can be defined as values of subjects with respect to qualitative or quantitative variables,

measured, collected, analyzed and reported and can be visualized using graphs, images or

other analysis tools. However, Checkland and Helwell (1998) in their work defined data as

Numbers, characters, images, or other method of recording, in a form which can be

assessed by a human or input into a computer, stored and processed there,

or transmitted on some digital channel. Computers nearly always represent data in binary.

Data on its own has no meaning, only when interpreted by some kind of data processing

system that it takes on meaning and become information. In computing, data is information

that has been translated into a form that is more convenient to move or process. Relative to

today's computers and transmission media, data is information converted into binary

digital form. A common way of representing or displaying a set of correlated data is through

table type structures comprised of rows and columns. In such structures, the columns of the

table generally signify attributes or characteristics or features and the rows (tuple) signify a

set of co-related features belonging to one single item (Hibatullah, 2016). This table type

structures are often refered to as Databases.

12

 2.1.1.1 Simple Data: Simple data types are mostly in form of the normal text data, number

and the data often referred to in programming languages as primitive data types. Most

relational database management systems (RDBMS) support only few data types. Common

data types supported in Structure Query Language (SQL) 2 include whole numbers (integer),

real numbers, fixed precision numbers (currency), dates, times and text. These data types are

“simple” data. They are sufficient for many business applications or at least significant parts

of many applications. Many business databases contain fields for names, prices, addresses and

transaction dates that readily conform to the primitive data types (Garvey and Jackson, 2010).

2.1.1.2 Complex Data: Complex data types are in form of video, spatial types or the data

types referred to in programming languages as “struct”, user defined or class types. It can also

be the combination of simple data types with the core complex data types. There are several

modern applications that require blobs, images, video clips, maps and other spatial data

formats which are “complex” compared to the textual data. Presently many applications store

these complex data as files instead of keeping them as part of the database. Some developers

argue that it is alright keeping them as files simply because the present databases do not make

full provision for them to be store as part of the databases. This group of developers quickly

forgot that text and dates where formally stored in files and PC clock marks before the advent

of relational databases and that some developers in those days might have argued for allowing

things to remain in the classical file system. Today all users and developers appreciate the

relational database compared to the file system (Garvey and Jackson, 2010).

2.1.2 Database

A database is a system intended to organize, store, and retrieve large amounts of data easily. It

consists of an organized collection of data for one or more uses, typically in digital form. One

way of classifying databases involves the type of their contents, for example: bibliographic,

http://en.wikipedia.org/wiki/Data

13

document-text, statistical (Aljanaby et al., 2005). Advances in data format and application

development have called for development of various databases that suit varying development

conditions and real world application needs. Some of these databases become more popular

than others or even look similar to others but they are unique in many respects in their

development and target usage. Some of these include: relational databases, document-oriented

databases, object databases, object-relational databases and object-oriented databases. The

databases have their benefits based on the need and on the area of application. Small

organization and large offline companies may prefer relational databases because of its ease

of use and ability to handle large data offline. In contrast online businesses would prefer

document oriented databases due largely to their scalability and robustness. Geospatial

companies may prefer object-relational databases due to its emphasis on objects and query of

data stored with the objects. Users who want to integrate system operations to data need

object abstraction and operation bundling which has made research into field of object-

oriented databases an interesting and relevant one to database developers, software experts

and the academic community.

2.1.2.1 Relational Databases

In 1970, Edgar F. Codd published a paper “A Relational Model of Data for Large Shared Data

Banks” (Codd, 1970), where he proposed a relational database model. This model was aimed

to solve problems that appeared with the evolution of technology, applications and the amount

of data they were dealing with. New innovative concepts were proposed like:

i) Concept of table with structured data by type (columns) and tuples or registers (rows).

ii) Table relationships as primary key - foreign key.

iii) Formal foundation based on set theory with algebraic and calculus-based techniques

for querying data.

14

With all the new possibilities relational databases offered, applications with new domains,

demands and requirements appeared. This lead to the development of Structured Query

Language (SQL) a declarative language used in manipulating the relational databases. These

was very much adequate for its time due to the fact that the languages that where driving

them, some of which include C, Pascal, Basic, Perl and many other programming language

used then, where also declarative programming languages. Languages like C++, PHP and

Java at is earlier years also joined the bandwagon of declarative programming languages.

There are serious changes now and the classical declarative languages are improved to be

highly object-oriented and functional programming languages. In addition, interacting with

SQL from modern Java is not straightforward neither from the developer‟s point of view

(approximately 30% of the code and effort is used in conversion (Henderson-Sellers and

Edwards, 1994) nor from the machine‟s (SQL cannot be interpreted by the compiler). These

challenges have continued to widen as the Java language progresses from Java 5 to Java 11.

2.1.2.2 Document-oriented Databases

A document-oriented database is a database management system designed for storing,

retrieving and managing semi-structured data. They store data as binary JavaScript Object

Notation - JSON (BJSON) formatted documents. Unlike the relational databases which

manages structured data in tables, document-oriented databases handle semi structured

documents usually collected in streams over the internet without using structured query

(Jaspreet et al., 2013). They are often referred to as No Structured Query Language (NoSQL)

database management Systems. One of the most popular of document-oriented databases is

MongoDB. MongoDB relies on internal structure in the document in order to extract

metadata that the database engine uses for further optimization (Adam, 2015). It is believed

that NoSQL databases are faster than relational databases because they don‟t typically follow

15

a predefined schema or enforce data consistency as strictly as relational databases. In addition,

JSON is easily readable by both human and machine and use minimal storage space.

MongoDB is an open-source, document-oriented, NoSQL database program. Developers

involved with the traditional, relational databases for long, the idea of a document-oriented,

NoSQL database might indeed sound peculiar. MongoDB was developed by MongoDB Inc,

and it is scalable and flexible. MongoDB stores data in JSON-like documents that can vary in

structure. A document in a NoSQL database corresponds to a row in an SQL database. A

group of documents together is known as a collection, which is roughly synonymous with a

table in a relational database (Adam, 2015).

Apart from being a NoSQL database, MongoDB has a few qualities of its own which have

been listed below:

i) it‟s easy to install and set up

ii) it uses a BSON (a JSON-like format) to store data

iii) it‟s easy to map the document objects to a developers application code

iv) it claims to be highly scalable and available, and includes support for out-of-the-box

replication

v) it supports MapReduce operations for condensing a large volume of data into useful

aggregated results

vi) it‟s free and open source

2.1.2.3 Object Databases

An object database is often confused with object-oriented database but there is a major

difference in the two databases though many tend to confuse the two databases. An Object

database is a database model in which data is represented using the basic capabilities for an

object: identity, properties, and attributes inherent in object-oriented paradigm but does not

16

integrate methods with the attributes nor implements data extension (inheritance) and

polymorphism. This is often confused with object-oriented databases which uses similar

model but its data representation integrates the operational part. An object database stores

complex data and relationships between data directly, without mapping to relational rows and

columns, and this makes them suitable for applications dealing with very complex data

(Gupta, 2009).

Objects have a many-to-many relationship and are accessed by the use of pointers. Pointers

are linked to objects to establish relationships.

Object database management system (ODBMS) is the database management system used by

object databases. As the usage of web-based technology increases with the implementation of

Intranets and extranets, companies have a vested interest in ODBMS to display their data.

Using an ODBMS that has been specifically designed to store data as objects gives an

advantage to those companies that are geared towards multimedia presentation or

organizations that utilize computer-aided design (CAD) (O‟Brien and Marakas, 2009).

Some object databases are designed to work well with object-oriented programming

languages such as Ruby, Python, Perl, Java, C#, Visual Basic .NET, C++, Objective-C and

Smalltalk; others have their own programming languages.

Object database management systems grew out of research during the early to mid-1970s into

having intrinsic database management support for graph-structured objects. The term "object

database system" first appeared around 1985 (Maier et al., 1985). Notable research projects

included Encore-Ob/Server (Brown University), EXODUS (University of Wisconsin–

Madison), IRIS (Hewlett-Packard), ODE (Bell Labs), ORION (Microelectronics and

http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Objective-C
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Brown_University
http://en.wikipedia.org/wiki/University_of_Wisconsin%E2%80%93Madison
http://en.wikipedia.org/wiki/University_of_Wisconsin%E2%80%93Madison
http://en.wikipedia.org/wiki/Bell_Labs
http://en.wikipedia.org/wiki/Microelectronics_and_Computer_Technology_Corporation
http://en.wikipedia.org/wiki/Microelectronics_and_Computer_Technology_Corporation

17

Computer Technology Corporation or MCC), Vodak (GMD-IPSI), and Zeitgeist (Texas

Instruments). The ORION project had more published papers than any of the other efforts.

Won Kim of MCC compiled the best of those papers in a book published by The MIT Press

(Kim, 1990).

Early commercial products included Gemstone (Servio Logic, name changed to GemStone

Systems), Gbase (Graphael), and Vbase (Ontologic). The early to mid-1990s saw additional

commercial products enter the market. These included ITASCA (Itasca Systems), Jasmine

(Fujitsu, marketed by Computer Associates), Matisse (Matisse Software), Objectivity/DB

(Objectivity, Inc.), ObjectStore (Progress Software, acquired from eXcelon which was

originally Object Design), ONTOS (Ontos, Inc., name changed from Ontologic), O2

(Bancilhon et al., 1992) (O2 Technology, merged with several companies, acquired by

Informix, which was in turn acquired by IBM), POET (now FastObjects from Versant which

acquired Poet Software), Versant Object Database (Versant Corporation), VOSS (Logic Arts)

and JADE (Jade Software Corporation). Some of these products remain on the market and

have been joined by new open source and commercial products such as IntersystemCACHÉ.

Object database management systems added the concept of persistence to object programming

languages. The early commercial products were integrated with various languages: GemStone

(Smalltalk), Gbase (LISP), Vbase (COP) and VOSS (Virtual Object Storage System for

Smalltalk). For much of the 1990s, C++ dominated the commercial object database

management market. Vendors added Java in the late 1990s and more recently, C#.

Starting in 2004, object databases have seen a second growth period when open source object

databases emerged that were widely affordable and easy to use, because they are entirely

http://en.wikipedia.org/wiki/GemStone_Systems
http://en.wikipedia.org/wiki/Objectivity/DB
http://en.wikipedia.org/wiki/ObjectStore
http://en.wikipedia.org/wiki/Progress_Software
http://en.wikipedia.org/wiki/IBM
http://www.versant.com/developer
http://www.versant.com/
http://en.wikipedia.org/wiki/JADE_(programming_language)
http://www.jadeworld.com/jade
http://en.wikipedia.org/wiki/InterSystems
http://en.wikipedia.org/wiki/InterSystems
http://en.wikipedia.org/wiki/InterSystems
http://en.wikipedia.org/wiki/Persistence_(computer_science)
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/LISP_programming_language
http://en.wikipedia.org/wiki/C_Object_Processor
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Open_source

18

written in OOP languages like Smalltalk, Java or C#, such as db4o (db4objects), DTS/S1

from Obsidian Dynamics and Perst (McObject), available under dual open source and

commercial licensing (Gupta,2009).

2.1.2.4 Adoption of Object Databases

Object databases based on persistent programming acquired a niche in application areas such

as engineering and spatial databases, telecommunications, and scientific areas such as high

energy physics and molecular biology. They have made little impact on mainstream

commercial data processing, though there is some usage in specialized areas of financial

services (Gupta, 2009). It is also worth noting that object databases held the record for the

World's largest database (being the first to hold over 1000 terabytes at Stanford Linear

Accelerator Center) and the highest ingest rate ever recorded for a commercial database at

over one Terabyte per hour (Garvey and Jackson, 2010).

Another group of object databases focuses on embedded use in devices, packaged software,

and real-time systems.

2.1.2.5 Technical Features of Object Databases

Most object databases also offer some kind of query language, allowing objects to be found

by a more declarative programming approach. It is in the area of object query languages, and

the integration of the query and navigational interfaces, that the biggest differences between

products are found. An attempt at standardization was made by the ODMG with the Object

Query Language, (OQL).

Access to data can be faster because joins are often not needed (as in a tabular implementation

of a relational database). This is because an object can be retrieved directly without a search,

by following pointers. (It could, however, be argued that "joining" is a higher-level

abstraction of pointer-following.)

http://en.wikipedia.org/wiki/Db4o
http://en.wikipedia.org/wiki/Perst
http://en.wikipedia.org/wiki/Open_source

19

Another area of variation between products is in the way that the schema of a database is

defined. A general characteristic, however, is that the programming language and the database

schema use the same type definitions.

Multimedia applications are facilitated because the class methods associated with the data is

responsible for its correct interpretation.

Many object databases, for example VOSS, offer support for versioning. An object can be

viewed as the set of all its versions. Also, object versions can be treated as objects in their

own right. Some object databases also provide systematic support for triggers and constraints

which are the basis of active databases.

The efficiency of such a database is also greatly improved in areas which demand massive

amounts of data about one item. For example, a banking institution could get the user's

account information and provide them efficiently with extensive information such as

transactions, account information entries etc. The Big O Notation for such a database

paradigm drops from O(n) towards O(1), greatly increasing efficiency in these specific cases

(Gupta, 2009).

2.1.2.6 Object-Relational Databases

Object-relational database is a hybrid of object database management system and relational

database management system. The object-relational database model represent data in a table

format using the basic capabilities for an object: identity, properties, and attributes inherent in

object database management system format. The problems and inconvenients that integrating

OOPLs and SQL produced, lead to a new group of research in databases which were aimed at

improving the integration between objects and SQL. The result of this research gave rise to

what we known as Object-Relational Databases (ORDB) (Eric et al.,2003).

20

There are needs that the ORDB are expected to provide solution for which includes

i) Provide support for rich object structures and rules

Rich object structures are complex data elements such as arrays, enumeration, sets and maps

but also refer to text data and spatial data. On the other side, developer should be able to

create a set of rules on data elements, records and collections, e.g. constraints for referential

integrity.

ii) Must subsume second generation DBMSs

The term second generation DBMSs refers to classic relational databases. This tenet refers to

the fact that second generation DBMSs made a major contribution in two main aspects: non-

procedural access and data independence, hence those should be maintained in ORDBs.

iii) Must be open to other subsystems

Prospect to new functionalities: like decision support tools, access from many programming

languages, interfaces to business graphic packages, ability to run application from different

machine from the database and distribution of databases (Klettke and Meyer, 2000)

The challenges lead to the need for new database systems that can fit the needs and

integration of OOPLs, but keeping the same base as it was in relational model. In other words,

there was a need of new tools to "hide" all the complexities this integration lead to.

The need call for several research in the area of

Object-oriented databases but till now non seem to be widely accepted and deployed by the

enterprise world who are the largest consumers of database products. Some of the attempts

that are worthy of mention include: Db4o, ObjectDB and Objectivity just to mention a few

and many other research that are still ongoing.

21

There is a need to point out certain gray issues here, the similarity and differences between

Object-Relational Databases which was an attempt to marry object-orientation with relational

database features and Object-oriented Databases which is aimed at a total shift from relational

data modeling to entirely object-oriented data model. Many database experts often confuse an

Object-relational database research with Object-oriented database research may be due to the

fact that the two are all „‟Object‟‟ inclined. The similarity however is that both Object-

relational database and Object-oriented database research are aiming to solve similar

problems identified in Relational databases.

Object-relational database research is ahead of Object-oriented database research probably

because major DB distributers and enterprise users already had a fully functional relational

database (second generation), and adding new object support over it was easier than building

a new database from scratch.

In db4o, objects are stored directly as seen by the program, this means that the code (classes)

is the database schema, there‟s no need for mappings. This means that elements like object

identity, associations, inheritance and complex objects are automatically stored without need

of further configuration, this is known as orthogonal or transparent persistence. In other to

retrieve objects from the database Db4o use Object Identifier (OID) or Query. In OID each

object has associated an unique OID, same as RID on relational databases, and it is possible to

directly retrieve an object by its OID. In query retrieval Db4o attempts to query attributes of

its class, using Query By Example (QBE) and recently developing its own Native Queries

(NQ) (Han, et al.,2003).

22

2.2 Review of Related Works

According to Hibatullah, (2016) an object-oriented database is a database management system

that represent data using both the basic capabilities for an object: identity, properties, and

attributes that is inherent in object-oriented paradigm and also integrate methods with the

attributes and also implements data extension (inheritance) and polymorphism. Data extension

easily allow developers to build complex data defined as data classes which is not possible

with object databases.

On the early 1990, Radding (1995) posited that since Object Oriented Programming

Languages (OOPL) began to develop with new functionalities like: user-defined classes,

methods, encapsulation, polymorphism and inheritance there is a need to also point databases

. Those OOPL have the ability to map very complex conceptual models into classes and

relationships between them, the main problem comes when all this objects in memory have to

be made persistent in the relational model (also known as impedance mismatch).

The main objective of Object-Oriented Database Management Systems, commonly known as

OODBMS, is to provide consistent, data independent, secure, controlled and extensible data

management services to support the object-oriented model. They were created to handle big

and complex data that relational databases could not.

There are important characteristics involved with object-oriented databases. The most

important characteristic is the joining of object-oriented programming with database

technology, which provides an integrated application development system. Object-oriented

programming results in four main characteristics: inheritances, data encapsulation, object

identity, and polymorphism. Inheritance allows one to develop solutions to complex problems

incrementally by defining new objects in terms of previously defined objects (ODBMS,

2013).

23

When database capabilities are combined with object-oriented (OO) programming language

capabilities, the result is an object database management system (ODBMS).

Fig2.1: A simple Object-oriented Database Model (Data Integration Glossary , 2001)

Today‟s trend in programming languages is to utilize objects, thereby making OODBMS ideal

for OO programmers because they can develop the product, store them as objects, and can

replicate or modify existing objects to make new objects within the OODBMS (ODBMS,

2013). Information today includes not only data but video, audio, graphs, and photos which

are considered complex data types. Relational DBMS aren‟t natively capable of supporting

these complex data types. By being integrated with the programming language, the

programmer can maintain consistency within one environment because both the OODBMS

and the programming language will use the same model of representation. Relational DBMS

projects using complex data types would have to be divided into two separate tasks: the

database model and the application.

Data encapsulation or simply encapsulation allows the hiding of the internal state of the

objects. Encapsulated objects are those objects that can only be assessed by their methods

24

instead of their internal states. There are three types of encapsulated objects users and

developers should recognize. The first is full encapsulation, in which all the operations on

objects are done through message sending and method execution. The second is write

encapsulation, which is where the internal state of the object is visible only for reading

operations. The third is partial encapsulation, which involves allowing direct access for

reading and writing for only a part of the internal state.

Object identity allows objects of the database to be independent of each other. Polymorphism

and dynamic binding allow one to define operations for one object and then to share the

specification of the operation with other objects. This allows users and/or programmers to

compose objects to provide solutions without having to write code that is specific to each

object.

The language important to OODBMS is Data Definition and Manipulation Language

(DDML). The use of this language allows persistent data to be created, updated, deleted, or

retrieved. An OODBMS needs a computational versus a relational language because it can be

used to avoid impedance mismatch. DDML allows users to define a database, including

creating, altering, and dropping tables and establishing constraints. DDMLs are used to

maintain and query a database, including updating, inserting, modifying, and querying data

(ODBMS,2013).

The OODBMS has many advantages and benefits. First, object-oriented is a more natural way

of thinking. Second, the defined operations of these types of systems are not dependent on the

particular database application running at a given moment. Third, the data types of object-

oriented databases can be extended to support complex data such as images, digital and

25

audio/video, along with other multi-media operations (Hibatullah, 2016). Different benefits of

OODBMS are its reusability, stability, and reliability. Another benefit of OODBMS is that

relationships are represented explicitly, often supporting both navigational and associative

access to information. This translates to improvement in data access performance versus the

relational model.

Another important benefit is that users are allowed to define their own methods of access to

data and how it will be represented or manipulated. The most significant benefit of the

OODBMS is that these databases have extended into areas not known by the Relational

Database Management System (RDBMS). Medicine, multimedia, and high-energy physics

are just a few of the new industries relying on object-oriented databases.

As with the relational database method, object-oriented databases also have disadvantages or

limitations. One disadvantage of OODBMS is that it lacks a common data model. There is

also no current standard, since it is still considered to be in the development stages.

The main benefit of creating a database with objects as data is speed. OODBMS are faster

than relational DBMS because data isn‟t stored in relational rows and columns but as objects

(Radding, 1995). Objects have a many to many relationship and are accessed by the use of

pointers. Pointers are linked to objects to establish relationships. Another benefit of

OODBMS is that it can be programmed with small procedural differences without affecting

the entire system (Burleson, 1994). This is most helpful for those organizations that have data

relationships that aren‟t entirely clear or need to change these relations to satisfy the new

business requirements.

26

Benchmarks between OODBMSs and RDBMSs have shown that an OODBMS can be clearly

superior for certain kinds of tasks. The main reason for this is that many operations are

performed using navigational rather than declarative interfaces, and navigational access to

data is usually implemented very efficiently by following pointers.

Compared to relational databases another major advantage of OODBMSs is that they do not

need any object relational mapping layer and object marshaling to map the application object

model to the database object model. In RDBMS, this mapping is also source of the impedance

mismatch, which does not occur when using OODBMS. Avoiding this layer also improves

performance and saves effort for implementation and maintenance.

Critics of navigational database-based technologies like ODBMS suggest that pointer-based

techniques are optimized for very specific "search routes" or viewpoints; for general-purpose

queries on the same information, pointer-based techniques will tend to be slower and more

difficult to formulate than relational. Thus, navigation appears to simplify specific known

uses at the expense of general, unforeseen, and varied future uses. However, with suitable

language support, direct object references may be maintained in addition to normalized,

indexed aggregations, allowing both kinds of access; furthermore, a persistent language may

index aggregations on whatever its content elements return from a call to some arbitrary

object access method, rather than only on attribute value, which allows a query to 'drill down'

into complex data structures.

Other things that work against ODBMS seem to be the lack of interoperability with a great

number of tools/features that are taken for granted in the SQL world, including but not limited

to industry standard connectivity, reporting tools, OLAP tools, and backup and recovery

http://en.wikipedia.org/wiki/RDBMS
http://en.wikipedia.org/wiki/Navigational_database
http://en.wikipedia.org/wiki/Declaration_(computer_science)
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://en.wikipedia.org/wiki/Navigational_database
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Interconnectivity
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Backup
http://en.wikipedia.org/wiki/Recovery

27

standards (Garvey and Jackson,2010). Additionally, object databases lack a formal

mathematical foundation, unlike the relational model, and this in turn leads to weaknesses in

their query support. However, this objection is offset by the fact that some ODBMSs fully

support SQL in addition to navigational access, e.g. Objectivity/SQL++, Matisse, and

InterSystems CACHÉ. Effective use may require compromises to keep both paradigms in

sync.

In fact there is an intrinsic tension between the notion of encapsulation, which hides data and

makes it available only through a published set of interface methods, and the assumption

underlying much database technology, which is that data should be accessible to queries

based on data content rather than predefined access paths. Database-centric thinking tends to

view the world through a declarative and attribute-driven viewpoint, while OOP tends to view

the world through a behavioral viewpoint, maintaining entity-identity independently of

changing attributes. This is one of the many impedance mismatch issues surrounding OOP

and databases.

2.2.1 Object Database Technology

As advances in computer-related technology improve, increasingly larger files are able to be

created, transmitted, and stored electronically. It thus becomes more apparent that object-

oriented technology and object-oriented databases in particular, are needed to warehouse the

files or “objects.” About 88 percent of organizations use relational databases, yet about 55

percent plan to acquire object-oriented databases at some point in the future (Betts, 1997).

Management should therefore plan carefully and understand the benefits of object-oriented

technology.

http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/InterSystems
http://en.wikipedia.org/wiki/Encapsulation_(computer_science)
http://en.wikipedia.org/wiki/Database-centric
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

28

According to Martin and Leben (1995) Most widely used database software uses some form

of client/server technology with relational databases. The relational database paradigm,

whether centralized or distributed, maintains that only data, and not procedures, should be

stored. A major objective of conventional database technology is to make the data completely

independent from the procedures. A recently developed form of database, called an object-

oriented database, is becoming more frequently used. In contrast to the relational database

model, an object-oriented database stores objects, which consist of data as well as procedures

(methods) that are used to perform operations on data.

In general terms, an object has a group of characteristics that can be stored as data, which can

then be processed as information in a number of ways (Hernandez, 1997). Large-scale

database management systems (DBMS) are increasingly in demand to support groups of users

in collaborative work environments (Huh et al, 1999). Since database models change along

with the reality that is captured in them, their dependent models and views should also evolve.

Object-oriented approaches to programming were introduced as early as 1966 with the

emergence of the simulation language Simula67 (Schach, 1996). At the time Simula67 was

introduced, the technology was considered too radical for practical use. It basically lay

dormant until the early 1980‟s when it was essentially resurrected within the context of

modularity.

2.2.2 List of Object-Oriented Technology

Object-oriented technologies in use today include object-oriented programming languages

(e.g., C++ and Smalltalk), object-oriented database systems,

29

Object-oriented user interfaces (e.g., Macintosh and Microsoft window systems, Frame and

Interleaf desktop publishing systems), etc. An object-oriented technology is a technology that

makes available to the users facilities that are based on “object-oriented concepts”. To define

“object-oriented concepts”, we must first understand what an “object” is.

The term “object” means a combination of “data” and “program” that represent some real-

world entity. For example, consider an employee named Tom; Tom is 25 years old, and his

salary is N25,000. Then Tom may be represented in a computer program as an object. The

“data” part of this object would be (name: Tom, age: 25, salary: N25,000).The “program” part

of the object may be a collection of programs (hire, retrieve the data, change age, change

salary, fire). „The data part consists of data of any type. For the Tom object, String is used for

the name, integer for age, and monetary for Salary; but in general, even any user-defined type,

such as employee may be used. In the Tom object, the name, age, and salary are called

attributes of the object.

Often, an object is said to “encapsulate” data and program. This means that the users cannot

see the inside of the object “capsule”, but can use the object by calling the program part of the

object. This is not much different from procedure calls in conventional programming; the

users call a procedure by supplying values for input parameters and receive results in output

parameters.

The term object-oriented roughly means a combination of object encapsulation and

inheritance. The team “inheritance” is sometimes called “reuse”. Inheritance means roughly

that a new object may be created by extending an existing object. Now let us understand the

term “inheritance” more precisely. An object has a data part and a program part. All objects

30

that have the same attributes for the data part and same program part are collectively called a

class (or type). The classes are arranged such that some class may inherit the attributes and

program part from some other classes.

Tom, Dick, and Harry arc each an Employee object. The data part of each of these objects

consists of the attributes Name, Age and Salary. Each of these Employee objects has the

.same program part (hire, retrieve the data, change age, change salary, fire). Each program in

the program part is called a “method”. The term “class” refers to the collection of all objects

that have the same attributes and methods. In our example, the Tom, Dick, and Harry objects

belong to the class Employee, since they all have the same attributes and methods. This class

may be used as the type of an attribute of any object. At this time, there is only one class in

the systems, namely, the class Employee; and three objects that belong to the class, namely,

Tom, Dick, and Harry objects.

Suppose that a user wishes to create two sales employees, John and Paul. But sales employees

have an additional attribute, namely, Commission. The sales employees cannot belong to the

class Employee. However, the user can create a new class, sales-Employee, such that all

attributes and methods associated with the class Employee may be reused and the attribute

Commission may be added to Sales-Employee. The user does this by declaring the class

Sales-Employee to be a subclass of the class Employee. The user can now proceed to create

the two sales employees as objects belonging to the class Sales Employee. The users can

create new classes as subclasses of existing classes. In general, a class may inherit from one

or more existing classes, and the inheritance structure of classes becomes a directed acyclic

graph (DAG); but for simplicity, the inheritance structure is called an inheritance hierarchy or

class hierarchy.

31

The power of object –oriented concepts is delivered when encapsulation and inheritance work

together.

- Since inheritance makes it possible for different classes to share the same set of attributes

and methods, the same program can be run against objects that belong to different

classes. This is the basis of the object-oriented user interface that desktop publishing

systems and windows management systems provide today. The same set of programs

(e.g., open, close, drop, create, move, etc.) apply to different types of data (image, text

file, audio, directory, etc.).

- If the users define many classes, and each class has many attributes and methods, the

benefit of sharing not only the attributes but also the programs can be dramatic. The

attributes and programs need not be defined and written from scratch. Adding attributes

and methods of existing classes, thereby reducing the opportunity to introduce new errors

to existing classes, can create new classes.

- The concept of inheritance was first introduced in Simula67. Inheritance is supported by

most object-oriented programming languages, such as C++. The benefit of the concept of

inheritance is that new data types can be defined as extensions of previously defined

types, thereby avoiding the need to have to define new data types from scratch for each

new project. To put it simply, inheritance derives a new data type from an existing data

type.

- The two main reasons for the rapid increase in interest in object-oriented programming

over the last several years for applications software development have been (a) the wider

availability of these languages plus supporting environments for the object-oriented

32

paradigm, and (b) the emergence of increasingly higher powered hardware (Henderson-

Sellers and Edwards, 1994).

- A formal proposal for what constitutes an object-oriented database was developed in

1989 at the First International Conference on Deductive and Object-oriented Databases

(Henderson-Sellers and Edwards, 1994). What was agreed upon at and subsequent to the

conference was a list of the features that an object-oriented database should support.

According to Martin and Leben (1995), object-oriented databases will probably coexist, rather

than replace, relational databases, because each has features that are beneficial. The important

features of relational databases include security and integrity, but businesses cannot operate

while relying only on the data types available in relational databases as they represent only

about 10 percent of the data that is available for storage (Betts, 1997). Some companies may

choose to hybridize by putting pure object front-ends on relational databases, thereby gaining

the development benefits of objects and the security benefits of relational databases.

The technology for object-oriented databases first evolved from a need to support object-

oriented programming. C++ programmers needed a store for data that remained after a

process terminated. According to Martin and Leben (1995), object-oriented databases became

important for certain types of applications with complex data, such as computer-aided design

(CAD) and computer-aided engineering (CAE). Understanding the benefits of object-oriented

technology over older technologies (Martin and Odell, 1992) can help management

understand the potential strengths of object-oriented databases.

1. Designers think in terms of behavior of objects, not small details. Encapsulationallows

the small details to be hidden and makes complex classes easy to use.

33

2. Classes are designed so that they can be reused again and again. To make the most or

reuse, classes can be built so that they can be customized.

3. Classes designed for repeated reuse are more stable.

4. Software built from stable classes is likely to have fewer bugs than software built from

scratch

5. Applications are created from preexisting parts, thereby improving the speed of design

time.

6. Designs are often of higher quality because they are created from already-proven

components.

7. Programs built of smaller pieces are easier to create.

8. Object-oriented analysis may model the enterprise or application area in a way that is

closer to reality than conventional analysis.

9. Object-oriented methodologies encourage better communication between

programmers and lay clients, because clients think in terms of objects and events

rather than in traditional programming structures.

10. A graphical user interface is beneficial because it is easier to click on an icon than to

remember numerous commands.

11. Classes are designed to be independent of platforms, hardware, and software

environments.

12. It may be easier to share software from numerous vendors. Also, software developed

independently by different vendors should be able to work together and appear as a

single unit to the end user.

34

13. Benefits can be realized in client-server computing: a server class may be used by

many different clients, and these clients access server data with the class methods,

thereby helping ensure that the data is not corrupted.

14. Object-oriented design is the key to large-scale distributed computing. Classes in one

machine will interact with classes in other machines without needing to know where

the classes reside.

15. Parallel computing means that objects on different processors will be able to execute

at the same time, each acting independently.

16. There is a higher level of database automation with an object-oriented design. The

data structures in object-oriented databases are linked to methods that take automatic

actions. In a sense, an object-oriented database has intelligence built into it in the form

of methods, whereas a basic relational database does not.

17. Object-oriented databases have demonstrated significantly higher performance than

relational databases for certain applications with very complex data structures.

18. Businesses can conveniently create their own libraries of classes that reflect their

company standards and application needs, and can add to these libraries as policies

and needs change.

Despite the benefits of object-oriented technology, it may take some businesses longer to

adapt than others. Consider companies in the insurance industry. According to representatives

of Miller Freeman, Inc. (1999), many insurance companies would like to convert from

COBOL mainframe-based applications to component-based object-oriented frameworks, but

are indecisive due to the complexity and costs of such a project. One strategy, perhaps, is to

externalize certain business functions such as billing, rating, reporting, and underwriting, by

35

building these as stand-alone components through object-oriented development technology

and object-oriented programming.

2.2.3 Data Warehouse

Information Technology (IT) has historically influenced organizational performance and

competitive standing. The increasing processing power and sophistication of analytical tools

and techniques have put the strong foundation for the product called data warehouse. There

are a number of reasons that any organization should consider a data warehouse, which can be

the critical tool for maximizing the organization‟s investment in the information it has

collected and stored throughout the enterprise. IT managers need to understand the rationale

and benefits of data warehouses because they may need to design and implement, or procure

this kingpin of business intelligence.

A data warehouse is a repository (collection of resources that can be accessed to retrieve

information) of an organization's electronically stored data, designed to facilitate reporting

and analysis (Inmon, 1995).

A data warehouse is also defined as a subject-oriented, integrated, nonvolatile, time-variant

collection of data in support of management's decisions. A common way of introducing data

warehousing is to refer to the characteristics of a data warehouse as set forth by William

Inmon (1995).

This definition of the data warehouse focuses on data storage. The main source of the data is

cleaned, transformed and cataloged and is made available for use by managers and other

business professionals for data mining, online analytical processing, market research and

decision support (O‟Brien and Marakas, 2009). However, the means to retrieve and analyze

data, to extract, transform and load data, and to manage the data dictionary are also

considered essential components of a data warehousing system.

http://en.wikipedia.org/wiki/Information_repository
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/OLAP
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Data_dictionary

36

The data warehouses are supposed to provide storage, functionality and responsiveness to

queries beyond the capabilities of today's transaction-oriented databases. Also data

warehouses are set to improve the data access performance of databases. Traditional databases

balance the requirement of data access with the need to ensure integrity of data. In present day

organizations, users of data are often completely removed from the data sources. Many people

only need read-access to data, but still need a very rapid access to a larger volume of data than

can conveniently by downloaded to the desktop. Often such data comes from multiple

databases. Because many of the analyses performed are recurrent and predictable, software

vendors and systems support staff have begun to design systems to support these functions.

Currently there comes a necessity for providing decision makers from middle management

upward with information at the correct level of detail to support decision-making. Data

warehousing, Online Analytical Processing (OLAP) and data mining provide this

functionality.

2.2.3.1 Subject Oriented

Data warehouses are designed to help you analyze data. For example, to learn more about

your company's sales data, you can build a warehouse that concentrates on sales. Using this

warehouse, you can answer questions like "Who was our best customer for this item last

year?" This ability to define a data warehouse by subject matter, sales in this case makes the

data warehouse subject oriented.

2.2.3.2 Integrated

Integration is closely related to subject orientation. Data warehouses must put data from

disparate sources into a consistent format. They must resolve such problems as naming

conflicts and inconsistencies among units of measure. When they achieve this, they are said to

be integrated.

37

2.2.3.3 Nonvolatile

Nonvolatile means that, once entered into the warehouse, data should not change. This is

logical because the purpose of a warehouse is to enable you to analyze what has occurred.

2.2.3.4 Time Variant

In order to discover trends in business, analysts need large amounts of data. This is very much

in contrast toonline transaction processing (OLTP) systems, where performance requirements

demand that historical data be moved to an archive. A data warehouse's focus on change over

time is what is meant by the term time variant.

