CHAPTER ONE

1.0 INTRODUCTION

1.1 Background of study

Water is the most abundant compound on earth's surface, constituting about 70% of the planet's surface. In nature it exists in liquid, solid, and gaseous states. At room temperature, it is a nearly colourless (with a hint of blue), tasteless and odourless liquid. Many substances dissolve in water and it is commonly referred to as the Universal solvent. Water is the common substance found naturally in all three common states of matter and it is essential for life on earth. (UNDP, 2009). Water usually makes up 55% to 78% of the human body (Jeffrey, 2009).

The seventh of the eight Millennium Development goals of the United Nations Development Programme which is captioned, "Ensure environmental sustainability", has the following subthemes:- Integrate the principles of sustainable development into country policies and programmes; reverse loss of environmental resources; Reduce biodiversity loss, achieving by 2010, a significant reduction in the rate of loss. - Halve by 2015, the proportion of people without sustainable access to safe drinking water and basic sanitation. - By 2020, to have achieved a significant improvement in the lives of at least 100 million slum dwellers (UNDP, 2009).

In the light of the foregoing therefore, "A watershed is an area of land that drains rain water or snow into one location such as a stream, lake or wetland." These water bodies supply our drinking water, water for agriculture and manufacturing, offer opportunities for recreation and provide habitat to numerous plants and animals. Unfortunately various forms of pollution, including runoff and erosion, can interfere with the health of the watershed. Therefore, it is important to protect the quality of our watershed. (The Nature Conservancy, 2016).

1.2 Statement of the Problem.

Many people look upon the watersheds as natural dumping site for all manner of wastes. Others see them as the natural home for agricultural activities, and other commercial ventures. The integrity and sanctity of the watershed therefore, is not respected. Watershed protection which is a means of protecting a lake, river, or stream by managing the entire watershed that drains into it is an indispensable prerequisite for the sustainability of all human communities. Clean, healthy watersheds depend on an informed public to make the right decisions when it comes to the environment and actions carried on by its inhabitants. The earth is covered in 70% water and unfortunately $40-50 \%$ of our nations' waters are impaired or threatened. "Impaired" means that the water body does not support one or more of its intended uses. This could mean that the water is not suitable to drink, swim in or to consume the fish that was caught therein. The leading causes of pollution in our waterways are sediments, bacteria (such as E.coli) and excess nutrients. Sediments can suffocate fish by clogging their gills and the presence of bacteria alone can indicate that other viruses and germs can be found in the water as well. Erosion, runoff of animal waste and overflowing of combined sewers are just a few ways these pollutants reach our waters. (The Nature conservancy, 2016). In parts of southeast Nigeria, Anambra State for instance (emphasis mine), population explosion, rise in and unplanned industrial, infrastructural and agricultural development together with other unacceptable environmental practices have exacerbated watershed degradation. This has continuously impacted negatively on watershed sustainability (particularly water safety and biodiversity). As natural vegetation is rapidly being replaced with impervious surfaces (roof tops, concrete surfaces, paved roads etc), increased runoff and excessive flooding which results in siltation,
leaching and erosion (recurring decimal in the South East) occur. The associated pollutants constitute health hazards to man and other living organisms which depend on the water and its resources for overall sustenance, growth and advancement.

Anambra State has a very large population of traders, artisans, land speculators, unemployed folks and even government workers who have little or no regard for vegetation. This has led to dizzying (unbelievable) rates and acts of deforestation with its associated degradation.

1.3 Significance of the Problem.

The Amawbia watershed (under study) lies on a relatively higher incline than other neighbouring/surrounding watersheds in Awka, Nibo, Nise, Nawfia, Enugu Agidi, Enugwu-Ukwu et cetera. This was probably why the Anambra State Government selected this particular watershed for its Agricultural Development Project (ADP) field site. This watershed is surrounded by Hotels, Diesel, fuel, Gas and Kerosene dispensing mega stations, a medium capacity prison, Government offices, banks, residential buildings, paved and unpaved roads, industries, factories and other commercial enterprises. On the watershed proper, massive deforestation, continual cropping and harvesting on the same undulating land, fuel wood gathering, overharvesting of more useful species, bush-burning, yearly application of inorganic fertilizer, slash and burn agriculture and continuous flow of point and non point sources of sewage/effluents from roads, cesspits, floodwaters and incinerators, gaseous effluents et cetera introduce hazardous, disease causing materials into the water and atmosphere. These are also filtered by surrounding vegetation, thus rendering the fish, fruit, vegetables, leaves, tubers, and other medicinal products harvested from the site not very palatable nor safe for consumption by man or his livestock. These deleterious materials also naturally, are distributed through the water channels to the numerous other watersheds downstream in neighbouring communities thereby ensuring a vicious cycle of toxic substances distribution throughout the state in the food chain and food webs. Ingwu (2006) observes that the ever-increasing speed of infrastructural development has resulted in many environmental problems. These include deforestation, siltation of streams, eutrophication (contribution mine), water pollution and invariably water scarcity. Thus the decline of forests and freshwater and concomitant agricultural activities lead to land use and land cover changes, hence the degradation of the watershed system. Also, infrastructural developments are more often than not associated with the excavation of sand and gravel. These are largely confined to the beds of streams and rivers and their banks and are largely indispensable in many construction projects. Consequently, settlement encroachments close to the streams and deforestation have contributed to seasonal shortages of water. The swamp, fresh watershed and spring areas have been used for building residential houses, private schools, animal pens, raw milks et cetera. Sometimes, dam are built without involving the rural community in the decision (Ingwu, (2006).

1.4 Purpose of the study.

This work will go a long way in helping to increase enlightenment to people especially in developing nations, of the concept of watersheds, their usefulness in terms of organic (e.g. plants) and inorganic resources (e.g. water, sand, etc); their relationship to forests and tourism development; why they are being degraded, what is degrading them and how to arrest/avert further degradation, and finally, what the future portends for mankind if and when, especially tropical watersheds, are wisely midwifed and judiciously developed.
The white races of the world, having experienced more years of civilization; fully realize the wisdom inherent in wise stewardship of the earth, and its finite resources. Unfortunately, they inhabit mostly temperate regions of the world. This work serves as a wake up call most especially, to all the progressive
forces of the World (environmentalists, intellectuals, leaders of thought, politicians, women and youth representatives), to pool their resources together and consciously set in motion, the long awaited vehicle of change towards massive, all encompassing campaign of environmental protection and habitat conservation. Watersheds are more than just drainage areas in and around our communities. They are necessary to support habitats for plants and animals, and they provide drinking water for people and wildlife. They also provide the opportunities for recreation and enjoyment of nature. Protection of the natural resources in our watershed is essential to maintain the health and wellbeing of all living things both now and in the future (mywatershedwatch.org, 2016).

1.5 Scope of the study.

This research work will be limited to the watershed traversing the Ministry of Agriculture, Amawbia (Old Government lodge), Awka South Local Government Area, Anambra State, Nigeria, Floristic studies will be focused on trees, climbers, shrubs, grasses and forbs in the watersheds. Economic importance and Diversity indices of encountered flora will be ascertained. Effects of seasons (rainy and dry), relief (flat and slopy), land use, (managed and not managed), on importance values of encountered flora will be studied. Percentage concentrations of Nitrogen, carbon, organic matter and pH for soil at ($0-20$ and 2040) cm depths for all the independent variables will also be scrutinized.

1.6 Aim of the Study

The aim of this research work was to characterize and identify those factors that were responsible for the degradation of the watershed.

1.7 Objectives of the study

The objectives of the study were to:

i. Identify the species composition and diversity;
ii. Determine the economic relevance of the species;
iii. Determine the Importance values of the species;
iv. Determine the effects of seasons, land use and relief on Importance values of the species.
v. Determine the effects of seasons, land use and relief on selected soil properties;

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Definition

Watershed has traditionally designated the dividing line or drainage divide, between two drainage basins: that is, the ridge of high land or boundary separating regions that are drained by different river systems or bodies of water (lake, sea, etc). In some instances, watershed has come to be used interchangeably with the definition for drainage basin. In other words, watershed often refers to the entire region or area where all the waters drains into the same body of water, rather than just the elevation separating the waters flowing into different basins. Both are accepted definitions. (New World Encyclopedia, 2009). A drainage basin is a region of land where water from rain or melt drains downhill into a body of water such as a river, lake, dam, estuary, wetland, sea or ocean. The drainage basin includes both the streams and rivers that convey the water as well as the land surfaces from which water drains into those channels. The drainage basin acts like a funnel-collecting all the water within the area covered by the basin and channeling it into a waterway. Smaller watersheds are part of progressively larger watersheds. Each drainage basin is separated topographically from adjacent basins by a ridge, hill, or mountain, which is known as a water divide or a watershed. Water on one or the other side of that divide either flows toward or away from a particular basin. (New World Encyclopedia, 2009). Homes, farms, ranches, forests, small towns, big cities, and more can make up watersheds. Some cross county, state and international boundaries. Watersheds come in all shapes and sizes. Some are millions of square miles, others are just a few acres. Just as cracks drains into rivers, watersheds are nearly always part of a larger watershed. (Conservation technology Information Center, 2009).

2.2 Important Watershed Characteristics

2.2.1 Drainage Area: The drainage area (A) is probably the single most important watershed characteristics for hydrologic design. It reflects the volume of water that can be generated from rainfall. It is common in hydrologic design to assume a constant depth of rainfall occurring uniformly over the watershed. Under this assumption, the volume of water available for runoff would be the product of rainfall depth and the drainage area. (United States Geological Survey, 2000).
2.2.2 Watershed Length: This is the second watershed characteristic of interest. While the length increases as the drainage increases, the length of a watershed is important in hydrologic computations. Watershed length is usually defined as the distance measured along the main channel from the watershed outlet to the basin divide. Thus the length is measured along the principal flow path. While the drainage area and length are both measures of watershed size, they may reflect different aspects of size. The drainage area is used to indicate the potential for rainfall to provide a volume of water. The length is usually used in computing a time parameter which is a measure of the travel time of water through a watershed. (United States Geological Survey, 2000).
2.2.3 Watershed Slope: Flood magnitudes reflect the momentum of the runoff. Slope is an important factor in the momentum. Both watershed and channel slope may be of interest. Watershed slope reflects the rate of change of elevation with respect to distance along the principal flow path. Typically, the principal flow path is delineated, and the watershed slope(s) is computed as the
difference in elevation $(\Delta \mathrm{E})$ between the end points of the principal flow path divided by the hydrologic length of the flow path (L): $\mathrm{S}=\Delta \mathrm{E} / \mathrm{L}$. (United States Geological Survey, 2000).
2.2.4. Watershed shape: Watersheds have an infinite variety of shapes, and the shape supposedly reflects the way that runoff will "bunch up at the outlet. A circular watershed would result in runoff from various parts of the watershed reaching the outlet at the same time. An elliptical watershed having the outlet at one end of the major axis and having the same area as the circular watershed would cause the runoff to be spread out over time, thus producing a smaller flood peak than that of the circular watershed (United States Geological Survey, 2000).

2.3 Importance of Watersheds

Watersheds supply our drinking water, water for agriculture and manufacturing, offer opportunities for recreation and provide habitat to numerous plants and animals. Unfortunately various forms of pollution, including runoff and erosion, can interfere with the health of the watershed. (The Nature Conservancy, 2016). Therefore, it is important to protect the quality of our watershed. The Amawbia watershed is the source of the water for irrigation of the market garden domiciled within the watershed. Pollutants from neighbouring commercial enterprises faecal contamination, char from bushfires, effluents from car washing concerns/block industries, sewage from hotels and residential buildings, and of course artificial fertilizers used in the market garden, and the runoffs from the ever-increasing floods-all impact negatively on the watershed in line with what obtains in the Amawbia watershed, according to the New World Encyclopedia (2009), "People live in particular watersheds, and each of these watersheds are unique, based on the specific size, terrain, soil, land use, flora and fauna, climate and so forth. Human activities impact watershed, whether these activities be agricultural, residential, or commercial. For example, pesticides from agricultural activities in the highlands may flow down to smaller rivers and then to major rivers or lakes. Today, there is a tendency to manage watershed areas in order to provide for human needs and for a healthy environment. For the fact that watersheds are interconnected, negative influence in one rapidly spread to others, therefore all efforts must be made to safeguard the overall health (wellbeing) of our watersheds.
Watersheds, as drainage basins have been important historically in determining (delineating) boundaries, particularly in regions where trade by water has been important. (New World Encyclopedia, 2009).
In hydrology, the drainage basin is a logical unit of focus for studying the movement of water within the hydrological cycle, because the majority of water that discharges from the basin outlet originated as precipitation falling on the basin. Measurement of the discharge of water from a basin may be made by a stream gauge located at the basin outlet. (New World Encyclopedia, 2009).

In ecology, watersheds (as drainage basins) are important units. As water flows over the ground and along rivers it can pick up nutrients, sediments, and pollutants. Like the water, they get transported towards the outlet of the basin, and can affect the ecological processes along the way as well as in the receiving water body. Modern usage of artificial fertilizers, containing nitrogen, phosphorus and potassium, has affected the mouths of the watersheds. The minerals will be carried by the watershed to the mouth and accumulate there, disturbing the natural mineral balance. (New World Encyclopedia, 2009). For the fact that drainage basins are coherent entities
in a hydrological sense, it has become common to manage water resources on the basis of individual basins. (New World Encyclopedia, 2009).

Watersheds sustain life, in more ways than one. According to the Environmental protection Agency, more than $\$ 450$ billion in foods, fiber, manufactured goods and tourism depend on clean, healthy watersheds. (The Nature Conservancy, 2016). To a very large extent, this is also true of the Amawbia watershed. Annual vegetables are harvested for sale in the markets yearly, medicinal plants are harvested together with livestock fodder species. The major problem here is Deforestation and lack of regular aforestation. Proper disposal of industrial, commercial and domestic sources of pollution will also go a long way.
2.4 Degradation of Watersheds: The watershed in Amawbia is an urban watershed. In urban areas, large expanses of roads, parking lots, and roots of buildings, replace the original forest and organic soils. These impervious surfaces do not allow water to soak into the ground. Consequently, infiltration in urban areas accounts for only 5 to 35% of rainfall. Evapotranspiration is also substantially reduced, to $20-35 \%$, due to a lack of vegetation. Therefore, 30% to 70% of rainfall in urbanized watersheds runs off almost immediately into storm drains and subsequently into natural water bodies. (Lotspeich, 2007).

2.4.1 Increased runoff creates a number of problems:

When water flows over urban impervious surfaces, it picks up pollutants such as oil, gasoline, cigarette butts, fertilizers, pesticides, and industrial chemicals. As there is little vegetation, these substances are usually not filtered before being washed into water bodies where they can seriously harm aquatic organism. The volume of water flowing off urban areas is much greater compared to natural areas. The great energy in these torrents of water can cause erosion, which destroys stream, channels and banks, wildlife habitats and adjacent property (Lotspeich, 2007). This particular point is not restricted to the watershed at Amawbia, it is currently the bane of Anambra State and all of its watersheds both rural and urban. (Lotspeich, 2007) continues, Erosion caused by the large water volumes also deposits sediments in low-energy downstream areas such as at the mouth of rivers. This can smother bottom-dwelling plants and animals as well as destroy fish spawning and bird feeding habitats. Watershed flows in urbanized watersheds are significantly altered compared to natural flows. For example very little water is stored in watersheds with large areas of impervious surfaces, this results in large peaks in stream flows immediately after a rainstorm followed by very low flows soon after. These extreme conditions are inhospitable for most fish and aquatic invertebrates. Dams, dykes, solid wastes and water retaining walls, also alter flows (Lotspeich, 2007).

2.5 Factors that drive Watershed degradation/consequences:

According to Enwelu and Igbokwe (2013), "The percentage decrease in forest trees has serious implications on the status of watersheds. This is because forest trees provide habitats for other living organisms in the watersheds. This fact was buttressed by Elevitch and Wilkenson (2009) when they stated that forest trees protect land from erosion, provide habitat for wildlife, support diversity of soil microlife, and reduce carbon dioxide pollution and global warming. Forest trees also help in maintenance of water quality and quantity. Through focus Group discussion (FGD), it was confirmed that the use of sophisticated instruments in clearing of forest trees, hunting of animals and fishing, compounded the decreasing status of watersheds. These study findings are synonymous with earlier reports by Akolade and Issa (2009) as well as Ukpong (1994), which
state that destructive logging of forests, flooding and wind erosion menace, overgrazing, overcropping of arable lands, land degradation with pesticides and fertilizers, improper resource management, forest clearance for agricultural development, urban growth, industrial expansion and general pressure from increasing population have reduced the extent, diversity and ability of Nigerian forests to protect the watersheds". These activities can also lead to reduction in volume of water. The gamut of problems just described above also affects the Amawbia watershed, with mass hunting of species by poachers and marauding bands of men and dogs, and dumping of solid wastes also implicated."

Most watersheds in southeastern Nigeria were originally forested watersheds. Overpopulation, overcultivation, overgrazing, overharvesting of useful species, shifting cultivation, deforestation, and unplanned infrastructural development, all have collectively and independently contributed in reducing most of these forested watersheds into degraded, depauperized watersheds. The implication also is that the rich natural resources that are associated with forests are lost. According to Otegbeye and Onyeanusi (2006), "Deforestation is not only the removal of forest cover naturally or by human activities by felling of trees, but also removal of shrubs, lanes, grasses, and other plants from the forest". The United Nations System in Nigeria (UNSN) in their common country assessment of 2001, reports that the total area occupied by reserved forests in Nigeria was approximately ten per cent of the total land mass in 1977. This is considerably lower than forest estate covers of at least 25 per cent that obtains in many other countries in line with international standards. The proportion is reducing by the day as less than one per cent of forest areas cleared for domestic and commercial purposes get reforested. (Otegbeye and Onyeanusi, 2006). As deforestation takes its toll on our watersheds, they become extremely depleted in terms of biodiversity. This is the bane of most watersheds in southeastern Nigeria. The watershed under study (the Amawbia watershed) is a case in point. It has suffered from deforestation, soil degradation and general bioresource depletion. In the 1980s, about 400 hectares of forest and woodland out of every 1000 hectares suffered from deforestation while only 26 hectares were reforested on an annual basis (these days little or no reforestation is done (emphasis mine). According to the FAO, (1985). the remaining forest area in Nigeria will likely disappear by 2020 if the current rate of forest depletion continues unabated. The value of lost forest cover has been estimated at USS $\$ 750$ million annually at 1989 prices, (Otegbeye and Onyeanusi, 2006). As vegetation disappears, the water and other resources of the watershed gradually vanish into thin air and the watershed becomes history. Annual rate of deforestation of woodlands (watersheds) averaged 3.5 percent in the 1980 to 1990 period. The southern rainforest which covers only 2 percent of the total land area in Nigeria, is being depleted at an annual rate of 3.5 percent. Largescale deforestation in the south, particularly in the lowland forest areas, has resulted in a number of other problems including flooding, sheet, and gully erosion, as well as siltation of rivers (and streams, emphasis mine) that sometimes constitute the only source of water for domestic use, (Otegbeye and Onyeanusi, 2006). Siltation has been responsible for the disappearance of many watersheds, particularly in Anambra state, since the country's independence in 1960, and the local population have often attributed it to-anger of the gods, witchcraft activities and enmity of neighbouring clans. Other practices that contribute to vegetation destruction (watershed degradation) in Nigeria (particularly in Anambra State-emphasis mine) include intensive grazing, persistent bush burning, and reduction in, or absence of fallow periods, as well as extension of
agricultural activities into less favoured, often environmentally fragile areas. The end result of deforestation, intensive grazing, bush burning, over ploughing and over cultivation is severe land degradation. In general, vegetation removal accelerates rainfall runoff and increases soil erosion, diminishing land productivity and aggravates local flooding. Severe land degradation has also resulted in desertification (UNSN,2001). Deforestation brings about serious ecological and socioeconomic problems some of which include wood shortage, food shortage, flooding, erosion, siltation of rivers, streams, destruction of wildlife habitats and increased poverty, especially in rural communities. All these bring to the fore the need for sustainable forest management which is the maintenance of environmental integrity to meet the needs of the present, and leaving enough in quantity and quality to satisfy the needs of the future generations (Otegbeye and Onyeanusi, 2006). The two primary natural production resources that determine agricultural potential are soil and water. Soil is acknowledged as the base for support and nutrition while its water content is basically responsible for facilitating nutrient utilization (Momodu, 2000). However, due to human activities soil and water are rarely in adequate supply to maximize agricultural production. This is one of the major problems encountered in the Amawbia watershed. Where soil and water are available, their quality renders them not very useful for productive activities. Land (watershed) degradation involves the physical removal of soil by water and wind, particularly through the process of soil erosion which results in reduction of both land surface and the quality of the soil with dire consequences on plant growth and the entire ecosystem. The various erosive powers of these agents results in sheet, rill, splash and gully erosion. The Amawbia watershed is a source of subsistence to low income dwellers associated with it. It provides food, shelter, fodder, industrial raw materials, herbal medicine, fuel wood et cetera. Over 70 percent of Nigerians live in the rural areas and almost all the rural families use fuelwood energy for their domestic needs. Fuelwood gathering is non-selective and almost all woody species can be exploited for the supply of fuel energy (Otegbeye and Otegbeye, 2002). Forest (watershed) resources generate wealth and support in diverse ways to the communities that make use of them. The livelihood is of the rural people revolve round the forest (watershed). The rural people process and trade in watershed products to earn extra cash income. For their household needs and, in some cases, they save to meet future needs. Apart from forests providing foods, herbs for medicine, fodder and fuelwood, a good number of Non-wood forest. Products (NWFP), are also gathered, processed, and sold to generate extra income. In addition, many rural and urban dwellers earn income from these activities (Otegbeye and Onyeanusi, 2006).
2.5.1 Degraded Environments: The United Nations International Strategy For Disaster Reduction (2004), defines environmental degradation as, "The reduction of the capacity of the environment to meet social and ecological objectives and needs". It is estimated that up to 40% of the World's agricultural land is seriously degraded (Sample, 2007). Causes: Land degradation is a global problem, largely related to agricultural use. The major causes include:
$>$ Land clearance, such as clear-cutting and deforestation.
$>$ Agricultural depletion of soil nutrients through poor farming practices,- including overgrazing livestock.
$>$ Inappropriate irrigation and overgrafting (ILRI, 1989).
$>$ Urban sprawl and commercial development.
$>$ Land pollution including industrial waste.
$>$ Vehicle off-loading, Quarrying of stone, sand, ore and minerals.
$>$ Effects. The main outcome of land degradation is a substaintial reduction in the productivity of the land (UNEP, 2008)

2.5.2 The major stressed on vulnerable land include:

> Accelerated soil erosion by wind and water.
$>$ Soil acidification and the formation of acid sulphate soil resulting in barren soil.
$>$ Soil alkalization owing to irrigation will water containing sodium bicarbonate leading to poor soil structure and reduced crop yields.
> Soil waterlogging in irrigated land which calls for some of subsurface land drainage to remediate the negative effects.
$>$ Soil salination in irrigated land requiring soil salinity control to reclaim the land.
$>$ Destruction of soil structure including loss of organic matter (Wikipedia, 2010).

