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ABSTRACT 

M-estimators are robust estimators that give less weight to the observations that are outliers 

while Redescending M-estimators are those estimators that are built such that extreme 

outliers are completely rejected. Several researchers proposed different methods of M-

estimator and Redescending M-estimators for detection and deletion of outliers as discussed 

in the literature. However, there is still need to have a Redescending M-estimator that will 

be more efficient and robust when outliers are in both two-dimensional space compared with 

the existing ones. In view of this, a Redescending M-estimator is proposed while its 

objective, influence and weight functions are established.The proposed method is applied to 

different examples (real-life data) to verify its effectiveness in detecting and deleting 

outliers. The Monte Carlo simulation method is used to investigate the performance of the 

newly proposed method.  The results from the simulation study and the real life data indicate 

that the proposed method is very good for detecting and deleting outliers. Furthermore, the 

proposed method is particularly more efficient and robust when outliers are in both 𝑥- and 

𝑦-directions compared to the existing ones.  
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CHAPTER ONE 

INTRODUCTION 

1.1    Background of the Study 

When a regression model is fitted to a dataset containing some observations which are 

outlying; that is, observations which are well separated from the remainder of the data, the 

outlying observations may involve large residuals and often have effects on the fitted least 

squares regression function. Outliers are extreme observations that do not fall in the same 

pattern with the majority of data involved in a regression analysis problem. Hawkins (1980) 

defined outlier as observation which deviates so much from the other observations as to the 

suspicion that it was generated by a different mechanism. Furthermore, Barnett and Lewis 

(1994) defined outlier as an observation (or a set of observations) which appears to be 

inconsistent with the remainder of the set of data. The lower and upper data points in a dataset 

are known as extreme observations. The declaration of one or more extreme observations to be 

outliers depends on how they appear in relation to the rest of the data point; but on the other 

hand, an outlier should always be an extreme observation in a dataset which may be as a result 

of data entry errors, experimental errors, sampling errors, measurement errors, etc.  

However, the presence of even a single outlying observation may greatly affect the 

performance of ordinary least squares estimation. These outliers violate the assumption of 

normally distributed residual in least squares regression. Such outlying observations need 

careful attention and should be detected while extreme outliers may be eliminated.  

In the context of outlier detection, many researchers developed various methods. Aggarwal and 

Yu (2001) discovered a new technique for detecting outliers associated to very high 

dimensional datasets in which the data can contain hundreds of dimensions.Nguyena and 

Welch (2010) studied outlier detection and proposed a new trimmed square approximation for 

identifying extreme outliers. Hadi and Simonoff (1993) introduced two test procedures for the 
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detection of multiple outliers in a linear model.They illustrated and compared those procedures 

to various existing methods, using several datasets containing multiple outliers. They also 

investigated the performances of both procedures by a Monte Carlo study.The results from both 

the MonteCarlo study and the datasets indicated that both procedures are effective in the 

detection of multiple outliers in a linear model.Zhang et al. (2015) proposed an enhanced 

Monte Carlo outlier detection method by establishing cross-prediction models based on normal 

samples and analyzing the distribution of prediction errors for dubious samples. Three real 

datasets and a simulation study were used to illustrate the performances of its method. The 

results indicated that the enhanced Monte Carlo outlier detection method out performed the 

Monte Carlo outlier detection method in outlier diagnosis. Other authors who studied detection 

of outliers include: Tukey (1977), Atkinson (1994), Becker and Gather (1999) and Carling 

(2000). 

1.2 Regression Analysis  

Regression analysis technique is used to measure the relationship between two or more 

variables. The technique measures an appropriate value of the dependent variable in response 

to a change in the independent variable(s) of a function. Let 𝑦denote the response that is 

linearly related to 𝑘 independent variables, 𝑥1,𝑥2, … , 𝑥𝑘, the parameters,𝛽0 (slope),𝛽1, … , 𝛽𝑘, 

and𝜀 is the random error, then, the multiple linear regression model is 

𝑦 = 𝛽0 + 𝛽1𝑋1  + 𝛽2 𝑋2 +⋯+ 𝛽𝑘𝑋𝑘 +  𝜀(1.1) 
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Illustrating equation (1.1) inTable 1.1 as shown below: 

Assuming an experiment is conducted 𝑛 times and the data is obtained as follows. 

    Observation  

        number  

    Response 

𝒀 

Explanatory variables     

        𝑿𝟏,    𝑿𝟐, … ,  𝑿𝑲 

   

            1 𝑦1   𝑋11, 𝑋12, … , 𝑋1𝐾 

            2 𝑦2   𝑋21, 𝑋22, … , 𝑋2𝐾 

             .  . .      .         . 

             .  . .      .         . 

             .                                                          . .      .         . 

𝑛 𝑦𝑛    𝑋𝑛1, 𝑋𝑛2, … , 𝑋𝑛𝐾 

 

Table 1.1: Array of Data Consisting of 𝒏 Observations of a Response Variable on 𝒌 

Explanatory Variables  

The standard multiple regression model in matrix notation is given as  

𝑌 =  𝑋+  𝜀                                                                                                                                      (1.2) 

𝑌 =  

(

 
 

𝑦1
𝑦2
..
.
𝑦𝑛)

 
 
,   𝑋 =  

[
 
 
 
 
 
1 𝑋11… 𝑋1𝑘
1 𝑋21…𝑋2𝐾
  .     .      .      .  
.     .      .      .
 .     .     .      .
 1   𝑋𝑛1… 𝑋𝑛𝑘]

 
 
 
 
 

, 𝛽 =  

(

 
 

𝛽0
𝛽1..
.
𝛽𝑘)

 
 
,       =

(

 
 

1
2
..
.
𝑛)

 
 

 

where 𝑌 = (𝑦1, 𝑦2 , … , 𝑦𝑛)
is 𝑛 1 vector of 𝑛 observations, 𝑋 is𝑛𝑘 matrix of𝑛 observations 

on each of the 𝑘 explanatory variables, 𝛽 = (𝛽0,𝛽1 , … , 𝛽𝑘)

 is a 𝑘  1 vector of regression 

coefficients and  = (1, 2, … , 𝑛)
is a 𝑛 1 vector of random error components. 

The following assumptions are made: 
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(i) 𝐸 () =  0; 

(ii) 𝐸 () =  21𝑛; 

(iii) 𝑅𝑎𝑛𝑘  (𝑋) =  𝑘; 

(iv) 𝑋 is a non–stochastic matrix; 

(v) 𝑁(0,21𝑛). 

These assumptions are made in studying the statistical properties of the estimates of 

regression coefficients. 

According to Sokal and Rohlf (2012), Ordinary Least Squares (OLS) regression fit a line to 

bivariate data such that the (squared) vertical distance from each data point to the line is 

minimized across all data points.  

OLS estimates are obtained by minimizing the sum of squared error (SSE) given as 

𝑆𝑆𝐸 =∑ 𝑖
2 =  = (𝑌 − 𝑋𝛽)(𝑌 − 𝑋𝛽)𝑛

𝑖=1 (1.3) 

Expanding (1.3), we obtain: 

𝑆𝑆𝐸 =  𝑌𝑌 + 𝛽𝑋𝑋 − 2𝛽𝑋𝑌                                                                                                    (1.4) 

Obtaining the derivative of 𝑆𝑆𝐸 with respect to 𝛽 and equating to 0 gives 

𝑑𝑆𝑆𝐸

𝑑𝛽
= 2𝑋𝑋𝛽 − 2𝑋 = 0                                                                                                            (1.5) 

This yields normal equation  

𝑋𝑋̂ = 𝑋𝑌                                                                                                                                        (1.6) 

If the rank of 𝑋𝑋is𝑘,  then𝑋𝑋is non–singular and the normal equation has a unique solution 

given as 
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̂ = (𝑋𝑋)−1𝑋𝑌                                                                                                                                (1.7) 

which is termed as Ordinary Least Squares estimator of 𝛽.OLS technique is unbiased linear 

estimation technique of any set of data that is linearly related. It also has the smallest 

variance among all other unbiased estimators (BLUE). 

The error estimation of ̂ is 

̂−  = (𝑋𝑋)−1𝑋𝑌 −  

= (𝑋𝑋)−1𝑋(𝑋+ ) −  

                                        = (𝑋𝑋)−1𝑋𝑋 + (𝑋𝑋)−1𝑋−  

                                                =  − (𝑋𝑋)−1𝑋−  

= (𝑋𝑋)−1𝑋(1.8) 

Since 𝑋 is assumed as non-stochastic and 𝐸()  = 0 

                                  𝐸(̂− )  =  (𝑋𝑋)−1𝑋𝐸() =  0(1.9) 

Thus, the OLS estimator is the unbiased estimator of . 

The Covariance matrix of ̂ is 𝐸(̂− )(̂− )

 

 =E[(𝑋𝑋)−1𝑋(𝑋𝑋)−1𝑋] 

                                        = (𝑋𝑋)−1𝑋𝐸()(𝑋𝑋)−1𝑋 

=2(𝑋𝑋)−1𝑋1𝑋(𝑋𝑋)−1 

 =2(𝑋𝑋)−1(1.10) 
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When the error term is not constant for all observations, weighted least squares procedure is 

used.  

The weighted least squares normal equations can be expressed as: 

𝑋𝑊𝑋̂ = 𝑋𝑊𝑌                                                                                                                           (1.11) 

and the weighted least squares estimators are 

̂ =

(𝑋𝑊𝑋)−1𝑋𝑊𝑌                                                                                                                     (1.12)If 

𝑊 = 1, then (1.12) reduces to the unweighted estimators (1.7). Draper and Smith (1998) 

stated that robust regression aims at assigning different weights to data, such that, outlying 

data is given smaller weights. Thus, observations whose error terms are subject to large 

variation receive less weight while those that are subject to small variation receive more 

weights.  

Robust regression is an important tool for analyzing data contaminated with outliers. It has 

been developed for the purpose of improving the results of the least squares estimates in the 

presence of outliers. Some methods of robust regression discussed in the literature include 

those of: Huber (1964) who discovered M-estimators which are the generalization of the 

Maximum Likelihood Estimators (MLE). Rousseeuw (1982) who discovered the Least 

Median of Squares estimators (LMS) and Rousseeuw (1983) also proposed the Least 

Trimmed Squares (LTS) estimators. Some Redescending M-estimators for detection and 

deletion of outliers are also given in: Andrew et al. (1972), Beaton and Tukey (1974), 

Hampel et al. (1986) and Alamgir et al. (2013). 

1.3  M-estimators 
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M-estimators are robust estimators introduced by Huber (1964) and can be regarded as a 

generalization of Maximum Likelihood Estimation; hence, the “M”. The Maximum 

Likelihood Estimator (MLE) is a method of estimating the parameters of a model by 

maximizing the model’s likelihood function.  

We consider the linear model in equation (1.1) 

The fitted model is   

𝑦̂𝑖 = 
0
+ 

𝑖  
𝑥𝑖1 +  2 𝑥𝑖2 + … .+𝑝𝑥𝑖𝑝 = 𝑋𝑖

̂(1.13)   

and,  

𝑦̂𝑖 = yi − 𝑟𝑖(1.14) 

where 𝑦̂𝑖is the vector of predicted or estimated value of 𝑦 and 𝑝 is the number of 

explanatory variables and 𝑟𝑖 are the residuals. 

This implies that residuals,𝑟𝑖 is given as 

𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖 

= yi − Xi
 ̂(1.15) 

To obtain the parameter  in MLE, we minimize the negative log function given as 

̂
𝑀𝐿𝐸

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ [− log 𝑓𝑛
𝑖=1 (𝑦𝑖 ; )]                                  (1.16) 

while Ordinary Least Squares (OLS) minimizes the residual sum of squares, that is, 

̂
𝑂𝐿𝑆

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑟𝑖
2𝑛

𝑖=1 (1.17)  

Replacing the squared error term in equation (1.17) by 𝜌(r), M-estimator is given as 

̂
𝑀−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜌(r)𝑛
𝑖=1 (1.18)  

where 𝜌(𝑟) is the objective function of an M-estimator 

Standardizing the residuals, ri, equation (1.18) can also be written as 
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̂
𝑀−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜌 (
ri

̂
)𝑛

𝑖=1 (1.19) 

where ̂ is the scale parameter given as 

̂ = 
𝑀𝐴𝐷

𝑘
(1.20) 

𝑘 is a constant given as 0.674 and MAD is the Median Absolute Deviation also given as 

MAD= 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑖 −   𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑖)|)(1.21) 

Since standard deviation is not resistantto outliers (not unduly influenced by a few number 

of outliers), the Median Absolute Deviation (MAD) is used as a measure of spread in robust 

regression. 

Objective Function,𝝆(𝒓) 

The objective function of an M-estimator,𝜌(𝑟), defines the probability distribution of 

the M-estimator. 

The properties of the objective function include; 

(1) 𝜌(0) = 0. 

(2) 𝜌(𝑟𝑖) ≥  0. 

(3) 𝜌(𝑟𝑖) = 𝜌(−𝑟𝑖). 

(4)  𝜌(𝑟𝑖) ≤ 𝜌(𝑟𝑗) for 0< 𝑟𝑖 < 𝑟𝑗 

(5)The objective function is continuous and diffentiable. 
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We illustrate the above five properties using the objective function,𝜌(𝑟) of the Alarm M-

estimator (Alamgir et al. (2013) 
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Figure 1.1: Graph of the Alarm’s  Objective Function, 𝝆(𝒓) (Alamgir et al. (2013) 
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From Figure 1.1, the𝜌(0) = 0. 

Secondly, the values of the objective function are non-negative, that is, from 0 to 3.8. 

Thirdly, the objective function is symmetric, that is, 

                                                                        𝜌(1) =  𝜌(−1) 

𝜌(2) = 𝜌(−2) 

𝜌(3) =  𝜌(−3) 

𝜌(4) =  𝜌(−4) 

Lastly, the graph is smooth, have no breaks and its derivative exist at all points in its 

domain,which implies that, it is adifferentiable and continuousfunction. 

Influence Function, 𝝍(𝒓) 

The influence function describes the sensitivity of the overall estimate on the outlying data.  

It shows the effect of outliers on the value of the estimator. Hampel (1974) disclosed that the 

robustness of an estimator is measured by its influence function. The derivativeof the 

Objective function,𝜌(𝑟)with respect to the regression coefficient  gives rise to the influence 

function,𝜓(𝑟), that is, 

𝜓(𝑟) =  
𝑑[∑ 𝜌(ri)

𝑛
𝑖=1 ]

𝑑
 = Σ𝜓(𝑟)𝑋𝑖=  Σ𝜓(

yi−Xi
 ̂

̂
)𝑋𝑖(1.22) 

where̂ is the scale parameter.  

Weight Function  

Draper and Smith (1998) defined the weighted function, 𝑤𝑖, as  

 𝑤𝑖 = 
𝜓(

yi−Xi
 ̂

̂
)

(
yi−Xi

 ̂

̂
)

(1.23) 
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To derive the weighted least squares, we multiply the influence function, that is, equation 

(1.22) by 
(
yi−Xi

 ̂

̂
)

(
yi−Xi

 ̂

̂
)

 and equate to zero. 

Σ𝜓 (
yi−Xi

 ̂

̂
)𝑋𝑖 . 

(
yi−Xi

 ̂

̂
)

(
yi−Xi

 ̂

̂
)

 = 0 

Therefore, the weighted least squares, is given by 

∑ 𝑤𝑖
𝑛
𝑖=1 (yi − Xi

 ̂)𝑋𝑖 = 0(1.24) 

where 

𝑤𝑖 = 
𝜓(

yi−Xi
 ̂

̂
)

(
yi−Xi

 ̂

̂
)

 

1.3.1     Huber M-estimator 

Huber (1964) proposed the Huber M-estimator and its influence function, 𝜓(𝑟), is  

𝜓(𝑟) ={
−𝑐             ; 𝑟 < −𝑐
𝑟                  ; −𝑐 ≤ 𝑟 ≤ 𝑐
𝑐           ;  𝑟 > 𝑐

(1.25)                                                                       

where 𝑐 is arbitrary value known as tuning constant and 𝑟 are the  residuals scaled over 

Median Absolute Deviation (MAD).Huber estimator is not robust when the outliers present in 

the data are in 𝑥-direction (leverage points). Leverage points are when outliers are in the 

explanatory variables. The Huber influence function is non-decreasing function with a tuning 

constant c = 1.345 which yields 95% efficiency on a normal distribution (the tuning 

constant𝑐,determines the degree of robustness in M-estimators). 
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Figure 1.2: Graph of the Huber Influence Function(Huber, 1964) 

From Figure 1.2, the residuals are on the x-axis while their corresponding 𝜓(𝑟) are shown in 

the y-axis.  It could be shown that the extreme residuals, that is -4 and 4, are given influence 

values of -1.3 and 1.3 respectively, which implies that, Huber estimator does not delete 

outliers in a robust fit.  
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Figure 1.3: Graph of the Huber Weight Function(Huber, 1964) 

From the above figure, the observations (residuals) are in x-axis while their corresponding 

weights are in y-axis. The very good observations, that is, -1, 0, 1, were assigned very good 

weights, that is 1, while extreme residuals or outliers, that is, -4 and 4, were assigned weights 

of 0.3 each. This proves that Huber estimator does not delete extreme outliers rather smaller 

weights were assigned to them. 

1.4    Redescending M-estimators  

Redescending M-estimators are estimators with 𝜓-functions redescending to zero, that is, the 

influence functions of the extreme outliers are zero, which implies that, extreme outliers are 

rejected. Some of these estimators discussed in the literature are: 

1.4.1   Hampel M-estimator  

Hampel’s three–part Redescending M-estimator was proposed by Hampel et al. (1986) in the 

Princeton Robustness study. Princeton Robustness study is an extensive theoretical and 

Monte Carlo study of different robust estimators published in, Andrew et al. (1972). Its 

estimator has three tuning constants 𝑎, 𝑏 and 𝑐. 
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Its𝜓-function is given as 

𝜓(𝑟)  =

{
 
 

 
 

𝑟 ; if |𝑟| ≤  𝑎
𝑎 sign (𝑟)          ;  if 𝑎 < |𝑟| ≤  𝑏

(𝑐−|𝑟|)

(𝑐−𝑏)
𝑎 sign (𝑟)           ;  if  𝑏 < |𝑟| ≤  𝑐

0                              ;if |𝑟| > 𝑐

(1.26)            

where 𝑎, 𝑏, 𝑐 are positive constants and 0 <  𝑎 ≤  𝑏 <  𝑐 < ∞and 𝑟 are the residuals 

scaledover Median Absolute Deviation, MAD.  

The drawback of this estimator is that, it is non-differentiable, so there is still  need to 

propose an estimator that will be differentiable. 

1.4.2    Tukey’s Biweight M-estimator  

Beaten and Tukey (1974) proposed Tukey’s Biweight M-estimator and its 𝜓-function is 

given as 

𝜓(𝑟) ={
𝑟{1 − (

𝑟

𝑐
)2}2        ; |𝑟| > 𝑐

0            ; otherwise 
(1.27)        

where 𝑐 is arbitrary value known as tuning constant and 𝑟 are the residuals scaled over 

Median Absolute Deviation(MAD). For Tukey’s biweight, 𝑐 = 4.685 gives 95% efficiency on 

normal distribution. 

The performance of Tukey’s Biweight estimator was good, that is, its influence function is 

differentiable and smooth when compared to the methods proposed by Huber (1964) and 

Hampel et al. (1986). 

1.4.3     Alarm M-estimator  

Alamgir et al. (2013) proposed the Alarm’s Redescending M-estimator for robust regression 

and outlier detection. Its 𝜓 -function is given as  

𝜓(𝑟) ={
16𝑟 (𝑒−(𝑟/𝑐)

2

 (1+𝑒−(𝑟/𝑐)
4                     ;  |𝑟| ≤ 𝑐

0                  ; |𝑟|𝑐
 (1.28)                                   
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where 𝑐 is the tuning constant and 𝑟 are the residuals scaled over Median Absolute Deviation 

(MAD). 

The Alarm estimator was based on the modified tangent hyperbolic-type (tan h) weight 

function. The Mean Square Errors (MSE) of the Alarm estimator are the smallest when 

compared with those of Huber (1964), Beaton and Tukey (1974) and Hampel et al. (1986) 

estimators, yielding efficient results. For its empirical study, 𝑐 = 3 gives approximately 95% 

efficiency at normal distribution. 

 

Figure 1.4: Graph of Hampel’s three part Influence Function(Hampel et al. (1986)) 
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Figure 1.5: Graph of Hampel’s three part Weight Function(Hampel et al. (1986)) 

 

 

Figure 1.6: Graph of Tukey’s Biweight Influence Function(Beaton and Tukey (1974)) 
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Figure1.7: Graph of Tukey’s Biweight Weight Function(Beaton and Tukey (1974)) 

 

 

Figure 1.8: Graph of Alarm Influence Function(Alamgir et al. (2013)) 
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Figure 1.9: Graph of Alarm Weight Function(Alamgir et al. (2013)) 

From Figures 1.4, 1.6, and 1.8, the graphs of the three influence functions all redescend to 

zero, that is, extreme outliers were assigned zero in the robust fit. 

Example for Illustration Purpose 

Using the graph of Tukey’s Biweight influence function (Figure 1.6), both extreme outliers (-

4 and 4), redescend to zero, that is, their influence functions are zero (𝜓(4) =  𝜓(−4) = 0).  

It also showed that outliers have zero or no influence in Redescending M-estimators and are 

not to be included in the robust fit. 

In addition, the graphs of the three weight functions (Figures 1.5, 1.7, and 1.9) showed that 

the extreme outliers were rejected by assigning zero weights to them. 

Example for Illustration Purpose 

Using the graph of Alarm weight function (Figure 1.9), the values of the residuals (-3 to 3) 

are in the x-axis while their corresponding weights (0 to 1) in the y-axis. The outliers (-3 and 
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3) were assigned weights of zero while non-outlying values were assigned higher weights. 

This implies that Redescending M-estimators detect and delete outliers in a robust fit. 

1.5    Statement of the Problem 

Huber estimator (Huber, 1964) does not delete large residuals, and this brings about the 

Redescending M-estimators. The Hampel’s three-part function (Hampel et al. (1986)) is non- 

differentiable. A differential function is a continuous function whose derivative exists at all 

points in its domain. Wang and Opsomer (2011) stated that the theoreticalproperties of non-

differentiable estimators  are substantially more complicated to derive than those of 

differentiable estimators. The Huber (1964) and Beaton and Tukey (1974) estimators are not 

robust to outliers in the leverage points.  The methods of estimation produced by Huber 

(1964), Beaton and Tukey (1974), Hampel et al. (1986) and Alamgir et al. (2013) need an 

improvement in handling outliers in both the 𝑥 and 𝑦 axes. Therefore, to handle these 

problems, there is a need to propose a Redescending M-estimator that is smooth, 

differentiable and also could handle outliers in both 𝑥 and 𝑦 directions. 

1.6   Aim and Objectives of the Study  

The aim of the research work is to propose a robust estimator for the detection and deletion of 

extreme outliers in regression analysis.             

The objectives are: 

(i) to propose a Redescending M-estimator (that will be differentiable and 

continuous) which includes the objective function (𝜌-function), the corresponding 

influence function (𝜓-function) and weight function (𝑤-function); 
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         (ii) to determine the various properties and shapes of the objective, influence and 

weightfunctions in view of achieving the qualities of a good  Redescending M-

estimator. 

 (iii) to compare the proposed Redescending M-estimator with some existing M-

estimators and Redescending M-estimators in terms of efficiency and 

robustness. 

1.7   Scope of the Study 

The study covers robust estimators for detection and deletion of outliers in a regression 

model. Monte-Carlosimulationstudies as well as real life application were considered in the 

study to enable us examine the performance of the proposed method, and for comparison of 

the proposed method with some existing methods in the literature. 

1.8 Significance of the Study 

The main purpose of this research is to propose a Redescending M-estimator for detecting 

and deleting of outliers in regression analysis. The proposed Redescending M-estimator 

should be of great importance to researchers whenever outliers were discovered in their data. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Methods of Outlier Detection 

Aggarwal and Yu (2001) discovered a new technique for outlier detection associated with 

very high dimensional datasets, in which the data can contain hundreds of dimensions. They 

implemented the technique effectively for high-dimensional applications using an 

evolutionary search technique. They also discussed the application of outlier detection 

method to high dimensional problems such as data mining (data mining is the practice of 

examining large pre-existing databases to generate new information).    

Chrominski (2010) used various methods of outlier detection in medical diagnoses. The 

methods of outlier detection used were; Grubb’s test, Dixon’s test, Hampel’s test and Quartile 

method. They discussed the detection speed and performances of those outlier methods. 

Results from the analysis showed that Hampel’s test and Quartile method are easier and faster 

in outlier detection than the Grubb’s and Dixon’s tests. 

Tukey (1977) developed the boxplot which was very helpful in the detection of outliers. This 

method does not require any distributional assumptions neither does it depend on mean or 

standard deviation and also suggested that the lower quartile (q1) is the 25th percentile, and 

the upper quartile (q3) is the 75th percentile of the data. The inter-quartile range (IQR) is 

defined as the interval between q1 and q3.  The boxplot has q1 - (1.5 * IQR) and q3 + (1.5 * 

IQR) as “Inner fences”, q1 – (3 * IQR) and q3 + (3 * IQR) as “Outer fences” such that, the 

observations between an inner fence and its nearby outer fence are regarded as “outside”, and 

anything beyond outer fences as “far out”. 



22 
 

Carling (2000) introduced the median rule for identification of outliers through studying the 

relationship between target outlier percentage and Generalized Lambda Distributions 

(GLDs). GLDs with different parameters were used for various moderately skewed 

distributions. The median substitutes for the quartiles of Tukey’s method and a different scale 

of the IQR is employed in the proposed method. The proposed method is good compared to 

Tukey’s method in the sense that it is more resistant and its target outlier percentage is less 

affected by its sample size in the non-Gaussian case. 

Manoj and Kaliyaperumal (2013) compared the performances of five outlier detection 

methods (Grubbs test, Dixon test, Hampel method, Quartile method and generalized ESD 

(generalized Extreme Studentized Deviate). Their aim was to find amongst the five methods 

the one that would strongly detect outlier in a dataset. They carried out an experimentusing R 

software, and the result showed that the three methods (Hampel method, Quartile method and 

Generalized ESD) were better than Grubbs and Dixon test. 

Zhang et al. (2015) proposed an enhanced Monte Carlo outlier detection method by 

establishing cross-prediction models based on determinate normal samples and analyzing the 

distribution of prediction errors for dubious samples. One simulated and three real datasets 

were used to illustrate and validate the performance of the proposed method. The results 

showed that the proposed method outperformed Monte Carlo outlier detection in outlier 

diagnosis.  

2.2 Robust Methods for Outlier Detection 

Fruhwirth and Waltenberger (2010) constructed a new type of redescending M-estimators 

based on data augmentation with an unspecified outlier model. They also derived the 

necessary conditions for the convergence of the resulting estimators to the Huber-type 

skipped mean. They developed two applications of the annealing M-estimators. The results 
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showed that annealing was instrumental in identifying and suppressing the outliers, and also 

used for regression diagnostics in the context of estimation of the tail index of a distribution 

from a sample. 

Muller (2004) reviewed the properties and applications of M-estimators with redescending 

score functions and also stated that the redescending M-estimators can be used to detect sub-

structures in the data; that is, they can be used in cluster analysis. 

Galimberti et al. (2007) addressed the problem of robustness of regression trees with respect 

to outlying values in the dependent variable. They also proposed new robust tree-based 

procedures which were obtained using the Huber and Tukey’s objective functions. The 

performance of the procedure was evaluated through a Monte Carlo experiment. The results 

showed the usefulness and efficacy of the procedure with respect to the outlying values in the 

dependent variable. 

Arya et al. (2007) proposed a method for robust image registration based on M-estimator 

correlation coefficient (MCC). A real value correlation mask function was computed using 

Huber and Tukey’s robust statistics and used as similarity measure for registering image 

windows. The mask function suppresses the influence of outlier points and makes the 

registration algorithm robust to noisy pixels, brightness fluctuations and presence of 

occluding objects. The superiority of the proposed algorithm in terms of registration 

performance and computation time was demonstrated through experimental studies on 

different types of real world images.  