More generally, data warehousing is a collection of decision support technologies, aimed at

enabling the knowledge worker, such as executive, manager, and analyst, to arrive at better

and faster decisions (Oracle, 2012). Data warehouses provide access to data for complex

analysis, knowledge discovery, and decision-making. They support high performance

demands on an organization's data and information. It provides an enormous amount of

historical and static data from three tiers:

1. Relational databases

2. Multidimensional OLAP applications

3. Client analysis tools

Several types of applications such as online analytical processing (OLAP), decision-support

systems (DSS) and data mining are being supported. OLAP is a term used to describe the

analysis of complex data from the data warehouse.

OLAP is a software technology that allows users to easily and quickly analyze and view data

from multiple points-of-view. OLAP provides dynamic and multi-dimensional support to

http://download.oracle.com/docs/cd/B10500_01/server.920/a96520/glossary.htm#432248

38

executives and managers who need to understand different aspects of the data. Activities that

are supported include:

 Analyzing financial trends

 Creating slices of data

 Finding new relationships among the data

 Drilling down into sales statistics

 Doing calculations through different dimensions where each category of data (that is,

product, location, sales numbers, time period, etc.) is considered a dimension.

There are OLAP tools that use distributed computing capabilities for analyses that require

more storage and processing power than can be economically and efficiently located on an

individual desktop.

DSS support an organization's leading decision makers with higher-level data for complex

and critical decisions. A DSS queries a data warehouse or an OLAP database for relevant

information that can be compared in order to make a business decision and predict the impact

of that decision.

Finally, data mining is being used for knowledge discovery, the process of searching data for

unanticipated new knowledge. Knowledge workers and decision makers use tools ranging

from parametric queries to ad hoc queries to data mining. Thus, the access component of the

data warehouse must provide support of structured queries (both parametric and ad hoc).

These together make up a managed query environment.

39

2.2.4 Databases and Data Warehouses

A database is a collection of related data and a database system is a database and database

software together (Gupta, 2009). A data warehouse is also a collection of information as well

as a supporting system. Databases are transactional such as relational, object-oriented,

network or hierarchical. Traditional databases support on-line transaction processing (OLTP),

which includes insertions, updates, and deletions, while also supporting information query

requirements. Traditional databases are optimized to process queries that may touch a small

part of the database and transactions that deal with insertions or updates of a few tuples per

relation to process.

Thus databases must strike a balance between efficiency in transaction processing and

supporting query requirements (ad hoc user requests), That is, they can't further optimized for

the applications such as OLAP, DSS and data mining.

But a data warehouse is typically optimized for access from a decision maker's needs. Data

warehouses are designed specifically to support efficient extraction, processing and

presentation for analytic and decision-making purposes. In contrast to databases, data

warehouses generally contain very large amounts of data from multiple sources that may

include databases from different data models and sometimes files acquired from independent

systems and platforms.

Multidatabases provide access to disjoint and usually heterogeneous databases and are

volatile. Whereas a data warehouse is frequently a store of integrated data from multiple

sources, and processed for storage in a multidimensional model and nonvolatile. Data

40

warehouses also support time-series and trend analysis, both of which require more historical

data.

In transactional systems, transactions are the unit and are the agent of change to the database,

but data warehouse information is much more coarse-grained and is refreshed according to a

careful choice of incremental refresh policy. Warehouse updates are handled by the

warehouse's acquisition component that provides all required processing. As data warehouses

encompass large volumes of data, they are more or less double the size of source databases.

The sheer volume of data likely to be in terabytes is an issue that has been dealt with through

enterprise-wide data warehouses, virtual data warehouses and data marts. Enterprise-wide

data warehouses are huge projects in need of massive investment of time and resources.

Virtual data warehouses are bound to provide views of operational databases that are

materialized for efficient access. A data mart is an easy-to-access repository of a subset of

highly focused data for a single function or department (i.e., finance, sales, and marketing)

and is considerably smaller than a data warehouse. The data comes from operational

information that is needed by a particular group of employees for analysis, content,

presentations all in terms that are familiar to them. Data for a data mart is derived from a data

warehouse or from more specialized access.

Data warehouses exist to facilitate complex, data-intensive and frequent ad hoc queries. Data

warehouses must provide far greater and more efficient query support than is demanded of

transactional databases. The data warehouse access component supports enhanced spreadsheet

functionality, efficient query processing, structured queries, and ad hoc queries, data mining

and materialized views. Particularly enhanced spreadsheet functionality includes support for

41

state-of-the art spreadsheet applications as well as for OLAP applications programs. These

provide pre-programmed functionalities such as the following:

Roll-up: Data is summarized with increasing generalization

Drill-down: Increasing levels of detail are revealed

Pivot: Cross tabulation that is, rotation, performed

Slice and dice: Performing projection operations on the dimensions

Sorting: Data is sorted by ordinal value

Selection: Data is available by value or range

Derived or computer attributes: Attributes are computed by operations on

stored and derived values.

2.2.5 Query and Query Systems

Query is the request made on data for the purpose of manipulating it to get results based on

the need of the user. It may be a request to fetch information, add information, and update

information or to manipulate information in a certain manner (Tang et al, 2010). Aquery is a

request for information. A query tells IQ/Objects what to look for in your database, how to

format the data and where to send it. You construct queries by using different tools to choose

fields, apply filters and format the output (Robert and David, 2007).

2.2.5.1 Query System.

On a client server architecture in large systems, a query is a pair of messages, or prompt of a

message, transmitted from client to server ,which encodes a question; and the reply ,which is

42

the answer to the request returned to the client .When no logical reply; exits, the server may

return an error instead (Tang et al, 2010).

Queries to the database may be posed either interactively or in a batch mode .When queries

are posed interactively, the system can only hope to optimize processing of each query

separately. In batch environment, where an application program may include a number of

queries, it may be desirable to attempt global optimization (Gupta, 2009).

2.2.5.2 Query Languages

A query language is a language in which a user requests information from a database. These

are typically higher-level than programming languages. Query languages, according to Gupta

(2009), may be one of:

*Procedural, where the user instructs the system to perform a sequence of operations on the

database. This will compute the desired information.

* Non-procedural, where the user specifies the information desired without giving a

procedure for obtaining the information.

He further stated that a complete query language also contains facilities to insert and delete

tuples as well as to modify parts of existing tuples. Most commercial relational-database

systems, according to him, offer a query language that includes elements of both the

procedural and the non-procedural approaches.

Query cost refers to the estimated elapsed time, in seconds required to execute a query or

specific hardware configuration. On other hardware configurations, there is a correlation

between cost units and elapse time, but cost units do not equal seconds. The query governor

lets you specify an upper cost limit for a query; a query that exceeds this limit is not run

(http//techmet.microsoft.com/en-us/library/).Because it based on estimated query cost rather

than actual elapsed time, the query governor does not have any run-time overhead. It also

43

stops‟ long running queries before they start, rather than running them until they reach a

predefined limit.

2.2.5.3 Query processing

Query processing is the process of translating a query expressed in a high- level language

such as SQL into low-level data manipulation operations (Aljanaby et al, 2005).A relational

database consists of many parts, but at its heart are two major components: The storage

engine and the query processor. The storage engine writes data to disk and read data from the

disk. It manages records, controls concurrency, and maintains log files.

The query processor accepts SQL syntax, selects a plan for executing the syntax, and then

executes the chosen plan. The user or program interacts with the query processor in turn

interacts with the storage engine. The query processor isolates the user from the details of

execution: The user specifies the result, and the query processor determines how this result is

of obtained.

2.2.5.4 Component of the Query Processor

i. Parser: In the first phase, the query is parsed and translated into an internal

representation (e.g, a query graph (Jenq et al 1990; Pirahesh et al 1992) that can be easily

processed by the later phases. The development of parsers is well understood (Aho et al,

1987) and tools like flex and bison can be used for the construction of SQL or OQL Parsers

just as for most other Programming Languages. The same parser can be used for a centralized

and distributed database system.

ii. Query RewriteQuery rewrite transforms a query in order to carry out optimizations

that are good regardless of the physical state of the system (e.g., the size of tables, presence of

indices, locations of copies of tables, speed of machines, etc) (Pirahesh et al., 1992). Typical

transformations are the elimination of redundant predicates, simplifications of expressions,

44

and unnesting of subqueries and views. In a distributed system, query rewrite also selects the

partitions of a table that must the considered to answer a query (Ceri and Pelagatti, 1984;

Ozsu and Valduriez, 1999). Query rewrite is carried out by a sophisticated rule engine

(Pirahesh et al, 1992).

iii. Query Optimizer: This component carries out optimizations that depend on the

physical state of the system. The optimizer decides which indices to use to execute a query,

which methods (e.g; hashing or sorting) to use to execute the operations of a query (e.g; joins

and group-bys), and in which order to execute the operations or a query. The query optimizer

also decides how much main memory to allocate for the execution of each operation. In a

distributed system, the optimizer must also decide at which site each operation is to be

executed. To make these decisions, the optimizer enumerates alternative plans using a cost

estimation model. Almost allcommercial query optimizers are based on dynamic

programming in order to enumerate plans efficiently (Kossmann, 2000).

iv. Plan Refinement/Code Generation: This component transforms the plan produced

by the optimizers into an executable plan. In System R, for example, this transformation

involves the generation of an assembler like code to evaluate expressions and predicates

efficiently (Lorie and Wade, 1979). In some systems, plan refinement also involves carrying

out sample optimizations which are not carried out by the query optimizer in order to simplify

the implementation of the query optimizer (Kossmann, 2000).

v. Query Execution Engine: This component provides generic implementations for

every operator (e.g., send, scan, or NLT). All state-of-the-art query execution engines are

based on an iterator model (Graefe,, 1993). In such a model, operators are implemented as

iterators and all iterators have the same interface. As a result, any two iterators can be plugged

together (as specified by the consumer- producer relationship of a plan), and thus any plan can

45

be executed. Another advantage of the iterator model is that it supports the pipelining of

results from one operator to another in order to achieve good performance (Kossmann, 2000).

vi. Catalog: The catalog stores all the information needed in order to parse, rewrite and

optimize a query. It maintains the schema of the database (i.e, definitions of tables, views,

user-defined types and functions, integrity constraints, etc), the partitioning. Schema (ie,

information about what global tables have been partitioned and how they can be

reconstructed), and physical information such as the location of copies of partitions of tables,

information about indices, and statistics that are used to estimate the cost of a plan. In most

relational database systems, the catalog information as stored likes all other data in tables. In

a distributed database system, the question of where to store the catalog arises. The simplest

approach is to store the catalog at one central site. In wide-area networks, it makes sense to

replicate the catalog at several sites in order to reduce communication cost. It is also possible

to cache catalog information at sites in a wide area network (Williams et al, 1981). Both

replication and caching or catalog information are very effective because catalogs are usually

quite small (Hundreds of Kilobytes rather than gigabytes) and catalog information is rarely

updated in most environments. In certain environments however, the catalog can become very

large and be frequently updated. In such environments, it makes sense to partition the catalog

data and store catalog data where it is most needed. For example, catalogs of distributed

object databases need to kwon where copies of all the objects (Potentially millions) are stored,

and they need to update this information every time an object is migrated or replicated. Such

catalogs can be implemented in a hierarchical way as described in Eickler et al (1997).

2.2.5.5 Alternative Approaches Commonly used in Existing Systems Today

In this section, the tradeoffs between alternative approaches which are commonly used in

existing systems today would be presented and discussed.

46

i. Query Shipping: The first approach is called query shipping. Query shipping is used

in many relational and objects –relational database systems today (e.g IBM DB2, oracle 8,

and Microsoft SQL server). The principle of query shipping into executes queries at servers

(ie at the lowest level possible in a hierarchy of sites). Figure 2.2 below illustrates query

shipping in to a system with one server. A client ships the SQL (or OQL) code of a query to

the server; the server evaluates the query and ships the results back to the client. In systems

with several servers, query shipping works only if there is a middle-tier site that carries out

joins between tables stored at different servers or if there are gateways between the servers so

that inter site joints can be carried out at one of the servers (Kossmann, 2000).

 Figure 2.2: Query shipping (Adapted from Kossmann, 2000)

ii. Data Shipping: There exact opposite of query shipping is data shipping, which is

used in many object-oriented database systems (e.g object store and O2). In this approach,

queries are executed at the client machine at which the query was initiated and data is

rigorously cached at client machines in main memory or on disk (Franklin et al 1993). That is,

copies of the data used in a query are kept at a client so that these copies can be used to

execute subsequent queries at that client. Caching is typically carried out in the granularity of

pages (ie 4k or 8k blocks of tuples) (DeWitt et al 1990), and it is possible to cache

Client

join

server

query

result

A

Scan
A

Scan

47

individualpages of base tables and indices (Lomet 1996; Zaharioudakis and Carey 1997). To

illustrate data shipping, consider the example shown in figure 2.2 below, where some pages of

Tables A and B are already cached at the client (represented by the dashed boxes in the

figure). The scan operators at the client use these cached copies of pages and fault in all the

pages of A and B that are not cached (Kossmann 2000).

Figure 2.3: Data Shipping (Adapted from Kossmann, 2000)

iii. Hybrid Shipping: Neither data shipping or query shipping is the best policy for query

processing in all situations. The advantage of both approaches can be combined in a hybrid

shipping architecture (Franklin et al 1996). Hybrid shipping provides the flexibility to execute

query operators on client and server machines, and it allows the caching of data by clients.

The approach is illustrated in figure 2.3 below, where the scan (A) and join operators are

carried out at the client whereas the scan (B) operator is carried out at the Server. The Scan

(A) operator uses the Clients cache as much as possible and ships to the Client only those

parts of A that are not in the cache. In contrast, the Scan (B) operator neither uses nor changes

the state or the client‟s cache (Kossmann, 2000).

Client

server

Query

A

Scan

B

Scan

B

Scan

A

Scan

Join

48

Figure 2.4: Hybrid Shipping (Adapted from Kossmann, 2000)

iv. Other Hybrid Shipping Variants:

For application programs that carry out SQL- style queries and C++ style methods, one

special and restricted variant of hybrid shipping is to execute the SQL – style queries at the

servers, without caching, and the C++ style methods at the Clients, using catching. Such an

approach has been proposed, for example, as part of the KRISYS Project (Härder et al 1998).

Persistence is a product that supports this is approach (Keller et al, 1993). This approach is

reasonable because caching and Client-side execution are particularly effective for methods

that repeatedly access the same objects in order to carry out complex computation. Queries

that involve a great deal of data, on the other hand, can often be executed more efficiently at

Server machines without making use of Client-side caching (Kossmann, 2000).

Another variant of hybrid shipping is used by certain decision support products (e.g., products

by Micro Strategy). These products have threetier architecture. The bottom tier is a standard

relational database system that stores the database and carries out join processing and other

standard relational operations. The middle tier then carries out nonstandard operations for

decision support like (moving averages, roll-up, drill-down, etc) (Gray et al, 1996; Kimball

and Strehlo, 1995). Again, such an architecture is a special hybrid shipping variant because

Client

server

query

A B

Scan

B A

Scan

Join

49

query processing is carried out at Servers and at middle-tier machines, and the difference from

the full-fledged hybrid shipping is that not all operations can be carried out at all the machines

tiers (Kossmann, 2000).

2.2.6 Query Performance

In general, the more nodes and resources that are available, the better the potential query

performance. Query processing uses the available memory and CPU resources of all nodes of

the logical Server. The amount of improvement benefits depends on the type of query, the size

of the query, and the current workload of the nodes in the logical server: It is unlikely that any

two runs of the same query result in exactly the same work distribution as load levels change

in the cluster, so does the load distribution. Query performance is determined by the overall

workload of the logical Server at any given time. Similarly, in a single run of a query in a long

processing time, the work distribution changes over the course of query execution as the load

balance charges across worker nodes.

2.2.6.1 Query Execution

Query execution is the process of executing the plan chosen during query optimization. The

objective is to execute the plan quickly by returning the answer to the user (or more often, the

program run by the user) in the least amount of time. This is not the same as executing the

plan with the lowest resources (CPU,1/0, and memory). For example, a parallel query almost

always uses some more resources than a non-parallel query but it is often desirable because it

returns the result more quickly.

Query execution is presented before query optimization because the set of available execution

techniques determines the set of choices available to the optimizer. The techniques include

disk 1/0, sorting, join and harsh operations index intersections, index join, and parallelism.

50

2.2.6.2 Alternative Ways to Execute Queries in a Distributed Database System

This subsection describes alternative ways to execute queries in a distributed database system.

In particular, how data can be shipped and how joins between tables stored at different sites

can be computed would be described.

i. Row Blocking: Communication is typically implemented by send and receives

operators. Naturally, the implementation of these operators is based on TCP/IP, UDP, or

some other network protocol (Tanenbaum, et al.,1989). To reduce the overhead, almost all

database systems employ a technique called row blocking. The idea is to ship tuples in a

blockwise fashion, rather than every tuple individually. In other words, a send operator

consumes several tuples of its child operator and sends these tuples as a batch. This approach

is obviously much cheaper than the naïve approach of sending one tuple at a time because the

data is packed into fewer messages. The size of the blocks is a parameter of the send and

receive operators; this parameter is set taking into account the characteristics of the network

(ie; the message size of the network) (Kossmann, 2000).

One particular advantage of row blocking is that it compensates for burstiness in the arrival of

data up to a certain point if tuples are shipped one by one through the network, any short

delay in the network would immediately stop the execution of the query at the receiving site

because of a shortage of tuples to consume. Due to row blocking, the receive operator has a

reservoir or tuples and can feed its parent operator even if the next block or tuples is delayed.

As a result, it is often better to choose a block size used by the network (Kossmann, 2000).

ii. Optimization of Multicasts: In most environments, networks are organized in a

hierarchical way so that communication costs vary significantly depending on the locations of

the sending and receiving sites. It is, for instance, cheaper to send data from Munich to

Passau, which are both in Germany, than from Washington, across the Atlantic, to Passau.

51

Sometimes, a site needs to send the same data to several sites to execute a query; it is, for

instance, possible that the since data must be sent fromWashington to Munich and Passau. If

the network does not provide cheap ways to implement such multicasts, it is preferable to

send the data from Washington to Munich and then forward it from Munich to Passau, rather

than sending the data from Washington across the Atlantic twice (Kossmann, 2000).

Sometimes, this technique is useful even in a homogenous and fast network. Let us assume

that the time on the wire to send messages between Washington, Munich, and Passau is

negligible ; in this case, CPU costs to send (ie. Pack) and receive (unpack) messages dominate

communicate costs. If Washington is heavily loaded or has a slow CPU, then it might again

be better if Passau receives the data from Munich rather than from Washington. Obviously,

another option would be for Passau to receive the data form Washington and for Munich to

receive the data from Passau. The best choice must be made by the query optimizer

(Kossmann, 2000).

iii. Multithreaded Query Execution: To take the best advantage of intra-query

parallelism, it is sometimes advantageous to establish several threads at a site (Graefe, 1990).

As an example, consider the plan of figure 2.4 below, which implements the query

A1UA2UA3 ; A1 is stored at Site 1, A2 at Site 2, and A3 at Site 3. If the union and receive

operators or site O are executed within a single thread, then site O only requests one block,

at a time (e.g. , in a round- robin way) and the opportunity to read and send the three

partitions from Sites 1,2 and 3 to Site O in parallel is wasted. Only if the union and receive

operators at Site O run in different threads can the three receive operators continuously ask

for tuples from the send operators at Sites 1, 2 and 3 so that all three send operators run and

produce tuples in parallel (Kossmann, 2000).

52

 Site 1 Site2 Site3

 Figure 2.5: Example Union plans (Adapted from Kossmann, 2000)

Establishing a separate thread for every query operator, however, is not always the best thing

to do. First, shared – memory communication between threads needs to be synchronized,

resulting in additional cost. Second, it is not always advantageous to parallelize all operations.

Consider, for example the plan of figure 2.5 below which carries out a sort-merge join of

Tables A and B. Depending on the available main memory Site O, it might or might not be

advantageous to receive and Sort Tables A and B in Parallel at Site O. If there is plenty of

main memory to store large fractions of both A and B at Site O, then the two pairs of receive

and sort operators should be carried out in parallel in order to parallelize the Send and Scan of

A and B. Otherwise, the two receive – sort branches should

Site O Union

receive receive receive

Send

Scan (A1)

Send

Scan (A2)

Send

Scan (A3)

53

Figure 2.6: An Example of Join Plan (Adapted from Kossmann, 2000)

Be carried out one at a time in order to avoid resource contention at Site O (ie. thrashing if

both Sorts write concurrently to the same disk). The query optimizer and/or a scheduler at run

time must decide which parts of a query should run in parallel and, thus, which operators

should run in the same thread (Kossmann, 2000).

iv. Joins With Horizontally Partitioned Data

The logical properties of the joins and union operators make it possible to process joins in a

number of different ways if the tables are horizontally partitioned. If, for example, Table A is

horizontally partitioned in such a way that A = A1 UA2, then A B can be computed in the

following two ways (Vogels, 2003):

 (A1 U A2) B or (A1 B) U (A2 B)

Site O merge-join

 Sort Sort

 receive

 receive receive

Send

Scan (A1)

Send

Scan (A3)

Site 1 Site 2

54

If A is partitioned into more than two partitions or if B is also partitioned, then even more

variants are possible: for example,

(A1 U A2) B) U (A3 B) might be an attractive plan if B is replicated and one copy of B

is located at a Site near the Sites that Store A1 and A2 and another Copy of B is located near

the Site that stores A3. The optimizer ought to consider all these options (Kossmann, 2000).

In some situations, A and B are partitioned in such a way that it is possible to deduce that

some of the Ai Bj are empty. The optimizer should, of course take advantage of such

knowledge and eliminate such “empty” expressions in order to reduce the cost of join

processing. One very common situation is that A and B are partitioned in such a way that

Ai Bj is empty if i ≠ j. Consider, for example, a company that has Dept table that is

partitioned by Dept. location in order to store all the Dept information at the site of the

department. This company may also have an Emp table that is partitioned according to the

location of the Dept in which the Emp works Emp Dept can be carried out for this

company by joining the Emp and Dept partitions separately at every Site. In other words, the

following equation holds if the company has n Sites:

(Emp1 U……UEmpn) (Dept1 U…..UDeptn)

 = (Emp1 Dept1)U… U(Empn Deptn)

v. SEMI JOINS: Semi join programs were proposed as another technique to process

joins between tables stored at different sites (Bernstein et al.1981). If table A is stored at Site

1 and table B is stored at Site 2, then the “conventional “way to execute A B is to ship A

from site 1 to Site 2 and execute the join at Side 2(or the other way around). The idea of a

semi join program is to send only the column(s) of A that are needed to evaluate the join

predicates from Site1 to 2, find the tuples of B that qualify the join at Site 1 and then match A

55

with those B tuples at Site 1. Formally, this procedure can be described as follows (is the

semi join operation and (A) projects out the columns from A).

 A B = A (B (A))

Variants of this approach are meant to eliminate duplicate tuples from (A) (traditional

additional work at Site 1 for less communication) and sending a signature file for A called a

bloom-hash filter, rather than (A) (Babb,1979; Valduriez and Gardarin,1984) Again, the

optimizer must decide which variant to use, if any, and which direction to carry out the semi

join program, from Site 1 to Site 2 or vice versa, based on the cardinalities of the tables, the

selectivity of the join predicate(s), and the location of the data in the other operations of the

query.

Experimental work indicates that semi join programs are typically not very attractive for join

processing in standard (relational) distributed database systems because the additional

computational overhead is usually higher than the savings in communication costs (Lu and

Carey, 1985; Mackert and Lohman, 1986) .Today, however, several applications that involve

tables with very large tuple can be given and semi join style techniques can indeed be very

attractive for such applications. Consider, for example, a table that store employee

information including a picture of every employee. In this case, it does make sense to find the

target employees of a query using, say, the age, dept.no, and so on columns and then fetch the

picture and other columns of the query result at the end. In a Client- Server System, for

example, the following plan might be very useful

 (A S1 C) S3 (B S2 C)

56

If A is stored at Server S1 , B is stored at Server S2, C is replicated at both Servers and the

result of the whole query must be displayed at Client S3 (Braumand et al 2001c., Stocker et al,

2001).

vi. Double-Pipelined Hash Joins: Recently, double- pipelined(or non-blocking) hash-join

algorithm were proposed(Ives et al, 1999: Urhan and Franklin 1999; Wilshut and Apers,

1991).The use of such join algorithms makes it possible to deliver the first result of a query as

early as possible. In addition, such join algorithms makes it possible to fully exploit pipelined

parallelism and thus reduce the overall response time of a query in a distributed system. As

described in Urhan and Franklin (1999), Variants of such join methods can be particularly

useful in a distributed system in which the delivery of tuples through the network is bursty

because certain phases of the join processing can be carried out at a Site while the Site waits

for the next, possibly delayed, batch of tuples. The basic idea on which all these algorithms

are based is quite simple. To execute A B, two main-memory hash tables are constructed:

one for tuples of A and one for tuples of B. The two hash tables are initially empty. The

tuples of A and B a way that the main memory is exhausted. To remedy such a situation, the

algorithms in Ives et al (1999) and Urban and Franklin (1999) adopt a hybrid harsing are

partitioning scheme.

i. Pointer-Based Joins and Distributed Object Assembly: One particular kind of query

that can be found in object oriented and object-relational database systems are called

pointer-based joins. Pointer-based joins occur because foreign keys are implemented

in these systems by explicit references that contain the address of an object or the

address a placeholder of an object (Eickler et al, 1995).

57

2.2.6.3 Query Optimization

In an attempt to define query optimization, it is pertinent for us to define the concept,

optimization. Waas and Galindo- Legaria (2000) defined optimization as a mandatory

exercise since the difference between the cost of the best plan and a random choice could be

in orders of magnitude. Gupta (2009) stated that optimization in non-procedural language

therefore is much more complex task since it not only involves code optimization (how to

carry out the operations that need to be carried out) but also selecting the best plan as well as

selecting the best access path.

Having stated above, we can say that Query optimization according to Aljanaby, Abuelrub

and Odeh (2005), refers to the process by which the best execution strategy for a given query

is found from a set of alternatives. Kossmann and Stocker (2000) had earlier stated that the

great commercial success of database systems is partly due to the development of

sophisticated query optimization where users pose queries in a declarative way using SQL or

OQL.

2.2.6.4 Types of Query Optimizers

There are two major types of query optimizers in relational databases. Syntax-based and cost-

based.

i. Syntax-Based Query Optimizers

 A syntax-based query optimizer creates a procedural plan for obtaining the answer to

an SQL query, but the particular plan it chooses is dependent on the exact syntax of

the query and the order of the clauses within thin the query. A syntax-based query

optimizer executes the same plan every time, regardless of whether the number or

composition of records in the database charges over time. Unlike a cost-based query

optimizer, It neither maintains nor considers statistics about the database.

58

ii. Cost-Based Query Optimizers

 A cost-based query optimizer chooses among alternative plans to answer an SQL

query. Selection is based on estimates for different plans. The factors in making cost

estimates include the number of 1/0 operators, the amount of CPU time, and so on. A

cost-based query optimizer estimates these costs by keeping statistics about the

number and composition of records in a table or index and is not dependent on the

exact syntax of the query or the order of causes within the query (unlike a syntax-

based query optimizer).

2.2.7 Distributed Query Optimization

Distributed query optimization is a database feature that reduces the amount of data transfer

required between Sites when a transaction retrieves data from remote tables referenced in a

distributed SQL statement (Gupta, 2009).

Distributed query optimization uses cost-based optimization to find or generate SQL

expressions that extract only the necessary data from remote tables, process that data at a

remote site or sometimes at the local site, and send the results to the local site for final

processing. This operation reduces the amount of required data transfer when compared to the

time it takes to transfer all the table data to the local site for processing (Gupta, 2009). In

distributed query optimization two more steps are involved between query decomposition and

query optimization: Data localization and global query optimization: Data input to data

localization is the initial algebraic query generated by the query decomposition step. The

initial algebraic query is specified on global relations irrespective of their fragmentation or

distribution (Aljanaby et al, 2005).

59

The main role of data localizations is to localize the query using rate distributed information.

In this step, the fragments that are involved in the query are determined and the query is

transformed into one that operates on fragments rather than global relation. This during the

data localization step, each global relation is first replaced by its localization program, which

is union of the fragment of a horizontally or vertically fragment query, and then the resulting

fragment query is simplified and restructured to produce another good query. Simplification

and restructuring may be done according to the same rules used in the decomposition step.

The final fragment query is generally far from optimal; this process only eliminates bad

queries (Aljanaby et al, 2005).

The input to the third step is a fragment query that is an algebraic query on fragments. By

permuting the ordering of operations within one fragment query, many equivalent query

execution plans may be found. The goal of query optimization is to find an execution strategy

for t-he query that is close optimal. An execution strategy for a distributed query can be

described with relational algebra operations and communication primitives (send/receive

operations) for transferring data between Sites (Oszu and Valduriez, 1991).

The query optimizer that follows this approach is seen as three components: A search space, a

search strategy and a cost model. The search space is the set of alternative execution to

represent the input query. These strategies are equivalent, in the sense that they yield the same

result but they differ on the execution order of operations and the way these operations are

implemented. The search strategy explores the search space and selects the best plan. It

defines which plans are examined and in which order. The cost model predicts the cost of a

given execution plan which may consist of the following components (Elmasri and Navathe,

2000):

60

i. Secondary storage cost: This is the cost of searching for reading and writing data

blocks on secondary storage.

ii. Memory storage cost: This is the cost pertaining to the number of memory buffers

need during query execution

iii. Computation cost: This is the act of performing in memory operations on the data

buffers during query optimization.

iv. Communication cost: This is the cost of shipping the query and its results from the

database Site to the Site or terminal where the query originated.

Object databases development have created the storage of large amounts of complex data and

integrated complex data with simple data which are common in may real life application

development demands today (Hibatullah, 2016). The ability to simultaneously retrieve this

complex and simple data is increasingly becoming very important in many real life

applications. For instance, to review a patient‟s condition a physician may request the scanned

image of the organ along with vital statistics of the patient. This complex objects stored in the

database requires certain details which can only be provided during retrieval by object

queries.

2.2.8 Impedance mismatch

Impedance mismatch is perceived by many professionals as a negative phenomenon in the

software construction that arises from an eclectic mix of two incompatible languages: a query

language that is used to access and update of a database and a programming language that is

used for making client applications acting on the database. A bit more careful look shows that

this negative connotation is perhaps inadequate. Impedance mismatch is an inevitable

consequence of a (quite reasonable) principle known as data independence. Misunderstanding

of the relationships between impedance mismatch and data independence is the reason of

http://www.sbql.pl/Topics/Principles%20of%20query%20programming%20lang.html#dataindependence

61

some creativity within modern object-oriented programming languages (mostly Java), which

some professionals could perceive as a medicine that is worse than the illness. Impedance

mismatch has also less discussed aspect concerning database models and transformations

between database schemas.

2.2.8.1 Impedance mismatch between query and programming languages

The concept of query languages developed in 1970-ties assumed no pragmatic universality.

However, because eventually such universality is inevitable in real applications, there was an

assumption that a query language is a “sublanguage” that is to be embedded in a universal

programming language. A “sub-language” determines the access to a database only. The rest

of the entire application has to be programmed in a typical programming language. This

assumption requires joining a query language with a programming language in such a way

that:

i) Queries can be used inside programs;

ii) Queries can be parameterized through values calculated within programs;

iii) Results of queries are to be passed to programs.

Difference between language concepts cause significant technical difficulties in

accomplishing this kind of connection. A lot of programmers and computer professionals

were also disappointed by the technical, aesthetic and conceptual degradation of the

programming environment. This degradation is commonly referred to as impedance

mismatch. This term denotes a bunch of disadvantageous features that are implied by the

eclectic mix of a query language (in particular SQL) with a programming language (such as

C, C++ or Java) (Tanenbaum et al, 1989). Below we list and comment these features.

 Syntax: In the same code the programmer must use two programming styles and must

follow two different grammars. Similar concepts are denoted differently (for instance,

62

strings in C are written within “…”, in SQL – „…‟) and different concepts are denoted

similarly (for instance, in C = denotes an assignment, in SQL – a comparison).

 Typing: Types and denotations of types assumed by query and programming languages

differ, as a rule. This concerns atomic types such as integer, real, boolean, etc.

Representation of atomic types in programming languages and in databases can be

significantly different, even if the types are denoted by the same keyword, e.g. integer. A

lossless conversion between such types could be impossible and might imply some

performance overhead. This also concerns complex types, such as tables (a basic data

type constructor in SQL, absent in programming languages). Popular programming

languages introduce static (compile time) type checking, which is impossible e.g. in SQL

(because query languages are based on dynamic rather than static binding).

 Semantics and language paradigms: The concept of semantics of both languages is

totally different. Query languages are based on the declarative style (what is to be

retrieved rather than how), while programming languages are based on the imperative

style (a sequence of commands to a machine, which accomplishes what).

 Abstraction level: Query languages free the programmers from majority of the details

concerning data organization and implementation, for instance, organization of

collections, presence or absence indices, etc. In programming languages these details

usually are explicit (although may be covered by some libraries).

 Binding phases and mechanisms: Query languages are based on late (run-time) binding

of all the names that occur in queries, while programming languages are based on early

(compile and linking time) binding. Thus, from the point of view of a program, queries

are simply strings of characters.

63

 Name spaces and scope rules: Queries do not see names occurring in programs and v/v.

Because eventually there must be some intersection of these name spaces (e.g. program

variables must parameterize queries) additional facilities, with own syntax, semantics and

pragmatics, are required. These facilities are the burden for the size and legibility of the

program code. Moreover, in programming languages name scopes are organized

hierarchically and processed by special rules based on stacks. These rules are ignored by

a query language. This leads e.g. to problems with recursive procedure calls (a well-

known example concerns SQL cursors that severely reduce the possibility of recursion).

Another disadvantage of separated name spaces concerns automatic refactoring of

programs, which cannot be performed on queries.

 Collections: Databases store collections (e.g. tables) which are processed by queries. In

programming languages collections are absent or severely limited. Hence collections

returned by queries have no direct counterparts in a programming language and must be

processed by special constructs with own syntax and semantics.

 Null values: Databases and their query languages have specialized features for storing

and processing null values. Such features are absent in programming languages, thus

some substitutes must be introduced. For instance, if some value in a relational database

can be null, mapping it to a programming language requires two variables: one for storing

information about null and another one for storing the value.

 Iteration facilities: In query languages iterations are accomplished as macroscopic query

operators, such as selection, projection, join, product, sum, intersect, etc. In programming

languages iterations are coded explicitly as loops (for, while, repeat, etc.). Processing

results of queries in a programming language requires special mechanisms, such as

cursors and iterators.

64

 Persistence: Query languages address persistent data (stored on a disc or another long-

term memory), while programming languages process only data stored in a volatile

operating memory. Joining query and programming languages requires special facilities

for parameterizing queries by volatile variables and transmission of persistent data to

volatile memory and v/v.

 Queries and expressions: There is some competence mismatch between queries and

programming language expressions. Some queries look as expressions and v/v, but there

is strong syntactic subdivision of them, which can be poorly understood by the

programmer. For instance, in some query languages 2+2 is a query, but it is also an

expression of a programming language. A query cannot be a parameter to a procedure,

but an expression can. There could be other syntactic constraints, which cause a lot of

chaos in the entire programming environment.