2.6 Typical floral Resources found in Anambra watersheds include:

Trees - Milicia excelsa, Ceiba pentandra, Mangifera indica, Senna siamea, Pentaclethra macrophyla, Tetrapleura tetraptera, Anthocleista djalonensis, Elaeis guineenses, Dialum guineense, Zanthaxylum zanthaxyloides, Musanga cecropoides, Alstonia boonei, Dacryodes edulis.
Shrubs - Alchornea cordifolia, Sarcocephalum laxiflora, Annona senegalensis, Uvaria chamae, Vernonia amygdalina, Chromolaena odorata,Manihot esculenta, Riccinus Communis, (Nigeria Natural medicine Development, Agency (2008).
Climbers - Telfeiria occidentalis, Luffa culindrica, Peuraria phaseoloides, Cissus araliodes, Mucuna prariens, Desmodium scorpiurus.
Grasses - Imperata cylindrica, Panicum maximum, Paspalum scrobiculatum, Pennisetum polystachion, Hackelochloa granularis, Cymbopogon giganteus, Andropogon gayanus and Andropogon tectorum (Akobundu and Agyakwa, 1998).
Forbs - Aspilia africana, Synedrela nodiflora, Emilia coccinea, Ageratum conyzoides, Sida acuta, Spermacoce ocymoides, Mitracarpus villosus, Amarantus viridis, Gomphrena celosiodes, Aspilia bussei, Tridax procumbens, Cleome rutidosperma, Euphorbia hirta (Akobundu and Agygkwa, 1998).
2.7 Geology: Watersheds have soils as their foundation. These soils of Anambra State are all of sedimentary origin with sandstone and shales as the dominant parent materials. These can be broadly grouped as:

1. Young brown alluvial soils derived from recent sediments. These are typical of the areas bordering the flood plains of the Niger, Anambra and Mama Rivers together with their nonseasonal tributaries. This soil group is generally fertile and extensively supports agricultural activities (Nwozor, 2010). The watersheds in this part of the state have over the years been inundated by floods because of degrading activities of man on the banks of the rivers. The Federal Government recently dredged the surrounding rivers and this has also impacted negatively on the watershed biotic and abiotic ecosystem.
2. Clay and clay-loam hydromorphic soils developed from weathered shales of various geologic formations. A good percentage of the soil horizon have hardpans and generally concretions as can be observed in parts of Ayamelum, Awka North, Awka South, Oyi and Orumba axis. They are characteristically of low permeability and constitute the swamps and wetlands of the state. They support the cultivation of various arable crops especially rice, yams, cassava, maize and sugarcane (Nwozor, 2010). The watersheds in this part of the state is very poor in biodiversity because
wetlands have a limited category of fauna and flora that can adapt here. Incidentally, this is where Amawbia town, the home of the watershed under study is situated.
3. Massive fine to coarse grained soils derived from sandstones. These are porous, permeable and unconsolidated with reddish and brown colours chemically depicting lateralization. Their high permeability renders them highly leached and poor in agrarian nutrients. They are the problem soils in the state always identified with deep and wide gully erosion sites with rugged topography. Pebbly and gravely soils buried in admixture of sand and shale matrix of various geologic formations. These are characterized by considerable variability in fertility, low stability and lateritization. Their unconsolidated nature makes them highly susceptible to erosion (Nwozor, 2010). Most watersheds found in this part of the state have being extinguished through siltation caused by flooding and erosion. These watersheds have the poorest soil fertility, therefore biodiversity is poorest here.
2.8 Diversity Index: A diversity index is a quantitative measure that reflects how many different types (such as species) there are in a dataset and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types. (Wikipedia, 2014). The value of a diversity index increases both when the number of types increases, the value of a diversity index is maximized when all types are equally abundant. When diversity indices are used in ecology, the types of interest are usually species, but they can also be other categories such as genera, families, functional types or haplotypes. The entities of interest are individual plants or animals, and the measure of abundance can be, for example, number of individuals, biomass or coverage. In demography, the entities of interests can be people, and the types of interest, various demographic groups. In information science, the entities can be characters and the types the different letters of the alphabet. The most commonly used diversity indices are simple transformations of the effective number of types (also known as "true diversity"), but each diversity index can also be interpreted in its own right as a measure corresponding to some real phenomenon (but a different one for each diversity index).
2.8.1 Richness: Richness simply quantifies how many different types the dataset of interest contains, for example, species richness (usually notated S) of a dataset is the number of different species in the corresponding species list. Richness does not take the abundances of the types into account, thus it is not the same thing as diversity, which does take abundances into account. However, if true diversity is calculated with 9=O, the effective number of types (D) equals the actual number of types (R).
2.8.2 Shannon Index: The Shannon index has been a popular diversity index in the ecological literature, where it is also known as Shannon's diversity, the Shannon-Wiener index, the Shannon-Weaver index and the Shannon entropy.

CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Description of the Study Area:

3.1.1 Location and Climate: The study was carried out along a watershed (figs1-3) which traverses the Anambra State Agricultural Development Project Field location, Amawbia-Awka South Local Government Area, at four different sites, as follows: Site A (Forest site); Site B (Short term fallow site); Site C (Long term fallow site); Site D (Current usage farming site (slope) and Site E (current usage farming site (flat). This watershed has had a long history of human interference. Originally, it was complete forest. When Anambra State was created in 1981, it was made the substantive Agricultural Development field site of the state ministry of Agriculture (ADP, Awka). Presently, most parts of the watershed have been converted to permanent Agricultural land (market gardens) and the water is being utilized intensively for irrigation and other domestic purposes. Some areas of the watershed are flat while others are slopy, thereby giving the entire land an undulating appearance. Amawbia (fig. 2) is 325 m above sea level and lies between latitude $06^{0} 11.434{ }^{\prime} \mathrm{N}$ $06^{0} 11.643 \mathrm{~N}$ and longitude $07^{\circ} 03.649^{\prime} \mathrm{E}-07^{0} 03.691^{\prime} \mathrm{E}$. it falls within the humid tropical climatic belt of Nigeria. There are two seasons which are well marked in this region where the maximum average rainfall is experienced during July and August. The mean annual rainfall is in the range of $1500-2500 \mathrm{~mm}$ (Idodo-Umeh, 2011). Amawbia has a mean annual maximum temperature of $32.9^{\circ} \mathrm{C}$; mean annual minimum temperature of $23.4^{\circ} \mathrm{C}$, while the soil monthly mean temperature is $30^{\circ} \mathrm{C}$ (Ministry of Agriculture, Awka, (2009)).
3.1.2 Geology: According to the Ministry of Environment and solid minerals Awka (2004), Amawbia and most parts of Anambra State fall squarely into the Nanka geologic formation which underlies the Ogwashi-Asaba formation, but overlies the Imo formation. Nwajide (1979), was of the opinion that Nanka sand is one of the youngest lithostratigraphic units of Anambra basin. In the outcrop of sand unit of Nanka formation, the first 0.75 m represented reddish laterized sand, the next 2.5 m was reddish brown sandy clay, while 2.13 m was reddish brown sand (coarse grained). Reyment (1965), and Kogbe (1976) had earlier recognized the Nanka formation as a distinct formation.

Fig 2 Maj of Awka South Local Govt. Area Showing Amawbia.

3.1.3 Diagrammatic Representation of the Techniques for easier appreciation-Plotless techniques

Plotless sampling
Techniques

Fig. (4) Closest individual method
Source: Meuller-Dombois and Ellenberg (1974)

3.2 Sampling Procedure:

3.2.1 Vegetation Sampling and Analysis: Fig 3 is a schematic representation of the project site, indicating the five sampling locations namely: the forested-(A) Forest site, (B) Short term fallow site, and cultivated sites - (C) Long term fallow site; (D) Current usage farming site: Slope; (E) and Current usage farming site: Flat. This work was carried out during the rainy and dry season of 2010/2012.
3.2.1.1 Details of Standard Procedure and Equipment Employed Site A - The Forest Site (Fig.4) represent the plotless sampling procedure used for data collection in the site. This represents the forest site and here, closest individual (C.I) technique - a type of plotless sampling technique, was used. Sampling points were marked with pegs. The closest (nearest) plant species to each sampling point were identified and their local and botanical names recorded. At each sampling point, two different measurements were taken. Firstly, the closest tree to each sampling point was identified and the distance between them measured and recorded. Finally, any tree whose stem was up to 1.3 m high, had the girth at breast height (gbh) measured immediately at that mark.

3.3.1 Sample collection and Data Analysis (Forest site)

This is a completely flat forested site. Plotless techniques were employed here. The species at the forest site were identified physically with the assistance of field taxonomists and some relevant texts. The species and families were recorded. All individuals of each species were counted, their Gaith at breast height (Gbh) estimated and all these were recorded. The numbers of individual of each species were recorded for the rainy and dry season respectively. The Gbh were measured at
1.3 m height and the formulae: Circumference $=2 \pi \mathrm{r}$ and Basal area $=\pi r^{2}$ were used to ascertain the basal area. The number of individuals of each species were added up and used to estimate species composition and diversity. Bar Charts were used to record species composition according to growth forms (Trees, climbers, shrubs, grasses and forbs). A well structured questionnaire was used to ascertain the economic relevance of each species using a rank of twelve (12) utility index. Sübsequently, the mean of the ranks ($\mathrm{X}=6.5$), was worked out (Table 1). Any flora with a mean value above 6.5 had a high economic relevance while those with means below 6.5 had low economic relevances.

3.3.1 Formulae Importance value indices (IVI) were calculated using the following formulae:

Density of all distances for all species should be summed and divided to yield one average distance.
Density per hectare $=10000 \mathrm{~m}^{2}$ for all trees

$$
\text { Density } \quad=\frac{10000}{2\left(\text { average distance, metres) }{ }^{2}\right.}
$$

The 2 in denominator is a constant correction factor.
Relative density of each species $\quad=\frac{\text { no of trees of the species }}{\text { No of all trees }} \times$ density of all trees

Frequency $=$ Presence or absence of each plant species at or near a sampling point

No of the sampling point at which each species is found		
Total no of sampling points	x	$\frac{100}{1}$

Relative frequency $=\frac{\text { frequency of one species }}{\text { Frequency of all species }} \quad x \quad \frac{100}{1}$

Dominance of each species $=$ its relative density x its average basal area

Relative dominance $=\frac{\text { Dominance of each species }}{\text { Total dominance for all species }} \quad \mathrm{x} \quad \frac{100}{1}$

Importance value (IVI) $=$ rel. density + rel. frequency + rel. dominance (COX, 1976)
The importance value is an index of dominance, controlling influence and advancement of one species over another.
Having calculated the importance values of each species, it is now subjected to T-test analysis to determine the effects of seasons, land use and relief on overall growth and development of each species. For this to be achieved, the (IVI) of species in the rainy and dry (season); flat and slopy, (relief), and managed and unmanaged sites were all ascertained and comparatively analysed scientifically to determine significance. The major advantage of estimating number of individuals through their mean distance rather than through the standard way of counting them in quadrats, plots, or strips is that no plot boundaries are required. This in many situations, saves considerable time (Curtis, 1959), because tree distances are usually shorter and more easily measured than boundaries. The problem of determining the number of individuals the important problem in the distance methods is to locate the distance that gives the best estimate of the square root of the mean area per tree. This is done by averaging a number of
specific selected distance-measures in the stand (Meuller-Doubois and Ellenberg, 1974). Whereas the plot count techniques (quadrat) are used for open field herbaceous vegetation, plotless techniques are employed in woody, more cumbersome forested areas.

3.3.1.1 The assumptions of plotless techniques include:

1. Plant species occupy circular areas.
2. Plants are randomly distributed
3. Individual plants can be easily recognized Dix (1961) and Laycock (1985).
4. The distance between plants is a measurable amount. Also, The number of trees per unit area can be calculated from the average distance between the trees (Meuller-Dombois and Ellenberg, 1974).

3.3.1.2 Diagrammatical representation of the techniques for easier appreciation-Plot-count techniques

Fig. 5: Quadrat placed in site B

Fig. 6: Quadrats placed in sites $C, D \& E$
3.3.1.3 Sample Collection and Data Analysis (Sites B, C, D, and E): Plot-count technique was employed for the rest of the sites. Plot counts are usually carried out in herbaceous sites with known borders, lacking physical obstacles (as in sites filled with trees and other wooded vegetation). Firstly, the total plot size (dimension (length x width) was ascertained. Next, the sampling intensity was worked out e.g determining 5% of the total plot size. Having known the sampling intensity, the no of quadrats to be placed in the plot becomes sampling intensity, divided by the sampling unit. For site B for instance,
sampling intensity was 5% of the entire plot size i.e $27 \mathrm{~m} \times 27 \mathrm{~m}=729 \mathrm{~m}^{2}=5 / 100 \times 729=36$ quadrats, $(36 / 1=36)$ therefore for this site, the quadrat were placed 36 times; for the rest of sites C, D, and E, the sampling intensity was 5% of the entire plot size i.e $24 \mathrm{~m} \times 24 \mathrm{~m}=576 \mathrm{~m}^{2} .5 / 100 \times 576=29$ quadrats, therefore for these sites, the quadrat were placed 29 times. ($29 / 1=29$; $1 \mathrm{~m} \times 1 \mathrm{~m}$ quadrat $)$. Next, the sampling techniques was determined. The most appropriate for the work contemplated is usually selected. For this research work, random sampling technique was selected because it does not create room for bias. Having determined the sampling size (sampling intensity / sampling unit), two lines which represent two of the boundaries were used as coordinates on each plot. Prior to this,, a set of random numbers were put together according to the number of times the quadrat will be placed. This set of random numbers were then used to estimate the exact points (locations) at which the quadrats will be placed. The random numbers were in pairs and wherever each corresponding pair intersect themselves, there the quadrat was placed, until the correct number of quadrats were placed. Quadrats used in all cases were $1 \mathrm{~m} \times 1 \mathrm{~m}$ ($3.28 \mathrm{ft})^{2}$ in size. They were placed thirty six (36) times for site B and twenty-nine (29) times for the rest of the sites (C, D, and E). Each species in each quadrat was identified, counted and its numbers recorded. The entire exercise was repeated for each of the sites C, D. and E. for both rainy and dry seasons.
Site B: (Fig. 5): The short term fallow site: This site has both flat and slopy cultivated areas. The plotcount sampling technique was used for data collection, from an area of 27 m square which was delineated with a tape and four pegs. During each rainy and dry seasons of both years of research, a $1^{\mathrm{m}} \times 1^{\mathrm{m}}$ quadrat was used to sample the area (site B), thirty-six (36) times. The quadrat that fell within the slopy area of the site were used to calculate importance values for the slopy site, while the quadrats that fell within the flat area, were used to calculate importance values for the flat site-For both the rainy and the dry seasons. This site represents the cultivated site. Plant species that belong to the different microsites for each quadrat were identified, counted and their numbers recorded. The total sample size is $27 \mathrm{~m} \times 27 \mathrm{~m}$ ($729 \mathrm{~m}^{2}$).
Site C. (Fig. 6): The long term fallow site: This is a completely slopy unmanaged site. In this site, the plot count technique was used for data collection from an area of 24 m square, which was delineated by means of measuring tape and four pegs. During each rainy and dry season of the research, a $1 \mathrm{~m}^{2}$ quadrat was used to sample the area twenty-nine (29) times. Plant species within each quadrat were identified, counted and their numbers recorded. The total sample size is $24 \mathrm{~m} \times 24 \mathrm{~m}\left(576 \mathrm{~m}^{2}\right)$.
Site D (Fig. 6). Current Usage farming slope site: Farming activities were being carried on in this site. The plot count technique was adopted for data collection after delineating an area of $24 \mathrm{~m}^{2}$, with a tape and four pegs. A $1 \mathrm{~m}^{2}$ quadrat was used to sample the area twenty-nine (29) times. Plant species encountered were identified, counted and their numbers recorded. Sampling was done for both the rainy and dry seasons. The total sample size is $24 \mathrm{~m} \times 24 \mathrm{~m}\left(576 \mathrm{~m}^{2}\right)$.
Site E (Fig. 6). Current usage farming Flat Site: Farming activities were also being carried out in this site. Plot-count technique was also employed for data collection, after delineating an area 24 m 2 by means of a tape and four pegs. A $1 \mathrm{~m}^{2}$ quadrat was used to sample the area twenty-nine (29) times for both the rainy ad dry seasons. Plant species encountered were identified, counted and their numbers recorded.
Hypothesis Testing: The hypothesis is based on the assumption that the importance values of the flora categories (dependent variables), is a function of several factors (independent variables) listed in fig. 7

3.3.3 Factors (Design)

Fig. 7: Dependent and Independent variables highlighted.
HO: There is no significant relationship (difference) between seasons (independent variable) and importance values (dependent variable).
There is no significant relationship (difference) between land use (independent variable) and importance values (dependent variable).
There is no significant relationship (difference) between Relief (independent variable) and importance values (dependent variable).
There is no significant relationship (difference) between Soil depth (independent variable) and importance values (dependent variable).
3.4 Economic Relevances of Encountered Flora / instrument of Data Collection: A well structured Questionnaire (Appendix 2) containing a hundred and eighty-eight items of flora (Trees, Climber, shrubs, Grasses and Forbs), on which responses were sought, was replicated a hundred and fifty times. The sample population comprised of foresters, lecturers and the elderly. Thirty respondents each represented Awka, Onitsha, Nnewi, Uli
and Aguata areas (Oko Polytechnic Staff precisely) of Anambra State. The instrument was face-validated by some experts in Botany who looked out for clarity of instructions, consistency of organization (Economic Relevance/Floral species; sections/subsections), and how well structured the test items were. Instrument reliability was ascertained using Test-Retest method
3.4.1 Growth form Spectrum: The contribution made to the overall flora of each site of the watershed was expressed as a percentage of the total number of species and the resulting growth form spectrum depicted graphically. - This was determined using the population of individual plants per site. (Figs. 8-12).
3.4.2 Techniques of Data Analysis: There are 12 Economic Relevances (Table 1) under consideration, and there are five plant growth forms - Trees, Climbers, Shrubs, Grasses and Forbs. The trees were 31, Climbers were 9, Shrubs were 18, Grasses were 37 and Forbs were 97 . Some species have more than one Economic Relevance. The total number of Economic Relevances per species is represented by $\mathrm{N}=12$ (table 1). The Economic relevances with the highest value/species size is referred to as the maximum, that with the lowest value/species size is referred to as the minimum. The means is the sum of Economic relevances/specie size, divided by the number of economic relevances, N.

Data collected from the respondents through the set of questionnaires were analysed using descriptive statistics- Bar chart, percentage, means et cetera (Appendix 5). The data were summarized and presented in tables.

Table 1. Economic Relevance of Encountered Flora arranged according to their order of importance

S/N	ECONOMIC RELEVANCE	ORDER OF IMPORTANCE	
1	Edible Food	12	A
2	Export Commodity	11	B
3	Cash crop	10	C
4	Erosion control/soil protection	9	D
5	Fuel wood	8	E
6	Medicinal plant	7	F
7	Industrial raw material	6	G
8	Non wood forest product	5	H
9	Fodder crop	4	I
10	Ornamental plant	3	J
11	Weed crop	2	K
12	Any other identified value	1	L

The encountered flora was ranked according to their economic importance as follows (1-12) under S / N above.

The mean of the above ranks is

$$
X=\frac{12+11+10+9+8+7+6+5+4+3+2+1}{12}=6.5
$$

Any flora (plant species) with a means value of 6.5 and above are of high economic relevance while any with a mean value less than 6.5 is of low economic relevance.
3.5 Soil Sampling: Finally, soils at ($0-20$ and $20-40$) cm soil depths were collected by a soil augur at the varying seasons; reliefs and land use for all sites. Therefore two soil samples each representing each soil depth were collected from the flat forest site. (A) For the rainy and dry season, four soil samples each representing (0-20 and 20-40) cm, at the flat and slopy relief, and at the rainy and dry seasons were collected for the short term fallow site. (B) Two soil samples each representing each soil depth were collected from the slopy long term fallow site for both rainy and dry season. (C). Two soil samples each representing each soil depth were collected from the slopy current usage farming site. (D) for both the rainy and dry season. Finally, two soil samples each representing each sol depth, for both rainy and dry seasons were collected from the flat current usage Farming site (E). These soil samples were then bulked, air-dried, sieved with a 2 mm sieve and subjected accordingly to the requisite laboratory Analysis in order to determine: pH percentage Nitrogen, percentage Organic carbon, percentage organic matter respectively. Total soil samples collected for both rainy and dry season equals 48

3.5.1 Soil Chemical Analysis

3.5.2 Materials: Quadrat ($1 \mathrm{~m}^{2}$), soil augur, machete, measuring tape, ropes, wooden pegs, pH meter, beakers of varying sizes, distilled water, stirrer, pH buffers (4.01 and 7.01), soil samples, Eflemeyer flask, potassium dichromate solution $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$, pipettes of various sizes, burettes of various sizes, concentrated sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, Cardboard papers, standard ferrous ammonium sulphate $\left.\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$, 2 mm size sieve, plastic sample containers, 1.0 ml NaOH solution, plastic beakers, $1.0 \mathrm{ml}-\mathrm{NH}_{4} \mathrm{Cl}$, Phenolphthalein (indicator).
3.5.3 Methods (Sample Preparation): The soil samples were air-dried for 5 days, and then sieved with 2 mm sieve.
3.5.4 Soil $\mathbf{p H}$: The soil pH was determined using an electric pH meter. Twenty grams of the air-dried sample was weighed into a 100 ml beaker; 50 ml of distilled water was added and the suspension was allowed to stand for 30 minutes with occasional stirring. The pH of the soil was measured by inserting the electrode of the pH meter into partly settled suspension. Prior to this, the pH meter was standardized with pH buffers of pH 4.00 and pH 7.00 . The suspension was not stirred during the measurement.
3.5.5 Organic Carbon: Organic Carbon content of the soils were determined by the Black (1965) wet oxidation method. Five grams of each of the air dried soil sample was ground to pass through 0.5 mm sieve. From this 1 g of each soil sample was accurately pipetted into the 250 ml Erlemeyer Flask. 10 ml of 1.00 N potassium dichromate solution was accurately pipetted into each flask and the flask was gently swirled to disperse the soil. 20 ml of concentrated sulphuric acid was rapidly added to the suspension from a burette. The flask was then rotated for 5 mins . It was thereafter allowed to stand on a cardboard paper for 30 mins, after which 100 ml of distilled water solution was added. Next 1 ml of diphenyl amine indicator was added, then the solution was titrated with standard 0.5 N Ferrous ammonium sulphate solution. At the end point, colour changes to brilliant green. A blank without soil was similarly treated.

\% Org.	C	$=$	N(S-T) $0.3 \times \mathrm{F} \times 100$
Where:	N	=	Normality of ferrous ammonium sulphate
	S	=	Volume of ferrous ammonium sulphate required for the blank
	T	$=$	Volume of ferrous ammonium sulphate required for the Sample
	W	$=$	Mass of soil sample in gram
	F	=	Correction Factor $=1.33$
		倍	tter in soil $=$ \% Org. C x 1.729

3.5.6 Organic Carbon Mineralization

One hundred gram of each of the sieved soil samples were weighted into plastic containers. 60 ml of distilled water was added to each soil sample to moisten the soil to 70% saturation. Ten milliliters of 1.0 N NaOH was also placed in a blank container without soil sample. The plastic containers were tightly covered; the carbon dioxide liberated from the organic carbon mineralization reacts with the sodium hydroxide solution. At the end of 7 days, the unreacted sodium hydroxide was determined by bringing out each of the beakers and titrating its contents against standard 1.0 NHCL using phenolphthalein as the indicator. The amount of CO_{2}, liberated was calculated as shown below (Stotzky, 1965). At the end of every seven days, after titration, the plastic beakers were washed and 10 ml of 1.0 N NaOH solution was pipetted into each of them. The beakers were then placed back into the plastic containers, and the amount of CO_{2} liberated determined as earlier described. The experiment was carried out for 4 weeks.

The formula is as follows: $\mathrm{MgCO}_{2}-\mathrm{Cmls}=(\mathrm{B}-\mathrm{V})(\mathrm{NE})$,
Where $\mathrm{B} \quad=\quad$ Volume of HCL needed to titrate the sodium hydroxide in the empty container (blank)
$\mathrm{V} \quad=\quad$ Volume of HCL needed to titrate the sodium hydroxide in the sample container
$\mathrm{N} \quad=\quad$ Normality of the acid
$\mathrm{E} \quad=\quad$ the equivalent weight of C in $\mathrm{CO}_{2} ; \mathrm{E}=6$

3.6 Shannon-Wiener Diversity Index

Shannon-Wiener Index is denoted by $\mathrm{H}=-\mathrm{Sum}$ (pi) x $\operatorname{In}(\mathrm{pi})$
Sum = Summation
$\mathrm{Pi}=$ Proportion of total sample represented by species: Divide no of individuals of a species: by total number of individuals of all the species
$\mathrm{S}=$ Number of species $=$ Species richness

Hmax $=\quad$ In S maximum diversity possible
$\mathrm{E}=$ Evenness $=\operatorname{Hmax} / \mathrm{InS}$
3.7 Regression Analysis: This was determined using the total population of individual plants and the importance values. The aim was to ascertain the contribution of the Independent variables to the growth and development of the dependent variables. The outcome was expressed in percentages.

CHAPTER FOUR

4.0 RESULTS

4.1a Species Composition and growth Forms

Table 2-6 show the species composition (tree, climber, shrubs, grass and forb) of the five different land use sites. A total of 31 tree species, 18 shrubs species, 9 climber, 37 grass and 97 forbs species distributed over 51 families were found in the sites. The forest site had most of the tree, shrub and climber species while the other sites had most of the Forb and grass species (Table 2-6). The forbs were so preponderant especially in the managed sites (fallow and current usage sites) that they were recorded as (forbs in families)

Table 2. Tree species composition of the different land use sites in Amawbia watershed

S/N	SPECIES	family	$\begin{gathered} \text { FOREST } \\ \text { SITE } \end{gathered}$	$\begin{gathered} \hline \text { SHORT } \\ \text { TERM } \\ \text { FALLOW } \end{gathered}$	$\begin{gathered} \hline \text { LONG } \\ \text { TERM } \\ \text { FALLOW } \end{gathered}$	CURRENT USAGE FARMING SLOPE	
1	Afzelia Africana	Caesalpiniaceae	\checkmark	X	X	X	X
2	Albizia chaevelieri	Fabaceae	\checkmark	X	X	X	X
3	Anthocleista djalonensis	Loganiaceae	\checkmark	X	X	X	X
4	Barteria nigritiana	Ochnaceae	\checkmark	X	X	X	X
5	Bridelia ferruginea	Euphorbiaceae	\checkmark	X	X	X	X
6	Citrus sinenses (seedlings)	Rutaceae	X	\checkmark	X	X	X
7	Cocos nucifera (seedlings)	Arecaceae	X	\checkmark	X	X	X
8	Dactyledenia barteri	Sterculiaceae	\checkmark	X	X	X	X
9	Dialum guineense	Caesalpiniaceae	\checkmark	X	X	X	X
10	Dichrostachys cinerea	Mimosoideae	\checkmark	X	X	X	X
11	Elaeis guineensis	Arecaceae	\checkmark	\checkmark	X	X	X
12	Erythrophleum suavenlens	Caesalpiniaceae	\checkmark	X	X	X	X
13	Hevea braziliensis	Euphorbiaceae	\checkmark	X	X	X	X
14	Holarrhena floribunda	Apocynaceae	\checkmark	X	X	X	X
15	Klausinia anisata	Fabaceae	X	\checkmark	X	X	X
16	Mangifera indica (seedlings)	Anacardiaceae	\checkmark	\checkmark	X	X	X
17	Milicia excelsa	Moraceae	\checkmark	X	X	X	X
18	Napoleona imperialis	Lecithidaceae	\checkmark	X	X	X	X
19	Nauclea latifolia	Rubiaceae	X	X	\checkmark	X	X
20	Newbouldia laevis	Bignoniaceae	\checkmark	X	X	X	X
21	Peltoforum pterocarpus	Fabaceae	\checkmark	X	X	X	X
22	Pentaclethra macrophyla	Mimosoideae	\checkmark	X	X	X	X
23	Psidium guajava (seedlings)	Myrtaceae	X	\checkmark	X	X	X
24	Rothmania hispida	Rubiaceae	X	\checkmark	X	X	X
25	Senna siamea	Caesalpiniaceae	\checkmark	X	X	X	X
26	Spondias mombin	Anacardiaceae	\checkmark	X	X	X	X
27	Sporospamum febrifugum	Bignoniaceae	\checkmark	X	X	X	X
28	Sterculia tragacantha	Sterculiaceae	\checkmark	X	X	X	X
29	Tetrapleura tetraptera	Mimosoideae	$\sqrt{ }$	X	X	X	X
30	Voacanga africana	Apocynaceae	\checkmark	X	X	X	X
31	Zanthaxylon zanthaxyloides	Rutaceae	\checkmark	X	X	X	X
			25	7	1	0	0

Table 3. Shrub species composition of the different land use sites in Amawbia watershed.