Muthukrishnan and Radha (2010) compared the performances of the robust estimators and 

that of ordinary least squares estimators in regression study. The study established the fact 

that the performances of M-estimators were almost the same as the ordinary least squares in 

normal situations. They further stated that when outliers were present in the data, the least 
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square estimators do not provide useful information for the majority of the data, but not in the 

case of robust estimators. That is, it was observed that M-estimators were not affected by 

outliers. 

Turkan et al. (2012) proposed alternative robust versions of Cook’s distance, Welsch-Kuh 

distance and the Hadi measure in the detection of outliers. Simulation study was performed, 

using the ROBUSTREG procedure in SAS version 9, to compare the performance of the 

classical diagnostics with the proposed versions. The results indicated that, the proposed 

alternative versions of detection diagnostics seem to be reasonably well and should be 

considered as worthy robust alternatives to the least squares estimation. 

Perez et al. (2014) discussed the outlier detection and robust estimation with data that is 

naturally distributed into groups which followed approximately a linear regression model 

with fixed group effects. The result from the simulation method showed that the final 

regression estimator preserved good efficiency under normality while keeping good 

robustness properties. 

Khan et al. (2016) compared three robust regression techniques (Trimmed Square, the Least 

Absolute Deviation and a redescending M-estimator) in terms of efficiency and robustness in 

simple and multiple regressions. 

Rousseeuw and Yohai (1984) discovered the least absolute deviation (LAD) estimates, and 

it’s by minimizing the sum of the absolute values of the residuals.                                                     

𝛽 ̂ = 𝑎𝑟𝑔𝑚𝑖𝑛∑ |𝑦𝑖 − 𝑋𝑖
𝑇𝛽|𝑛

𝑖=1  (2.1) 

The LTS (Least trimmed squares) estimate (Rousseeuw, 1984) is defined as  

̂ =  𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝑟(𝑖)(𝛽)
2𝑞

𝑖=1 (2.2) 

𝛽 

𝛽 
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Where 𝑟(𝑖)(𝛽)
2 = (𝑦𝑖−𝑋(𝑖)

𝑇 𝛽)2, 

𝑟(1)(𝛽)
2 ≤ 𝑟(2)(𝛽)

2  ≤ ⋯  ≤  𝑟(𝑞)(𝛽)
2are squared residuals,       

q = [𝑛(1−∝) + 1], and ∝ is the proportion of trimming.  

Huber (1964) replaced the least squares criterion with a robust criterion, and is given by  

̂ =  𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝜌 (
yi−Xi

 ̂

̂
)𝑛

𝑖=1 (2.3) 

where 𝜌(𝑟)is  the objective functionand ̂ error scale estimate. 

The derivative of 𝜌(𝑟), denoted by 𝜓(𝑟) = 𝜌(. ),  is called the influence function. Huber 

(1964) further compared the performance of least squares method with his method using the 

Monte Carlo simulation. The result showed that his method was more efficient than that of 

the least squares. 

Hampel et al. (1986) proposed the Hampel estimator with 𝜌-function bounded and 

𝜓 −function becoming zero for large |𝑡|. The Hampel’s three-part function is non-

differentiable. Hampel et al. (1986) further demonstrated the good performance of his 

estimator in the Princeton Robustness study. Princeton Robustness study is an extensive 

theoretical and Monte Carlo study of different robust estimators published in 1972. 

Andrew et al. (1972) and Beaton and Tukey (1974)proposed Redescending M-estimators for 

detection and deletion of outliers named Andrew sine wave and Tukey biweight estimators 

respectively. Both Andrew’s wave and Tukey’s Biweight estimators have smoothly 

redescending 𝜓-functions. The performances of Tukey’s Biweight and that of Andrew’s sine 

estimator were good, that is, they are differentiable and smooth compared to the methods 

proposed by Huber (1964) and Hampel et al. (1986). 

𝛽 
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Alamgir et al. (2013) proposed the Alarm’s Redescending M-estimator for robust regression 

and outlier detection. 

The Alarm’s estimator was based on the modified tangent hyperbolic (tan h) type weight 

function. Its estimator was compared with OLS, Huber (1964), Hampel et al. (1986), Andrew 

et al. (1972) and Beaton and Tukey (1974) in a simulation study as well as real life data. The 

results obtained showed that the Alarm estimator is more robust and efficient compared to 

OLS, Huber (1964), Hampel et al. (1986), Andrew et al. (1972) and Beaton and Tukey 

(1974). 

In conclusion, Huber (1964) introduced the M-estimator for detection of outliers while 

Hampel et al. (1986) improved on Huber (1964) by inventing the Redescending M-estimators 

for detection and deletion of extreme outliers. Andrew et al. (1972) and Beaton and Tukey 

(1974) improved on Huber (1964) and Hampel et al. (1986) by producing a smooth and 

differentiable function.  Alamgir et al. (2013) proposed an estimator (based on modified 

tangent (tan h) type weight function) that is more robust and efficient compared with other 

existing M-estimators and Redescending M-estimators.  

2.3 Literature Gap 

Huber estimator (Huber, 1964) does not delete large residuals while The Hampel’s three-part 

function (Hampel et al. (1986)) is non- differentiable. The Huber (1964) and Beaton and 

Tukey (1974) estimators are not robust to outliers in the leverage points.  The methods of 

estimation produced by Huber (1964), Beaton and Tukey (1974), Hampel et al. (1986) and 

Alamgir et al. (2013) need an improvement in handling outliers in both the 𝑥 and 𝑦 axes. 

Therefore, to handle these problems, there is a need to propose a Redescending M-estimator 

that is smooth, differentiable and also could handle outliers in both 𝑥 and 𝑦 directions. 
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CHAPTER THREE 

MATERIALS AND METHOD 

3.1The Redescending M-Estimator for Detection and Deletion of Outliers in Regression 

Analysis 

We propose a Redescending M-estimator that will be smooth, differentiable, more robust and 

efficient (to outliers in both 𝑥 and 𝑦 directions) compared to Huber (1964), Hampel et al. 

(1986), Beaton and Tukey (1974) and Alamgir et al. (2013). 

To propose the new influence function, 𝜓(𝑟), (based on modified Tukey’s biweight 𝜓-

function) with 95% efficiency at normal distribution, using a tuning constant, 𝑐 = 3, we 

introduced a function 𝑔(𝑟). 

𝑔(𝑟)  =  (1 + (
𝑟

𝑐
)
2

)
2

                                                                                                                    (3.1) 

𝑔(𝑟) is a smooth and differentiable function for all 𝑟, where 𝑟 are the residuals scaled over 

Median Absolute Deviation (MAD).                       

In addition, we multiply the function, 𝑔(𝑟) =  ((1 + (
𝑟

𝑐
)
2

)
2

), by the Tukey’s biweight 𝜓-

function =(𝑟 (1 − (
𝑟

𝑐
)
2

)
2

) resulting in the proposed influence function, 𝜓(𝑟),given as; 

𝜓(𝑟)={𝑟 (1 − (
𝑟

𝑐
)
2

)
2

(1 + (
𝑟

𝑐
)
2

)
2

; |𝑟| < 𝑐

0 ;       |𝑟| ≥ 𝑐

 (3.2)        
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where 𝑐 is the tuning constant for the 𝑖𝑡ℎ observation and the variable 𝑟 are the residuals 

scaled over Median Absolute Deviation (MAD).                                                    

By integrating the 𝜓(𝑟) with respect to 𝑟, we obtain the corresponding objective function, 

𝜌(𝑟), given as 

𝜌(𝑟)  ={

𝑟6

𝑐4
 + 

𝑟10

2𝑐8
 −  

2𝑟6

𝑐4
 + 

𝑟2

2
 −

2𝑟6(3𝑟4−5𝑐4)

15𝑐8
; |𝑟|  ≤ 𝑐

4𝑐2

15
   ; |𝑟|  > 𝑐

(3.3)  

where 𝑐 is the tuning constant for the 𝑖𝑡ℎ observation and the variable, 𝑟, are the residuals 

scaled over MAD.    

Derivation of equation (3.3)                             

𝜌(𝑟) = ∫ 𝜓(𝑟)𝑑𝑟 
∞

−∞
                                                                                      

(3.4) 

where 𝜓(𝑟) and 𝜌(𝑟) areinfluence and objectivefunctions, respectively, 𝑟 are the residuals 

scaled over MAD (Median Absolute Deviation) . 

Given:    𝜓 (𝑟) =  𝑟 (1 − (
𝑟

𝑐
)
2

)
2

(1 + (
𝑟

𝑐
)
2

)
2

 

Using the identity; 

𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏) 

Squaring both sides; 

(𝑎2 − 𝑏2)2 = {(𝑎 + 𝑏)(𝑎 − 𝑏)}2 

Where a = 1 and b = (
𝑟

𝑐
)
2
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⇒ 𝜓 (𝑟) =  𝑟 (1 − (
𝑟

𝑐
)
4

)
2

 

and  

𝜌(𝑟) =  ∫𝜓 (𝑟)𝑑𝑟 

         =  ∫ 𝑟 (1 − (
𝑟

𝑐
)
4

)
2

 𝑑𝑟 

Using integration by parts; 

Let  

u = (1 − (
𝑟

𝑐
)
4

)
2

,       𝑑𝑢 = - 
8𝑟3(𝑐4−𝑟4)

𝑐8
 𝑑𝑟 

and  

 𝑑𝑣 = 𝑟𝑑𝑟,    𝑣 =
𝑟2

2
 

∫(1 − (
𝑟

𝑐
)
4

)
2

𝑟𝑑𝑟 =  (1 − (
𝑟

𝑐
)
4

)
2

(
𝑟2

2
) + ∫(

𝑟

2

2

) (
−8𝑟3(𝑐4 − 𝑟4)

𝑐8
)𝑑𝑟 

                                    =  
𝑟2(𝑐4 − 𝑟4)

2𝑐8
+  2 

(5𝑐4𝑟6) − 3𝑟10

15𝑐8
 

=  
𝑟10

2𝑐8
− 

𝑟6

𝑐4
+
𝑟2

2
− 

2𝑟6(3𝑟4− 5𝑐4)

15𝑐8
(3.5) 

For the second part of (𝑟) , we use the same argument in Beaton and Tukey (1974) by 

substituting 𝑟 for 𝑐 in equation (3.5). 

∫ (1 − (
𝑟

𝑐
)
4

)
2

𝑟𝑑𝑟 =  
𝑐10

2𝑐8
− 
𝑐6

𝑐4
+
𝑐2

2
− 
2𝑐6(3𝑐4 − 5𝑐4)

15𝑐8
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                                        =  
4𝑐2

15
(3.6) 

The proposed 𝜌(𝑟) satisfies the standard properties of the objective function of an M-

estimator as stated in section 1.3. 

Dividing the proposed 𝜓(𝑟)by 𝑟 gives the weight function, 𝑤(𝑟), as follows: 

𝑤(𝑟)={(1 − (
𝑟

𝑐
)
2

)
2

(1 + (
𝑟

𝑐
)
2

)
2

; |𝑟|  < 𝑐

0 ; |𝑟|  ≥  𝑐
(3.7)     

Graphs of the proposed objective, influence and weight functions are shown below: 

Figure 

3.1: Graph of the Proposed Objective Function 

From Figure 3.1, the residuals are given from -3 to 3while their corresponding values for the 

proposed objective function runs from 0 to 2.5.  
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ToIllustrate the Properties of theObjective Function in Figure 3.1 

1. The proposed objective function at zero is equal zero, that is, 𝜌(0) = 0 

2. Its values are non- negative (from 0 to 2.5). 

3. It is symmetric, which implies that, 𝜌(1) =  𝜌(−1) 

                                                                           𝜌(2) = 𝜌(−2) 

                                     𝜌(3) =  𝜌(−3) 

Lastly, the graph is smooth and its derivative exists at all points in its domain, which showed 

that the proposed objective function isa differentiable and continuous function. 

 

 

Figure 3.2 : Graph of the Proposed Influence Function 
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In Figure 3.2, the extreme outliers are -3 and 3 and their corresponding influence functions 

are 0, that is, 𝜓(3) = 𝜓(−3) = 0. This implied that the proposed Redescending M-estimator 

assigned zero or no influence to the extreme outliers. 

 

 

 

Figure 3.3 : Graph of the Proposed Weight Function 

From Figure 3.3, the proposed weight function assigned the very good observations or 

residuals(-2,-1, 0, 1, and 2) higher weights while the extremer residuals or outliers (-3 and 3) 

were assigned zero or no weights, which showed that those observations with zero weights 

were rejected or deleted from the robust fit. This implied that, the proposed weight function 

detects and deletes outliers in a robust regression analysis. 

3.2 Monte Carlo Simulation Method  
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Monte Carlo simulation method is used to generate random data from different probability 

distributions. The purpose of our simulation study is to determine the extent our estimates 

differ from their true values (robustness). Secondly, to compare the proposed estimator in 

terms of robustness and efficiency with some existing M-estimator and Redescending M-

estimators ((Huber (1964), Hampel et al. (1986), Beaton and Tukey (1974) and Alamgir et al. 

(2013)).  

We took the true parameters to be 1, 2, and 5 for 𝛽0,  𝛽1,  and 𝛽2, respectively. Each 

simulation case was replicated 𝑀 = 1000 times. The estimates of each estimator were 

calculated in each of the iteration and the mean (average) of the M replicated estimates given 

by: 

𝛽̂𝑗 =
∑ 𝛽̂𝑗𝑖
𝑀
𝑖=1

𝑀
               𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                                                                       (3.8) 

was recorded for each estimator.  

For comparison, the parameters estimates of the Mean Square Error (MSE) and the absolute bias 

(BIAS) of the OLS, Huber (1964),Hampel et al. (1986), Beaton and Tukey (1974) and Alamgir 

et al. (2013) alongside the proposed Redescending M-estimators are computed. 

Robustness of an Estimator is measured using absolute bias given as 

𝐴𝑏𝑠𝐵𝑖𝑎𝑠(𝛽̂𝑗) = |𝛽𝑗 − 𝛽̂𝑗|                  𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                                         (3.9) 

A robust estimator has an estimate that is close to the actual parameter irrespective of the 

distortion in the distribution of the error terms. The lower the bias, the more robust is the 

estimator.  

Efficiency of an Estimator is measured using the MSE (mean square error) defined as 

𝑀𝑆𝐸(𝛽̂𝑗) =
∑ (𝛽𝑗 − 𝛽̂𝑗𝑖)

2𝑀
𝑖=1

𝑀
          𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                                        (3.10) 

and the variance of the estimator is defined as 
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𝑉𝑎𝑟(𝛽̂𝑗) = 𝑀𝑆𝐸(𝛽̂𝑗) − (𝐵𝑖𝑎𝑠(𝛽̂𝑗))
2

        𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                           (3.11) 

The estimator with lowest MSE is the most efficient; the smaller the MSE the more efficient is 

the estimator. 

Algorithm for the Simulation Studies 

1. Compute the initial estimates using the Least Median Squares (LMS). 

2. Obtain the corresponding residuals from our initial estimates. 

3. Compute the corresponding weights based on the proposed weight function. 

4. Calculate the new estimates of the regression coefficients using weighted least squares. 

5. Repeat step 2 to 4 until convergence. 

6. Stop when the difference between the two consecutive values is less than the error 

tolerance, where error tolerance is a specified value less than 10-n, where n is a small positive 

integer. 

3.3Simulation Study 

Simulated data were generated (including percentage mixtures of contaminated and 

uncontaminated data)in simple and multiple regressions, using five sample sizes, 𝑛 = 20, 50, 

100, 150 and 200. The percentages of outliers considered in the simulation study were as 

follows: 

For the y- axis, we chose contamination at 10%, 20%, 30% and 40%. 

For the x-axis, we chose outliers at 10%, 20% and 30%  

Forboth thex- and y-axes, we chose outliers at 5%, 10%, 15% and 20%. 

The choices of the distributions used and the range choices for each distribution were chosen 

to use the idea of Rousseeuw and Leroy (1987). 
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3.4  Different Scenarios of Simulated Data for Simple and Multiple Regression Analyses 

3.4.1  Data without outlier 

The uncontaminated data were generated from a normal distribution, 𝑁(0,1). 

3.4.2  Data with outliers in the 𝒙- direction (leverage points)               

 90% of the uncontaminated 𝑥-variates were generated from a uniform 

distribution,𝑥1𝑈(10,20),𝑥2𝑈(10,20) and 10% of the contaminated 𝑥-variates were 

also generated from a uniform distribution, 𝑥1𝑈(−1,1), 𝑥2𝑈(−2,2). 

 80% of the uncontaminated 𝑥-variates were generated from a uniform 

distribution,𝑥1𝑈(10,20),𝑥2𝑈(10,20) and 20% of the contaminated 𝑥-variates were 

also generated from a uniform distribution, 𝑥1𝑈(−1,1), 𝑥2𝑈(−2,2). 

 70% of the uncontaminated 𝑥-variates were generated from a uniform 

distribution,𝑥1𝑈(10,20),𝑥2𝑈(10,20) and 30% of contaminated 𝑥-variates were 

also generated from a uniform distribution, 𝑥1𝑈(−1,1), 𝑥2𝑈(−2,2). 

3.4.3  Data with outliers at the response, that is, in the 𝒚-direction 

 90% of non-outlying data were generated from a normal distribution, 𝑁(0,1) and 

10% of the outlying data were also generated from a normal distribution,𝑁(10,9). 

 80% of non-outlying data were generated from a normal distribution, 𝑁(0,1) and 

20% of the outlying data were also generated from a normal distribution,𝑁(10,9) 

 70% of non-outlying data were generated from a normal distribution, 𝑁(0,1) and 

30% of the outlying data were also generated from a normal distribution,𝑁(10,9). 

 60% of non-outlying data were generated from a normal distribution, 𝑁(0,1) and 

40% of the outlying data were also generated from a normal distribution,𝑁(10,9). 
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3.4.4 Data with outliers in both 𝒙 and 𝒚 directions 

 95% of the uncontaminated 𝑥-variates were generated using a uniform 

distribution,𝑥1𝑈(10,20),𝑥2𝑈(10,20) and 5% of contaminated 𝑥-variates were also 

generated from a uniform distribution, 𝑥1𝑈(−1,1), 𝑥2𝑈(−2,2): 95% of non-

outlying data in the 𝑦 axis were generated from a normal distribution, 𝑁(0,1) and 

5% of the outlying data in the 𝑦 axis were also generated from a normal 

distribution,𝑁(10,9). 

 90% of the uncontaminated 𝑥-variates were generated using a uniform 

distribution,𝑥1𝑈(10,20),𝑥2𝑈(10,20) and 10% of contaminated 𝑥-variates were 

also generated from a uniform distribution, 𝑥1𝑈(−1,1), 𝑥2𝑈(−2,2): 90% of non-

outlying data in the 𝑦 axis were generated from a normal distribution, 𝑁(0,1) and 

10% of the outlying data in the 𝑦 axis were also generated from a normal 

distribution,𝑁(10,9). 

 85% of the uncontaminated 𝑥-variates were generated using a uniform 

distribution,𝑥1𝑈(10,20),𝑥2𝑈(10,20) and 15% of contaminated 𝑥-variates were 

also generated from a uniform distribution, 𝑥1𝑈(−1,1), 𝑥2𝑈(−2,2): 85% of non-

outlying data in the 𝑦 axis were generated from a normal distribution, 𝑁(0,1) and 

15% of the outlying data in the 𝑦 axis were also generated from a normal 

distribution,𝑁(10,9). 

 80% of the uncontaminated 𝑥-variates were generated using a uniform 

distribution,𝑥1𝑈(10,20),𝑥2𝑈(10,20) and 20% of contaminated 𝑥-variates were 

also generated from a uniform distribution, 𝑥1𝑈(−1,1), 𝑥2𝑈(−2,2): 80% of non-

outlying data in the 𝑦 axis were generated from a normal distribution, 𝑁(0,1) and 
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20% of the outlying data in the 𝑦 axis were also generated from a normal 

distribution,𝑁(10,9). 

 

 

 

 

 

 

CHAPTER FOUR 

 RESULTS AND DISCUSSION 

4.1 Results and Discussions of the Simulation Study from the Different Scenarios of Data        

The simulation results for the proposed estimator and that of OLS, Huber, Hampel, Bisquare 

(Biweight) and Alarm estimators are discussed as follows with the of values for MSE and BIAS 

given from n = 20 to n = 200: 

4.1.1 Discussion of simulation results for data without outlier 

Appendix III presents detailed simulation result for uncontaminated data from a simple 

regression model. The OLS having the least MSE, that is, 0.0509, 0.1526, ... 

,0.0147,outperformed the Huber(MSE from 0.0547 to 0.0155), Hampel (MSE from 0.0521 to 

0.0148), Bisquare(MSE from 0.0565 to 0.0156), Alarm(MSE from 0.0540 to 0.0149) and the 

proposed (MSE from 0.0604 to 0.0156) estimators, that is, the most efficient estimator. 

Similarly, the OLS, Huber, Hampel, Bisquare, Alarms and the proposed estimators are all closer 

to their true parameter’s estimates (robustness). The values for the BIAS are as follows: OLS 

from 0.0033 to 0.0047, Huber estimator from 0.0020 to 0.0050, Hampel estimator from 0.0031 
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to 0.0052, Bisquare estimator from 0.0017 to 0.0051, Alarm estimator from 0.0018 to 0.0052 

and the proposed estimator from 0.0031 to 0.0062. 

Similarly, Appendix XVII presents detailed simulation result for uncontaminated datafrom a 

multiple regression model. The OLS having the least MSE, that is, 0.0520, 0.1537, . . . ,0.0033, 

out performed the Huber with MSE from 0.0556 to 0.0035, Hampel (MSE from 0.0529 to 

0.0034), Bisquare (MSE from 0.0576 to 0.0035), Alarm (MSE from 0.0549 to 0.0034) and the 

proposed (MSE from 0.0677 to 0.0035) estimators, that is, the most efficient estimator. 

Similarly, the OLS, Huber, Hampel, Bisquare, Alarms and the proposed estimators are all closer 

to their true parameter’s estimates (robustness).The values for the BIAS are as follows: OLS 

from 0.0100 to 0.0016, Huber estimator (from 0.0100 to 0.0007), Hampel estimator (from 

0.0096 to 0.0013), Bisquare estimator (from 0.0098 to 0.0008), Alarm estimator (from 0.0092 to 

0.0013) and the proposed estimator (from 0.0151 to 0.0009). 

4.1.2 Discussion of simulation results for data with outliers in the 𝒙- direction (leverage 

points) 

Appendix V presents the result when 10% of the data are outlying in the𝑥- direction in a simple 

regression model. The MSE of Alarm (from 0.0667 to 0.0164) and the proposed (from 0.0751 to 

0.0165) estimatorsare smaller compared to that of OLS (from 0.1165 to 3.3378),Huber (from 

0.1303 to 3.8812), Hampel (from 0.1026 to 3.8867) and Bisquare (from 0.1348 to 3.8820) 

estimators. The proposed estimator also has the least BIAS that is, from 0.0121 to 0.0003 

alongside the Alarms estimator (from 0.0099 to 0.0006) compared to OLS (from 0.0247 to 

1.9716), Huber (from 0.0288 to 1.9701), Hampel (from 0.0282 to 1.9713) and Bisquare (from 

0.0289 to 1.9701) estimators. This proves that the Alarm and proposed estimators are more 

efficient and robust compared to OLS, Huber, Hampel, and Bisquare estimators. In addition, 

outliers strongly affect the slopes of OLS, Huber, Hampel, and Bisquare estimators. 
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Appendix VII presents the simulated result for 20% outliers in the 𝑥-direction in a simple 

regression model. The Alarm estimator having smaller MSE(from 0.1052 to 0.0699)and that of 

the proposed estimator (MSE from 0.1120 to 0.0932) are more efficient compared to OLS (MSE 

from 0.1391 to 3.9370, Huber (MSE from 0.1585 to 3.9329), Hampel (MSE from 0.1436 to 

3.9360) and Bisquare (MSE from 0.1625 to 3.9328) estimators.In addition, the proposed 

estimator with the least BIAS (from 0.0002 to 0.0391) and that of Alarm estimator (BIAS from 

0.0006 to 0.0285) are more robust compared to OLS (BIAS from 0.0107 to 1.9841), Huber 

(BIAS from 0.0112 to 1.9831), Hampel (BIAS from 0.0103 to 1.9839) and Bisquare (BIAS 

from 0.0117 to 1.9831) estimators. Moreover, the parameter estimates of the slopes of OLS, 

Huber, Hampel, and Bisquare estimators are very high, which implies that, these estimators are 

strongly affected by outliers. 

With the increase of the percentage of outliers in the 𝑥-direction in simple regression to 30% as 

shown in Appendix IX, all the estimators performed badly for both MSE and BIAS. The values 

for their MSE’s are given by: OLS from 0.1563 to 3.9646, Huber estimator from 0.1756 to 

3.9628, Hampel estimator from 0.1633 to 3.9642, Bisquare estimator from 0.1840 to 3.9628, 

Alarm estimator from 0.1462 to 1.3739 and the proposed estimator from 0.1653 to 1.9144,while 

that for the BIAS are given by: OLS from 0.0300 to 1.9911, Huber estimator from 0.0302 to 

1.9906, Hampel estimator from 0.0286 to 1.9910, Bisquare estimator from 0.0288 to 1.9906, 

Alarm estimator from 0.0066 to 0.6651 and the proposed estimator from 0.0090 to 0.9326, For 

comparison, the proposed and Alarms estimators are more efficient and robust compared to 

OLS, Huber, Hampel, and Bisquare estimators. 

Appendix XXIX presents the result for 10% outliers in the 𝑥-direction in a multiple regression 

model. The proposed estimator having least MSE from 0.1012 to0.0044 alongsidethe Hampel 

(from 0.0748 to 0.0044) and Alarm (from 0.0804 to 0.0044) estimators, are more efficient 

compared to OLS (from 0.1357 to 0.0090), Huber (from 0.1516 to 0.0102) and Bisquare (1.1587 
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to 0.0101) estimators. In addition, the proposed estimator with the least BIAS (from 0.0081 to 

0.0038) and that of Alarm (from 0.0084 to 0.0039) and the Hampel (from 0.0050 to 0.0039) 

estimators are more robust compared to OLS (from 0.0438 to 0.0038), Huber (from 0.0468 to 

0.0035) and Bisquare (from 0.0456 to 0.0035) estimators.  

Appendix XXXI presents the result for 20% outliers in the 𝑥-direction in a multiple regression 

model. The proposed estimator having least MSE from 0.1484 to 0.0049 alongside the Hampel 

(from 0.1150 to 0.0049) and Alarm (from 0.1266 to 0.0049) estimators, are more efficient 

compared to OLS (from 0.1631 to 0.0097), Huber (from 0.1814 to 0.0106) and Bisquare (0.1900 

to 0.0106) estimators. In addition, the proposed estimator with the least BIAS (from 0.0082 to 

0.0846) and that of Alarm (from 0.0095 to 0.0896) and the Hampel (from 0.0078 to 0.1722) 

estimators are more robust compared to OLS (from 0.0412 to 2.4397), Huber (from 0.0400 to 

0.0485) and Bisquare (from 0.0377 to 0.0623) estimators.  

Based on the data generated from 30% outliers in 𝑥- direction in a multiple regression, shown in 

Appendix XXXIII, the result indicated that the Hampel estimator is the most efficient having the 

smallest MSE(0.1667 to 0.0071) among others while Alarm estimator is the second(MSE from 

0.1809 to 0.0071).The third most efficient is the proposed estimator (MSE from 0.2113 to 

0.0075) followed by the three remaining estimators (OLS, Huber, and Bisquare estimators). 