 References: If a query is to be used for updating, inserting or deleting, it must return

references to stored data (i.e. data identifiers rather than values). According to the official

semantics of the relational model, queries return tables of values, with no references. For

updating constructs defined in a programming language such semantics is inconsistent;

actually, it means that queries cannot be used for updating or require a special mode of

execution and/or a special constructs in a programming language.

 Refactoring: decisions concerning new names used for data structures cannot be

automatically propagated to queries, because – from the point of view of a programming

language – queries are strings, sometimes not explicitly seen from the source program.

Hence refactoring of queries should be done manually, with a lot of effort and

possibilities of inconsistencies.

65

The consequences of impedance mismatch concerns not only aesthetics and ergonomics of the

programming environment. Impedance mismatch implies an additional programming layer,

with own syntax, semantics and pragmatics. This layer causes that learning of the language

takes more time, programming is more error prone, programs are unnecessarily longer and

less legible. This layer may also cause worse performance and maintainability of applications.

If queries are strings then there is no explicit support for creating reusable query components.

None of the reusability features of the programming language (functions, methods, and

polymorphism) are available to support reuse. Passing parameters to queries written as strings

(c.f. the ODMG standard) is awkward and error-prone. Queries, as strings embedded in a

program, are also more prone to injection attack (Tanenbaum et al, 1989).

Some authors suggest that the source of impedance mismatch is in incompatibility of data

models, in particular, access to relational databases is accomplished from an object-oriented

programming environment (such as object-oriented DBMS). Such a suggestion presents the

ODMG standard, with the conclusion that in this standard impedance mismatch no more

holds. Unfortunately it is only partly true. Indeed, the mismatch is inevitable in situation of

big differences between data models, in particular, between a relational system and an object-

oriented programming language. However, even if both models are claimed to be “object-

oriented”, the impedance mismatch still persists. There are significant differences between

various object-oriented models. Actually, there are as many object models as different object-

oriented artifacts and proposals; no standard object model exists. Differences between the

object models of Smalltalk, CORBA, UML, C++, SQL-99, ODMG, Java, C# etc. are

fundamental. Moreover, even if the model is exactly the same and would the subject of some

precise standard, some impedance mismatch can persist due to e.g. differences in binding

66

phases. These issues we discuss in the next subsection devoted to the relationship between

impedance mismatch and data independence.

To avoid the impedance mismatch, a language should be integrated, where queries are

smoothly connected with programming constructs and abstractions. This tendency is seen in

such products as PL/SQL, T-SQL and standards SQL-99 and SQL-2003. The SBQL language

is designed according to this tendency, where SBQL queries are integrated with updating

constructs and programming abstractions. The typing system and a strong type checker is the

same for the queries, updating constructs, procedures, functions, methods, parameters, views,

transactions, etc. This significantly distinguishes SBQL from other query languages. In the

following we discuss some pros and cons of the idea of integrated database programming

languages.

2.2.9 Progressive development of Database Models

The data models are analyzed from the classical models to the proposed data model before

designing them in the next chapter. First, the evolution of data models from the earliest time

of computation to today is evaluated. In figure 2.7 the database model started from file

systems and moved to Bachman diagrams.

67

Figure. 2.7: Evolution of Data Models (Adopted from Gottfried, 1992)

The Bachman diagram then evolved to hierarchical model and network models at the same

period when certain challenges were identified in their use and operational method of

manipulating and storing databases. The two models then converged to form the relational

database model in an effort to solve the challenges. The Entity Relational (ER) model and

Nested relational model both were then developed from the classical relational model. The ER

File Systems

Bachman Diagrams

Hierarchical Model Network Model

Relational Model

Nested Relational Model
ER Model

Semantic Model

Complex Object Models

Object-Oriented Models

68

model then produced the semantic models. The semantic models combined with the nested

relational model gave birth to complex object models. In an effort at solving the complexity

inherent in the complex object model the concept of object-oriented paradigm was introduced

resulting in evolution of the object-oriented models in databases. The concept we have put

together here is illustrated in Figure 2.7 which is an enhancement on a previous figure drawn

by Gottfried Vossen (1992).

2.3 Summary of Review and Knowledge Gap

In this section, different related literature have been reviewed on databases and object-

oriented process and data communication as it relates to simple and complex data storage and

retrieval. It is clear from the review that Edgar (1960) worked on relational data model and

design which was the foundation of relational database management system. RDBMS needed

external language-SQL for query handling and have problem of Scalability. There is also the

issue of impedance mismatch with the model. They model is only capable of handling only

Structured data. Other models include the one worked by Stonebreaker (1994) on Objec-

relational databases model design which was the foundation of Object-Relational Databases a

hybrid of object database and relational database. This model introduced complex data types

and object features but to make it relational the complex data type was separated from the

simple data type, these created Scaling problem and schema definition problem. In other to

solve the problem of relational database structured type only and scalability challenge Adam

(2014) introduced the document-oriented databases in form of NoSQL with the most popular

implementation being MongoDB, this model actually allowed unstructured data to be handled

in the database it was also scalable compared to relational databases but it does not follow a

predefined schema and it also separates Complex data from simple data and uses hierarchical

storage which occupies large data space. The Object Database management system group, an

69

organization formed to further develop object databases, ODBMS.org (2013) worked on

Objec-oriented databases model design with the benefits of easy query, less specification

errors and relative objects independents. However their model proposal does not have the data

properties bundled with the data methods and there is no communication between data and

program process.

70

CHAPTER THREE

METHODOLOGY AND SYSTEMS ANALYSIS

3.1 Methodology Adapted

In the development of the system the methodology that will be used is the Object-Oriented

System Analysis and Design methodology (OOADM). The choice is obvious due to the fact

that the system developed is designed to handle databases and program development using the

principles of Object orientation such as inheritance, polymorphism, encapsulation and data

abstraction using class and object interfaces.

The analysis of the system in this chapter will be carried out using the Object-oriented

Analysis and Design methodology (OOADM). This methodology provides a detail insight on

the basic foundation of the process and link to the system being analyzed as well as on the

necessary guiding tools and methods that will be adapted in expressing the logic of the

processes that is used in the developing the system components required to design the system

in this research.

Object-oriented system analysis and design methodology (OOADM) was selected due largely

to the nature of the research work which is object-oriented based both in the database

manipulation and in the class object communication which is the core of our reserch. The

object-oriented nature of the system demands for an object methodology which Object-

oriented Analysis and Design Methodology (OOADM) offers. The class nature of the system,

studied in the analysis and design, which is made up of properties (data) and the methods that

manipulate them makes the OOADM to be inevitable.

3.1.1 Object-Oriented Analysis and Design Methodology (OOADM)

Object Oriented Paradigm (OOP) has been touted as the next great advance in software

engineering. It promises to reduce development time, reduce the time and resources required

71

to maintain existing applications, increase code reuse, and provide a competitive advantage to

organizations that use it. While the potential benefits and advantages of OOP are real,

excessive hype has led to unrealistic expectations among executives and managers. Even

software developers often miss the subtle but profound differences between OOP and classic

software development.

3.1.2 Expected Benefits of OOP

Many benefits are cited for OOP, often to an unrealistic degree. Some of these potential

benefits are (Adhikari, 1995; Taylor, 1995).

Faster Development: OOP has long been flaunted as leading to faster development. Many of

the claims of potentially reduced development time are correct in principle, if a bit overstated.

Reuse of Previous work: This is the benefit cited most commonly in literature, particularly in

business periodicals. OOP produces software modules that can be plugged into one another,

which allows creation of new programs. However, such reuse does not come easily. It takes

planning and investment.

Increased Quality: Increases in quality are largely a by-product of this program reuse. If

90% of a new application consists of proven, existing components, then only the remaining

10% of the code has to be tested from scratch. That observation implies an order-of-

magnitude reduction in defects.

Modular Architecture: Object-oriented systems have a natural structure for modular design:

objects, subsystems, framework, and so on. Thus, OOP systems are easier to modify. OOP

systems can be altered in fundamental ways without ever breaking up since changes are neatly

encapsulated. However, nothing in OOP guarantees or requires that the code produced will be

modular. The same level of care in design and implementation is required to produce a

modular structure in OOP, as it is for any form of software development.

72

Client/Server Applications: By their very nature, client/server applications involve

transmission of messages back and forth over a network, and the object-message paradigm of

OOP meshes well with the physical and conceptual architecture of client/server applications.

Better Mapping to the Problem Domain: This is a clear winner for OOP, particularly when

the project maps to the real world. Whether objects represent customers, machinery, banks,

sensors or pieces of paper, they can provide a clean, self-contained implication which fits

naturally into human thought processes.

Therefore, OOP offers significant benefits in many domains, but those benefits must be

considered realistically. There are many pitfalls that await those who venture into OOP

development. These pitfalls threaten to undermine the acceptance and use of object-oriented

development before its promise can be achieved. Due to the excitement surrounding OOP,

expectations are high and delays and failures, when they come, will have a greater negative

impact.

3.2 System Analysis

Analysis is the decomposition of the activities that is required in the development of a system

in other to discover the component part required for the design of the system. This will

involve the dissection of the component parts necessary for an object in database to interact

with object in code that is used in manipulating it. We also need to find out why a particular

ordering, need to be followed in the process of building the application needed for the testing

of the system developed in the research. There is also the need to specify certain steps and

processes required to build the abstractions needed in the proposed OODBMS that is used in

the implementation of the system being developed in this research. This processes could be

represented graphically or using a sound mathematical expression in the next chapter.

73

3.2.1 Analysis of the Present System

In the present system most of the data used in handling application are stored in structured

format in the database management system (DBMS) as well as in the data warehouse for

structured databases. The present system also use the object-relational and document-oriented

databases in handling the data but often the format of the data is different from the application

when object-oriented systems whose data format are not predefined are to be used in the

development of the system. The present system format had never generated concern all this

while due to the nature of the most common programming paradigm since the early eighties

which was largely structured in nature. Structured programming was very successful in the

development of systems and in the process of communicating between system code and data

used in manipulating the system usually stored in the databases as well as in data warehouses.

This trend continues to make Structured Query Languages (SQL) the defacto standard in the

development of systems.

However, continuous growth in data content and associated changes in modern programming

language from structured (procedural) to object-oriented has introduced new problems. In

addition, modern use and heavy reliance on object data such as video, audio, images and other

serializable object data on the internet and in data warehouses leaves developers with much

challenge on how to develop their systems to be able to communicate with the stored data

easily. The use of other complex data that can only be defined by the user application also

introduces the need to empower developers to be able to define, use and store their data via an

object-oriented database system.

74

3.2.1.1 Problems of the Present System

It is important for us to note that within the recent past the present system is efficient and for

technology experts and academics still thinking along the recent past there may be no need to

condemn the present system. But that does not remove the challenge of complexity of

information representation which is the major challenge of the present system. Simple data

types are largely “primitive” (singly definable types) such as whole numbers (integer types),

characters, dates, strings and even a combination of the simple types in records and lists. But

the reality today is that three dimensional representations such as spatial data which are

common today due to space and satellite technology improvements are increasingly been used

in organizational databases. Voice data, video and even pictures are also increasingly used

and they found application in many databases. Moreover there are other data and their

associated operations that users need to store in databases but presently data bundling with

operation are not yet used in present databases. These complex data sets which often are user

defined are represented in form of classes which has proven successful in programming

languages such as Java, C++ and other languages. Today any programming language that is

not object-oriented seems not to be accepted for serious software engineering development.

Apart from data representation and storage, communication of databases with object-oriented

program code leaves lots of operations implementations to the programmer, allowing for

ineffective communication between a procedural database and object-oriented programming

code. It is strongly believed that with transformed object-oriented databases communication

between objects in code and objects in databases will improve communication tremendiously.

75

It is also clear that data warehouses are even worse since some of them are still storing data in

files while others have barely embraced structured storage. This is understandable since most

data warehouses have been in existance for long time and updating them seem very expensive

since it is often a repository of data where all the data are never in use at the same time. But

we look at improvement so that new data warehouses can benefit from the storage

improvement and data mining benefit that object-orientation of data storages will offer.

The resultant challenge of the present system could still be presented in more detail as:

i) Lack of Component Reuse: Structured systems are difficult if not impossible to reuse.

Reusability on the other hand is established features in object-oriented system. This

makes modern system to have reusable code and data components that are not reusable

without direct replication.

ii) Problem of Inheritance: Structured system does not allow the sharing of object data

component by several users of sub-data components as it is in object-oriented classes.

This makes communication to be slow between the system and its data components.

When the data warehouse is large the system either crashes or is extremely slow. This

causes inefficiency in modern system development.

iii) Openness Challenges: The systems are normally closed systems, which mean they are

designed around proprietary concerns instead of standard protocols that allow data

warehouse and software from different systems to be combined and communicate

freely.

iv) Low Scalability: In this system, several processes and actions that are required by users

for unique circumstances can be easily developed as classes or new data types and

incorporated in the system making the system scalable. But when the system is

76

structured classes cannot be built losing the benefit of scalability. If the system is

object-oriented, the new classes developed can have methods that can override

previously defined methods whose implementation need adjustment to meet new user‟s

specific requirement. The tendency for increased resources and new data types and

classes are high in computing and new demands on more complex data. With the new

system complex data can be accommodated and incorporated by developers instead of

the DBMS vendors.

v) Problem of Lack of Encapsulation: The data in the ware house can properly be hidden

from the communicating classes and processes within the database. This have a way of

providing extra data security within the object database which combines with that of the

object-oriented code to provide better secured system. In the present system this is

lacking, system data is structured and relational and are not bundled with the processes

that manipulate them.

vi) Future Explosion: Data warehouses are not going to reduce rather we expect that data

will increase. It might increase even in a rate that explosion will occur. Structure

databases and data communication systems may find it difficult if not impossible to

handle such challenges. Hence the need to develop a system that can handle the

communication in an object-to-object manner.

3.2.1.2 Architecture of the Present System

In the present system, establishment of communication is expected between the programming

language used in the manipulation of the OQL and the DBMS that uses the OQL. Certain

principles need to be applied to both object-oriented programming languages and object

DBMSs. However, the application or the principle varies somewhat between programming

languages and DBMSs.

77

Programming languages have used object-oriented principles for many years now. Simula, a

language developed in the 1960s, is the first reported object-oriented Programming language.

As its name implies, SIMULA was originally developed as simulation Programming

language. Objects and messages are natural in modeling simulations. Smalltalk, a language

developed during the 1970s at the Xerox Palo Alto Research Center, was the first popular

object-oriented Programming language. Smalltalk originally emphasized object for graphical

users interface, inheritance among classes for windows and controls is a natural fit. Since the

development of Smalltalk, there have been many other object-oriented programming

language, Java and C++ are the two most widely used object-oriented Programming language

today.

Object-oriented Programming languages emphasize software maintenance and code

reusability to support software maintenance, encapsulation is strictly enforced. The internal

details (variables and method implementation) cannot be referred. In addition, some

languages support additional kinds of inheritance to share code. Reused of code can extend to

collections of classes, classes with data type parameter and redefined code in a subclass.

Objects DBMSs are more recent than object-oriented Programming languages. Researched

and development of object DBMS began in the years 1980s, by the early 1990s, there were

number of commercial object DBMSs. In addition, there was consideration works on

extending relational DBMSs with new object features. Because early object DBMS began as

outgrowth of object-oriented Programming languages, query language support did not exist.

Instead early object DBMS provided support for persistent data that last longer than the

execution of the program. Languages object DBMSs were designed to support application

with large amount of complex data.Most object DBMSs now support nonprocedural data

access. Some of the object-oriented Programming languages principle are relaxed to

78

accommodate this emphasize. Encapsulation usually is relaxed so that an objects data can be

referred in a query. Inheritance mechanisms usually are simpler because it is assumed that

most coding is through a query language not a procedural language. In addition, object

DBMSs need provide query optimization and transaction processing capabilities.

3.2.1.3 Architectures for Object Database Management

Although adding object-oriented Programming language features to a DBMS is a good ideal,

there is no wide-spread agreement about what features to add and how features should be

added. Some approached provide small extension that leaves most of the object-oriented

Programming languages outside the DBMSs. Other approached involved a complete rewrite

of the DBMSs to accommodate objects. The marketplace probably will support a variety of

approaches because of the different requirement among customers. This section describes

several object based management architectures along with their strengths and weakness.

3.2.1.4 Large objects and external Software Architecture

This earliest approach to add object to relational databases was to use large object with

external software. Complex data are stored in field as a binary or text large object. For

example, an image is stored in a field using the BLOB (binary large object) data type.

As depicted in Figure 3.1 large object usually are stored separately from other data in a table.

A query can be retrieved but not display large objects. Software external to the DBMS display

and manipulates large objects which include java applets and web browsers plug-ins. The

large objects approach is simple to implement and universal. Only small changes to DBMSs

are required. All kind of complex data can be stored; in addition, a large market for third-

party software may be available for prominent kinds of complex data.

79

For example, many third-party tools have been implemented for popular image formats.

Despite some advantages, the large object approach suffers from serious performance

drawbacks. Because the DBMSs do not understand the structure and the operations of the

complex database, no indexes can be used to select records using characteristics of large

objects. Because large objects are stores separately from other data, additional disk accesses

may be necessary in other for the large objects not coincide with the order of other table data.

Figure 3.1: Separated Large Object data Architecture

(Adapted from Michael, 2006)

 External software for

manipulating complex data

 SQL statement

 Database server Relational

database

Complex

data

Simple

data

80

3.2.1.5 Specialized Media Server Architecture

In the specialized media server approach, complex data resided outside of the databases, as

depicted in figure 3.2 a separate server may be dedicated to manipulating a single kind of

complex data such as video and images. Programmers used an application programming

interface (API) to access complex data through a media server. Specialized media servers

provide better performance than the large object approach but performance for specific kinds

of complex data. Because an API is provided rather than a query language, the range of

operations may be limited through for example, a video server may support fast streaming of

video but not searching by content.

When combining simple and complex data, the specialized server approach may perform

poorly. A query optimizer cannot jointly optimize retrieval of simple and complex data

because the DBMS is not aware of complex data. In addition, a media server may not provide

indexing techniques for search conditions. Transaction processing is limited to simple data

because specialized media servers do not typically support transaction processing.

81

This Architecture seam noble in approach but it carefully avoided the DBMS and the

structured query language (SQL) manipulations. With the great increase in some systems such

as YouTube and other multimedia news system online there is increased need to offer direct

communication in form of query to the objects. This architecture is speed efficient but

seriously lacking in transaction handling. The API manipulating the object have no direct

communication ability and hence cannot be able to handle transactions which are purely based

on query emanating from the user and processed by the DBMS. Since the DBMS does not

communicate directly with the objects the transaction cannot be possible.

Sql statement

 API call and result

 DBMS Complex Datastore

 Database server Media server

dates

Figure 3.2: Special Media Server Architecture (Adapted from Michael,

2006)

Sql statement

 API call and result

dates

DBMS

Database server Media server

Complex Datastore

82

3.2.1.6 Object Relational DBMS for User Defined Types

The first three approaches involve little or no change to the DBMS but provide only limited

query and optimization capabilities. With large changes to the DBMS, more query and

optimization capabilities are possible. To provide additional query capabilities; object

relational DBMSs support user-defined type and functions. Almost any kind of complex data

can be added as a user-defined type. Image data, spatial data, time series, and video are just a

few of the possible data types. For each user-defined type, a collection of functions can be

defined. These functions can be used in SQL statements, not just in programming language

code. Inheritance and polymorphism apply to the user-defined data types. To improve

performance, multidimensional B-trees can be provided for accessing spatial data. User-

defined types and functions are implemented in SQL3 and Odb2 some of the emerging

standard for object relational DBMSs. These are keys for improvement needed in the

development of classes and methods in the proposed system in this research. The architecture

of object relational databases is therefore adapted as the existing system from which

improvement can be done to fixed the challenges due to lack of action integration with the

uch properties of the object. This architecture is illustrated in Figure 3.3. The table query

processor uses table-driven architecture code for a user-defined type. The parser decomposes

references to expressions involving a user-defined type and functions. The optimizer searches

for storages structures for expressions involving a user-defined types and function. The

relational kernel comprises transaction processing, storing management and buffer

management. It provides the engines used by the object query processor. Little or no changes

are necessary to the relational kernel. Object relational DBMS provide good integration of

complex data but related. The integration of simple and complex data involves considerable

83

changes to the display manager, and optimizer. However, the base of code in the kernel

remains unchanged.

Figure 3.3 Architecture for the Existing System (Object relational DBMSs)

SYSTEM USER

OBJECT QUERY

RESPONDER

OBJECT QUERY

PROCESSOR

RELATIONAL KERNEL

(USE OBJECT IDENTIFIER)

OBJECT DATA

STORE (USES

OID TO STORE

DATA)

QUERY BY

EXAMPLE

(QBE)

RESPONSE

 Relational

Database

84

As illustrated in figure 3.3 the database communicates with the relational kernel which in turn

communicates with the object query processor in other to handle query processing and result

handling. Reliability can be compromised in the implementations of user-defined types,

function and storage structure that are not direct relations. DBMSs vendors, third-party

vendors, and in house developers can provide user-defined types and function, which can be

complex and difficult to implement. Implementation errors can affect the integrity of both

simple and complex data. In addition third-party data types can be subject to viruses or

spywares making the Object-relational database unsafe for use in financial, governmental and

critical database domains like medical imaging where the objects are in abundance.

3.3 Analysis of the Proposed System

Object-oriented database and class object communication System consists of multiple

complex software components that interact based on certain object-oriented paradigm

standards.

The new system intends to solve the problems of the old system by providing improvement

on the architecture of object database models and class object communication to make it

possible for the system to handle object databases as well as interact directly with

programming language class objects in a manner that will simplify the user experience in

using object-oriented database management system.

In the new system, the Object database need to be created in such a way that it directly

communicates with object-oriented classes irrespective of the type of query or request made

on the system whether they are related or not. This needs to be done without translating from

higher-level language such as SQL, in a compact way for data manipulation operations. The

85

optimizer through the process of optimization determines which indices should be used to

execute a query and in which order the operations of a query should be executed. To this end,

the optimizer enumerates alternative plan to achieve the task once the query has been

presented to the system for analysis and processing.

This will result to a possible rapprochement of SQL3, ODMG/OQL and other object database

proposals. The idea is that DBMS products continue to maintain their relational roots for

managing traditional data, while at the same time addressing some of the shortcomings of the

relational model by providing some of the benefits offered by the object-oriented paradigm

(and its facilities for handling non-traditional and complex data).

Proposed features: In the proposed system the features proposed are the combination of

complex and simple data. This will result to new data model which include new and extended

data types including abstract data types, and classes as well as multiple null states, support for

objects and object identity, encapsulation, inheritance and triggers. They also include

primitive types like INTEGER, DECIMAL, CHARACTER, BIT, TIME, DATE and many

other variations of these. All of the data types specified in the existing SQL-92 standard could

be maintained, though some may be modified and extended. For instance, both the

CHARACTER and BIT data types could be extended to include the concept of a large object.

A large object is used to store an entire object or piece of data in a single large field. A

CHARACTER LARGE OBJECT is used to store a large piece of character data without the

use of fields while a BINARY LARGE OBJECT can be used to facilitate the use of

multimedia objects within the database. The key to a large object data type is that the database

is not concerned with the data items internal structure. Applications or implementations that

support these data types impose severe restrictions on how these large objects may be

86

referenced in SQL definitions and statements such as not allowing them to participate as a

primary key.

Two additional data types not previously facilitated by the standard have also been proposed.

These two new data types are BOOLEAN and ENUMERATED. BOOLEAN data types can

only take on the values of 'True', 'False' or 'Unknown'. „Unknown‟ is proposed as an extension

due to the roll of fuzzy logic in the development of intelligent systems that can control the

objects behavour. ENUMERATED data types permit you to "define a domain whose values

are restricted to a small set of values". The command CREATE DOMAIN colors (blue, red,

yellow) defines a domain called colors and restricts values inserted into the column accepting

the ENUMERATED data type to one of the three values specified by the domain.

The second group of data types that is important is the abstract data type, a data type not

previously supported. As mentioned earlier, abstract data types are a feature of the object-

oriented paradigm. The ADT data type is used by to facilitate the incorporation of objects

within the SQL structure. "Abstract data types allow users to define new structures for their

own data (Garvey,2010). New data types may be constructed by defining abstract data types

in terms of existing predefined data types or previously generated abstract data types. These

data types therefore have no logical representation. Abstract data types also support the

object-oriented concepts of encapsulation and subtyping (inheritance). In the new proposal a

structure for direct communication with classes and objects inside the manipulating code of

the programming language used in the implementation of the databases is required. This will

allow request and actions to response from the object-database to be built in code as a class

that can be instantiated, and inherited by other classes for efficient implementation of system.

This will form a meta type that have direct communication link to object at the two ends of

87

the system both at the object-database end and the objects on manipulating code end. This

will surely lead to an improvement to Object-Query Language used in manipulating the

database in the system.

3.3.1 Advantages of the Proposed System

The following advantages would be derived from the proposed system:

1. Inheritance: The system allows the sharing of object data component by several users

of sub-data components as it is in object-oriented classes.

2. Openness: The systems are normally open systems, which mean they are designed

around standard protocols that allow data warehouse and software from different systems to

be combined and communicate freely.

3. Scalability: In this system, several processes and actions that are required by users for

unique circumstances can be easily developed as classes or new data types and incorporated

in the system making the system scalable. The new classes developed can also have methods

that can override previously defined methods whose implementation need adjustment to

meet new users‟ specific requirement. The tendency for increased resources and new data

types and classes are high in computing and new demands on more complex data in the

system can be accommodated and incorporated by developers instead of the DBMS vendors.

4. Encapsulation: The data in the ware house can properly be hidden from the

communicating classes and processes within the database. This have a way of providing

extra data security within the object database which combines with that of the object-

oriented code to provide better secured system.

5. Polymorphism: Polymorphism supports fewer, more reusable methods. Because a

method can have multiple implementations, the number of method names is reduced. A user

88

needs to know only the method name and interface, not the appropriate implementation to

use the system. For instance, a user needs to know only that the area method applies to

polygons, not the appropriate implementation for a rectangle. The DBMS assumes

responsibility for finding the appropriate implementation. Polymorphism also supports

incremental modification of code. Incoming another implementation of a method for a

subclass much of the code for the method‟s implementation in the parent class often can be

used. For example, to code the redefinition of the equals method in the color point class,

another equality condition [for the color of a point] should be added to the conditions to test

the x and y coordinates, the information required for that can be stored in the object-

database for easy communication with the object code.

3.3.2 Possible Difficulties in achieving the Proposed System

1. Complexity: The systems are more complex than structured Systems. This makes it more

difficult to understand their emergent properties and to handle their communication

challenges by non-expert systems users.

2. Manageability: More effort is required to manage and maintain the System in Operation

in other to gain all the benefits.

3. Unpredictability: The object based systems are unpredictable in their response to classical

systems, as many data are already store in the relational format within many data

warehouses.

4. High Operational Cost: In other to make the system effective there may be the need to

convert relational data to the object-oriented structures which could be expensive based on

the volume of stored data to be converted.

5. Type checking challenge: Along with binding, the DBMS ensures that objects and

methods are compatible. This function is known as type checking. Strong type checking

89

ensures that there are no incompatibility errors in code. For example; strong type checking

prevents computing an area for a point object because the area method applies to polygons

not points. Because complex expressions can involve many methods and objects, strong

type checking is an important kind of consistency check in object-oriented computing.

3.3.3 Architecture of the Proposed System

In the proposed architecture the object-oriented database combines the storage of both the

simple data and the complex data and therefore does not need a middleware to circumvent

problems with media servers. The functionality of the abstraction created by the media server

is integrated into the object-oriented database server. This is done to avoid storage of object

data in different locations as is done in object-relational databases. In this case clients send

their query to the object-oriented database kernel through the Object-Oriented Query

Processor (OOQP). This avoids the use of SQL statements and the preprocessing of SQL

statement by the database server. The object-oriented query processed by the OOQP passes

through the Object-Oriented Data Kernel that interacts directly with the Object-Oriented

Database Store (OODS) where both the simple data and the complex data are stored. This

enanbles the data to communicate with the system process on Object-to-Object level. Object-

oriented database eliminates the need for the middleware and the media server. This

architecture of the functionality of the Proposed Object-Oriented Database is illustrated in

Figure3.4.

90

Figure 3.4: Architecture of the Proposed System

SYSTEM USER

OBJECT – ORIENTED QUERY

PROCESSOR
OBJECT- ORIENTED DB

KERNEL (USES CLASSES

OBJECT ID)

OBJECT- ORIENTED

DATABASE

SIMPLE

DATA

COMPLEX

DATA

FETCH BOTH

(SIMPLE DATA

AND COMPLEX

DATA)

91

3.4.1 Object-oriented Database Management Systems (ODBMS)

Some experts have argued that more fundamental changes to a DBMS are needed to support

object. Both the data model and the kernel must be changed to accommodate objects. This

conviction has driven a number of start-up software companies to implement a new class of

object DBMSs. The software companies have banded together to form the Object Database

Management Group (ODMG). Despite some important advantages of object-oriented DBMS,

they continue to occupy a market niche. Most of the products are used in application where ad

hoc query occupy complex data in large software systems. Most of the object-oriented

DBMSs began as extended programming languages with support for persistent object (i.e.

objects that exist after a program terminates). Gradually, the object-oriented DBMSs have

provided ad hoc query and efficient transaction support.

THE ODMG AND SQL standards groups have recognized the need for a unified standard. In

the nearest future, unified standard may emerge that allows portability between SQL3 and

ODMG-compliant DBMSs. Even when this unification occurs, considerable time may elapse

before most products support the unified standard. Both ODMG and SQL3 are very large

standards. Most DBMS vendors will support only a subset of the standards.

3.4.2 Object Database Architectures

The architectures of object databases fulfill a certain market niche. The simpler architectures

[large objects and media servers] should become less popular over time. The struggle for

dominance among the other three architectures may not be decided for some time. The object

database middleware architecture will likely co-exist with the other architectures to handle

complex data stored outside of a database.

92

3.4.3 User- Defined Types and Object Classes

One of the most fundamental extensions in SQL3 is the user –defined type for bundling data

and procedures together. User-defined types support definition of new structured data types

rather than refinement of the standard data types. It implements the user defined types in a

way of specifying object classes in the system. A data type has a collection of properties and

methods. The CREATE DOMAIN statement support refinements to standard data types.

Example 3.1 shows the point type some DIFFERENCES are apparent, such as keywords [type

versus CLASS] AND the order of specification [the field name before the data type]. The first

path of a user-defined type contains the attributes definitions. The double hyphen denotes a

comment. The keywords NOT FINAL mean that subtypes can be defined. For methods, the

first parameter is implicit like the ODMG notation. For example, the distance method lists

only one point parameter because the other point parameter is implicit. The body of methods

is not shown in the CREATE TYPE statement but rather in the CREATE METHOD

statement.

Example 3.1

Point type

CREATE TYPES point AS

 X FLOAT (15), X coordinate

Y FLOAT (15), Y coordinates

 NOT FINAL

METHOD Distance (P2 point) RETURN FLOAT (15),

 Compute the distance between 2 points

METHOD Distance (P2 point) RETURN BOOLEAN

 Determines if 2point are equivalent;

93

Example 3.2

Color point type

 CREATE TYPE color point UNDER Point AS

 Color INTEGER

 FINAL

 METHOD Brighten (intensity INTEGER) RETURNS INTEGER,

 Increase color intensity

 OVERRIDING METHOD Equals (CP2 Color Point)

 RETURNS BOOLEAN;

 Determines if 2point are equivalent;

Besides the explicit methods listed in the CREATE TYPE statement, user-defined types have

implicit methods that can be used in stored procedures as shown below:

1. Constructor method: creates an empty instance of the type. The constructor method has

the same name as the data type. For example, the point () is the constructor method for the

point type.

2. Observer methods: retrieve value from attributes, each observer method used the same

name as its associated attributes. For example, X () is the observer method for the x

attributes of the point types.

3. Mutator method: change value stored in attributes. Each mutator method uses the same

name as its associated attributes with one parameter for the value.

 For example

X (45.0) Changes the value of the X attribute.

94

SQL3 features the ARRAY collection type to support types with more than one valve such as

time series and geometric shapes. Examples 3.3 use an array to determine a polygon type with

a maximum of 10 corners. The number following the array keyword indicates the maximum

size of the array. Array can be storing any data types except others arrays and reference types

presented above.

Example 3.3

Polygon types using an ARRAY

 Creates types polygon AS

 Corners point ARRAY (10), Array of corner points

 Color INTEGER

 NOT FINAL

 METHOD Area () RETURNS FLOAT (15),

Compute the Area

METHOD Scales (Factor FLOAT (15)) RETURNS Polygon:

Computes new polygon scaled by factor

User-defined types support definition of new structured data types rather than refinement of

the standard data types. User-defined functions can be used in expression in the SELECT,

the WHERE, and the HAVING clauses.

Object database technology is driven by demands to integrate complex and simple data and

software productivity problems due to type mismatches btw DBMSs and programming

languages. Three principle of object-oriented computing encapsulation, inheritance, and

polymorphism guide the development of object DBMSs. Encapsulations the hiding of

implementation details, supports data independence

95

Because of the variety of ways to implement the object-oriented principles and the difficulty

of implementation, a manner of object-oriented DBMSs architecture are postulated and

commercially available. This chapter described some of this object-oriented architecture with

their advantages and disadvantages with the hope of offering improved design. The first two

doesnot fully support object-oriented principles as they involves simples schemes to stored

large objects and invokes specialized server outside of a DBMSs. The last three architectures

provide different paths to implement the object-oriented principles.

To provide a more concrete view of object database, this chapter presented object-oriented

database definition and manipulation using SQL3, the emerging revision of SQL2, SQL3

support user-defined types to accommodate new kinds of complex data. Expression in query

can reference columns based on user-defined types as well as the methods of the user-defined

types. SQL3 support encapsulation, inheritance, and polymorphism guide the development of

user-defined types. A separate inheritance capability for suitable families is also provided.

Inheritance for sub-table families involve set inclusion relationships.

In the next chapter we will present an analysis and design for an improvement of the

architecture to make it possible for the system to handle object databases as well as interact

directly with programming language class objects in a manner that will simplify the user

experience in using object database management system. This will enhanced the benefits of

Object-oriented systems and reduce the challenges of usage.

3.4.4 Analysis of the Proposed Data Model

In object-oriented databases some of the core concepts include:

1. Object modeling of real world entity.

2. Database Structures and their behaviors are Encapsulated.

3. Manipulation of object states is done by Messaging.

96

4. Objects sharing the same structure and behavior are grouped into Classes.

5. A subclass can inherit both structure and behavior from its superclasses

The principles of object-orientation specified need to be augmented in a real life object-

oriented databases with more requirements. These requirements include:

a. Support of Complex Objects such as highly structured information, type-system

orthogonality and extensibility.

b. New types should be possible to be defined at any time by applying given constructors to

already defined types in a vastly arbitrary fashion.

If an object-oriented data model captures this entire list of requirements it will be intuitively

more complex than any previously developed model.

3.4.5 Detail Model Analysis

We need to emphasis the various types of the database models as they evolved over the years

to provide the breakdown understanding on how the migration has been and where we are

moving to today. This will clearly show the edge of database model research which is on the

Object-oriented model level. Many database authors present these models as if they were

optional models developed basically at the same time and as if one can simply choose one and

use. This is far from been correct. The truth is that each of the models was an attempt at

improving an older model, any competing models where at the same level like Hierarchical

and Network database models which evolved at the same period and where computing options

before they were merged to give rise to the relational model. The models according to their

sequence of development include:

File System: File system (or filesystem) is data storage and retrieval technology used to

control how data is stored and retrieved. Without a file system, information placed in a

storage area would be one large body of data with no way to tell where one piece of

97

information stops and the next begins. By separating the data into individual pieces, and

giving each piece a name, the information is easily separated and identified. Taking its name

from the way paper-based information systems are named, each piece of data is called a file.