S/N	SPECIES	Family	$\begin{gathered} \hline \text { FOREST } \\ \text { SITE } \end{gathered}$	$\begin{gathered} \text { SHORT } \\ \text { TERM } \\ \text { FALLOW } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LONG } \\ \text { TERM } \\ \text { FALLOW } \end{array}$		
1	Alchornea condifolia	Euphorbiaceae	$\sqrt{ }$	X	X	X	X
2	Ananas comosus	Bromeliaceae	\checkmark	\checkmark	X	X	X
3	Annona senegalensis	Annonaceae	X	X	\checkmark	X	X
4	Bambusa vulgaris	Poaceae	\checkmark	X	X	X	X
5	Byrsocarpus coccineus	Connoraceae	\checkmark	X	X	X	X
6	Cajanus cajans	Fabaceae	X	X	X	\checkmark	X
7	Chromolaena odorata	Asteraceae	X	\checkmark	X	X	X
8	Manihot esculentum	Euphorbiaceae	X	\checkmark	X	\checkmark	\checkmark
9	Mimosa invisa	Mimosoideae	\checkmark	X	\checkmark	\checkmark	\checkmark
10	Ocimum basilicum	Lamiaceae	X	X	X	X	\checkmark
11	Olax viridis	Olacaceae	\checkmark	X	X	X	X
12	Phaseolus vulgaris	Fabaceae	X	X	X	\checkmark	X
13	Piliostigma thonningii	Caesalpiniaceae	X	X	\checkmark	\checkmark	X
14	Rauvolfia vomitoria	Apocynaceae	\checkmark	X	X	X	X
15	Sarcocephalum laxiflora	Euphorbiaceae	X	X	X	X	\checkmark
16	Solanum melanguene	Solanaceae	X	X	X	X	\checkmark
17	Uvaria chamae	Annonaceae	X	X	\checkmark	X	X
18	Vernonia amygdalina	Asteraceae	X	X	X	\checkmark	\checkmark
			7	3	3	6	6

Table 4. Climber species composition of the different land use sites in Amawbia watershed.

S/N	SPECIES	FAMILY	FOREST SITE	SHORT TERM FALLO \mathbf{W}	LONG TERM FELLOW	CURRENT USAGE FARMING SLOPE	CURRENT USAGE FARMING FLAT
1	Cissus araliodes	Ampelidaceae	$\sqrt{ }$	X	X	X	X
2	Cucurbita pepo	Cucurbitaceae	X	X	X	$\sqrt{ }$	$\sqrt{ }$
3	Desmodium scorpiurus	Fabaceae	X	X	$\sqrt{ }$	X	X
4	Dioscorea dumentorum	Dioscoreaceae	$\sqrt{ }$	X	X	X	X
5	Gongronema latifolium	Asclepiadaceae	$\sqrt{ }$	X	X	X	X
6	Mucuna pruriens	Fabaceae	$\sqrt{ }$	X	X	X	X
7	Peuraria phaseoloides	Fabaceae	$\sqrt{ }$	X	X	X	X
8	Smilax anceps	Smilaceae	$\sqrt{ }$	X	X	X	X
9	Telfeiria occidentalis	Cucurbitaceae	X	X	X	$\sqrt{ }$	
			$\mathbf{6}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$

Table 5: Grass species composition of the different land use sites in Amawbia watershed

S/N	Species	family	$\begin{array}{\|c\|} \hline \text { FOREST } \\ \text { SITE } \end{array}$	$\begin{gathered} \text { SHORT } \\ \text { TERM } \\ \text { FALLOW } \end{gathered}$	$\begin{gathered} \text { LONG } \\ \text { TERM } \\ \text { FALLOW } \end{gathered}$		
1	Acroceras zizaniodes	poacea	X	\checkmark	x	X	X
2	Andropogon gayanus	Poacea	X	\checkmark	\checkmark	X	X
3	Andropogon tectorum	Poacea	X	$\sqrt{ }$	\checkmark	X	X
4	Axonapu compressus	Poacea-	X	X	X	X	X
5	Brachiara deflexa	Poacea	X	X	X	X	X
6	Brachiara lata	Poacea	X	\checkmark	X	X	X
7	Chloris pilosa	poacea	X	X	X	X	X
8	Cymbopogon cittratus	Poacea	\checkmark	\checkmark	X	\checkmark	\checkmark
9	Cymbopogon giganteus	Poacea	X	\checkmark	\checkmark	X	X
10	Cynodon dactylon	poacea	X	\checkmark	X	X	X
11	Digitaria gayana	Poacea	X	\checkmark	X	X	X
12	Digitaria horizontalis	Poacea	X	\checkmark	X	X	X
13	Digitaria nuda	poacea	X	X	X	X	X
14	Echinochloa colona	Poacea	X	X	X	X	X
15	Echinochloa obtusiflora	Poacea	X	X	X	X	X
16	Eleusine indica	poacea	X	X	x	X	X
17	Eragrostis atrovirens	Poacea	X	\checkmark	X	X	X
18	Fragrostis tremula	Poacea	X	X	X	X	X
19	Hackelochloa granularis	poacea	X	\checkmark	\checkmark	\checkmark	\checkmark
20	Imperata cylindrical	Poacea	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
21	Leersia hexandra	Poacea	X	X	X	X	X
22	Oryza sativa	poacea	X	X	X	\checkmark	\checkmark
23	Panicum laxum	Poacea	X	\checkmark	X	X	X
24	Panicum maximum	Poacea	X	\checkmark	\checkmark	\checkmark	\checkmark
25	Panicum repens	poacea	X	X	X	X	X
26	Pennisetum pedicellatum	Poacea	X	X	\checkmark	X	X
27	Pennisetum polystachion	Poacea	X	X	\checkmark	X	X
28	Paspalum conjugatum	poacea	X	\checkmark	X	X	X
29	Paspalum scrobiculatum	Poacea	X	\checkmark	X	\checkmark	\checkmark
30	Rhynchelytrum repens	Poacea	X	\checkmark	X	X	X
31	Rottboelia cochinchinensis	poacea	X	\checkmark	\checkmark	X	X
32	Saccharum officinarum	Poacea	X	X	X	X	X
33	Setaria barbata	Poacea	X	\checkmark	X	X	X
34	Setaria longiseta	poacea	X	\checkmark	X	X	X
35	Sorghum arundinaceum	Poacea	X	\checkmark	\checkmark	\checkmark	\checkmark
36	Sporobolus pyramidalis	Poacea	X	\checkmark	X	X	X
37	Zea mays	poacea	X	\checkmark	X	$\sqrt{ }$	$\sqrt{ }$
			2	23	10	8	8

Table 6. Forb species composition of the different land use sites in Amawbia watershed

S/N	No of SPECIES	family	$\begin{array}{\|c} \hline \text { FOREST } \\ \text { SITE } \end{array}$	$\begin{gathered} \text { SHORT } \\ \text { TERM } \\ \text { FALLOW } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LONG } \\ \text { TERM } \\ \text { FALLOW } \end{array}$	$\begin{gathered} \hline \text { CURRENT } \\ \text { USAGGE } \\ \text { FARMING } \\ \text { SLOPE } \end{gathered}$	
1	3	Acanthaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
2	10	Amaranthaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
3	10	Asteraceae	X	\checkmark	\checkmark	\checkmark	\checkmark
4	2	Capparidaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
5	2	Commelinaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
6	5	Convolvulaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
7	13	Cyperaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
8	6	Euphorbiaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
9	01	Rutaceae	X	X	X	\checkmark	\checkmark
10	4	Lamiaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
11	5	Malvaceae	X	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark
12	2	Melastomataceae	X	\checkmark	\checkmark	\checkmark	\checkmark
13	3	Onagraceae	X	\checkmark	\checkmark	\checkmark	\checkmark
14	7	Rubiaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
15	01	Sphenocleaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
16	2	Stercliaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
17	2	Fabaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
18	3	Nyctaginaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
19	01	Polygonaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
20	01	Pontederaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
21	01	Loganiaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
22	2	Musaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
23	01	Piperaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
24	01	Mimosaoideae	X	\checkmark	\checkmark	\checkmark	\checkmark
25	01	Solanaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
26	01	Verbenaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
27	2	Portulacaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
28	01	Pedaliaceae	X	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
29	02	Urticaceae	X	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
30	01	Hydrophyllaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
31	01	Tiliaceae	X	\checkmark	\checkmark	\checkmark	\checkmark
			0	59(23)	58(18)	61(24)	61(24)

4.1b Growth Forms

In figure $8,62.5 \%$ of plant species of the forest site are trees, 15% are climbers, 17.5% are shrubs, 5% are grasses while there are no herbs in the forest site.
In figure $9,64.5 \%$ of plant species of the short term fallow site are herbs, 24.7% are grass, while 7.5% and 3.2% are trees and shrubs respectively.
In figure 10, 74.1% of plant species of the long term fallow site are herbs, 17.2% are grass, while 1.7%, 1.7% and 5.2% are trees, climbers and shrubs respectively.
In figure $11,79.2 \%$ of plant species of the site in current usage for farming are herbs, 10.4% are grass, 7.8% are shrubs while 2.6 are climbers. There are no trees in the current usage farming site.

Fig. 8: Percentages of growth form of species in the forest site in Amawbia Watershed.

Fig. 9: Percentages of growth forms of species in the short term fallow site in Amawbia watershed

Fig. 10: Percentages of growth form of the species in the long term fallow site of Amawbia watershed.

Growth Form

Fig. 11: Percentages of growth form of species in "Current usage Farming Site" of Amawbia watershed

TABLE 7: RESULT OF DIVERSITY INDICES

S/N	Site	Flora	Species Richness		Shannon Weiner Diversity Index (H)		Evenness (E)	
			Rainy	Dry	Rainy	Dry	Rainy	Dry
A1	Forest (Flat)	Trees	25	25	2.69	2.69	0.84	0.84
2	Forest (Flat)	Climbers	6	3	1.03	0.23	0.57	0.21
3	Forest (Flat)	Shrubs	7	6	1.09	1.08	0.56	0.69
4	Forest (Flat)	Grass	2	2	0.63	0.63	0.91	0.91
		TOTAL	40	36				
B1	Short term fallow	Trees	7	7	1.61	1.61	0.83	0.83
2	Short term fallow	Shrubs	3	3	0.94	0.58	0.86	0.53
3 a	Short term fallow	Grass	$\begin{array}{cc} & 24 \\ \text { Flat Slope } \\ 12 \quad 12 \end{array}$		2.03	2.08	0.82	0.84
3b	Short term fallow	Grass		$\begin{array}{ll} \hline & 19 \\ \text { Flata } & \text { Slope } \\ 12 & 07 \end{array}$	1.83	1.66	0.74	0.85
4 a	Short term fallow	Forb (in families)	$\begin{array}{\|cl\|} \hline & 31 \\ \text { Flat } & \text { Slope } \\ 16 & 15 \end{array}$		1.62	1.24	0.58	0.46
4b	Short term fallow	Forb (in families)		$\begin{array}{cc} \hline & 27 \\ \text { Flat } & \text { Slope } \\ 18 & 09 \end{array}$	2.01	1.36	0.70	0.62
		TOTAL	$\begin{gathered} 65 \\ 58 \text { (Flat) } \end{gathered}$	$56 \text { (Slope) }$				
C1	Long term fallow (slope)	Trees	1	1	-	-	-	-
2	Long term fallow (slope)	Climbers	1	-	-	-	-	-
3	Long term fallow (slope)	Shrubs	2	3	0.69	0.85	1	0.77
4	Long term fallow (slope)	Grass	10	3	1.47	0.14	0.64	0.13
5	Long term fallow (slope)	Forbs (in families)	15	15	2.52	2.55	0.93	0.94
		TOTAL	29	22				
D1	Current usage farming (slope)	Climbers	3	3	0.95	0.99	0.86	0.90
2	Current usage farming (slope)	Shrubs	4	4	1.08	1.07	0.78	0.77
3	Current usage farming (slope)	Grass	4	5	1.05	1.32	0.76	0.82
4	Current usage farming (slope)	Forbs (in families)	24	15	1.90	1.64	0.60	0.60
		TOTAL	35	27				
E1	Current usage farming (Flat)	Climbers	2	2	0.64	0.60	0.92	0.87
2	Current usage farming (Flat)	Shrubs	3	3	0.96	1.03	0.87	0.94
3	Current usage farming (Flat)	Grass	5	4	1.00	1.37	0.62	0.99
4	Current usage farming (Flat)	Forbs (in families)	17	16	2.07	2.39	0.73	0.86
		TOTAL	27	25				

4.2 Shannon Wiener and other Diversity Indices for the Floral Resources of the Watershed

Table 7 effectively captures the Shannon Wiener and Diversity indices for the floral resources of the watershed. Starting with species Richness, it is clearly evident that the forest site was the most tree species rich, followed distantly by shrubs, climbers and grasses species in that order. Forbs were not present in the site. Reverse was the case at the short term fallow site where the forbs represented the most species rich, followed distantly by the grasses, the trees, and shrubs. Climbers were not present in the site. The forbs also dominated the long term fallow site followed by the shrubs, with trees and climbers being at par. The grass population though was more in the rainy than in the dry seasons. Generally the forbs dominated the current usage farming slope and flat sites being more preponderant in the rainy than in the dry season. This was followed by grass, climber and shrub in that order. Trees were not seen in this site. The forbs again were dominant over all the other species with the number of rainy season species dominating. The tree species had the highest Shannon Wiener diversity Indices (2.69) for the forest site while the grasses had the least indices (0.63). The highest indices $(2.07,2.08)$ for the short term fallow site was given by the grasses, while the lowest indices was given by the shrubs $(0.94 ; 0.58)$. For the long term fallow site, the highest indices were given by the forbs $(2.52 ; 2.55)$, while the grasses at the dry season recorded the lowest index of (0.14). The forbs of the current usage farming site had the highest indices $(2.07 ; 2.39)$, while the climbers had the lowest indices $(0.64 ; 0.60)$. The grasses had the highest evenness indices (0.91) for the forest site, while the climbers had the lowest (0.21). Grasses had the highest evenness indices $(0.82 ; 0.84)$, for the short term fallow site while the forbs had the lowest indices (0.46). The shrubs had the highest indices (1.00) for the long term fallow site while the grass had the lowest index (0.13). The climbers had the highest evenness indices $(0.86 ; 0.90)$ for the current usage farming site, while the grasses had the lowest index (0.62).

4.3 Economic Relevances of the Floral Resources of the Watershed.

Figure 12, 94 percent of the Encountered trees of the watershed had an Economic relevance value more than 6.5. this implies that almost all tree species of the watershed are useful to man in the areas of income generation, industrial raw materials, food source, fuel wood, pharmaceuticals, erosion control, purification of the atmosphere, ethical and aesthetic relevances. Some of the tree species with high economic relevance include: Z. zanthaxyloides (8.5), S. febrifugum (8.5), B. ferruginea (8.5), T. tetraptera (9.0), B. nigritiana (8.6), R. hispida (8.5), and S. tragacantha (8.5). From figure 13, 44.4 percent of the climbers encountered in the watershed, namely: C. pepo, G. latifolium, D. dumentorum and T. occidentalis had Economic Relevance more than 6.5. the unimportant ones were not planted consciously by man. From figure 14, 9 shrubs (52.9) percent out of a total of 17 had Economic Relevance more than the average value of 6.5. these are therefore more important than others, and they include: A. comosus, M. esculentus, S. melanguena and C. cajans. From figure 15 above, the only grasses that had a relevance more than the average value of 6.5 are S. officinarum, Z. mays and O. sativa. This represents just about 8 percent of the total. Therefore the remaining 92 percent had below average economic relevance primarily as fodder for many animals, particularly herbivores in secondary productivity. From figure 16 above, out of over one hundred forbs species, only eight (8) had economic relevance more than the average (6.5). these include: M. sapientum, T. triangulare, M. koenigii and C. olitorius

Fig. 12 Economic Relevance of Encountered Trees of the watershed based on standard rating scale

Fig. 13: Economic Relevance of Encountered shrub of the Watershed based on standard rating scale

Fig. 14: Economic Relevance of Encountered climbers of the Watershed based on standard rating scale

Fig. 15: Economic Relevance of Grasses of the watershed using standard rating scale

Fig. 16: Economic Relevance of the more useful forbs

4.4 Importance Values indices (IVI) of the Watershed Sites

Short term fallow site. Figure 17 shows the Importance values indices (IVI) of shrub species of the short term fallow site at flat and slopy locations. Manihot esculentum had the highest IVI at both flat and slopy sites while Ananas comosus had the lowest IVI. Figure 14 shows the Importance Value Index (IVI) for the grass species of the Short term Fallow site. Panicum maximum had the highest (IVI) for both rainy and dry seasons while Rhynchelytrum repens had the lowest (IVI). From figure 19, which shows the Importance Value Index for grass species of the short term fallow site for both flat and slopy locations, Panicum maximum had the highest IVI while Zea mays had the lowest (IVI). From figure 20 which shows IVI of forbs families of the short term fallow site during the rainy and dry seasons, the families Cyperaceae and Rubiaceae recorded the highest (IVI) while the family Acanthaceae recorded the lowest (IVI) index. Figure 21 which showed the (IVI) of forb families of the short term fallow site at flat and slopy locations recorded almost the same result. Cyperaceae and Rubiaceae had the highest (IVI) while Acanthaceae had the lowest (IVI) at both flat and slopy locations.

Long term fallow site. Figure 22 shows the (IVI) of grass species of the long term fallow site during the rainy and dry seasons. Pennisetum polystachion recorded the highest (IVI) for the rainy season, Andropogon tectorum recorded the lowest (IVI) while Panicum maximum recorded the highest (IVI) for the dry season while A tectorum and Pennisetum pedicellatum recorded the lowest dry season (IVI). Figure 23 showed the (IVI) of forb families of the long term fallow site during the rainy and dry seasons. The highest (IVI) for both the rainy and dry seasons were given by Euphorbiaceae, Asteraceae, and Fabaceae and Rubiaceae in that order while the lowest (IVI) were recorded by compositae and melastomataceae.

Current usage farming site: Figure 24 shows the (IVI) of shrub species of the current usage farming site for flat and slopy locations. Manihot esculentum recorded the highest (IVI) while Sarcocephalum laxifora recorded the lowest (IVI). For the (IVI) of grass species of the current usage farming site, Imperata cylindrica recorded the highest (IVI), Hackelochloa granularis recorded the lowest (IVI) for the rainy season while Cymbopogon cittratus recorded the highest (IVI) for dry season and Sorghum arundinaceum recorded the lowest (IVI) for the dry season. Zea mays recorded zero yield (IVI) for the dry season (Figure 25). Figure 26 shows the (IVI) of Grass species of the current usage farming site at flat and slopy locations. The highest (IVI) for the flat location were recorded by Zea mays and Cymbopogon cittratus; and the lowest (IVI) for the flat by Panicum maximum. The highest (IVI) for the slopy location was recorded by Imperata cylindrca while the lowest (IVI) for the slopy location was recorded by Sorghum arundinaceum and Hackelochloa granularis. For the forb families of the current usage farming site during the rainy and dry seasons, the highest (IVI) for both seasons were recorded by Rubiaceae, Amaranthaceae and Euphorbiaceae while the lowest (IVI) were recorded by Urbilaceae, Piperaceae and Loganiaceae (fig. 27). For the forb families of the current usage farming site at flat and slopy locations, the same scenario played out. Rubiaceae, Amaranthaceae and Euphorbiaceae recorded the highest (IVI)at both flat and slopy locations while Urticaceae, Piperaceae and Loganiaceae recorded the lowest (IVI) relief (fig. 28).

Fig. 17: Importance values of shrub species of the short term fallow site at flat and slopy locations

Effects of season and relief on Importance values of the watershed sites

Fig. 18: Importance values of grass species of the short term fallow site during the rainy and dry season.

Fig. 19: Importance values of grass species of the short term fallow site at flat and slopy locations

Fig. 20: Importance values of forb families of the short term fallow site during the rainy and dry seasons.

Fig. 21: Importance values of forb families of the short term fallow site at flat and slopy locations

Fig. 22: Importance values of grass species of the long term fallow site during the rainy and dry seasons

Fig. 23: Importance values of forb families of the long term fallow site during the rainy and dry seasons

$$
\begin{aligned}
& X=1: 4 \mathrm{~cm} \\
& Y=1: 10 \mathrm{~cm}
\end{aligned}
$$

Fig. 24: Importance values of shrub species of the current usage farming site at flat and slopy locations.

Fig. 25: Importance values of grass species of the current usage farming site during the rainy and dry seasons

Fig. 26: Importance values of grass species of the current usage farming site during at flat and slopy locations

Fig. 27: Importance values of forb families of the current usage farming site during the rainy and dry seasons

Fig. 28: Importance values of forb families of the current usage farming site during flat and slopy location

Table 8: T-test results on Effects of Independent variables on Dependent variables (Growth Forms)

S/N	Fully Independent Variable	Sites	Growth Form	Effects (value)	Remarks
1	Season (Rainy and dry)	Short term fallow site	Grass	$0.0095<0.05$	Significant Difference
2	Season (Rainy and dry)	Short term fallow site	(Forbs in families)	0.04<0.05	Significant Difference
3	$\begin{array}{\|l} \hline \begin{array}{l} \text { Season } \\ \text { (Rainy and dry) } \end{array} \\ \hline \end{array}$	Long term fallow site	Grass	-0.004<0.05	Significant Difference
4	Season (Rainy and dry)	Long term fallow site	(Forbs in families)	0.099>0.05	Non- Significant Difference
5	$\begin{array}{\|l} \hline \begin{array}{l} \text { Season } \\ \text { (Rainy and dry) } \end{array} \\ \hline \end{array}$	Current usage farming site	Grass	-0.05<0.05	Significant Difference
6	Season (Rainy and dry)	Current usage farming site	(Forbs in families)	$0.07>0.05$	Non- Significant Difference
7	Season (Rainy and dry)	Current usage farming site	Grass	$-0.115<0.05$	Significant Difference
8	Season (Rainy and dry)	Current usage farming site	(Forbs in families)	-4.45<0.05	Significant Difference
	6/8				6:8 (3:4)
9	Land use (Managed and Not Managed)	Short term fallow site	Grass	$0.06>0.05$	Non- Significant Difference
10	Land use (Managed and Not Managed)	Short term fallow site	(Forbs in families)	$0.08>0.05$	Non- Significant Difference
11	Land use (Managed and Not Managed)	Long term fallow site	Grass	$-0.07<0.05$	Significant Difference
12	Land use (Managed and Not Managed)	Long term fallow site	(Forbs in families)	$0.11>0.05$	Non- Significant Difference
	3/4				3:4
13	Relief (Flat and slopy)	Short term fallow site	Grass	$0.16>0.05$	Non-Significant Difference
14	Relief (Flat and slopy)	Short term fallow site	(Forbs in families)	-0.06<0.05	Significant Difference
15	Relief (Flat and slopy)	Current usage farming site	Grass	$-0.053>0.05$	Non- Significant Difference
16	Relief (Flat and slopy)	Current usage farming site	(Forbs in families)	-0.05<0.05	Significant Difference
	2/4(1/2)				1:2

4.5: Effects of Seasons, Land use and Relief on Importance values of Encountered species

From Table 8, for seasons there was a great significant difference between Rainy season and Dry season values. This significance was 75% showing that plant growth and development between the rainy season and dry season was not equal, growth and development indices therefore was higher in the rainy season. Again for land use, there was a very reasonable non significant difference between plant growth and development between the managed and not managed sites. This non significance was 75%, depicting that plant growth and development to a large extent was not dependent on management indices (factors). Finally, for the relief (flat and slopy) Topography, significance and non significance levels were at par (50\%). This depicts that Relief was not a very important factor (determining factor) on plant growth and Development at the project site (Amawbia watershed)

4.6 Soil Properties of the Watershed

4.6.1 Effect of Season and Soil Depth on the Soil Properties of the Watershed

Figure 33 shows the effect of season on the soil pH of the watershed. The figure depict that during the dry season the soil pH of the watershed is highest in the long term fallow site while during the rainy season the soil pH is highest in the current usage farming site. The figure also depict that in most of the site (with the exception of current usage farming site) the soil pH is highest during the dry season than in the rainy season.
Figure 34 shows the effect of season on the percentage total nitrogen of the watershed. The figure depict that during the dry season the percentage total nitrogen of the watershed is highest in the forest site while during the rainy season the percentage total nitrogen is lowest in the forest site.
Figure 35 shows the effect of season on the percentage organic carbon of the watershed. The figure depict that during the dry season the percentage organic carbon of the watershed is highest in the long term fallow site while during the rainy season the percentage organic carbon is highest in the short term fallow site. The figure also depict that in all the site percentage organic carbon is highest during the dry season than in the rainy season
Figure 36 shows the effect of season on the percentage organic matter of the watershed. The figure depict that during the dry season the percentage organic matter of the watershed is highest in the long term fallow site while during the rainy season the percentage organic matter is highest in the current usage farming site. The figure also depict that in all the site percentage organic matter is highest during the dry season than in the rainy season
Figure 37 shows the effect of soil depth on the percentage total nitrogen of the watershed. The figure depict that at soil depth of 0-20, the percentage total nitrogen of the watershed is highest in the forest site while at soil depth of $20-40 \mathrm{~cm}$ the percentage total nitrogen is highest in the short term fallow site. The figure also depicts that in most of the site (with the exception of short term fallow site) that the percentage total nitrogen is highest at soil depth of $0-20 \mathrm{~cm}$ than $20-40 \mathrm{~cm}$ depth.
Figure 38 shows the effect of soil depth on the soil pH of the watershed. The figure depict that at soil depth of $0-20 \mathrm{~cm}$, the soil pH of the watershed is highest in the current usage farming site while at soil depth of $20-40 \mathrm{~cm}$ the soil pH is also highest in current usage farming site. The figure also depicts that in most of the site (with the exception of forest site) that the soil pH is highest at soil depth of $0-20 \mathrm{~cm}$ than $20-40 \mathrm{~cm}$ depth.
Figure 39 shows the effect of soil depth on the percentage organic carbon of the watershed. The figure depict that at soil depth of $0-20 \mathrm{~cm}$, the percentage organic carbon of the watershed is highest in the long
term fallow site while at soil depth of $20-40 \mathrm{~cm}$ the percentage organic carbon is also highest in the long term fallow site. The figure also depicts that in all site the percentage organic carbon is highest at soil depth of 0-20 cm than $20-40 \mathrm{~cm}$ depth.
Figure 40 shows the effect of soil depth on the percentage organic matter of the watershed. The figure depict that at soil depth of 0-20, the percentage organic matter of the watershed is highest in the long term fallow site while at soil depth of $20-40 \mathrm{~cm}$ the percentage organic matter is also highest in the long term fallow site. The figure also depicts that in all site the percentage organic matter is highest at soil depth of $0-20 \mathrm{~cm}$ than $20-40 \mathrm{~cm}$ depth.