With regards to robustness,the proposed estimatoris the best, having the least BIAS (0.0364 to 

0.0008)while the Alarm and Hampel estimators followed closely (BIAS from 0.0439 to 0.00160 

and from 0.0471 to 0.0023, respectively). Furthermore, outliers strongly affect the slopesof all 

the estimators (the proposed, Hampel, Alarm, OLS, Huber, and Bisquare estimators). All the 

estimators performed badly in this category. 

4.1.3 Discussion of simulation results for data with outliers at the response, that is, in the 

𝒚-direction 
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Appendix XI presents the result for 10% outliers in the 𝑦-direction for simple regression 

analysis. All the estimators except, the OLS performed very well, but having the least values of 

MSE, the Bisquare (from 0.0622 to 0.0184), proposed (from 0.0649 to 0.0182), Hampel (from 

0.0640 to 0.0196) and Alarm (from 0.0612 to 0.0185) estimators are more efficient compared to 

OLS (from 1.0170 to 0.1922) and Huber (from 0.0791 to 0.0204) estimators. In addition, 

regarding how the estimators differ from their true parameter’s estimates (robustness), the 

proposed method, with the least value of the BIAS from 0.0079 to 0.0087, takes the lead, 

followed by the Bisquare (from 0.0081 to 0.0081), then, the Alarm (from 0.0138 to 0.0072) and 

the Hampel’s (from 0.0278 to 0.0042) estimators. 

Furthermore, the result from Appendix XIII (20% outliers in the 𝑦-direction for simple 

regression), indicates that the proposed estimator (MSE from 0.0772 to 0.0216 and BIAS from 

0.0315 to0.0160) is the most efficient and robust, followed closely by the Bisquareestimator 

(MSE from 0.0752 to 0.0218 and BIAS from 0.0336 to 0.0173). The Alarm(MSE from 0.0819 

to 0.0245 and BIAS from 0.0527 to 0.0198), Hampel (MSE from 0.1340 to 0.0259 and BIAS 

from 0.1299 to 0.0259)and Huber (MSE from 0.2057 to 0.0308 and BIAS from 0.3405 to 

0.0483) estimators follow thereafter, while OLS(MSE from 4.1726 to 0.3063 and BIAS from 

1.8531 to 0.1453) is the least.  

Appendix XV presents the result for 30% outliers in the 𝑦-direction for simple regression. The 

proposed estimator (MSE from 0.1172 to 0.0331) competes favourably with the Bisquare 

estimator (MSE from 0.1452 to 0.0304) as the most efficient estimator. The least efficient is the 

OLS (MSE from 9.5809 to 0.4556) followed by the Huber estimator (MSE from 1.2896 to 

0.0623), then, the Hampel’s estimator (MSE from 3.6198 to 0.0702). Nevertheless, the proposed 

(BIAS from 0.0860 to 0.0216) and Bisquare (BIAS from 0.1008 to 0.0218) estimators, with 

least BIAS are more robust compared to the Hampel(BIAS from 1.2486 to 0.0702), 
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Alarm(BIAS from 0.1619 to 0.0304), OLS(BIAS from 2.9036 to 0.2589) and Huber (BIAS from 

0.9170 to 0.1076) estimators. 

Nevertheless, in Appendix XVII(results for40% outliers in the 𝑦-direction for simple 

regression), the proposed (MSE from 0.4626 to 0.0934 and BIAS from 0.3102 to 0.0268) 

estimator is the most efficient and robust compared to theBisquare (MSE from 4.4558 to 0.0606 

and BIAS from 1.2854 to 0.0241), Hampel,(MSE from 11.8804 to 0.4004 and BIAS from 

2.9863 to 0.0852), Alarm(MSE from 1.14118 to 0.1229 and BIAS from 0.7094 to 0.0302), 

OLS(MSE  from 15.8511 to 0.5570 and BIAS from 3.7895 to 0.0871) and Huber (MSE from 

2.3770 to 0.2131 and BIAS from 2.3770 to 0.0731) estimators. 

Appendix XXXV presents the result for 10% outliers in the 𝑦-direction for multiple regression. 

All the estimators except, the OLS(MSE from 1.2113 to 0.0378) performed very well, but the 

Bisquare (MSE from 0.0602 to 0.0038), proposed (MSE from 0.0678 to 0.0038), Hampel (MSE 

from 0.0615 to 0.00.0039) and Alarm (MSE from 0.0596 to 0.0037)estimators are more efficient 

compared to OLS(MSE from 1.2113 to 0.0378) and Huber (MSE from 0.0783 to 0.0043) 

estimators. In addition, regarding how the estimators differ from their true parameters estimates 

(robustness), the proposed method (BIAS from 0.0061 to 0.0010) takes the lead, followed by the 

Bisquare (BIAS from 0.0075 to 0.0006), then, the Alarm (BIAS from 0.0028 to 0.0006)  and the 

Hampel’s (BIAS from 0.0128 to 0.0013) estimators. 

Furthermore, the result from Appendix XXXVII (20% outliers in the 𝑦-direction for multiple 

regression), indicated that the proposed estimator (MSE from 0.0758 to 0.0047 and BIAS from 

0.0123 to 0.0039) is the most efficient and robust, followed closely by the Bisquare estimator 

(MSE from 0.0709 to 0.0047 and BIAS from 0.0149 to 0.0034). The Alarm (MSE from 0.0754 

to 0.0050 and BIAS from 0.0365 to 0.0059), Hampel (MSE from 0.0985 to 0.0058 and BIAS 

from 0.0948 to 0.0101) and Huber (MSE from 0.1805 to 0.0063 and BIAS from 0.0.3018 to 
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0.0286) estimators followed thereafter, while OLS (MSE from 3.7599 to 0.0681 and BIAS from 

1.7370 to 0.1287) is the least.  

Appendix XXXIX presents the result for 30% outliers in the 𝑦-direction for multiple regression. 

The proposed estimator (MSE from 0.1200 to 0.0076) competes favourably with the Bisquare 

estimator (MSE from 0.4679 to 0.0068) as the most efficient estimator. The least efficient is the 

OLS (MSE from 8.3023 to 0.1234)) followed by the Huber estimator (MSE from 1.6545 to 

0.0158), then, the Hampel’s estimator (MSE from 1.2216 to 0.0129). Nevertheless, the 

proposed(BIAS from 0.0764 to 0.0044) and Bisquare(BIAS from 0.2159 to 0.0059) estimators 

are more robust compared to the Hampel (BIAS from 0.5721 to 0.0282), Alarm (BIAS from 

0.1781 to 0.0119), OLS (BIAS from 2.6733 to 0.1929) and Huber (BIAS from 1.0070 to 0.0689) 

estimators. 

In Appendix XLI  (results for40% outliers in the 𝑦-direction for multiple regression), the 

proposed (MSE from 0.8166 to 0.0186 and BIAS from 0.4042 to 0.0340) and Bisquare (MSE 

from 6.6230 to 0.0148 and BIAS from 1.8229 to 0.0313) estimators are more efficient and 

robust compared toHampel,(MSE from 9.5266 to 0.1646 and BIAS from 2.3304 to 0.2937), 

Alarm (MSE from 2.3911 to 0.0297 and BIAS from 0.9315 to 0.0695), OLS (MSE from 

17.3861to 0.2172 and BIAS from 3.9455 to 0.3261and Huber (MSE from 9.3040 to 0.0999 and 

BIAS from 2.6372 to 0.2437) estimators. 

4.1.4 Discussion of simulation results for data with outliers in both 𝒙 and 𝒚 directions.   

Appendix XIX presents the result for 5% outliers for both 𝑥 and 𝑦axes in a simple regression 

model. The proposed(MSE from 0.0765 to 0.0171 and BIAS from 0.0086 to 0.0017) and Alarm 

estimators (MSE from 0.0716 to 0.0170 and BIAS from 0.0.0103 to 0.0021) are more efficient 

and robust compared to OLS(MSE from 0.5943 to 3.9175 and BIAS from 0.5147 to 1.9789), 

Huber(MSE  from 0.1484 to 3.7981 and BIAS from 0.0793 to 1.9485), Hampel (MSE from 
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0.1359 to 3.7943 and BIAS from 0.0.0211 to 1.9476) and Bisquare (MSE from 0.1433 to 3.7751 

and BIAS from 0.0.0131 to 1.9426) estimators. Also, the slopes of the Hampel, OLS, Huber, 

and Bisquare estimators are affected by the outliers. 

As the outliers in both axes are increased, that is, 10% outliers for both 𝑥 and 𝑦  axes in a simple 

regression model, the result from Appendix XXI indicated that the proposed estimator (MSE 

from 0.0870 to 0.0242 and BIAS from 0.0130 to 0.0064) takes the lead as the most efficient and 

robust method but followed closely by the Alarm estimator (MSE from 0.0903 to 0.0252 and 

BIAS from 0.0297 to 0.0072). The Hampel, OLS, Huber, and Bisquare estimators performed 

badly in this category (having higher estimates of the MSE and BIAS). 

With higher estimates of the MSE and BIAS, the results of Hampel(MSE from 0.2917 to 3.9939 

and BIAS from 0.1965 to 1.9983), OLS(MSE from 4.1452 to 4.3904 and BIAS from 1.7716 to 

2.0951), Huber(MSE from 0.3756 to 4.0417 and BIAS from 0.3922 to 2.0103) and Bisquare 

(MSE from 0.1939 to 3.9504 and BIAS from 0.0344 to 1.9875)  estimators got worse by the 

increase of outliers at both axes, that is, 15% outliers for both 𝑥 and 𝑦  axes in a simple 

regression as shown in Appendix XXIII. The proposed estimator (MSE from 0.1302 to 0.0816 

and BIAS from 0.0203 to 0.0270) is still the best with respect to efficiency and robustness but 

followed closely by the Alarm estimator (MSE from 0.1469 to 0.0649 and BIAS from 0.0539 to 

0.0163). 

At 20% outliers in both axes in a simple regression model as shown in Appendix XXV, the 

proposed (MSE from 0.2245 to 1.4156 and BIAS from 0.0571 to 0.6731) and Alarm (MSE from 

0.2870 to 0.8216 and BIAS from 0.1471 to 0.3748) estimators are more efficient and robust 

compared to Hampel (MSE from 0.9700 to 4.0727 and BIAS from 0.5218 to 2.0180), 

OLS(MSE from 7.4081 to 4.6178 and BIAS from 2.4627 to 2.1487), Huber(MSE from 0.7428 

to 4.1375 and BIAS from 0.6629 to 2.0340) and Bisquare (MSE from 0.2606 to 3.9885 and 
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BIAS from 0.0809 to 1.9970) estimators. All the estimators do not perform very well in this 

category with Hampel, OLS, Huber, and Bisquare estimators on the lead. 

The result from Appendix XLIIII, that is, 5% outliers for both 𝑥 and 𝑦  axes in a multiple 

regression, showed that the proposed (MSE from 0.0951 to 0.0044 and BIAS from 0.0.0144 to 

0.0023), Hampel (MSE  from 0.0784 to 0.0046 and BIAS from 0.0254 to 0.0025), and Alarm 

(MSE from 0.0774 to 0.0044 and BIAS from 0.0.0189 to 0.0020)estimators are more efficient 

and robust compared to OLS(MSE from 0.7824 to 0.3028 and BIAS from 0.0.4827 to 

0.4878),Huber(MSE from 0.1666 to 0.0198 and BIAS from 0.0654 to 0.0950) and Bisquare 

(MSE from 0.1660 to 0.0073 and BIAS from 0.0120 to 0.0016)estimators. 

Appendix XLV presents the result for 10% outliers in both axes in a multiple regression model. 

The proposed (MSE from 0.1072 to 0.0049 and BIAS from 0.0.0051 to 0.0043) and Alarm 

(MSE from 0.1054 to 0.0052 and BIAS from 0..0131 to 0.0036) estimators are more efficient 

and robust compared to Hampel (MSE from 0.1096 to 0.0120 and BIAS from 0.0384 to 0.0274), 

OLS(MSE from 2.3390 to 1.1228 and BIAS from 1.0970 to 1.0033), Huber(MSE from 0.2547 

to 0.0778 and BIAS from 0.2026 to 0.2467) and Bisquare (MSE from 0.1750 to 0.0246 and 

BIAS from 0.0007 to 0.0131)  estimators.  

Furthermore, the proposed estimator (MSE from 0.1462 to 0.0063 and BIAS from 0.0182 to 

0.0020) takes the lead as the most efficient and robust estimator as shown in Appendix XLVII 

for 15% outliers for both 𝑥 and 𝑦axes, in a multiple regression analysis. Alarm estimator (MSE 

from 0.1569 to 0.0104 and BIAS from 0.0407 to 0.0148) came second while Hampel’s estimator 

(MSE from 0.2455 to 0.1325 and BIAS from 0.1109 to 0.2670) was the third most efficient and 

robust estimator.  The OLS(MSE from 4.7700 to 2.3358 and BIAS from 1.6927 to 1.4771), 

Huber(MSEfrom 0.7943 to 0.2616 and BIAS from 0.0.4370 to 0.4797) and Bisquare(MSE from 
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0.5347 to 0.0294 and BIAS from 0.0680 to 0.0999) estimators were also the least efficient and 

robust estimators in this category. 

Lastly, Appendix XLIX presents the result for 20% outliers in both axes in a multiple regression 

model. The proposed estimator(MSE from 0. 0.2479 to 0.0161 and BIAS from 0.0603 to 

0.0161) outperformed other estimators as the most efficient and robust estimator. The second 

most efficient and robust estimator is the Alarm estimator(MSE from 0.4146 to 0.1884 and 

BIAS from 0.1465 to 0.2496) which performs better than Hampel(MSE from 1.9598 to 1.4194 

and BIAS from 0.6816 to 1.0724), OLS(MSE from 8.9306 to 4.1653 and BIAS from 2.4819 to 

1.9901), Huber(MSE from 2.2063 to 0.9828 and BIAS from 1.0034 to 0.9414) and Bisquare 

(MSE from 1.0812 to 0.1216 and BIAS from 0.3308 to 0.2784) estimators. 

4.2Kruskal-Wallis Test 

The Kruskal-Wallis Test was used to determine the average rank of the six estimators (OLS, 

Huber, Bisquare, Hampel, Alarm and the proposed estimators). The estimator with the least 

aveage rank is regarded as the best estimator. The detailed result for the Kruskal-Wallis Test are 

shown in the Appendix. 
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 OLS Huber Bisquare Hampel Alarm Proposed 

No Outlier 55.3  61.5 62.3 58.7 61.4 63.7 

10% 

Outliers in x 

 

74.7 74.9 73.7 74.8 33.6 31.3 

20% 

Outliers in x 

 

70.2 69.6 69.5 70.2 41.4 42.0 

30% 

Outliers in x 

 

67.2 66.7 64.5 66.4 47.1 52.5 

10% 

Outliers in y 

 

109.8 77.9 39.0 56.3 43.5 37.7 

20% 

Outliers in y 

 

109.0 84.3 35.4 61.1 44.0 30.7 

30% 

Outliers in y 

 

103.5 80.1 32.6 80.5 41.8 28.2 

40% 

Outliers in y 

 

86.0 74.0 46.3 80.8 48.0 30.3 

5% Outliers 

in x and y 

 

90.9 76.8 68.8 63.2 34.5 29.7 

10% 

Outliers in x 

and y 

 

91.8 79.1 57.4 71.3 36.6 28.9 

15% 

Outliers in x 

and y 

 

96.3 78.2 54.6 69.3 36.5 30.5 
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20% 

Outliers in x 

and y 

102.3 71.2 49.4 63.6 40.4 38.0 

 

Table 4.1: Summary of the Average Rank (Kruskal-Wallis Test) on Simple Regression of 

the Simulation Study from the Different Scenarios of Data        

 

 

 OLS Huber Bisquare Hampel Alarm Proposed 

No Outlier 85.4 90.8 93.5 87.6 89.6 96.1 

10% 

Outliers in x 

 

112.0 113.2 113.3 67.9 68.9 67.6 

20% 

Outliers in x 

 

105.0 104.3 104.3 80.1 75.8 73.8 

30% 

Outliers in x 

 

96.2 97.0 97.8 83.1 81.9 87.0 

10% 

Outliers in y 

 

159.5 112.0 62.0 83.2 65.5 60.7 

20% 

Outliers in y 

 

157.8 118.8 57.9 84.9 67.9 55.8 

30% 

Outliers in y 

 

147.1 119.1 59.4 100.4 68.1 48.8 

40% 

Outliers in y 

 

121.3 106.6 72.9 108.6 77.8 55.7 

5% Outliers 

in x and y 

 

148.8 115.7 92.3 67.5 59.8 58.9 

10% 

Outliers in x 

and y  

150.7 122.1 90.5 78.8 54.9 46.0 

15% 

Outliers in x 

and y 

152.4 120.7 84.4 90.0 55.6 39.8 
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20% 

Outliers in x 

and y 

155.7 113.3 76.3 106.6 60.2 31.0 

 

Table 4.2: Summary of the Average Rank (Kruskal-Wallis Test) on Multiple Regression of 

the Simulation Study from the Different Scenarios of Data        

 

The Average Rank (Kruskal-Wallis Test) on Simple and Multiple Regressionsof the Simulation 

Study from the Different Scenarios of Data as shown in Tables 4.1 and 4.2 indicated the 

following: 

 In a clean data (non-outlying data), OLS having the least average rank, is the best 

estimator, followed by the Hampel, Alarm, Huber, Bisquare and the proposed estimators. 

 When outliers are in x-axis, Alarm’s estimator is the best estimator, followed closely by 

the proposed estimator. 

 When outliers are in y-axis, the proposed method takes the lead, followed by the 

Bisquare and the Alarm estimators. 

 When outliers are in both x and y-axes, the proposed estimator having the least average 

rank,is the best estimator. 

4.3 Real-Life Data 

We applied the proposed estimator to real-life data to verify its effectiveness in detecting and 

deleting of outliers. These datasets had been extensively used by other researchers in the area of 

robust regression. 

4.3.1   Example 1: Telephone-call data (simple regression case) 
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This is a real regression data with a few outliers in 𝑦-direction. The data set is taken from 

Belgium Statistical Survey (Rousseeuw and Leroy, 1987). The data contains 24 data points and 

2 variables. The dependent variable is the number of telephone calls made from Belgium (in ten 

of millions) and the independent variable is the year. The dataset was executed and analyzed by 

many researchers. The data are shown in Appendix LI. 

 

 

Parameter OLS Huber Hampel Biweight Alarm Proposed 


𝟎
 -260.059 -99.905 -52.389 -52.348 -52.454 -52.456 


𝟏
 5.041 1.987 1.101 1.100 1.102 1.102 

Data 

points 

used 

24 24 18 

  

17 17 17 

Residual 

Standard 

Error 

56.22 19.51 1.62 1.24 1.38 1.39 

 

Table 4.3: Estimates of the Model Parameters for Telephone Calls Data 

The summary of the results for estimates of the model parameters for Telephone Calls Data for 

the estimators are presented in Table 4.3. The Biweight, Alarm, Hampel and the proposed 

estimators with Residual Standard Error (RSE) of 1.24, 1.38, 1.62 and 1.39, respectively, 

performed betterthan OLS and Huber estimators (RSE of 56.22 and 19.51, respectively). In 

addition, OLS and Huber estimators used all the data in the analysis while Alarm, Biweight and 

the proposed method detected and deleted 7 outliers in the robust fit. The detailed results of the 

analysis are shown in Appendix LV. 

4.3.2 Example 2: The Hawkins, Bradu, and Kass data (Multiple Regression Case) 
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The Hawkins et al. (1984) (Rousseeuw and Leroy, 1987) generated artificial data for testing the 

performance of robust estimators. The data contains 75 observations in four dimensions (one 

response and three explanatory variables). The first 10 observations are bad leverage points, and 

the next four points are good leverage points (i.e., their xi are outlying, but the corresponding  yi  

fit the model quite well). The data are shown in Appendix LII. 

 

 

 

Parameter OLS Huber Hampel Biweight Alarm Proposed 


𝟎
 -0.388 -0.776 -0.181 -0.946 -0.181 -0.181 


𝟏
 0.239 0.167 0.081 0.145 0.082 0.081 


𝟐
 -0.335 0.007 0.040 0.197 0.040 0.040 


𝟑
 0.383 0.274 -0.052 0.180 -0.052 -0.052 

Data 

points 

used 

75 75 65 71 65 65 

Residual 

Standard 

Error 

2.25 1.13 0.77 0.63 0.56 0.56 

 

Table 4.4: Estimates of the model parameters for Hawkins, Bradu and Kass data 

The summary of the results for estimates of the model parameters for Hawkins, Bradu and 

Kass data for the estimators are presented in Table 4.4. With smaller Residual Standard Error 

(RSE), the Alarm, Hampel, Biweight and the proposed estimators (with RSE of 0.56, 0.77, 

0.63 and 0.56, respectively),performed better than OLS and Huber estimators (with RSE of 

2.25 and 1.13, respectively). In addition, OLS and Huber used all the data in the analysis 

while Alarm, Hampel and the proposed method detected and deleted 10 outliers in the robust 
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fit. The Biweight estimator detected and deleted 4 outliers in the analysis. The detailed results 

of the analysis are shown in Appendix LVI 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE 

         SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Summary  

A Redescending M-estimator was proposed and the graphs of its objective, influence and 

weight functions satisfied the various properties of these functions. The graph of the objective 

function satisfied the five properties of a good objective function of an M-estimator while the 

extreme outliers on the graph of the proposed influence function redescends to zero, which 

implied that the proposed influence function is a Redescending M-estimator. Lastly, the 

extreme residuals (outliers) on the graph of the proposed weight function are zero. This 

implied that the proposed weight function detects and deletes outliers in the robust fit.  

Simulation studies were done to ascertain the effectiveness of the proposed Redescending M-

estimator and for comparison with other existing methods. Simple and multiple regression 

analyses were considered in the simulation studies using four scenarios of data with different 
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probability distributions / percentages of outliers in the data. Mean square error (MSE) and 

absolute bias (BIAS) were used for comparison under five different sample sizes. 

From the simulation results andKruskal-Wallis Test, it was obvious that Ordinary least 

squares estimator having the least MSE and BIAS, outperformed other estimators in an 

uncontaminated data (clean data). Consequently, when outliers are in the leverage points, the 

proposed and Alarm estimators take the lead as the most efficient and robust estimators 

among others. On the other hand, all the estimators performed very well when outliers are in 

the 𝑦-direction but the proposed estimator tops the list as the most efficient and robust 

estimator while the Biweight, Alarm and Hampel estimators followed closely. Lastly, when 

outliers are both in the leverage points and the response, the proposed estimator is the most 

efficient and robust estimator compared to the Hampel, OLS, Huber, Alarm and Bisquare 

estimators.   

In addition, robust regression analysis was fitted using the Telephone call data and the 

Hawkins, Bradu and Kass data to illustrate the ability of the proposed estimator to detect and 

delete outliers and to compare with the existing ones. The results from the two robust fits 

showed that the proposed method can successively detect and delete outliers and for 

comparison, the proposed estimator alongside the Alarm, Hampel and Biweight (only when 

outliers arse in the response direction) estimators showed great resistance to outliers. 

5.2 Conclusion 

The proposed Redescending estimator is the most efficient and robust method and should be 

used extensively when outliers are in both 𝑥-and-𝑦 axes. 

5.3 Recommendations for Further Study 
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This work can be extended in future to handle outliers effectively on x-axis with higher 

percentages, that is, 30% and 40%. 

5.4 Contribution to Knowledge 

Based on the research, the following improvements were made on the literature: 

 The influence function of the proposed M-estimator redescends to zero contrary to 

that of Huber (1964). 

 The proposed objective function is differentiable contrary to that of Hampel et al 

(1974). 

 The proposed Redescending M-estimator improved on the Beaton and Tukey (174) 

for being robust to outliers in the leverage points. 

  The proposed Redescending M-estimator is more efficient and robust when outliers 

are in both x-and y-axes compared with Huber (1964), Hampel et al. (1986), Beaton 

and Tukey (1974) and Alamgir et al. (2013 

REFERENCES 

Aggarwal, C. and Yu, P. (2001).Outlier Detection for High Dimensional Data. In 

Proceedings of the ACM SIGMOD   International Conference on Management of 

Data. ACM Press, 37-46. 

Alamgir, A.A., Khan, S.A, Khan, D.M. and Khalil, U. (2013). A New Efficient Redescending 

M-estimator, Alamgir Redesending M-estimator. Research Journal of Recent 

Sciences, 2(8). 79 - 91.   

Andrew, D.F., Bickel,. Hampel, F.R., Huber P.J., Tukey J.W. and Rogers W.H. 

(1972).Robust Estimates of Location Survey and Advances, Princeton University 

Press, Princeton, NJ. 

Arya, K.V., Gupta, P., Kalra, P.K. and Mitra, P. (2007).Image Registration using Robust M-

estimate. Journal of Mathematics and Statistics, Vol. 41(1), 147 – 155. 

 Atkinson, A. (1994).Fast Very Robust Methods for the Detection of Multiple Outliers, 

Journal of American Statistical Association, 89, 1329-1339. 

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. Wiley   & Sons, 3rd edition. 



55 
 

Beaton, A.E. and Tukey, J.W. (1974).The Fitting of Power Series, Meaning Polynomials, 

Illustrated on Band-Spectroscopic Data, Technometrics, 16 (2), 147-185.  

Becker, C. and Gather, U. (1999).The Masking Breakdown Point of Multivariate Outlier 

Identification Rule, Journal of the American Statistical Association, 94, 949-955. 

Carling, K. (2000).Resistant Outlier Rules and Non-Gaussian Case, Computational Statistics 

and Analysis, Vol. 33, 249 – 258. 

Chrominski K. M. TKACZ (2010). Comparison of outlier detection methods in biomedial 

data, Journal of Medical Informatics and Technologies, Vol. 16, ISSN 1642-6037. 

Draper, N.R. and Smith H. (1998).Applied Regression Analysis, Third Edition, John Wiley 

and Sons, New York. 

Fruhwirth, R. and Waltenberger W. (2010).Redescending M-estimators and Deterministic 

Annealing, With Application to Robust Regression and Tail Index Estimation, 

arxiv:1006:3707v1 [stat.M E].  

Galimberti, G., Pillati, M. and Soffritti, G. (2007).Robust Regreesion Trees Based On M-

Estimators, Statistica, Anno Lxvii, n.2. 

Hadi, A.S. and Simonoff, J.S. (1993).Procedures for Identification of Multiple Outliers in 

Linear Models, Journal of the American Statistical Association, 88(424), 1264- 

1272.  

Hampel, F.R. (1974). The Influence Curve and Its Role in Robust Estimation, Journal of the 

American Statistical Association, Vol. 69, No 346, pp. 383-393. 

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986).Robust Statistic: the 

Approach Based on Influence Functions. New York: John Wiley.  

Hawkins, D.M. (1980).The Identification of Outliers, Chapman and Hall, London. 

Hawkins, D.M., Bradu, D. and Kass, G. V. (1984).Location of several outliers in multiple 

regression data using elemental sets. Technometrics 26, 197-208. 

Huber, P.J. (1964).Robust Estimation of Location Parameter, The Annals of Mathematical 

Statistics, 35, 73 – 101. 

Khan, D.M., Khan, S.A., Alamgir, Khalil, U. and Ali, A. (2016).A Comparative Study of 

three Improved Robust Regression Procedures, Pak. J.Statist, Vol. 32(6), 425-441. 

 Manoj, k. and Kaliyaperumal, S.K. (2013).Comparison of Methods for Detecting Outliers, 

International Journal of Scientific and Engineering Research, Vol 4, Issue 9, ISSN 

2229-5518. 

Muller, C. H. (2004).Redescending M-estimators in Regression Analysis, Cluster Analysis 

and Image Analysis, Discussiones Mathematicae - Probability and Statistics, 24 

(2004), 59-75. 

Muthukrishnan,  R. and Radha, M., (2010).M-estimators in Regression Models, Journal of 

Mathematics Research, Vol 2, 23-27. 



56 
 

Nguyena T.D. and Welch, R. (2010).Outlier Detection and Least Trimmed Squares 

Approximation using Semi-definite Programming, Comput Stat Data, 54: 3212-

3226. 