The structure and logic rules used to manage the groups of information and their names are

called a "file system". Files are identified by their characteristics, like type of file, topic,

author etc.

A database File system is developed in late 1960s and was designed and deployed in real life

databases by Frank G. Soltis IBM's former chief scientist for IBM (Pirkola, 1975). Around

1978 to 1988 Frank G. Soltis and his team at IBM Rochester had successfully designed and

applied technologies like the database file system. IBM DB2 for (formerly known as DB2/400

and DB2 for i5/OS) was a database file system running on IBM Power Systems (formerly

known as AS/400 and iSeries) These technologies are informally known as 'Fortress

Rochester' and were in few basic aspects extended from early Mainframe technologies but in

many ways more advanced from a technology perspective (Selzter, 1993).

98

 Figure 3.5: A File System Data Model (Adapted from Selzter, 1993)

Bachman diagrams: A Bachman diagram is a certain type of data structure diagram, and is

used to design the data with a network or relational "logical" model, separating the data

model from the way the data is stored in the system. The model is named after database

pioneer Charles Bachman and mostly used in computer software design. The coupling

between the relations is based on accordant attributes. For every relation, a rectangle has to be

drawn and every coupling is illustrated by a line that connects the relations. On the edge of

each line, arrows indicate the cardinality. We have 1-to-n, 1-to-1 and n-to-n. The latter has to

be avoided and must be replaced by two 1-to-n couplings. Bachman model was used in the

creation of powerful database like the General Electric Data store which gave rise to COBOL

(Bachmann, 1969).

99

In Figure 3.3a, the Bechman database model shows the author association between books and

the people who wrote them.

 Figure 3.6a: Bechman Database Model of Authorship (Adapted from Bechman, 1970)

If one were to examine the books in any library, it would find that some books had one author

while other books, especially in the technical and educational fields, had two and maybe three

or four authors. If one considered the people who were authors of these books, it would be

found that some were authors of more than one book. Certain prolific authors would have

many books to their credit.

 Figure 3.6b: Bechman Database Model of Authorship (Adapted from Bechman, 1970)

100

Therefore, the network created by the book/people/author relationship would consist of nodes

for books (book entities), nodes for people (people entities), and a relationship between a

book entity and a person entity that records authorship as shown in figure 3.3b using

Bechman Data Structure Diagram (Bechman 1970).

3.5 The Universe of Discourse (UoD)

 In this research, we focus on the data perspective, and assume the design involves building a

formal model of the application area or universe of discourse (UoD). To do this properly

requires a good understanding of the UoD and a means of specifying this understanding in a

clear, unambiguous way. Object-Role Modeling (ORM) simplifies the design process by

using natural language - as well as intuitive diagrams that can be populated with examples-

and by examining the information in terms of simple or elementary facts. By expressing the

model in terms of natural concepts, like objects and roles, it provides a conceptual approach

to modeling. The application area or universe of discourse selected in this research is a

Conference management system. This is selected due to the multi-tasking involved during

paper reviews on a distributed environment.

3.5.1 Analysis of UoD -Conference Management System

Conference is meeting of people to present and discuss their work in their field of endeavor.

The field can be academic or other areas of life. In academic conferences research work are

discussed as a channel for researchers. Generally, work is presented in form of short, concise

presentation lasting about 10 to 30 minutes, usually including discussion. The work may be

bundled in written form as academic papers reviewed by selected academics across large

geographic area and published as the conference proceedings.

A conference management system is web-based software that supports the organization

of academic conferences. It helps the program chair(s), the conference organizers, the authors

101

and the reviewers in their respective activities. A conference management system can be

regarded as a domain-specific content management system. Similar systems are used today by

editors of various journals (Barrett, 2000).

In this project we will study conference activities and use its domain components in the

development of a conference management system that will be able to automate the activities

that constitute the domain content of a conference system.

In conferences there are one or more keynote speakers, usually scholars of some standing.

Panel discussions, round tables on various issues, workshop may be part of the conference,

the later ones particularly if the conference is related to the performing arts. Prospective

presenters are usually asked to submit a short abstract of their presentation which will be

reviewed before the presentation is accepted for the meeting. Some disciplines require

presenters to submit a paper of about 6-5 pages which is peer reviewed by members of the

program committee or referee chosen by them. In some disciplines like sciences, presenters

usually base their talk around a visual presentation that displays key figures and research

results. A meeting might be single track or multiple tracks, where the former has only one

session at a time, while a multiple track meeting has several parallel sessions with speakers in

separate rooms speaking at the same time. Depending on the theme of the conference, social

or entertainment activities may also be offered; if it‟s a large enough conference, academic

publishing houses may set up displays, offering books at a discount. At a larger conference,

business meetings for learned societies or group might also take place. Academic conferences

fall into three categories

1. The themed conferences, small conferences organized around a particular topic‟,

http://en.wikipedia.org/wiki/Peer-review
http://en.wikipedia.org/wiki/Content_management_system
http://en.wikipedia.org/wiki/Scientific_journal

102

2. The general conference, a conference with a wider focus, with sessions on a wide variety

of topics. These conferences are often organized by regional, national, or international

learned societies and held annually or on some other regular basis.

3. The professional conference, large conference not limited to academics, but with

academically related issues. In organizing academic conference, the meeting is announced

by away „‟ call for papers‟‟ or call for abstracts, which lists the meeting‟s topics and tells

prospective presenters how to submit their abstract or papers. Increasingly, submissions

take place online.

4. In this work we will study all the activities associated to conferences and extract

key activities as an „‟ information system‟‟ for computerization and automation. In this

light, the work involve the management of the conference „‟information system‟‟ in

a way as to reduce and eliminate known bottlenecks associated with the local

and manual handling of such information. Some of these conference functions and

workflows supported by conference management systems include:

i) Receiving paper submissions (PDF upload, collection of bibliographic metadata)

ii) Anonymizing submissions

iii) Collecting reviewers' topic preferences

iv) Collecting conflicts of interest

v) Assigning reviewers to papers

vi) Disseminating submissions to reviewers

vii) Collecting reviews

viii) Monitoring review coverage

ix) Sharing reviews among the program committee

http://en.wikipedia.org/wiki/Portable_Document_Format

103

x) Ensuring independence of reviews

(reviewers cannot see other reviews for a submission before they have submitted their

own)

xi) Providing a per-submission discussion forum for the reviewers

xii) Ranking reviews and setting acceptance threshold

xiii) Anonymizing reviews

xiv) Reporting reviewers' comments and program committee decision to authors

xv) Collecting final accepted versions

Some systems offer additional functions that go beyond supporting only the peer-review

process:

a) Creating a conference website and program

b) Registering attendees

c) Publishing proceedings

It is clear therefore, that conference management system is a branch of information

management system and also related to management information system when examined

from the point of the conference organizers and managers.

3.6 The Database Infrastructure.

The database forms a data infrastructure. They provide for storage of data needed for one or

more organizational functions and one or more activities. There will be a number of databases

based on organizational activities. Planning of the database infrastructures involves

determining what should be stored, what relationships should be maintained among stored

data, and what restrictions should be placed on access. The result of database planning and

implementation with database management system is a capacity to provide data both for

application and ad hoc needs. Comprehensive databases designed for ad hoc use may be

termed data warehouses.

104

3.7 Development of Conference Strategies

Strategic planning like any other business activity planning begins with deciding the social

responsibility and proceeds to spell out the business mission and goals and the strategies to

achieve them. In the very beginning of the planning process it is necessary to establish and

communicate to all concerned the social and economic responsibilities of the organization, in

order to discharge these responsibilities. It is necessary to decide the purpose of the

organization for which it works. Many organizations call it a mission. The task after deciding

the mission or the aim is to set the goal (s) for the organization. The goal is more specific and

has a time scale. The goals become a reference for the top management in planning the

business activities. After determining the mission and the goals the next task is to set various

objectives for the organization. The goal are described in terms of business results to be

achieved in a short duration of a year or two the objectives are measurable and can be

monitored with the help of business tools and technologies. When achieved, the objectives

will contribute to the accomplishment of the goals and subsequently the mission. The next

step in the planning process is to set targets for more detailed working and reference the

objective of the business is to be translated in terms of functional and operational units for

easy communication and decision making. The targets will be the direct descendants of the

objective(s) (Doyle, 2000). The success in achieving the goals and objective is directly

dependent on the managements‟ strategies. The resources of an organization being faced by it

the game is of evolving strategies and counter strategies to win.

3.7.1 Types of Strategies

A strategy means a specific decision(s) usually but not always regarding the deployment of

the resources to achieve the mission or goals of the organization the right strategy beats

competition and ensures the attainment of goals while a wrong strategy fails to achieve the

105

goals. Correction and improvement in case of a wrong strategy is possible at a very high cost,

such a situation is described as a strategic failure. If a strategy considers a single point of

attack by a specific method it is a fixed strategy. If a strategy acts on many fronts by different

means then it is a mixed strategy.The business strategy could be series of pure strategies

handling several external forces simultaneously. Hence the strategy may fall in any area of the

business and may deal with any aspects of the business.

3.7.2 Tools Of Planning

Planning, long-range or short-range, strategic or tactical, involves a series of decisions to be

taken by the managers in the organization. So when we talk about the tools of planning, we

are talking about the tools of decision-making with reference to planning. Decisions relate to

several aspects of corporate business planning. There are numbers of alternatives, choices and

options available while planning the business. Further, there is selection of resources and their

allocation in an optimum manner to maximize the gains. Then there is selection of method

whereby the efforts at all the levels are coordinated towards a common goal and direction.

The planning, therefore, involves decision-making with the help of tools. These tools are

based on one or more factors. These factors are: Creativity: Systems approach: Sensitivity

analysis: and Modeling.

3.7.3 Creativity

Creativity comes out of an experience, a judgment, an intuition of an individual or a group of

individuals. When decision making is called for a situation which has no precedent then

creativity is the only tool to resolve the problem of decision making. Creativity is the result of

the conceptual skills of an individual. The conceptional skills comprise the following skills.

1. The ability to generate a number of ideas rapidly.

2. The ability to change quickly from one frame of reference to another.

106

3. Originality in interpreting an event and generating different views on the situation.

4. The ability to handle with clarity and ease a complex relationship of various factors in

a given situation.

A person who possesses these skills is said to have a conceptual fluency. If an organization

has a number of people, at least at key positions, with conceptual fluency, then it becomes a

creative organization. Such an organization creates new ideas and new strategies for

development of business. The plans are made on the strength of experience and conceptual

fluency.

3.7.4 Systems Approach

Systems approach to planning considers all the factors and their inter-relationship relevant to

the subject. It takes a course to an analytical study of the total system, generates alternative

courses of action and helps to select the best in the given circumstances. It is used in situation

of risk or uncertainty, and examines the various alternative courses of action. It helps to find

solutions to problems.

The systems approach helps to understand the situation with clarity. It helps to sort out the

factors on the principles of critical and non-critical, significant and insignificant, relevant and

irrelevant, and finally controllable and uncontrollable. It tests the solutions for feasibility-

technical, operational and economic. It further studies the problems of implementation of the

solution. Broadly, the systems approach has the following characteristic:

1. It uses all the areas and the branches of knowledge.

2. It follows a scientific analysis to identify the problem.

3. It uses a model of a complex situation to handle the problem.

4. It weighs cost against benefit for assessment of the alternatives.

5. It deals with the problems where time context is futuristic.

107

6. It considers the environment and its impact on the problem situation.

7. Every solution is tested on the grounds of rationality and feasibility, and accepts a

given criterion for selection of the most preferred alternative.

8. It uses operations research models if the problem is well defined.

The systems approach is a way of looking at a problem in a systematic manner using the

scientific methods and applying the principles of a rational decision making to solve the

problem.

3.7.5 Modeling

A model is a meaningful representation of a real situation on a mini scale, where only the

significant factors of the situation are highlighted. The purpose of a model is to understand the

complex situation based on only the significant factors. There are several types of models.

The model could be a physical model, like a model of a house, a park, a sports complex, etc.

The model could be a scale model reducing a large body to a small one. The model could be

mathematical model like break even analysis model, linear programming model, queuing

model, network model, etc.

3.8 Conference Management System

A web application need to support every aspect of the conference organization process. This

includes paper submission, reviewer assignments, revised and camera-ready paper

submission, registration handling of the conference participants.

Software interfaces

One external system shall be the DBMS. There shall be an abstract layer between the system

and the DBMS to provide database calls independent from the DBMS vendors. JDBC 3.x

driver type 4 serves that purpose. Such drivers are usually developed by the corresponding

database vendors (e.g. MySQL DBMS provides such a driver) (Plasmeijer, 2005).

108

3.8.1 Product functions and features

The system shall be able to handle multiple sub-conferences.

The system shall support special sessions.

The system shall support tutorials.

The system shall support invited or plenary talks.

The system shall support paper submission.

The system shall support review process.

The system shall support conference program creation.

The system shall support registration.

The system shall support creation of proceedings.

The system shall support on-site participants.

3.8.2 Security requirements

All, user provided data, which will be part of the SQL query must be preprocessed to put

escape character (backslash) in front of a single or double quote or backslash. Otherwise

misinterpretation of the SQL query is possible because these characters are part of the SQL

syntax.

 General role consideration

There are some information and principles which are common to all roles. These are

mentioned in this part, and later specific roles are explained.

Personal data

Personal data includes:

a) (Mandatory): title, name, last name, institution/affiliation, country, address, e-mail, areas of

interest (multiple select from a list of areas of conference‟s interest).

b) (Optional): department, phone, fax, home page URL

109

c) Username and password. Username must be unique, and username and password must be

unique. They determine roles which person has in the System so appropriate modules can be

shown.

Personal data is presented to all roles. Some roles can have additional items related to their

functionality. Users can change their personal data later after login (Plasmeijer, 2006).

Activating accounts and invitations new roles can be assigned in two ways:

1 User with authority sends invitation with email which has active link to account

activation page. That way invited person can fill all personal information by himself.

If person is already registered in system he fills only his username and password so he

could be assigned new role. Before sending this mail user should give the following

information about invited person:

i) Person‟s name

ii) Person‟s last name

iii) Person‟s e-mail

iv) Title (optional)

Note: That way of registering is present at all later roles.

2 User with authority gives account by filling the form and selecting appropriate role.

Form includes:

i) Person‟s name

ii) Person‟s last name

iii) Person‟s e-mail

iv) Persons username

v) Persons password

vi) Title (optional)

110

After filling the form and activating account user sends an email which informs an invited

person about filled data and given account. Note: That way of registering is only available to

Conference administrator. User gets account when visiting web site.

Administrator

Personal data

System administrator has username and password. These values are initially predefined by

SystemAdministrator himself. His e-mail can be used as a contact for any problems related to

system.

3.8.3 Conference creation

System administrator is role with the highest rank and is mandated that system functions

properly. System administrator shall create new conference. Conference creation consists of

filling in the conference data (only the first tag from) and answering a questionnaire.

Questionnaire has the following questions that can be answered by yes or no. Questions are:

a) Does the conference requires sub-conferences

b) Does the conference requires tutorials

c) Does the conference requires special sessions

d) Does the conference requires invited/plenary talks

Answers to these questions enable/disable these functionalities.

System administrator shall also create a conference administrator. If there are more than one

conference in database conference administrator will be able to browse conference.

Browsing conferences

System administrator shall be able to browse existing conferences in database. By clicking on

the desired conference he becomes conference administrator for that conference and has

ability to change all data.

111

Conference Administrator

Conference management

Only conference administrator is able to change all users and conference data. He has

following permissions: He is able to list all users. He can change user‟s data and give new

username or password.

Conference data

Conference parameters, which administrator defines or changes through a form are:

i) Conference title, year, place and date of starting and ending of conference.

ii) Deadline dates:

iii) paper submission

iv) notification of authors

v) final paper submission

vi) author registration

vii) tutorial proposal (if enabled)

Paper management

Program Chair (PC) collects all papers sent by corresponding authors. After viewing papers

metadata's he gives papers to sub-conference ProgramChairs (to certain sub conference)

3.8.4 Creating Conference Program

In this part Paper chair is dealing with building the program from sessions. Each of sub-

conference PC gives ready session‟s plans to PC. PC chair collects all these sessions and

makes daily schedules of conference. He does these by hand but all data related to where and

when sessions are held is put into database. PC chair shall be able to add new events to a list

of sessions. Such as coffee break, lunch break, excursions... These events are only denoted by

a name. Invited talks and tutorials are special categories.

112

PC chair shall be able to define rooms/space for the presentations. These rooms are denoted

only by their name.

Program is being built from sessions and events. Each session/event requires:

i) Date/day

ii) beginning time (precision to 5 minutes)

iii) ending time (precision to 5 minutes)

iv) room allocated

The system should be able to recognize and warn if any conflicts in the schedule occurred.

Notification system

All notifications are assumed to be made by email directly to PC Chair. This includes

notification about paper withdraw, request invitation letter indicating his paper is accepted,

author may notify organizer that another person will present his paper (if he will not attend) or

author may notify about special presentation equipment requests.

3.9 High Level Model of the Conference Management System

The model shown in the Figure 3.7 shows the high level model of the conference management

system. The system has HOME which is represented by the CMS system page followed by

Conference, Papers, User Admin, Program, General Admin, and LogOut. The menus each

have submenus that are carrying out different activities as listed in the figures.

113

 Figure 3.7: A High level Model of the Proposed CMS

The Conference menu has Conference Info which provides conference information to the

public. This is followed by View Phases which provide conferees to know the various

activities for the conference. The next is Edit_Conf_Info used for editing the conference

information in case of changes. If the phases change the Change_current_phases submenu is

used to handle it. But if the phases are to be edited, Edit Phases submenu is used. The papers

menu equally contain submenus such as View Papers which allow reviewers to view different

View

Papers

ViewPaper

Tracks

View Withdrawn

Papers

View Paper

Topics

Bulk

Accept

A B C

Conference

Info

Edit_Conf_

Info

View

Phases

Change_Current_

Phases

Edit

Phases

CMS System

Conference Papers User

Admin
Program General

Admin

LogOut

114

papers, View Withdrawn Papers, a submenu allowing the papers withdrawn for the

conference to be viewed. Accepted papers are handled by Bulk Accept and one can view the

various conference tracks by using the View Paper Tracks. The View paper Topics submenu

can be used to check all the topics of the conference. The remaining submenu items are

described in A, B and C in Figures 3.8 and the others below.

In Figure 3.8 the admin menu offers services allowing the admin to view all users, view all

reviewers and setup reviewers‟ account.

Figure 3.8: A High level Model of User Admin Menu

The model also allow the admin to Setup Admin Account, change Admin Password and login

to another account within the CMS system. The admin submenu also allows the admin to be

able to print names using the Print Name Tags submenu and gain access to Form letters. The

admin can also check for reviewer preferences using Reviewer Preferences submenu.

In Figure 3.9, the program menu has six submenu Rooms, Presentation Types that take care of

the various presentations, and Session Tracks that handles the various tracks in the

conference. It also includes the sessions and the various programs by track. The program by

A

View

All

Users

Setup

Reviewer

Account

View All

Reviewers

Setup Admin

Account

Change

Admin

Password

Phases

Print

Name

Tags

Login to

Another

Account

Form

Letter

s

Reviewer

Preference

s

115

Track is also followed by program by Room which offers conferee various program options at

the middle of the conference.

 Figure 3.9: A High level Model of the Program Menu

In Figure 3.10 the general Admin menu model illustrates the various submenus which include

Change settings used in adjusting the system settings. Import and Export of files and data info

are also handled using Import and Export submenu. Settings, a submenu used in handling

general administrations of the systems. Others include the Extract All Papers submenu used in

getting the accepted papers for proceeding publication, the BuildCD structure submenu can be

used in preparing the index for the publications article listing.

B

Rooms SessionTracks

Presentation Types Sessions

Program by

Track

Program by

Room

116

 Figure 3.10: A High level Model of General Admin Menu

 The last menu in the system is the LogOut menu which is used in logging out of the system.

C

Change

Settings
Import/Export

Settings

Extract

All

Papers

BuildCD

Structure

117

CHAPTER FOUR

SYSTEM DESIGN AND IMPLEMENTATION

4.1 Design

Design involves the synthesis of the component part of a system in other to generate a new

system that proffers solution to a specified problem which has previously been analyzed. The

quality of a solution proffered for a problem depends critically on the design and the tools

deployed. To help ensure correctness, clarity, adaptability and productivity, the design of

object-database architecture for the development of an object database system communication

are best specified first at the conceptual level, using concepts and language that people can

readily understand. The conceptual design may include data, process and behavioral

perspectives, and the actual database management system (DBMS) used to implement the

design can be based on object-oriented logical data model.

In this research, we focus on the data perspective, and assume the design involves building a

formal model of the application area or universe of discourse (UoD). To do this properly

requires a good understanding of the UoD and a means of specifying this understanding in a

clear, unambiguous way. Object-Role Modeling (ORM) simplifies the design process by

using natural language - as well as intuitive diagrams that can be populated with examples-

and by examining the information in terms of simple or elementary facts. By expressing the

model in terms of natural concepts, like objects and roles, it provides a conceptual approach

to modeling.

The application area or universe of discourse selected in this research is a Conference

management system. This is selected due to the multi-tasking involved during paper reviews

on a distributed environment.

118

Design is an inevitable process of change when an old system becomes obsolete; a new

system development is necessitated and provided. In this chapter, the system design process

will be carried out from two different angles; the existing manual system flaws and limitations

already analysed will be used to design the new system so that it will proffer solution to the

limitation and faults of the old. We implement the designed system in PHP. An alternative is

to use an inspiration from an existing package.

4.1.1 UoD Design – Conference Management System Design

Conference is meeting of people to present and discuss their work in their field of endeavor.

The field can be academic or other areas of life. A conference presentation may be bundled in

written form as academic papers reviewed by selected academics across geographic area and

published as the conference proceedings. A conference management system is web-based

software that supports the organization of academic conferences. This system is domain

specific – based on conferences and publications. The idea of a conference management

system includes the submission of conference papers and their review as well as

communication with authors on the details of the conference. Each topic of submission is

handled as a thread.

We will implement a web conference management system called E-conf with the following

functionality. Users will be able to

i) Select a thread of submission where they intend to submit.

ii) Submit papers in reply to call for papers deadlines.

iii) View call for papers that have been posted.

iv) Download papers for review and upload reviewed comments

v) Mail comments and corrections to the author for necessary correction

vi) Uploading corrected versions

vii) Mailing author on acceptance

119

4.1.2 Design Consideration of the CMS

The conference Management System domain is modeled in terms of its main stakeholders

(users), namely papers‟ authors, editors and reviewers, the conference‟s program committee

and its chair. Program Chair user is represented using (PC), paper reviewers by the actor

Reviewer and the proceedings publisher by the actor Publisher. Stake holders‟ goals are then

identified and, for every goal, the analyst can decide, on the basis of the domain

documentation, if the goal is achievable by the actor itself or if the actor has to delegate it to

another actors revealing a dependency relationship between the two actors, such as in the case

of the dependency between Author and PC for the achievement of the goal publish

proceedings

As illustrated in Figure 4.1 there are three main steps to be taken before conference can be

developed and steps are as follows:

i. Survey Problems(s) and possible solutions before conference management system can be

developed there are certain requirements to be met; modeling can be further pursued by

decomposing a goal into sub-goals and by employing the possible alternatives to achieve a

goal. Alternatives are represented by OR- decomposition and characterized by multiple

contributions. At this stage, also non-functional

120

Figure 4.1: Early Requirements of CMS: Goal Dependency Design Diagram requirements

can be represented as soft-goals. Choosing one alternative with respect to another, leads to

different soft-goals achievement. By this way, it is possible to compare different alternatives

and select the most appropriate one. Goal dependency diagrams can be dynamically created.

The tool allows every actor in the model, to open (Close) their goal diagrams, which appear as

PC

Publication

check

availability

coordinate

conference

Reviewer

Publisher

deal with

reviewer

get proceeding

CMS

system

getpaper

Author

Support

Paper submission

publish

proceeding

121

balloons attached to the relative actors. This will enable the tool to supports the analyst in

identifying the elements to be analyzed.

ii Early Requirements goals

This involves only two actors of the model, PC represented with two goal dependencies, that

is Manage conference and decide deadlines. The goal mange conference is analyzed from the

point of view of its responsible actor, PC chair, through an AND decomposition into several

goals.

iii The late Requirement Phase

This is intended to capture the changes in the domain caused by the introduction of the system

to be and the actual properties of the system. The phase starts by introducing in the domain

model a new actor representing the system-to-be.

A partial view of the resulting model is shown in the Figure4.2; the system clearly shows

management of submission, reviews, decision, and proceedings aggregate to conference

coordination. In turn assign papers to reviewers and collect reviews aggregate to manage

reviews.

122

Figure 4.2: Aggregate Design of Conference Coordination

Proceedings format, final papers and accept or reject decisions also are aggregation

contributors. When these and other components within the system aggregate, they form the

Conference management system making the development of the system move from the

analyzed requirement system components to the actual system.

CMS

System

Coordinate Conference

Manage submission

Manage reviews

Manage decision

Manage proceedings

Format proceedings

get final

papers

Assign papers

to reviewers

Collect reviews

Support paper

submission

Get proceedings

accept reject Deal with
review

123

4.2 Design Details of the CMS

The new System is the designed that follow the conference components identified in the

design aggregation system and the way they interact. A database is also used as a resource

base for storing all the information the system will work with.

4.2.1 Existing System Process Design

The CMS used as a use case in the design of the system is first presented using the existing

object relational database to illustrate the possible variation with the proposed design system

that is deployed on web server so that authors and reviewer can have access all over the globe.

The key variation is clear from storage of data to the way the data is manipulated in the

system.

The design using the existing system is illustrated in Figure 4.3. In the proposed system

design the database stores the simple data using relational model and allow the media server

to process the object stored in different location via the middleware. When the Author,

Reviewer or editor interacts with the system the Controller clearly handles the simple data

allowing the objects to be stored separtatly in the Object data store from where it can be

conceptually linked by the middleware in the system controller.

124

Figure 4.3: Process Design of the System Using Existing Object Relational Database

AUTHORS WEB

BROWSER

PC, REVIEWERS BROWSER PUBLISHER WEB

BROWSER

Paper Routing Module

RECEIVED

PAPER SUBMITED PDF

FOR REVIEWER

REVIEWER

COMMENT
PAPER

REVIEWED

SUBMITTE

D FINAL
PDF

READY PDF FOR

PUBLICATION

CONTROLLER

RECORD MODEL

OBJECT DATA

STORE USING

(OID)

STORE

OBJECTS

FILES

QUERY BY

EXAMPLE

(QBE)

RESPOND

USING OBJECT

IDENTIFIER
(OID)

Content Relational Database

125

4.2.1.1 Proposed System Process Design

This proposed system is a web application that is deployed on web server so that authors and

reviewer can have access all over the globe. It has a client interface where the authors use to

interact with the PC and other coordinators of the conferences. The client will also be used for

call_for_paper adverts which are usually preconference adverts. In Figure 4.4 the web

browser is used by authors to submit their papers into the conference management system, the

routing application inside the system will store the Pdf or other file formats like pictures as

files and the system information associated to the file submission such as author, data of

submission and other associated information are sent into the database for storage. Other users

like PC, reviewers and conference coordinators can assess the content from their own

browsers. Once the reviewers are done and decisions are made on the selected papers the

publisher gets the accepted papers to press electronically or on print. When the system is

implemented it will help in changing organizational and academic conferences to show case

all the conferences in their store on an online catalogue accessible by a web browser

worldwide. It will also increase the quality of papers by allowing reviewers who are experts to

review the papers since they can be extracted from all over the globe. Paper submission will

also be widely received from various parts of the globe since authors will be able to access

and submit their papers directly online and the data and paper handled collectively as both

objects and database. The database management system needs to handle the data and their

associated object in a way to encourage easy access, storage and querying of the database. It

is clear from the design that objects are not separated from simple data as in the present

system design.

126

Figure 4.4: Design of the Conference System using the Proposed System

Authors

Web Browser

Conferences Management System

Routing

System

Controller

Review Paper

Active Record Models

Model Model Model

Object-Oriented Conference

Content Database

HTTP Request

 (Paper uploads with

correct (URL for

Conference)
HTTP Response

(HTML, PHP/

MySQLScript)

HTTP Processing

(by PHP Script)

view

view

view

Submitted (PDF)

PC, Reviewers

Web Browser

Paper

Ready for Publication

HTTP Processing

(by PHP Script)

view

view Make Paper

Ready (PDF)

Paper

reviewed

Publisher,

Web Browser

Simple

Data

Complex

Data

Reviewer

Decision

Accept

Reject

(Discard)

127

4.2.2 I/O Specification and Design

Every system is designed to produce specific output for its users; the output of our system is a

browser data and activities that facilitate conference content storage and retrieval. Our design

of a conference management system output for the academics and professionals should

handle:

1. Registration of Participants

2. Submission of papers and other session materials

3. Creation of session plan, relevant to the website

In particulars it should be easy to set up a new conference by use of configuration of data

rather than by reprogramming.

4.2.3 Input Specification and Design

The major means by which this system captures data is through the use of input forms, these

forms are graphical user interfaces provided for the user to input information that will be

stored for future referencing. For any system to work there has to be a combination of input

and a corresponding output. Our proposed conference system for academic and industrialist is

not lacking in this aspect, because there are avenues created for the system to receive the

information that it will work with. The input specifications are as follows:

Postid: A unique ID for each article

Poster: The author of this article

Title: The title of this article

Posted: The date and time the article was posted.

Message: The body of the article:

128

All the input forms of the system are designed using conference HTML /PHP forms that

provide dynamic ability. The input forms for user account setup is illustrated in figure 4.5.

Hint: Use your email address as your user name – it is unique and easy to remember when

you long in. Field that have a satiric (*) are mandatory

 Figure 4.5: User Account SetUp Input Form

After account setup, the user name and password will be email to the primary email address of

the owner of the information. The user account set up enable new users of the system to

register in the system and use their registration information in gaining access to the system.

User Name*
(or email)

First Name*

Middle Name

Last Name*

Organization*

Address 1*

Address 2

City*

State / Province*

Postal Code*

Country*

Email (Primary) *

Email (Secondary)

Phone (Primary) *

Phone (Secondary)

Fax No.

129

The input forms for Reviewer Setup information is illustrated in Figure 4.6. The Conference

Reviewer is expected to fill in the Login Name, First Name, Last Name and the Email

Address and the organization he is affiliated. When done he click Submit.

 Hint: Field that have a satiric (*) are mandatory.

 Figure 4.6: A Review Set up Form for Reviewers to register for conference reviews in the

System.

The form for login information is illustrated in Figure 4.7. The users are expected to fill in the

User Name and the Password. When done he clicks Submit and gets logged in if correct.

Hint: Use your email address as your user name

 Figure 4.7: A Login Form for conference System.

Cancel Submit

Login Name*

First Name*

Last Name*

Email Address*

If you fill in the organization field, the new reviewer will not have to register himself.

Organization*

Inform the user now.

Submit Reset

User Name

Password

130

The Edit form for users to edit the information already supplied in the system is illustrated in

Figure 4.8. The user is expected to fill in the Form if they needed to adjust the data previously

submitted in the system. When done he click Submit.

 Hint: Field that have a satiric (*) are mandatory.

Edit Conference Information

Figure 4.8: A Form for Editting of the conference information supplied in the System.

Submit Undo Changes

Name

Code Name

Start Date

End Date

Location

Host Society Name

Contact Email

Logo for Conference

131

4.3 The System Architecture Design

This consists of the system‟s overall structure represents inters of its sub-systems and their

inter-dependencies.

 Figure 4.9: The database architecture of the conference management system.

MySQL stores information in a number of tables related by a common field known as the

primary key. For instance we have academics information table that contains specific

information about the academics, another table called industrials that contain information

about outstanding industrials or certain organization. Both table contain a common filed

(identity number). In a relational database, by keying on the identity Number, a third table is

CMS

PC

Reviewer

Conference
Coordinate

Manager

submissions

Paper

manger

Support Paper

submission

Author

Deal with

proceedings

Collect finals

Proceedings

Manager

Collect reviews

Review

Manger

Get paper

to review

Get Proceedings

Get paper

Deal with reviews

Publisher

132

made of data from each of the other tables. To design academic and industrials or

organizational conference, the graphical representation is shown in Figure 4.9. The design

clearly shows how the various components interact with the actors or users of the system.

Author interacts with the paper manager through the support paper submission and through

the Get_paper action. Reviewer interacts with review manager by get_paper_to_review action

and Deal_with reviews. Publisher on the other hand interacts with the Proceedings Manager

through Get_Proceedings process. The PC interacts with all through coordinate process.

Adopting the multi-agent system paradigm, subsystems are agents that can act independently

and communicate with others through message passing.

133

Figure 4.10: The Combine goal dependency architecture of the conference management

system.

In order to build the architectural design, the engineer will refine the system actor by

introducing sub-actors, which are responsible for actually carrying out the system‟s top goals.

Collect

finals

Collect
finals

Store finals in
 DB

Collect
finals in

DB

Deliver on

CD

Deliver
finals to

PM

Deliver by
mail

Store

in DB

Retrieval

finals

Control

format

Paper

manager
Paper

manager

get
prerecording

Format

proceedings

Deal with

proceedings
 Print

 proceeding

Deliver

proceeding

Print

to ps

Print to

pdf

Check

styles

recompile

Send to

publisher

Get

proceeding

Publisher

134

Figure 4.10 shows an excerpt of the goal dependency model for two of the sub-actors- paper

Manager and proceeding manager.

The conference system application used in the design of the proposed system for organization

or academics conference online portal utilizes the frame work for software design. The model

clearly shows the dependency between the conference manager and conference publisher

within the framework of the content management system. The dependency will definitely aid

the process of designing the object-role model components required in the implementation of

the system and the relationship between the components as documented in the design on the

next section.

4.4 Object Role Model Design

Object Role Model (ORM) is a method for designing a system model at the conceptual level

and mapping between conceptual and logical (e.g. relational) levels, where the application is

described in terms readily understood by users, rather than being recast in terms of

implementation data structures. ORM includes a formal, textual specification language for

both models and queries, as well as a formal, graphical modeling language (Terry, 2012).

Object Role Modeling got its name because it views the application world as a set of objects

(entities or values) that plays roles (parts in relationships). It is sometimes called fact-based

modeling because ORM verbalizes the relevant data as elementary facts. These facts cannot

be split into smaller facts without losing information.

Object role modeling recognizes four basic kinds of data objects: simple, value, composite,

and nested. A simple object is one in which real world instances are designated -- uniquely

identified -- by a single data element; i.e., a single data element comprises the primary key

(Stanley, 2012). Figure 4.11 shows how people would be represented in an object role model

135

when real-world people are to be designated in the database by an identifying number,

Person_id, rather than by their names. Here, Person is an example of a simple object.

 Figure 4.11: Simple and Value Object

A value object is something like a name (label), number, or date, which represents a simple

scalar attribute. Name, in Figure 4.11, is a value object. It is clear from the object-oriented

perspective that an object-person is distinctive from his name yet there is a relationship. When

simple and value objects combined using a key, composites are formed. An object whose

existence and identity stems from the relationship between two other objects is called a

nested object. A “circle” (a rectangle with rounded corners) is drawn around the relationship

to“objectify” it. A nested object can then participate in relationships with other objects.