Error Bars: $95 \% \mathrm{Cl}$

Figure 29: Effect of season on the soil pH of the watershed

Frror Rars $95 \% \mathrm{Cl}$

Figure 30: Effect of season on the percentage total nitrogen of the watershed

Figure 31: Effect of season on the percentage organic carbon of the watershed.

Error Bars: $95 \% \mathrm{Cl}$
Figure 32: Effect of season on the percentage organic matter of the watershed

Error Bars: $95 \% \mathrm{Cl}$
Figure 33: Effect of soil depth on the percentage total nitrogen of the watershed.

Figure 34: Effect of soil depth on the soil pH of the watershed

Error Bars: $95 \% \mathrm{Cl}$
Figure 35: Effect of soil depth on the percentage organic carbon of the watershed

Figure 36: Effect of soil depth on the percentage organic matter of the watershed

Table 9: shows the analysis of variance of the soil properties of the watershed by site, season and soil depth. With respect to percentage total nitrogen the table indicates that there is no significant difference in the percentage total nitrogen between sites, soil depth and season ($\mathrm{P}>0.05$). There is also no interaction between sites, soil depth and season on the percentage total nitrogen of the watershed ($\mathrm{P}>0.05$). With respect to soil pH the table indicates that there is only significant difference in soil pH of the watershed between season ($\mathrm{P}<0.05$) but no significance between site and between soil depth ($\mathrm{P}>0.05$). There is no interaction between site, soil depth and season ($\mathrm{P}>0.05$). With respect to percentage organic carbon, the table indicates that there is a significant difference in the percentage organic carbon of the watershed between site, soil depth and season ($\mathrm{P}<0.05$). There is only interaction between site and soil depth, and between site and season $(\mathrm{P}<0.05)$ but no interaction between season and soil depth. With respect to organic matter, the table indicates that there is a significant difference in the organic matter of the watershed between site, season and soil depth $(\mathrm{P}<0.05)$. There is only interaction between site and season ($\mathrm{P}<0.05$) but no interaction between site and soil depth and between soil depth and season ($\mathrm{P}<0.05$).

Table 9: Analysis of Variance of the soil properties of the watershed by site, season and soil depth

		Main Effects				Interaction Effect			
$\begin{array}{l}\text { Soil } \\ \text { Properties }\end{array}$		Site	$\begin{array}{c}\text { Soil } \\ \text { Depth }\end{array}$	Season	$\begin{array}{c}\text { Site* } \\ \text { Soil } \\ \text { Depth }\end{array}$	$\begin{array}{c}\text { Site* } \\ \text { Season }\end{array}$	$\begin{array}{c}\text { Soil } \\ \text { Depth* } \\ \text { Season }\end{array}$	$\begin{array}{c}\text { Site* Soil } \\ \text { Depth*Season }\end{array}$	
$\begin{array}{l}\text { \% Total } \\ \text { Nitrogen }\end{array}$	F-ratio	P-value	1.603	0.978	3.614	1.457	2.064	0.521	

4.5.2 Effect of Relief on Soil Properties of the Short Term Fallow Site and Current Usage Farming Site

Figure 37 shows the effect of relief on the percentage total nitrogen of the current usage farming site and short term fallow site. The figure depict that the percentage total nitrogen of both site is highest at flat relief and lowest at slopy relief. In table 10 the analysis of variance shows no significant difference in the percentage total nitrogen between flat and slopy relief ($\mathrm{P}>0.05$).
Figure 38 shows the effect of relief on the soil pH of the current usage farming site and short term fallow site. The figure depict that the soil pH of the current usage farming site is highest at flat relief and lowest at slopy relief while that of short term fallow site is highest at slopy relief and lowest at flat relief. In table 10 the analysis of variance shows no significant difference in the soil pH between flat and slopy relief ($\mathrm{P}>0.05$)
Figure 39 shows the effect of relief on the percentage organic carbon of the current usage farming site and short term fallow site. The figure depict that the percentage organic carbon of the short term fallow site is highest at flat relief and lowest at slopy relief while that of current usage farming site is highest at slopy relief and lowest at flat relief. In table 10 the analysis of variance shows no significant difference in the percentage organic carbon between flat and slopy relief ($\mathrm{P}>0.05$).
Figure 40 shows the effect of relief on the percentage organic matter of the current usage farming site and short term fallow site. The figure depict that the percentage organic matter of both sites is highest at slopy relief and lowest at flat relief. In table 10 the analysis of variance shows no significant difference in the percentage organic matter between flat and slopy relief ($\mathrm{P}>0.05$).

Error Bars: $95 \% \mathrm{Cl}$
Figure 37: Effect of relief on the percentage total nitrogen of the current usage farming site and short term fallow site

Error Bars: $95 \% \mathrm{Cl}$

Figure 38: Effect of relief on the soil pH of the current usage farming site and short term fallow site

Figure 39: Effect of relief on the percentage organic carbon of the current usage farming site and short term fallow site

Figure 40: Effect of relief on the percentage organic matter of the current usage farming site and short term fallow site

Table 10: Analysis of variance of Effect of Relief on soil Properties of the short term fallow and Current Usage Farming site.

Soil Properties	F-ratio	p-value
\% Total Nitrogen	1.738	.198
pH	.596	2.458
\% Organic Carbon	.000	.998
\% Organic Matter	.156	.611

4.5.3 Effect of Season on $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the Watershed

Figure 45 shows the weekly $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the different sites of the watershed. The figure depicts that the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the watershed is highest in the forest and short term site and lowest in the current usage site. There is also a weekly increase in the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the watershed. In table 26 the analysis of variance shows that there is a significant difference in the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content between the sites of the watershed ($\mathrm{P}<0.05$).
Figure 46 shows $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the different sites of the watershed by soil depth. The figure depicts that at soil depth of $0-20 \mathrm{~cm}$ the $\mathrm{MgCO}_{2} / \mathrm{kg}$ of the watershed is highest in the forest while at soil depth of $20-40 \mathrm{~cm} \mathrm{MgCO} 2 / \mathrm{kg}$ of the watershed is highest at short term fallow site. In table 27 the analysis of variance shows that there is a significant difference in the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content between the soil depth of the watershed ($\mathrm{P}<0.05$). There is also interaction between soil depth and sites $(\mathrm{P}<0.05)$.

Error Bars: 95\% Cl
Figure 41: The weekly $\mathrm{MgCO}_{2} / \mathrm{kg}$ of the different sites of the watershed

Error Bars: $95 \% \mathrm{Cl}$

Figure 42: The $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the different sites of the watershed by soil depth
Table 11: Analysis of Variance of the Effect of Season on $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the Watershed

Source of Variation	F-ratio	p-value
Sites	78.039	0.000
Soil Depth	9.846	0.000
Week	141.353	0.000
Sites* Soil Depth	27.432	0.000

4.5.4: Effect of Relief on $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the short term fallow site and current usage farming site

Figure 43 shows the effect of relief on the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the short term fallow site and current usage farming site. The figure depict that in short term fallow site the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content is highest at flat surface while that of current usage farming site is highest at the slopy relief. In table 12 the analysis of variance indicates no significant difference in the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content between flat and slopy relief of the short term fallow site and current usage farming site but significant between sites $(\mathrm{P}<0.05)$

Error Bars: 95\% CI

Figure 43: Showing the effect of relief on the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the short term fallow site and current usage farming site.

Table 12: Analysis of Variance of Effect of Relief on $\mathrm{MgCO}_{2} / \mathrm{kg}$ content of the short term fallow site and current usage farming site

Source of Variation	F-ratio	p-value
Sites (STF \& CUF)	22.43	0.000
Relief (Slope \& Flat)	0.99	0.322
Sites* Relief	2.289	0.127

\％${ }^{\prime} 66$	（0it＇0）anplisod	anseaw zouepunqu	udod dds	2，	рәzen¢ı	Na	Sta＇S	95esester
\％9＇86	（zStro）anplsod	anseew æouepunqy	udod dds	2）	рәұелпй	Rulpy	S＇J＇S	9ses
\％でで	（Lくさ＇て－）аппебә	anseaw əouepunqv	udod dds	adols	ределяпр	NO	SH＇LS	squys
\％で站	（tsでて－）әмұебә，	anseaw əouepunqy	udod dds	adols	рәұеля！	Kulpey	SH＇H＇S	squys
\％ $0^{\circ} 8$	（56ロ\％）anpisod	anseaw zouepunqu	udod dds	2 H_{4}	ределя｜п	No	SJ＇H＇S	5901
\％0－8	（56t\％）anpisod	annseaw əxuepunqu	udod dds	2ety	рәјеляпр	kupey	S＇sils	5901
\％00t	（895\％0）anplisod	annseaw əJuepunqy	udod dds	${ }^{2+5}$	persanos	Kupley	15501	sesse．je
\％00t	（895＇0）anpisod	annseaw əJuepunq ${ }^{\text {b }}$	udod dds	2ety	рәзsan＿	ANO	15510	sossem
\％ $6^{\text {＇}}$ L	（ع6て＇Z）anplsod	annseaw ajuepunqu	udod dds	20，	реzsanoy	NO	259104	squys
\％ $8^{\circ} 0$		annseaw əruepunq ${ }^{\text {g }}$	udod dds	2^{28}	рәзsana	Rulpy	$15910{ }^{1}$	squys
\％00t	（868＇z）an¢！${ }^{\text {a }}$（ 8 d	anseaw əJuepunqy	udod dds	$2{ }^{2+1}$	ренsanos	N0	［5910어	sıəqu｜l
\％${ }^{\text {r＇9 }} 9$	（80L＇Z）anplsod	annseaw əJuepunqy	udod dds	20ty	persand	Ruley	\＄590］	sraqu！
\％9＇99	（8EL＇0）anplsod	anseaw әJuepunqy	udod dds	2，	ре\％sanes	No	$75910{ }^{1}$	50011
\％9＇99	（ 8 （ $L^{\circ} 0$ ）anpisod	annseaw əJuepunqy	$u u_{0} d d S$	208	persana	Rupey	75910 d	59011
				נ래꺼	2sn puev	noseas	गแS	dds

THE GROWTH AND DEVELOPMENT OF THE DEPENDENT VARIABLE）
RESULT OF REGRESSION ANALYSIS（CONTRIBUTION OF THE INDEPENDENT VARIABLE TO

\％ 8^{\prime} S 0		aunseew əouepunqy	udod dds	2ely	рацемпрп	N0	กכ｀	sqnuys
\％ 8.80	（688．0）әмдебәл	aunseəW əouepunqy	udod dds	HeH_{4}	рәјелдп	Kulpy	กัวก¢	sqnuys
\％S＇28		aunseaw zouepunqy	udod ddS	adols	рәлеля！	AO		sqnuy
\％E＇86	（ESO＊S－）anp！sod	aunseow pouepunqy	udod dds	adols	рәјемпן	Kuiled	กัヤก」	sqnuys
\％ $\mathrm{I}^{\prime} \downarrow$ ¢		aunseew əouepunqy	udod dds	2dolS	рөлs．r．」	N00	S＇ゴメ’	q－3］
\％I－8	（IZO＊O）anglsod	əunseəW əxuepunqy	udod ddS	ədols	рөъs．лоу	Kulied	S＇ゴメ’	q－3］
\％00I	（959．0）anplisod	aunseaw əxuepunqy	udod dds	adols	persaros	\cdots		sseng
\％が 66	（EZ9＊0）${ }^{\text {angisod }}$	əunseəW әJuepunqy	udod ddS	adols	persejo］	Rujey	S＇d $\underbrace{\prime}$＇	ssejg
\％9＇SI	（ $500{ }^{\circ} 0$ ）әлцебөN	aunseaw əכuepunqy	udod dds	2dols		AOO	$S^{\prime} \exists^{\prime} \perp^{\prime} \mathrm{S}$	q－3］
\％9＇SI	（ャ00＊0）әппебәл	aunseəW əjuepungy	udod ddS	adols	рәjengin	Kulied	$S J^{\prime} \perp^{\prime} \mathrm{S}$	q－3］
\％6＇ 28	（6E0．0）angisod	əunseəW əכuepunqy	udod dds	Tey	рәje＾ম！	N01	$S^{\prime} \underbrace{\prime} \perp$＇S	q－3］
\％6 ${ }^{\circ}$＜8		aunseəW əJuepunq＊	udod dds	PeH_{4}	рәтеляı	Auley	S＇ゴL＇S	q－3］
\％＜＇16	（ZLt＊）angisod	aunseew əoukpungy	udod ddS	adols	рәұengı	N	$S^{\prime} J^{\prime} \perp \cdot \mathrm{S}$	Sse．ts
\％ \＆＇†8 $^{\text {d }}$	（દદદ＇0）әмpıSOd	annseaW əouepunqy	udod ddS	ədolS	рәјелдпи	Kuiled	$S J^{\prime} \perp^{\prime} \mathrm{S}$	Sse．j
	（amseau ээuะpunqV） ио！̣пq！ŋиод		（ $\mathbf{u d o}_{\mathrm{d}} \mathrm{ddS}$ ） эq巴иел 	गगञ ${ }^{\text {J }}$	asn puet	uoseas	315	M．AJ प7МОДפ queld

[^0]| \％6＇6L | | annseaw əjuepunqy | udod ddS | $2 \mathrm{P} / \mathrm{y}$ | | N0 | กัวก๋ | qJo」 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \％S＇ヶ8 | （ 6 EO＊O）angisod | annseaw əouepunqy | $u^{\text {dod }}$ dds | Pe_{4} | рฆемпן | Rupey | กวัก | q．O」 |
| \％I＇0 | （ $100^{\circ} 0$ ）วлдебәN | aunseəW əJuepunqy | udod dds | adojs | раұелдй | Ma | กัวกร | q－3］ |
| \％${ }^{\prime}$＇10 | （ $500^{\circ} 0$ ）әлдебәл | aunseəW əJuepunqy | udod dds | adols | рәиеппп | kupey | กัวกไ | q－10」 |
| \％L＇ $\mathcal{L} 0$ | （ $\angle 80 \times 0$ ）2ngisod | aunseəW əJuepunqy | udod ddS | 39\％ | рхемпр | Nu | กัว | sserg |
| $\% \rightarrow{ }^{\circ} 0$ | （2si＇0－）әмпебөN | aunseew zouepunq＊ | udod dds | Tela | | Aupy | | ssejp |
| \％6＇${ }^{\prime} 8$ | （668．0）anplsod | aunseəW əJuepunq＊ | udod ddS | 2do｜S | рәепıй | Ad | กัวก¢ | sse．g |
| \％でと¢ | （ $¢ 65^{\circ} 0-$ ）әмдебәл | 2unseəW әJuepunq＊ | udod dds | 2dojS | рә্যепп | Rupy | กัวกร | ssejg |
| | （ว．msะаш sงuะpunqy） иорпq！มишә | （コ．пาระш ээuะpunqV）
 эqеив щариэдэри！ | （ ${ }^{(u d o d}{ }^{\text {ddS}}$ ）

 эшэриәала | Јगฺ\％ | asn puet | uoseas | ม15 | पҰMO．D ұueld |

Table 14: Summary of Regression Analysis Result

S/N	Parameters	Contribution (\%)	Position
\mathbf{A}	Site		
1	Forest	30.56	$1^{\text {st }}$
2	Short term fallow site (S.t.f.s)	30.02	$2^{\text {nd }}$
3	Long term fallow site (l.t.f.s)	16.13	$4^{\text {th }}$
4	Current Usage farming (f.u.c.u)	23.29	$3^{\text {rd }}$
B	Season	50.04	
1	Rainy	49.96	$1^{\text {st }}$
2	Dry		$2^{\text {nd }}$
C	Relief	57.14	
1	Flat	42.86	$1^{\text {st }}$
2	Slope		$2^{\text {nd }}$
\mathbf{D}	Land Use	53.31	$1^{\text {st }}$
1	Managed	46.69	$2^{\text {nd }}$
2	Not managed		
E	Species success	42.03	$1^{\text {st }}$
1	Grasses	24.42	$2^{\text {nd }}$
2	Herbs	18.07	$3^{\text {rd }}$
3	Shrubs	8.59	$4^{\text {th }}$
4	Climbers	6.88	$5^{\text {th }}$
5	Trees		

Table 14 could well serve as a summary of plant growth form success in the project site, parameters assessed through regression analysis included: sites, seasons, Relief, Land use and plant growth forms. The forest site represented 30.56% of total output, the short term fallow site represented 30.02%, the long term fallow site represented 16.13% while the current usage farming sites represented 23.29%. For the seasons, the rainy season contributed 50.04% while the dry season contributed 49.96%. For the relief, the flat topography contributed 57.14%, while the slopy topography contributed 42.86%. For land use, the managed areas contributed 53.31%, while the non-managed area contributed 46.69%. For individual growth form success at the watershed, the grasses polled 42.03% to come out as the most dominant or successful plant growth form of the watershed, followed by the forbs (24.42%); the shrubs (18.07%); the climbers (8.59%) and the trees (6.88%), as the least dominant growth form of the watershed.

CHAPTER 5

5.0 DISCUSSION

5.1 Species composition, Growth and diversity at the Amawbia watershed

The characterization of a degraded watershed in Amawbia was aimed at identifying and characterizing those factors that were responsible for the degradation of the watershed; identifying the various plant species (Growth forms) of the watershed and establishing their diversity status; determining the Economic relevances of identified species, and finally the effects of the independent variables: seasons; relief, land use and soil depth on the Importance values of the species and the effect of these independent variables on soil factors like- pH , percentage nitrogen, percentage organic carbon and percentage organic matter of the watershed. The essence is to appreciate the 'typical tropical watershed 'as a whole, in terms of climatic, edaphic and manmade influences with a singular short and long term objective of ultimately restoring this and other degraded tropical ecosystems from what they were presently (depauperized) to what they were in the past, which is what is anticipated for them in the future (optimal luxuriance, and majestic natural splendour). The watershed gives us a glimpse of the original forest that had been lost! From tables 2-6, it is not surprising that the forest site had most of the tree, shrub and climber species, while the other sites had more of the forbs and grass species. The current usage farming site had mostly edible (cultivated) shrubs, climber, grasses and forbs. (Fig. 8) which represents the forest site lists a total of 25 trees, 6 climbers, 7 shrubs and 2 grass species. The only significant timber species represented was Milicia excelsa. This is a far cry from what typical forested natural tropical watersheds should be. The climatic conditions of this part of the world is so favourable that whatever is planted on it grows. According to Ayensu (1980), 'unlike the monsoon forest, where the climate has a fairly marked dry season, tropical rainforests occur where the climate is hot and wet all year round! What has become of the array of lush tropical forest species that littered the entire South East in precolonial times? Ceiba pentandra, Nauclea diderichii, Terminalia superba, Khaya ivorensis, Mansonia altissima, Triplochiton scleroxylon, Entandrophragma cylindricum, Diospyros mespiliformis, Brachystegia nigerica, Canarium schweinfurthii, lophira alata, Bombax buonopozense, Mitragyna stipulosa, Hura crepitans, Piptadeniastrum africanum, Entandophragma utile-to mention just a few? Old field et al. (1998) in their world list of threatened trees, listed about 120 Nigerian species as either endangered or vulnerable, and those affected were predominantly members of the Leguminosae family. All these notwithstanding, it is satisfying to note that tree, climber and shrub species dominated the forest site (Fig. 8). Ayensu (1980), further contributes, 'in West Africa, many of the rainforests have been disturbed by man. Only a few hundred years ago, they were rich in African manoganies and other important commercial species. Eventually however, these valuable trees die and are replaced by those of lower commercial value. In some nations, the forest approach EXHAUSTION (emphasis mine) or, as in Nigeria, the internal market consumes the whole harvest. Unlike the forest site though, the short and long term fallow sites were dominated by forbs and grasses (Fig. 9 and 10). This is very much to be expected as grasses and forbs (weeds) are hardy, opportunistic, early successional species that once given the opportunity of space and light, takes up every inch of ground (soil). According to Chapman and Reiss (1992), vegetation is not static and unchanging. It can be altered in many ways' Whenever land is left fallow, it is exposed to secondary succession-colonisation and change on areas disturbed by fire, flood or cultivation where some weeds, vegetation, animals or soil structure remain. It is salient to point out, that the dominant family of plants encountered in this study is poaceae (42.03%, Table). With regard to this point, MeullerDombois and Ellenberg (1974), had this to say. 'Generally speaking, the competitive ability of a species
depends on its genetic potential which is manifested in its morphological structure and physiological requirements. The following properties can be considered particularly important. Each of these may be especially decisive when others are equal!.

1. Morphological structure: (largely expressed in the life form).
a. Germination and growth rate in the early stages of development.
b. Ontogenetic rhythm (duration of photosynthesis). Species with the same rythms are strong competitors, species with different rythms are more or less 'complementary'.
c. Height: The final height according to Boysen-Jensen (1949) is the most important property in the competition struggle. The final stage in vegetation development is usually marked by the tallest plants, smaller plants can succeed only if they can grow in the shade of the taller ones.
d. Longevity: Longer living plants succeed by their 'lasting ability' (Knapp and Knapp 1954).
e. Root System: In particular density, depth and morphology of the water-and nutrient-absorbing roots.
f. Means of Reproduction: Reproduction from seeds, favours the migration into other communities, while vegetative reproduction is favourable for the maintenance and enlargement of an already established growth position. Vegetatively spreading herbaceous plants with a dense or closed growth habit,, succeed by 'lateral exclusion' (e.g Arrhenatherum, Dactylis, Knapp 1954, 1967), plants with a loose or open growth habit succeed by 'penetration' (e.g., phragmites, Ranunculus repens).
g. Regenerative capacity of the short system: This is of particular Importance after temporary suppression (e.g, Melica uniflora in cutover vegetation) and upon mechanical disturbance (by logging, fire, mowing, grazing, trampling etc).
2. Physiological Requirements i.e the requirements for particular quantities and combinations of environmental resources and the response to these resources. The most important properties are:
a. Light requirements
b. Heat requirements
c. Water requirements
d. Nutrient requirements and response to other chemical influences.
e. Response to mechanical influences. To a reasonable extent, members of the poaceae family met all these requirements. For current usage farming site, no trees were encountered because man must have cleared them during the planting season to make room for the climbers, shrubs, grass and forbs species, most of which were purposely cultivated for their high economic values (Figs. 11, 13-16).
On Shannon Wiener Diversity indices, species richness, regarding forb population for the managed sites totaled 41 and 31 as follows: Current usage farming site (slope) - 24 and 15 respectively; Current usage farming site (flat)- 17 and 16 respectively (rainy/dry season values, as opposed to the forb population of the (not managed) sites- 31 and 24 for the rainy and dry seasons respectively (Table 7). This is in agreement with the work of Okereke and Mbaekwe (2011) in which they reported that 'the summary of the calculated species diversity of the 4 sampled plots showed that the two uninfested (cultivated) plots had much higher mean species diversity than the means of the ones infested with Mimosa invisa (forested). Disparity between rainy and dry season diversity generally were not so much except probably in the case of the grass of the long term fallow site which was much more uneven at the rainy than at the dry season (Table 7). Of course, trees had higher diversity indices at the forest site than at other sites (Table 7). Long term fallow site had significantly more grass in the rainy than in the dry season, this was also reflected in the other diversity indices ((Table 7). For the current usage farming site,
species richness was more balanced at the flat site (Table 7) than at the slopy site (Table 7) especially in terms of the dry and rainy seasons. This could be explained by the fact that rainwater drains away faster from the slopy site than from the flat site where it may be given some time to percolate and therefore be retained by the soil. Finally, generally speaking, there was less disparity in Diversity indices at the managed sites than at the not managed sites (Table 7). This is very much in agreement with the observations of Onyekwelu et al. (2008), that species diversity index, species richness and species evenness decreased as forest degradation increases, thus indicating that these indices depended on site conditions.