Perez Betsabe, Molina Isabel and Pena Daniel (2014).Outlier detection and robust estimation 

in linear regression models with fixed group effects, Journal of Statistical 

Computation and Simulation, 84:12,2652-2669, DOI:1080/00949655.2013. 

             811669. 

Rousseeuw, P.J. (1982).Least Median of Squares Regression, Research Report No. 178, 

Centre for Statistics and Operations Research, VUB Brussels. 

Rousseeuw, P.J. (1983).Multivariate Estimation with High Breakdown point, Research 

Report No. 192, Centre for Statistics and Operations Research, VUB Brussels.  

Rousseeuw, P.J. (1984).Least Median of Squares Regression, Journal of American Statistical 

Association, 79, 871-880. 

Rousseeuw, P.J. and Leroy, A.M. (1987).Robust Regression and Outlier Detection, Wiley-

Interscience, New York.  

Rousseeuw, P.J. and Yohai, V. (1984).“Robust Regression by Means of S-Estimators”, in 

Robust and Nonlinear Time Series, edited by J. Franke, W. Hardle, and R.D. 

Martin, Lecture Notes in Statistics 26,  Springer Verlag, New York, 256-274. 

 Sokal, R.R and Rohlf, F. J. (2012).Biometry, 4th Edition. W.H. Freeman and Co, New York. 

Tukey, J. W. (1977).Exploratory Data Analysis. Reading, MA: Addison–Wesley. 

Turkan, S., Cetin, M. C. and Toktamis, O. (2012).Outlier Detection by Regression Diagnostic 

Based on Robust Parameter Estimate. Journal of Mathematics and Statistic, 41(1), 

147 – 155.  

Wang J. C. and Opsomer J.D. (2011).On Asymptotic Normality and Variance Estimation for 

Non- Differential Survey Estimators. Biometrika (2010) pp. 1-16. 

 Zhang, L., Li, P., Mao, J., Ma, F., Ding, X. and Zhang, Q. (2015).An Enhanced Monte Carlo 

Outlier Detection Method, J Comput Chem. (2015) 36(25), DOI: 

10.1002/jcc.24026. Epub 2015 Jul 31. 

 

 

 

 

 

 

 

 

 

 



57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX I 

R Codes for Plotting Graphs of the Proposed Objective, Influence and Weight 

Functions 

R code for the graph of the objective function 

fun= function(r){ 

(((r^6)/(3^4))+((r^10)/(2*(3^8)))-((2*(r^6))/(3^4))+((r^2)/2)-(((2*(r^6))*((3*(r^4))-

(5*(^4))))/(15*(3^8)))) 

 } 

 plot(fun) 

 plot(fun, -3, 3)  

R code for the graph of the influence function 

fun= function(r){ 
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(r*(1+((r/3)^2)^2)*(1-((r/3)^2)^2)) 

 } 

 plot(fun) 

 plot(fun, -3, 3)  

R code for the graph of the weight function 

fun= function(r){ 

((1+((r/3)^2)^2)*(1-((r/3)^2)^2)) 

} 

 plot(fun) 

 plot(fun, -3, 3)  

 

 

 

   

APPENDIX II 

R PROGRAM FOR CALCULATING THE MSE AND BIAS OF M-ESTIMATORS 

# Weight equal to zero is used to trim large residuals observations. 

sink("Stella1Case1.1Results.txt") # Write output in the file 

"Stella1Case1.2Results.txt" inside my document 

SampleSize<-20 

Error<-"100% e~(0,1), No Outlier" 

Errorlabel<-"Error Distribution";Errorlabel;Error 

SampleSizelabel<-"Sample Size";SampleSizelabel;SampleSize 

print("--------------------------------------------------------------") 

set.seed(13)   # Set the random number generator starting 

point to enable regeneration of the same sequence of random number 

M<-1000    # Monte Carlo Replication 

n<-20    # Sample Size 

YErrorMean<-0 

YErrorStd<-1 

Min<--1 

Max<-1 
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a <- 1              # True value for the intercept 

b <- 2                 # True value for the slope 

BetaLSE.0 <- numeric(M)  # Empty vector for storing the simulated 

intercepts 

BetaLSE.1 <- numeric(M)  # Empty vector for storing the simulated 

slopes 

BetaHuberM.0 <- numeric(M)  # Empty vector for storing the simulated 

intercepts 

BetaHuberM.1 <- numeric(M)  # Empty vector for storing the simulated 

slopes 

BetaBisquareM.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaBisquareM.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

BetaHampelM.0 <- numeric(M)  # Empty vector for storing the simulated 

intercepts 

BetaHampelM.1 <- numeric(M)  # Empty vector for storing the simulated 

slopes 

BetaAlamgirM.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaAlamgirM.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

BetaStellaM.0 <- numeric(M)  # Empty vector for storing the simulated 

intercepts 

BetaStellaM.1 <- numeric(M)  # Empty vector for storing the simulated 

slopes 

BetaLSEAbsDev.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaLSEAbsDev.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

BetaHuberMAbsDev.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaHuberMAbsDev.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

BetaBisquareMAbsDev.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaBisquareMAbsDev.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

BetaHampelMAbsDev.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaHampelMAbsDev.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

BetaAlamgirMAbsDev.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaAlamgirMAbsDev.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

BetaStellaMAbsDev.0 <- numeric(M)  # Empty vector for storing the 

simulated intercepts 

BetaStellaMAbsDev.1 <- numeric(M)  # Empty vector for storing the 

simulated slopes 

library(MASS) 

library(robustbase) 

 

AlamgirM<-function(Y,X){ # ALAMGIR using LTS as initial estimate 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 
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irwls.1 <- ltsReg(x=X,y=Y) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(16*exp(-2*(u[i]/3)^2))/(1+exp(-(u[i]/3)^2))^4 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(16*exp(-2*(u[i]/3)^2))/(1+exp(-(u[i]/3)^2))^4 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

StellaM<-function(Y,X){ 

############### Improved brute-force IRWLS - Stella Method 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 

irwls.1 <- lmsreg(x=X,y=Y) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 3){ 

      w[i]<-((1+((u[i]/3)^2)^2)*(1-((u[i]/3)^2)^2)) 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X,weights=w) 
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res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 3){ 

      w[i]<-((1+((u[i]/3)^2)^2)*(1-((u[i]/3)^2)^2)) 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

X <- runif(n, Min, Max)  # Create a sample of n uniform observations 

on the variable X. 

                      # should be fixed in repeated samples. 

for(m in 1:M){      # Start the loop 

Y <- a + b*X + rnorm(n, YErrorMean, YErrorStd)   # The true DGP, with 

N(0, 1) error 

 

HuberM<-rlm(Y~X, psi = psi.huber, init = "ls",maxit=100) 

BetaHuberM.0[m] <- HuberM$coef[1] # Put the estimate for the intercept 

in the vector BetaLSE.0 

BetaHuberM.1[m] <- HuberM$coef[2] # Put the estimate for X in the 

vector BetaLSE.1 

BetaHuberMAbsDev.0[m]<-abs(a-BetaHuberM.0[m]) 

BetaHuberMAbsDev.1[m]<-abs(b-BetaHuberM.1[m]) 

 

BisquareM<-rlm(Y~X, psi = psi.bisquare,maxit=100) 

BetaBisquareM.0[m] <- BisquareM$coef[1] # Put the estimate for the 

intercept in the vector BetaLSE.0 

BetaBisquareM.1[m] <- BisquareM$coef[2] # Put the estimate for X in the 

vector BetaLSE.1 

BetaBisquareMAbsDev.0[m]<-abs(a-BetaBisquareM.0[m]) 

BetaBisquareMAbsDev.1[m]<-abs(b-BetaBisquareM.1[m]) 

 

HampelM<-rlm(Y~X, psi = psi.hampel,maxit=100) 

BetaHampelM.0[m] <- HampelM$coef[1] # Put the estimate for the 

intercept in the vector BetaLSE.0 

BetaHampelM.1[m] <- HampelM$coef[2] # Put the estimate for X in the 

vector BetaLSE.1 

BetaHampelMAbsDev.0[m]<-abs(a-BetaHampelM.0[m]) 

BetaHampelMAbsDev.1[m]<-abs(b-BetaHampelM.1[m]) 

 

AlamgirMModel<-AlamgirM(Y,X) 

AlamgirModel<-AlamgirMModel$irwls.2 

BetaAlamgirM.0[m] <- AlamgirModel$coef[1] # Put the estimate for the 

intercept in the vector BetaLSE.0 

BetaAlamgirM.1[m] <- AlamgirModel$coef[2] # Put the estimate for X in 

the vector BetaLSE.1 

BetaAlamgirMAbsDev.0[m]<-abs(a-BetaAlamgirM.0[m]) 

BetaAlamgirMAbsDev.1[m]<-abs(b-BetaAlamgirM.1[m]) 
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StellaMModel<-StellaM(Y,X) 

StellaModel<-StellaMModel$irwls.2 

BetaStellaM.0[m] <- StellaModel$coef[1] # Put the estimate for the 

intercept in the vector BetaLSE.0 

BetaStellaM.1[m] <- StellaModel$coef[2] # Put the estimate for X in the 

vector BetaLSE.1 

BetaStellaMAbsDev.0[m]<-abs(a-BetaStellaM.0[m]) 

BetaStellaMAbsDev.1[m]<-abs(b-BetaStellaM.1[m]) 

 

LSEmodel<-lm(formula=Y~X) 

BetaLSE.0[m]<-LSEmodel$coef[1] # Put the estimate for the intercept in 

the vector BetaLTS.0 

BetaLSE.1[m]<-LSEmodel$coef[2] # Put the estimate for the Slope1 in the 

vector BetaLTS.1 

BetaLSEAbsDev.0[m]<-abs(a-BetaLSE.0[m]) 

BetaLSEAbsDev.1[m]<-abs(b-BetaLSE.1[m]) 

} 

 

LSE.B0<-mean(BetaLSE.0) 

LSE.B1<-mean(BetaLSE.1) 

LSEMed.B0<-median(BetaLSE.0) 

LSEMed.B1<-median(BetaLSE.1) 

LSEMSE.B0<-mean((BetaLSEAbsDev.0)^2) 

LSEMSE.B1<-mean((BetaLSEAbsDev.1)^2) 

LSEMAE.B0<-mean(BetaLSEAbsDev.0) 

LSEMAE.B1<-mean(BetaLSEAbsDev.1) 

LSEMedAE.B0<-median(BetaLSEAbsDev.0) 

LSEMedAE.B1<-median(BetaLSEAbsDev.1) 

HuberM.B0<-mean(BetaHuberM.0) 

HuberM.B1<-mean(BetaHuberM.1) 

HuberMMed.B0<-median(BetaHuberM.0) 

HuberMMed.B1<-median(BetaHuberM.1) 

HuberMMSE.B0<-mean((BetaHuberMAbsDev.0)^2) 

HuberMMSE.B1<-mean((BetaHuberMAbsDev.1)^2) 

HuberMMAE.B0<-mean(BetaHuberMAbsDev.0) 

HuberMMAE.B1<-mean(BetaHuberMAbsDev.1) 

HuberMMedAE.B0<-median(BetaHuberMAbsDev.0) 

HuberMMedAE.B1<-median(BetaHuberMAbsDev.1) 

BisquareM.B0<-mean(BetaBisquareM.0) 

BisquareM.B1<-mean(BetaBisquareM.1) 

BisquareMMed.B0<-median(BetaBisquareM.0) 

BisquareMMed.B1<-median(BetaBisquareM.1) 

BisquareMMSE.B0<-mean((BetaBisquareMAbsDev.0)^2) 

BisquareMMSE.B1<-mean((BetaBisquareMAbsDev.1)^2) 

BisquareMMAE.B0<-mean(BetaBisquareMAbsDev.0) 

BisquareMMAE.B1<-mean(BetaBisquareMAbsDev.1) 

BisquareMMedAE.B0<-median(BetaBisquareMAbsDev.0) 

BisquareMMedAE.B1<-median(BetaBisquareMAbsDev.1) 

HampelM.B0<-mean(BetaHampelM.0) 

HampelM.B1<-mean(BetaHampelM.1) 

HampelMMed.B0<-median(BetaHampelM.0) 

HampelMMed.B1<-median(BetaHampelM.1) 

HampelMMSE.B0<-mean((BetaHampelMAbsDev.0)^2) 

HampelMMSE.B1<-mean((BetaHampelMAbsDev.1)^2) 

HampelMMAE.B0<-mean(BetaHampelMAbsDev.0) 

HampelMMAE.B1<-mean(BetaHampelMAbsDev.1) 

HampelMMedAE.B0<-median(BetaHampelMAbsDev.0) 

HampelMMedAE.B1<-median(BetaHampelMAbsDev.1) 
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AlamgirM.B0<-mean(BetaAlamgirM.0) 

AlamgirM.B1<-mean(BetaAlamgirM.1) 

AlamgirMMed.B0<-median(BetaAlamgirM.0) 

AlamgirMMed.B1<-median(BetaAlamgirM.1) 

AlamgirMMSE.B0<-mean((BetaAlamgirMAbsDev.0)^2) 

AlamgirMMSE.B1<-mean((BetaAlamgirMAbsDev.1)^2) 

AlamgirMMAE.B0<-mean(BetaAlamgirMAbsDev.0) 

AlamgirMMAE.B1<-mean(BetaAlamgirMAbsDev.1) 

AlamgirMMedAE.B0<-median(BetaAlamgirMAbsDev.0) 

AlamgirMMedAE.B1<-median(BetaAlamgirMAbsDev.1) 

StellaM.B0<-mean(BetaStellaM.0) 

StellaM.B1<-mean(BetaStellaM.1) 

StellaMMed.B0<-median(BetaStellaM.0) 

StellaMMed.B1<-median(BetaStellaM.1) 

StellaMMSE.B0<-mean((BetaStellaMAbsDev.0)^2) 

StellaMMSE.B1<-mean((BetaStellaMAbsDev.1)^2) 

StellaMMAE.B0<-mean(BetaStellaMAbsDev.0) 

StellaMMAE.B1<-mean(BetaStellaMAbsDev.1) 

StellaMMedAE.B0<-median(BetaStellaMAbsDev.0) 

StellaMMedAE.B1<-median(BetaStellaMAbsDev.1) 

VecBiasB0<-c(abs(1-LSE.B0),abs(1-HuberM.B0), abs(1-BisquareM.B0),

 abs(1-HampelM.B0), abs(1-AlamgirM.B0), abs(1-StellaM.B0)) 

BiasLocB0<-sort.int(VecBiasB0,index.return=TRUE) 

RobustB0<-BiasLocB0$ix[1] 

RobustB0 

VecBiasB1<-c(abs(2-LSE.B1),abs(2-HuberM.B1), abs(2-BisquareM.B1),

 abs(2-HampelM.B1), abs(2-AlamgirM.B1), abs(2-StellaM.B1)) 

BiasLocB1<-sort.int(VecBiasB1,index.return=TRUE) 

RobustB1<-BiasLocB1$ix[1] 

RobustB1 

VecMSEB0<-c(LSEMSE.B0, HuberMMSE.B0, BisquareMMSE.B0, HampelMMSE.B0, 

AlamgirMMSE.B0, StellaMMSE.B0) 

MSELocB0<-sort.int(VecMSEB0,index.return=TRUE) 

EfficiencyB0<-MSELocB0$ix[1] 

EfficiencyB0 

VecMSEB1<-c(LSEMSE.B1, HuberMMSE.B1, BisquareMMSE.B1, HampelMMSE.B1, 

AlamgirMMSE.B1, StellaMMSE.B1) 

MSELocB1<-sort.int(VecMSEB1,index.return=TRUE) 

EfficiencyB1<-MSELocB1$ix[1] 

EfficiencyB1 

LADVec1<-c("OLS","Huber","Bisquare","Hampel","Alamgir","Stella") 

as.table(matrix(c(LADVec1[RobustB0], LADVec1[EfficiencyB0], 

LADVec1[RobustB1], LADVec1[EfficiencyB1]), nrow=2, byrow=TRUE, 

dimnames=list(Beta= c("Beta0", "Beta1"),Criteria = c("Bias", "MSE")))) 

Vec.Bias <- c(abs(1-LSE.B0), abs(1-HuberM.B0), abs(1-BisquareM.B0), 

abs(1-HampelM.B0), abs(1-AlamgirM.B0), abs(1-StellaM.B0), abs(2-

LSE.B1), abs(2-HuberM.B1), abs(2-BisquareM.B1), abs(2-HampelM.B1), 

abs(2-AlamgirM.B1), abs(2-StellaM.B1)) 

VecBias<- round(Vec.Bias,4) 

as.table(matrix(VecBias, nrow=2, byrow=TRUE, 

dimnames=list(Beta= c("Beta0", "Beta1"),Estimator = 

c("OLS","Huber","Bisquare","Hampel","Alamgir","Stella")))) 

Vec.MSE <- c(LSEMSE.B0, HuberMMSE.B0, BisquareMMSE.B0, 

HampelMMSE.B0, AlamgirMMSE.B0, StellaMMSE.B0, LSEMSE.B1,

 HuberMMSE.B1, BisquareMMSE.B1, HampelMMSE.B1, AlamgirMMSE.B1,

 StellaMMSE.B1) 

VecMSE<- round(Vec.MSE,4) 

as.table(matrix(VecMSE, nrow=2, byrow=TRUE, 
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dimnames=list(Beta= c("Beta0", "Beta1"),Estimator = 

c("OLS","Huber","Bisquare","Hampel","Alamgir","Stella")))) 

MatB0 <- cbind(BetaLSE.0, BetaHuberM.0, BetaBisquareM.0, 

BetaHampelM.0, BetaAlamgirM.0, BetaStellaM.0) 

MatB1 <- cbind(BetaLSE.1, BetaHuberM.1, BetaBisquareM.1, 

BetaHampelM.1, BetaAlamgirM.1, BetaStellaM.1) 

print(round(MatB0,4)) 

print(round(MatB1,4)) 

plot.new() 

plot(X,Y,pch=20) 

abline(a=LSE.B0,b=LSE.B1,lty=1) 

abline(a=HuberM.B0,b=HuberM.B1,lty=2) 

abline(a=BisquareM.B0,b=BisquareM.B1,lty=3) 

abline(a=HampelM.B0,b=HampelM.B1,lty=4) 

abline(a=AlamgirM.B0,b=AlamgirM.B1,lty=5) 

abline(a=StellaM.B0,b=StellaM.B1,lty=6) 

legend("bottomright",c("OLS","Huber","Bisquare","Hampel","Alamgir","Ste

lla"),lty=c(1,2,3,4,5,6)) 

Vec1<-c(abs(1-LSE.B0),abs(1-HuberM.B0), abs(1-BisquareM.B0), abs(1-

HampelM.B0), abs(1-AlamgirM.B0), abs(1-StellaM.B0),

 LSEMSE.B0, HuberMMSE.B0, BisquareMMSE.B0, HampelMMSE.B0, 

AlamgirMMSE.B0, StellaMMSE.B0) 

Vec2<-c(abs(2-LSE.B1),abs(2-HuberM.B1), abs(2-BisquareM.B1), abs(2-

HampelM.B1), abs(2-AlamgirM.B1), abs(2-StellaM.B1), LSEMSE.B1,

 HuberMMSE.B1, BisquareMMSE.B1, HampelMMSE.B1, AlamgirMMSE.B1,

 StellaMMSE.B1) 

Reg1B01.1<-

matrix(Vec1,nrow=6,ncol=2,dimnames=list(c("OLS","Huber","Bisquare","Ham

pel","Alamgir","Stella"), c("Bias","MSE"))) 

Reg1B11.1<-

matrix(Vec2,nrow=6,ncol=2,dimnames=list(c("OLS","Huber","Bisquare","Ham

pel","Alamgir","Stella"), c("Bias","MSE"))) 

Ymax<-max(c(Vec1,Vec2)) 

Ylim<-Ymax 

win.graph(width=10,height=5) 

plot.new() 

par(mfrow=c(1,2),ps=8) 

barplot(Reg1B01.1,beside=TRUE,legend=TRUE,ylim=c(0,Ylim),main="Intercep

t, n = 20, No Outlier") 

barplot(Reg1B11.1,beside=TRUE,legend=FALSE,ylim=c(0,Ylim),main="Predict

or, n = 20, No Outlier") 

sink() 
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APPENDIX III 

Simulated MSE and BIAS on Simple Regression for data with no outlier 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 0.0033 0.0020 0.0017 0.0031 0.0018 0.0031 

 𝜷𝟎   MSE 0.0509 0.0547 0.0565 0.0521 0.0540 0.0604 

   20 𝜷𝟏   BIAS 0.0071 0.0063 0.0060 0.0072 0.0086 0.0173 

 𝜷𝟏   MSE 0.1526 0.1586 0.1630 0.1542 0.1585 0.1866 

   50 𝜷𝟎   BIAS 0.0027 0.0039 0.0039 0.0032 0.0034 0.0035 

 𝜷𝟎   MSE 0.0020 0.0210 0.0213 0.0202 0.0204 0.0217 

   50 𝜷𝟏   BIAS 0.0033 0.0016 0.0017 0.0024 0.0024 0.0004 

 𝜷𝟏   MSE 0.0665 0.0695 0.0700 0.0667 0.0672 0.0714 

  100 𝜷𝟎   BIAS 0.0030 0.0034 0.0036 0.0031 0.0033 0.0035 

 𝜷𝟎   MSE 0.0097 0.0101 0.0102 0.0098 0.0098 0.0102 

 100 𝜷𝟏   BIAS 0.0013 0.0023 0.0026 0.0017 0.0019 0.0024 

 𝜷𝟏   MSE 0.0292 0.0312 0.0313 0.0296 0.0298 0.0314 
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 150 𝜷𝟎   BIAS 0.0015 0.0016 0.0016 0.0015 0.0014 0.0012 

 𝜷𝟎   MSE 0.0070 0.0074 0.0074 0.0071 0.0071 0.0074 

 150 𝜷𝟏   BIAS 0.0008 0.0005 0.0000 0.0007 0.0006 0.0000 

 𝜷𝟏   MSE 0.0193 0.0209 0.0210 0.0197 0.0198 0.0212 

 200 𝜷𝟎   BIAS 0.0027 0.0036 0.0038 0.0032 0.0033 0.0040 

 𝜷𝟎   MSE 0.0049 0.0051 0.0051 0.0049 0.0049 0.0052 

 200 𝜷𝟏   BIAS 0.0047 0.0050 0.0051 0.0052 0.0052 0.0062 

 𝜷𝟏   MSE 0.0147 0.0155 0.0156 0.0148 0.0149 0.0156 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX IV 

Kruskal-Wallis Teston Simple Regression for data with no outlier: Response versus 

Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N    Median  Ave Rank      Z 

1           20  0.004800      55.3  -0.74 

2           20  0.005700      61.5   0.14 

3           20  0.005550      62.3   0.25 

4           19  0.005200      58.7  -0.24 

5           21  0.007100      61.4   0.13 

6           20  0.006800      63.7   0.45 

Overall    120                60.5 

 

H = 0.76  DF = 5  P = 0.980 

H = 0.76  DF = 5  P = 0.980  (adjusted for ties) 
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Where 

Treatment 1 is OLS estimator 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS 

 
 

 

 

 

 

 

 

 

 

 

                                                         APPENDIX V 

Simulated MSE and BIAS on Simple Regression for 10% outliers in x-axis 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 0.0274 0.0288 0.0289 0.0282 0.0099 0.0121 

 𝜷𝟎   MSE 0.1165 0.1303 0.1348 0.1206 0.0667 0.0751 

   20 𝜷𝟏   BIAS 1.9679 1.9685 1.9674 1.9682 0.2303 0.1894 

 𝜷𝟏   MSE 3.8786 3.8812 3.8771 3.8799 0.7187 0.6571 

   50 𝜷𝟎   BIAS 0.0336 0.0364 0.0363 0.0344 0.0053 0.0042 

 𝜷𝟎   MSE 0.0506 0.0570 0.0572 0.0522 0.0252 0.0248 

   50 𝜷𝟏   BIAS 1.9704 1.9687 1.9685 1.9700 0.0737 0.0350 

 𝜷𝟏   MSE 3.8845 3.8783 3.8775 3.8831 0.2547 0.1765 

  100 𝜷𝟎   BIAS 0.0421 0.0441 0.0441 0.0427 0.0009 0.0008 

 𝜷𝟎   MSE 0.0306 0.0337 0.0336 0.0313 0.0119 0.0121 

 100 𝜷𝟏   BIAS 1.9734 1.9721 1.9719 1.9730 0.0131 0.0062 

 𝜷𝟏   MSE 3.8953 3.8903 3.8895 3.8939 0.0647 0.0495 
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 150 𝜷𝟎   BIAS 0.0377 0.0406 0.0403 0.0386 0.0012 0.0015 

 𝜷𝟎   MSE 0.0171 0.0189 0.0188 0.0175 0.0071 0.0071 

 150 𝜷𝟏   BIAS 1.9724 1.9706 1.9706 1.9720 0.0027 0.0007 

 𝜷𝟏   MSE 3.8911 3.8842 3.8842 3.8896 0.0291 0.0220 

 200 𝜷𝟎   BIAS 0.0399 0.0426 0.0426 0.0404 0.0038 0.0039 

 𝜷𝟎   MSE 0.0141 0.0156 0.0156 0.0143 0.0056 0.0057 

 200 𝜷𝟏   BIAS 1.9716 1.9701 1.9701 1.9713 0.0006 0.0003 

 𝜷𝟏   MSE 3.8878 3.8882 3.8820 3.8867 0.0164 0.0165 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         APPENDIX VI 

Kruskal-Wallis Test on Simple Regression for 10% outliers in x-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           20  1.04220      74.7   2.00 

2           20  1.04940      74.9   2.02 

3           20  1.05110      73.7   1.85 

4           20  1.04440      74.8   2.02 

5           20  0.01250      33.6  -3.79 

6           20  0.01210      31.3  -4.11 

Overall    120               60.5 

 

H = 39.07  DF = 5  P = 0.000 

H = 39.08  DF = 5  P = 0.000  (adjusted for ties) 
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Where 

Treatment 1 is OLS estimator 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 

 

 

 

 

 

 

 

 

 

 

APPENDIX VII 

Simulated MSE and BIAS on Simple Regression for 20% outliers in x-axis 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 0.0107 0.0112 0.0117 0.0103 0.0006 0.0002 

 𝜷𝟎   MSE 0.1391 0.1585 0.1625 0.1436 0.1052 0.1120 

   20 𝜷𝟏   BIAS 1.9871 1.9867 1.9860 1.9869 0.0702 0.6573 

 𝜷𝟏   MSE 3.9516 3.9504 3.9479 3.9511 1.6876 1.5633 

   50 𝜷𝟎   BIAS 0.0295 0.0306 0.0313 0.0296 0.0069 0.0086 

 𝜷𝟎   MSE 0.0550 0.0618 0.0619 0.0564 0.0326 0.0350 

   50 𝜷𝟏   BIAS 1.9863 1.9853 1.9853 1.9860 0.4022 0.3963 

 𝜷𝟏   MSE 3.9465 3.9427 3.9427 3.9455 0.8831 0.8738 

  100 𝜷𝟎   BIAS 0.0381 0.0416 0.0414 0.0389 0.0022 0.0006 

 𝜷𝟎   MSE 0.0322 0.0359 0.0357 0.0329 0.0151 0.0149 

 100 𝜷𝟏   BIAS 1.9858 1.9850 1.9849 1.9856 0.1660 0.1108 

 𝜷𝟏   MSE 3.9441 3.9047 3.9405 3.9433 0.3962 0.2835 
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 150 𝜷𝟎   BIAS 0.0445 0.0477 0.0475 0.0450 0.0027 0.0020 