4.4.1 ORM of UoD Design-Conference Management system Design

We have said that the universe of discourse (UoD) in this research is the conference

management system. In this section, we will apply the ORM in the presentation of the

conference management system from the conceptual level and mapping between conceptual

and logical (e.g. relational) levels. We will also present the textual specification for models

and queries, as well as a formal and graphical model of the CMS system. The CMS has many

entities each relating to other entities within the system in a form that they cannot be

separated without losing their collective perspective. In the system all conceptual factors

viewed individually are elementary but they make a compound meaning when viewed as a

whole. The whole presentation can be realistically understood only when the various entities

Person
(id#)

 Name

Has / is for

136

are related and linked using the object role model of the system. As shown in Figure 4.12, a

role is a part played by an object in a relationship and is shown as a box connected to its

object type. In the simple figure the Reviewer (a person object) reviews the Conference

Papers (an electronic or physical document object) object. The dot is mandatory role

constraint which is conceptual.

 Figure 4.12: Illustration of Role between two CMS objects

The Reviewer plays the role of reviewing and the Conference paper plays the role of being

reviewed. The keyword reviews appears on the part of the box connected to the Reviewer

object indicating which object is playing the specified role.

4.4.2 The Object Role Model Conceptual Schema Design

In Figure 4.13, a conceptual design of the Conference Management System is presented using

an Object Role Model. This design makes it easy to understand the movement of activity and

interaction between objects without presenting the detail data components of the objects.

Conference

Papers reviews Reviewer

137

Figure 4.13: Conceptual Design of the Conference Management System using ORM

Program

Chair

Paper

Manager

Conference

Review

Manager

Technical

Committee

Paper

Reviewer

Proceeding

Manager

Publisher

Paper

Author

.

Get Paper

Review Report

Organizes

Send (Paper

For Review)

 Sendpapers

 for Review

Return

Review

Send

Proceeding

 Send for

 Publications

Submit (Paper)

0)

 Send Final

 Papers

Report

Error

Papers

Report

REJECT

Papers

Coordinate /

Calls for Paper

138

In other to explain in some detail the design developed in Figure 4.13 above, we will partition

the design into four major sections and provide a more detailed description of the design so

that when the system is examined as a whole it will become clearer.

4.4.3 Section I: Coordination of Conference and Call for Paper

When we examine the diagram in Coordination of conference and Call for Paper section of

the Conceptual Conference Management System Design (CCMSD) in Figure 4.14, it is very

clear that Program Chair Coordinate and Calls for Paper for the Conference. The Program

Chair plays the role of Coordinating and the Conference plays the role of being coordinated.

Similarly the Technical Committee Organizes the Conference and the Conference is

organized by the Technical Committee. These interactions of objects have situations where

each object is clearly assigned a role in the conference management system.

 Figure 4.14 : Coordination and Call for Paper section of the CCMSD

This roles form the operational components required in the developmental and

implementation stages of the system development. Since the system need the operation to be

able to clearly define what each class does in the code developed for the system. It is also

from the classes that the objects are extracted during the execution of the system. The three

Technical

Committee

Organizes

Program

Chair

Conference

Coordinate /

Calls for Paper

139

objects Program Chair, Conference, and technical committee play the roles in the call for

paper section of the design.

4.4.4 Section II: Paper Management Activities Section of the CCMSD

The diagram in Figure 4.15 clearly shows the objects that are components of the paper

management activities of the Conference management system. These objects include the

paper Author, the paper manager and the technical committee. Other objects include the paper

reviewer and the review manager. These objects interact in a specific manner aimed at

handling paper using the led down procedure. The Author object triggers the inter-

communication by responding to call-for-paper and submitting a paper to the Paper Manager.

The Paper Manager sends the paper to the Review Manager for allocation to the various paper

reviewers.

 Figure 4.15: Paper Management Activities Section of the CCMSD

Paper

Manager

Conference

Review

Manager

Technical

Committee

Paper

Reviewer

Paper

Author

.

Get Paper

Review Report

Organizes

Send (Paper

For Review)

 Sendpapers

 for Review

Return

Review

Submit (Paper)

0)

Report

Error

Papers

Report

REJECT

Papers

140

The Review Manager Sendspapers for review to various Paper Reviewers and monitors the

review process to make sure that the papers are reviewed at the appropriate time and that the

Reviewers allocated papers are really experts in the area where they are saddled with the

responsibility of reviews. The number of reviewer per paper is also determined by the review

manager. Once the papers are reviewed they are returned to the Review Manager for the

appropriate action. The Review manager will Report Error in paper and send to technical

committee for onward transmission to the Authors for correction or report Rejection to the

Author via the technical committee.

4.4.5 Section III: Paper publishing section of the CCMSD

The section on paper publishing still involves the Paper review manager who sends accepted

papers to the Proceeding manager. The Proceeding manager in turn sends the papers in well-

arranged proceeding format to the Publisher.

 Figure 4.16: Paper publishing section of the CCMSD

Review

Manager
Paper

Reviewer

Proceeding

Manager

Publisher

 Sendpapers

 for Review

Return

Review

Send

Proceeding

 Send for

 Publications Send Final

 Papers

Conference

141

Once the activity reaches the publisher, the proceeding will be prepared and published. The

last phase involves sending of the proceeding to the conference.

4.5 UML Class Design of the System

UML is unified modeling language with different tools for use in designing systems. One of

the major tools is the Class diagram which represents the classes used in the system and the

relationships between the classes. In Figure 4.17, the UML design of the Conference

Management System is presented. In the diagram there are major classes used by the system

which include the File, the Config class and the Paper class. The File class makes sure that all

the program modules that required file download, file upload and file view are provided with

the core components to making the activities seamless. The major file activity is the

conference and the paper that will be presented and this need to be well defined. The class

Paper determines what the status of the paper is if it is to be uploaded, reviewed or tracked to

see its progress by the authors in the system. The methods reviewpaper, trackpaper,

uploadpaper and sendpaper make sure that these activities are well defined. The paperHandler

inherits its functions from the paper class and extends its functionality with its own methods.

The methods defined in the paperHandler includes reviewReport, editorReport, publish and

sendtoDb. There is internal mailing system handled by the mail class as an aggregation of the

file class and the Config class. There is a dependency relation between the File class and the

password class. This indicate that before files are accessed users must use their password to

gain authentication the activity is developed as a class to make it easy to setpass, retrieve

forgotten pass via forgetpassword method and to identity user via the user method. The

payment class enables the authors and conference attenders to pay fees and facilitate payment

confirmation.

142

 Root

+global

-check_form

+get_header()

+ adodb_connect(data)

+get_body()

+get_footer()

 File

+name

-path

+download()

+ upload()

+viewfile()

 Config

-datasrc

-configType

-parser

+config()

+ getRoot()

+setRoot()

+writeConfig()

 Paper

-paperInfo

+paperId

-presentation

+trackpaper(data)

+ sendpaper()

+reviewpaper()

+uploadpaper()

PaperHandler

+paperId

-accepted

-rejected

-correct_resend

+reviewReport()

+ editorReport(data)

+Publish()

+sendToDB()

 Payment

-memberInfo

-paid

-amount

+pay()

+ confirmPayment()

 Password

-authen

-$err_msg

+user()

+ setPass(data)

+forgetPassword()

 Mail

-sep

-$err

+send()

+prepareMail()

+parseRecipients($recip

)

+ adodb_connect(data)

A

143

 Author

+paperId

-authorId

+sendPaper()

+ correctPaper(data)

+pay()

 Reviewer

+paperId

-reviewerId

+reportReview()

+ receivepaper(data)

+returnReview()

PaperManager

+paperId

-mgt

+sendpaper()

+ store_in_DB(paper)

+organizePaper()

+draftProceeding()

 Editor

+paperId

-ed

+sendPub()

+ sendReport()

+organizeConf()

+comm()

 Publisher

+get_proceedings()

+collectFinals(paper)

+ print_pro(paper)

 Conference

+get_header()

+ adodb_connect(data)

+manageSubmissions(Config)

+collect_Reviewes(paper)

 PrintProceeding

+get_header()

+ formatProceeding(paper)

+getPrerecording()

+printtops()

+printtopdf(paper)

+deliverMail()

Figure 4.17 : UML Class Design of the Conference Management System

A

144

The Author class handles author pay, sendpaper and correctpaper involving the activity

expected from the author. The reviewer class similarly handles reviewer report, receipt of

paper for review and returning of reviewed report to the editor. The editor sends the report to

author, send accepted papers for publication and communicate with other stakeholders via the

editor class. The publisher class extends the Editor class and interfaces the conference class.

The printProceeding class also extends the publisher class. The communication of these

classes makes the system to be highly interactive and easy to implement using object-oriented

implementation tools.

4.5.1 UML Interaction Design of the System

Interaction diagram is one of the fourteen types of diagrams of the Unified Modeling

Language that describe how a group of objects collaborate in some behavior - typically a

single use-case. In figure 4.18, the diagrams show a number of example objects, starting with

the author use case and how it interacts with the system using the messages that are passed

between these objects within the use-case. The model pictures a control flow with nodes that

contain interaction with the CMS and the object-oriented database as shown in the diagrams.

The Author log in to the system and his information is fetched from the database to

authenticate the athor. The Author also uploads paper which is saved as an object in the

system. The paper is reviewed and the paper status on request can be displayed and the author

can also make payment. The published paper can be sent to the Author‟s mail. When done the

Author can also Logout from the system and get redirected to the Home page.

145

 Log In Log In Request Msg

CMS OODatabase

 Author Info

 Data Saved

 Confirms

Redirects to authors Profile
 Back to Home Page

 Upload Paper

Make Payment

Confirms, redirect to Author
 Display paper Status

 Log Out

 Author Profile

Process Payment

 Send Published

Paper

Author

Figure 4.18 : Interaction Diagram showing Author interaction with the System

146

 Log In Log In Request Msg

CMS OODatabase

 Reviewer Info

 Record Area

 Confirms

Redirects to Reviewer Profile
 Back to Home Page

Send Review Report

Assign Paper, Conf to

Reviewer Send paper for Review

 Log Out

 Reviewer Profile

Process Report

Reviewer

 Select Paper to Review

Figure 4.19 : Interaction Diagram showing Reviewer interaction with the System

147

The Interaction diagram in figure 4.19 shows the Reviewer actor and how it interacts with the

system. The reviewer selects the area of specialization and the paper that he wants to review

base on the reviewer menu button provided. The system uses the selections made and assigns

paper to the reviewer and sends the paper to them for review. After review the reviewer send

report into the provided area in the system for processing and for report of paper status to the

authors. The reviewer must log in to the system and his information is fetched from the

database for authentication before review will be carried out.

Interaction diagram in figure 4.20 typically use a single use-case the editor of the conference.

In the diagram a log in action is used by the editor to access the system. The log in data is sent

as messages that are passed between these objects within the use-case. The model illustrates

how the editor interfaces between the author and the reviewer of the papers and also how final

decision on the status of the paper is taken. The editor control flow defines the final outcome

of the paper from the author whetter it will even be submitted for review. When reviewed the

outcome of the reviewers report is aggregated to enable the editor make final decision on the

status of the paper. The status can be accept, reject or correct_and_resubmit based on the

decision of the editor via aggregated report of the reviewers. The admin user or actor

illustrated in figure 4.21 interact with the system by also logging in as an admin and providing

system setting and configurations required for the smooth operation of the system. The

configuration of the database and making sure that flow of operations is coordinated within

the system are actions taken by the admin within the system.

148

 Log In Log In Request Msg

CMS OODatabase

 Editor Info

 Save Call info

 Confirms

Redirects to Editor Profile
 Back to Home Page

 Call for Paper

Confirms, redirect to Editor
 Display paper Status

 Log Out

 Editor Profile

 Send Accepted Paper for

Pub.

Editor

Distribute Paper for review

Figure 4.20 : Interaction Diagram showing Editor interaction with the System

149

 Admin Log In Log In Request Msg

CMS OODatabase

 Admin Info

 Data Saved

 Confirms

Redirects to Admin
 Back to Home Page

Create System Users

Configure Database

Confirms, redirect to Admin
 Display Setting and Users

 Log Out

 Admin Setting

Process DB Config.

 System Ready for

Operation

Admin

Figure 4.21 : Interaction Diagram showing Admin interaction with the System

150

In figure 4.22, the Interaction diagram shows the Publisher actor and who equally need to log

into the system to extract papers which have already been approved for publication to prepare

for printing of proceedings. The system by defaults already gets those papers ready for online

viewing or publishing. Most conferences now still use printed proceeding so the publisher is

still an important actor in the Conference Management System and its activity and interaction

clearly defined. The system uses the list of papers selected for publication to assist the

publisher to extract the papers. The downloaded paper can be printed as a proceeding and the

publisher can logout of the system. The entire process work as a single entity even though

each actor has a well specified duty within the system. The database aids the users and actors

to ready find there activities and uses in object-oriented ability to assist in the navigation

within the objects.

151

 Log In Log In Request Msg

CMS OODatabase

 Publisher Info

 Data Saved

 Confirms

Redirects to Publisher
 Back to Home Page

 Download Paper

Permission to Publish.
 Get List of Paper for Pub.

 Log Out

 Publisher Profile

 Extract Paper for

Publication

Publisher

Figure 4.22 : Interaction Diagram showing Publisher interaction with the System

152

4.6 Formal Model Design of the Object-Oriented Database

The major form of storage in any application is usually implemented using a data base

management system. A database management system (DBMS) consists of a software that

organize the storage of data. A DBMS control the creation, maintenance, and use of the

database storage structures of organizations and their users. It allows organizations to place

control of organizational wide database Administrators (DBAS) and other specialists. In large

systems, a DBMS allow users and other software to store and retrieve data in a structured

way. Database management systems are usually categorized according to the database model

that they support, such as the network, relational or object model. The model tends to

determine the query languages that are available to access the database. In this conference

system application being designed to solve the problem of the old obsolete one, the major

storage unit is the MySql database.

In this research we have pointed out the need to model databases technology in a way that

encourages object-oriented communication with the application that drives the data. Schek

(1990), at the early days of evolution of object-oriented databases believed that Object-

oriented data models represents a current end-point in the evolution of data models, this is still

true now. However developments in object-oriented data model formalism remain very slow

due to the popularity of Unified Model Language (UML) which is more graphical. The slow

pace at applying Object-oriented formal modeling in programming also affect the object-

oriented database modeling. Object-orientation as a paradigm is based on the following five

fundamental principles (Gottfried,1992):

i) Each entity of real world like (Paper Author) is modeled as an object which has an

existence of its own, manifested in terms of a unique identifier distinct from its value;

153

ii) each object has encapsulated into it a structure and a behavior, the former is

described in terms of attributes (instance variables), where attribute values, which

together represent the state of the object, can be other objects so that complex objects

can be defined via aggregation; the latter consists of a set of methods, i.e., procedures

that can be executed on the objects;

iii) the state of an object can be accessed or modified exclusively by sending messages to

the object, which cause it to invoke corresponding methods;

iv) objects sharing the same structure and behavior are grouped into classes; where a class

represents a “template” for a set of similar objects; each object is an instance of some

class;

v) a class can be defined as a specialization of one or more other classes; a class defined

as a specialization forms a subclass and inherits both structure and behavior (ie.,

attributes and methods) from its superclasses.

In object-oriented databases we need to augment these principles with additional

requirements, namely the support of complex objects, i.e., highly structured information, and

type-system orthogonality and extensibility; it should be possible to define new types at any

time by applying given constructors to already defined types in a vastly arbitrary fashion.

The indifference of many system developers to formal model as a solid foundation of the

system in which the listed requirements can be coded is clear in modern databases. We

believe that formal model for OOD also need to capture the same intuition as models for other

types of databases which include:

1. Provision of adequate linguistic abstraction for certain database applications. For

instance the abstraction of the physical organization of the databases in other to

support physical data independence.

154

2. Provision of a precise semantics for a data definition language. For instance the

relational language SQL comprises a statement for creating tables in a relational

database which the relational model underlying SQL provide semantics for such

statement.

3. The specification and operational part need to be inculcated. Relational model

specification refers to tables or relations as the structuring mechanism and relational

model operational part as the operations of relational algebra.

4. Computational paradigm is represented as a basis for formal investigations. The

relational model allows for in-depth investigation of database design or query

languages. There is no reason why the same should not hold for object-oriented

models.

4.6.1 Object-Oriented Formal Framework

OODBS is remarkably different from relational databases basically due to its strong

theoretical foundation. In this research we discuss these theoretical foundations as they pertain

to formal models for OODBS which is based on the notions of object, class, attributes,

method (behavior) and inheritance. Deriving inspiration from Zhang et al., (2010) and

(Gottfried, 1992) we give a formal definition of OODM to be a tuple S of the form

S = (Ds, Cs, As, Fs), Where:

Ds, is a set of type names D (e.g., string, integer).

Cs, is a set of class names C.

As, is a set of attribute names As = AssAsc; an attribute canbe either simple attribute Ass when

its domain is a type D Ds or complex attribute Asc when its domain is a class C Cs.

FSis a finite set of class declarations; for each class C Cs.

FS contains exactly one such declaration:

Class C is-a T1,…, Tntype-is T,

155

T denotes a type expressive built as follows:

T → D | C |Union T1 ,…, TkEnd | Set-of T | Record A1:T1 ,…, Ak:TkEnd | f(): R .

where:

The is-a part, which is optional, denotes inheritance relationships between Classes;

(ii) The type-is part specifies the structure of the class C through T;

(iii)The Union…End part denotes a generalization relationship between a general class and

several specific classes;

(iv) f (): R represents a method, where f is the name of the method, and the type of

parameter may be null, and R is the type of the result.

In listing 4.1, we show a simple OODM S modeling part of the Conference

Management System used in illustration of the concepts discussed in this research.

Fs={

Class Paper_Author type-is

 Record

 Name: String

 PaperTitle: String

 isInstitution(): String

 End

Class Technical_Committee type-is

 Union Program_Chair, Vice-Chair, Technicality, Protocol, Logistics

End

Class Program_Chair type-is

 Record

 Name: String

 Conference: String

 Coordinate: Set-of Papers

End

Class Papers type-is

 Record

 Number: Integer

 isAuthor(): String

 Date_Submitted: Date

 Number-of-Pages: Integer

 End

Class Paper_Reviewer type-is

 Record

 Name: String

 PaperTitle:String

 Comment: String

 End

Class Publisher type-is

 Record

 Name: String

 isPublication():String

 End

 }

Listing 4.1: A CMS OODM S1

156

These databases have schemas which is the central notion of a conceptual database

description. The Database schemas is pairs of the form

 S = (Sattributes, Smethod)

We will examine each of the components of the pair in turn and how they interact to result to

a vibrant OODB that will be relevant both in research and also in industrial application. The

attributes of OODB schema can easily be captured from the relational model, and the methods

or behavior generated from established classes of the databases.

4.6.2 Modeling the Attributes

Highly-structured information and complex data types are needed to model the attributes or

structures of object-oriented databases since they serve as descriptions for domains of

complex values. Let T be a type system then

a) {I,S,F,B } T where I is integer type, S is String, F is float and B is Boolean type

respectively.

b) If Ai are distinct attributes and ti tuple types such that ti T, 1 i n , then [A1 :

t1,…,An : tn]T(“tuple type”);

c) If tT, then {t} T (“ set type”)

d) If tT, then <t>T (“ list type”)

It is clear that the type system is made up of base types, from which complex types may be

derived using attributes and constructors. The complex type requires nothing more but the

attribute names. Other base types as well as additional or alternative constructors could

directly be included. For instance a data type for persons participating in the conference

management system (CMS) could be described as:

157

 [name: [first: string, last: string],

 age:integer,

 married: boolean,

 address: [street: string, city: string, zip: integer],

 qualification: < string >,

 work: { [institution: [name: string, location: string],

 job_specification: string] }

 CMS-Paper: { paper-role: string, paper-no: integer, paper-status: string}

]

This example above models a data type for persons on the conference management system

who have a name, an age, a marital status, an address, an academic qualification, a set of other

work in a publishing company or academic institution and a (CMS Paper) role as author of a

paper or paper reviewer, on a particular paper number which is on communication status,

review status, accepted or rejected status.

4.6.3 Class Types (User Defined Types)

Beyond complex types is a possibility to share pieces of information between distinct types,

or to aggregate objects from simpler ones. At the level of type declaration, an easy way to

model this is the introduction of another reservoir of names called class names, which are

additionally allowed as types or user defined object types. We can define this object types as

complex types as above with the added condition:

 (e) CT, where C is a finite set of class names.

This implies that class names are a brand of user defined complex types since classes

themselves have types. Hence objects from the underlying application all have identity

158

collected into classes and can reference other objects or share subobjects. Thus, classes are

instantiated by objects by making class-name types to take object identifiers as value; in the

same way as simple type like int (integer) type takes integer numbers as values.

For instance we can define the person data as a class C = {Person, Address, Institute, and

Paper}. It is clear that both persons and companies of institute have address and children are

in turn persons, types can be associated with these class names as:

1. Type of Class Person:

[name: [first: string, last: string],

 Age: integer,

 Married: Boolean,

 Address: Address,

 Qualification: <string>,

Work: { [institution : Institution, job_specification: string] }

cms-paper: CMS-Paper,

]

2. Type of Class Address:

 [street: string, city: string, zip: integer]

3. Type of class Institution:

 [name: string, location: Address]

4. Type of Class CMS-Paper:

 [paper-role: string, paper-no: integer, paper-status: string]

It is clear that the object-oriented paradigm uses subtyping in organizing information in such a

way that a class is defined as a specialization of one or more other classes this is referred to as

159

inheritance. In this case a subclass inherits the database structure or attributes of a super

class. Such a relation can be defined in various ways and one of such ways is the following:

 Let T be a set of object types, a subtyping relation t T x T is defined as

i) t T for each t T,

ii) [A1: t1,…,An:tn] [A1 : t1 , . . . , Am : tm] if

(a) (Aj, 1 j m) (Ai, 1 i n) Ai = Aj ti tj

(b) n m,

iii) {t} { t } if t t,

iv) < t > < t > if t t

Using these specifications we can proceed to the definition for object-base schemas that can

describe structure arbitrary complexity: A structural schema is a named quadruple of the form

 Sstruc = (C, T, type, isa)

 Where i) C is a finite set of class names,

ii) T is a finite set of types which uses as class names only elements

from C.

 iii) type: C T is a total function associating a type with each class

 name,

iv) isa C C is a partial order on C which is consistent with respect to

subtyping, i.e., c isa c type(c) type(c) c, c C

The implementations typically add a number of additional features not included like single or

multiple inheritance which are implemented differently on different languages for instance

C++ implements both single and multiple inheritance while Java implements only single

inheritance. Other concerns include

160

i) implementation of attributes as functions

ii) a distinction of class attributes from instance attributes (the former relevant to the class

as a whole while the latter a shared by all objects associated with a class)

iii) a distinction between private and public attributes a different set of constructors

iv) an explicit inclusion of distinct types of relationships between classes and their objects

v) integrity constraints which represent semantic information on the set of valid

databases instances.

4.6.4 Modeling the Method

The capturing of the method besides the structure is another important part of an object-

oriented database. Classes have attached to them a set of messages, which are specified in the

schema via signatures, and which are implemented as methods. Methods can also be inherited

by subclasses, and message names can be overloaded, i.e., re-used in various contexts. A

method schema can be defined as a named five-tuple of the form

 Sbehav = (C, M, P, messg, impl)

Where

(i) C is a finite set of class names

(ii) M is a finite set of message names, where each m M has associated with it a

nonempty set sign(m) = {s1, . . .,st}, t 1, of signatures; each sh,

 1 h t, has the form sh: c t1 . . . tp t

For c C, t1, . . .,tp t T (each signature has the receiver of the message as its

first component),

(iii) P is a finite set of methods or programs,

(iv) Messg: C 2
m

 such that

161

(c C) (m messg (c))(s sign (m)) s[1] = c

(v) impl: {(m,n) | m messg(c)} P is a partial function

In combining structural and behavioral schemas, we can finally obtain the object database

schema has the form

 S = (C,(T,type,isa), (M,P, isa, messg, impl))

S is called consistent if the following conditions are satisfied:

i) c isa c messg(c) messg(c) c, c C,

ii) if c isa c and s, s sign(m) for m M such that s: c t1 . . . tn t,

s: c t1 . . . tn t, then ti ti for each I, 1 i n, and t t,

iii) (m messg (c)) (c C) c isa c impl(m, c) is defined

Condition i) says that subclasses inherit the method of their superclasses. Condition ii) says

that message-name overloading is done with compatible signatures. Lastly, condition iii) says

that for each message associated with a class, its implementation must at least be available in

some superclass. We will finalize the formal definitions by showing how object databases (

sets of class instances or extensions, can be defined over a given schema: For a given object

database schema S, an object database over S is a triple

 d(S) = (O, inst, val) such that

i) O is a finite set of object identifiers,

ii) inst: C 2
O
 is a total function satisfying the following conditions:

a) if c, c C are not (direct or indirect) subclasses of each other,

then inst(c) inst(c) = 0,

b) if c isa c, then inst(c) inst(c) ,

162

iii) Val: O V is a function such that (c C) (o inst(c)) val(o) dom

(type(c)).

In this chapter we have developed some designs for object-oriented databases and the formal

model which can be easily understood and we have made case for the integration of the

structural and the method design in such a way as to encourage free object-to-object

communication between object-oriented programming language class objects and object-

oriented database objects. This enhances interoperability in application execution when

complex types are involved in modern system development.

4.7 Database Specification of the CMS

Database specification involve the clear description of the fields, entities and their types used

in the development of the database management system for storing and retrieving data in the

database. The database of the system is as illustrated in figure 4.17 in the PhpMySql

environment. The database show thirty one tables inside the database and selected tables are

explained in some detail in the following section. Some of the tables selected and explained

are those once very close to the system functionalities as described in the design section of the

system.

163

Fig. 4.23: Database Specification of the CMS system

The database contains 31 tables handling various data needed for the system as illustrated in

figure 4.17, it is used in carrying out the various data storage and retrieval activities needed

for the successful operation of the CMS system. They include author, authorlevel, category,

conference, conferencephase, file, file_report, letter, maillog, member, paper,

papercategory, paperstatus, paymentform, preference, presentationtype, presenter,

privilegtype, querylog, recipientgroup, registration, review, room, selection, session,

sessionslot, sessiontrack, settings, track, unscheduledpaper and written.

The databases each are specified based on their fieldnames, the data type specified for the

data content of the field, the length specified by the developer of the databases and the action

164

expected to play by the field in the system-such as primary key, secondary key etc. Once the

database is created the privileges needed to be specified.

4.7.1 Database Privilege Specification

The database privileges specified for the system can be grouped into four major types.

A) Data: These include privilege to Select Data from the database, Insert Data into the

database, Update the database, Delete the database and Manipulate File-file import or

export. The database user can be granted these privileges or denied the privileges.

B) Structure: These involve the privilege to change the structure of the database. These

include Create, Alter, Index, Drop, Create Temporary Tablr, Show View, Create

Routine, Alter Routine, Execute, Create View, Event And Trigger for any privilege

granted in the structure group of privileges, the associating box is checked and

registered.

C) Administration: Administration privileges are granted to users to allow them manage

the databases effectively. They include : Grant, Super, Process, Reload, Shut Down,

Show Databases, Lock Table, References, Replication Client,Replication Slave,

and Create User. The user given any of these privileges is expected to manage the

system with them. Other users are usually denied the privileges.

D) Resource Limits: These privileges allow the system user to be able to set maximum

execution parameters for Queries, Updates and Connections per hour. It can also be

used to set the maximum user connections to the database in other to stop the system

from crashing. If the setting is left at zero then the limits are eliminated.

4.8 Database Dictionary

The data dictionary of few databases will be highlighted. These include:

165

a) Author: This database table describes the person who prepares a paper for the

conference. The author has five fields as illustrated in table 1.

 Table 1 : A database description of the Author Table

FieldName Type Length Action

AuthorID Int 10 Primary Key

FirstName Varchar 30 Not Null

MiddleName Varchar 30 Not Null

LastName Varchar 30 Not Null

Email Varchar 50 Null

b) Conference: The conference database table describes the detail about an upcoming

conference so that authors who prepare a paper for the conference can send and

prepare for the conferences. The conference table has thirteen fields as illustrated in

table 2. It is important to note that the logofile is an object data feed into the database.

In other to implement the object data, additional fields like filename, filesize and

fileType are included.

Table 2: A database description of the Conference Table

166

c) Paper: The paper database table describes the detail about a sent paper for the

conference so that each author‟s paper will be properly identified. The paper reviewers

will need the paper data to handle their reviews and the editor needs it to manage its

activities on the conference system. The paper table has fourteen fields as illustrated in

table 3. The paperID, Title and PaperStatusID are important in identifying the state of

a paper throughout the conference preparation period. The data type smallInt and

Tinyint where used due the need for numbers expected to be below 4 or 6 digits.

FieldName Type Length Action

ConferenceID Int 10 Primary Key

ConferenceName Varchar 100 Not Null

ConferenceCodeName Varchar 20 Not Null

ConferenceStartDate Date Not Null

ConferenceEndDate Date Not Null

ConferenceLocation Varchar 20 Not Null

ConferenceHostName Varchar 100 Not Null

ConferenceContact Varchar 50 Not Null

ConferenceContactName Varchar 50 Not Null

LogoFile longBlob Null

Filename Varchar 50 Null

FileSize Varchar 50 Null

FileType Varchar 50 Null

167

Table 3: A Paper database description of the Conference Table

FieldName Type Length Action

PaperID Int 10

Title Varchar 255

PaperAbstract Text

NumberOfPages SmallInt 6

PapersStatusID TinyInt 4

MemberName Varchar 50

Withdraw Varchar 5

Invited Varchar 5

Copyright Varchar 5

OverallRating Float

PresenterName Varchar 50

PresenterBio Text

TrackID Int 10

SessionTrackID Int 10

d) Review: The review database table handles description of the detail about a paper

review for the conference so that each reviewer (Member) will be properly identified

and the paper being reviewed attached to the comments of the review. The reviewers

will send their comments to the editor or comment administrator from where the

overall evaluation will be presented. The paper author linked through the PaperID will

also receive comments of the reviewer for final correction. The review table has nine

fields as illustrated in table 4. The PaperID, MemberName, Comments and

168

OverallEvaluation are important in identifying the outcome of a paper review for the

conference. The data type Tinyint where freely used except for the comments and

member (reviewer name).

 Table 4: A Review database description of the Conference Table

FieldName Type Length Action

PaperID Int 10 Primary Key

MemberName Varchar 50 Secondary Key

AppropriatenessToConference tinyInt 3 Null

Originality tinyInt 3 Null

TechnicalStrength tinyInt 3 Null

Presentation tinyInt 3 Null

OverallEvaluation tinyInt 3 Null

Comments Text Null

CommentsAdmin Text Null

e) PaymentForm: The paymentForm database table describes the detail about the

conference payment for the conference so that each registered person will be properly

documented. The registered conferee will be identified and marked as paid having

registered and paid for the conference. The formID connects the Form for payment and

marks the conferee as registered and once payment is made the paid column will be

marked. The PaymentForm table has four fields as illustrated in table 5. The FormID,

RegisterID, Form and Paid fields are important in identifying the conferee and noting that

he has paid for the conference. The object data type Blob was used for the form.

169

 Table 5: A PaymentForm database description of the Conference Table

FieldName Type Length Action

FormID Int 10 Primary Key

RegisterID Int 10 Not Null

Form Blob Not Null

Paid tinyInt 1 Not Null

4.9 Program Development

In this section, the implementation of the conference management system is documented. The

choice of the programming language, tools and technology that are useful in the development

of the system are clearly addressed. The documentation of the process followed in the

development and the process is also presented. The system requirement for the computer

hardware and software for both the development and the deployment of the system and the

testing process of the system were equally documentated and presented in this section.

4.9.1 Programming Language for New system Implementation

The programming languages used in the development of the new conference management

system are PHP, HTML and SQL. These groups of languages are combined in the

development of the system.

4.9.2 Reason for Using PHP-MySQL Technology in CMS

The main reason for using PHP-MySQL as the technology / language of implementation is

that it is robust for various users. It is also scalable and capable of handling deadline rush in

paper submission. The numbers of systems connected is handled with the extra performance

that Apache provides. The technology also allows the application to use TCP/IP for packet

sharing and file / information transfers across the system which is necessary for handling the

170

submitted papers in pdf or doc file format. The versatility of MySQL and PHP also offers lots

of benefits that can help the user to customize tasking operations running on the server. This

offers a great benefit above the languages that ran only on the CGI core in the server side and

closed source languages that cannot be modified when the need arises.

PHP as programming language is increasingly being used in server technology. It is also a

programming language model that is organized by objects and actions, data and logic. PHP

allows the usage of different software methodology since it allows both procedural and

Object-oriented programming. It can well identify objects sets of data and defines their

relationship to each other. These objects are then generalized into a grouping called class.

Actions into methods or sequences of logic are applied to classes of objects. Methods provide

computational instructions and class attributes are the data members that is acted upon by the

object. Objects interact in the system using specifically defined interfaces called messages.

These messages are sent across the network sockets which are distributed. Packets are also

sent across the network using different system devises. A PHP interpreter executes the

program on the source server and sends the result which is usually data or simple XHTML or

other mark-up codes. The behavior of this kind of system offers portability and reusability

that characterizes PHP and its related technology.

4.10 Installing PHP-MySQL

In the installation process, a user can download MySQL5.0 to download page, under the

heading window downloads, select and download the release that includes the installer,

download the file and unzip it and run the set.up.exe contained. Hence if a user decides to run

the technology on window NT, 2000, XP, or Windows 7 or server 2003 and choose to use

operating system, the user must create a file called (my.cnf in the root of c: drive to indicate

where MYSQL is installed), then is open a notepad and type:

171

 (Mysql)

 Basedir =c: /mysql/

 Datadir = c: /mysql/data/

WORKING WITH .cnf FILE ON WINDOW: The procedures are as follows:

A) Open the registry editor

B) Click start, Run and then type regedt32.exe to launch the editor

C) Navigate to key-local-software-classes branch of register where a user will find a list

of all the registered file type on the system

D) Restart window for the change to take effect

4.10.1 PHP Installation

PHP is designed to run as a plug-in for existing web server software such as Internet

information services, Apache. Testing dynamic web server requires equipping a computer

with web server software so that PHP will have something to plug to.

Procedure:

A) On start menu, point on Apache HTTP server

B) Configure Apache server

C) Edit the Apache httpd.configuration file to open the http.conf file

D) Add load module php5-module cs/php/php5apache. dll

E) Add module mod.php5.c

F) Add type application/x-httpd-php.php

G) Add type application/x-http-php-source.php

H) In Apache2.0, the load module line must point to php5Apache2 dll and remove Add

module line

I) Point to directing Index, which tells Apache the name to use in terms of default page

172

J) Save the change and close Notepad

K) Restart Apache by restarting the Apache service in control panel, Alternatively a single

bundle of Xampp, Wamp, reactor or other software bundles that have PHP,Apache, MySQL

bundled together can be downloaded and installed and used for the same purpose.

4.11 Program Algorithm

The algorithm could be a pseudocode or a flowchart that represent the logic flow of the

program operations. It shows the flow of control of the application for the implementation of

the conference management system. The flow of logic makes it easy for the implementation

since users can follow the steps to implement the system. This provides the developer a guide

in the process of developing and integrating the system into design provided for the

conference management system in the previous. The algorithm also helps in the process of

providing the avenue for the system to process its major task using the steps outlined in the

system.