Economic Relevances of encountered floral species based on standard rating schedule

From figure 12, trees like Hevea braziliensis, Afzelia africana, Tetrapleura tetraptera, Citrus sinensis, Mangifera indica, Elaeis guineensis etc. were shown to have an Economic Relevance higher than 6.5, which according to the rating schedule, depicts very useful plants. Climbers namely: Cucurbita pepo, Telfeiria occidentalis and Gongronema latifolium etc. also had an Economic Relevance higher than 6.5 (Fig 14). In the shrub category, we have: Vernonia amygdalina, Uvaria chamae, Manihot esculentum Solanum melanguena, Ananas comosus and Bambusa vulgaris (Fig 13). For the grass species, only Saccharum officinarum, Zea mays and Oryza Sativa (Fig 15), had a reasonable Economic relevance: while for the forbs, only 10 species out of a total of 97 had economic relevances higher than 6.5; Talinum triangulare, Corchorus olitorius, Sida garckeana, Ocimum basilicum, Musa sapientum, M. paradisiaca, Murraya koenigii, Amaranthus viridis and A. hybridus (Fig 16). Oldfield et al. (1998) stated that, information on use and level of use of tree species is recorded in the Tree conservation Database. The information collated on globally threatened tree species illustrates that 25% have at least one recorded use: Timber was represented by 1351 species; fuel was represented by 254 species; medicinal plants were represented by 193 species; food was represented by 241 species, oil, gum and resin were represented by 170 species. Meanwhile the Economic relevances used in this study were collectively represented by Edible food, export commodity, cash crops, erosion controls/soil protection, fuel wood, medicinal plants, industrial raw materials, Non wood forest products, fodder crop, ornamental plants, weed crop, and any other identified value. Out of fifteen major African timber species recorded by Ayensu (1980), in the book jungles, only one species, Afzelia was encountered in this work. For fibres and canes, out of eight species recorded in their work, only one specie was encountered in this work and that is Bambusa species. Of 11 essential oil species recorded in their work, only one appeared in this work, and that is citrus species. For gums and resins, of those recorded by Ayensu, none was represented in this work. Of pharmaceuticals, tanning agents and dyes, Ayensu recorded 14 species and 2 (Dioscorea and Rauvolfia) species were also represented in this work. Burkill (1985), in his, 'the useful plants of West Tropical Africa' recorded the following species which were also encountered in this work: Mangifera indica, Voacanga africana, Holarrhena floribunda! Acioa barteri, and Newbouldia laevis-for the trees. Annona senegalensis, Uvarea chamae, Rauvolfia vomitoria, Gongronema latifolium, Ananas comosus, Telfeiria occcidentalis, Dioscorea dumentorum- for the shrubs; and Cleome rutidosperma, Cleome viscosa, Commelina diffusa, C.erecta, Palisota hirsuta, Ageratum conyzoides, Aspilia africana, Bidens pilosa, Chromolaena odorata, Eclipta alba, Emilia coccinea, Melanthera scandens, Synedrella nodiflora, Tridax procumbens, Evolvulus alsinoides, Ipomoea aquatica, I.eriocarpa, I. involucrata, I. triloba, I. vagans, Citrullus lanatus, Cyperus difformis, C. alternifolia, C. haspan, C. iria, C. rotundus, Fimbristylis littoralis, Kyllinga erecta, K. pumilla, K. squamulata, Mariscus alternifolia, M. flabelliformis, and

Scleria verrucosa, for the forbs as having multiple economic relevance particularly- medicinal properties. On Vernonia amygdalina particularly, Ibrahim, et al. (2004) had this to say, 'The parts of this plant are used in folk medicine as antihelminths, laxatives and fertility inducers in barren women, also in Tanzania, some wild Chimpanzees were observed to use it for the treatment of parasite related diseases. Also leaves of this plant were found to be of nutritional importance. In Nigeria, the plant is used as vegetable and as spices. Phytochemical screening of the plant revealed the presence of steroid, in the entire plant, sesquiterpenes in the leaves, fruits and flowers and also tannins, as well as flavonoids in the leaves; in this present work, the Economic rating, for V. amygdalina was 8.0 (Fig. 14) which is 1.5 points ahead of the midpoint score of 6.5. This shows that it has very high Economic relevance. Boateng, et al. (2004), in a survey of Medicinal plants of Ghana, mentioned the following plants, encountered also in this work as having the therapeutic uses also mentioned.
Newbouldia laevis - (Chronic sores)
Rauvolfia vomitoria - (Swellings on the body; lumbago, hernia)
Tatrapleura tetraptera- (Anaemia, Blood purifier; Dizziness)
Dialum guineense - (Bleeding during pregnancy).
Amaranthus spinosus, Piliostigma thonningii and Portulaca oleraceae which were encountered in this work, were also reported by Ibewuike, et al. (1997) as having anti-inflammatory activities. In Nigeria's first Biodiversity Report (2001), some of the species encountered in this study that were also recorded under threatened Biodiversity species in Nigeria, with their uses and status given, include:

| 1. Milicia excelsa | Timber | Endangered |
| :--- | :--- | :--- | :--- |
| 2. Kigelia africana | General | Endangered |

Others listed under selected plants commonly used in Nigeria include:

1. Annona senegalensis Leaves- Leaves are good strength food for human and horses. Flowers are used for flavouring food. Ripe fruits are edible and has a pleasant taste.
2. Boerhavia diffusa Leaves - The leaf is used occasionally as a course kind of pot-herb in soup.
3. Dialum guineense Seed kernel-Seed kernel powder is used as condiment.
4. Napoleana vogelli Fruit Pulp -Ripe fruit pulp and seed mucilage are sucked.
5. Pentaclethra macrophylla Seed Kernel - Kernel of cooked seed is sliced, washed and allowed to ferment a few days after which it is eaten as salad or used as condiment in other food preparations. The leaves and fruits are edible and are used as spice in soup and other foods all over Nigeria.
6. Portulaca oleracea leaves are used as vegetable.
7. Trianthema portulacastrum leaves are used as vegetable
8. Uvaria chamae Fruit pulp Ripe fruit is sweet and is widely eaten.

5.2 Effects of Seasons, relief and land use on plant species Important values (IVI).

Ifabiyi and Omoyosoye (2011), completely agreed with the findings of this work with regards to rainfall as stated earlier on, when they postulated as follows; 'Rainfall within the tropics is highly variable and is the most important variable affecting crop yield. Of course in the project site, overall plant growth was clearly more luxuriant in the rainy season than in the dry season. Lyocks, et al. (2012) also agreed with the findings of this work with regards to the dominant role the rainy season plays in plant productivity in the tropics. It is pertinent to note though that seasonality in the tropics is determined by moisture availability/rainfall. Growth and productivity of vegetation is influenced by rainfall. Temperature is not a problem in all tropics because it is evenly high throughout the year. The rainy season stimulates
phenological activities in plant germination, growth, leaf flushing etc. It is believed that plants generally thrive more on flat lands than slopy lands, because slopy lands that are not well managed as is the case in this work, enable water to flow away to lower ground with leachetes, thus impoverishing the higher (slopy) land in terms of nutrient; but in a flat land, the rain is not able to carry the nutrients away, instead, the nutrient rich water percolates in the same site. This is no doubt why basic soil conservation techniques like terracing, strip cropping and contour ploughing etc are practiced on the slopes. On steep slopes, soil depth is shallow and do not hold much moisture which often dries up during the dry season, subjecting plants to drought stress. From the work also, it was obvious that the forest site was dominated by trees, climbers and shrubs; the short term fallow site was dominated by forbs, the long term fallow site was dominated almost completely by grasses while the current usage farming site was dominated by the forbs and shrubs which man planted purposefully for economic benefit and overall subsistence (survival). The Amawbia watershed is subjected to 'slash and burn' Agriculture before every planting season. This deleterious Agricultural practice causes the normal successional process from true forest under deforestation to secondary forest to be circumvented, thereby leaving the way open for permanent colonization by grasses (which are fire tolerant) and forbs (weeds) which gradually replace the original forest species. This was in tandem with the submission of Aregheore (2012) who stated that, 'ordinarily the natural vegetation zones of the country resulted from the interaction of the climate, humidity and rainfall (Oyenuga, 1967), and soils (Iloeje, 2001). These factors have been modified by human activities (deforestation, bush fires) and man's pattern of land use (Oyenuga 1967; Iloeje 2001).

5.4 Soil properties of the Watershed

(Effects of seasons on soil properties). Fig. 8, 25-32, show that in most of the sites (with the exception of the current usage farming site), the soil pH is higher during the dry season than during the rainy season. This is in agreement with the postulation of Sullivan (2004). There is increase leachate of soluble macro/micro elements during the rainy season, unlike during the dry season. According to the base saturation theory, the pH will be correct when the level of bases are correct; positively charged bases include: calcium, magnesium, potassium, sodium, ammonium and several trace minerals. When optimum ratios of bases exist, the soil is believed to support high biological activity, have optimal physical properties (water intake and aggregation), and become resistant to leaching. Plants growing on such a soil are also balanced in mineral levels and are considered to be nutritious to humans and animals alike. Again, from Fig. 30 percentage total N is higher in the dry season at the forest/short term fallow sites than during the rainy season. Sullivan (2004), states also that excess nitrogen results in decomposition of existing organic matter at a rapid rate (because it stimulates increased microbial activity). Of course, organic decomposition is mainly during the rainy season and not during the dry season. Eventually soil carbon content may be reduced to a level where the bacterial populations shrink, and less of the free nitrogen is absorbed. Thereafter, applied nitrogen, rather than being cycled through microbial organisms and re-released to plants slowly over time, becomes subject to leaching. This does not mean that plants do not absorb some during the rainy season. Leaching of course is by water. This may explain why percentage total Nitrogen was higher in the dry season than in the rainy season. Again, from fig.31, it was observed that for all sites, percentage organic carbon was higher during the dry season than during the rainy season and also that percentage organic carbon was higher in the long term fallow site during the dry season and higher in the short term fallow site during the rainy season. This is supported by the assertion from Sullivan (2004) that most natural manure of organic origin contain both carbon and nitrogen. During wet conditions, microbial decomposition of these manure is very high. This
considerably reduces organic carbon in the wet season more than in the dry season, when there is less water. Percentage organic matter was also higher in the dry season for all sites more than in the rainy season (Fig.32). Sullivan (2004) completely supported this development. He states as follows, 'High rainfall and temperature promote rapid organic matter decomposition and loss. Low rainfall or low temperatures slow both plant growth and organic matter decomposition. Rapid decomposition of organic matter returns nutrients back to the soil, where they are almost immediately taken up by rapidly growing plants. This also agrees with the finding (fig.32) that percentage organic matter was highest in the long term fallow site during the dry season and highest in the current usage farming site during the rainy season. Low microbial activity was responsible for this scenario during the dry season, while steady availability of farmyard manure/agricultural wastes (from constant weeding) during the rainy season accounted for this higher figure for current usage farming site. Fig 33 depicts that in most of the sites (excepting the short term fallow site), that the percentage total N was higher at soil depth of $0-20 \mathrm{~cm}$, than at that of $20-40 \mathrm{~cm}$. At soil depth of $0-20 \mathrm{~cm}$ percentage total N was also higher at the forest site, while at soil depth of $20-40 \mathrm{~cm}$, the percentage total N was higher in the short term fallow site. This is in agreement with Anikwe (2001), in an earlier work in which he stated that 'The highest total N content of the soils were found at artificially and naturally planted undisturbed forests, whereas the sites that recorded low nitrogen content corresponded to plots that were conventionally-and continuously tilled.
Fig. 34 depicts that in most of the sites (with the exception of the forest site) that the soil pH is higher at soil depth of 0-20 than $20-40 \mathrm{~cm}$ soil depths. The differences in pH for all sites were not pronounced, they were only subtle differences. This was in agreement with the results of Anikwe (2001), who reported that there were slight differences in pH values for the different soils studied. Fig. 35 shows that for all sites, the percentage organic carbon was higher at soil depth of 0-20 than $20-40 \mathrm{~cm}$. It also depicted that percentage organic carbon was highest in the long term fallow site at both $0-20$ and $20-40 \mathrm{~cm}$ soil depths when compared to other sites. This agreed to a very large extent with the work done by Anikwe (2001) as follows, 'The highest quantities of soil organic carbon were stored in the artificial grassland, artificial forest and natural undisturbed forest sites at the $0-30 \mathrm{~cm}$ soil depth, while the lowest carbon stocks were found in the conventionally tilled and continuously -cropped (current usage farming plots). When compared to the site with the highest carbon stocks (forest and grassland use types), results showed 71% depletion in carbon stocks for tilled cropped plots. Fig 36 shows that for all the sites studied, 'percentage organic matter was higher at soil depth of $0-20 \mathrm{~cm}$ than at $20-40 \mathrm{~cm}$. This is because, most plant roots are concentrated in the top $0-20 \mathrm{~cm}$ soil layer, at which layer, litter disposal and decomposition mostly takes place. Fig. 32 also depicted that at both soil depths of 0-20 and 20-40 cm, percentage organic matter was highest for the long term fallow site. According to Sullivan (2004), the top soil $(0-20 \mathrm{~cm})$ is where the biological activity happens-it's where the oxygen is! Generally, for Anikwe (2001), soil pH increased with soil depth in most of the sites studied, but for this work, reverse was the case, soil pH decreased with depth. For Anikwe (2001), SOC reduced with sampling depth at all sites used for the study. The continuously and conventionally tilled plots were among the plots with the lowest soil pH probably because they are more susceptible to leaching of basic cations for the fact that plant cover is non-existent. Table shows the analysis of variance of the soil properties of the watershed by site, season and soil depth. With respect to percentage total nitrogen, the table indicates that there is no significant difference in this variable between sites, soil depths and seasons ($\mathrm{P}<0.05$). The site that is expected to record higher total N concentrations is the current usage farming site because this is the only site that receives additional inputs of fertilizer during the growing season, and it has earlier on been noted that there is more N in the dry season than in the rainy season. With respect to pH , the table indicates that there is
only significant difference in soil pH of the watershed between seasons ($\mathrm{P}<0.05$) but no significant difference between sites, soil depths and seasons ($\mathrm{P}>0.05$). Of course, the organic carbon of the forestwhich has a greater plant biomass, is not expected to correlate positively with that of the grass-dominated long term fallow site or forb-dominated short term fallow site. It has earlier been observed also, that all these soil indices are higher in the dry season compared to the rainy season, in this work. Again, with respect to organic matter, the table indicates that there is a significant difference in the organic matter of the watershed between sites, seasons and soil depths ($\mathrm{P}<0.05$). Sullivan (2004), in a related work stated that 'extra nitrogen, (though it stimulates increased microbial activity, which in turn speed up organic matter decomposition) narrows the ratio of carbon to nitrogen in the soil. Native or uncultivated soils have approximately 12 parts of carbon to each part of nitrogen, or a C:N ratio of 12:1. At this ratio, populations of decay bacteria are kept at a stable level, since additional growth in their populations is limited by a lack of nitrogen. When large amounts of inorganic nitrogen are added, the C:N ratio is reduced, which allows the population of decay organisms to explode as they decompose more organic matter with the now abundant nitrogen. While soil bacteria can efficiently handle moderate applications of inorganic nitrogen accompanied by organic amendments, excess nitrogen results in decomposition of existing organic matter at a rapid rate. Eventually, soil carbon content may be reduced to a level where the bacterial populations are on a starvation diet. With little carbon available, bacterial populations shrink, and less of the tree soil nitrogen is absorbed. Thereafter, applied nitrogen, rather than being cycled through microbial organisms and re-released to plants slowly over time, becomes subject to leaching. This can greatly reduce the efficiency of fertilization and lead to environmental problems. To minimize the fast decomposition of soil organic matter, carbon should be added with nitrogen. Typical carbon sources-such as green manure, animal manure, and compost-serve this purpose well (Sullivan, 2004).

5.5 Effect of Relief on Soil Properties of the various sites

Generally, analysis of variance results show no significant differences between the soil properties and relief. Where the relief is quite steep without proper land use strategies in place, rain water washes away the top soil, leaching soil nutrients away as well. It is noteworthy that there was more $\mathrm{MgCO}_{2} / \mathrm{kg}$ in the forest and short term fallow sites, than in the current usage farming site (Fig 41). Also in table 11 the analysis of variance show that there is significant difference in the $\mathrm{MgCO}_{2} / \mathrm{kg}$ content between the soil depths of the watershed ($\mathrm{P}>0.05$). Sites that recorded the highest (high) $\mathrm{MgCO}_{2} / \mathrm{kg}$ concentrations, by implication are the sites having the highest soil respiration. This translates to soil quality meaning therefore that sites that had been in fallow and have a higher diversity of flora as represented by the forest and short term fallow sites were more conducive towards favourable plant growth.

5.6. Regression Analysis

The results of the Regression analysis (Table 14) shows that the forest and the fallow sites yielded 76.71 in terms of importance -value index (IVI) while the only currently cultivated site-the current usage farming site yielded only 23.29%. When land is left fallow for increasing periods of time, fertility increases, microbial activities increase, because harvesting is not done, nutrients are not carried away from the site, the soil has adequate rest and maximal plant productivity is ensured. The difference between plant (IVI) indices for the rainy and dry season was very subtle ($50-04-49.96 \pm 0.08$). Their Ttest also showed non-significance. For the watershed, it was clear that plant development (growth) was independent of relief (flat or slopy topography). For land use, the difference in IVI indices between the cultivated (managed) and forested areas (not managed) was quite reasonable (69.44-30. 56 $\pm 38.88 \%$) and their T-test showed significance. The outstanding finding of the watershed was the superlative
performance of the r-strategists (grasses and forbs) as opposed to the K-strategists (trees and shrubs) of the watershed. Throughout the duration of the study, the watershed was in a continual state of successional flux as a result of multiple anthropogenic factors (disturbance). This gave undue advantage to the opportunistic species. According to Chapman and Reiss (1992) 'An r-selected population can take advantage of a favourable situation by having the ability to increase population size rapidly. This means having many offsprings which under normal circumstances die before reaching maturity, but which may survive if circumstances change. Similarly, a k-selected population is associated with a steady carrying capacity. K-selected populations are less able to take advantage of particular opportunities to expand than are r-selected populations. They are in general more stable and less likely to suffer high mortality rates of immature individuals. Usually, k-selected organisms have few, well cared for young (Chapman and Reiss, 1992).

6 CONCLUSION

The Amawbia watershed is situated on a high elevation making it possible for the water therefrom to flow downstream into surrounding watersheds. The implication is that degradation of this watershed filters down to neighbouring ones. This makes protection of the Amawbia watershed paramount! Originally it was forested but the reality on ground is that the forested areas have shrunk very considerably. Biodiversity is very poor. (Only 191 plant species and very sparce animal populations. Available species population have very low economic relevance. Importance values of the species is nothing to write home about as a result of deforestation and overexploitation. Conversion of the watershed into a market garden has taken away its natural status. Amawbia soil which were among the richest in the state now require artificial fertilizers to perform as a result of declining, pH , percentage Nitrogen, percentage Organic carbon and percentage organic matter levels. Slash and burn agricultural practice in the watershed has discouraged deforestation and is entrenching permanent savannah. Government should move in very fast, by fencing off the watershed from surrounding influences, reforestation and involvement of professional scientists to restore this watershed to its original glory. Sustainable management is the panacea!

7 RECOMMENDATIONS

$>$ One way to recover our extinct flora species is to allow some of our watersheds, undergo natural successional processes. This is because every tree is unique, none is useless. When any is destroyed, man loses irretrievable benefits.
$>$ Leaving a tropical site under long term fallow is the best management technique that will assured maximal Agricultural productivity.
$>$ Siltation has been responsible for the disappearance of most watersheds in Anambra State. All efforts ought to be made to checkmate erosion and flooding that brings this about.
$>$ The plant growth form-Grasses are hardy, highly competitive opportunistic species that can outthrive and out-compete other species, in the absence of shade especially after "slash and burn" agricultural practice prevalent in the Amawbia watershed.
$>$ Among the relevance of flora to mankind, the most all encompassing, in terms of number of plant populations involved, is soil protection.
> Most lower plants e.g grasses and herbs are very sensitive to rainfall because there are sharp differences between their rainy season and dry season values (Table 7).
> "Cut and burn" agriculture prevalent in Amawbia watershed, as opposed to the more beneficial "cut and trash" has progressively encouraged the eradication of forests in the watershed and
promotion of persistent savannah. Adoption of 'cut and thrash' here will also help to protect our soil, leading to increases in yield and fertility.
> The rate at which land speculators/developers invade/encroach into our watersheds is alarming. Watersheds which are often located on marginal lands ought to be protected by Government from this form of abuse. There should be an established boundary between residential houses, industries, Government offices and, watersheds.
$>$ Most of our watersheds are converted into market gardens. This gives accessibility to the influx of men and materials which pollute the water, hardpan the soils, and destroy surrounding vegetation. This practice ought to be stopped because it is retrogressive to watershed development and negates the principles of watershed conservation (protection).
$>$ Establishment of forest Reserves, Nature Protection and other flora conservancy projects especially on the sites of existing watersheds is a very vital need in Anambra State because it will help to conserve particularly the climbers, epiphytes, soil and rare species of plants and animals which are mutualistically interdependent on forests.

REFERENCES

Akobundu, I.O. and Agyakwa, C.W. (1998). A handbook of West African weeds. $2^{\text {nd }}$ Edition. International Institute of Tropical Agriculture. Ibadan, Nigeria. 564pp.

Akolade, G. O. and Issa, F.O. (2009). Influence of Environmental factors on agricultural production in Ikorodu Local Government Area of Lagos state. Food crisis in Nigeria and the challenges for Agricultural extension. Proceedings of the $14^{\text {th }}$ Annual National Conference of the Agricultural Extension society of Nigeria (21-24 April) pp.102-110.

Anikwe, M.A.N (2003). Carbon storage in soils of southeastern Nigeria under different management practices. Plant and soils: 253: (2): 457-465.

Aregheore, M. E. (2012). Country pasture/Forage Resource profiles. The University of the South Pacific, School of Agriculture, Animal Science Department Alafua campus, Apia SAMOA. 44pp.

Ayensu, E. S.(1980). Jungles. Marshall Editions Limited. London, U.K. pp176-195.
Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the World. European Journal of Soil Science 4:151-163. U.K.

Block, C. A. (1965). Methods of soil analysis, Part 2. Agronomy Monograph 9-ASA. Madison, W.I.U.S.A. pp.1550-1572.

Boateng, S. K. Bennett. Lartey, S.O.; Opoku- Agyeman, M. O., Mensah, M. L. K and Fleischer, T. C. (2004). Ethnobotanical survey of medicinal plants in the plant genetic Resources centre Arboretum-Bunso. Nigeria Journal of Natural product and medicine. 8. 5-10.

Boysen-Jensen, P(1949). Causal Plant Geography. D. Kgl. Danske Vidensk. Selsk. Bio. Model 21:1-19.
Burkill, H.M. (1985). The Useful Plants of West Tropical Africa. $2^{\text {nd }}$ edition. Vol.1, families A-D. Royal Botanic Gardens, Kew, Great Britain. 960pp.

Chapman, J. L. and Reiss, M. J. (1992). Ecology principles and applications, Cambridge University Press. 294pp.

Conservation Technology Information Center (2009). What is a watershed? West Lafayette, Indiana, USA. 1 p .

Cox, G.W. (1976). Laboratory Manual of General Ecology. 2nd Edition. W.M.C. Brown Company Publishers. Dubuque, Iowa. U.S.A. pp.38-42.
Curtis, J. T. (1959). The Vegetation of Wisconsin. An ordination of plant communities. University of Wisconsin Press, Madison. U.S.A. 657pp.

Dix, R. L. (1961). An application of the point-centered quarter method to the sampling of grass land vegetation. Journal of Range management. 14:63-67.

Elevitch, C. and Witkinson, K (2009). Agro-forestry - A way of farming that can work for everyone. The overstory Agroforestry e-journal http.//ogaforestry.net/over. overstory.html..
Enwelu and Igbokwe (2013). Status of watersheds in southeast Nigeria. Scientific Research and Essays 8(38), 1882-1895. University of Nigeria, Nsukka.

Food and Agricultural Organisation (1985). Forests trees and people forestry topics. Report No 2 FAO, United Nations, Rome. 40pp.

Ibewuike, J. C., Abiodun, O. O., Bohlin, L. and Ogungbamila, F. O. (1997). Anti-inflammatory activity of selected Nigerian medicinal plants. Nigerian Journal of Natural products and medicine vol. 01: 10-14.