 𝜷𝟎   MSE 0.0218 0.0238 0.0237 0.0221 0.0098 0.0099 

 150 𝜷𝟏   BIAS 1.9853 1.9845 1.9845 1.9851 0.0999 0.0680 

 𝜷𝟏   MSE 3.9417 3.9388 3.9387 3.9410 0.2404 0.1783 

 200 𝜷𝟎   BIAS 0.0377 0.0403 0.0400 0.0382 0.0024 0.0021 

 𝜷𝟎   MSE 0.0150 0.0169 0.0168 0.0153 0.0061 0.0062 

 200 𝜷𝟏   BIAS 1.9841 1.9831 1.9831 1.9839 0.0285 0.0391 

 𝜷𝟏   MSE 3.9370 3.9329 3.9328 3.9360 0.0699 0.0932 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX VIII 

Kruskal-Wallis Test on Simple Regression for 20% outliers in x-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           20  1.06160      70.2   1.37 

2           20  1.07080      69.6   1.29 

3           20  1.07280      69.5   1.27 

4           20  1.06375      70.2   1.37 

5           20  0.05125      41.4  -2.69 

6           20  0.05355      42.0  -2.60 

Overall    120               60.5 

 

H = 17.54  DF = 5  P = 0.004 
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H = 17.54  DF = 5  P = 0.004  (adjusted for ties) 
 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

APPENDIX IX 

Simulated MSE and BIAS on Simple Regression for 30% outliers in x-axis 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 0.0300 0.0302 0.0288 0.0286 0.0066 0.0090 

 𝜷𝟎   MSE 0.1563 0.1756 0.1840 0.1633 0.1462 0.1653 

   20 𝜷𝟏   BIAS 1.9899 1.9898 1.9896 1.9899 1.2578 1.2324 

 𝜷𝟏   MSE 3.9620 3.9619 3.9613 3.9621 2.7002 2.6389 

   50 𝜷𝟎   BIAS 0.0374 0.0382 0.0385 0.0379 0.0225 0.0244 

 𝜷𝟎   MSE 0.0656 0.0721 0.0723 0.0674 0.0529 0.0566 

   50 𝜷𝟏   BIAS 1.9902 1.9897 1.9895 1.9900 1.0633 1.1104 

 𝜷𝟏   MSE 3.9619 3.9600 3.9594 3.9612 2.2442 2.3366 

  100 𝜷𝟎   BIAS 0.0374 0.0408 0.0407 0.0383 0.0184 0.0229 

 𝜷𝟎   MSE 0.0334 0.0364 0.0365 0.0341 0.0252 0.0272 

 100 𝜷𝟏   BIAS 1.9912 1.9906 1.9906 1.9910 0.9588 1.0792 
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 𝜷𝟏   MSE 3.9652 3.9630 3.9630 3.9647 1.9792 2.2256 

 150 𝜷𝟎   BIAS 0.0366 0.0386 0.0390 0.0371 0.0142 0.0167 

 𝜷𝟎   MSE 0.0210 0.0234 0.0233 0.0214 0.0143 0.0158 

 150 𝜷𝟏   BIAS 1.9909 1.9904 1.9904 1.9908 0.7560 0.9698 

 𝜷𝟏   MSE 3.9642 3.9621 3.9618 3.9635 1.5629 1.9978 

 200 𝜷𝟎   BIAS 0.0334 0.0353 0.0354 0.0339 0.0102 0.0150 

 𝜷𝟎   MSE 0.0168 0.0189 0.0188 0.0172 0.0140 0.0122 

 200 𝜷𝟏   BIAS 1.9911 1.9906 1.9906 1.9910 0.6651 0.9326 

 𝜷𝟏   MSE 3.9646 3.9628 3.9628 3.9642 1.3739 1.9144 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         APPENDIX X 

Kruskal-Wallis Test on Simple Regression for 30% outliers in x-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N  Median  Ave Rank      Z 

1           20  1.0731      67.2   0.94 

2           20  1.0827      66.7   0.87 

3           21  0.1840      64.5   0.59 

4           18  1.0766      66.4   0.78 

5           22  0.4057      47.1  -2.00 

6           19  0.9326      52.5  -1.10 

Overall    120              60.5 
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H = 6.46  DF = 5  P = 0.264 

H = 6.46  DF = 5  P = 0.264  (adjusted for ties) 
 

 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

APPENDIX XI 

Simulated MSE and BIAS on Simple Regression for 10% Outliers in 𝒚-axis 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 0.8322 0.1233 0.0081 0.0278 0.0138 0.0079 

 𝜷𝟎   MSE 1.0170 0.0791 0.0622 0.0640 0.0612 0.0649 

   20 𝜷𝟏   BIAS 1.2935 0.1869 0.0069 0.0391 0.0113 0.0012 

 𝜷𝟏   MSE 2.6604 0.2183 0.1743 0.1844 0.1773 0.1884 

   50 𝜷𝟎   BIAS 0.9913 0.1429 0.0134 0.0346 0.0175 0.0117 

 𝜷𝟎   MSE 1.1653 0.0453 0.0234 0.0251 0.0234 0.0234 

   50 𝜷𝟏   BIAS 0.2903 0.0504 0.0079 0.0153 0.0087 0.0064 

 𝜷𝟏   MSE 0.6970 0.0892 0.0811 0.0877 0.0832 0.0801 

  100 𝜷𝟎   BIAS 1.0240 0.1455 0.0109 0.0332 0.0160 0.0086 

 𝜷𝟎   MSE 1.1340 0.0340 0.0116 0.0137 0.0119 0.0114 

 100 𝜷𝟏   BIAS 0.5421 0.0815 0.0005 0.0128 0.0038 0.0002 
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 𝜷𝟏   MSE 0.6941 0.0491 0.0395 0.0426 0.0398 0.0394 

 150 𝜷𝟎   BIAS 0.9985 0.1399 0.0079 0.0308 0.0132 0.0056 

 𝜷𝟎   MSE 1.0579 0.0287 0.0083 0.0097 0.0084 0.0081 

 150 𝜷𝟏   BIAS 0.0899 0.0122 0.0012 0.0006 0.0006 0.0001 

 𝜷𝟏   MSE 0.1905 0.0263 0.0240 0.0252 0.0238 0.0235 

 200 𝜷𝟎   BIAS 1.0028 0.1447 0.0112 0.0339 0.0157 0.0086 

 𝜷𝟎   MSE 1.0469 0.0274 0.0061 0.0076 0.0064 0.0061 

 200 𝜷𝟏   BIAS 0.1924 0.0196 0.0081 0.0042 0.0072 0.0087 

 𝜷𝟏   MSE 0.1922 0.0204 0.0184 0.0196 0.0185 0.0182 
 

 

 

 

 

 

 

 

 

 

 

 

     APPENDIX XII 

Kruskal-Wallis Test on Simple Regression for 10% Outliers in 𝒚-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N    Median  Ave Rank      Z 

1           20  0.994900     109.8   6.94 

2           20  0.064750      77.9   2.45 

3           21  0.011200      39.0  -3.11 

4           18  0.029300      56.3  -0.56 

5           22  0.014750      43.5  -2.54 

6           19  0.008700      37.7  -3.12 

Overall    120                60.5 

 

H = 66.88  DF = 5  P = 0.000 
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H = 66.88  DF = 5  P = 0.000  (adjusted for ties) 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

APPENDIX XIII 

Simulated MSE and BIAS on Simple Regression for 20% Outliers in 𝒚-axis 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 1.8531 0.3405 0.0336 0.1299 0.0527 0.0315 

 𝜷𝟎   MSE 4.1726 0.2057 0.0752 0.1340 0.0819 0.0772 

   20 𝜷𝟏   BIAS 0.8329 0.1530 0.0035 0.0436 0.0079 0.0020 

 𝜷𝟏   MSE 2.0266 0.2214 0.1813 0.2103 0.1942 0.1883 

   50 𝜷𝟎   BIAS 1.9870 0.3622 0.0326 0.1120 0.0527 0.0272 

 𝜷𝟎   MSE 4.2870 0.1676 0.0285 0.0478 0.0324 0.0283 

   50 𝜷𝟏   BIAS 0.9154 0.2038 0.0201 0.0665 0.0321 0.0156 

 𝜷𝟏   MSE 1.8429 0.1538 0.0984 0.1230 0.1083 0.0986 

  100 𝜷𝟎   BIAS 2.0325 0.3824 0.0301 0.1119 0.0518 0.0249 

 𝜷𝟎   MSE 4.2979 0.1672 0.0153 0.0331 0.0191 0.0151 

 100 𝜷𝟏   BIAS 1.4137 0.3319 0.0206 0.0939 0.0396 0.0168 
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 𝜷𝟏   MSE 2.6118 0.1733 0.0504 0.0767 0.0580 0.0502 

 150 𝜷𝟎   BIAS 1.9845 0.3528 0.0287 0.1043 0.0494 0.0233 

 𝜷𝟎   MSE 4.0447 0.1374 0.0110 0.0239 0.0136 0.0104 

 150 𝜷𝟏   BIAS 0.3146 0.0723 0.0093 0.0232 0.0127 0.0074 

 𝜷𝟏   MSE 0.4940 0.0428 0.0315 0.0391 0.0342 0.0314 

 200 𝜷𝟎   BIAS 2.0044 0.3597 0.0319 0.1083 0.0523 0.0250 

 𝜷𝟎   MSE 4.0958 0.1393 0.0084 0.0218 0.0110 0.0081 

 200 𝜷𝟏   BIAS 0.1453 0.0483 0.0173 0.0259 0.0198 0.0160 

 𝜷𝟏   MSE 0.3063 0.0308 0.0218 0.0292 0.0245 0.0216 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    APPENDIX XIV 

Kruskal-Wallis Test on Simple Regression for 20% Outliers in 𝒚-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           20  1.98575     109.0   6.83 

2           20  0.17045      84.3   3.36 

3           21  0.02870      35.4  -3.65 

4           18  0.08530      61.1   0.08 

5           22  0.03330      44.0  -2.47 

6           19  0.02330      30.7  -4.07 

Overall    120               60.5 

 

H = 78.18  DF = 5  P = 0.000 
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H = 78.18  DF = 5  P = 0.000  (adjusted for ties) 
 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

 

APPENDIX XV 

Simulated MSE and BIAS on Simple Regression for 30% Outliers in 𝒚-axis 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 2.9036 0.9170 0.1008 1.2486 0.1619 0.0860 

 𝜷𝟎   MSE 9.5809 1.2896 0.1452 3.6198 0.1700 0.1172 

   20 𝜷𝟏   BIAS 0.3581 0.1170 0.0045 0.1599 0.0091 0.0027 

 𝜷𝟏   MSE 1.7931 0.2551 0.1970 0.4807 0.2225 0.2072 

   50 𝜷𝟎   BIAS 3.0141 0.8969 0.0801 0.9085 0.1665 0.0773 

 𝜷𝟎   MSE 9.5918 1.0044 0.0470 2.0136 0.0883 0.0513 

   50 𝜷𝟏   BIAS 0.4552 0.2002 0.0185 0.2104 0.0381 0.0135 

 𝜷𝟏   MSE 2.0669 0.2867 0.1472 0.5208 0.2106 0.1677 

  100 𝜷𝟎   BIAS 3.0260 0.8592 0.0756 0.6523 0.1549 0.0726 
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 𝜷𝟎   MSE 9.4091 0.8271 0.0258 1.1164 0.0546 0.0276 

 100 𝜷𝟏   BIAS 0.7668 0.3106 0.0281 0.2412 0.0601 0.0247 

 𝜷𝟏   MSE 1.3959 0.2074 0.0646 0.2852 0.0891 0.0712 

 150 𝜷𝟎   BIAS 2.9874 0.8167 0.0747 0.4621 0.1511 0.0718 

 𝜷𝟎   MSE 9.0830 0.7154 0.0189 0.5055 0.0420 0.0201 

 150 𝜷𝟏   BIAS 0.4858 0.1906 0.0241 0.1061 0.0442 0.0266 

 𝜷𝟏   MSE 0.8080 0.1078 0.0435 0.1120 0.0605 0.0493 

 200 𝜷𝟎   BIAS 3.0142 0.8234 0.0773 0.4167 0.1534 0.0743 

 𝜷𝟎   MSE 9.2003 0.7147 0.0164 0.3854 0.0387 0.0172 

 200 𝜷𝟏   BIAS 0.2589 0.1076 0.0218 0.0702 0.0304 0.0216 

 𝜷𝟏   MSE 0.4556 0.0623 0.0304 0.0702 0.0434 0.0331 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  APPENDIX XVI 

Kruskal-Wallis Test on Simple Regression for 30% Outliers in 𝒚-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           20  2.48525     103.5   6.05 

2           20  0.51265      80.1   2.76 

3           21  0.04700      32.6  -4.05 

4           18  0.43940      80.5   2.65 

5           22  0.07810      41.8  -2.79 

6           19  0.04930      28.2  -4.41 
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Overall    120               60.5 

 

H = 79.07  DF = 5  P = 0.000 

H = 79.07  DF = 5  P = 0.000  (adjusted for ties) 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

APPENDIX XVII 

Simulated MSE and BIAS on Simple Regression for 40% Outliers in 𝒚-axis  

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 3.7895 2.3770 1.2854 2.9863 0.7094 0.3102 

 𝜷𝟎   MSE 15.8511 7.5439 4.4558 11.8804 1.4118 0.4626 

   20 𝜷𝟏   BIAS 1.3977 1.0138 0.6583 1.1816 0.3185 0.1331 

 𝜷𝟏   MSE 4.4199 2.1769 1.6292 3.2272 0.7103 0.3782 

   50 𝜷𝟎   BIAS 3.9902 2.2975 0.6596 3.1591 0.6304 0.3195 

 𝜷𝟎   MSE 16.5562 6.1603 1.6311 11.5706 0.7261 0.2682 

   50 𝜷𝟏   BIAS 0.2024 0.1706 0.0559 0.1954 0.0597 0.0373 

 𝜷𝟏   MSE 2.2637 0.8666 0.4549 1.6002 0.4953 0.3659 
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  100 𝜷𝟎   BIAS 4.0362 2.2869 0.3455 3.2253 0.5561 0.2743 

 𝜷𝟎   MSE 16.6201 5.7262 0.4993 11.3777 0.4514 0.1463 

 100 𝜷𝟏   BIAS 0.4988 0.3864 0.0699 0.4591 0.1143 0.0606 

 𝜷𝟏   MSE 1.1618 0.4859 0.1295 0.8498 0.2025 0.1425 

 150 𝜷𝟎   BIAS 3.9894 2.1852 0.2535 3.1707 0.5460 0.2727 

 𝜷𝟎   MSE 16.1345 5.0842 0.1486 10.6955 0.3898 0.1214 

 150 𝜷𝟏   BIAS 0.0931 0.0866 0.0080 0.0950 0.0267 0.0150 

 𝜷𝟏   MSE 0.7666 0.2830 0.0928 0.5534 0.1787 0.1364 

 200 𝜷𝟎   BIAS 4.0119 2.2093 0.2309 3.2384 0.5412 0.2731 

 𝜷𝟎   MSE 16.2480 5.1134 0.0851 10.9361 0.3561 0.1095 

 200 𝜷𝟏   BIAS 0.0871 0.0731 0.0241 0.0852 0.0302 0.0268 

 𝜷𝟏   MSE 0.5570 0.2131 0.0606 0.4004 0.1229 0.0934 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX XVIII 

Kruskal-Wallis Test on Simple Regression for 40% Outliers in 𝒚-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N  Median  Ave Rank      Z 

1           20  3.8895      86.0   3.59 

2           20  2.1810      74.0   1.90 

3           21  0.2535      46.3  -2.06 

4           18  3.0727      80.8   2.68 

5           22  0.3951      48.0  -1.86 
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6           19  0.1425      30.3  -4.12 

Overall    120              60.5 

 

H = 40.47  DF = 5  P = 0.000 

H = 40.47  DF = 5  P = 0.000  (adjusted for ties) 
 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

APPENDIX XIX 

Simulated MSE and BIAS on Simple Regression for 5% Outliers in 𝒙 and𝒚-axes 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 0.5147 0.0793 0.0131 0.0211 0.0103 0.0086 

 𝜷𝟎   MSE 0.5943 0.1484 0.1433 0.1359 0.0716 0.0765 

   20 𝜷𝟏   BIAS 1.9727 1.9508 1.9475 1.9413 0.1601 0.1237 

 𝜷𝟏   MSE 3.9057 3.8177 3.8048 3.7810 0.5616 0.4988 

   50 𝜷𝟎   BIAS 0.3822 0.0448 0.0258 0.0009 0.0127 0.0111 

 𝜷𝟎   MSE 0.2588 0.0520 0.0496 0.0468 0.0127 0.0216 

   50 𝜷𝟏   BIAS 1.9542 1.9309 1.9123 1.9297 0.0184 0.0103 
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 𝜷𝟏   MSE 3.8252 3.7345 3.6922 3.7296 0.1278 0.1136 

  100 𝜷𝟎   BIAS 0.4856 0.0635 0.0254 0.0061 0.0091 0.0061 

 𝜷𝟎   MSE 0.3079 0.0344 0.0301 0.0292 0.0117 0.0117 

 100 𝜷𝟏   BIAS 1.9790 1.9493 1.9437 1.9483 0.0121 0.0085 

 𝜷𝟏   MSE 3.9190 3.8024 3.7805 3.7983 0.0460 0.0393 

 150 𝜷𝟎   BIAS 0.4538 0.0615 0.0227 0.0080 0.0097 0.0063 

 𝜷𝟎   MSE 0.2509 0.0242 0.0207 0.0199 0.0081 0.0081 

 150 𝜷𝟏   BIAS 1.9712 1.9427 1.9372 1.9423 0.0031 0.0036 

 𝜷𝟏   MSE 3.8875 3.7760 3.7546 3.7742 0.0213 0.0219 

 200 𝜷𝟎   BIAS 0.4967 0.0713 0.0193 0.0140 0.0113 0.0081 

 𝜷𝟎   MSE 0.2825 0.0195 0.0144 0.0136 0.0057 0.0057 

 200 𝜷𝟏   BIAS 1.9789 1.9485 1.9426 1.9476 0.0021 0.0017 

 𝜷𝟏   MSE 3.9175 3.7981 3.7751 3.7943 0.0170 0.0171 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX XX 

Kruskal-Wallis Test on Simple Regression for 5% Outliers in 𝒙 and𝒚-axes: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           20  1.27425      90.9   4.28 

2           20  1.03965      76.8   2.30 

3           21  0.14330      68.8   1.21 

4           18  1.03280      63.2   0.36 

5           22  0.01240      34.5  -3.88 



83 
 

6           19  0.01110      29.7  -4.20 

Overall    120               60.5 

 

H = 48.15  DF = 5  P = 0.000 

H = 48.15  DF = 5  P = 0.000  (adjusted for ties) 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

APPENDIX XXI 

Simulated MSE and BIAS on Simple Regression for 10% Outliers in 𝒙 and𝒚-axes 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 1.0771 0.2102 0.0084 0.0913 0.0297 0.0130 

 𝜷𝟎   MSE 1.7889 0.2200 0.1651 0.1832 0.0903 0.0870 

   20 𝜷𝟏   BIAS 2.0478 1.9920 1.9782 1.9831 0.3536 0.3026 

 𝜷𝟏   MSE 4.2028 3.9744 3.9194 3.9387 0.9525 0.8435 

   50 𝜷𝟎   BIAS 1.0909 0.2160 0.0100 0.0951 0.0213 0.0082 

 𝜷𝟎   MSE 1.4509 0.1175 0.0657 0.0801 0.0312 0.0286 

   50 𝜷𝟏   BIAS 2.0465 1.9892 1.9756 1.9817 0.0997 0.0587 
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 𝜷𝟏   MSE 4.1917 3.9593 3.9054 3.9294 0.3241 0.2338 

  100 𝜷𝟎   BIAS 1.0715 0.1998 0.0072 0.0794 0.0172 0.0063 

 𝜷𝟎   MSE 1.2860 0.0741 0.0333 0.0414 0.0140 0.0132 

 100 𝜷𝟏   BIAS 2.0470 1.9904 1.9769 1.9834 0.0375 0.0307 

 𝜷𝟏   MSE 4.1916 3.9628 3.9091 3.9348 0.0947 0.0828 

 150 𝜷𝟎   BIAS 1.0718 0.1999 0.0058 0.0779 0.0236 0.0103 

 𝜷𝟎   MSE 1.2269 0.0638 0.0235 0.0312 0.0107 0.0098 

 150 𝜷𝟏   BIAS 2.0447 1.9884 1.9751 1.9814 0.0006 0.0055 

 𝜷𝟏   MSE 4.1821 3.9545 3.9019 3.9265 0.0391 0.0310 

 200 𝜷𝟎   BIAS 1.0673 0.1939 0.0138 0.0733 0.0204 0.0092 

 𝜷𝟎   MSE 1.1943 0.0538 0.0161 0.0224 0.0079 0.0072 

 200 𝜷𝟏   BIAS 2.0445 1.9881 1.9747 1.9812 0.0072 0.0064 

 𝜷𝟏   MSE 4.1807 3.9530 3.9000 3.9256 0.0252 0.0242 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  APPENDIX XXII 

Kruskal-Wallis Test on Simple Regression for 10% Outliers in 𝒙 and𝒚-axes: 

Response versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           20  1.91670      91.8   4.40 

2           20  1.10405      79.1   2.62 

3           21  0.16510      57.4  -0.45 

4           18  1.08220      71.3   1.42 
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5           22  0.02745      36.6  -3.56 

6           19  0.02420      28.9  -4.32 

Overall    120               60.5 

 

H = 49.80  DF = 5  P = 0.000 

H = 49.80  DF = 5  P = 0.000  (adjusted for ties) 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

APPENDIX XXIII 

Simulated MSE and BIAS on Simple Regression for 15% Outliers in 𝒙 and𝒚-axes 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 1.7716 0.3922 0.0344 0.1965 0.0539 0.0203 

 𝜷𝟎   MSE 4.1452 0.3756 0.1939 0.2917 0.1469 0.1302 

   20 𝜷𝟏   BIAS 2.0993 2.0092 1.9850 1.9965 0.5903 0.5300 

 𝜷𝟏   MSE 4.4161 4.0420 3.9452 3.9912 1.5426 1.3790 

   50 𝜷𝟎   BIAS 1.6118 0.3591 0.0319 0.1839 0.0474 0.0170 
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 𝜷𝟎   MSE 2.9758 0.2170 0.0809 0.1322 0.0465 0.0407 

   50 𝜷𝟏   BIAS 2.0892 2.0088 1.9876 1.9977 0.2339 0.2014 

 𝜷𝟏   MSE 4.3681 4.0371 3.9522 3.9927 0.5995 0.5274 

  100 𝜷𝟎   BIAS 1.7144 0.3978 0.0430 0.2136 0.0720 0.0372 

 𝜷𝟎   MSE 3.1317 0.2005 0.0397 0.0946 0.0265 0.0197 

 100 𝜷𝟏   BIAS 2.0971 2.0126 1.9897 2.0011 0.1397 0.1189 

 𝜷𝟏   MSE 4.3992 4.0516 3.9599 4.0054 0.3571 0.3114 

 150 𝜷𝟎   BIAS 1.6771 0.3791 0.0312 0.1970 0.0614 0.0321 

 𝜷𝟎   MSE 2.9411 0.1755 0.0292 0.0748 0.0168 0.0127 

 150 𝜷𝟏   BIAS 2.0936 2.0104 1.9879 1.9990 0.0481 0.0346 

 𝜷𝟏   MSE 4.3844 4.0425 3.9525 3.9967 0.1404 0.1094 

 200 𝜷𝟎   BIAS 1.7138 0.3846 0.0310 0.1949 0.0634 0.0290 

 𝜷𝟎   MSE 3.0311 0.1699 0.0216 0.0636 0.0138 0.0100 

 200 𝜷𝟏   BIAS 2.0951 2.0103 1.9875 1.9983 0.0163 0.0270 

 𝜷𝟏   MSE 4.3904 4.0417 3.9504 3.9936 0.0649 0.0816 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX XXIV 

Kruskal-Wallis Test on Simple Regression for 15% Outliers in 𝒙 and𝒚-axes: 

Response versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           20  2.52020      96.3   5.03 

2           20  1.20330      78.2   2.49 
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3           21  0.19390      54.6  -0.86 

4           18  1.14410      69.3   1.17 

5           22  0.06415      36.5  -3.58 

6           19  0.04070      30.3  -4.13 

Overall    120               60.5 

 

H = 52.87  DF = 5  P = 0.000 
 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

 

APPENDIX XXV 

Simulated MSE and BIAS on Simple Regression for 20% Outliers in 𝒙 and𝒚-axes 

 
SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUARE HAMPEL ALARM PROPOSED 

   20 𝜷𝟎   BIAS 2.4627 0.6629 0.0809 0.5218 0.1471 0.0571 

 𝜷𝟎   MSE 7.4081 0.7428 0.2606 0.9700 0.2870 0.2245 

   20 𝜷𝟏   BIAS 2.1490 2.0321 1.9939 2.0231 1.0304 0.9843 
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 𝜷𝟏   MSE 4.6271 4.1335 3.9797 4.0984 2.5685 2.3292 

   50 𝜷𝟎   BIAS 2.4650 0.6690 0.0933 0.4281 0.1656 0.0675 

 𝜷𝟎   MSE 6.6139 0.5740 0.1117 0.3823 0.1201 0.0792 

   50 𝜷𝟏   BIAS 2.1510 2.0354 1.9980 2.0197 0.7556 0.8385 

 𝜷𝟏   MSE 4.6302 4.1445 3.9936 4.0812 1.7552 1.8677 

  100 𝜷𝟎   BIAS 2.4548 0.6753 0.0992 0.4365 0.1779 0.0751 

 𝜷𝟎   MSE 6.2936 0.5208 0.0626 0.2899 0.0773 0.0432 

 100 𝜷𝟏   BIAS 2.1489 2.0351 1.9979 2.0198 0.4878 0.6681 

 𝜷𝟏   MSE 4.6195 4.1425 3.9924 4.0804 1.1267 1.4791 

 150 𝜷𝟎   BIAS 2.4617 0.6621 0.0890 0.4087 0.1689 0.0669 

 𝜷𝟎   MSE 6.2293 0.4833 0.0454 0.2330 0.0566 0.0304 

 150 𝜷𝟏   BIAS 2.1492 2.0341 1.9971 2.0179 0.4060 0.6666 

 𝜷𝟏   MSE 4.6201 4.1381 3.9890 4.0725 0.9038 1.4144 

 200 𝜷𝟎   BIAS 2.4534 0.6630 0.0916 0.4125 0.1772 0.0743 

 𝜷𝟎   MSE 6.1568 0.4724 0.0354 0.2180 0.0547 0.0247 

 200 𝜷𝟏   BIAS 2.1487 2.0340 1.9970 2.0180 0.3748 0.6731 

 𝜷𝟏   MSE 4.6178 4.1375 3.9885 4.0727 0.8216 1.4156 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX XXVI 

Kruskal-Wallis Teston Simple Regression for 20% Outliers in 𝒙 and𝒚-axes: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N  Median  Ave Rank      Z 

1           20  3.5414     102.3   5.88 
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2           20  1.3874      71.2   1.50 

3           21  0.2899      49.4  -1.61 

4           18  1.4939      63.6   0.41 

5           22  0.3309      40.4  -3.00 

6           19  0.6666      38.0  -3.07 

Overall    120              60.5 

 

H = 48.30  DF = 5  P = 0.000 

 
 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

APPENDIX XXVII 

Simulated MSE and BIAS on Multiple Regression for Data with no Outliers 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUAR
E 

HAMPE
L 

ALARM PROPOSE
D 

  20 𝜷𝟎 BIAS 0.0100 0.0100 0.0098 0.0096 0.0092 0.0151 

 𝜷𝟎 MSE 0.0520 0.0556 0.0576 0.0529 0.0549 0.0677 

  20 𝜷𝟏 BIAS 0.0006 0.0021 0.0048 0.0006 0.0021 0.0041 

 𝜷𝟏 MSE 0.1537 0.1660 0.1771 0.1576 0.1670 0.2225 
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  20 𝜷𝟐 BIAS 0.0085 0.0105 0.0113 0.0093 0.0111 0.0130 