4.11.1 CMS System Pseudocode

Step1. Start

Step2. Define all the server variables

Step3. Declare variable for the conference management components

Step4. Develop User interfaces

Step5. Place Call for Paper data Components in the XHTML document.

Step6. Create the Style Sheet Component for system Presentation

Step7. Create Database Components for CMS Content

Step 8 Assign fields‟ variable

8.1Assign content record parameters for the CMS

8.2 Create database components

173

8.3 Store components using necessary SQL query

Step9. Using DOM and ECMA Script facility

9.1 Perform User, Document, response form design

9.2 Assign form properties for client-server interaction

Step10. Create a Class of the objects and their attributes (properties)

Step11. Assign classes for property operations of events

Step12. Determine identifiers for server side PHP event properties

Step13. Determine MySQL-PHP Operations

Step14. Connect PHP logic with Queries and with GUI Browser forms and DOM

components

Step15. Using MySQL

 15.1 Link Input Object data to databases

 15.2 Add content into databases

Step16. Using the forms object variable

16.1 Integrate form object with modules.

16.2 Test Interaction

Step17. Test Net Connection String

Step18. Initialize file Upload

Step19. Check file size

 Step 19.1 if (size < max_size) then

 Upload file

 Else

 Reject upload

174

 Endif

Step20. If fileupload is successful then

 Step 20.1 Create storage for uploaded papers

 Step 20.2 Store paper files in approved other

Step 21. Deploy in the Web Server for Execution

Step 22. Stop

4.12 System Requirement

The running of the program and the implementation of the conference management system

demand an effective computer system with the following minimum requirement:

4.12.1 Hard Ware Requirement:

 A processor machine of Pentium IV standard with 800MHz speed

 A memory (RAM) size of 1GB or above

 A Video Graphic Adapter (VGA) screen with 24bit high color or 286 color

 A disk space (Hard disk) of not less than 10GB

 A server Machine

4.12.2 Software Requirement:

 Windows or Linux Operating System

 A Javascript Enabled browser of Internet Explorer 5 and above or FireFox 2 and

above, Opera 9 and above, Google Chrome or Hot Java.

 Apache 1.3 or 2.0 Server running on the local host or on the remote machine

 MySQL server running on the local host or on the remote machine

 PHP Nuke Engine Running on the Apache Web Server

175

4.13 System Testing and Result Discussion

This is the testing of the program to make sure that the software works when subjected to

varying conditions. The software requirement and hardware requirement specify the

environment where the testing is carried out.

4.13.1 Test Plan

Since the system is object-oriented the following where the plans specified, used and followed

for the testing.

i) Class Testing

ii) Package Testing

iii) Data Communication Testing

iv) Integration Testing

i) Class Testing

When a class is created it is checked against the properties and methods and the methods are

tested against the stub where the classes are instantiated and separately tested. The tested

classes were also supplied with dummy data to see how the data communicates with the

methods in the class. The classes developed in the dissertation were tested and each of the

tested class worked as expected.

ii) Package Testing

Packages are special object-oriented units that make sure that all the classes that have similar

functionality are kept together for easy operations. Packages like database communication,

input, output and conference activities packages contain similar classes that are kept together

for easy operations and clean code handling. The classes that were interacting within the

packages were tested package by package. The packages tested show good performances and

176

were able to properly communicate with one another within the package where the testing

was carried out.

iii) Data Communication Testing

This involves the testing of the object-oriented code with real data in the database. During the

class and package level testing dummy data were used for testing but at the data

communication testing the real life database was used. In carrying out this test, the class

packages were separately tested to evaluate how they communicate with the data stored in the

databases. It was observed that the data communicated very well with the packages. When

insert operation was called it added data properly into the database and when the query to

fetch data was called data was also properly extracted from the database.

iv) Integration Testing

In integration testing packages are combined the way it was presented in design so that they

can be tested as a whole application. The integration testing in this dissertation as seemless

due to the fact that a successful package testing and data communication testing facilitated

execution.The classes and packages did not loose their reliability during the test rather they

performed efficiently. In the suscequent test it was discovered that it is better to keep the

admin login separate from the general user login due to conflict between these similar

modules that carryout login but for separate target users in the system. With this experience

the admin login was separated. The system was left to determine whether the user is Author,

Reviewer, or ordinary visitor to the application. The system also segregated between the

database admin and the editor of the conference.

4.13.2 Test Data

The system was tested using both real life data and prototype dataset. The first set of data was

the data generated from past Nigerian Computer Society Conferences. The data comprises of

177

title of conference, detail location, and sub section of areas of discussions and call for papers

for the conferences. Some of the data that was provided were used for the purpose of testing

the system on the Conference Management System. However it was difficult to get the data

that is expected to originate from the review process since the NCS conference was not

reviewed using any application. On such cases where there are no direct data to use a

prototype of simulated behavior of the reviewers during review was done. This was done by

submitting documents to the system and filling of arbitrary areas of specialization for each

selected reviewer. When the document was submitted and the title was specified the system

was able to select the most appropriate reviewer that is not loaded to review the paper. This

indicates that the program is working the way it was designed to work.

4.13.3 Actual Test Result versus Expected Test Result

In the testing of the system there are some expected results from the system which are

presented based on the package of the system and where necessary the sub-packages. The

actual test results was also presented which shows what the system was able to carryout when

it was tested using the available data described in the previous section.

Table 6: Actual Test Result verses Expected Test Result

Package Sub-Packages Expected Test Result Actual Test Results

Login

Admin Expected to see the login

form, enter the login data and

successfully login or supply

wrong data and be denialed

Access.

When link was clicked, a form

appeared and loggin in the user

when correct data was supplied.

When wrong data was tested it

denialed access.

User

Author_Module

 When clicked, the author

page is expected to display

where the author will supply

his personal data and interact

By the time the button was

clicked, the author page displayed

where the author will supply his

personal data and interact with the

178

with the system. system.

Reviewer-Module

 It is expected that the

reviewer will click the

review button and see article

ready for his review and do

the review and submit review

report.

When the reviewer button was

clicked the reviewer page was

displayed and a sample article

ready for review and sample

review report.

Editor_Module

 It is expected that when this

button was clicked the editor

page will be displayed where

the Editor activities are done.

When the editor button was

clicked the editor page showed

the page where the Editor

activities are done.

Paper_assignment_a

nd_view

Module

 In this module, the assigned

papers are expected to be

displayed with colors

indicating the selection

criteria.

The system automatically

assigned papers to reviewers and

displayed them with colors

indicating the selection criteria.

Paper_Status

Module

 It is expected that when

clicked by authors they will

see the status of submitted

paper whether reviwed and

Accepted, Rejected or

Accepted with Correction

When the Paper_status button was

clicked it actually displayed the

status of submitted paper whether

reviwed and Accepted, Rejected

or Accepted with Correction

Conference_Info

Module

 This is expected to show the

public the Conference

information and the various

tracks available for the

conference.

When clicked it showed the

public the Conference information

and the various tracks available

for the conference.

The program starts with a file that is a start point known as index.php that directs the user on

the processes involved in handling different system operations. The user follows the

instruction of the file on the browser to navigate the system. Before commencing the

navigation the user must register by supplying his/her personal information that is stored as

179

content in the system. After registration users can login using the log in form provided on the

GUI on the browser. Once the user have logged in he can send his paper by uploading them

into the system. He can also get information from the system such as submission deadlines

and order conferencing information and react appropriately.

In figure 4.18, the illustration show a user registration window which the application provide

for the users of the system needed to register before they can use the system either as an

author or a conferee who intends to attend the conference. Other users such as the Reviewers

do not need to use this user registration since it is the admin that has the responsibility of

nominating and registering its reviewers. Sometimes the admin can use the general mail to

call for CV of Reviewers before deciding whether they can be registered as reviewers in the

conference. The user needed fill all the requirements provided on the form after which the

user can submit. The system registers the user but only activates the user from the users email

message link sent to the user when the user registered.

180

 Fig. 4.24: User Account Setup

In figure 4.19, the log in windows is shown the user, admin or reviewer needed to login

before he can get into the application.

Fig. 4.25: Online Submission and Reviewing login

If the user needed to upload their papers on the application, the upload has to be based on the

upload setting specified in figure 4.20. In this figure the paper size must be less than or equal

to 10mb as specified in the upload setting. If the paper is larger in size it can be resaved in

another format that will ensure better compression.

181

 Fig 4.23 : Paper Upload Setting and Page

In figure 4.21, it is clear that when an Admin logs into the system he is provided with menu

tools as shown on the top egde of the window. The admin uses this menus to perform

different activities. One of the actions performed is the creation of accounts for the conference

Reviewers. Figure 4.21 shows the page and the information needed to be fill for the reviewer

which will enable him to login and have certain access and previlage to access papers

assigned to him/her and to make the necessary reviews and report the observations and

comments to the authors and the admin who may also double as the Editor.

182

 Fig 4.26: Reviewer Account Setup

In figre 4.22 the reviewer preference selection is presented, each reviewer checks first,

second and none check box to indicate the area the reviewer can be allocated review.

 Fig. 4.27: Reviewer Field of Review Preferences

183

In the appendix other screen shots of other operations are clearly show most of which are

directly self explanatory. The screen shot contains mostly the core of the admin activities on

the application. The conference managers and staffs also have a part of the system for their

content information which includes hotel reservation on the city of the conference, public

notices and other activities that revolve within the conference. Since the system is

interactive and user friendly the paper review community can respond to all this conference

demands by specifying their corrections and observations and opinion and the editor of the

proceeding or conference coordinator can also make it available to authors. This enables the

review activities to be closely monitored by the conferees creating transparency and

confidence within the academic circles. In the system all documents submitted are stored in

the system whether they are MS-Word document, picture files, PowerPoint presentation files

or adobe PDF documents program files. The document window only provides an abstraction

of the entire documents stored in the system. Reviewers report can also be made based on the

report parameters provided. Other content include sundry information and content that the

conference organizers want to add in the system.

4.13.4 Performance Evaluation

The existing object-relational database system separates the data stored in the databases and

the objects created in the system process and in the file. However the system developed in this

dissertation integrated the simple data stored in the database with the complex data defined in

the classes and the objects. The issues here are how the variation affects the system, but this

can be easily determined by carrying out some deep system test profiling. The test profilling

carried out at the class and package level show major improvements in the integrated data

system provided by the Object-Oriented database implementation.

184

Table 4.2: The Profiling of Class/Package Modules of Object-Oriented Integration

Against Non-Object-Oriented Integration.

Package / Module Profiles Non Object-Oriented Data

integration

Profile(exec/micro_sec)

Object-Oriented Data

integration Profile

(exec/micro_sec)

Author_Module 45000 1500

Reviewer-Module 85000 27300

Editor_Module 56000 1936

Paper_assignment_and_view

Module

83405 20592

Paper_Status Module 6700 1560

Conference_Info Module 3200 5600

The result of the profiling was generated using PHP Profiler App and the generated result is

as listed in the table and plotted in the graph in figure 4.26. In the figure, it is clear that the

plot of Object-Oriented data integration showed lower time of execution compared with the

Non Object-Oriented data integration. This is the same for class package/module 1, 2, 3 and 4

where higher data storage and retrieval is required. However, for module 5 and 6 where much

data fetch were not needed or where only simple text is required the two seem to be similar.

Fig 4.26: A Plot of the performance of Object-Oriented Data Integration against Non Object-

Oriented Data Integration Class/ Package Module Profile

185

4.13.5 Limitation of the System

The project really paid much attension on complex data storage and retrieval improvement

with little attension on further improvement on the simple data storage. The assumption is that

relational databases or other non Object-oriented databases have fully improved on the simple

data types. But the reality is that there is still more need to further improve the simple data

storage system expecially the floating point text involving currency, double precision, and

recent 8 to 32 digit cryptocurrency values. The limitation of the application is that if users are

to pay for the conferency using blockchain tokens the system will find it difficult to categorise

the value as either simple or complex value since currency is limited to 2 decimal point and

double precision is not currency.

186

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary

In this research the need for object database and its ability to handle complex data has been

presented. The ability of these object databases to communicate with object-oriented

applications class-to-class, object-to-object and programming construct to construct are

desired. The research looked at how the features could be incorporated into modern system

development.This concept was tested in the research using a conference management system

as a use case. The conference management system was analyzed based on the proposed

concept, the design and the implementation was also carried out based on the design provided.

Conference management system works to enhance the conference service delivery for

enhancement and automation of conference processes and proceeding. It provides tools to

enhance the activities carried out at pre-conference, during conference and at post conference.

Conference services include the submission of papers, review of papers, enhancing access to

conference information including information and communication technology in delivery of

conference services. The conference management system serves as a conduit for provision of

effective and affordable tools for bridging the gap between authors and conference organizers

and reviewers of conference papers. This employs communication technology, which work to

enable the involvement and empowerment of contributors to conference proceedings from all

over the globe. It also encourages wider participation in the conference and the conference

process. Hence Conference management system provides an easy access in the management

of content on a site and as a simple tool in creating of conference content through submission

and processing of pages, authoring based on the content creation, management of site and its

page including the total maintenance of conference web application through the development

187

of CMS using AMP technology. The CMS system was basically selected as a use case due to

its large usage of databases and the need for these databases to communicate with application

objects and all the user objects within the application usage environment.

5.2 Conclusion

In this research, a formal model for the development of object database systems using

Conference Management System (CMS) as a use case was developed. This model will serve

as a guide for database management vendors and researchers in development of real life

object database systems for use in the businesses and organization. We also designed object-

database architecture for the CMS using Object-Role Modeling. Object-Role modeling is

tailored towards developing object based representation of database entities.

It has been proven that it is easier for third parties to understand and represent entities

attributes and their interactive behaviors when compared to entity relationship models (ER

model). In the design ER models are less suitable for formulating, trans- forming, or evolving

a design. ER diagrams are further removed from natural language, cannot be populated with

fact instances, require complex design choices about attributes, lack the expressibility and

simplicity of a role-based notation for constraints, hide information about the semantic

domains that glue the model together, and lack adequate support for formal transformations

(Terry, 2012). This is why we have used the Object Role Models in the design though it

seems to be relatively new to academic designs.

The research work was finally implemented using the CMS design produced with object data

and associated database.The implementation was done using PHP-MySQL programming

language and technology due to the object-oriented nature of PHP and the object-orientation

features currently imbedded in MySQL. Though we may not have all the features required in

the DBMS but there are certain features that we have to code manually.

188

The implemented system is a tool of conference communication and publication information

dissemination that empowers authors and publishers alike and bridge the gap between

conference paper call and conference proceeding publication. This can boost quality of

conferences by widening the submission scope and also the paper review scope for submitted

papers. It also provides information, knowledge and conference quality as was never possible

before. In this realm, conference organizers have a duty to provide services as efficiently as

possible and to make the conference participants have value for their time and money in

participating in conferences. Thus conference management system is not just about

developing a web application; it is also the basic tool developed to control the function of

pages with the transferring of information to enable proper delivery of conference

services.This has also served as a tool for implementing the novel concepts developed in this

research.

5.3 Contribution to Knowledge

This project has made some contributions which include:

i) The design of formal schemes and models for object-oriented databases which we

believe will form the foundation for development of complex applications that can

easily communicate object entities, their attributes and behaviours with databases

without any middleware or connectors. Messages can then be easily communicated

between objects in application and database objects.

ii) Object Role models of the system was equally developed which is modern tool for

representing object database entity relationships in an easy to understand model

iii) The high level model of the system was developed for representing complex concepts

that are built into the development of the system in this project.

189

iv) We have also developed a Conference management system in the thesis to illustration

the concepts proposed in the thesis. The application can be useful in handling

conferences expecially in Nigeria and developers can also get inspirations from the

system in developing much more challenging applications.

5.4 Recommendation

The need for object-databases cannot be emphasized and the need to get them ready for

communication with the object-oriented applications that drives them especially in

contemporary system development where object-oriented application development remains

the in thing in modern application development. Developers can benefit from these concepts

and application quality assurance group can also use the concept in recommending database

for use by organizations. We also recommend the research in this work to academics that have

the need of simplifying their development process as well as implementation of systems that

need complex data. The conference management system developed in the work can also

benefit academic conferences and the development process can also be used in the

development of more complex systems using AMP technology and other facilities used in this

research. The system developed in this research can also enhances the efficient and effective

delivery of conference services in the academics and other organizations that handle

conferences that are based on paper submissions. We recommend this research to the

academic conference organizers and professional organizations such as Computer Society of

Nigeria (NCS) and other professional organizations that organize conferences across different

issues for real life deployment so that the benefits inherent can be derived in our society. We

also recommend the work to students who wish to carry out other research work related to

conference management system development so that they can get inspiration from this work

190

in the process of developing and electronic article and journal publications at a more

advanced level.

191

REFERENCE

Acharya, S., Alonso, R., Franklin, M., and Zdonik, S. (1995). Broadcast disks: Data

management for asymmetric communication environments. In Proceedings of the

ACM SIGMOD Conference on Management of Data, 199-210

Acharya S., Franklin, M., and Zdonik, S. (1996). Perfecting from a broadcast

 disk. In Proceedings IEEE Conference on Data Engineering, 276-285

Acharya, S., Franklin, M., and Zdonik, S. (1997). Balancing push and pull for

 Data broadcast. In Proceedings of the ACM SIGMOD Conference on

 Management of Data, 183-194.

Adam F. (2015) NoSQL For Dummies, Published by: John Wiley & Sons, Inc., 111 River

Street, Hoboken, NJ 07030-5774.

Aho, A., Sethi, R., and Ullman, J. (1987). Compilers: Principles, Techniques

 and Tools. AddisonWesley.

Aksoy, D. and Franklin, M., (1998). Scheduling For large-scale on-demand

 data broadcasting. In Proceedings IEEE INFOCOM Conference (San

 Francisco, CA, March).

Aljanaby, A., Abuelrub, E. and Odeh, M (2005). A survey of Distributed

 Query optimization.The International Arab Journal of Information

 Technology. 2(1), 48-57.

Atkinson, Malcolm et al, (1989). The Object-Oriented Database Manifesto. In Proceeding of

 the First International Conference on Deductive and Object-Oriented Databases, 223-

 240.

Atkinson, M., & Bancilhon, F., & DeWitt, D., & Dittrich, K., & Maier, D., & Zdonik, S. (1995).
 The Object-oriented Database System Manifesto, [On-line].

Babb, E. (1979). Implementing a relational database by means of specialized

 hardware. ACM Transactions on Database Systems 4, (1), 1-29.

Bachman, C. W. (2000) Integrated Data store Data Base study, second symposium

 on Computer-centered Data Base Systems, pheenic, Arizons

Bancilhon, F; Delobel, l. and Kaneltakis, P. (1992). Building an object-orinted
Database System: The story of O2 margan Kaufmann Publishers, ISBN 1-55860 – 169
– 4.

Bernstein, P., Goodman, N., Wong, E., Reeve, C., and Rothnie, J.(1981).Query

 processing in a system for distributed database (SDD-1).

 ACM Transactions on Database System 6, 4, 602-625.

192

Betts, B. (1997). Objects of desire? Computer Weekly, [On-line].

Braumandl, R., Kemper, A., and Kossmann, D. (1999). Database patchwork on

 the internet (project demo description). In Proceedings of the ACM SIGMOD

 Conference on Management. of Data, 550-552.

Braumand R., Konrad Stocker, Donald Kossmann, and Alfons Kemper,(2001) “Integrating

Semi‐Join‐Reducers into State‐of‐the‐Art Query Processors”, Proceedings of the 17th

International Conference on Data Engineering, HYPERLINK IEEE Computer Society

Washington, DC, USA.

Burleson, D. (1994). OODBMSs gaining MIS ground but RDBMSs still own the road. Soft

ware Magazine. 14(11), 63.

Ceri, S. and Pelagatti, G. (1984). Distributed Database- Principles and Systems.

 McGraw- Hill Inc., New York, San Francisco, Washington, D.C

Checkland P. and Helwell S. (1998). Information, Systems, Information systems: Making

 Sence of the field. Chichester,West Sussex :John Wiley and Sons ISBN 0-471-

 95820-4,86-89.

Chen M. S. Yu p. S. and Wu K. L.(1996). Optimization of parallel Execution

 for multi-join Queries. IEEE Transition on knowledge and Data

 Engineering, 6, 3.

Codd E. F. (1970) Relational Model of Data for Large Shared Data Banks, IBM Research

Laboratory, San Jose, Communications of the ACM 13(6) 377-387

Data Integration Glossary (2001). US Department of Transportation.

Dewitt, D., Futtersack, P., Maier, D., and Velez, F. (1990). Astudy

of three alternatives workstation server architectures for object- oriented database

systems. In Proceedings of the Conference on Very Large Data Base (VLDB), 107-

121.

DeWitt D. J. and Gray J. (1992). Parallel Database systems: The Future of High performance

Database Systems. Communication of ACM, 35, (6) 85-98.

Doyle,L. (2000) Content management system workshop Report, Fourth

Institutional web management,University of Bath. UK,

Distributed Query Performance (2012) .http://infocenter.sybase.com/help/index.jsp?

Distributed system (2012).http://www.ablong man.com/sample

chapter/013095683x.pdf,

Eickler, A., Gerlhof, C., and Kossmann, D. (1995). A Performance evaluation of OID

mapping techniques. In Proceedings of the Conference on Very Large Data Bases

(VLDB), 18-29.

193

Eickler, A., Kemper, A., and Kossmann. D. (1997) . Finding data in the

neighborhood. InProceedings Of The Conference On Very Large Data Bases (VLDB),

336-345.

Elmasri, R and Navathe, S. B. (2000) Fundamentals of Database Systems. Reading. MA,

Addison-Wesley.

Eric P, Wenny R. J And David T. (2003). New SQL Standard For Object-Relational

 Database Applications, IEEE Computer Society SIIT2003

Falkenberg, E.D. & Oei, J.L.H. 1994, „Meta-model hierarchies from an Object-Role

Modelingperspective‟, Proc. First Int. Conf. On Object-Role Modeling (ORM-1), eds

T.A. Halpin & R.M.Meersman, Magnetic Island, Australia, 218-227.

Ferguson, D., Nikolaou, C., Sairamesh, J., and Yemini, Y. (1996). Economic

models forallocating resources in computer systems. In S. Clearwater (ed)., Market

based Control of Distributed Systems. World Scientific Press.

Franklin, M., Carey, M., and Livny, M. (1993).

Local disk caching for client-server database systems. In Proceedings of the

Conference on Very Large Data Bases Systems (VLDB) (Dublin Ireland, Aug), 543-

554.

Franklin, M. and Jonsson, B., and Kossmann, D. (1996.) Performance tradeoffs

 for client-server query processing. In Proceedings of the ACM SIGMOD

 Conference on Management of Data (Montreal, Canada, June), 149-160

Franklin, M and Zdonik, S. (1998.) Data in your face: Push technology in

perspective. In Proceedings of the ACM SIGMOD Conference on Management of

Data (Seattle, Wash, June), 516-519.

Fuxman A., M. Pistore, J. Mylopoulos, and P. Traverso (2001). Model checking

 earlyrequirements specifications in Tropos. In IEEE Int. Symposium on

 RequirementsEngineering, 174–181.

Garvey, M. A., and Jackson, M. S. (2010), " Object-Oriented Databases", Information

and Software Technology, 31,(10), 524-525.

Gottfried V. (1992) On Formal Model for Object-Oriented Databases, Journal of Fachbereich

 Mathematik, Arbeitsgruppe Informatik , 22-40

Graefe, G. (1990.) Encapsulation of parallelism in the volcano Query processing

system. In Proceedings of the ACM SIGMOD Conference on Management

194

Data (Atlantic City, NJ, June), 102-111

Graefe, G. (1993). Query evaluation techniques for large databases.

ACM Computing Surveys 25 (2)73-170.

Gray, J et al., (1996).Data cube: A relational aggregation operator generalizing group- by,

 cross –tab, and sub-total. In Proceedings of the IEEE Conference on Data Engineering

 (New Orleans, LA, Feb.), 152-159

Gray, J., Bosworth, A., Layman, A., and Pirahesh,H. (1996).Data cube: A relational

aggregation operator generalizing group- by, cross –tab, and sub-total. In Proceedings

of the IEEE Conference on Data Engineering (New Orleans, LA, Feb.), 152-159

Gupta, A. (2009). Database Management System in the Practical Approach to SQL &

PL/SQL. Daryaganj Delhi: S. K. Kataria & Sons.

Han, W. S, Lee K. H., and Lee B. S. (2003), “An XML Storage System For Object-

 Orientedobject-Relational DBMSs”,Joumalof Object Technologv 2(1), 113-126

Henderson-Sellers, B., and Edwards, J. (1994). Book two of object-oriented knowledge: the
working object: object-oriented software engineering: methods and
management. Sydney, Australia: Prentice Hall, 30-35.

Hernandez, M. (1997). Database design for mere mortals. Reading, Massachusetts: Addison-
 Wesley.

Hibatullah A. (2016). Evolution of Object-Oriented Database Systems, Global Journal

 of Computer Science and Technology: Software & Data Engineering 16(3)33-36

Härder T., Stefan D., Nelson M., Bernhard M., Joachim T. (1998) Advanced Data Processing

 in KRISYS: Modeling Concepts, Implementation, Techniques, and Client/Server

 Issues, The VLDB Journal 7 (2), 79-95

http://download.oracle.com/docs/cd/b10500-01/server. 920/a96520/concept, htm#49840.

Huh, S., Kim, H., and Chung, Q. (1999). Framework for change notification and view
 synchronization in distributed model management. Omega, August [On-line].

Hunt A. and D. Thomas (2000). Programming Ruby: The Pragmatic

Programmer's Guide.Addison Wesley Professional, 1st edition

Ibraraki, T. and Kameda, T., (1984) Optimal Nesting for computing N-Relational joins. ACM

 Transaction on Database Systems, 9(3) 482-502.

Inmon W. H. (1995). What is a Data Warehouse? Prism, 1

Ioannidis Y. E. and Kang Y.C, (1990). Randomized Algorithms for

http://download.oracle.com/docs/cd/b10500-01/server

195

 Optimizing large join Queries. In Proceedings of the ACM SIGMOD

 Conference on management of Data, 312-321.

Ives, Z.; Florescu, D.; Friedman, M.; Levy, A.; and Weld, D. (1999). An adaptive query

execution system for data integration. In Proc. of ACM SIGMOD Conf. on

 Management.

Jaspreet S., Kaur H. and Kaur K. (2013). A Review On Document Oriented And Column

Oriented Databases, International Journal of Computer Trends and Technology- 4 (3)

338-344.

Jenq B., Woelk D., Kim, W and Lee W., (1990). Query Processing in

distribute ORION. In proceedings of the International Conference

on Extending Database Technology (EDBT) 169-187.

Keller, A, Jensen, R, and Agrawal, S (1993). Persistence Software: Bridging object-

oriented programming and relational databases. In Proceedings of the ACM

SIGMOD Conference on Management of Data, 523-528.

Kim, Won (1990). Introduction to Object- Oriented Databases. The MIT Press, ISBN 0-262-

 11124-1.

Kimball, R. and Strehlo, K. (1995). Why decision support fails and how to fix it.

ACM SIGMOD Record 24 (3) 92-97.

Klettke M. And Meyer H., (2000) XML And Object-Relational Database Systems –

 Enhancing Stluctural Mappings Based On Statistics”, Webdb, Springer-Verlag,

 151-170

Kossmann, D and Stocker, K (2000). Iterative Dynamic Programming: A new class of

query optimization algorithms. ACM Transactions on Database Systems.

Kossmann D., (2000).The State of Art in Distributed Query Processing. ACM Computing

 Surveys. Volume 32 (4) 422-469

Krasner G. and S. Pope.(1988) A cookbook for using the Model-View-Controller, serinterface

 paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3) 26-49.

Kremer M. and Gray J., (1999). A Survey of Query Optimizer in parallel Databases.

echnical Report, CS-04-1999.

Lancelot, R. S. G., Validities p and Zait M., and Zane M., (1994). Industrial-Strength

 Parallel Query Optimization: Issues and lesson. Information Systems, 19 (4) 311-

 330.

Lema J. A. C., Forlizzi, L., G¨uting, R. H., Nardelli, E., and Schneider, M.,(2003).

Algorithms for Moving Objects Databases. Computer Journal, 46 (6) 680–712.

196

Lomet, D. (1996). Replicated indexes for distributed data. In Proceedings of

 the International IEEE Conference on Parallel and Distributed

 Information Systems.

Lorie, R and Wade, B. (1979). The Compilation of a High Level Data

Language. Technical Report RJ 2598, IBM Research, San Jose, CA.

Lu, H. and Carey, M. (1985). Some experimental results on distributed join algorithms

 In a local network. In Proceedings of the Conference on very large Data Base

(VLDB), 229-304.

Mackert, L and Lohman, G. (1986). R* optimizer validation and performance evaluation for

 distributed queries. In Proceedings of the Conference on Very Large Data Bases

 (VLDB), 149-159.

Maier, D., Otis, A., and Purdy, A. (1985) "Some Aspects of Operations in an Object-

 Oriented Database," Database Engineering, 8 (4), IEEE Computer Society,

 December; "Object-Oriented Database Development at Servio Logic," Database

 Engineering, 18 (4)

Mantelman, L.(1992), "Object-Oriented Databases Challenge Users to Change", Infoworld,

 14 (11) 86.

Martin, J. and Leben, J. (1995). Client-server databases: enterprise computing.
Upper Saddle River, New Jersey: Prentice Hall.

Martin, J. and Odell, J. (1992). Object-oriented analysis & design. Englewood Cliffs, New
Jersey: Prentice Hall.

Meijer E.(2000) Server Side Web Scripting in Haskell. Journal of Functional

Programming, 10 (1) 1-18.

Michael , V. M. (2006) Database Application Development and Design, McGran-Hill

 New York

Miller Freeman, Inc. (1999). Expert Opinion: short-term strategies for upgrading to

Component-based, object-oriented technology. Insurance & Technology,

[On-line].

Morandini M., D. C. Nguyen, A. Perini, A. Siena, and A. Susi (2009) Tool-

 supported Development with Tropos: The Conference Management

 System Case Study. Fondazione Bruno Kessler – IRST Via

 Sommarive, 18 38050 Trento, Italy.

197

Mullins, C. S.,(1994) "The Great Debate", Byte, 19 (4) 52.

Niccu, T. M., Srivastava J., Himatstingka, B. and L.I J., (1993). A Tree-

 decomposition Approach to Parallel Query Optimization. Technical

 Report TR 93-016.

O’Brien, J. A. & Marakas, G. M. (2009), Management information System. (9).

ODBMS.ORG (2013). Object Database (OODBMS) / Free Resource Portal. ODBMS .

Ogunlere S. O and Idowu S A. (2015). Comparison Analysis of Object-Based

 Databases, Object-Oriented Databases, and Object Relational Databases, Asian

 Journal of Computer and Information Systems 3(02) 52-57.

Ono, K. and Lohman G. M. (1990). Measuring the complexity of Join Enumeration in Query

 optimization. In Proceedings of the conference on Very Large Database(VLDB).314-

 325.

Oracle (2012). Retrived from http://download.oracle.com/docs/cd/b10500-
01/server.920/a96520/concept, htm#49840.

Oszu, M. T and Valduriez, P. (1999). Principles of Distributed Database Systems N. J,

 Prentice Hall International

Oszu, M. T. and Valduriez, P. (1997). Distributed and parallel Database Systems. In Trucker

 A. (Ed). The Computer Science and Engineering Handbook. CRC press. 1093-1111.

Oszu. M. T. and Valdurie z P., (1991). Distributed Database Systems: Where are We Now.

IEEE Computer, 2 (8) 68-78.

Oszu. M. T. and Valduriez P., (1999). Principles of Distributed Database

 Systems, Prentice Hall International, NJ.

Pirahesh, H., Hellertein, J.,and Hasan, W, (1992). Extensible/rule based query rewrite

 optimization in starburst. In Proceeding of the ACM SIGMOD Conference on

 Management of Data, 39-48.

Piotr Jaszczyk Tomasz Kolasa (2009), Developing Conference Management System with

 JBoss Seam, Department of Computer Science and ManagementJavaTech Research

Group

Plasmeijer R.and P. Achten (2005). Generic Editors for the World Wide Web. In Central-

 European Functional Programming School, EÄotvÄos Lorand University.

Plasmeijer R. and P. Achten.(2006) iData For The World Wide Web –Programming

 Interconnected Web Forms. In Proceedings Eighth International Symposium on

 Functional and Logic Programming FLOPS 3945.

http://download.oracle.com/docs/cd/b10500-%2001/server
http://download.oracle.com/docs/cd/b10500-%2001/server

198

Plasmeijer R. and P. Achten.(2006) The Implementation of iData - A Case Study in Generic

Programming. In A. Butter¯eld, editor, Proceedings Implementation andApplication

of Functional Languages - Revised Selected Papers, 17th InternationalWorkshop,

IFL05, LNCS 4015.

Pratt, P. J., and Adamski, J. J. (1991) Database Systems - Management and

Design, 2nd Edition,

Query Processor (2012), http://technet. microsoft.com/en-us/library/cc 966472. aspx#main

 section.

Radding, Alan (1995). So what the Hell is ODBMS? Computerworld. 29(45): 121-122, 129.

Radding, A, (1993), "Not Quite Ready For Prime Time: The CW Guide To Object-Oriented

 Programming", Computerworld, 27(24).

Rinus P. and Peter A.(2009) A Conference Management System based on theiData Toolkit,

Software Technology, Nijmegen Institute for Computing and Information

Sciences,Radboud University Nijmegen

Robert, G. N., and David, L. D., (2007). IQ/OBJECKS- QUICK Query RPIS

 VERSION 3. Technical Report on IQ/Objects, Massachusetts, USA.

Schek H. J., Scholl M. H. (1990) Evolution of Data Model models, Proc. Database

Systems of the 90s, Springer LNCS 466, 135-153.

Sellinger, P G., Astrahan, M. M., Chamberlin, D. D., Lorie ,R.A., and Price T.

G. (1979). Access Path Selection in A Relational Database Management System. In

Proceeding of the ACM SIGMOD Conference on Management of Data. Boston.

USA. 23-34.

Senn, J. A. (1990), Information Systems in Management, 4th Edition, Wadsworth,.

Schach, S. (1996). Classical and object-oriented software engineering (3rd ed.) 140, 170.

Sidell, J., Aoki, P., Barr, S., Sah, A., Staelin, C., Stonebraker, M., and Yu, A. (1996). Data

replication in Mariposa. In Proceedings IEEEConference on Data Engineering, 485-

494.

Siena A (2007). Engineering Normative Requirements. In Proceedings of the First

 InternationalConference on Research Challenges in Information Science, RCIS 439–

444.

Stanley D. B. (2012) A Primer on Object Role Modeling, University of California

Press, Berkeley.

http://technet/

199

Steinbrunn, M., Moerkotte, G., and Kemper, A. (1997). Heuristic and Randomize

Optimization for the Join-Ordering Problem. VLDB 6 (3) 191-20.

Stocker, K., Kossmann, D., Braumandi, R., and Kemper, A. (2001). Integrating semi join

reducers into state-of-the-art query processors. In Proceedings Of The IEEE

Conference On Data.

Stonebraker, M (1985). The design and implementation of distributed INGRES. Reading,

 MA.