Ibrahim, G. Abdurahman, E. M. and Katayal U. A, (2004). Pharmacognostic studies. Nigerian Journal of National Products and Medicine Vol. 08. 8-10.

Idodo-Umeh (2011). College Biology. Idodo Umeh publishers limited. Nigeria. 657pp.
Ifabiyi, I. P. and Omoyosoye, O. (2011). Rainfall characteristics and maize yield in Kwara State, Nigeria. Indian Journal of fundamental and Applied life sciences. Vol.1-(3), 60-65.
Iloeje, N.P. (2001). A new geography of Nigeria. New Revised edition. Longman Nigeria Plc. 200pp.
Ingwu, A. (2006). Development in Nigeria. Who should govern our watershed: A case study from northern Cross River State, Nigeria. Retrieved February $4^{\text {th }}$, 2006. http.//www.cenrce.org/eng/projects/ace/agnes/presentation.pdf.

International Institute for land reclamation and improvement (URI) (1989). Effectiveness and social/Environmental impacts of irrigation Projects: a Review, In: ILRI 1988 Annual Report. The Netherlands pp.18-34.

Jeffrey, M. D. (2009), What percentage of the human body is composed of water? The Madison Science Network USA. 1p.
Knapp, (1967). Experimentalle Soziologie und gegenseitige Beeinflussung der Pflanzen Stuttgart. Germany, 266p.
Knapp, G. and Knapp R. (1954). Uber Moglicheiten der Durchsetzung and Austbreitung von Pflanzenindividuen auf Grund verschiedener wuchsformen. Ber. Deut. Botan.Ges. Stuttgart. 67: 410-419.

Knapp, R. (1954). Experimentalle Soziologie der hoheren Pflanzen $2^{\text {nd }}$ ed., Eugen Ulmer, Stuttgart. 202p.
Kogbe, C. A. (1976). Paleegeographic History of Nigeria. from Albian to Recent. In: Geology of Nigeria. Elizabeth publishing Company. pp.331-338.
Laycock, W. A. (1985). Density as a method for monitoring rangeland vegetation. Symposium on Rangeland monitoring. Society for range management Annual meeting. Salt lake city U.T.U.S.A

Lotspeich, F.B. (1980). Watersheds as the basic Ecosystem: JAWRA Journal of the American Water resources Association. 16(4): 581-586.

Lyocks, S. W. J., Olajide, J.O, Tanimu, J. and Ayo, R.G (2012). Climate change Risk management capacity of Nigerian farmers. Journal of occupational safety and environmental health. 1(1): 2230.

Meuller Dombois, D. and Ellenberg, H. (1974). Aims and methods of vegetation Ecology. The count plot method and plotless sampling techniques. John Wiley and Sons, New York. pp.93-135.
Ministry of Agriculture, Awka (2009). Mean Monthly climatological data (handbill). Anambra State. Nigeria. 2pp.
Ministry of Environment and Solid Minerals, Awka (2004). An Environmental audit. The Geologic profile in most parts of Anambra state. Awka. Nigeria. 1p.

Momodu, A. B. (2000). Soil/water conservation and soil fertility management. In: Agroforestry and land management Diagnastic. Survey of Katsina state of Nigeria, Otegbeye, G.O (ed) Kstsina pp.2545.

Mywatershedwatch.org (2016). Why are watersheds Important. USA. 866pp.
New World Encyclopedia (2009). Watershed/Drainage basins. http://www.newworld encyclopedia.org/entry/watershed. U.S.A. Accessed, March.2011. 2pp.
Nigeria Natural Medicine Development Agency (2008). Medicinal Plants of Nigeria, South East Zone Vol. 1. Federal Ministry of Science and Technology. Lisida Consulting, Lagos. 204p.

Nwajide, C.S. (1979). A lithostratigraphic Analysis of the Nanka Formation, South Eastern, Nigeria. Nigeria Journal of Mineral and Geology. 16 (2). 103-107.

Nwozor, K. K. (2010). An Extract on the Geology and Pedology of Anambra State: Implications for Gully Erosion Control and management. Integrated Geoscience Resources. Centre (IGRC), Department of Geology. Anambra State University, Uli. Faculty of science Magazine. pp.19-20.
Okereke C.N. and Mbaekwe, E.I (2011). Some aspects of the Biology of Mimosa invisa mart. Around Agu-Awka, Anambra State, Nigeria. Nigerian Journal of Botany, 24(1): 67-80.

Oldfield, S. Lusty, C. and Mackinven, E. (1998). The world list of Threatened Trees. World conservation Press, Cambridge, UK. 650pp.
Onyekwelu, J. C; Mosandi, R. and Stimm, B. (2008). Tree species Diversity and soil status of Primary and degraded Tropical Rainforest Ecosystems in South-western Nigeria. Journal of Tropical forest science 20 (3): 193-204.
Otegbeye, G. O and Otegbeye, E. Y. (2002). Socio-economic issues of agroforestry practices in Katsina state of Nigeria. Journal of sustainable Tropical Agricultural research 3, 10-16.

Otegbeye, G. O. and Onyeanusi, A. E. (2006). The impact of deforestation on soil erosion and on the socioeconomic life of Nigerians. In: ivbijaro,M. F. A., Akintola F and Okechukwu, R.U. (Eds). Sustainable Environmental management in Nigeria. Mattivi productions, Ibadan. Nigeria pp. 125-137

Oyenuga, V. A. (1967). Agriculture in Nigeria. Food and Agriculture Organization of the United Nations. FAO, Rome, Italy. 308p

Reyment, R. A. (1965). Aspect of Geology of Nigeria. University Press, Ibadan, Nigeria. pp.56-70.
Sample, I. (2007). Global Food Crisis looms as climate change and population growth strip fertile land. The Guardian. USA 1 p .
Stotzky, G. (1965). Microbial respiration, C.A. Black (Ed). Methods of soil analysis Part 2. Agronomy monograph 9-A.S.A. Madison, WI. U.S.A. pp.1550-1572.
Sullivan, P. (2004). Sustainable Soil Management. NCAT Agriculture Specialist. ATTRA Publication U.S.A. pp. 22-31.

The Nature Conservancy (2016). Watersheds USA. 101pp.
Ukpong, P. A. (1994), Sensitivity of agricultural production to climate change. Climate cnage 7: 129152.

United Nations Development Programme (2009). Properties of Water. New York. 10pp.
United Nations Development programme (2009). Millennium Development Goals. 4pp. New York.
United Nations Environment Programme (2008) "Land: Programes and Activities" http://en.wikipedia.org/wiki/Environmental_degradation. Accessed December, 2016.

United Nations International strategy for disaster Reduction (2004). Environmental degradation. http://en.wikipedia.org/wiki/Environmental_degradation. Accessed December, 2016.

United Nations System in Nigeria (2001). Nigeria common country Assessment. 222pp.
United State geological Survey (2000). Important Watershed Characteristics. http://www.egr.msu.edu/northco2/BE481/Wshed char.htm. pp.49-56.
Wikipedia (2010). "Free articles and software on drainage of water logged land and soil salinity control". http://en.wikipedia.org/wiki/Environmental_degradation. Accessed December, 2016.
Wikipedia, (2014). Diversity Index. http:en.wikipedia.org/ wiki/diversity index. Assessed 01/10/2014.

PPENDIX 1

AMAWBIA WATERSHED-DEPICTING SITES AND SPECIES (LUXURIANCE, RELIEF , LAND USE AND INDIVIDUALS)

List of Plates

Plate 1a

List of Plates

Farm in current usage (slope site Da
with Zea mays in the background)

Db farm in current usage (flat)

Plate 1b

List of Plates

Milisia excelsa

Nauclea latifolia

Peltoforum pterocarpum

Diallum guineense

List of Plates

Tetrapleura tetraptera

Piliostigma thonningii

Hevea brasiliensis

Mangifera indica

List of Plates

Elaeis guine ense

Pentacletra macrophyla

Cocos nucifera

Zanthaxylum xanthaxyloides
PI. 2c

List of Plates

Anthocleista djalonensis

Dich rostachys cinerei

Napolenana imperialis

Hollarrhena floribunda

PI. 2d

List of Plates

Smilax anceps

Olax viridis

Bambusa vulgaris

Annona senegalensis

List of Plates

Ananas comosus

Klausinia anisata

Mimosa invisa

Manihot esculentum

List of Plates

Panicum maximum (stand)

Hackelochloa granularis (stand)

Zea mays

Oryza sativa (stand)

List of Plate

Dactyledenia barteri

Vernonia amygdalina

PL 4b

APPENDIX 2

QUESTIONNAIRE

NNAMDI AZIKIWE UNIVERSITY
DEPARTMENT OF BOTANY
QUESTIONNAIRE ON ECONOMIC IMPORTANCE OF FLORAL RESOURCES ENCOUNTERED AT THE ADP MARKET GARDEN WATERSHED AT AMAWBIA, AWKA NORTH LGA ANAMBRA STATE

- A PH.D PROJECT -

YOU ARE REQUESTED TO KINDLY ESTABLISH THE MAJOR ECONOMIC RELEVANCE(S) OF THEUNDERLISTED FLORAL SPECIES OF ANAMBRA STATE
(Select the correct Economic relevance from the right and link it with the appropriate floral spps. On the left- please tick $(\sqrt{ })$ the corresponding number (1-11) in the given space)

KEY:

1. Edible Food
2. Export commodity
3. Cash crop
4. Fuel wood
5. Medicinal plant
6. Industrial raw material
7. Non wood forest product
8. Fodder crop
9. Erosion control
10. Ornamental plant
11. Weed crop
12. Any other identified value

PERSONAL INFORMATION
Name:
Age: Sex:
Status:
Town:
L.G.A:

S/N	TREES	$\begin{aligned} & \text { OTHER } \\ & \text { NAMES } \end{aligned}$		ECONOMIC RELEVANCE											
			1	2	3	4	5	6	7	8	9	10	11	12	$\begin{aligned} & \text { TOT } \\ & \text { AL } \end{aligned}$
1	Milisia excelsa	Orji		1		1		1		1	1			1	6
2	Hevea brasiliensis	Rubber		1	1	1		1	1		1				6
3	Tetrapleura teteptera	Oshosho				1	1	1			1				4

4	Erythrophleum suaveolens	Inyi									1				1
5	Pentaclethra macrophyla	Ukpaka	1	1		1	1		1		1				6
6	Mangifera indica	Mango	1	1	1	1	1	1	1	1	1				9
7	Senna siamea					1		1			1	1			4
8	Albizia chaevelieri					1	1	1			1				4
9	Spondias monibin	Ijikala				1	1	1			1				4
10	Dactyledenia barteri	Ahaba				1	1	1		1	1				5
11	Voacango africana					1	1				1				3
12	Diallum guincense	Icheku	1			1	1	1	1	1	1				7
13	Sterculia tragaclantha	Oloko				1	1	1			1				4
14	Peltofoia pterocapum					1		1			1				3
15	Bridelia ferruginea	Ola				1	1				1				3
16	Klausinia anisata					1					1	1			3
17	Barteria nigritiana					1					1				2
18	Sporospamum febrifugum					1					1	1			3
19	Dichrostachys cinerea	Ami ogwu				1	1				1				3
20	Elaeis guineenses	Nkwu	1	1	1	1	1	1	1	1	1	1		1	11
21	Anthocleista djalonensis					1	1	1			1				4
22	Holarrhena floribunda	Cornessi				1	1				1				3
23	Afzelia africana	Apa		1		1	1	1			1				5
24	Zanthaxylon zanthaxyloides	Uko				1	1				1				3
25	Rothmania hispida	Ulioba				1	1				1				3
26	Nauclea latifolia		1			1	1	1			1				5
27	Napoleana imperialis	Ukpodu				1	1	1			1				4
28	Newbouldian laevis	Ogirisi				1	1	1			1			1	5
29	Cocos nucitera	Akioyibo	1	1	1	1	1	1		1	1				8
30	Citrus sinensis		1	1	1	1	1	1		1	1				8
	SHRUB SPPS.	Total 138	7	8	5	29	22	19	5	7	30	3	-	3	138
31	Annona senegalensis					1	1		1		1				4
32	Alchomea cordifolia	Xmas bush				1	1				1				3
33	Smilax anceps / climber	West African sarsapavilla (jiabanamko)					1				1		1		3
34	Olax viridis	Igbulu				1	1				1		1		34
35	Uvaria chamae	Utu (mmimi ohia)	1			1	1	1			1				5
36	Rauwalfia vomitona	Serpent wood urubia				1	1				1				3

		(akata)													
37	Manihot esculentum	Akpu	1	1	1	1	1	1		1	1				8
38	Telfeiria occidentalis / climber	Ugu	1	1			1			1	1				5
39	Peuraria phaseoloides /climber	Ahihia nwosu					1				1		1		3
40	Colocasia esculentum	Ede	1	1		1	1	1		1	1				7
41	Veronica amygdalina	Onugwu	1			1	1			1	1				5
42	Ananas comosus	Pineapple	1	1	1		1	1	1	1	1				8
43	Mimosa invisa Mimosa pruriens	Giant sensitive plant						1			1		1 1		$\begin{array}{\|l\|} \hline 2 \\ 2 \end{array}$
44	Piliostigma thonningi	Okpoatu				1	1		1		1			1	5
45	Bambusa vulgaris	Achara / otosi		1	1	1	1	1		1	1				7
46	Byrsocarpus caccineus (climber)	Oka abiola				1	1				1				3
47	Cajanus cajans		1		1		1			1	1				5
48	Cissus aralioides										1		1		2
49	Gongronena latifolium	Utazi	1				1			1	1				4
50	Dioscorea dumentorum	Bifolate yam (Ona)	1				1			1	1				4
	GRASS SPP.	TOTAL 90	9	5	4	10	19	5	3	9	20	-	5	1	90
51	Sorghum arundinaceum									1	1		1		3
52	Panicum maxima	Guinea grass								1	1		1		3
53	Hackelochloa granularis							1		1	1		1		4
54	Andropogon tectorum	Giant bluesterm								1	1		1		3
55	Cymbopogon giganteus						1			1	1	1	1		5
56	Imperata cylindrica	Spear grass								1	1		1		3
	Andropogon gayanus	Gamba grass								1	1		1		3
57	Rottboellia cockinchinensis	Itchgrass corn grass								1	1		1		3
58	Pennisetum pediceliatum									1	1		1		3
59	Pennisetum polystachion	Feathery pennisetun								1	1		1		3
60	Oryza sativa	Rice								1	1		1		3
61	Zea mays	Oka	1	1	1		1	1		1	1				7

	corymbosa														
96	Gomphrena celosioides										1		1		2
97	Mariscus flaberlliformis										1		1		2
98	Mariscus alternifolia										1		1		2
99	Ludwigia decurrens						1				1		1		3
100	Ipomoea involucrata						1				1		1		3
101	Tridax procumbens										1		1		2
102	Cyperus difformis										1		1		2
103	Heterotis rotundifolia										1		1		2
104	Musa sapientum	Banana	1	1	1		1	1	1	1	1				8
105	Solanum melangena	Garden egg	1	1	1		1			1	1				6
106	Eragrostis atrovirens	Wiry love grass								1	1				2
107	Amaranthus hybridus	Inine	1				1			1	1				4
108	Boerhavia diffusa	Hogweed					1			1	1		1		4
109	Acroceras zizanioides										1		1		2
110	Oldenlandlia herbacea										1		1		2
111	Commelina diffusa	Obogwu					1				1		1		3
112	Axonopus compressus	Broad leaf carpet grass									1	1	1		3
113	Peperomia pellucida						1				1		1		3
114	Ludwigia abyssinica	Water primrose					1				1		1		3
115	Setaria longiseta	Foxtail									1		1		2
116	Diodia sarmentosa										1		1		2
117	Kyllinga erecta										1		1		2
118	Eragrostis tremula	Love grass									1		1		2
119	Cyperus esculentus										1		1		2
120	Spermacoce octdon										1		1		2
121	Panicum repens							1			1	1	1		4
122	Digitaria horizontalis	Digit grass / crab/ grass									1		1		2
123	Solenostemon monostachyus						1				1		1		3
124	Laggera aurita										1		1		2
125	Paspalum conjugatum										1		1		2
125	Eleucine indica									1	1		1		3
126	Pupalia lappaca	Omo-agbo					1				1		1		3
127	Aspilia africana	Oranjine					1			1	1		1		4
128	Boerhavia erecta						1				1		1		3

129	Cyathula prostrate						1				1	1		3
130	Rhynchelytrum repens	Blanket grass/vita 1 grass									1	1		2
131	Acanthospermum hispidium	Stat bus					1				1	1		3
132	Sphenoclea zeylanica										1	1		2
133	Luwigia decurrens						1				1	1		3
134	Alternanthera sessilis										1	1		2
135	Hypoesthes cancellata						1				1	1		3
136	Eclipta alba						1				1	1		3
137	Cucurbita maxima	Winter squash					1				1	1		3
138	Cyperus rotundus										1	1		2
139	Leucas martinicensis						1				1	1		3
140	Ipomoea aguatica	Swamp morning glory/water spinach									1	1		2
141	Fimbristylis littoralis										1	1		2
142	Malvastrum coromandelianum	False mallow					1				1	1		3
143	Boehavia coccinea										1	1		2
144	Melochia corchorifolia										1	1		2
145	Cleome nutidosperma	Wild mustard					1				1	1		3
146	Acalypha fimbriata	Ash-colored fleabane					1				1	1		3
147	Vernonia cinerea						1				1	1		3
148	Musa paradisiacal	Plantain	1	1	1		1	1	1	1	1			8
149	Schwenkia Americana						1				1	1		3
150	Crotolaria retusa	Rattle box					1				1	1		3
151	Stachytarpheta jamaicensis	Bastard vabain					1				1	1		3
152	Croton lobatus	Cascarilla					1				1	1		3
153	Sida acuta	Udo				1		1		1	1	1		5
156	Ipomoea eriocarpa						1				1	1		3
157	Cymbopogon cittratus						1	1			1	1		4
158	Alternanthera bettzickiana									1	1	1		3
159	Hibiscus asper										1	1		2
160	Spermacoce verticillata										1	1		2
161	Zornia latifolia										1	1		2
162	Melastromastrum capitatum										1	1		2

163	Echinochloa obtusiflora											1		1		2
164	Leersia hexandra											1		1		2
165	Mimosa pigra											1		1		2
166	Talinum triangulare	Waterleaf	1				1				1	1		1		5
167	Brachiaria deflexa											1		1		2
168	Spigelia anthelmia	Pink root					1					1		1		3
169	Digitaria nuda											1		1		2
170	Celosia leptostachya											1		1		2
171	Mimosa pudica	Sensitive plant					1					1		1		3
172	Cleome viscosa						1					1		1		3
173	Cyperus iria											1		1		2
174	Celosia isertii											1		1		2
175	Portulaca oleracea	Prusiana					1				1	1		1		4
176	Sida garckeana					1					1	1		1		4
177	Sida linifolia					1						1		1		3
178	Echinochiloa colona	Jingle rice										1		1		2
179	Murraya kornigii	Curry leaf	1		1		1					1				4
180	Evolvulus alsinoides											1		1		2
181	Chloris pilosa	Finger grass										1		1		2
182	Pouzolzia guineensis											1		1		2
183	Hydrolea palustris											1		1		2
184	Pentodon pentandrus											1		1		2
185	Laportea aestuans	Tropical nettle weed					1					1		1		3
186	Heteranthera califolia	Duck salad										1		1		2
187	Corchorus olitorius	Karen keren	1								1	1		1		4
		Total 346	9	3	4	3	58	6		2	18	123	5	$\begin{aligned} & \hline 11 \\ & \hline 5 \end{aligned}$		
		Grand total 627	28	19	16	43	10			10	47	186	98	${ }^{13}$	4	

REQUIRED INFORMATION

Ukpaka Chukwujekwu .G.

APPENDIX 3
HERB INVENTORY OF THE WATERSHED

S/NO	No of species	Family
1	Acanthaceae	Asystasia gangetica, Justicia flava, Hypoesthes cancellata.
2	Amaranthaceae	Alternanthera sessilis, Celosia isertii, Alternanthera bettzickiana, Celosia leptostachys, Puppalia lappaceae, Cyathula prostrata, Gomphrena celosoides, Amaranthus hybridus, Amaranthus viridis, Amaranthus spinosus
3	Asteraceae	Acanthospermum hispidium Eclipta alba, Bidens pilosa, Chromolaena odorata, Ageratum conyzoides, Laggera aurita, Synedrella nodiflora, Vernonia cinerea, Tridax procumbens, Aspilia africana
4	Capparidaceae	Cleome rutidosperma, Cleome viscosa
5	Commelinaceae	Commelina erecta, Commelina diffusa
6	Convolvulaceae	Ipomoea triloba, ipomoea eriocarpa, Ipomoea aquatica, Evolvulus alsinoides, Ipomoea involucrate
7	Cyperaceae	Fuirena ciliaris, Kyllinga squamulata, Cyperus haspan, Scleria verrucosa, Cyperus rotundus, Cyperus difformis, Cyperus esculentus, Cyperus iria, Mariscus flabelliformis, Kyllinga erecta, Mariscus alternifolia, Kyllinga pumila, Fimbrystylis littoralis
8	Euphorbiaceae	Acalypha fimbriata, Euphorbia hirta, Croton hirtus, Euphorbia heterophylla, Croton lobatus, Phyllantus amarus
9	Lamiaceae	Ocimum basilicum, Hyptis lanceolata, Leucas martinicensis, Solenostemon monostachyus
10	Malvaceae	Malvastrum coromandelianum, Sida acuta, Sida garckeana, Sida linifolia, Hibiscus asper
11	Melastomataceae	Heterotis rotundifolia, Melastomastrum capitatum
12	Nyctaginaceae	Boerhavia diffusa, Boerhavia coccinea, Boerhavia erecta
13	Onagraceae	Ludwigia hyssopifolia, Ludwigia decurrens, Ludwigia abbysinica
14	Rubiaceae	Diodia sarmentosa, Pentodon pentandrus, Mitracarpus villosus, Oldenlandlia corymbosa, Spermacoce ocymoides, Spermacoce verticillata, Oldenlandlia herbaceae
15	Sphenocleaceae	Sphenoclea zeylanica
16	Sterculiaceae	Melochia corchorifolia, Waltheria indica
17	Fabaceae	Crotolaria retusa, Zornia latifolia
18	Polygonaceae	Polygonium salicifolium
19	Pontederaceae	Heteranthera callifolia

20	Loganiaceae	Spigelia anthelmia
21	Musaceae	Musa paradisiaca, Musa sapientum
22	Piperaceae	Peperomia pellucida
23	Solanaceae	Schwenkia Americana
24	Verbenaceae	Stachytarpheta jamaicensis
25	Portulacaceae	Talinum triangulare, Portulaca oleraceae
26	Pedaliaceae	Sesamum indicum
27	Urticaceae	Pouzolzia guineensis, Laportea aestuans
28	Mimosoideae	Mimosa pudica
29	Hydrophyllaceae	Hydrolea palustris
30	Tiliaceae	Cochorus olitorius
31	Rutaceae	Murraya koeningii

APPENDIX 4
 RAW DATA FOR T-TEST

1. SEASONS

A. Short term fallow site (GRASS)
 i. Rainy Season
 (ii) Dry season

Importance values (IVI)

$14+10+15$	$15+16+06$
$+17+63+35$	$+08+07+01$
$+02+25+07$	$+01+70+47$
$+04+01+03$	$+07+05+05$
$+12+02$	$+01+01$

200 Sum 190

> Mean
(14)
14.3
13.6

Formula
ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\frac{1}{\mathrm{n}} \sqrt{\sqrt{\left(\mathrm{S}_{1}^{2}+\mathrm{S}_{2}^{2}\right)}}$ for equal sample size

where 1	$=$	Rainy season
2	$=$	Dry season

$\overline{\mathrm{Y}} \quad=\quad$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $\left.=\frac{14.3-13.6}{\sqrt{1 / 14\left(200^{2}\right.}}+190^{2}\right)$
$:-$ ts $=\quad \sqrt{\overline{1 / 14(40000}}+36100)$
$\therefore-$ ts $=\frac{0.7}{\sqrt{\overline{1 / 14(76100})}}$
$\therefore-$ ts $=\sqrt{\overline{5435.714}}$
$:-\mathrm{ts}=\frac{0.7}{\sqrt{73.777}}$
$=0.0095$
$=\quad 0.0095<0.05:-$ Significance
B. Short term fallow site (FORBS)

i. Rainy Season
 (ii) Dry season

Importance values (IVI)

$12+60+143$		$45+33+55$
$+21+12+04$		$+03+08+115$
$+49+21+23$		$+02+47+35$
$+12+63+24$		$+14+01+01$
$+01+66+10$		$+30+01+34$
$+05+01$		
527	Sum	427
527		
		Mean

Formula
ts $=\bar{Y}_{1}-\bar{Y}_{2}$
$\frac{1}{n} \sqrt{\left(S_{1}^{2}+S_{2}^{2}\right)}$ for equal sample size
$\begin{array}{rll}\text { where } 1 & = & \text { Rainy season } \\ 2 & = & \text { Dry season }\end{array}$
$\overline{\mathrm{Y}} \quad=\quad$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-\mathrm{ts}=\frac{31-25.12}{\left.{\sqrt{1 / 17\left(527^{2}\right.}}^{2}+427^{2}\right)}$
$:-$ ts $\left.=\frac{5.88}{\sqrt{\overline{1 / 17(277729}}}+182329\right)$
$:-$ ts $=\frac{5.88}{\sqrt{1 / 17(460058)}}$
$:-$ ts $=\frac{5.88}{\sqrt{27062.24}}$
$:-$ ts $=\frac{5.88}{\sqrt{27062.24}}$
$=\quad 0.04$
$=0.04<0.05:-$ Significance