 𝜷𝟐 MSE 0.0462 0.0471 0.0499 0.0460 0.0487 0.0622 

  50 𝜷𝟎 BIAS 0.0022 0.0029 0.0028 0.0023 0.0023 0.0020 

 𝜷𝟎 MSE 0.0198 0.0210 0.0217 0.0204 0.0207 0.0229 

  50 𝜷𝟏 BIAS 0.0116 0.0113 0.0114 0.0121 0.0122 0.0155 

 𝜷𝟏 MSE 0.0606 0.0640 0.0651 0.0611 0.0611 0.0683 

  50 𝜷𝟐 BIAS 0.0010 0.0022 0.0021 0.0015 0.0015 0.0014 

 𝜷𝟐 MSE 0.0160 0.0164 0.0165 0.0159 0.0160 0.0174 

  100 𝜷𝟎 BIAS 0.0022 0.0020 0.0023 0.0025 0.0025 0.0028 

 𝜷𝟎 MSE 0.0101 0.0106 0.0107 0.0102 0.0102 0.0108 

  100 𝜷𝟏 BIAS 0.0030 0.0055 0.0051 0.0036 0.0036 0.0036 

 𝜷𝟏 MSE 0.0309 0.0325 0.0327 0.0312 0.0312 0.0328 

  100 𝜷𝟐 BIAS 0.0005 0.0009 0.0010 0.0009 0.0009 0.0016 

 𝜷𝟐 MSE 0.0067 0.0071 0.0073 0.0068 0.0068 0.0074 

  150 𝜷𝟎 BIAS 0.0006 0.0013 0.0014 0.0009 0.0009 0.0015 

 𝜷𝟎 MSE 0.0064 0.0068 0.0068 0.0064 0.0065 0.0069 

  150 𝜷𝟏 BIAS 0.0030 0.0036 0.0040 0.0033 0.0033 0.0039 

 𝜷𝟏 MSE 0.0200 0.0212 0.0211 0.0203 0.0203 0.0212 

  150 𝜷𝟐 BIAS 0.0011 0.0012 0.0012 0.0012 0.0012 0.0013 

 𝜷𝟐 MSE 0.0045 0.0050 0.0050 0.0049 0.0049 0.0051 

  200 𝜷𝟎 BIAS 0.0014 0.0011 0.0014 0.0016 0.0016 0.0016 

 𝜷𝟎 MSE 0.0050 0.0052 0.0053 0.0050 0.0050 0.0052 

  200 𝜷𝟏 BIAS 0.0037 0.0027 0.0028 0.0034 0.0034 0.0031 

 𝜷𝟏 MSE 0.0144 0.0149 0.0150 0.0145 0.0145 0.0151 

  200 𝜷𝟐 BIAS 0.0016 0.0007 0.0008 0.0013 0.0013 0.0009 

 𝜷𝟐 MSE 0.0033 0.0035 0.0035 0.0034 0.0034 0.0035 

 

 

 
 

 

 

 

APPENDIX XXVIII 

 

Kruskal-Wallis Test on Multiple Regression for Data with no Outliers: Response        

versus Treatment  

Kruskal-Wallis Test on Response 

 

Treatment    N    Median  Ave Rank      Z 
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1           30  0.005700      85.4  -0.59 

2           30  0.006150      90.8   0.03 

3           30  0.006050      93.5   0.35 

4           30  0.005700      87.6  -0.33 

5           30  0.005750      89.6  -0.11 

6           30  0.006050      96.1   0.64 

 

Overall    180                90.5 

 

H = 0.83  DF = 5  P = 0.975 

H = 0.83  DF = 5  P = 0.975  (adjusted for ties) 
 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

APPENDIX XXIX 

Simulated MSE and BIAS on Multiple Regression for 10% Outliers in 𝒙-axis 

SAMPLE 
SIZE  

BETA CRITERI
A 

OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 

  20 𝜷𝟎 BIAS 0.0438 0.0468 0.0456 0.0050 0.0084 0.0081 

 𝜷𝟎 MSE 0.1357 0.1516 1.1587 0.0748 0.0804 0.1012 

  20 𝜷𝟏 BIAS 1.9684 1.9693 1.9691 0.2817 0.2941 0.2490 

 𝜷𝟏 MSE 3.8813 3.8853 3.8847 0.8307 0.8411 0.8002 
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  20 𝜷𝟐 BIAS 0.0103 0.0113 0.0125 0.0097 0.0115 0.0141 

 𝜷𝟐 MSE 0.0919 0.1029 0.1102 0.0591 0.0622 0.0789 

  50 𝜷𝟎 BIAS 0.0399 0.0425 0.0415 0.0068 0.0083 0.0104 

 𝜷𝟎 MSE 0.0531 0.0584 0.0591 0.0246 0.0244 0.0255 

  50 𝜷𝟏 BIAS 1.9731 1.9720 1.9719 0.0900 0.0718 0.0791 

 𝜷𝟏 MSE 3.8957 3.8913 3.8910 0.2868 0.2485 0.2630 

  50 𝜷𝟐 BIAS 0.0019 0.0017 0.0016 0.0021 0.0017 0.0030 

 𝜷𝟐 MSE 0.0334 0.0371 0.0379 0.0190 0.0190 0.0205 

  100 𝜷𝟎 BIAS 0.0396 0.0439 0.0439 0.0010 0.0005 0.0012 

 𝜷𝟎 MSE 0.0280 0.0310 0.0307 0.0121 0.0122 0.0123 

  100 𝜷𝟏 BIAS 1.9719 1.9702 1.9702 0.0260 0.0183 0.0059 

 𝜷𝟏 MSE 3.8893 3.8828 3.8829 0.0945 0.0791 0.0529 

  100 𝜷𝟐 BIAS 0.0019 0.0036 0.0036 0.0013 0.0081 0.0013 

 𝜷𝟐 MSE 0.0185 0.0202 0.0203 0.0088 0.0088 0.0090 

  150 𝜷𝟎 BIAS 0.0414 0.0444 0.0441 0.0023 0.0024 0.0019 

 𝜷𝟎 MSE 0.0185 0.0210 0.0208 0.0075 0.0075 0.0077 

  150 𝜷𝟏 BIAS 1.9709 1.9691 1.9691 0.0049 0.0030 0.0028 

 𝜷𝟏 MSE 3.8850 3.8781 3.8782 0.0227 0.0265 0.0266 

  150 𝜷𝟐 BIAS 0.0050 0.0042 0.0040 0.0034 0.0034 0.0037 

 𝜷𝟐 MSE 0.0120 0.0128 0.0128 0.0061 0.0061 0.0062 

  200 𝜷𝟎 BIAS 0.0389 0.0424 0.0420 0.0019 0.0018 0.0019 

 𝜷𝟎 MSE 0.0132 0.0147 0.0146 0.0056 0.0056 0.0057 

  200 𝜷𝟏 BIAS 1.9727 1.9709 1.9709 0.0009 0.0009 0.0008 

 𝜷𝟏 MSE 3.8920 3.8849 3.8851 0.0167 0.0167 0.0170 

  200 𝜷𝟐 BIAS 0.0038 0.0035 0.0035 0.0039 0.0039 0.0038 

 𝜷𝟐 MSE 0.0090 0.0102 0.0101 0.0044 0.0044 0.0044 

 

 

 
 
 
 
 
 
 
 
 

APPENDIX XXX 
 

Kruskal-Wallis Test on Multiple Regression for 10% Outliers in 𝒙-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N    Median  Ave Rank      Z 
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1           30  0.040650     112.0   2.48 

2           30  0.044150     113.2   2.62 

3           30  0.044000     113.3   2.63 

4           30  0.008150      67.9  -2.60 

5           30  0.008600      68.9  -2.49 

6           30  0.008550      67.6  -2.64 

Overall    180                90.5 

 

H = 33.21  DF = 5  P = 0.000 

H = 33.21  DF = 5  P = 0.000  (adjusted for ties) 

 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

APPENDIX XXXI 

Simulated MSE and BIAS on Multiple Regression for 20% Outliers in 𝒙-axis 

SAMPLE 
SIZE  

BETA CRITERIA OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 

  20 𝜷𝟎 BIAS 0.0412 0.0400 0.0377 0.0078 0.0095 0.0082 

 𝜷𝟎 MSE 0.1631 0.1814 0.1900 0.1150 0.1266 0.1484 

  20 𝜷𝟏 BIAS 1.9871 1.9872 1.9871 0.8225 0.8270 0.8325 
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 𝜷𝟏 MSE 3.9521 3.9528 3.9527 1.9240 1.9260 1.9626 

  20 𝜷𝟐 BIAS 0.0206 0.0205 0.0197 0.0175 0.0174 0.0180 

 𝜷𝟐 MSE 0.1053 0.1145 0.1198 0.0778 0.0826 0.1033 

  50 𝜷𝟎 BIAS 0.0442 0.0465 0.0471 0.0093 0.0072 0.0091 

 𝜷𝟎 MSE 0.0607 0.0673 0.0677 0.0372 0.0381 0.0396 

  50 𝜷𝟏 BIAS 1.9862 1.9857 1.9856 0.4655 0.4448 0.4396 

 𝜷𝟏 MSE 3.9463 3.9445 3.9441 1.0260 0.9862 0.9816 

  50 𝜷𝟐 BIAS 0.0017 0.0018 0.0019 0.0055 0.0049 0.0056 

 𝜷𝟐 MSE 0.0370 0.0409 0.0414 0.0237 0.0234 0.0237 

  100 𝜷𝟎 BIAS 0.5413 0.5955 0.5819 0.1494 0.0946 0.0135 

 𝜷𝟎 MSE 0.0302 0.0338 0.0337 0.0163 0.0157 0.0156 

  100 𝜷𝟏 BIAS 2.0000 2.0000 2.0000 0.8829 0.8461 0.8093 

 𝜷𝟏 MSE 3.9360 3.9429 3.9429 0.5358 0.4978 0.4788 

  100 𝜷𝟐 BIAS 0.1344 0.1792 0.1642 0.1465 0.0472 0.0256 

 𝜷𝟐 MSE 0.0172 0.0184 0.0183 0.0104 0.0104 0.0107 

  150 𝜷𝟎 BIAS 0.0371 0.0399 0.0400 0.0018 0.0017 0.0010 

 𝜷𝟎 MSE 0.0207 0.0231 0.0230 0.0094 0.0093 0.0098 

  150 𝜷𝟏 BIAS 1.9860 1.9850 1.9850 0.1491 0.1140 0.1065 

 𝜷𝟏 MSE 3.9448 3.9408 3.9408 0.3226 0.2523 0.2359 

  150 𝜷𝟐 BIAS 0.0012 0.0014 0.0014 0.0012 0.0005 0.0010 

 𝜷𝟐 MSE 0.0129 0.0142 0.0142 0.0071 0.0071 0.0073 

  200 𝜷𝟎 BIAS 0.5143 0.5684 0.5684 0.1693 0.1349 0.1593 

 𝜷𝟎 MSE 0.0162 0.0182 0.0180 0.0073 0.0067 0.0068 

  200 𝜷𝟏 BIAS 2.0000 2.0000 2.0000 0.9744 0.5278 0.4601 

 𝜷𝟏 MSE 3.9467 3.9433 3.9434 0.1702 0.1042 0.0961 

  200 𝜷𝟐 BIAS 2.4397 0.0485 0.0623 0.1722 0.0896 0.0846 

 𝜷𝟐 MSE 0.0097 0.0106 0.0106 0.0049 0.0049 0.0049 

 

 

 

 

 

 

APPENDIX XXXII 
 

Kruskal-Wallis Test on Multiple Regression for 20% Outliers in 𝒙-axis: Response 

versus Treatment  

Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 
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1           30  0.11985     105.0   1.67 

2           30  0.09090     104.3   1.58 

3           30  0.09375     104.0   1.56 

4           30  0.09640      80.1  -1.19 

5           30  0.06490      75.8  -1.70 

6           30  0.03260      73.8  -1.92 

Overall    180               90.5 

 

H = 13.09  DF = 5  P = 0.023 

H = 13.09  DF = 5  P = 0.023  (adjusted for ties) 

 
 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

 APPENDIX XXXIII 

Simulated MSE and BIAS on Multiple Regression for 30% Outliers in 𝒙-axis 

SAMPLE 
SIZE  

BETA CRITERI
A 

OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 

  20 𝜷𝟎 BIAS 0.0430 0.0461 0.0479 0.0364 0.0439 0.0471 
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 𝜷𝟎 MSE 0.1773 0.1983 0.2099 0.1667 0.1809 0.2113 

  20 𝜷𝟏 BIAS 1.9904 1.9903 1.9901 1.4550 1.4457 1.3603 

 𝜷𝟏 MSE 3.9642 3.9640 3.9636 3.0673 3.0473 2.8826 

  20 𝜷𝟐 BIAS 0.0081 0.0082 0.0088 0.0079 0.0055 0.0098 

 𝜷𝟐 MSE 0.1017 0.1116 0.1168 0.0970 0.1056 0.1303 

  50 𝜷𝟎 BIAS 0.0493 0.0500 0.0508 0.0285 0.0281 0.0278 

 𝜷𝟎 MSE 0.0709 0.0780 0.0786 0.0564 0.0570 0.0603 

  50 𝜷𝟏 BIAS 1.9890 1.9885 1.9884 1.2666 1.2327 1.2732 

 𝜷𝟏 MSE 3.9571 3.9553 3.9546 2.6345 2.5726 2.6475 

  50 𝜷𝟐 BIAS 0.0024 0.0015 0.0013 0.0009 0.0003 0.0022 

 𝜷𝟐 MSE 0.0377 0.0419 0.0423 0.0340 0.0341 0.0380 

  100 𝜷𝟎 BIAS 0.0356 0.0393 0.0394 0.0200 0.0173 0.0219 

 𝜷𝟎 MSE 0.0330 0.0368 0.0365 0.0261 0.0257 0.0281 

  100 𝜷𝟏 BIAS 1.9913 1.9907 1.9907 1.1025 1.0521 1.1904 

 𝜷𝟏 MSE 3.9656 3.9633 3.9633 2.2759 2.1822 2.4529 

  100 𝜷𝟐 BIAS 0.0068 0.0063 0.0059 0.0055 0.0068 0.0027 

 𝜷𝟐 MSE 0.0185 0.0204 0.0203 0.0162 0.0162 0.0172 

  150 𝜷𝟎 BIAS 0.0384 0.0400 0.0402 0.0181 0.0171 0.0230 

 𝜷𝟎 MSE 0.0228 0.0253 0.0251 0.0169 0.0167 0.0186 

  150 𝜷𝟏 BIAS 1.9906 1.9901 1.9901 0.9897 0.8934 1.1016 

 𝜷𝟏 MSE 3.9629 3.9609 3.9610 2.0272 1.8372 2.2525 

  150 𝜷𝟐 BIAS 0.0002 0.0003 0.0062 0.0009 0.0007 0.0009 

 𝜷𝟐 MSE 0.0117 0.0131 0.0130 0.0098 0.0101 0.0106 

  200 𝜷𝟎 BIAS 0.0453 0.0480 0.0482 0.0265 0.0233 0.0299 

 𝜷𝟎 MSE 0.0183 0.0197 0.0198 0.0129 0.0122 0.0144 

  200 𝜷𝟏 BIAS 1.9910 1.9895 1.9895 0.9721 0.8087 1.0685 

 𝜷𝟏 MSE 3.9609 3.9583 3.9584 1.9867 1.6560 2.1805 

  200 𝜷𝟐 BIAS 0.0031 0.0030 0.0033 0.0008 0.0016 0.0023 

 𝜷𝟐 MSE 0.0087 0.0095 0.0095 0.0071 0.0071 0.0075 

 

 

 

 

 

 

                                             APPENDIX XXXIV 
 

Kruskal-Wallis Test on Multiple Regression for 30% Outliers in 𝒙-axis: Response 

versus Treatment  

 
Kruskal-Wallis Test on Response 
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Treatment    N   Median  Ave Rank      Z 

1           30  0.04415      96.2   0.66 

2           30  0.04705      97.0   0.74 

3           30  0.04805      97.8   0.84 

4           30  0.03125      83.1  -0.85 

5           30  0.03110      81.9  -0.99 

6           30  0.03395      87.0  -0.41 

Overall    180               90.5 

 

H = 2.97  DF = 5  P = 0.705 

H = 2.97  DF = 5  P = 0.705  (adjusted for ties) 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

                                                   APPENDIX XXXV 

Simulated MSE and BIAS on Multiple Regression for 10% Outliers in 𝒚-axis 

SAMPLE 
SIZE  

BETA CRITERI
A 

OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 
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  20 𝜷𝟎 BIAS 0.8800 0.1106 0.0075 0.0128 0.0028 0.0061 

 𝜷𝟎 MSE 1.2113 0.0783 0.0602 0.0615 0.0596 0.0678 

  20 𝜷𝟏 BIAS 1.3779 0.1834 0.0019 0.0308 0.0011 0.0040 

 𝜷𝟏 MSE 3.2926 0.2405 0.2004 0.2016 0.1957 0.2331 

  20 𝜷𝟐 BIAS 0.1146 0.0050 0.0158 0.0139 0.0158 0.0155 

 𝜷𝟐 MSE 0.7776 0.0699 0.0650 0.0701 0.0655 0.0875 

  50 𝜷𝟎 BIAS 1.0628 0.1610 0.0056 0.0355 0.0128 0.0030 

 𝜷𝟎 MSE 1.3223 0.0542 0.0258 0.0294 0.0263 0.0261 

  50 𝜷𝟏 BIAS 0.4382 0.0810 0.0153 0.0278 0.0176 0.0163 

 𝜷𝟏 MSE 0.7506 0.0853 0.0746 0.0772 0.0739 0.0742 

  50 𝜷𝟐 BIAS 0.7271 0.1176 0.0077 0.0282 0.0115 0.0040 

 𝜷𝟐 MSE 0.6958 0.0365 0.0201 0.0230 0.0208 0.0208 

  100 𝜷𝟎 BIAS 1.0190 0.1443 0.0099 0.0330 0.0151 0.0082 

 𝜷𝟎 MSE 1.1268 0.0341 0.0120 0.0140 0.0123 0.0119 

  100 𝜷𝟏 BIAS 0.5021 0.0791 0.0025 0.0156 0.0050 0.0023 

 𝜷𝟏 MSE 0.6711 0.0510 0.0404 0.0437 0.0411 0.0403 

  100 𝜷𝟐 BIAS 0.0482 0.0083 0.0019 0.0025 0.0018 0.0021 

 𝜷𝟐 MSE 0.0513 0.0082 0.0078 0.0078 0.0076 0.0077 

  150 𝜷𝟎 BIAS 1.0020 0.1428 0.0085 0.0321 0.0135 0.0064 

 𝜷𝟎 MSE 1.0639 0.0288 0.0078 0.0091 0.0079 0.0078 

  150 𝜷𝟏 BIAS 0.0447 0.0092 0.0029 0.0026 0.0023 0.0024 

 𝜷𝟏 MSE 0.1729 0.0256 0.0241 0.0251 0.0242 0.0241 

  150 𝜷𝟐 BIAS 0.2897 0.0485 0.0033 0.0118 0.0047 0.0033 

 𝜷𝟐 MSE 0.1423 0.0092 0.0059 0.0066 0.0060 0.0060 

  200 𝜷𝟎 BIAS 1.0106 0.1438 0.0102 0.0338 0.0154 0.0080 

 𝜷𝟎 MSE 1.0675 0.0274 0.0060 0.0075 0.0062 0.0058 

  200 𝜷𝟏 BIAS 0.1755 0.0295 0.0040 0.0093 0.0050 0.0043 

 𝜷𝟏 MSE 0.1813 0.0201 0.0185 0.0194 0.0188 0.0183 

  200 𝜷𝟐 BIAS 0.1110 0.0154 0.0006 0.0013 0.0006 0.0010 

 𝜷𝟐 MSE 0.0378 0.0043 0.0038 0.0039 0.0037 0.0038 

 

 

 

 

 

 

APPENDIX XXXVI 

Kruskal-Wallis Test on Multiple Regression for 10% Outliers in 𝒚-axis: Response 

versus Treatment  
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Kruskal-Wallis Test on Response 

 

Treatment    N    Median  Ave Rank      Z 

1           30  0.711450     159.5   7.95 

2           30  0.049750     112.0   2.48 

3           30  0.008150      62.0  -3.28 

4           30  0.021200      83.2  -0.84 

5           30  0.012550      65.5  -2.88 

6           30  0.007750      60.7  -3.43 

Overall    180                90.5 

 

H = 83.99  DF = 5  P = 0.000 

H = 83.99  DF = 5  P = 0.000  (adjusted for ties) 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

APPENDIX XXXVII 

Simulated MSE and BIAS on Multiple Regression for 20% Outliers in 𝒚-axis 

SAMPLE 
SIZE  

BETA CRITERI
A 

OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 
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  20 𝜷𝟎 BIAS 1.7370 0.3018 0.0149 0.0948 0.0365 0.0123 

 𝜷𝟎 MSE 3.7599 0.1805 0.0709 0.0985 0.0754 0.0758 

  20 𝜷𝟏 BIAS 0.6647 0.0782 0.0109 0.0083 0.0084 0.0108 

 𝜷𝟏 MSE 2.1465 0.2271 0.2026 0.2269 0.0280 0.2201 

  20 𝜷𝟐 BIAS 0.5552 0.1733 0.0425 0.0880 0.0507 0.0329 

 𝜷𝟐 MSE 1.4471 0.1305 0.0852 0.1316 0.1000 0.1000 

  50 𝜷𝟎 BIAS 2.0505 0.3999 0.0253 0.1257 0.0525 0.0197 

 𝜷𝟎 MSE 4.5510 0.2068 0.0335 0.0673 0.0411 0.0339 

  50 𝜷𝟏 BIAS 1.0370 0.2229 0.0292 0.0790 0.0417 0.0278 

 𝜷𝟏 MSE 1.9479 0.1534 0.0870 0.1135 0.0933 0.0883 

  50 𝜷𝟐 BIAS 0.6703 0.1689 0.0149 0.0566 0.0273 0.0111 

 𝜷𝟐 MSE 0.8455 0.0702 0.0308 0.0507 0.0370 0.0320 

  100 𝜷𝟎 BIAS 2.0171 0.3829 0.0317 0.1159 0.0530 0.0264 

 𝜷𝟎 MSE 4.2427 0.1684 0.0162 0.0353 0.0206 0.0160 

  100 𝜷𝟏 BIAS 1.3637 0.3232 0.0213 0.0967 0.0375 0.0177 

 𝜷𝟏 MSE 2.5008 0.1734 0.0519 0.0797 0.0601 0.0532 

  100 𝜷𝟐 BIAS 0.1156 0.0304 0.0055 0.0132 0.0071 0.0051 

 𝜷𝟐 MSE 0.1504 0.0130 0.0100 0.0124 0.0110 0.0103 

  150 𝜷𝟎 BIAS 1.9964 0.3567 0.0271 0.0157 0.0481 0.0211 

 𝜷𝟎 MSE 4.0920 0.1394 0.0100 0.0233 0.0124 0.0097 

  150 𝜷𝟏 BIAS 0.3770 0.0748 0.0027 0.0209 0.0073 0.0008 

 𝜷𝟏 MSE 0.4981 0.0443 0.0324 0.0421 0.0360 0.0325 

  150 𝜷𝟐 BIAS 0.3026 0.0703 0.0069 0.0234 0.0102 0.0058 

 𝜷𝟐 MSE 0.1858 0.0143 0.0073 0.0100 0.0083 0.0074 

  200 𝜷𝟎 BIAS 2.0080 0.3556 0.0279 0.1044 0.0486 0.0218 

 𝜷𝟎 MSE 4.1176 0.1366 0.0079 0.0202 0.0103 0.0077 

  200 𝜷𝟏 BIAS 0.0188 0.0301 0.0026 0.0021 0.0071 0.0033 

 𝜷𝟏 MSE 0.3028 0.0281 0.0233 0.0282 0.0257 0.0238 

  200 𝜷𝟐 BIAS 0.1287 0.0286 0.0034 0.0101 0.0059 0.0039 

 𝜷𝟐 MSE 0.0681 0.0063 0.0047 0.0058 0.0050 0.0047 

 

 

 

 

 

 

APPENDIX XXXVIII 

Kruskal-Wallis Teston Multiple Regression for 20% Outliers in 𝒚-axis: Response 

versus Treatment  
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Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           30  1.20035     157.8   7.75 

2           30  0.14640     118.8   3.26 

3           30  0.02230      57.9  -3.75 

4           30  0.04640      84.9  -0.65 

5           30  0.03200      67.9  -2.61 

6           30  0.01870      55.8  -4.00 

Overall    180               90.5 

 

H = 89.92  DF = 5  P = 0.000 

H = 89.92  DF = 5  P = 0.000  (adjusted for ties) 
 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

APPENDIX XXXIX 

Simulated MSE and BIAS on Multiple Regression for 30% Outliers in 𝒚-axis 

SAMPLE 
SIZE  

BETA CRITERI
A 

OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 
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  20 𝜷𝟎 BIAS 2.6733 1.0070 0.2159 0.5721 0.1781 0.0764 

 𝜷𝟎 MSE 8.3023 1.6545 0.4679 1.2216 0.2081 0.1200 

  20 𝜷𝟏 BIAS 0.0159 0.1784 0.0952 0.0754 0.0576 0.0345 

 𝜷𝟏 MSE 2.2758 0.4384 0.3291 0.4289 0.2970 0.2803 

  20 𝜷𝟐 BIAS 1.0262 0.6365 0.2144 0.3277 0.1498 0.0804 

 𝜷𝟐 MSE 2.5571 0.8740 0.4153 0.5396 0.2389 0.1888 

  50 𝜷𝟎 BIAS 3.1262 1.1827 0.1349 0.6772 0.2227 0.0890 

 𝜷𝟎 MSE 10.2968 1.7730 0.1639 1.1934 0.1775 0.0757 

  50 𝜷𝟏 BIAS 0.2966 0.3323 0.0375 0.1579 0.0489 0.0027 

 𝜷𝟏 MSE 1.6722 0.4759 0.1773 0.4070 0.2531 0.1630 

  50 𝜷𝟐 BIAS 1.1783 0.6918 0.0986 0.3070 0.1406 0.0594 

 𝜷𝟐 MSE 1.9328 0.7343 0.1312 0.4541 0.1538 0.0786 

  100 𝜷𝟎 BIAS 2.9958 0.8616 0.0807 0.4267 0.1602 0.0800 

 𝜷𝟎 MSE 9.2274 0.8322 0.0288 0.4267 0.0600 0.0308 

  100 𝜷𝟏 BIAS 0.7223 0.3024 0.0244 0.1579 0.0600 0.0238 

 𝜷𝟏 MSE 1.3055 0.2089 0S.0621 0.1653 0.0883 0.0683 

  100 𝜷𝟐 BIAS 0.1949 0.0925 0.0126 0.0526 0.0222 0.0134 

 𝜷𝟐 MSE 0.2221 0.0311 0.0129 0.0289 0.0176 0.0147 

  150 𝜷𝟎 BIAS 2.9829 0.8329 0.0756 0.3719 0.1549 0.0718 

 𝜷𝟎 MSE 9.0538 0.7476 0.0186 0.2589 0.0434 0.0197 

  150 𝜷𝟏 BIAS 0.5423 0.2129 0.0182 0.1033 0.0415 0.0187 

 𝜷𝟏 MSE 0.8525 0.1243 0.0473 0.1119 0.0687 0.0530 

  150 𝜷𝟐 BIAS 0.3044 0.1267 0.0143 0.0632 0.0295 0.0145 

 𝜷𝟐 MSE 0.2307 0.0351 0.0107 0.0256 0.0160 0.0124 

  200 𝜷𝟎 BIAS 3.0213 0.8221 0.0765 0.3375 0.1528 0.0729 

 𝜷𝟎 MSE 9.2560 0.7156 0.0157 0.1739 0.0381 0.0166 

  200 𝜷𝟏 BIAS 0.2577 0.0871 0.0046 0.0304 0.0107 0.0057 

 𝜷𝟏 MSE 0.4520 0.0563 0.0314 0.0526 0.0409 0.0355 

  200 𝜷𝟐 BIAS 0.1929 0.0689 0.0059 0.0282 0.0119 0.0044 

 𝜷𝟐 MSE 0.1234 0.0158 0.0068 0.0129 0.0091 0.0076 
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Kruskal-Wallis Test on Multiple Regression for 30% Outliers in 𝒚-axis: Response 

versus Treatment  
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Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           30  1.24190     147.1   6.52 