Stonebreaker, M. (1994). Readings in Database Systems (second ed.). Morgan Kaufmann

Publishers, San Mateo,CA

Stonebraker, M., Aoki, P., Litwin, W.,Pfeffer, A.,Sah, A.,Sideli, J., Staelin, C.,and Yu,

A. (1996). Mariposa: a wide-area distributed database system. The VLDB 5 (1) 48-

63.

 Tanenbaum, A. S. Bal, H. E., Steiner, J. G.; (1989). Programming languages for distributed

computing systems. ACM Computing Surveys. 21 (3), 261.

Tang W., Ho, S.-S. Ho, Liu, W. T., and Schneider, M.,(2010). A Framework for Moving

 Sensor Data Query and Retrieval of Dynamic Atmospheric Events. In 22nd Int. Conf.

 on Scientific and Statistical Database Management (SSDBM), ser. Lecture Notes in

 Computer Science, 6187, 96–113.

Terry Halpin (2012) Object-Role Modeling (ORM/NIAM), Microsoft Corporation,

USAreproduced by permission.from Handbook on Architectures of Information

Systems, eds P. Bernus, K. Mertins & G. Schmidt, Springer-Verlag, Berlin, 1998,

www.springer.de/cgi-bin/search_book.pl?isbn=3-540-64453-9.

Thiemann P.(2002) WASH/CGI: Server-side Web Scripting with Sessions and Typed,

 Compositional Forms. In S. Krishnamurthi and C. Ramakrishnan, editors, Prac-tical

 Aspects of Declarative Languages: 4th International Symposium, PADL 2257 of

LNCS, 192-208.

Urhan, T. and Franklin, M., (1999). Xjoin: Getting Fast Answers from Slow and Busty

 Networks. Technical report CS–TR (Feb), University of Maryland, College Park.

Vaduriez, P. and Gardarin, G. (1984). Join and semi-join algorithms for a multiprocessor

 database machine. ACM Transactions on Database Systems 9 (1) 133-161.

Vogels W. 2003). Scalable Cluster Technologies for Mission Critical Enterprise

Computing (PhD thesis). Vrije Universiteit. 1871-10357.

Waas, F, and Galindo-legaria, C. (2000). Counting, Enumerating, and sampling of

execution plans in a cost-based query optimizer, Proceedings of ACM SIGMOD

International Conference on Management of Data.

http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-64453-9
https://hdl.handle.net/1871%2F10357

200

Williams R, Daniels, D , Haas, L, Lapis, G, Lindsay, B., Ng ,P, Obermarck, R, Selinger, P,

 Walker,A., Wilms, P., and Yost, R. (1981).R.*: An Overview of the architecture. IBM

 Research, San Jose, CA, RJ3325. Reprinted in: M. Stonebreaker (ed.), (1994).

Readings in Database systems, Morgan Kaufmann publishers, 515-536.

Wilshut, A. and Apers, P. (1991). Dataflow query execution in a parallel Main memory. In

 Proceedings of the International IEEE Conference on Parallel and Distributed

 Information Systems, 68-77.

Zaharioudakis, M. and Carey, M. (1997). Highly concurrent cache consistency for indices in

 client-server database systems. In Proceedings of the ACM SIGMOD Conference on

 Management of Data, 50-61.

Ziane M., Ziat M., and Borle- Salanet P. (1993). Parallel Query Processing with Zigzag Trees.

 VLDB 2 (3) 277-301.

Zhang F., Ma Z. M., Wang X., Wang Y. (2010) Formal Approach and Automated Tool for

 ConstructingOntology from Object-oriented Database Model, In proceeding of ACM

 CIKM‟10 1329-1332 .

201

APPENDIX A: SOURCE CODE

<?php

///

//////

//

// THIS PROGRAM HANDLES THE CONFERENCE MANAGEMENT SYSTEM WHERE CALL FOR

PAPER

// IS MADE, PAPER SUBMISSION IS MADE AND REVIEWERS CAN LOGIN AND REVIEW

PAPERS

// AND ACCEPTANCE OF PAPER CAN BE COMMUNICATED TO AUTHORS.

// user:ngozi

// pass:ngozi123

//

// BY:NGOZI CAROLINE OKEREKE

// REG. NO: 2008517005P

//

///

////////

// THIS PROGRAM IS DEVELOPED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR

// THE AWARD OF A PhD IN COMPUTER SCIENCE OF NNAMDI AZIKIWE UNIVERSITY AWKA

///

///////

$php_root_path = ".";

require_once("$php_root_path/includes/include_all_fns.inc");

global $homepage ;

$error_array = array() ;

if (!file_exists("$php_root_path/includes/preferences.inc"))

{

 echo "Warning:

preferences.inc file is not installed in \\includes directory. Please use

\\install\install.php to create this file.

";

}

if ($_POST["submit"] == "Submit") //disable validation if resetting

 $exempt_array = array() ;

else

 $exempt_array = array("username", "logpassword");

$err_message = " Unable to process your request due to the following

problems:
\n" ;

check_form($_POST , $error_array , &$exempt_array) ;

if (count ($error_array) == 0 && count ($_POST) > 0 &&

$_POST["submit"] == "Submit")

{

 // connect to db

202

 $db = adodb_connect(&$err_message);

 if (!$db)

 {

 $homepage->showmenu = 0 ;

 do_html_header("Login Failed");

 $err_message .= " Unable to connect to database.
\n" ;

 }

 else if ($PrivilegeTypeID = login($_POST["username"],

$_POST["logpassword"] , &$err_message))

 {

 session_start();

 // if they are in the database register the user id

 $_SESSION["valid_user"] = $_POST["username"] ;

// $_SESSION["phase"] ; // 4.0.6

 $_SESSION["phase"] ;

// session_register("valid_user");

// echo "
\nSession: " . $_SESSION["valid_user"] . "
\n" ;

 if (!check_conference_phase(&$err_message, $PrivilegeTypeID)

)

 {

 $homepage->showmenu = 0 ;

 do_html_header("Login Failed");

// session_unregister("valid_user");

 unset ($_SESSION["valid_user"]) ;

 $err_message .= " Unable to connect to conference

database.
\n" ;

 }

 else

 {

// session_register("phase") ;

 switch ($PrivilegeTypeID)

 {

 case 1:

 {

 $str = "Location:

$php_root_path/user/view_papers.php";

 header($str); // Redirect browser

 exit; // Make sure that code below does not

get executed when we redirect.

 break ;

 }

 case 2:

 {

// if (!session_is_registered ("s_reviewer")

)

// {

// session_register ("s_reviewer") ;

// }

// $_SESSION["s_reviewer"] = array() ;

 $str = "Location:

$php_root_path/reviewer/reviewer_home.php";

 header($str); // Redirect browser

 exit; // Make sure that code below does not

get executed when we redirect.

 break ;

 }

203

 case 3:

 {

 $str = "Location:

$php_root_path/admin/admin_home.php";

 header($str); // Redirect browser

 exit; // Make sure that code below does not

get executed when we redirect.

 break ;

 }

 default :

 {

 $homepage->showmenu = 0 ;

 do_html_header("Login Failed" , &$err_message

);

 $err_message .= " Unknown User's

PrivilegeTypeID.
\n" ;

 break ;

 }

 }

 }

///////////////// Debug //////////////

// echo gettype($_SESSION["phase1"]) . "
\n" ; // 4.1.1

// echo gettype($_SESSION["phase2"]) . "
\n" ; // 4.1.1

// echo gettype($_SESSION["phase"]3) . "
\n" ; // 4.0.6

// echo "Login phaseID 1: " . $_SESSION["phase1"]->phaseID .

"
\n" ; // 4.1.1

// echo "Login phaseID 2: " . $_SESSION["phase2"]->phaseID .

"
\n" ; // 4.1.1

// echo "Login phaseID: " . $_SESSION["phase"]->phaseID .

"
\n"; // 4.0.6

//////////////////////////////////////

 }

 else

 {

 // unsuccessful login

 $homepage->showmenu = 0 ;

 do_html_header("Login Failed" , &$err_message);

 $err_message .= " Please re-enter your username and password.

\n" ;

// echo $err_message . "

 Try again?" ;

// do_html_footer();

 }

}

else

{

 $homepage->showmenu = 0 ;

 //Call the function to get the conference information

 // $confName = $conferenceInfo -> ConferenceCodeName;

 $conferenceInfo = get_conference_info();

 do_html_header("Online Submission and Reviewing" , &$err_message);

}

?>

 <form action="index.php" method="post" name="loginForm" id="loginForm">

204

 <table width="80%" border="0" cellpadding="0" cellspacing="0">

 <tr>

 <td height="24" colspan="2"><a href="<?php echo $php_root_path ;

?>/user/registration.php">First submission or want to register your

interest? Sign

 up for an account.</td>

 </tr>

 <tr>

 <td height="20" colspan="2">Hint: Use your email address as

UserName.</td>

 </tr>

<!-- <tr>

 <td height="20" colspan="2">Login temporarily

unavailable. sorry.</td>

 </tr>-->

 <tr>

 <td width="20%"> </td>

 <td width="80%" height="24"> </td>

 </tr>

 <tr>

 <td>UserName</td>

 <td><input name="username" type="text" id="username" value="<?php if

($_POST["submit"] == "Submit") echo $_POST["username"] ; ?>" size="25"

maxlength="50">

 <?php echo "" . $error_array["username"][0]

. "" ?></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><input name="logpassword" type="password" id="logpassword2"

value="<?php if ($_POST["submit"] == "Submit") echo $_POST["logpassword"] ;

?>" size="25" maxlength="50">

 <?php echo "" .

$error_array["logpassword"][0] . "" ?></td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td><input type="submit" name="submit" value="Submit"> <input

type="submit" name="reset" value="Reset"></td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2">If you have forgotten your password,<a href="<?php

echo $php_root_path ; ?>/user/forget_pwd.php">

 click here.</td>

 </tr>

 </table>

</form>

<?php

205

do_html_footer(&$err_message);

?>

///

<?php

 $php_root_path = ".." ;

 $privilege_root_path = "/admin" ;

 require_once("includes/include_all_fns.inc");

 session_start();

 $err_message = " Unable to process your request due to the following

problems:
\n" ;

 // extract ($_SESSION , EXTR_REFS) ;

 $valid_user = $_SESSION["valid_user"] ;

 do_html_header("Admin Home" , &$err_message);

 //Call the function to get the conference information

 $conferenceInfo = get_conference_info();

 //Get Current Phase

 $currentPhaseInfo = getCurrentPhase();

 //Retrieve the setting information

 $settingInfo = get_Conference_Settings();

 //Connect to database

 $db = adodb_connect();

 if($currentPhaseInfo -> PhaseName == "Reviewing" || $currentPhaseInfo -

> PhaseName == "Final Paper Submission")

 $arrPaperReviewing = get_Paper_Reviewing_Statistic();

 //Get the total number of submitted papers

 $countPapersSQL = "SELECT COUNT(*) AS totalPapers FROM " .

$GLOBALS["DB_PREFIX"] . "Paper WHERE Withdraw = 'false'";

 $countPapersResult = $db -> Execute($countPapersSQL);

 $countPapersInfo = $countPapersResult -> FetchNextObj();

 //Get the total number of members

 $countUserSQL = "SELECT COUNT(*) AS totalUsers FROM " .

$GLOBALS["DB_PREFIX"] . "Member M," . $GLOBALS["DB_PREFIX"] .

"PrivilegeType P";

 $countUserSQL .= " WHERE M.PrivilegeTypeID = P.PrivilegeTypeID";

 $countUserSQL .= " AND PrivilegeTypeName = 'User'";

 $countUserResult = $db -> Execute($countUserSQL);

 $countUserInfo = $countUserResult -> FetchNextObj();

 //Get the total number of reviewers

 $countReviewerSQL = "SELECT COUNT(*) AS totalReviewers FROM " .

$GLOBALS["DB_PREFIX"] . "Member M," . $GLOBALS["DB_PREFIX"] .

"PrivilegeType P";

 $countReviewerSQL .= " WHERE M.PrivilegeTypeID = P.PrivilegeTypeID";

 $countReviewerSQL .= " AND PrivilegeTypeName = 'Reviewer'";

 $countReviewerResult = $db -> Execute($countReviewerSQL);

 $countReviewerInfo = $countReviewerResult -> FetchNextObj();

206

 //Get the total number of withdrawn papers

 $countWithdrawnSQL = "SELECT COUNT(*) AS totalWithdrawnPapers FROM "

. $GLOBALS["DB_PREFIX"] . "Paper WHERE Withdraw = 'true'";

 $countWithdrawnResult = $db -> Execute($countWithdrawnSQL);

 $countWithdrawnInfo = $countWithdrawnResult -> FetchNextObj();

 //Get the total number of accepted papers

 $countAcceptedSQL = "SELECT COUNT(*) AS totalAcceptedPapers FROM " .

$GLOBALS["DB_PREFIX"] . "Paper WHERE PaperStatusID= '3' AND Withdraw =

'false'";

 $countAcceptedResult = $db -> Execute($countAcceptedSQL);

 $countAcceptedInfo = $countAcceptedResult -> FetchNextObj();

 //Get the total number of rejected papers

 $countRejectedSQL = "SELECT COUNT(*) AS totalRejectedPapers FROM " .

$GLOBALS["DB_PREFIX"] . "Paper WHERE PaperStatusID= '4'AND Withdraw =

'false'";

 $countRejectedResult = $db -> Execute($countRejectedSQL);

 $countRejectedInfo = $countRejectedResult -> FetchNextObj();

 //Get the total number of marginal

 $countMarginalSQL = "SELECT COUNT(*) AS totalMarginalPapers FROM " .

$GLOBALS["DB_PREFIX"] . "Paper WHERE PaperStatusID= '6' AND Withdraw =

'false'";

 $countMarginalResult = $db -> Execute($countMarginalSQL);

 $countMarginalInfo = $countMarginalResult -> FetchNextObj();

 //Get the total number of papers in review

 $countReviewingSQL = "SELECT COUNT(*) AS totalReviewingPapers FROM "

. $GLOBALS["DB_PREFIX"] . "Paper WHERE PaperStatusID in (1,2,5) AND

Withdraw = 'false'";

 $countReviewingResult = $db -> Execute($countReviewingSQL);

 $countReviewingInfo = $countReviewingResult -> FetchNextObj();

 //Get the total number of papers unscheduled

 $countUnscheduledSQL = "SELECT COUNT(*) AS totalUnscheduledPapers

FROM " . $GLOBALS["DB_PREFIX"] . "UnscheduledPaper AS U, ";

 $countUnscheduledSQL .= $GLOBALS["DB_PREFIX"] . "Paper AS P WHERE

P.PaperID = U.PaperID AND P.Withdraw = 'false'";

 $countUnscheduledResult = $db -> Execute($countUnscheduledSQL);

 $countUnscheduledInfo = $countUnscheduledResult -> FetchNextObj();

?>

<table width="100%" border="0" cellspacing="0" cellpadding="1">

 <tr>

 <td width="10%"> </td>

 <td width="90%" align="right"><?php echo

format_date($settingInfo->DateFormatLong); ?></td>

 </tr>

 <tr>

 <td> </td>

 <td>

 <?php if ($conferenceInfo -> FileName != "")

 echo "<img src=\"view_logofile.php\"

alt=\"Logo\">";

 ?>

 <h4><?php echo $conferenceInfo -> ConferenceName; ?></h4></td>

207

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td>Welcome <?php echo $valid_user; ?>!</td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td><table width="60%" border="1" cellpadding="3" cellspacing="0"

bordercolor="#999999">

 <tr>

 <td colspan="2">

 <?php

 if ($currentPhaseInfo != false){

 $result = is_date_expired($currentPhaseInfo ->

EndDate , date ("Y-m-d" , time()) , &$err_message , "date");

 if($result === true) {

 ?>

 The current running phase is

expired.

 <?php

 } else {

 ?>

 <?php

 }

 ?>

 <?php echo $currentPhaseInfo -> PhaseName; ?>

 From

 <?php echo format_date($settingInfo->DateFormatShort,

$currentPhaseInfo -> StartDate); ?>

 To

 <?php echo format_date($settingInfo->DateFormatShort,

$currentPhaseInfo -> EndDate); ?>

 <?php

 } else echo "Current phase is not activated yet";

 ?>

 </td>

 </tr>

 <tr>

 <td width="70%">Total Papers Submitted:</td>

208

 <td width="30%"><?php echo $countPapersInfo -> totalPapers;

?></td>

 </tr>

 <tr>

 <td>Total Number of Users:</td>

 <td><?php echo $countUserInfo -> totalUsers; ?></td>

 </tr>

 <tr>

 <td>Total Number of Reviewers:</td>

 <td><?php echo $countReviewerInfo -> totalReviewers; ?></td>

 </tr>

 <tr>

 <td>Number of Papers Withdrawn:</td>

 <td><?php echo $countWithdrawnInfo -> totalWithdrawnPapers;

?></td>

 </tr>

 </table> </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td>

 <?php if((($currentPhaseInfo -> PhaseName == "Reviewing") ||

$currentPhaseInfo -> PhaseName == "Final Paper Submission") &&

(count($arrPaperReviewing) > 0)){?>

 Scheduling Status

 <table width="60%" border="1" cellpadding="3" cellspacing="0"

bordercolor="#999999">

 <tr>

 <td width ="70%"> Scheduled </td><td> <?php echo

$countAcceptedInfo->totalAcceptedPapers - $countUnscheduledInfo-

>totalUnscheduledPapers ; ?> </td>

 </tr>

 <tr>

 <td width ="70%"> Unscheduled </td><td> <?php echo

$countUnscheduledInfo->totalUnscheduledPapers ; ?> </td>

 </tr>

 </td></tr>

 </table>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td>

 Decision Status

 <table width="60%" border="1" cellpadding="3" cellspacing="0"

bordercolor="#999999">

 <tr>

209

 <td width ="70%"> Accepted </td><td> <?php echo $countAcceptedInfo-

>totalAcceptedPapers ; ?> </td>

 </tr>

 <tr>

 <td width ="70%"> Rejected </td><td> <?php echo $countRejectedInfo-

>totalRejectedPapers ; ?> </td>

 </tr>

 <tr>

 <td width ="70%"> Marginal </td><td> <?php echo $countMarginalInfo-

>totalMarginalPapers ; ?> </td>

 </tr>

 <tr>

 <td width ="70%"> Pending </td><td> <?php echo $countReviewingInfo-

>totalReviewingPapers ; ?> </td>

 </tr>

 </td></tr>

 </table>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td>

 Review Status

 <table width="60%" border="1" cellpadding="3" cellspacing="0"

bordercolor="#999999">

 <?php while(list($numReviews,$count) = each($arrPaperReviewing)){?>

 <tr>

 <td width="70%">

 <?php

 if($numReviews == 0) echo "No reviews:";

 else if($numReviews > 1) echo "$numReviews reviews:";

 else echo "$numReviews review:"; ?>

 </td>

 <td width="60%"><?php echo $count; ?></td>

 </tr>

 <?php } ?>

 </table>

 <?php } ?>

 </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

</table>

<?php

 do_html_footer(&$err_message);

210

?>

\\\

<?php

 $php_root_path = ".." ;

 $privilege_root_path = "/admin" ;

 require_once("includes/include_all_fns.inc");

 require_once("$php_root_path/includes/page_includes/page_fns.php");

 // only for numCategories()

 session_start();

 //extract ($_SESSION , EXTR_REFS) ;

 // Define a few page vars

 $settingInfo = get_Conference_Settings();

 $trackStr = $settingInfo->TrackName; //Name for Track

 $topicStr = $settingInfo->TopicName; //Name for Topic

 $levelStr = $settingInfo->LevelName; //Name for Level

 $err_message = " Unable to process your request due to the following

problems:
\n" ;

 $paperID = & $_GET["paperID"];

 $status = & $_GET["status"];

 $title = $status." Paper";

 do_html_header($title);

 //Get the paper information

 $paperInfo = get_paper_info($paperID);

 $type = get_presentation_info($_GET["type"]);

 $curtype = get_presentation_info(

get_presentation_type_for_paper($paperInfo -> PaperID));

?>

<form action="process_accept_reject_paper.php" method="post" name="form1">

 <table width="100%" border="0" cellspacing="0" cellpadding="1">

 <tr>

 <td colspan="2"><?php echo stripslashes("<h3>#".$paperInfo->PaperID."

".$paperInfo -> Title."</h3>"); ?></td>

 </tr>

 <input type="hidden" name="paperID" value="<?php echo $paperInfo-

>PaperID; ?>">

 <tr>

 <td width="15%">Authors: </td>

 <td width="85%"><?php echo retrieve_authors($paperInfo ->

PaperID);?></td>

 </tr>

 <tr>

 <td><?php echo "$trackStr:"?> </td>

 <td><?php echo GetSelectedTrackText($paperInfo -> PaperID ,

&$err_message);?></td>

 </tr>

<?php

211

 if (numCategories(&$err_message) > 0) // allow conferences with

only Tracks, but no Topics

 {

 echo '<tr><td>';

 echo "$topicStr(s):";

 echo '</td><td>';

 echo getSelectedCategoryCommaSeparated($paperInfo -> PaperID ,

&$err_message);

 echo '</td></tr>';

 }

?>

 <tr>

 <td colspan="2"> </td>

 </tr>

 <input type="hidden" name="status" value="<?php echo $status; ?>">

 <input type="hidden" name="type" value="<?php echo $type ->

PresentationTypeID; ?>">

 <tr>

 <td>Current Status:</td>

 <td><?php echo $paperInfo -> PaperStatusName; ?>

 <?php if ($paperInfo -> PaperStatusName == "Accepted") { ?>

 as <?php echo $curtype -> PresentationTypeName; ?>

 <?php } ?>

 </td>

 </tr>

 <?php

 if (array_key_exists("SessionTrackID", $_GET)) {

 echo '<tr><td>Current

SessionTrack:</td>';

 echo '<td>' . getSelectedSessionTrackText($paperInfo-

>PaperID) . '</td></tr>' . "\n";

 }

 ?>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td>Change to:</td>

 <td>

 <?php echo $status; ?>

 <?php if ($status == "Accepted") { ?>

 as <?php echo $type -> PresentationTypeName; ?></td>

 <?php } ?>

 </tr>

 <?php

 if (array_key_exists("SessionTrackID", $_GET)) {

 echo '<tr><td>SessionTrack:</td>';

 $info = get_SessionTrack_info($_GET["SessionTrackID"]);

 echo '<td>' . $info->SessionTrackName . '</td></tr>' .

"\n";

 echo '<input type="hidden" name="SessionTrackID" value="' .

$_GET["SessionTrackID"] . '">';

 }

 ?>

 <tr>

212

 <td colspan="2"> </td>

 </tr>

 <?php

 if($status == "Accepted")

 $result = check_Letter_Already_Sent($paperInfo ->

PaperID,"5");

 else if($status == "Rejected")

 $result = check_Letter_Already_Sent($paperInfo ->

PaperID,"6");

 if($result === true){

 echo "<tr>\n<td colspan=\"2\">\n";

 echo " The notification letter has

already been sent to inform the paper owner.

If you wish to

inform the paper owner again, check the box below.";

 echo "</td>\n\n</tr>";

 }

 ?>

 <tr>

 <td colspan="2"><input name="informuser" type="checkbox"

id="informuser" value="yes" <?php if ($_GET["back"] == "true") echo

"checked"; ?>>

 Inform the user now

 (Note: Tick this box if want to send one letter only. The

accept/reject form letter is used to send all pending letters as a batch on

the day of notification of acceptance.)</td>

 </tr>

 <tr>

 <td colspan="2"> </td>

 </tr>

 <tr>

 <td colspan="2"> </td>

 </tr>

 <tr>

 <td colspan="2"><input name="Submit" type="submit" id="Submit"

value="Submit">

 <input name="Submit" type="submit" value="Back">

 <input name="Submit" type="submit" id="Submit" value="Cancel">

</td>

 </tr>

 </table>

</form>

<?php

 do_html_footer();

?>

///

// UPLOAD PAPER

//<?php
 $php_root_path = ".." ;

 require_once("$php_root_path/includes/include_all_fns.inc");

 require_once("$php_root_path/includes/page_includes/page_fns.php");

213

 session_start();

 $err_message = " Unable to process your request due to the following

problems:
\n" ;

 $header = "Upload Paper" ;

 $accepted_privilegeID_arr = array (1 => "") ;

 $accepted_phaseID_arr = array (1 => "") ;

 authentication($header , $accepted_privilegeID_arr ,

$accepted_phaseID_arr , $homepage , $php_root_path , $GLOBALS["DB_PREFIX"]

, &$err_message) ;

 $error_array = array() ;

 // Define a few page vars

 $settingInfo = get_Conference_Settings();

 $trackStr = $settingInfo->TrackName; //Name for Track

 $topicStr = $settingInfo->TopicName; //Name for Topic

 $levelStr = $settingInfo->LevelName; //Name for Level

 if ($settingInfo->AbstractOnlySubmissions || $settingInfo->SESUG)

//Abstract submission only for SESUG

 {

 $exempt_array = array ("email" , "middlename" , "presenterbio"

, "keyword1" , "keyword2" , "keyword3" , "userfile", "numpages") ;

 $fullPaper = false;

 }

 else{

 $exempt_array = array ("email" , "middlename", "presenterbio",

"keyword1" , "keyword2" , "keyword3") ;

 $fullPaper = true;

 }

 if (count ($_POST) > 0)

 {

 if ($_POST["Submit"] == "Update Authors")

 {

 if (isIntegerMoreThanZero ($_POST["numauthors"] ,

&$error_array["numauthors"]) || !empty ($_POST["numauthors"]))

 {

 }

 else if (trim ($_POST["numauthors"]) == "")

 {

 $error_array["numauthors"][0] = " This entry cannot

be empty.
\n" ;

 }

 }

 else

 {

 if ($settingInfo->SESUG && !$_POST["level"])

 {

 $error_array["level"][0] = "You must choose at least one

$levelStr.
\n" ;

 }

 if (!$_POST["track"])

 {

214

 $error_array["track"][0] = "You must choose a

$trackStr.
\n" ;

 }

 if (!$_POST["category"])

 {

 if (numCategories(&$err_message) > 0) // allow

conferences with only Tracks, but no Topics

 $error_array["category"][0] = "You must

choose at least one $topicStr.
\n" ;

 }

 $vars = array_merge ($_POST , $_FILES) ;

 //display($vars) ;

 check_form($vars , $error_array , &$exempt_array) ;

 }

 }

 if (count ($error_array) == 0 && count ($_POST) > 0)

 {

 if ($_POST["Submit"] === "Submit")

 {

 //Everything is fine, then upload the file

 if ($fileID = upload_file($_POST["title"] ,

$_POST["abstract"] , $_POST["presenterbio"] , $_POST["numpages"] ,

$_FILES["userfile"]["tmp_name"] , $_FILES["userfile"]["name"] ,

$_FILES["userfile"]["size"] , $_FILES["userfile"]["type"] ,

 $_POST["firstname"] ,

$_POST["middlename"] , $_POST["lastname"] , $_POST["email"] ,

$_POST["attended"] ,$_POST["presented"] ,$_POST["keyword1"]

,$_POST["keyword2"] ,$_POST["keyword3"] ,$_POST["level"] , $_POST["track"]

, $_POST["category"] , &$err_message))

 {

 do_html_header("Successful Uploading..." ,

&$err_message);

 echo " The file is uploaded successfully to the

database.

 View your new paper at View Paper

Details page.
" ;

 do_html_footer(&$err_message);

 exit ;

 }

 else

 {

 do_html_header("Problem Uploading..." ,

&$err_message);

 $err_message .= "

 Go to the Upload Paper page. " ;

 }

 }

 else

 {

 do_html_header("Upload Paper" , &$err_message) ;

 }

 }

 else

 {

215

 if (count ($_POST) == 0)

 {

// echo "
\n POST = 0
\n" ;

 }

 do_html_header("Upload Paper" , &$err_message) ;

 }

 $maxfilesize = $settingInfo->MaxUploadSize ;

?>

<form enctype="multipart/form-data" name="frmupload" method="post"

action="upload_paper.php">

<!-- <form enctype="multipart/form-data" name="frmupload" method="post"

action="phpinfo.php"> -->

(* indicates mandatory field)

 <table width="100%" border="0" cellpadding="3" cellspacing="0">

 <tr>

 <td width="20%">Title *:</td>

 <td width="80%"> </td>

 </tr>

 <tr>

 <td colspan="2"><input name="title" type="text" value="<?php echo

stripslashes($_POST["title"]) ?>" id="title" size="75" maxlength="255">

 <?php echo $error_array["title"][0] ?>

</td>

 </tr>

 <tr>

 <td>Number of Pages <?php if ($fullPaper) echo " *";

?>:</td>

 <td> <input name="numpages" type="text" value="<?php echo

$_POST["numpages"] ?>" id="numpages" size="3" maxlength="3">

 <?php echo $error_array["numpages"][0]

?>

 </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td>Number of Authors *:</td>

 <?php // show at least one author field

 if (isset($_POST["numauthors"])){

 $numauthors = $_POST["numauthors"];

 }

 else{

 $numauthors = 1 ;

 }

 ?>

 <td><input name="numauthors" type="text" value="<?php echo

$numauthors ?>" id="numauthors" size="3" maxlength="2">

 <input type="submit" name="Submit" value="Update Authors"> <font

color="#FF0000"><?php echo $error_array["numauthors"][0] ?></td>

 </tr>

 <tr>

216

 <td colspan="2"> <?php

 $firstname = $_POST["firstname"] ;

 $middlename = $_POST["middlename"] ;

 $lastname = $_POST["lastname"] ;

 $email = $_POST["email"] ;

 $firstname_error_array = $error_array["firstname"] ;

 $middlename_error_array = $error_array["middlename"] ;

 $lastname_error_array = $error_array["lastname"] ;

 $email_error_array = $error_array["email"] ;

 echo GenerateAuthorInputTable($numauthors) ;

 ?> </td>

 </tr>

 <tr>

 <td colspan="2"> </td>

 </tr>

 <tr>

 <td colspan="2">File<?php if ($fullPaper) echo " *";

?>:

 <?php $maxMbytes=$maxfilesize/pow(2,20); echo " (maximum file size =

$maxMbytes Mb)" ; ?>

 </td>

 </tr>

 <tr>

 <td colspan="2"><input type="hidden" name="MAX_FILE_SIZE"

value="<?php echo $maxfilesize; ?>">

 <input name="userfile" type="file" size="50"> <font

color="#FF0000">

 <?php

 $err_mess = ($error_array["userfile"][0] ?

$error_array["userfile"][0] : $error_array["userfile"][4]) ;

 echo $err_mess ;

 ?>

 </td>

 </tr>

 <tr>

 <td colspan="2"> </td>

 </tr>

 <tr>

 <td colspan="2">Abstract *:<font

color="#FF0000"><?php echo $error_array["abstract"][0] ?></td>

 </tr>

 <tr>

 <td colspan="2"> <textarea name="abstract" cols="75" rows="10"

id="textarea4"><?php echo stripslashes($_POST["abstract"])

?></textarea></td>

 </tr>

 <tr>

 <td colspan="2">Author/Presenter Biography:<font

color="#FF0000"><?php echo $error_array["presenterbio"][0] ?></td>

 </tr>

 <tr>

 <td colspan="2"> <textarea name="presenterbio" cols="75" rows="10"

id="textarea5"><?php echo stripslashes($_POST["presenterbio"])

?></textarea></td>

 </tr>

217

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <?php if ($settingInfo->SESUG) { ?>

 <tr>

 <td><?php echo $attended ?> *:</td>

 <td> <input name="attended" type="text" value="<?php echo

$_POST["attended"] ?>" id="attended" size="3" maxlength="3">

 <?php echo $error_array["attended"][0]

?>

 </td>

 </tr>

 <tr>

 <td><?php echo $presented ?> *:</td>

 <td> <input name="presented" type="text" value="<?php echo

$_POST["presented"] ?>" id="presented" size="3" maxlength="3">

 <?php echo $error_array["presented"][0]

?>

 </td>

 </tr>

 <?php } ?>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2">

 <?php

 $db = adodb_connect(&$err_message);

 if (!$db)

 {

 $err_message .= "Could not connect to database server - please try

later.
\n ";

 $err_message .= "

 Try again?" ;

 exit ;

 }

 if ($settingInfo->SESUG) {

 echo "$levelStr (select all that apply) *:\n" ;

 echo "" . $error_array["level"][0] .

"" ;

 if ($result = GenerateSelectedCategoryInputTable (

$_POST["level"] , &$err_message, 0 , "Level"))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 echo "
" ;

 }

218

 echo "$trackStr *:\n " ;

 echo "" . $error_array["track"][0] .

"" ;

 if ($result = GenerateSelectedCategoryInputTable(

$_POST["track"] , &$err_message , 0 , "Track"))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?"

;

 }

 if (numCategories(&$err_message) > 0) // allow conferences with

only Tracks, but no Topics

 {

 echo "
" ;

 echo "$topicStr(s) *:\n" ;

 echo "" . $error_array["category"][0] .