RAW DATA FOR T-TEST

1. SEASONS

C. Long term fallow site (GRASS) i. Rainy Season (ii) Dry season

Importance values (IVI)

$75+35+33$	$115+02+03$
$+07+13+02$	$+15+12+03$
$+03+02+03$	$+01+07+18$

Sum
173
176
Mean
(9)
19.22
19.56

Formula

ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}$ for equal sample size
$\overline{\mathrm{Y}}=$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{19.22-19.56}{\sqrt{\overline{1 / 9\left(173^{2}+176^{2}\right)}}}$
$:-\mathrm{ts}=\frac{-0.34}{\sqrt{\overline{1 / 9(29929}}}$
$:-\mathrm{ts}=\frac{-0.34}{\sqrt{1 / 9(60905)}}$
$:-\mathrm{ts}=\quad \sqrt{\frac{-0.34}{6767.22}}$
$:-$ ts $=\frac{-0.34}{82.26}$
$=\quad 0.0041$
$=\quad 0.004<0.05:-$ Very Significance
D. Short term fallow site (FORBS)

i. Rainy Season
 (ii) Dry season

Importance values (IVI)

$03+52+45$		$24+02+09$
$+05+47+37$		$+11+43+12$
$+10+40+10$		$+30+14+01$
$+05+17+13$		$+04+03+01$
+07	Sum	+17

291 171
$\frac{\text { Mean }}{(17)}$
22.38
13.15

Formula
ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}$ for equal sample size
$\overline{\mathrm{Y}} \quad=\quad$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{22.38-13.15}{\left.\sqrt{1 / 13(291}^{2}+171^{2}\right)}$
$:-$ ts $=\frac{9.23}{\sqrt{1 / 13(84681}+29241)}$
$:-$ ts $=\frac{9.23}{\sqrt{\overline{1 / 13(113922)}}}$
$:-$ ts $=\frac{9.23}{\sqrt{8763.23}}$
$:-$ ts $=\frac{9.23}{93.61}$
$=0.099$
$=0.099<0.05:-$ Not Significance

RAW DATA FOR T-TEST (SEASONS)

\section*{E. Current Usage Farming site (GRASS)
 (FLAT)
 | i. Rainy Season | (ii) Dry season |
| :---: | :---: |
| Importance values (IVI) | |
| $58+47+25$ | $73+50+10$ |
| +15+15+13 | +18+02+05 |
| +10+05+05 | +60+05+10 |
| +08+05+03 | $+02+05+20$ |
| +03+02 | +20+02 |
| Sum | |
| 214 | 282 |
| $\frac{\text { Mean }}{(14)}$ | |
| 15.29 | 20.14 |

Formula
ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right) \quad$ for equal sample size
Where i = Rainy Season
ii = Dry season
$\overline{\mathrm{Y}} \quad=\quad$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{15.29-20.14}{\sqrt{\left.\overline{1 / 14\left(214^{2}\right.}+282^{2}\right)}}$
$:-\mathrm{ts}=\quad \sqrt{\overline{\overline{1 / 14(45796}}+79524)}$
$:-$ ts $=\frac{-4.85}{\sqrt{1 / 14(125320)}}$
$:-$ ts $=\quad \frac{-4.85}{\overline{8951.43}}$
$:-$ ts $=\frac{-4.85}{94.612}$
$=0.05$
$=\quad 0.05<0.05:$:-Significance

F. Current Usage farming site (FORBS)
 (FLAT)

i. Rainy Season (ii) Dry season

Importance values (IVI)

$28+57+02$		02+08+25
$+08+05+88$		$+05+13+02$
+17+80+05		+33+03+55
$+14+05+65$		$+03+02+28$
+02		+78
	Sum	
376		257
	$\underline{\text { Mean }}$	
	(13)	
28.92		19.77

Formula
$\frac{\text { ts }=\bar{Y}_{1}-\bar{Y}_{2}}{\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}}$ for equal sample size

$$
\begin{aligned}
& \text { Where i = Rainy Season } \\
& \text { ii = Dry season } \\
& \overline{\mathrm{Y}}=\text { mean } \\
& \mathrm{n} \quad=\quad \text { number of values } \\
& \mathrm{S} \quad=\quad \text { sample size } \\
& :- \text { ts }=\frac{28.92-19.77}{\left.\sqrt{1 / 13(376}^{2}+257^{2}\right)} \\
& :- \text { ts }=\frac{9.15}{\overline{\overline{1 / 13(141376}}+66049)} \\
& :- \text { ts }=\frac{9.15}{\sqrt{1 / 13(207425)}} \\
& :- \text { ts }=\frac{9.15}{\sqrt{15955.77}} \\
& :- \text { ts }=\frac{9.15}{126.32} \\
& =0.072 \\
& =0.07<0.05:- \text { Not Significance }
\end{aligned}
$$

RAW DATA FOR T-TEST (SEASONS)

G. Current Usage Farming site (GRASS) (Slope)

i. Rainy Season (ii) Dry season

Importance values (IVI)

$23+17+15$	$03+60+07$
$+10+05+10$	$+10+05+10$
$+16+08+05$	$+02+15+70$
$+04+05+02$	$+18+10+10$
$+03+03$	$+02+03$

116
225

Mean

(14)
8.29
16.07

Formula
ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}$ for equal sample size
Where i = Rainy Season
ii $=$ Dry season
$\overline{\mathrm{Y}} \quad=\quad$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{8.29-16.07}{\sqrt{\left.\overline{1 / 14\left(116^{2}\right.}+225^{2}\right)}}$
$:-$ ts $=\sqrt{\overline{\overline{1 / 14(13456}}+50625)}$
$:-$ ts $=\frac{-7.78}{\sqrt{1 / 14(64081)}}$
$:-\mathrm{ts}=\quad \sqrt{\frac{-7.78}{4577.21}}$
$:-$ ts $=\frac{-7.78}{67.666}$

$$
\begin{array}{ll}
= & 0.115 \\
= & 0.115<0.05: \text {-Significance }
\end{array}
$$

H. Current Usage farming site (FORBS)
(Slope)

i. Rainy Season
 (ii) Dry season

Importance values (IVI)
32+105+01
$+07+11+99$
$68+10+06$
$+38+45+03$
$+33+10+15$
$+09+68$
$+24+160+01$
$+70+54$

Sum
376 257
$\underline{\text { Mean }}$
(13)
28.92
19.77

Formula

$$
\mathrm{ts}=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}
$$

$\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)$ for equal sample size
Where i=Rainy Season
ii = Dry season

$$
\begin{aligned}
& \overline{\mathrm{Y}} \quad=\quad \text { mean } \\
& \mathrm{n} \quad=\quad \text { number of values } \\
& \mathrm{S} \quad=\quad \text { sample size } \\
& \left.:- \text { ts }=\frac{38-41}{\sqrt{1 / 11\left(418^{2}\right.}}+451^{2}\right) \\
& :- \text { ts }=\sqrt{\left.\frac{-3}{\overline{1 / 11(174724}}+203401\right)} \\
& :- \text { ts }=\frac{-3}{\overline{\overline{1 / 11(378125)}}} \\
& :- \text { ts }=\frac{-3}{\overline{\overline{34375}}}=-3 \frac{\sqrt{55}}{25 \sqrt{55}} \\
& :-\mathrm{ts}=\frac{-3 \sqrt{55}}{25} \\
& =\quad-4.45 \\
& =\quad-4.45<0.05: \text {-Significance }
\end{aligned}
$$

RAW DATA FOR T-TEST

2. LAND USE

A. Short term fallow site (GRASS) (Land use)	
i. Managed	(ii) Unmanaged
130+48+25	19+30+06
+65+25+30	$+07+17+16$
+13+10+05	+01+105+50
+08+05+63	+32+12+01
$+08+02+02$	+01+13+04
+13+01+02	+01+02+03
+03+05	+01+04
Sum	
463	324
Mean	
(20)	
23.15	16.2

Formula
ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\sqrt{\frac{1}{n}}\left(S_{1}^{2}+S_{2}^{2}\right) \quad$ for equal sample size
Where $\mathrm{i}=$ Managed site
$-\quad$ ii $=$ Unmanaged site
$\overline{\mathrm{Y}}=$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{23.15-16.2}{\sqrt{\left.\overline{1 / 20\left(463^{2}\right.}+324^{2}\right)}}$
$:-$ ts $\quad \sqrt{\left.\frac{6.95}{\overline{1 / 20(214369}}+104976\right)}$
$:-$ ts $=\frac{6.95}{\sqrt{1 / 20(319345)}}$
$:-$ ts $=\quad \frac{6.95}{\sqrt{15967.25}}$
$:-$ ts $=\frac{6.95}{126.36}$
$=0.06$
$=\quad 0.06>0.05:-$ Not significant

B. Short term fallow site (FORBS)
 (Land use)

i. Managed

$01+35+82$	$19+43+78+14$
$+08+20+08$	$+03+12+03+01$
$+120+20+135$	$+75+34+07+10$
$+05+17+02$	$+34+19+01$
$+33+142+03$	+51
+03	

Sum
634
$\frac{\text { Mean }}{(16)}$
39.63
25.25

Formula
$\frac{\text { ts }=\bar{Y}_{1}-\bar{Y}_{2}}{\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}}$ for equal sample size
Where $\mathrm{i}=$ Managed site

- ii = Unmanaged site
$\overline{\mathrm{Y}}=$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{39.63-25.25}{\left.\sqrt{1 / 16\left(634^{2}\right.}+404^{2}\right)}$
$:-$ ts $\left.=\frac{14.38}{\sqrt{1 / 16(401956}}+163216\right)$
$:-$ ts $=\frac{14.38}{\sqrt{1 / 16(565172)}}$
$:-$ ts $=14.38=\frac{14.38}{\sqrt{37323.25}} \quad \frac{1}{87.945}$
$:-\mathrm{ts}=0.08$
$=0.08>0.05:-$ Not Significant

RAW DATA FOR T-TEST

2. LAND USE

C. Long term fallow site (Grass)
 (Land use)

i. Managed
(ii) Unmanaged
$25+18+15$
$+70+12+20$
$+12+17+08$
$+19+05+03$
$+02+70$
$296 \quad$ Sum
$\frac{\text { Mean }}{(14)}$
21.14
23.64

Formula
ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}$ for equal sample size
Where $\mathrm{i}=$ Managed site
$\overline{\mathrm{Y}} \quad \mathrm{i}=$ Unmanaged site
$\overline{\mathrm{Y}}=$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{21.14-23.64}{\sqrt{\overline{\left.\overline{1 / 14\left(296^{2}\right.}+331^{2}\right)}}}$
$:-$ ts $=\sqrt{\overline{\overline{1 / 14(87616}}+109561)}$
$:-$ ts $=\frac{-2.5}{\sqrt{1 / 14(197177)}}$
$:-$ ts $=\frac{-2.5}{\sqrt{14084.07}}$
$:-$ ts $=\frac{-2.5}{37.471}$
$=\quad 0.07$
$=\quad 0.07<0.05$:-Significant
D. Long term fallow site (Forbs in family)
(Land use)
i. Managed

99+115+08
$+39+22+114$
$+62+205+03$
$+04+09+03$
$+67+15+02$
$+90$
857
(ii) Unmanaged
$26+55+54$
$+16+90+50$
$+09+70+24$
$+06+18+17$
$+10+22+01$
$+18$
Sum
$\frac{\text { Mean }}{(16)}$
57.07
30.38

Formula

$$
\frac{\mathrm{ts}=\overline{\mathrm{Y}}_{1}-\bar{Y}_{2}}{\sqrt{\frac{1}{\mathrm{n}}\left(\mathrm{~S}_{1}^{2}+\mathrm{S}_{2}^{2}\right)}} \text { for equal sample size }
$$

Where $\mathrm{i}=$ Managed site
$\overline{\mathrm{Y}} \quad \mathrm{ii}=$ Unmanaged site
$\overline{\mathrm{Y}}=$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{57.07-30.38}{\left.\sqrt{1 / 16\left(857^{2}\right.}+486^{2}\right)}$
$:-$ ts $=\frac{26.69}{\sqrt{\overline{1 / 16(734449}}+236196)}$
$:-$ ts $=\frac{26.69}{\sqrt{1 / 16(970645)}}$
$:-$ ts $=\frac{26.69}{\sqrt{60665.31}}=\frac{26.69}{46.30}$
$:-\mathrm{ts}=0.108$
$=0.11$
$=0.11>0.05:-$ Not Significant

RAW DATA FOR T-TEST

3. RELIEF (TOPOGRAPHY)

i. Flat

$19+13+13$
$+16+12+45$
$+93+40+15$
$+03+10+04$
$+01+06$
290 Sum 106

Mean
(14)
20.71
7.57

Formula
ts $=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$
$\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}$ for equal sample size
Where $\mathrm{i}=$ Managed site

$$
\begin{array}{lll}
\overline{\mathrm{Y}} & \mathrm{ii}= & \text { Unmanaged site } \\
\mathrm{n} & = & \text { mean } \\
\mathrm{S} & = & \text { number of values } \\
:-\mathrm{ts} & = & \\
& & \sqrt{20.71-7.75} \\
\left.\overline{1 / 14\left(290^{2}\right.}+106^{2}\right)
\end{array}
$$

$:-\mathrm{ts}=$

$$
\sqrt{\left.\frac{13.14}{\overline{1 / 14(84100}}+11236\right)}
$$

$:-$ ts $=\frac{13.14}{\sqrt{1 / 14(95336)}}$
:- ts =

$$
\frac{13.14}{\sqrt{6809.71}}
$$

$$
:- \text { ts }=\frac{13.14}{82.521}
$$

$=0.16$
$=\quad 0.16>0.05:-$ Not significant
B. Short term fallow site (Forbs in families)

i. Flat		(ii) Slopy
$14+43+78$		$38+50+120$
+03+13+03		+16+113+02
+12+01+75		+03+20+23
+34+07+01		+29+02+59
+11+34+20		+06+49+02
+51		+45
	Sum	
400		576
	$\underline{\text { Mean }}$	
	(16)	
25		36

Formula

$$
\text { ts }=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}
$$

$\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)$ for equal sample size
Where $\mathrm{i}=$ Managed site
$\overline{\mathrm{Y}} \quad \mathrm{ii}=$ Unmanaged site
$\overline{\mathrm{Y}}=$ mean
$\mathrm{n} \quad=\quad$ number of values
$\mathrm{S} \quad=\quad$ sample size
$:-$ ts $=\frac{25-36}{\left.\sqrt{1 / 16\left(400^{2}\right.}+576^{2}\right)}$
$:-$ ts $=\sqrt{\overline{\overline{1 / 16(160000}}}+331776)$
$:-$ ts $=\sqrt{\overline{\overline{1 / 16(491776)}}}$
$:-$ ts $=\frac{-11}{\sqrt{30736}}=\frac{-11}{175.317}$
$:-$ ts $\quad-0.063$
$=0.06<0.05:-$ Significant

RAW DATA FOR T-TEST RELIEF (TOPOGRAPHY)

C. Current Usage Farming site (Grass)

i. Flat	(ii) Slopy
$130+48+25$	$25+18+15$
$+65+25+30$	$+70+12+20$
$+12+10+05$	$+12+17+08$
$+08+05+63$	$+19+05+03$
$+07+03+02$	$+02+03+02$
$+13+02+01$	$+01+03+70$
$+03+05+20$	$+18+10+10$
$+20+02 \quad$ Sum	$+03+02$
$504 \quad$	348
	Mean
21.91	

Formula
$\frac{\mathrm{ts}=\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}}{\sqrt{\frac{1}{\mathrm{n}}\left(\mathrm{S}_{1}^{2}+\mathrm{S}_{2}^{2}\right)}}$ for equal sample size
Where $\mathrm{i}=$ Managed site

$$
\left.:- \text { ts }=\sqrt{ } \frac{6.78}{\overline{1 / 23(254016}}+121104\right)
$$

$$
:- \text { ts }=\quad \frac{6.78}{\sqrt{\overline{1 / 23(375120)}}}
$$

$$
:-\mathrm{ts}=\frac{6.78}{\sqrt{\overline{16309.565}}}
$$

$$
\begin{array}{rll}
:- \text { ts } & = & \frac{6.78}{127.71} \\
& = & 0.053 \\
& = & 0.53>0.05:- \text { Not significant }
\end{array}
$$

$$
\begin{aligned}
& \overline{\mathrm{Y}} \stackrel{\mathrm{in}}{=}=\text { Unmanag } \\
& \mathrm{n} \quad=\quad \text { number of values } \\
& \mathrm{S} \quad=\quad \text { sample size } \\
& :- \text { ts }=\frac{21.91-15.13}{\sqrt{\left.\overline{1 / 23\left(504^{2}\right.}+348^{2}\right)}}
\end{aligned}
$$

D. Current Usage farming site (Forbs in families)

i. Flat		(ii) Slopy
02+35+82		99+115+08
+07+20+08		+39+21+114
+120+20+135		+62+205+03
+05+17+02		+04+09+03
+33+142+03		+67+15+02
+08		+90
	Sum	
639		876
	Mean	
	(16)	
39.94		53,5

Formula
$\frac{\text { ts }=\bar{Y}_{1}-\bar{Y}_{2}}{\sqrt{\frac{1}{n}\left(S_{1}^{2}+S_{2}^{2}\right)}}$ for equal sample size

$$
\begin{aligned}
& \text { Where i = Managed site } \\
& \text { ii }=\text { Unmanaged site } \\
& \overline{\mathrm{Y}} \quad=\quad \text { mean } \\
& \mathrm{n} \quad=\quad \text { number of values } \\
& \mathrm{S} \quad=\quad \text { sample size } \\
& :- \text { ts }=\frac{39.94-53.5}{\sqrt{\left.\frac{1 / 16\left(639^{2}\right.}{}+856^{2}\right)}} \\
& \left.:- \text { ts }=\frac{-13.56}{\sqrt{1 / 16(408321}}+732736\right) \\
& :- \text { ts }=\sqrt{\frac{-13.56}{\overline{1 / 16(114105}}} \\
& :- \text { ts }=\frac{-13.56}{\overline{71316.063}}=\frac{-13.56}{267.051} \\
& :- \text { ts }=-0.05 \\
& =\quad 0.05<0.05:- \text { Significant }
\end{aligned}
$$

T-TEST RAW DATA FOR SEASONS

A. Short term fallow site (GRASS)
i. Rainy Season (ii) Dry season

Importance values (IVI)

```
14+10+15 15+16+06
+17+63+35 +08+07+01
+02+25+07 +01+70+47
+04+01+03 +07+05+05
+12+02 +01+01
```

C. Long term fallow site (GRASS) i. Rainy Season (ii) Dry season

Importance values (IVI)

```
75+35+33 115+02+03
+07+13+02 +15+12+03
+03+02+03 +01+07+18
```

E. Current Usage Farming site (GRASS)
(FLAT)
i. Rainy Season (ii) Dry season

Importance values (IVI)

$58+47+25$	$73+50+10$
$+15+15+13$	$+18+02+05$
$+10+05+05$	$+60+05+10$
$+08+05+03$	$+02+05+20$
$+03+02$	$+20+02$

G. Current Usage Farming site (GRASS) (Slope)
i. Rainy Season (ii) Dry season

Importance values (IVI)

$23+17+15$	$03+60+07$
$+10+05+10$	$+10+05+10$
$+16+08+05$	$+02+15+70$
$+04+05+02$	$+18+10+10$
$+03+03$	$+02+03$

B. Short term fallow site (FORBS)
i. Rainy Season (ii) Dry season

Importance values (IVI)

$12+60+143$	$45+33+55$
$+21+12+04$	$+03+08+115$
$+49+21+23$	$+02+47+35$
$+12+63+24$	$+14+01+01$
$+01+66+10$	$+30+01+34$
$+05+01$	$+02+01$

D. Long term fallow site (FORBS)
i. Rainy Season (ii) Dry season

Importance values (IVI)

$03+52+45$	$24+02+09$
$+05+47+37$	$+11+43+12$
$+10+40+10$	$+30+14+01$
$+05+17+13$	$+04+03+01$
+07	+17

F. Current Usage farming site (FORBS)
(FLAT)
i. Rainy Season (ii) Dry season

Importance values (IVI)

$28+57+02$	$02+08+25$
$+08+05+88$	$+05+13+02$
$+17+80+05$	$+33+03+55$
$+14+05+65$	$+03+02+28$
+02	+78

H. Current Usage farming site (FORBS)
(Slope)
i. Rainy Season (ii) Dry season

Importance values (IVI)

$$
\begin{array}{ll}
32+105+01 & 68+10+06 \\
+07+11+99 & +33+10+15 \\
+38+45+03 & +24+160+01 \\
+09+68 & +70+54
\end{array}
$$

T-TEST RAW DATA FOR LAND USE

\section*{A. Short term fallow site (GRASS)
 (Land use)
 | i. Managed | (ii) Unmanaged |
| :--- | :--- |
| $130+48+25$ | $19+30+06$ |
| $+65+25+30$ | $+07+17+16$ |
| $+13+10+05$ | $+01+105+50$ |
| $+08+05+63$ | $+32+12+01$ |
| $+08+02+02$ | $+01+13+04$ |
| $+13+01+02$ | $+01+02+03$ |
| $+03+05$ | $+01+04$ |}

C. Long term fallow site (Grass)
(Land use)

i. Managed

(ii) Unmanaged

$25+18+15$	$190+37+33$
$+70+12+20$	$+10+12+03$
$+12+17+08$	$+02+02+03$
$+19+05+03$	$+15+13+02$
$+02+70$	$+01+08$

B. Short term fallow site (FORBS)
 (Land use)

i. Managed
$01+35+82$
$+08+20+08$
$+120+20+135$
$+05+17+02$
$+33+142+03$
$+03$

D. Long term fallow site (Forbs in family)

 (Land use)i. Managed

$99+115+08$	$26+55+54$
$+39+22+114$	$+16+90+50$
$+62+205+03$	$+09+70+24$
$+04+09+03$	$+06+18+17$
$+67+15+02$	$+10+22+01$
+90	+18

T-TEST RAW DATA FOR RELIEF

A. Short term fallow site (Grass)

i. Flat	(ii) Slopy
$19+13+13$	$16+05+05$
$+16+12+45$	$+18+12+17$
$+93+40+15$	$+03+03+02$
$+03+10+04$	$+01+04+01$
$+01+06$	$+10+09$

C. Current Usage Farming site (Grass)

i. Flat	(ii) Slopy
$130+48+25$	$25+18+15$
$+65+25+30$	$+70+12+20$
$+12+10+05$	$+12+17+08$
$+08+05+63$	$+19+05+03$
$+07+03+02$	$+02+03+02$
$+13+02+01$	$+01+03+70$
$+03+05+20$	$+18+10+10$
$+20+02$	$+03+02$

(ii) Slopy
$25+18+15$
$+70+12+20$
$+12+17+08$
$+19+05+03$
$+02+03+02$
$+01+03+70$
$+03+02$
B. Short term fallow site (Forbs in families)

i. Flat	(ii) Slopy
$14+43+78$	$38+50+120$
$+03+13+03$	$+16+113+02$
$+12+01+75$	$+03+20+23$
$+34+07+01$	$+29+02+59$
$+11+34+20$	$+06+49+02$
+51	+45

D. Current Usage farming site (Forbs in families)

i. Flat	(ii) Slopy
$02+35+82$	$99+115+08$
$+07+20+08$	$+39+21+114$
$+120+20+135$	$+62+205+03$
$+05+17+02$	$+04+09+03$
$+33+142+03$	$+67+15+02$
+08	+90

APPENDIX 5
RANKING/DETERMINATION OF ECONOMIC RELEVANCE OF FLORAL SPP.
5a

S/NO	Millisia	Hevea	Tetrapleura	Erythrophle	Pentaclethra	Mangifera	Senna
1	-	-	12	-	12	12	-
2	11	11	-	-	-	11	-
3	-	-	-	-	-	-	-
4	9	9	9	9	9	9	9
5	8	8	8	-	8	8	8
6	-	-	7	-	-	7	7
7	6	6	-	-	-	6	-
8	-	5	-	-	5	-	-
9	4	-	-	-	-	4	-
10	-	-	-	-	-	-	3
11	-	-	-	2	-	-	-
12	-	-	-	-	-	-	-
	$\mathbf{7 . 6}$	$\mathbf{7 . 8}$	$\mathbf{9 . 0}$	$\mathbf{5 . 5}$	$\mathbf{8 . 5}$	$\mathbf{8 . 1}$	$\mathbf{6 . 8}$

5b

S/NO	Albiza	Spondias	Dactyledeni	Voacanga	Diallum	Sterculia	Peltoforum
1	-	-	-	-	12	-	-
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
4	9	9	9	9	9	9	9
5	8	8	8	8	8	8	8
6	-	7	-	7	7	-	-
7	6	-	6	-	6	-	-
8	-	-	-	-	-	-	-
9	-	-	-	-	4	-	-
10	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-
	$\mathbf{7 . 7}$	$\mathbf{8 . 0}$	$\mathbf{7 . 7}$	$\mathbf{8 . 0}$	$\mathbf{7 . 7}$	$\mathbf{8 . 5}$	$\mathbf{8 . 5}$

5c

S/NO	Bridelia	Klausinia	Barteria	Sporospam	Dichrostach	Elaeis	Holarrhena
1	-	-	-	-	-	12	-
2	-	-	-	-	-	11	-
3	-	-	-	-	-	10	-
4	9	9	9	9	9	9	9
5	8	8	8	8	8	8	8
6	-	-	-	-	-	7	7
7	-	-	-	-	-	6	-
8	-	-	-	-	-	5	-
9	-	-	-	-	-	4	-
10	-	3	-	-	-	3	-
11	-	-	-	-	2	-	-
12	-	-	-	-	-	-	-
	$\mathbf{8 . 5}$	$\mathbf{6 . 7}$	$\mathbf{8 . 5}$	$\mathbf{8 . 5}$	$\mathbf{6 . 3}$	$\mathbf{7 . 5}$	$\mathbf{8 . 0}$

5d.