2           30  0.45715     119.1   3.29 

3           30  0.05470      59.4  -3.58 

4           30  0.21640     100.4   1.14 

5           30  0.06435      68.1  -2.58 

6           30  0.04425      48.8  -4.80 

Overall    180               90.5 

 

H = 80.93  DF = 5  P = 0.000 

H = 80.93  DF = 5  P = 0.000  (adjusted for ties) 
 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   
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Simulated MSE and BIAS on Multiple Regression for 40% Outliers in 𝒚-axis 

SAMPLE BETA CRITERI OLS HUBER BISQUA HAMPEL ALARM PROPOSE
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SIZE  A RE D 

  20 𝜷𝟎 BIAS 3.9455 2.6372 1.8229 2.3304 0.9315 0.4042 

 𝜷𝟎 MSE 17.3861 9.3040 6.6230 9.5266 2.3911 0.8166 

  20 𝜷𝟏 BIAS 1.6181 1.5173 1.4029 1.1184 0.5720 0.2760 

 𝜷𝟏 MSE 6.5166 5.7200 5.8235 4.4222 3.0762 1.7525 

  20 𝜷𝟐 BIAS 0.6502 0.8344 0.8935 0.5206 0.3212 0.1689 

 𝜷𝟐 MSE 3.0760 2.8364 3.6828 2.3742 2.1760 1.4693 

  50 𝜷𝟎 BIAS 4.1457 2.6964 1.2994 2.8781 1.2522 0.4830 

 𝜷𝟎 MSE 17.8895 8.2459 3.6370 10.6878 2.9975 0.6740 

  50 𝜷𝟏 BIAS 0.4531 0.1883 0.0231 0.3019 0.0755 0.0453 

 𝜷𝟏 MSE 2.0876 0.9115 0.6388 1.2974 0.7046 0.4015 

  50 𝜷𝟐 BIAS 1.6332 1.4494 0.8593 1.3434 0.7551 0.3017 

 𝜷𝟐 MSE 3.2959 2.6364 1.6588 2.5810 1.3282 0.4140 

  100 𝜷𝟎 BIAS 3.9923 2.2667 0.3977 2.8736 0.6103 0.2931 

 𝜷𝟎 MSE 16.2661 5.6214 0.6066 9.9614 0.5620 0.1756 

  100 𝜷𝟏 BIAS 0.5147 0.3865 0.0812 0.4283 0.1346 0.0543 

 𝜷𝟏 MSE 1.1650 0.4648 0.1327 0.7253 0.2135 0.1353 

  100 𝜷𝟐 BIAS 0.1580 0.1148 0.0297 0.1293 0.0366 0.0128 

 𝜷𝟐 MSE 0.2695 0.1074 0.0403 0.1778 0.0641 0.0421 

  150 𝜷𝟎 BIAS 3.9972 2.2677 0.2973 0.0356 0.5971 0.2869 

 𝜷𝟎 MSE 16.1967 5.4705 0.2773 10.3128 0.4678 0.1349 

  150 𝜷𝟏 BIAS 0.0327 0.0570 0.0127 0.0646 0.0195 0.0085 

 𝜷𝟏 MSE 0.7449 0.2984 0.1010 0.5063 0.2048 0.1417 

  150 𝜷𝟐 BIAS 0.4032 0.3238 0.0625 0.3688 0.1200 0.0591 

 𝜷𝟐 MSE 0.3315 0.1741 0.0343 0.2602 0.0564 0.0344 

  200 𝜷𝟎 BIAS 4.0250 2.2330 0.2428 3.0746 0.5587 0.2715 

 𝜷𝟎 MSE 16.3720 5.2455 0.1187 10.3992 0.3834 0.1057 

  200 𝜷𝟏 BIAS 0.0841 0.0420 0.0039 0.0646 0.0018 0.0060 

 𝜷𝟏 MSE 0.5241 0.2049 0.0617 0.3634 0.1239 0.0871 

  200 𝜷𝟐 BIAS 0.3261 0.2437 0.0313 0.2937 0.0695 0.0340 

 𝜷𝟐 MSE 0.2172 0.0999 0.0148 0.1646 0.0297 0.0186 
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versus Treatment  



105 
 

 
Kruskal-Wallis Test on Response 

 

Treatment    N  Median  Ave Rank      Z 

1           30  1.6257     121.3   3.55 

2           30  1.1805     106.6   1.85 

3           30  0.2601      72.9  -2.03 

4           30  0.9219     108.6   2.09 

5           30  0.4256      77.8  -1.46 

6           30  0.1553      55.7  -4.00 

Overall    180              90.5 

 

H = 35.57  DF = 5  P = 0.000 

H = 35.57  DF = 5  P = 0.000  (adjusted for ties) 

 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

APPENDIX XLIII 

 Simulated MSE and BIAS on Multiple Regression for 5% Outliers in 𝒙 and𝒚-axes 

SAMPLE BETA CRITERI OLS HUBER BISQUA HAMPEL ALARM PROPOSE
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SIZE  A 
 

RE D 

  20 𝜷𝟎 BIAS 0.4827 0.0654 0.0120 0.0254 0.0189 0.0144 

 𝜷𝟎 MSE 0.7872 0.1666 0.1660  0.0784 0.0774 0.0951 

  20 𝜷𝟏 BIAS 1.9552 1.9364 1.9342 0.1719 0.1660 0.1547 

 𝜷𝟏 MSE 4.1399 4.0644 4.0563 0.5339 0.5281 0.5677 

  20 𝜷𝟐 BIAS 0.2888 0.0497 0.0145 0.0056 0.0115 0.0143 

 𝜷𝟐 MSE 0.6827 0.1375 0.1307 0.0555 0.0603 0.0823 

  50 𝜷𝟎 BIAS 0.3594 0.0214 0.0287 0.0031 0.0000 0.0001 

 𝜷𝟎 MSE 0.3053 0.0510 0.0446 0.0250 0.0249 0.0257 

  50 𝜷𝟏 BIAS 1.9367 1.7006 1.4066 0.0786 0.0542 0.0400 

 𝜷𝟏 MSE 3.9011 3.0906 2.5550 0.1799 0.1500 0.1334 

  50 𝜷𝟐 BIAS 0.2984 0.0536 0.0006 0.0016 0.0017 0.0028 

 𝜷𝟐 MSE 0.2789 0.0437 0.0364 0.0195 0.0191 0.0199 

  100 𝜷𝟎 BIAS 0.4832 0.0418 0.0268 0.0015 0.0011 0.0015 

 𝜷𝟎 MSE 0.3337 0.0289 0.0226 0.0113 0.0111 0.0113 

  100 𝜷𝟏 BIAS 1.9925 1.8154 1.3881 0.1089 0.0442 0.0333 

 𝜷𝟏 MSE 4.0273 3.3796 2.4411 0.1348 0.0706 0.0614 

  100 𝜷𝟐 BIAS 0.4368 0.0894 0.0056 0.0033 0.0032 0.0033 

 𝜷𝟐 MSE 0.3123 0.0314 0.0183 0.0091 0.0088 0.0088 

  150 𝜷𝟎 BIAS 0.4538 0.0413 0.0127 0.0115 0.0089 0.0075 

 𝜷𝟎 MSE 0.2721 0.0199 0.0135 0.0080 0.0076 0.0077 

  150 𝜷𝟏 BIAS 1.9662 1.7781 1.0941 0.1066 0.0306 0.0260 

 𝜷𝟏 MSE 3.9026 3.2206 1.8345 0.1061 0.0398 0.0377 

  150 𝜷𝟐 BIAS 0.4412 0.0794 0.0048 0.0018 0.0020 0.0025 

 𝜷𝟐 MSE 0.2748 0.0219 0.0107 0.0064 0.0059 0.0060 

  200 𝜷𝟎 BIAS 0.4935 0.0457 0.0153 0.0061 0.0033 0.0017 

 𝜷𝟎 MSE 0.2953 0.0149 0.0087 0.0060 0.0057 0.0057 

  200 𝜷𝟏 BIAS 1.9724 1.7915 0.9256 0.1178 0.0244 0.0137 

 𝜷𝟏 MSE 3.9199 3.2576 1.5327 0.1155 0.0351 0.0279 

  200 𝜷𝟐 BIAS 0.4878 0.0950 0.0016 0.0025 0.0020 0.0023 

 𝜷𝟐 MSE 0.3028 0.0198 0.0073 0.0046 0.0044 0.0044 
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Kruskal-Wallis Test on Multiple Regression for 5% Outliers in 𝒙 and𝒚-axes: 

Response versus Treatment  
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Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           30  0.48295     148.8   6.71 

2           30  0.07240     115.7   2.90 

3           30  0.02775      92.3   0.21 

4           30  0.01550      67.5  -2.64 

5           30  0.01520      59.8  -3.54 

6           30  0.01400      58.9  -3.64 

Overall    180               90.5 

 

H = 71.90  DF = 5  P = 0.000 

H = 71.90  DF = 5  P = 0.000  (adjusted for ties) 

 
 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   

 
 

 

 

 

 

 

 

 

 

 

APPENDIX XLV 

Simulated MSE and BIAS on Multiple Regression for 10% Outliers in 𝒙 and𝒚-axes 

SAMPLE BETA CRITERI OLS HUBER BISQUA HAMPEL ALARM PROPOSE
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SIZE  A RE D 

  20 𝜷𝟎 BIAS 1.0970 0.2026 0.0007 0.0384 0.0131 0.0051 

 𝜷𝟎 MSE 2.3390 0.2547 0.1750 0.1096 0.1054 0.1072 

  20 𝜷𝟏 BIAS 2.0409 1.8881 1.7762 0.3924 0.3628 0.3328 

 𝜷𝟏 MSE 4.3281 3.7749 3.5352 1.0484 0.9481 0.9278 

  20 𝜷𝟐 BIAS 0.7530 0.1900 0.0162 0.0138 0.0021 0.0044 

 𝜷𝟐 MSE 1.8666 0.2634 0.1574 0.1004 0.0893 0.0100 

  50 𝜷𝟎 BIAS 1.1030 0.1890 0.0058 0.0288 0.0149 0.0101 

 𝜷𝟎 MSE 1.6288 0.1145 0.0624 0.0334 0.0289 0.0272 

  50 𝜷𝟏 BIAS 2.0445 1.9344 1.8526 0.2326 0.1317 0.0920 

 𝜷𝟏 MSE 4.2386 3.8231 3.5850 0.4501 0.2762 0.2273 

  50 𝜷𝟐 BIAS 0.9505 0.2460 0.0423 0.0204 0.0104 0.0082 

 𝜷𝟐 MSE 1.3820 0.1378 0.0592 0.0307 0.0246 0.0234 

  100 𝜷𝟎 BIAS 1.0773 0.1768 0.0132 0.0320 0.0137 0.0092 

 𝜷𝟎 MSE 1.3743 0.0725 0.0325 0.0198 0.0148 0.0142 

  100 𝜷𝟏 BIAS 2.0398 1.9223 1.7810 0.3749 0.0767 0.0586 

 𝜷𝟏 MSE 4.1869 3.7358 3.2977 0.6077 0.1268 0.1012 

  100 𝜷𝟐 BIAS 0.9463 0.2422 0.0373 0.0215 0.0031 0.0019 

 𝜷𝟐 MSE 1.1211 0.0928 0.0268 0.0171 0.0105 0.0104 

  150 𝜷𝟎 BIAS 1.0607 0.1692 0.0159 0.0290 0.0121 0.0058 

 𝜷𝟎 MSE 1.2703 0.0542 0.0192 0.0126 0.0089 0.0083 

  150 𝜷𝟏 BIAS 2.0456 1.9237 1.7540 0.4106 0.0537 0.0239 

 𝜷𝟏 MSE 4.2030 3.7309 3.1954 0.6464 0.0775 0.0485 

  150 𝜷𝟐 BIAS 0.9807 0.2517 0.0345 0.0251 0.0044 0.0035 

 𝜷𝟐 MSE 1.1244 0.0878 0.0185 0.0130 0.0070 0.0066 

  200 𝜷𝟎 BIAS 1.0670 0.1699 0.0154 0.0286 0.0107 0.0049 

 𝜷𝟎 MSE 1.2373 0.0474 0.0146 0.0109 0.0069 0.0064 

  200 𝜷𝟏 BIAS 2.0449 1.9252 1.7170 0.5577 0.0656 0.0343 

 𝜷𝟏 MSE 4.1940 3.7264 3.0553 0.9027 0.0718 0.0473 

  200 𝜷𝟐 BIAS 1.0033 0.2467 0.0246 0.0274 0.0036 0.0043 

 𝜷𝟐 MSE 1.1228 0.0778 0.0131 0.0120 0.0052 0.0049 
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Kruskal-Wallis Test on Multiple Regression for 10% Outliers in 𝒙 and𝒚-axes: 

Response versus Treatment  
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Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           30  1.32230     150.7   6.93 

2           30  0.24410     122.1   3.63 

3           30  0.03980      90.5   0.01 

4           30  0.03135      78.8  -1.35 

5           30  0.01485      54.9  -4.10 

6           30  0.01025      46.0  -5.12 

Overall    180               90.5 

 

H = 88.46  DF = 5  P = 0.000 

H = 88.46  DF = 5  P = 0.000  (adjusted for ties) 
 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   
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Simulated MSE and BIAS on Multiple Regression for 15% Outliers in 𝒙 and𝒚-axes 
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SAMPLE 
SIZE  

BETA CRITERI
A 

OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 

  20 𝜷𝟎 BIAS 1.6927 0.4370 0.0680 0.1109 0.0407 0.0182 

 𝜷𝟎 MSE 4.7700 0.7943 0.5347 0.2455 0.1569 0.1462 

  20 𝜷𝟏 BIAS 2.0982 2.0047 1.9679 0.5967 0.4631 0.4363 

 𝜷𝟏 MSE 4.5136 4.1521 4.0595 1.6517 1.2286 1.1852 

  20 𝜷𝟐 BIAS 1.2932 0.4980 0.1498 0.1103 0.0369 0.0132 

 𝜷𝟐 MSE 3.6658 0.9011 0.4868 0.3000 0.1460 0.1378 

  50 𝜷𝟎 BIAS 1.5423 0.3292 0.0184 0.0894 0.0323 0.0127 

 𝜷𝟎 MSE 2.9695 0.2228 0.0815 0.0815 0.0453 0.0400 

  50 𝜷𝟏 BIAS 2.0759 1.9665 1.8903 0.5917 0.2292 0.1736 

 𝜷𝟏 MSE 4.3481 3.9230 3.7009 1.1675 0.4640 0.3513 

  50 𝜷𝟐 BIAS 1.3342 0.4281 0.0861 0.0869 0.1557 0.0064 

 𝜷𝟐 MSE 2.3671 0.3053 0.0759 0.0878 0.0330 0.0283 

  100 𝜷𝟎 BIAS 1.7380 0.3989 0.0280 0.1490 0.0390 0.0157 

 𝜷𝟎 MSE 3.3509 0.2257 0.0429 0.0788 0.0223 0.0185 

  100 𝜷𝟏 BIAS 2.0970 1.9837 1.8958 0.9459 0.1829 0.1019 

 𝜷𝟏 MSE 4.4154 3.9615 3.6785 1.8691 0.2994 0.1639 

  100 𝜷𝟐 BIAS 1.4936 0.4936 0.0976 0.1970 0.0107 0.0020 

 𝜷𝟐 MSE 2.5625 0.3181 0.0492 0.1412 0.0190 0.0154 

  150 𝜷𝟎 BIAS 1.6754 0.3534 0.0009 0.1257 0.0194 0.0035 

 𝜷𝟎 MSE 3.0133 0.1654 0.0276 0.0529 0.0139 0.0117 

  150 𝜷𝟏 BIAS 2.0900 1.9776 1.8625 1.1476 0.1702 0.0774 

 𝜷𝟏 MSE 4.3797 3.9285 3.5430 2.2395 0.2564 0.1007 

  150 𝜷𝟐 BIAS 1.4349 0.4681 0.0981 0.2238 0.0127 0.0012 

 𝜷𝟐 MSE 2.2640 0.2611 0.0364 0.1221 0.0111 0.0085 

  200 𝜷𝟎 BIAS 1.7078 0.3735 0.0122 0.1560 0.0297 0.0117 

 𝜷𝟎 MSE 3.0991 0.1719 0.0208 0.0553 0.0116 0.0091 

  200 𝜷𝟏 BIAS 2.0967 1.9831 1.8639 1.3730 0.2419 0.0741 

 𝜷𝟏 MSE 4.0584 3.9470 3.5381 2.7039 0.3560 0.0787 

  200 𝜷𝟐 BIAS 1.4771 0.4797 0.0999 0.2670 0.0148 0.0020 

 𝜷𝟐 MSE 2.3358 0.2616 0.0294 0.1325 0.0104 0.0063 
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Kruskal-Wallis Test on Multiple Regression for 15% Outliers in 𝒙 and𝒚-axes: Response 

versus Treatment  

Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           30  2.18110     152.4   7.13 

2           30  0.47390     120.7   3.48 

3           30  0.09785      84.4  -0.70 

4           30  0.17650      90.0  -0.05 

5           30  0.03985      55.6  -4.02 

6           30  0.01835      39.8  -5.84 

Overall    180               90.5 

 

H = 94.76  DF = 5  P = 0.000 

H = 94.76  DF = 5  P = 0.000  (adjusted for ties) 
 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   
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Simulated MSE and BIAS on Multiple Regression for 20% Outliers in 𝒙 and𝒚-axes 

SAMPLE 
SIZE  

BETA CRITERI
A 

OLS HUBER BISQUA
RE 

HAMPEL ALARM PROPOSE
D 

  20 𝜷𝟎 BIAS 2.4819 1.0034 0.3308 0.6816 0.1465 0.0603 

 𝜷𝟎 MSE 8.9306 2.2063 1.0812 1.9598 0.4146 0.2479 

  20 𝜷𝟏 BIAS 2.1647 2.0564 1.9990 1.0853 0.8032 0.6188 

 𝜷𝟏 MSE 4.7698 4.3245 4.1447 3.3236 1.9788 1.6481 

  20 𝜷𝟐 BIAS 1.8517 1.0465 0.5267 0.5560 0.1276 0.0440 

 𝜷𝟐 MSE 5.8901 2.5138 1.5443 1.6220 0.4391 0.2376 

  50 𝜷𝟎 BIAS 2.4429 0.8453 0.1307 0.6919 0.1177 0.0327 

 𝜷𝟎 MSE 6.9271 1.0715 0.2047 1.2201 0.1274 0.0695 

  50 𝜷𝟏 BIAS 2.1578 2.0445 0.1964 1.3283 0.5140 0.3497 

 𝜷𝟏 MSE 4.6850 4.2185 3.9534 2.9971 1.1126 0.6673 

  50 𝜷𝟐 BIAS 1.9403 0.9764 0.3145 0.7505 0.1257 0.0268 

 𝜷𝟐 MSE 4.5939 1.3577 0.3575 1.2879 1.7451 0.0585 

  100 𝜷𝟎 BIAS 2.4469 0.8381 0.1270 0.8348 0.1558 0.0451 

 𝜷𝟎 MSE 6.4537 0.8616 0.0902 1.1565 0.0989 0.0332 

  100 𝜷𝟏 BIAS 2.1513 2.0375 1.9557 1.7026 0.5956 0.2231 

 𝜷𝟏 MSE 4.6429 4.1708 3.8830 3.5808 1.2228 0.3780 

  100 𝜷𝟐 BIAS 1.9925 0.9823 0.3128 0.1000 0.1786 0.0231 

 𝜷𝟐 MSE 4.3943 1.1847 0.2232 1.5692 0.2000 0.0281 

  150 𝜷𝟎 BIAS 2.4333 0.8100 0.1091 0.8422 0.1704 0.0444 

 𝜷𝟎 MSE 6.2249 0.7661 0.0626 1.0472 0.0962 0.0241 

  150 𝜷𝟏 BIAS 2.1452 2.0300 1.9409 1.8516 0.8033 0.2552 

 𝜷𝟏 MSE 4.6115 4.1337 3.8142 3.8500 1.6127 0.3681 

  150 𝜷𝟐 BIAS 1.9942 0.9553 0.2887 1.0482 0.2273 0.0281 

 𝜷𝟐 MSE 4.2501 1.0431 0.1442 1.4656 0.1958 0.0200 

  200 𝜷𝟎 BIAS 2.4556 0.8260 0.1171 0.8758 0.1856 0.0510 

 𝜷𝟎 MSE 6.2478 0.7619 0.0476 1.0360 0.0847 0.0192 

  200 𝜷𝟏 BIAS 2.1487 2.0313 1.9319 1.9476 0.8974 0.2640 

 𝜷𝟏 MSE 4.6239 4.1365 3.7705 4.0105 1.8030 0.3753 

  200 𝜷𝟐 BIAS 1.9901 0.9414 0.2784 1.0724 0.2496 0.0205 

 𝜷𝟐 MSE 4.1653 0.9828 0.1216 1.4194 0.1884 0.0161 
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Kruskal-Wallis Test on Multiple Regression for 20% Outliers in 𝒙 and𝒚-axes: 

Response versus Treatment  

 
Kruskal-Wallis Test on Response 

 

Treatment    N   Median  Ave Rank      Z 

1           30  3.32360     155.7   7.50 

2           30  1.05900     113.3   2.63 

3           30  0.31365      76.3  -1.64 

4           30  1.25400     106.6   1.85 

5           30  0.21365      60.2  -3.49 

6           30  0.05475      31.0  -6.86 

Overall    180               90.5 

 

H = 107.08  DF = 5  P = 0.000 

H = 107.08  DF = 5  P = 0.000  (adjusted for ties) 

 

 

Where 

Treatment 1 is OLS 

Treatment 2 is Huber estimator 

Treatment 3 is Hampel estimator 

Treatment 4 is Biweight estimator 

Treatment 5 is Alarm estimator 

Treatment 6 is the proposed estimator 

 

and the responses are the different values of the MSE and BIAS   
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Telephone-Call data forNumber of International Calls from Belgium (Rousseeuw and 

Leroy 1987) 

 Year 

𝒙𝒊 

Number of calls 

𝒚𝒊 

50 0.44 

51 0.47 

52 0.47 

53 0.59 

54 0.66 

55 0.73 

56 0.81 

57 0.88 

58 1.06 

59 1.20 

60 1.35 

61 1.49 

62 1.61 

63 2.12 

64 11.90 

65 12.40 
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66 14.20 

67 15.90 

68 18.20 

69 21.20 

70 4.30 

71 2.40 

72 2.70 

73 2.90 
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 Artificial Data Set of Hawkins et al. (1984) (Rousseeuw and Leroy 1987) 
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Index x1 x2 x3 Y 

1 10.1 19.6 28.3 9.7 

2 9.5 20.51 28.9 10.1 

3 10.7 20.2 31.0 10.3 

4 9.9 21.5 31.7 9.5 

5 10.3 21.1 31.1 10.0 

6 10.8 20.4 29.2 10.0 

7 10.5 20.9 29.1 10.8 

8 9.9 19.6 28.8 10.3 

9 9.7 20.7 31.0 9.6 

10 9.3 19.7 30.3 9.9 

11 11.0 24.0 35.0 -0.2 

12 12.0 23.0 37.0 -0.4 

13 12.0 26.0 34.0 0.7 

14 11.0 34.0 34.0 0.1 

15 3.4 2.9 2.1 -0.4 

16 3.1 2.2 0.3 0.6 

17 0.0 1.6 0.2 -0.2 

18 2.3 1.6 2.0 0.0 

19 0.8 2.9 1.6 0.1 

20 3.1 3.4 2.2 0.4 

21 2.6 2.2 1.9 0.9 

22 0.4 3.2 1.9 0.3 

23 2.0 2.3 0.8 -0.8 

24 1.3 2.3 0.5 0.7 

25 1.0 0.0 0.4 -0.3 

26 0.9 3.3 2.5 -0.8 

27 3.3 2.5 2.9 -0.7 

28 1.8 0.8 2.0 0.3 

29 1.2 0.9 0.8 0.3 

30 1.2 0.7 3.4 -0.3 

31 3.1 1.4 1.0 0.0 

32 0.5 2.4 0.3 -0.4 

33 1.5 3.1 1.5 -0.6 

34 0.4 0.0 0.7 -0.7 

35 3.1 2.4 3.0 0.3 

36 1.1 2.2 2.7 -1.0 

37 0.1 3.0 2.6 -0.6 

38 1.5 1.2 0.2 0.9 

39 2.1 0.0 1.2 -0.7 

40 0.5 2.0 1.2 -0.5 

41 3.4 1.6 2.9 -0.1 

42 0.3 1.0 2.7 -0.7 

43 0.1 3.3 0.9 0.6 

44 1.8 0.5 3.2 -0.7 

45 1.9 0.1 0.6 -0.5 

46 1.8 0.5 3.0 -0.4 

47 3.0 0.1 0.8 -0.9 
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48 3.1 1.6 3.0 0.1 

49 3.1 2.5 1.9 0.9 

50 2.1 2.8 2.9 -0.4 

51 2.3 1.5 0.4 0.7 

52 3.3 0.6 1.2 -0.5 

53 0.3 0.4 3.3 0.7 

54 1.1 3.0 0.3 0.7 

55 0.5 2.4 0.9 0.0 

56 1.8 3.2 0.9 0.1 

57 1.8 0.7 0.7 0.7 

58 2.4 3.4 1.5 -0.1 

59 1.6 2.1 3.0 -0.3 

60 0.3 1.5 3.3 -0.9 

61 0.4 3.4 3.0 -0.3 

62 0.9 0.1 0.3 0.6 

63 1.1 2.7 0.2 -0.3 

64 2.8 3.0 2.9 -0.5 

65 2.0 0.7 2.7 0.6 

66 0.2 1.8 0.8 -0.9 

67 1.6 2.0 1.2 -0.7 

68 0.1 0.0 1.1 0.6 

69 2.0 0.6 0.3 0.2 

70 1.0 2.2 2.9 0.7 

71 2.2 2.5 2.3 0.2 

72 0.6 2.0 1.5 -0.2 

73 0.3 1.7 2.2 0.4 

74 0.0 2.2 1.6 -0.9 

75 0.3 0.4 2.6 0.2 
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# Belgian Phone Data 

sink("Phone-Data.txt") # Write output in the file 

"DWMCase1.1Results.txt" inside my document 

library(MASS) 

data(phones) # Belgium Phone data 

attach(phones) 

Y<-calls 

X<-year 

Y 

X 

HuberM<-function(Y,X){ 

############### Improved brute-force IRWLS - Huber Method 

# Brownlee's Stack Loss Data 

# Robust Regression and Outlier Detection p. 76, Rousseeuw & Leroy, 

1989. 