"" ;

 if ($result = GenerateSelectedCategoryInputTable (

$_POST["category"] , &$err_message))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 }

?>

 </td>

 </tr>

 <?php if ($settingInfo->SESUG) { ?>

 <tr>

 <td><?php echo $keyword ?> :</td>

 <td> <input name="keyword1" type="text" value="<?php echo

$_POST["keyword1"] ?>" id="keyword1" size="20" maxlength="50">

 <?php echo $error_array["keyword1"][0]

?>

 </td>

 </tr>

 <tr>

 <td><?php echo $keyword ?> :</td>

 <td> <input name="keyword2" type="text" value="<?php echo

$_POST["keyword2"] ?>" id="keyword2" size="20" maxlength="50">

 <?php echo $error_array["keyword2"][0]

?>

 </td>

 </tr>

219

 <tr>

 <td><?php echo $keyword ?> :</td>

 <td> <input name="keyword3" type="text" value="<?php echo

$_POST["keyword3"] ?>" id="keyword3" size="20" maxlength="50">

 <?php echo $error_array["keyword3"][0]

?>

 </td>

 </tr>

 <?php } ?>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td><input type="submit" name="Submit" value="Submit">

</td>

 </tr>

 </table>

</form>

<?php

do_html_footer(&$err_message);

?>

///

// CONFERENCE PAYMENT FORM

<?php

$php_root_path = ".." ;

require_once("$php_root_path/includes/include_all_fns.inc");

session_start();

$err_message = " Unable to process your request due to the following

problems:
\n" ;

$header = "Registration Forms" ;

$accepted_privilegeID_arr = array (1 => "") ;

$accepted_phaseID_arr = array (1 => "" , 2 => "" , 3 => "" , 4 => "") ;

authentication($header , $accepted_privilegeID_arr , $accepted_phaseID_arr

, $homepage , $php_root_path , $GLOBALS["DB_PREFIX"] , &$err_message) ;

$memberInfo = getMemberInfo($_SESSION["valid_user"]);

if ($memberInfo == null) exit;

if (has_paid_registration($memberInfo->RegisterID))

{

 $paid = get_paid_registration($memberInfo->RegisterID);

 do_html_header("Paid Registration - #".$paid->FormID , &$err_message

);

?>

<div style="padding: 20">

 <?php echo get_registration_statement($paid->Form) ?>

</div>

<?php

220

} else {

 do_html_header($header , &$err_message);

 $forms = retrieve_selection_xml_for_registerid($memberInfo-

>RegisterID);

 if (count($forms) > 0)

 {

?>

 <p>

 Previously filled forms:

<?php

 foreach ($forms as $form)

 {

 ?>

 <a href="printable_statement.php?formid=<?php echo $form-

>FormID?>">

 <?php echo $form->FormID?>

 <?php

 }

?>

 </p>

<?php

 }

?>

 Fill out new form

<?php

}

do_html_footer(&$err_message);

?>

///

// EDIT PAPER

<?php

$php_root_path = ".." ;

require_once("$php_root_path/includes/include_all_fns.inc");

require_once("$php_root_path/includes/page_includes/page_fns.php");

session_start();

$err_message = " Unable to process your request due to the following

problems:
\n" ;

$header = "Edit Paper Details" ;

$accepted_privilegeID_arr = array (1 => "") ;

$accepted_phaseID_arr = array (1 => "" , 2 => "" , 3 => "" , 4 => "") ;

authentication($header , $accepted_privilegeID_arr , $accepted_phaseID_arr

, $homepage , $php_root_path , $GLOBALS["DB_PREFIX"] , &$err_message) ;

$error_array = array() ;

//Retrieve the setting information

$settingInfo = get_Conference_Settings();

$trackStr = $settingInfo->TrackName; //Name for Track

$topicStr = $settingInfo->TopicName; //Name for Topic

$levelStr = $settingInfo->LevelName; //Name for Level

221

if ($settingInfo->AbstractOnlySubmissions || $settingInfo->SESUG)

//Abstract submission only for SESUG

 {

 $exempt_array = array ("email" , "middlename" , "presenterbio"

, "keyword1" , "keyword2" , "keyword3" , "userfile", "numpages") ;

 $fullPaper = false;

 }

 else{

 $exempt_array = array ("email" , "middlename", "presenterbio",

"keyword1" , "keyword2" , "keyword3" , "userfile") ;

 $fullPaper = true;

 }

if (count ($_POST) > 0)

{

 if ($_POST["submit"] == "Update number of Authors")

 {

 if (isIntegerMoreThanZero ($_POST["numauthors"] ,

&$error_array["numauthors"]) || !empty ($_POST["numauthors"]))

 {

 }

 else

 {

 if (trim ($_POST["numauthors"]) == "")

 {

 $error_array["numauthors"][0] = " This entry cannot

be empty.
\n" ;

 }

 }

 }

 //Can only change category in Phase 1

 else if (($_SESSION["phase"]->phaseID == 1) && ($_POST["submit"] ==

"Update"))

 {

 if ($settingInfo -> SESUG) {

 if (!$_POST["level"])

 {

 $error_array["level"][0] = "You must choose at least one

$levelStr.
\n" ;

 }

 }

 if (!$_POST["track"])

 {

 $error_array["track"][0] = "You must choose a

$trackStr.
\n" ;

 }

 if (!$_POST["category"])

 {

 if (numCategories(&$err_message) > 0) // allow

conferences with only Tracks, but no Topics

 $error_array["category"][0] = "You must choose at

least one $topicStr.
\n" ;

 }

 $vars = array_merge ($_POST , $_FILES) ;

222

 check_form ($vars , $error_array , &$exempt_array) ;

 }

}

if (count ($error_array) == 0 && count ($_POST) > 0)

{

 if ($_POST["submit"] == "Update number of Authors")

 {

 do_html_header("Edit Paper Details" , &$err_message);

 }

 else if ($_POST["submit"] == "Update")

 {

 //Submit to update the paper

 if ($fileID = update_paper_details ($_GET["paperid"] ,

 $_POST["title"] , $_POST["abstract"] , $_POST["presenterbio"] ,

$_POST["numpages"] , $_FILES["userfile"]["tmp_name"] ,

$_FILES["userfile"]["name"] , $_FILES["userfile"]["size"] ,

$_FILES["userfile"]["type"] ,

 $_POST["firstname"] , $_POST["middlename"] ,

 $_POST["lastname"] , $_POST["email"] , $_POST["level"] ,

$_POST["track"] , $_POST["category"] , $_POST["attended"]

,$_POST["presented"] ,$_POST["keyword1"] ,$_POST["keyword2"]

,$_POST["keyword3"] , &$err_message))

 {

 do_html_header("Paper Updating Successful..." ,

&$err_message);

 echo " The paper information has been updated

View your updated paper at <a href='view_paper_details.php?fileid=" .

$fileID . "'>View Papers Details page." ;

 do_html_footer(&$err_message);

 exit ;

 }

 else

 {

 do_html_header("Paper Updating Failed..." , &$err_message

);

 $err_message .= "

 Try again?" ;

 }

 }

 else if($_POST["submit"] == "Withdraw")

 {

 //Withdraw the paper here

 if (withdraw_paper($_GET["paperid"] , &$err_message))

 {

 do_html_header("Withdrawing Paper Successful" ,

&$err_message);

 echo " The paper has been withdrawn

successfully.

\n" ;

 do_html_footer(&$err_message);

 exit ;

 }

 else

 {

223

 do_html_header("Withdrawing Paper Failed..." ,

&$err_message);

 $err_message .= "

 Reload this

page.";

 }

 }

 else if($_POST["submit"] == "Undo Changes")

 {

 //Refresh the same page

 $str = "Location: edit_paper_info.php?paperid=" .

$_GET["paperid"] ;

 header($str); /* Redirect browser */

 exit; /* Make sure that code below does not get executed when

we redirect. */

 }

}

else

{

 if (count ($_POST) == 0)

 {

 $_SESSION["phase"]->set_edit_paper_info($_GET["paperid"] ,

$_POST , &$err_message) ;

 }

 do_html_header("Edit Paper Details" , &$err_message);

}

$maxfilesize = $settingInfo->MaxUploadSize ;

?>

<form enctype="multipart/form-data" name="frmupload" method="post"

action="edit_paper_info.php?paperid=<?php echo $_GET["paperid"] ?> ">

<!-- <form enctype="multipart/form-data" name="frmupload" method="post"

action="phpinfo.php"> -->

 <table width="100%" border="0" cellspacing="0" cellpadding="3">

 <tr>

 <td width="20%">Title:</td>

 <td width="80%"> </td>

 </tr>

 <tr>

 <td colspan="2"><input name="title" type="text" value="<?php echo

stripslashes($_POST["title"]) ?>" id="title" size="75" maxlength="255">

 <?php echo $error_array["title"][0] ?>

</td>

 </tr>

 <tr>

 <td>Number of Pages:</td>

 <td><input name="numpages" type="text" id="numpages" size="5"

maxlength="4" value="<?php echo $_POST["numpages"] ; ?>">

 <?php echo "" . $error_array["numpages"][0]

. "" ; ?>

 </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

224

 <tr>

 <td> Number of Authors: </td>

 <td> <input name="numauthors" type="text" value="<?php echo

$_POST["numauthors"] ; ?>" id="numauthorsid" size="3" maxlength="2">

 <input type="submit" name="submit" value="Update number of

Authors"> <?php echo "" .

$error_array["numauthors"][0] . "" ; ?>

 </td>

 </tr>

 <tr>

 <td colspan="2"> <?php

 $firstname = $_POST["firstname"] ;

 $middlename = $_POST["middlename"] ;

 $lastname = $_POST["lastname"];

 $email = $_POST["email"];

 $firstname_error_array = $error_array["firstname"] ;

 $middlename_error_array = $error_array["middlename"] ;

 $lastname_error_array = $error_array["lastname"] ;

 $email_error_array = $error_array["email"] ;

 echo GenerateAuthorInputTable($_POST["numauthors"]) ;

?> </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2">File: (leave blank unless submitting

revision,

 <?php $maxMbytes=$maxfilesize/pow(2,20); echo " maximum file size =

$maxMbytes Mb)" ; ?>

 </td>

 </tr>

 <tr>

 <td colspan="2"><input type="hidden" name="MAX_FILE_SIZE"

value="<?php echo $maxfilesize; ?>">

 <input name="userfile" type="file" size="50"> <font

color="#FF0000">

 <?php

 $err_mess = ($error_array["userfile"][0] ?

$error_array["userfile"][0] : $error_array["userfile"][4]) ;

 $err_mess = ($error_array["userfile"][3] ?

$error_array["userfile"][3] : $error_array["userfile"][4]) ;

 echo $err_mess ;

 ?>

 </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2">Abstract:<?php

echo $error_array["abstract"][0] ?></td>

225

 </tr>

 <tr>

 <td colspan="2"> <textarea name="abstract" cols="75" rows="10"

id="textarea4"><?php echo $_POST["abstract"] ?></textarea></td>

 </tr>

 <tr>

 <td colspan="2">Author/Presenter Biography:<font

color="#FF0000"><?php echo $error_array["presenterbio"][0] ?></td>

 </tr>

 <tr>

 <td colspan="2"> <textarea name="presenterbio" cols="75" rows="10"

id="textarea5"><?php echo $_POST["presenterbio"] ?></textarea></td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <?php if ($settingInfo -> SESUG) { ?>

 <tr>

 <td><?php echo $attended ?> :</td>

 <td> <input name="attended" type="text" value="<?php echo

$_POST["attended"] ?>" id="attended" size="3" maxlength="3">

 <?php echo $error_array["attended"][0]

?>

 </td>

 </tr>

 <tr>

 <td><?php echo $presented ?> :</td>

 <td> <input name="presented" type="text" value="<?php echo

$_POST["presented"] ?>" id="presented" size="3" maxlength="3">

 <?php echo $error_array["presented"][0]

?>

 </td>

 </tr>

 <?php } ?>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2">

 <?php

 $db = adodb_connect(&$err_message);

 if (!$db)

 {

 $err_message .= " Could not connect to database server - please try

later.
\n ";

 $err_message .= "

 Try again?";

 }

 else if ($_SESSION["phase"]->phaseID == 1) //Level, Track and

Category radio boxes only enabled in phase 1

 {

226

 if ($settingInfo -> SESUG) {

 echo "$levelStr(s):
\n " ;

 echo "" .

$error_array["level"][0] . "" ;

 if ($result = GenerateSelectedCategoryInputTable(

$_POST["level"] , &$err_message , 0 , "Level"))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 echo "
" ;

 }

 echo "".$settingInfo -> TrackName.":
\n " ;

 echo "" . $error_array["track"][0] .

"" ;

 if ($result = GenerateSelectedCategoryInputTable(

$_POST["track"] , &$err_message , 0 , "Track"))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 echo "
" ;

 if (numCategories(&$err_message) > 0) // allow conferences

with only Tracks, but no Topics

 {

 echo "".$settingInfo ->

TopicName."(s):
\n " ;

 echo "" .

$error_array["category"][0] . "" ;

 if ($result = GenerateSelectedCategoryInputTable(

$_POST["category"] , &$err_message))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 }

 }

 else

 {

 if ($settingInfo -> SESUG) {

 echo "$levelstr:
\n " ;

227

 echo "" . $error_array["level"][0] .

"" ;

 if ($result = GenerateSelectedCategoryInputTable(

$_POST["level"] , &$err_message , 1 , "Level"))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 echo "
" ;

 }

 echo "".$settingInfo -> TrackName.":
\n " ;

 echo "" . $error_array["track"][0] .

"" ;

 if ($result = GenerateSelectedCategoryInputTable(

$_POST["track"] , &$err_message , 1 , "Track"))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 if (numCategories(&$err_message) > 0) // allow conferences

with only Tracks, but no Topics

 {

 echo "
" ;

 echo "".$settingInfo ->

TopicName."(s):
\n " ;

 echo "" .

$error_array["category"][0] . "" ;

 if ($result = GenerateSelectedCategoryInputTable(

$_POST["category"] , &$err_message , 1))

 {

 echo $result ;

 }

 else

 {

 $err_message .= "

 Try again?" ;

 }

 }

 }

?>

 </td>

 </tr>

 <?php if ($settingInfo -> SESUG) { ?>

 <tr>

 <td><?php echo $keyword ?> :</td>

228

 <td> <input name="keyword1" type="text" value="<?php echo

$_POST["keyword1"] ?>" id="keyword1" size="20" maxlength="50">

 <?php echo $error_array["keyword1"][0]

?>

 </td>

 </tr>

 <tr>

 <td><?php echo $keyword ?> :</td>

 <td> <input name="keyword2" type="text" value="<?php echo

$_POST["keyword2"] ?>" id="keyword2" size="20" maxlength="50">

 <?php echo $error_array["keyword2"][0]

?>

 </td>

 </tr>

 <tr>

 <td><?php echo $keyword ?> :</td>

 <td> <input name="keyword3" type="text" value="<?php echo

$_POST["keyword3"] ?>" id="keyword3" size="20" maxlength="50">

 <?php echo $error_array["keyword3"][0]

?>

 </td>

 </tr>

 <?php } ?>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2"> <input type="submit" name="submit" value="Update">

 <input name="submit" type="submit" id="undo" value="Undo Changes">

 <?php

 if ($_SESSION["phase"]->phaseID == 1)

 {

?>

 <input name="submit" type="submit" value="Withdraw">

 <?php

 }

?>

 </td>

 </tr>

 </table>

</form>

<?php

do_html_footer(&$err_message);

?>

///

229

// CHANGE PASSWORD

// <?php
 $php_root_path = ".." ;

 require_once("$php_root_path/includes/include_all_fns.inc");

 session_start();

// extract ($_SESSION , EXTR_REFS) ;

 $err_message = " Unable to process your request due to the following

problems:
\n" ;

 $header = "Change Password" ;

 $accepted_privilegeID_arr = array (1 => "") ;

 $accepted_phaseID_arr = array (1 => "" , 2 => "" , 3 => "" , 4 => ""

) ;

 authentication($header , $accepted_privilegeID_arr ,

$accepted_phaseID_arr , $homepage , $php_root_path , $GLOBALS["DB_PREFIX"]

, &$err_message) ;

/*

 if (!check_valid_user(&$err_message))

 {

 //This user is not logged in

 do_html_header("Change Password Failed" , &$err_message) ;

 $err_message .= " Sorry, You must login to change your

password.
\n";

 $err_message .= "

 Go to Login page." ;

 do_html_footer(&$err_message);

 exit;

 }

*/

 if ($_POST["submit"] == "Cancel")

 {

 header("Location: view_papers.php") ;

 exit ;

 }

 $error_array = array() ;

 $exempt_array = array() ;

 check_form ($_POST , $error_array , &$exempt_array) ;

 if (count ($error_array) == 0 && count ($_POST) > 0)

 {

 if (change_password ($_SESSION["valid_user"] , trim (

$_POST["oldpwd"]) , trim ($_POST["newpwd"]) , trim (

$_POST["confirmpwd"]) , &$err_message))

 {

 // provide link to members page

 do_html_header("Change Password Successful" ,

&$err_message);

 echo "The password has been changed.";

 do_html_footer(&$err_message);

 exit ;

 }

 else

 {

230

 // otherwise provide link back, tell them to try again

 do_html_header("Change password failed" , &$err_message

);

 $err_message .= "

 Try Again?
\n" ;

 }

 }

 else

 {

 if (count ($_POST) == 0)

 {

 do_html_header("Change Password" , &$err_message);

 }

 else

 {

 do_html_header("Change Password" , &$err_message);

 }

 }

?>

<form action="change_pwd.php" name="frmReset" method="post">

 <table width="80%" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td colspan="2">

 Note: You may leave this page without changing

your password by clicking

 on any other links in the menu above or by clicking the "Cancel"

button below.</p></td>

 </tr>

 <tr>

 <td width="24%"> </td>

 <td width="80%"> </td>

 </tr>

 <tr>

 <td>Old Password:</td>

 <td><input name="oldpwd" type="password" id="oldpwd" size="20"

maxlength="15">

 <?php echo "" . $error_array["oldpwd"][0] .

"" ; ?>

 </td>

 </tr>

 <tr>

 <td>New Password:</td>

 <td><input name="newpwd" type="password" id="newpwd" size="20"

maxlength="15">

 <?php echo "" . $error_array["newpwd"][0] .

"" ; ?>

 </td>

 </tr>

 <tr>

 <td>Confirm Password:</td>

 <td><input name="confirmpwd" type="password" id="confirmpwd"

size="20" maxlength="15">

 <?php echo "" .

$error_array["confirmpwd"][0] . "" ; ?>

 </td>

231

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td><input name="submit" type="submit" id="submit" value="Submit">

 <input name="submit" type="submit" id="cancel" value="Cancel"></td>

 </tr>

 </table>

</form>

<?php

 do_html_footer(&$err_message);

?>

//

// FORGET PASSWORD

<?php

 $php_root_path = ".." ;

 $privilege_root_path = "/user" ;

 require_once("$php_root_path/includes/include_all_fns.inc");

 //require_once("$php_root_path"."/admin/includes/libmail.php");

 $homepage->showmenu = 0 ;

 $err_message = " Unable to process your request due to the following

problems:
\n" ;

 $error_array = array() ;

 check_form ($_POST , $error_array) ;

 if (count ($error_array) == 0 && count ($_POST) > 0)

 {

 if (forget_password($_POST["username"] , &$err_message))

 {

 do_html_header("Reseting Password Successful" ,

&$err_message);

 echo "Your password has been reset and you will receive a

new password to your email address shortly.

Go to the Login page" ;

 do_html_footer(&$err_message);

 exit ;

 }

 else

 {

 do_html_header("Reseting Password Failed" , &$err_message

);

232

 $err_message .= "

 Try Again?
Go to the Login page.
\n" ;

 }

 }

 else

 {

 do_html_header("Reset Password" , &$err_message);

 }

?>

<form action="forget_pwd.php" method="post" name="loginForm"

id="loginForm">

 <table width="80%" border="0" cellpadding="0" cellspacing="0">

 <tr>

 <td height="24" colspan="2">Not registered. Sign up for an account.</td>

 </tr>

 <tr>

 <td height="10" colspan="2">Hint: Use your email address as

UserName.</td>

 </tr>

 <tr>

 <td width="20%" height="24"> </td>

 <td width="80%" height="24"> </td>

 </tr>

 <tr>

 <td>UserName</td>

 <td><input name="username" type="text" id="username" size="25"

value="<?php echo $_POST["username"] ; ?>" maxlength="50">

 <?php echo "" . $error_array["username"][0]

. "" ; ?></td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td><input type="submit" name="Submit" value="Submit"></td>

 </tr>

 </table>

</form>

<?php

do_html_footer(&$err_message);

?>

///

// DOWNLOAD FILE

<?php

 //Establish connection with database

// require_once("includes/db_connect.inc");

// require_once("includes/user_authen_fns.inc");

 $php_root_path = ".." ;

233

 require_once("$php_root_path/includes/include_all_fns.inc");

 session_start();

// extract ($_SESSION , EXTR_REFS) ;

// $fileid =& $_GET["fileid"] ;

 $err_message = " Unable to process your request due to the following

problems:
\n" ;

 $header = "Download File" ;

 $accepted_privilegeID_arr = array (1 => "") ;

 $accepted_phaseID_arr = array (1 => "" , 2 => "" , 3 => "" , 4 => ""

) ;

 authentication($header , $accepted_privilegeID_arr ,

$accepted_phaseID_arr , $homepage , $php_root_path , $GLOBALS["DB_PREFIX"]

, &$err_message) ;

 //Establish connection with database

 $db = adodb_connect(&$err_message);

 $sql = "SELECT File,FileName,FileSize,FileType FROM " .

$GLOBALS["DB_PREFIX"] . "File F , " . $GLOBALS["DB_PREFIX"] . "Paper P" ;

 $sql .= " WHERE F.FileID=" . $_GET["fileid"] . " AND

F.PaperID=P.PaperID AND P.MemberName='" . $_SESSION["valid_user"] . "' AND

Withdraw='false'" ;

// echo "\$sql: " . $sql . "
\n";

 $result = $db -> Execute($sql);

 $rows = $result -> RecordCount() ;

 if (!$result)

 {

 do_html_header("Download Paper Failed" , &$err_message) ;

 $err_message .= " Could not connect to File database.
\n";

 $err_message .= "

 Try again?" ;

 do_html_footer(&$err_message);

 exit;

 }

 else if (!$rows)

 {

 do_html_header("Download Paper Failed" , &$err_message) ;

 $err_message .= " The requested file is not available.
\n";

 $err_message .= "

 Try again?" ;

 do_html_footer(&$err_message);

 exit;

 }

 $row = $result -> FetchNextObj();

 $data = $row -> File;

 $name = $row -> FileName;

 $size = $row -> FileSize;

 $type = $row -> FileType;

234

 header("Cache-control: private");

 header("Content-type: $type");

 header("Content-length: $size");

 header("Content-Disposition: attachment; filename=$name");

 header("Content-Description: PHP Generated Data");

 echo $data;

?>

//

//VIEW FILE

<?php

 //Establish connection with database

// require_once("includes/db_connect.inc");

 $php_root_path = ".." ;

 require_once("$php_root_path/includes/include_all_fns.inc");

 session_start();

// extract ($_SESSION , EXTR_REFS) ;

// $fileid =& $_GET["fileid"] ;

 $err_message = " Unable to process your request due to the following

problems:
\n" ;

 $header = "View File" ;

 $accepted_privilegeID_arr = array (1 => "") ;

 $accepted_phaseID_arr = array (1 => "" , 2 => "" , 3 => "" , 4 => ""

) ;

 authentication($header , $accepted_privilegeID_arr ,

$accepted_phaseID_arr , $homepage , $php_root_path , $GLOBALS["DB_PREFIX"]

, &$err_message) ;

 //Establish connection with database

 $db = adodb_connect(&$err_message);

 $sql = "SELECT File,FileName,FileSize,FileType FROM " .

$GLOBALS["DB_PREFIX"] . "File F , " . $GLOBALS["DB_PREFIX"] . "Paper P" ;

 $sql .= " WHERE F.FileID=" . $_GET["fileid"] . " AND

F.PaperID=P.PaperID AND P.MemberName='" . $_SESSION["valid_user"] . "' AND

Withdraw='false'" ;

 $result = $db -> Execute($sql);

 $rows = $result -> RecordCount() ;

 if (!$result)

 {

 do_html_header("View File Failed" , &$err_message) ;

 $err_message .= " Could not connect to File database.
\n";

 $err_message .= "

 Try <a href='view_file.php?fileid=" .

$_GET["fileid"] . "'>again?" ;

 do_html_footer(&$err_message);

 exit;

 }

 else if (!$rows)

 {

 do_html_header("View File Failed" , &$err_message) ;

235

 $err_message .= " The requested file is not available.
\n";

 $err_message .= "

 Try <a href='view_file.php?fileid=" .

$_GET["fileid"] . "'>again?" ;

 do_html_footer(&$err_message);

 exit;

 }

 $row = $result -> FetchNextObj();

 $data = $row -> File;

 $name = $row -> FileName;

 $size = $row -> FileSize;

 $type = $row -> FileType;

 // Check for Internet Explorer to avoid inline PDF viewing bug

 $browser = getBrowser() ;

 if ($browser == "IEWin")

 {

 $method = "attachment" ;

 }

 else

 {

 $method = "inline" ;

 }

 header("Cache-control: private");

 header("Content-type: $type");

 header("Content-length: $size");

 header("Content-Disposition: $method; filename=$name");

 header("Content-Description: PHP Generated Data");

 echo $data;

?>

//

//

<?php

require_once('PEAR.php');

require_once('Config/Container.php');

$GLOBALS['CONFIG_TYPES'] =

 array(

 'apache' => array('Config/Container/Apache.php',

'Config_Container_Apache'),

 'genericconf' => array('Config/Container/GenericConf.php',

'Config_Container_GenericConf'),

 'inifile' => array('Config/Container/IniFile.php',

'Config_Container_IniFile'),

 'inicommented' => array('Config/Container/IniCommented.php',

'Config_Container_IniCommented'),

 'phparray' => array('Config/Container/PHPArray.php',

'Config_Container_PHPArray'),

236

 'phpconstants' =>

array('Config/Container/PHPConstants.php',

'Config_Container_PHPConstants'),

 'xml' => array('Config/Container/XML.php',

'Config_Container_XML')

);

/**

* Config

*

* This class allows for parsing and editing of configuration datasources.

* Do not use this class only to read datasources because of the overhead

* it creates to keep track of the configuration structure.

*

* @author Bertrand Mansion <bmansion@mamasam.com>

* @package Config

*/

class Config {

 /**

 * Datasource

 * Can be a file url, a dsn, an object...

 * @var mixed

 */

 var $datasrc;

 /**

 * Type of datasource for config

 * Ex: IniCommented, Apache...

 * @var string

 */

 var $configType = '';

 /**

 * Options for parser

 * @var string

 */

 var $parserOptions = array();

 /**

 * Container object

 * @var object

 */

 var $container;

 /**

 * Constructor

 * Creates a root container

 *

 * @access public

 */

 function Config()

 {

 $this->container =& new Config_Container('section', 'root');

 } // end constructor

 /**

237

 * Returns true if container is registered

 *

 * @param string $configType Type of config

 * @access public

 * @return bool

 */

 function isConfigTypeRegistered($configType)

 {

 return isset($GLOBALS['CONFIG_TYPES'][strtolower($configType)]);

 } // end func isConfigTypeRegistered

 /**

 * Register a new container

 *

 * @param string $configType Type of config

 * @param array|false $configInfo Array of format:

 * array('path/to/Name.php',

 * 'Config_Container_Class_Name').

 *

 * If left false, defaults to:

 * array('Config/Container/$configType.php',

 * 'Config_Container_$configType')

 * @access public

 * @static

 * @author Greg Beaver <cellog@users.sourceforge.net>

 * @return true|PEAR_Error true on success

 */

 function registerConfigType($configType, $configInfo = false)

 {

 if (Config::isConfigTypeRegistered($configType)) {

 $info = $GLOBALS['CONFIG_TYPES'][strtolower($configType)];

 if ($info[0] == $configInfo[0] &&

 $info[1] == $configInfo[1]) {

 return true;

 } else {

 return PEAR::raiseError("Config::registerConfigType

registration of existing $configType failed.", null, PEAR_ERROR_RETURN);

 }

 }

 if (!is_array($configInfo)) {

 // make the normal assumption, that this is a standard config

container added in at runtime

 $configInfo = array('Config/Container/' . $configType . '.php',

 'Config_Container_'. $configType);

 }

 $file_exists = @include_once($configInfo[0]);

 if ($file_exists) {

 if (!class_exists($configInfo[1])) {

 return PEAR::raiseError("Config::registerConfigType class

'$configInfo[1]' not found in $configInfo[0]", null, PEAR_ERROR_RETURN);

 }

 } else {

 return PEAR::raiseError("Config::registerConfigType file

$configInfo[0] not found", null, PEAR_ERROR_RETURN);

 }

 $GLOBALS['CONFIG_TYPES'][strtolower($configType)] = $configInfo;

 return true;

238

 } // end func registerConfigType

 /**

 * Returns the root container for this config object

 *

 * @access public

 * @return object reference to config's root container object

 */

 function &getRoot()

 {

 return $this->container;

 } // end func getRoot

 /**

 * Sets the content of the root Config_container object.

 *

 * This method will replace the current child of the root

 * Config_Container object by the given object.

 *

 * @param object $rootContainer container to be used as the first

child to root

 * @access public

 * @return mixed true on success or PEAR_Error

 */

 function setRoot(&$rootContainer)

 {

 if (is_object($rootContainer) &&

strtolower(get_class($rootContainer)) === 'config_container') {

 if ($rootContainer->getName() === 'root' && $rootContainer-

>getType() === 'section') {

 $this->container =& $rootContainer;

 } else {

 $this->container =& new Config_Container('section',

'root');

 $this->container->addItem($rootContainer);

 }

 return true;

 } else {

 return PEAR::raiseError("Config::setRoot only accepts object of

Config_Container type.", null, PEAR_ERROR_RETURN);

 }

 } // end func setRoot

 /**

 * Parses the datasource contents

 *

 * This method will parse the datasource given and fill the root

 * Config_Container object with other Config_Container objects.

 *

 * @param mixed $datasrc Datasource to parse

 * @param string $configType Type of configuration

 * @param array $options Options for the parser

 * @access public

 * @return mixed PEAR_Error on error or Config_Container object

 */

 function &parseConfig($datasrc, $configType, $options = array())

 {

239

 $configType = strtolower($configType);

 if (!$this->isConfigTypeRegistered($configType)) {

 return PEAR::raiseError("Configuration type '$configType' is

not registered in Config::parseConfig.", null, PEAR_ERROR_RETURN);

 }

 $includeFile = $GLOBALS['CONFIG_TYPES'][$configType][0];

 $className = $GLOBALS['CONFIG_TYPES'][$configType][1];

 include_once($includeFile);

 $parser = new $className($options);

 $error = $parser->parseDatasrc($datasrc, $this);

 if ($error !== true) {

 return $error;

 }

 $this->parserOptions = $parser->options;

 $this->datasrc = $datasrc;

 $this->configType = $configType;

 return $this->container;

 } // end func &parseConfig

 /**

 * Writes the container contents to the datasource.

 *

 * @param mixed $datasrc Datasource to write to

 * @param string $configType Type of configuration

 * @param array $options Options for config container

 * @access public

 * @return mixed PEAR_Error on error or true if ok

 */

 function writeConfig($datasrc = null, $configType = null, $options =

array())

 {

 if (empty($datasrc)) {

 $datasrc = $this->datasrc;

 }

 if (empty($configType)) {

 $configType = $this->configType;

 }

 if (empty($options)) {

 $options = $this->parserOptions;

 }

 return $this->container->writeDatasrc($datasrc, $configType,

$options);

 } // end func writeConfig

} // end class Config

?>

//

// MAIL CHECKING USERS

<?php

require_once 'PEAR.php';

/**

 * PEAR's Mail:: interface. Defines the interface for implementing

 * mailers under the PEAR hierarchy, and provides supporting functions

 * useful in multiple mailer backends.

 *

 * @access public

240

 * @version $Revision: 1.17 $

 * @package Mail

 */

class Mail

{

 /**

 * Line terminator used for separating header lines.

 * @var string

 */

 var $sep = "\r\n";

 /**

 * Provides an interface for generating Mail:: objects of various

 * types

 *

 * @param string $driver The kind of Mail:: object to instantiate.

 * @param array $params The parameters to pass to the Mail:: object.

 * @return object Mail a instance of the driver class or if fails a

PEAR Error

 * @access public

 */

 function &factory($driver, $params = array())

 {

 $driver = strtolower($driver);

 @include_once 'Mail/' . $driver . '.php';

 $class = 'Mail_' . $driver;

 if (class_exists($class)) {

 $mailer = new $class($params);

 return $mailer;

 } else {

 return PEAR::raiseError('Unable to find class for driver ' .

$driver);

 }

 }

 /**

 * Implements Mail::send() function using php's built-in mail()

 * command.

 *

 * @param mixed $recipients Either a comma-seperated list of recipients

 * (RFC822 compliant), or an array of recipients,

 * each RFC822 valid. This may contain recipients not

 * specified in the headers, for Bcc:, resending

 * messages, etc.

 *

 * @param array $headers The array of headers to send with the mail, in

an

 * associative array, where the array key is the

 * header name (ie, 'Subject'), and the array value

 * is the header value (ie, 'test'). The header

 * produced from those values would be 'Subject:

 * test'.

 *

 * @param string $body The full text of the message body, including any

 * Mime parts, etc.

 *

 * @return mixed Returns true on success, or a PEAR_Error

241

 * containing a descriptive error message on

 * failure.

 * @access public

 * @deprecated use Mail_mail::send instead

 */

 function send($recipients, $headers, $body)

 {

 $this->_sanitizeHeaders($headers);

 // if we're passed an array of recipients, implode it.

 if (is_array($recipients)) {

 $recipients = implode(', ', $recipients);

 }

 // get the Subject out of the headers array so that we can

 // pass it as a seperate argument to mail().

 $subject = '';

 if (isset($headers['Subject'])) {

 $subject = $headers['Subject'];

 unset($headers['Subject']);

 }

 // flatten the headers out.

 list(,$text_headers) = Mail::prepareHeaders($headers);

 return mail($recipients, $subject, $body, $text_headers);

 }

 /**

 * Sanitize an array of mail headers by removing any additional header

 * strings present in a legitimate header's value. The goal of this

 * filter is to prevent mail injection attacks.

 *

 * @param array $headers The associative array of headers to sanitize.

 *

 * @access private

 */

 function _sanitizeHeaders(&$headers)

 {

 foreach ($headers as $key => $value) {

 $headers[$key] =

preg_replace('=((<CR>|<LF>|0x0A/%0A|0x0D/%0D|\\n|\\r)\S).*=i',

 null, $value);

 }

 }

 /**

 * Take an array of mail headers and return a string containing

 * text usable in sending a message.

 *

 * @param array $headers The array of headers to prepare, in an

associative

 * array, where the array key is the header name (ie,

 * 'Subject'), and the array value is the header

 * value (ie, 'test'). The header produced from those

242

 * values would be 'Subject: test'.

 *

 * @return mixed Returns false if it encounters a bad address,

 * otherwise returns an array containing two

 * elements: Any From: address found in the headers,

 * and the plain text version of the headers.

 * @access private

 */

 function prepareHeaders($headers)

 {

 $lines = array();

 $from = null;

 foreach ($headers as $key => $value) {

 if (strcasecmp($key, 'From') === 0) {

 include_once 'Mail/RFC822.php';

 $parser = &new Mail_RFC822();

 $addresses = $parser->parseAddressList($value, 'localhost',

false);

 if (PEAR::isError($addresses)) {

 return $addresses;

 }

 $from = $addresses[0]->mailbox . '@' . $addresses[0]->host;

 // Reject envelope From: addresses with spaces.

 if (strstr($from, ' ')) {

 return false;

 }

 $lines[] = $key . ': ' . $value;

 } elseif (strcasecmp($key, 'Received') === 0) {

 $received = array();

 if (is_array($value)) {

 foreach ($value as $line) {

 $received[] = $key . ': ' . $line;

 }

 }

 else {

 $received[] = $key . ': ' . $value;

 }

 // Put Received: headers at the top. Spam detectors often

 // flag messages with Received: headers after the Subject:

 // as spam.

 $lines = array_merge($received, $lines);

 } else {

 // If $value is an array (i.e., a list of addresses),

convert

 // it to a comma-delimited string of its elements

(addresses).

 if (is_array($value)) {

 $value = implode(', ', $value);

 }

 $lines[] = $key . ': ' . $value;

 }

 }

243

 return array($from, join($this->sep, $lines));

 }

 /**

 * Take a set of recipients and parse them, returning an array of

 * bare addresses (forward paths) that can be passed to sendmail

 * or an smtp server with the rcpt to: command.

 *

 * @param mixed Either a comma-seperated list of recipients

 * (RFC822 compliant), or an array of recipients,

 * each RFC822 valid.

 *

 * @return mixed An array of forward paths (bare addresses) or a

PEAR_Error

 * object if the address list could not be parsed.

 * @access private

 */

 function parseRecipients($recipients)

 {

 include_once 'Mail/RFC822.php';

 // if we're passed an array, assume addresses are valid and

 // implode them before parsing.

 if (is_array($recipients)) {

 $recipients = implode(', ', $recipients);

 }

 // Parse recipients, leaving out all personal info. This is

 // for smtp recipients, etc. All relevant personal information

 // should already be in the headers.

 $addresses = Mail_RFC822::parseAddressList($recipients,

'localhost', false);

 // If parseAddressList() returned a PEAR_Error object, just return

it.

 if (PEAR::isError($addresses)) {

 return $addresses;

 }

 $recipients = array();

 if (is_array($addresses)) {

 foreach ($addresses as $ob) {

 $recipients[] = $ob->mailbox . '@' . $ob->host;

 }

 }

 return $recipients;

 }

}

//

244

APPENDIX B: OUTPUT SCREEN

245

246

247

248

249

250

251

252

253