# Robust Estimation and Testing p. 216, Staudte & Sheather, 1990. 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 

irwls.1 <- lm(Y ~ X) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n)  w[i] <- min(1,1.345/abs(u[i])) 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n)  w[i] <- min(1,1.345/abs(u[i])) 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

BisquareM<-function(Y,X){ 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 

M.Huber<-HuberM(Y,X) 

M.H.Model<-M.Huber$irwls.2 

res1 <- residuals(M.H.Model) 

b.old <- M.H.Model$coef 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(1-(u[i]/4.685)^2)^2 

  }else{ 
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      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(1-(u[i]/4.685)^2)^2 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

AlamgirM<-function(Y,X){ # ALAMGIR Bisquare using LTS as initial 

estimate 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 

irwls.1 <- ltsReg(x=X,y=Y) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(16*exp(-2*(u[i]/3)^2))/(1+exp(-(u[i]/3)^2))^4 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(16*exp(-2*(u[i]/3)^2))/(1+exp(-(u[i]/3)^2))^4 

  }else{ 

      w[i]<-0 
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  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

StellaM<-function(Y,X){ 

############### Improved brute-force IRWLS - Huber Method 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 

irwls.1 <- lmsreg(Y ~ X) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 3){ 

      w[i]<-((1+((u[i]/3)^2)^2)*(1-((u[i]/3)^2)^2)) 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 3){ 

      w[i]<-((1+((u[i]/3)^2)^2)*(1-((u[i]/3)^2)^2)) 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

M.OLS<-lm(Y~X) 

summary(M.OLS) 

 

M.Huber<-HuberM(Y,X) 

num.iter1<-M.Huber$num.iter 

num.iter1 

W1<-M.Huber$w 

W1 
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summary(M.Huber$irwls.2) 

 

M.Bisquare<-BisquareM(Y,X) 

num.iter2<-M.Bisquare$num.iter 

num.iter2 

W2<-M.Bisquare$w 

W2 

summary(M.Bisquare$irwls.2) 

 

M.Hampel<-rlm(Y~X, psi = psi.hampel, init = "lts",maxit=100) 

W<-M.Hampel$w 

W 

summary(M.Hampel) 

 

M.Alamgir<-AlamgirM(Y,X) 

num.iter3<-M.Alamgir$num.iter 

num.iter3 

W3<-M.Alamgir$w 

W3 

summary(M.Alamgir$irwls.2) 

 

M.Stella<-StellaM(Y,X) 

num.iter4<-M.Stella$num.iter 

num.iter4 

W4<-M.Stella$w 

W4 

summary(M.Stella$irwls.2) 

sink() 
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R PROGRAM FOR THE ESTIMATION OF PARAMETERS FOR ROBUST 

REGRESSION ON HAWKINS-BRADU-KASS DATA 
# Hawkins-Bradu-Kass data (Rousseeuw & Leroy, 1987, p. 94) 

sink("Hawkins-Bradu-Kass data.txt") 

ImportDataY<-read.table("J:/RData/MphilData5YImport.txt",header=T) 

ImportDataX1<-read.table("J:/RData/MphilData5X1Import.txt",header=T) 

ImportDataX2<-read.table("J:/RData/MphilData5X2Import.txt",header=T) 

ImportDataX3<-read.table("J:/RData/MphilData5X3Import.txt",header=T) 

Y<-ImportDataY$Y 

X1<-ImportDataX1$X1 

X2<-ImportDataX2$X2 

X3<-ImportDataX3$X3 

Y 

X1 

X2 

X3 

 

HuberM<-function(Y,X1,X2,X3){ 

############### Improved brute-force IRWLS - Huber Method 

library(MASS) 

library(robustbase) 

library(quantreg) 

n <- length(Y) 

w <- rep(1,n) 

irwls.1 <- lm(Y ~ X1+X2+X3) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n)  w[i] <- ifelse(abs(u[i])<=1.345,1,1.345/abs(u[i])) 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X1+X2+X3,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n)  w[i] <- min(1,1.345/abs(u[i])) 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

BisquareM<-function(Y,X1,X2,X3){ #Bisquare using Huber as the Initial 

estimator 

library(MASS) 

library(robustbase) 

library(quantreg) 

n <- length(Y) 

w <- rep(1,n) 

M.Huber<-HuberM(Y,X1,X2,X3) 

M.H.Model<-M.Huber$irwls.2 

res1 <- residuals(M.H.Model) 

b.old <- M.H.Model$coef 
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MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(1-(u[i]/4.685)^2)^2 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X1+X2+X3,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(1-(u[i]/4.685)^2)^2 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

AlamgirM<-function(Y,X1,X2,X3){ # ALAMGIR Bisquare using LTS as initial 

estimate 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 

Boundx<-cbind(X1,X2,X3) 

irwls.1 <- ltsReg(x=Boundx,y=Y) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(16*exp(-2*(u[i]/3)^2))/(1+exp(-(u[i]/3)^2))^4 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X1+X2+X3,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 
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MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 4.685){ 

      w[i]<-(16*exp(-2*(u[i]/3)^2))/(1+exp(-(u[i]/3)^2))^4 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 

 

StellaM<-function(Y,X1,X2,X3){ # LMS as the initial estimator 

############### Improved brute-force IRWLS - Stella Method 

library(MASS) 

library(robustbase) 

n <- length(Y) 

w <- rep(1,n) 

Boundx<-cbind(X1,X2,X3) 

irwls.1 <- lmsreg(x=Boundx,y=Y) 

res1 <- residuals(irwls.1) 

b.old <- coef(irwls.1) 

MAD <- mad(res1) 

u <- res1/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 3){ 

      w[i]<-((1+((u[i]/3)^2)^2)*(1-((u[i]/3)^2)^2)) 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- 100.0 

num.iter=0 

while (delta_b > 0.000001) { 

num.iter <- num.iter + 1 

irwls.2 <- lm(Y ~ X1+X2+X3,weights=w) 

res2 <- residuals(irwls.2) 

b.new <- coef(irwls.2) 

MAD <- mad(res2) 

u <- res2/MAD 

for(i in 1:n){ 

  if(abs(u[i])< 3){ 

      w[i]<-((1+((u[i]/3)^2)^2)*(1-((u[i]/3)^2)^2)) 

  }else{ 

      w[i]<-0 

  } 

} 

delta_b <- max(abs((b.new-b.old)/b.old)) 

b.old <- b.new 

if(num.iter>100){break} 

} 

Out<-list(num.iter=num.iter,w=w,irwls.2=irwls.2) 

} 
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M.OLS<-lm(Y~X1+X2+X3) 

summary(M.OLS) 

 

M.Huber<-HuberM(Y,X1,X2,X3) 

num.iter1<-M.Huber$num.iter 

num.iter1 

W1<-M.Huber$w 

W1 

summary(M.Huber$irwls.2) 

 

M.Bisquare<-BisquareM(Y,X1,X2,X3) 

num.iter2<-M.Bisquare$num.iter 

num.iter2 

W2<-M.Bisquare$w 

W2 

summary(M.Bisquare$irwls.2) 

 

M.Hampel<-rlm(Y~X1+X2+X3, psi = psi.hampel, init = "lts",maxit=100) 

W<-M.Hampel$w 

W 

summary(M.Hampel) 

 

M.Alamgir<-AlamgirM(Y,X1,X2,X3) 

num.iter3<-M.Alamgir$num.iter 

num.iter3 

W3<-M.Alamgir$w 

W3 

summary(M.Alamgir$irwls.2) 

 

M.Stella<-StellaM(Y,X1,X2,X3) 

num.iter4<-M.Stella$num.iter 

num.iter4 

W4<-M.Stella$w 

W4 

summary(M.Stella$irwls.2) 

sink() 
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RESULT  FOR ESTIMATION OF PARAMETERS FOR ROBUST REGRESSION ON 

BELGIUM PHONE DATA 

> library(MASS) 

 

> data(phones) # Belgium Phone data 

 

> attach(phones) 

 

> Y<-calls 

 

> X<-year 

 

> Y 

 [1]   4.4   4.7   4.7   5.9   6.6   7.3   8.1   8.8  10.6  12.0  13.5  

14.9 

[13]  16.1  21.2 119.0 124.0 142.0 159.0 182.0 212.0  43.0  24.0  27.0  

29.0 

 

> X 

 [1] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 

72 73 

 

> HuberM<-function(Y,X){ 

+ library(MASS) 

+ library(robustbase) 

+ n <- length(Y) 

+ w <- rep(1,n) 

+ irwls.1 <- lm(Y ~ X) 

+ res1 <- residuals(irwls.1) 

+  .... [TRUNCATED]  

 

> BisquareM<-function(Y,X){ 

+ library(MASS) 

+ library(robustbase) 

+ n <- length(Y) 

+ w <- rep(1,n) 

+ M.Huber<-HuberM(Y,X) 

+ M.H.Model<-M.Huber$irwls.2 .... [TRUNCATED]  

 

> AlamgirM<-function(Y,X){ # ALAMGIR Bisquare using LTS as initial 

estimate 

+ library(MASS) 

+ library(robustbase) 

+ n <- length(Y) 

+ w <- rep(1,n) 

+ i .... [TRUNCATED]  

 

> StellaM<-function(Y,X){ 

+ library(MASS) 

+ library(robustbase) 

+ n <- length(Y) 

+ w <- rep(1,n) 

+ irwls.1 <- lmsreg(Y ~ X) 

+ res1 <- residuals(irwls. .... [TRUNCATED]  

 

> M.OLS<-lm(Y~X) 
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> summary(M.OLS) 

 

Call: 

lm(formula = Y ~ X) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-78.97 -33.52 -12.04  23.38 124.20  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -260.059    102.607  -2.535   0.0189 *  

X              5.041      1.658   3.041   0.0060 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 56.22 on 22 degrees of freedom 

Multiple R-squared:  0.2959, Adjusted R-squared:  0.2639  

F-statistic: 9.247 on 1 and 22 DF,  p-value: 0.005998 

 

 

> M.Huber<-HuberM(Y,X) 

 

> num.iter1<-M.Huber$num.iter 

 

> num.iter1 

[1] 24 

 

> W1<-M.Huber$w 

 

> W1 

 [1] 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

 [7] 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

[13] 1.00000000 1.00000000 0.11104192 0.10751065 0.09196664 0.08098849 

[19] 0.06939420 0.05827282 1.00000000 0.59280225 0.62993609 0.63043767 

 

> summary(M.Huber$irwls.2) 

 

Call: 

lm(formula = Y ~ X, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-13.229  -5.458  -1.444  11.352  42.194  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -99.9045    41.6690  -2.398  0.02543 *  

X             1.9871     0.6992   2.842  0.00948 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 19.51 on 22 degrees of freedom 

Multiple R-squared:  0.2686, Adjusted R-squared:  0.2353  

F-statistic: 8.078 on 1 and 22 DF,  p-value: 0.009482 

> M.Bisquare<-BisquareM(Y,X) 

 

> num.iter2<-M.Bisquare$num.iter 
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> num.iter2 

[1] 7 

 

> W2<-M.Bisquare$w 

 

> W2 

 [1] 0.9112256 0.9723318 0.9996748 0.9999989 0.9953509 0.9817543 

0.9658043 

 [8] 0.9370709 0.9818714 0.9929023 0.9997155 0.9988607 0.9974279 

0.5445502 

[15] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0000000 

[22] 0.9206967 0.9987500 0.9653544 

 

> summary(M.Bisquare$irwls.2) 

 

Call: 

lm(formula = Y ~ X, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-1.6223 -0.4282  0.0000  0.2029  3.1749  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -52.34782    2.62364  -19.95 3.27e-12 *** 

X             1.09913    0.04407   24.94 1.26e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.237 on 15 degrees of freedom 

Multiple R-squared:  0.9765, Adjusted R-squared:  0.9749  

F-statistic: 622.2 on 1 and 15 DF,  p-value: 1.259e-13 

 

 

> M.Hampel<-rlm(Y~X, psi = psi.hampel, init = "lts",maxit=100) 

 

> W<-M.Hampel$w 

 

> W 

        1         2         3         4         5         6         7         

8  

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

1.0000000  

        9        10        11        12        13        14        15        

16  

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.7640701 0.0000000 

0.0000000  

       17        18        19        20        21        22        23        

24  

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 

1.0000000  

 

> summary(M.Hampel) 

 

Call: rlm(formula = Y ~ X, psi = psi.hampel, init = "lts", maxit = 100) 

Residuals: 
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     Min       1Q   Median       3Q      Max  

 -1.7612  -0.4750   0.1955  38.9906 188.4402  

 

Coefficients: 

            Value    Std. Error t value  

(Intercept) -52.3891   3.0149   -17.3766 

X             1.1007   0.0487    22.5946 

 

Residual standard error: 1.621 on 22 degrees of freedom 

 

> M.Alamgir<-AlamgirM(Y,X) 

 

> num.iter3<-M.Alamgir$num.iter 

 

> num.iter3 

[1] 3 

 

> W3<-M.Alamgir$w 

 

> W3 

 [1] 0.9940388 0.9994835 0.9999997 1.0000000 0.9999724 0.9996546 

0.9988473 

 [8] 0.9962180 0.9996446 0.9999344 0.9999995 0.9999998 0.9999983 

0.8194307 

[15] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0000000 

[22] 0.9934787 0.9999999 0.9993536 

 

> summary(M.Alamgir$irwls.2) 

 

Call: 

lm(formula = Y ~ X, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-1.7857 -0.4842  0.0000  0.1121  3.8245  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -52.45432    2.88126   -18.2 1.23e-11 *** 

X             1.10205    0.04834    22.8 4.70e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.383 on 15 degrees of freedom 

Multiple R-squared:  0.9719, Adjusted R-squared:  0.9701  

F-statistic: 519.8 on 1 and 15 DF,  p-value: 4.695e-13 

 

 

> M.Stella<-StellaM(Y,X) 

 

> num.iter4<-M.Stella$num.iter 

 

> num.iter4 

[1] 4 

 

> W4<-M.Stella$w 

 



130 
 

> W4 

 [1] 0.9998585 0.9999990 1.0000000 1.0000000 1.0000000 0.9999995 

0.9999945 

 [8] 0.9999413 0.9999995 1.0000000 1.0000000 1.0000000 1.0000000 

0.8368835 

[15] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0000000 

[22] 0.9998242 1.0000000 0.9999984 

 

> summary(M.Stella$irwls.2) 

 

Call: 

lm(formula = Y ~ X, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-1.7964 -0.4877  0.0000  0.1072  3.8611  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -52.45588    2.89637  -18.11 1.32e-11 *** 

X             1.10215    0.04859   22.68 5.06e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.392 on 15 degrees of freedom 

Multiple R-squared:  0.9717, Adjusted R-squared:  0.9698  

F-statistic: 514.5 on 1 and 15 DF,  p-value: 5.056e-13 

 

 

> sink() 
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RESULT  FOR ESTIMATION OF PARAMETERS FOR ROBUST REGRESSION ON 

HAWKINS-BRADU-KASS DATA 

 

> ImportDataY<-read.table("J:/RData/MphilData5YImport.txt",header=T) 

 

> ImportDataX1<-read.table("J:/RData/MphilData5X1Import.txt",header=T) 

 

> ImportDataX2<-read.table("J:/RData/MphilData5X2Import.txt",header=T) 

 

> ImportDataX3<-read.table("J:/RData/MphilData5X3Import.txt",header=T) 

 

> Y<-ImportDataY$Y 

 

> X1<-ImportDataX1$X1 

 

 

> X2<-ImportDataX2$X2 

 

> X3<-ImportDataX3$X3 

 

> Y 

[1]  9.7 10.1 10.3  9.5 10.0 10.0 10.8 10.3  9.6  9.9 -0.2 -0.4  0.7  

0.1 -0.4 

[16]  0.6 -0.2  0.0  0.1  0.4  0.9  0.3 -0.8  0.7 -0.3 -0.8 -0.7  0.3  

0.3 -0.3 

[31]  0.0 -0.4 -0.6 -0.7  0.3 -1.0 -0.6  0.9 -0.7 -0.5 -0.1 -0.7  0.6 -

0.7 -0.5 

[46] -0.4 -0.9  0.1  0.9 -0.4  0.7 -0.5  0.7  0.7  0.0  0.1  0.7 -0.1 -

0.3 -0.9 

[61] -0.3  0.6 -0.3 -0.5  0.6 -0.9 -0.7  0.6  0.2  0.7  0.2 -0.2  0.4 -

0.9  0.2 

 

> X1 

 [1] 10.1  9.5 10.7  9.9 10.3 10.8 10.5  9.9  9.7  9.3 11.0 12.0 12.0 

11.0  3.4 

[16]  3.1  0.0  2.3  0.8  3.1  2.6  0.4  2.0  1.3  1.0  0.9  3.3  1.8  

1.2  1.2 

[31]  3.1  0.5  1.5  0.4  3.1  1.1  0.1  1.5  2.1  0.5  3.4  0.3  0.1  

1.8  1.9 

[46]  1.8  3.0  3.1  3.1  2.1  2.3  3.3  0.3  1.1  0.5  1.8  1.8  2.4  

1.6  0.3 

[61]  0.4  0.9  1.1  2.8  2.0  0.2  1.6  0.1  2.0  1.0  2.2  0.6  0.3  

0.0  0.3 

 

> X2 

 [1] 19.6 20.5 20.2 21.5 21.1 20.4 20.9 19.6 20.7 19.7 24.0 23.0 26.0 

34.0  2.9 

[16]  2.2  1.6  1.6  2.9  3.4  2.2  3.2  2.3  2.3  0.0  3.3  2.5  0.8  

0.9  0.7 

[31]  1.4  2.4  3.1  0.0  2.4  2.2  3.0  1.2  0.0  2.0  1.6  1.0  3.3  

0.5  0.1 

[46]  0.5  0.1  1.6  2.5  2.8  1.5  0.6  0.4  3.0  2.4  3.2  0.7  3.4  

2.1  1.5 

[61]  3.4  0.1  2.7  3.0  0.7  1.8  2.0  0.0  0.6  2.2  2.5  2.0  1.7  

2.2  0.4 

 

> X3 
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 [1] 28.3 28.9 31.0 31.7 31.1 29.2 29.1 28.8 31.0 30.3 35.0 37.0 34.0 

34.0  2.1 

[16]  0.3  0.2  2.0  1.6  2.2  1.9  1.9  0.8  0.5  0.4  2.5  2.9  2.0  

0.8  3.4 

[31]  1.0  0.3  1.5  0.7  3.0  2.7  2.6  0.2  1.2  1.2  2.9  2.7  0.9  

3.2  0.6 

[46]  3.0  0.8  3.0  1.9  2.9  0.4  1.2  3.3  0.3  0.9  0.9  0.7  1.5  

3.0  3.3 

[61]  3.0  0.3  0.2  2.9  2.7  0.8  1.2  1.1  0.3  2.9  2.3  1.5  2.2  

1.6  2.6 

 

> HuberM<-function(Y,X1,X2,X3){ 

+ library(MASS) 

+ library(robustbase) 

+ library(quantreg) 

+ n <- length(Y) 

+ w <- rep(1,n) 

+ irwls.1 <- lm(Y ~ X1+X2+X .... [TRUNCATED]  

 

> BisquareM<-function(Y,X1,X2,X3){ #Bisquare using Huber as the Initial 

estimator 

+ library(MASS) 

+ library(robustbase) 

+ library(quantreg) 

+ n <- len .... [TRUNCATED]  

 

> AlamgirM<-function(Y,X1,X2,X3){ # ALAMGIR Bisquare using LTS as 

initial estimate 

+ library(MASS) 

+ library(robustbase) 

+ n <- length(Y) 

+ w <- rep(1 .... [TRUNCATED]  

 

> StellaM<-function(Y,X1,X2,X3){ # LMS as the initial estimator 

+ library(MASS) 

+ library(robustbase) 

+ n <- length(Y) 

+ w <- rep(1,n) 

+ Boundx<-cbind .... [TRUNCATED]  

 

> M.OLS<-lm(Y~X1+X2+X3) 

 

> summary(M.OLS) 

 

Call: 

lm(formula = Y ~ X1 + X2 + X3) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-9.3717 -0.7162 -0.0230  0.7083  4.5130  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -0.3875     0.4165  -0.930  0.35527    

X1            0.2392     0.2625   0.911  0.36521    

X2           -0.3345     0.1551  -2.158  0.03434 *  

X3            0.3833     0.1288   2.976  0.00399 ** 

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 2.25 on 71 degrees of freedom 

Multiple R-squared:  0.6018, Adjusted R-squared:  0.585  

F-statistic: 35.77 on 3 and 71 DF,  p-value: 3.382e-14 

 

 

> M.Huber<-HuberM(Y,X1,X2,X3) 

 

> num.iter1<-M.Huber$num.iter 

 

> num.iter1 

[1] 13 

 

> W1<-M.Huber$w 

 

> W1 

 [1] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.7351727 

 [8] 0.8999258 1.0000000 1.0000000 0.1119302 0.1034247 0.1229838 

0.1172345 

[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

1.0000000 

[22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9589455 

1.0000000 

[29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

1.0000000 

[36] 1.0000000 1.0000000 0.9076738 1.0000000 1.0000000 1.0000000 

1.0000000 

[43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

1.0000000 

[50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

1.0000000 

[57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

1.0000000 

[64] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

1.0000000 

[71] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 

> summary(M.Huber$irwls.2) 

 

Call: 

lm(formula = Y ~ X1 + X2 + X3, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-3.8439 -0.6060  0.0296  0.5871  1.4418  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.776070   0.214974  -3.610 0.000567 *** 

X1           0.166850   0.132859   1.256 0.213290     

X2           0.007474   0.110771   0.067 0.946395     

X3           0.274448   0.080011   3.430 0.001009 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.127 on 71 degrees of freedom 
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Multiple R-squared:  0.8957, Adjusted R-squared:  0.8913  

F-statistic: 203.3 on 3 and 71 DF,  p-value: < 2.2e-16 

 

 

> M.Bisquare<-BisquareM(Y,X1,X2,X3) 

 

> num.iter2<-M.Bisquare$num.iter 

 

> num.iter2 

[1] 8 

 

> W2<-M.Bisquare$w 

 

> W2 

 [1] 0.9939720 0.9773817 0.9980465 0.8854780 0.9868551 0.9988743 

0.9057194 

 [8] 0.9265821 0.9629399 0.9970605 0.0000000 0.0000000 0.0000000 

0.0000000 

[15] 0.8964244 0.9516652 0.9796067 0.9994628 0.9993674 0.9961551 

0.9376559 

[22] 0.9939671 0.9285973 0.8928009 0.9758829 0.8501435 0.8047175 

0.9714699 

[29] 0.9270763 0.9897096 0.9997870 0.9996106 0.9263895 0.9995026 

0.9937466 

[36] 0.8371825 0.9309373 0.7719823 0.9900352 0.9925488 0.9691196 

0.9695384 

[43] 0.9330707 0.9379467 0.9997619 0.9834423 0.9600225 0.9910918 

0.9588698 

[50] 0.9102729 0.8856282 0.9822766 0.8894551 0.9088588 0.9925627 

0.9999904 

[57] 0.8410013 0.9742345 0.9616604 0.8983520 0.9492314 0.7764359 

0.9991050 

[64] 0.8532727 0.9481062 0.9694580 0.9534693 0.7791459 0.9392438 

0.9613098 

[71] 0.9991358 0.9999948 0.9575308 0.9403893 0.9598222 

 

> summary(M.Bisquare$irwls.2) 

 

Call: 

lm(formula = Y ~ X1 + X2 + X3, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-1.1199 -0.4765  0.0000  0.5381  1.1910  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.94553    0.12574  -7.519 1.77e-10 *** 

X1           0.14482    0.07675   1.887 0.063511 .   

X2           0.19722    0.06908   2.855 0.005723 **  

X3           0.18034    0.04879   3.696 0.000442 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.6331 on 67 degrees of freedom 

Multiple R-squared:  0.9688, Adjusted R-squared:  0.9674  

F-statistic: 692.7 on 3 and 67 DF,  p-value: < 2.2e-16 
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> M.Hampel<-rlm(Y~X1+X2+X3, psi = psi.hampel, init = "lts",maxit=100) 

 

> W<-M.Hampel$w 

 

> W 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

25 26  

 0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  

1  1  

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

51 52  

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  

1  1  

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75  

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  

 

> summary(M.Hampel) 

 

Call: rlm(formula = Y ~ X1 + X2 + X3, psi = psi.hampel, init = "lts",  

    maxit = 100) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.92633 -0.39554  0.05279  0.71373 10.79551  

 

Coefficients: 

            Value   Std. Error t value 

(Intercept) -0.1805  0.1112    -1.6225 

X1           0.0814  0.0701     1.1611 

X2           0.0399  0.0414     0.9636 

X3          -0.0517  0.0344    -1.5018 

 

Residual standard error: 0.7719 on 71 degrees of freedom 

 

> M.Alamgir<-AlamgirM(Y,X1,X2,X3) 

 

> num.iter3<-M.Alamgir$num.iter 

 

> num.iter3 

[1] 3 

 

> W3<-M.Alamgir$w 

 

> W3 

 [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0000000 

 [8] 0.0000000 0.0000000 0.0000000 0.9999998 0.9999801 0.9981779 

0.9999740 

[15] 0.9992209 0.9994795 0.9999997 1.0000000 0.9999865 0.9998940 

0.9927972 

[22] 0.9996270 0.9941995 0.9969492 0.9999874 0.9971852 0.9964156 

0.9996717 

[29] 0.9997239 0.9999997 0.9999996 0.9998381 0.9985583 0.9991481 

0.9999174 

[36] 0.9935060 0.9996508 0.9913357 0.9981181 0.9997544 0.9999982 

0.9995328 

[43] 0.9972979 0.9991161 0.9995174 0.9999660 0.9911314 0.9999975 

0.9943742 
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[50] 0.9998141 0.9977887 0.9988916 0.9874077 0.9973108 0.9999992 

0.9999999 

[57] 0.9963307 0.9999891 0.9999879 0.9980691 0.9999963 0.9967672 

0.9998934 

[64] 0.9991341 0.9965738 0.9958509 0.9976034 0.9942725 0.9999768 

0.9933486 

[71] 0.9999713 0.9999997 0.9984039 0.9966841 0.9993813 

 

> summary(M.Alamgir$irwls.2) 

 

Call: 

lm(formula = Y ~ X1 + X2 + X3, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-0.9223 -0.3947  0.0000  0.3972  1.0054  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.18125    0.10435  -1.737   0.0874 . 

X1           0.08172    0.06660   1.227   0.2246   

X2           0.04002    0.04041   0.990   0.3259   

X3          -0.05185    0.03532  -1.468   0.1473   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.556 on 61 degrees of freedom 

Multiple R-squared:  0.04317, Adjusted R-squared:  -0.003889  

F-statistic: 0.9173 on 3 and 61 DF,  p-value: 0.4379 

 

 

> M.Stella<-StellaM(Y,X1,X2,X3) 

 

> num.iter4<-M.Stella$num.iter 

 

> num.iter4 

[1] 4 

 

> W4<-M.Stella$w 

 

> W4 

 [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0000000 

 [8] 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 0.9999867 

1.0000000 

[15] 0.9999976 0.9999989 1.0000000 1.0000000 1.0000000 1.0000000 

0.9997909 

[22] 0.9999995 0.9998646 0.9999627 1.0000000 0.9999680 0.9999485 

0.9999996 

[29] 0.9999997 1.0000000 1.0000000 0.9999999 0.9999917 0.9999971 

1.0000000 

[36] 0.9998292 0.9999995 0.9996973 0.9999858 0.9999998 1.0000000 

0.9999991 

[43] 0.9999709 0.9999968 0.9999991 1.0000000 0.9996826 1.0000000 

0.9998724 

[50] 0.9999999 0.9999804 0.9999951 0.9993628 0.9999710 1.0000000 

1.0000000 
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[57] 0.9999461 1.0000000 1.0000000 0.9999849 1.0000000 0.9999583 

1.0000000 

[64] 0.9999970 0.9999532 0.9999304 0.9999769 0.9998692 1.0000000 

0.9998229 

[71] 1.0000000 1.0000000 0.9999899 0.9999555 0.9999985 

 

> summary(M.Stella$irwls.2) 

 

Call: 

lm(formula = Y ~ X1 + X2 + X3, weights = w) 

 

Weighted Residuals: 

    Min      1Q  Median      3Q     Max  

-0.9262 -0.3955  0.0000  0.3968  1.0103  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.18050    0.10444  -1.728    0.089 . 

X1           0.08140    0.06667   1.221    0.227   

X2           0.03991    0.04047   0.986    0.328   

X3          -0.05168    0.03537  -1.461    0.149   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.5572 on 61 degrees of freedom 

Multiple R-squared:  0.0428, Adjusted R-squared:  -0.004273  

F-statistic: 0.9092 on 3 and 61 DF,  p-value: 0.4419 

 

 

> sink() 

 

 

 

 

 