S/NO	Afzelia	Zanthaxylo	Rothmania	Napoleana	Newbouldia	Cocos	Citrus
1	-	-	-	-	-	12	12
2	-	-	-	-	-	11	11
3	-	-	-	-	-	-	-
4	9	9	9	9	9	9	9
5	8	8	8	8	8	8	8
6	7	-	-	7	7	7	7
7	-	-	-	-	-	6	6
8	-	-	-	-	-	-	-
9	-	-	-	-	-	4	4
10	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-
	$\mathbf{8 . 0}$	$\mathbf{8 . 5}$	$\mathbf{8 . 5}$	$\mathbf{8 . 0}$	$\mathbf{8 . 0}$	$\mathbf{8 . 1}$	$\mathbf{8 . 1}$

5 e.

S/NO	Nauclea	Anthocleista	Psidium
1	12	-	12
2	-	-	-
3	-	-	-
4	9	9	9
5	8	8	8
6	7	7	7
7	-	-	6
8	-	-	-
9	-	-	4
10	-	-	-
11	-	-	-
12	$\mathbf{8 . 0}$	-	-
		$\mathbf{8 . 0}$	$\mathbf{7 . 7}$

APPENDIX 6

DIVERSITY INDEX (SHANNON WIENER)
4a. Forest Site- Trees (Rainy/Dry)

S/N	Species	Spp.Popn	Pi	In $(\mathbf{P i})$	$(\mathbf{P i}) \mathbf{x} \mathbf{I n}(\mathbf{p i})$
1. \quad Zanthaxylon zanthaxyloides	05	0.036	-3.324	-0.120	
2.	Spondias mombin	02	0.014	-4.269	-0.060
3.	Voacanga africana	01	0.007	-4.962	-0.035
4. Holarrhena floribunda	05	0.036	-3.324	-0.120	
5.	Elaeis guineensis	10	0.072	-2.631	-0.190
6. Sporospamum febrifugum	01	0.007	-4.962	-0.035	
7. Newbouldia laevis	03	0.022	-3.817	-0.084	
8. Senna siamea	10	0.072	-2.631	-0.190	
9. Dialum guineense	05	0.036	-3.324	-0.120	
10. Afzelia africana	03	0.022	-3.817	-0.084	
11. Erythrophleum suaveolens	01	0.007	-4.962	-0.035	
12. Bridelia ferruginea	01	0.007	-4.962	-0.035	
13. Hevea brasiliensis	15	0.109	-2.216	-0.242	
14. Albizia chaevalieri	03	0.022	-3.817	-0.084	
15. Peltoforum pterocarpum	01	0.007	-4.962	-0.035	
16. Napoleana imperialis	24	0.174	-1.749	-0.304	
17. Anthocleista djalonensis	01	0.007	-4.962	-0.035	
18. Tetrapleura tetraptera	04	0.029	-3.540	-0.103	
19. Pentaclethra macrophyla	10	0.072	-2.631	-0.190	
20. Dichrostachys cinerea	02	0.014	-4.269	-0.060	

21. Milisia excelsa	01	0.007	-4.962	-0.035
22. Barteria nigritiana	01	0.007	-4.962	-0.035
23. Rothmania hispida	05	0.036	-3.324	-0.120
24. Dactytedenia barteri	23	0.167	-1.790	-0.299
25. Sterculia tragacantha	01	0.007	-4.962	-0.035
	$\mathbf{1 3 8}$			
			$\mathbf{2 . 6 8 5}$	

H. 2.69 $\operatorname{In}(\mathrm{s})=\operatorname{In}(25)$

$$
=3.22 . \mathrm{E} \quad=2.69 / 3.22=0.84
$$

Forest Climbers
Rainy Season
Dry Season
6b

		Rainy Season				Dry Season			
S/N	Species	Spp. Popn	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{aligned} & \text { (Pi) } \mathbf{x} \\ & \text { In(i) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Spp. } \\ \text { Popn } \\ \hline \end{gathered}$	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathrm{In}(\mathrm{pi}) \\ \hline \end{gathered}$
1	Cissus araliodes	20	0.069	-2.674	-0.185				
2	Gongronema latifolium	20	0.069	-2.674	-0.185	05	0.026	-3.65	-0.09
3	Dioscorea dumentorun	10	0.035	-3.352	-0.117				
4	Peuraria phaseoloides	30	0.104	-2.263	-0.235				-0.09
5	Smilax anceps	209	0.723	-0.324	-0.234	05	0.026	-3.65	-0.051
6	Mucuna pruriens	05	0.017	-4.075	-0.069	180	0.947	-0.054	
		294			-1.025	190			0.23

$$
\begin{array}{ll}
\mathrm{H}=1.025 \mathrm{Hmax}=\operatorname{In}(6)=1.79 & \mathrm{H}=0.23 ; \operatorname{In}(3)=1.099 \\
\mathrm{E}=0.57 & \mathrm{E}=0.23 / 1.099=0.21
\end{array}
$$

Forest Shrubs
Rainy Season

Dry Season

$\mathbf{S / N}$	Species	Spp. Popn	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	(Pi) \mathbf{x} $\mathbf{I n}(\mathbf{p i})$	Spp. $\mathbf{P o p n}$	Pi	$\mathbf{I n (P i)}$	$\mathbf{(P i) \mathbf { x }}$ $\mathbf{I n}(\mathbf{p i})$
1	Rauvolfia vomitoria	05	0.017	-4.075	-0.069	05	0.019	-3.963	-0.075
2	Ananas comosus	10	0.034	-3.381	-0.115	10	0.037	-3.297	-0.122
3	Byrsocarpus coccineus	44	0.148	-1.910	-0.283	44	0.164	-1.808	-0.297
4	Alchomea cordifolia	05	0.017	-4.075	-0.069				
5	Olax viridis	204	0.685	-0.378	-0.259	180	0.669	-0.402	-0.269
6	Bambusa vulgaris	20	0.087	-2.703	-0.181	20	0.074	-2.604	-0.193
7	Mimosa invisa	10	0.034	-3.381	-0.115	10	0.037	-3.297	-0.122
		$\mathbf{2 9 8}$		$\mathbf{- 1 . 0 9}$		$\mathbf{2 6 9}$			$\mathbf{- 1 . 0 7 8}$

$$
\begin{array}{lrr}
\mathrm{H}=1.09 ; \operatorname{In}(7) & =1.946 & \mathrm{H}=1.078 ; \operatorname{In}(6)=1.79 \\
\mathrm{E}=1.09 / 1.946 & =0.56 & \mathrm{E}=1.078 / 1.79=0.60
\end{array}
$$

Forest Grass
Rainy Season
Dry Season

S/N	Species	Spp. Popn	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathrm{In}(\mathbf{p i}) \end{gathered}$	Spp. Popn	Pi	$\mathrm{In}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathrm{x} \\ \mathrm{In}(\mathrm{pi}) \end{gathered}$
1	Imperata cylindrica	50	0.33	-1.109	-0.3650	0.33	-1.109	-0.366	
2	Cymbopogon cittratus	100	0.67	-4.00	-0.26800	0.67	-4.00	-0.268	
		150			-0.6350			-0.63	

$\mathrm{H}=0.63 \mathrm{Hmax}=\operatorname{In}(2)=0.69$
$\mathrm{H}=0.63 ; \operatorname{In}(2)=0.69$
$\mathrm{E}=0.63 / 0.69=0.91$
$\mathrm{E}=0.63 / 0.69=0.91$

Rainy Season Dry Season

S/N	Species	Spp. Popn	Pi	$\mathbf{I n}(\mathbf{P i})$	$\begin{aligned} & (\mathrm{Pi}) \mathbf{x} \\ & \operatorname{In}(\mathrm{pi}) \end{aligned}$	Spp. Popn	Pi	In(Pi)	$\begin{aligned} & (\mathrm{Pi}) \mathbf{x} \\ & \mathrm{In}(\mathrm{pi}) \end{aligned}$
1	Mangifera indica	05	0.043	-3.147	-0.135	05	0.043	-3.147	-0.135
2	Klausinia anisata	10	0.087	-2.442	-0.212	10	0.087	-2.442	-0.212
3	Elaeis guineenses (seedling)	30	0.261	-1.343	-0.291	30	0.261	-1.343	-0.291
4	Cocos nucifera (seedling)	25	0.217	-1.528	-0.332	25	0.217	-1.528	-0.332
5	Citrus sinensis (seedling)	30	0.261	-1.343	-0.291	30	0.261	-1.343	-0.291
6	Psidium guajava (seedling)	10	0.087	-2.442	-0.212	10	0.087	-2.442	-0.212
7	Newbouldia laevis	05	0.043	-3.147	-0.135	05	0.043	-3.147	-0.135
		115			-1.608	115			-1.608

$\mathrm{H}=1.61 ; \mathrm{Hmax} \operatorname{In}(7)=1.95$
$\mathrm{H}=1.61$; $\mathrm{Hmax}-=1.95$
$\mathrm{E}=1.61 / 1.95=0.83$
$\mathrm{E}=1.61 / 1.05=0.83$

Short Term Fallow Site - Shrubs

Rainy Season
Dry Season

S/N	Species	Spp. Popn	Pi	In (Pi)	$\begin{aligned} & (\mathrm{Pi}) \mathbf{x} \\ & \mathrm{In}(\mathrm{pi}) \end{aligned}$	Spp. Popn	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} \text { (Pi) } x \\ \text { In(pi) } \end{gathered}$
1	Ananas comosus	30	0.222	-1.505	-0.334	10	0.087	-2.442	-0.212
2	Manihot esculentun	10	0.286	-1.252	-0.358	10	0.087	-3.442	-0.212
3	Chromolaena odorata	95	0.704	-0.351	-0.247	95	0.826	-0.191	-0.158
		135			-0.94	115			0.528

$\mathrm{H}=0.94 ; \operatorname{In}(3)=1.099$
$\mathrm{H}=0.58 ; \operatorname{In}(3)=1.099$
$\mathrm{E}=0.94 / 1.099=0.86$

$$
\mathrm{E}=0.53
$$

Short Term Fallow Site - Grass
Rainy Season
Flat
Slope

S/N	Species	Spp. Popn	Pi	In(Pi)	$\begin{aligned} & (\mathrm{Pi}) \mathbf{x} \\ & \mathbf{I n}(\mathbf{p i}) \end{aligned}$	Spp. Popn	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathbf{I n}(\mathbf{p i}) \end{gathered}$
1	Panicum maxima	2	0.016	-4.135	-0.066				
2	Imperata cylindrica	5	0.039	-3.244	-0.127	6	0.118	-2.137	-0.252
3	Paspalum scrobiculatum	5	0.039	-3.244	-0.127				
4	Hackelochloa granularis	10	0.078	-2.551	-0.199	1	0.020	-3.912	-0.078
5	Cymbopogon giganteus	10	0.078	-2.551	-0.199	4	0.078	-2.551	-0.199
6	Acroceras zizaniodes	40	0.313	-1.162	-0.364	10	0.20	-1.609	-0.322
7	Sporobolus pyramidalis	30	0.234	-1.452	-0.340	1	0.020	-3.912	-0.078
8	Cynodon dactylon	1	0.008	-4.828	-0.039				
9	Setaria barbata	5	0.039	-3.244	-0.127	12	0.235	-1.448	-0.340
10	Setaria longiseta					10	0.20	-1.609	-0.322
11	Panicum laxum	10	0.078	-2.551	-0.199	1	0.020	-3.912	-0.078
12	Digitaria gayana	08	0.063	-2.765	-0.174				
13	Brachiara lata	02	0.016	-4.135	-0.066				
14	Andropogon tectorum					2	0.039	-3.244	-0.127
15	Eragratis atrovirens					1	0.020	-3.912	-0.078
16	Cymbopogon cittratus					1	0.020	-3.912	-0.078
17	Zea mays					2	0.039	-3.244	-0.129
		128			-2.027	51			-2.079

(Slope) $\mathrm{H}=2.08 ; \mathrm{Hmax}=\mathrm{E}=0.84$
(Flat) $\mathrm{H}=-2.03 ; \mathrm{Hmax}=\operatorname{In}(12)=2.48, \mathrm{E}=0.82$

Dry Season

Flat Slope

S/N	Species	Spp. Popn	Pi	$\mathrm{In}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathrm{In}(\mathbf{p i}) \end{gathered}$	Spp. Popn	Pi	In(Pi)	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathrm{In}(\mathbf{p i}) \end{gathered}$
1	Panicum maxima	15	0.115	-2.163	-0.249				
2	Imperata cylindrica	10	0.077	-2.564	-0.197	5	0.147	-1.917	-0.282
3	Sorghum arundinaceum	5	0.038	-3.270	-0.124				
4	Andropogon gayanus					5	0.147	-1.917	-0.282
5	Paspalum scrobiculatum	5	0.038	-3.270	-0.124	2	0.059	-2.830	-0.167
6	Hackelochloa granularis	1	0.008	-4.828	-0.039				
7	Rottboelia cochinchinensis					1	0.029	-3.540	-0.103
8	Sporobolus pyramidalis	50	0.385	-0.955	-0.367	10	0.294	-1.224	-0.360
9	Cynodon dactylon	30	0.231	-1.465	-0.338	10	0.294	-1.224	-0.360
10	Setaria barbata	5	0.038	-3.270	-0.124				
11	Digitaria horizontalis	5	0.038	-3.270	-0.124				
12	Setaria longiseta	2	0.015	-4.20	-0.063	1	0.029	-3.540	-0.103
13	Paspalum conjugatum	1	0.008	-4.828	-0.039				
14	Rhynchelytrum repens	1	0.008	-4.828	-0.039				
		130			-1.827	34			1.657

$\mathrm{H}=1.83 ; \operatorname{Hmax}=\operatorname{In}(12)=2.48$
$\mathrm{H}=1.66 ; \operatorname{Hmax} \operatorname{In}(7)=1.95$
$\mathrm{E}=1.83 / 2.48=0.74$
$\mathrm{E}=1.66 / 1.95=0.85$

Short Term Fallow Site - (Herbs in families)
Rainy Season
$6 f$
Flat Slope

S/N	Species	Spp. Popn	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathrm{In}(\mathbf{p i}) \end{gathered}$	Spp. Popn	Pi	$\mathrm{In}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathbf{I n}(\mathbf{p i}) \end{gathered}$
1	Acanthaceae	2	0.014	-4.269	-0.06				
2	Amaranthaceae	3	0.021	-3.863	-0.081	2	0.015	-4.20	-0.063
3	Asteraceae	95	0.066	-0.416	-0.275	95	0.731	-0.313	-0.229
4	Commelinaceae	2	0.014	-4.269	-0.06	2	0.015	-4.20	-0.063
5	Convolvulaceae	2	0.014	-4.269	-0.06				
6	Cucurbitaceae	1	0.007	-4.962	-0.035				
7	Cyperaceae	8	0.056	-2.882	-0.161	4	0.031	-3.474	-0.108
8	Euphorbiaceae	4	0.028	-3.576	-0.100	2	0.015	-4.20	-0.063
9	Fabaceae	1	0.007	-4.962	-0.035	1	0.008	-4.828	-0.039
10	Lamiaceae	11	0.076	-2.577	-0.196	6	0.046	-3.079	-0.142
11	Loganiaceae					1	0.008	-3.828	-0.039
12	Melastomataceae	1	0.007	-4.962	-0.035	1	0.008	-4.828	-0.039
13	Muraceae					1	0.008	-4.828	-0.039
14	Nyctaginaceae	1	0.007	-4.962	-0.035	2	0.015	-4.20	-0.063
15	Onagraceae	3	0.021	-3.863	-0.081	2	0.015	-4.20	-0.063
16	Piperaceae					1	0.008	-4.828	-0.039
17	Polyganaceae	1	0.007	-4.962	-0.035				
18	Pontederaceae								
19	Rubiaceae	4	0.028	-3.576	-0.100	5	0.038	-3.270	-0.124
20	Araceae	05	0.035	-3.352	0.117	05	0.038	-3.270	0.124
		144			-1619	130			-2.353

$\mathrm{H}=1.62 ; \mathrm{Hmax}=\operatorname{In}(16)=2.77$
$\mathrm{E}=0.58$
$\mathrm{H}=1.24 ; \mathrm{Hmax}=2.71$
$\mathrm{E}=0.46$

Short Term Fallow Site - (Herbs in families)

Dry Season

Flat

Slope

$\mathbf{S / N}$	Species	Spp. $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	$\mathbf{(P i) \mathbf { x }}$ $\mathbf{I n}(\mathbf{p i})$	$\mathbf{S p p}$ $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$
1	Acanthaceae	2	0.025	-3.689	-0.092	2	0.04	-3.219	-0.129
2	Amaranthceae	4	0.05	-2.100	-0.105	2	0.04	-3.219	-0.129
3	Asteraceae	35	0.438	-0.826	-0.362	31	0.62	-0.478	-0.296
4	Capparidaceae	01	0.013	-4.343	-0.056	-	-	-	-
5	Commelinaceae	01	0.013	-4.343	-0.056	01	0.02	-3.912	-0.078
6	Compositae	01	0.013	-4.343	-0.056	01	0.02	-3.912	-0.078
7	Convolvulaceae	01	0.013	-4.343	-0.056	-	-	-	-
8	Cyperaceae	07	0.088	-2.43	-0.214	-	-	-	-
9	Euphorbiaceae	03	0.038	-3.27	-0.214	03	0.06	-2.813	-0.169
10	Fabaceae	01	0.013	-4.343	0.056	02	0.04	-3.219	-0.129
11	Lamiaceae	12	0.15	-1.90	-0.285	07	0.14	-1.966	-0.275
12	Malvaceae	01	0.013	-4.343	-0.056	-	-	-	-
13	Melastomataceae	01	0.013	-4.343	-0.056	-	-	-	-
14	Nyctaginaceae	02	0.025	-3.689	-0.092	01	0.02	-3.912	-0.078
15	Onagraceae	01	0.013	-4.343	0.056	-	-	-	-
16	Rubiaceae	05	0.063	-2.765	-0.174	-	-	-	-
17	Sphenocleaceae	01	0.013	-4.343	-0.056	-	-	-	-
18	Sterculiaceae	01	0.013	-4.343	-0.056	-	-	-	-
				$\mathbf{- 2 . 0 1}$	$\mathbf{5 0}$			$\mathbf{1 . 3 6}$	

$\mathrm{H}=2.01 ; \mathrm{Hmax}=\operatorname{In}(18)=2.89$
$\mathrm{E}=0.70$
$\mathrm{H}=1.36 ; \mathrm{Hmax}=\operatorname{In}(09)=2.20$

$$
E=0.62
$$

Long Term Fallow Site (Slope) - Trees
Rainy Season
Dry Season

S/N	Species	Spp. Popn	Pi	In (Pi)	$\begin{aligned} & (\mathrm{Pi}) \mathbf{x} \\ & \operatorname{In}(\mathrm{pi}) \end{aligned}$	Spp. Popn		Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathrm{In}(\mathrm{pi}) \end{gathered}$
	Nauclea latifolia	05	1	0	0	05	1		0	0

Long Term Fallow Site - Climbers
Rainy Season Dry Season

S/N	Species	Spp. Popn	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} (\mathbf{P i}) \mathbf{x} \\ \mathbf{I n}(\mathbf{p i}) \end{gathered}$	Spp. Popn	Pi	$\mathbf{I n}(\mathrm{Pi})$	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathbf{I n}(\mathbf{p i}) \end{gathered}$
1	Desmodium scorpiurus	50	1	0	0				

Long Term Fallow Site - Shrubs
Rainy Season

Dry Season

S/N	Species	Spp. Popn	Pi	In(Pi)	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathbf{I n}(\mathbf{p i}) \end{gathered}$	Spp. Popn	Pi	In(Pi)	$\begin{gathered} (\mathrm{Pi}) \mathbf{x} \\ \mathbf{I n}(\mathbf{p i}) \end{gathered}$
1	Annona senegalensis	10	0.5	-0.693	-0.347	10	0.476	-0.742	-0.353
2	Uvaria chamae					1	0.048	-3.037	-0.146
3	Mimosa invisa	10	0.5	-0.693	-0.347	10	0.476	-0.742	-0.353
		20			-0.694	21			0.852

$\mathrm{H}=0.69 ; \ln (2)=0.693, \mathrm{E}=1 \quad \mathrm{H}=0.85 ;=\operatorname{In}(3)=1.099, \mathrm{E}=0.77$
Long Term Fallow Site - Grass
Rainy Season Dry Season

$\mathbf{S / N}$	Species	Spp. $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	(Pi) \mathbf{x} $\mathbf{I n}(\mathbf{p i})$	Spp. $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n (P i)}$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$
1	Panicum maxima	30	0.163	-1.814	-0.296	02	0.013	-4.343	-0.056
2	Hackelochloa granularis	20	0.109	-2.216	-0.242				
3	Andropogon tectorum	05	0.027	-3.612	-0.098				
4	Cymbopogon giganteus	1	0.005	-5.298	-0.026				
5	Imperata cylindrical	100	0.543	-0.611	-0.332	150	0.974	-0.026	-0.026
6	Andropogon gayanus	05	0.027	-3.612	-0.098	2	0.013	-4.343	-0.056
7	Rottboellia cochinchinensis	05	0.027	-3.612	-0.098				
8	Pennisetum pedicellatum	15	0.082	-2.501	-0.205				
9	Pennisetum polystachion	02	0.011	-4.510	-0.050				
10	Sorghum arundinaceum	01	0.005	-5.298	-0.026				
		$\mathbf{1 8 4}$			$\mathbf{1 . 4 7 1}$	$\mathbf{1 5 4}$			$\mathbf{0 . 1 3 8}$

$$
H=1.47 ; \operatorname{In}(10)=2.30 ; E=0.64 \quad H=0.14 ;=\operatorname{In}(3)=1.099, E=0.13
$$

Long Term Fallow Site - (Herbs in families) Rainy Season

Dry season

\mathbf{S} / \mathbf{N}	Species	Spp. $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	$\mathbf{(P i) \mathbf { x }}$ $\mathbf{I n}(\mathbf{p i})$	$\mathbf{S p p}$ $\mathbf{P o p}$ \mathbf{n}	$\mathbf{P i}$	$\mathbf{I n (P i)}$	$(\mathbf{P i} \mathbf{)} \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$
1	Acanthaceae	01	0.033	-3.411	-0.113	02	0.077	-2.564	-0.197
2	Amaranthceae	02	0.067	-2.703	-0.181	01	0.038	-3.270	-0.124
3	Asteraceae	03	0.1	-2.30	0.23	03	0.115	-2.163	-0.249
4	Commelinaceae	01	0.033	-3.411	-0.113	01	0.038	-3.270	-0.124
5	Compositae	01	0.033	-3.411	-0.113	01	0.038	-3.270	-0.124
6	Convolvulaceae	02	0.067	-2.703	-0.181	03	0.115	-2.163	-0.249
7	Cyperaceae	01	0.033	-3.411	-0.113	-	-	-	-
8	Euphorbiaceae	06	0.2	-1.609	0.322	03	0.115	-2.163	-0.249
9	Fabaceae	04	0.133	-2.017	-0.268	04	0.154	-1.871	-0.288
10	Malvaceae	02	0.067	-2.703	-0.181	01	0.038	-3.270	-0.124
11	Melastomataceae	02	0.067	-2.703	-0.181	-	-	-	-
12	Mimosoideae	01	0.033	-3.411	-0.113	01	0.038	-3.270	-0.124
13	Musaceae	01	0.033	-3.411	-0.133	02	0.077	-2.564	-0.197
14	Rubiaceae	02	0.067	-2.703	-0.181	01	0.038	-3.270	-0.124
15	Solanaceae	-	-	-	-	01	0.038	-3.270	-0.124
16	Sterculiaceae	01	0.033	-3.411	-0.113	-	-	-	-
17	Bromeliaceae	-	-	-	-	01	0.038	-3.270	-0.124
18	Verbenaceae	-	-	-	-	01	0.038	-3.270	-0.124
		$\mathbf{3 0}$			$\mathbf{2 . 5 1 6}$	$\mathbf{2 6}$			$\mathbf{2 . 5 4 5}$

$H=2.52 ; \operatorname{In}(15)=2.71 ; E=0.93 \quad H=2.55 ; \quad \operatorname{In}(15)=2.71 ; E=0.94$

Farm in Current Usage Site (Slope) - Shrubs
Rainy Season
Dry Season

S/N	Species	Spp. $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n (P i)}$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$	Spp. $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n (P i)}$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$
1	Manihot esculentum	2	0.069	-2674	-0.185	1	0.043	-3.147	-0.135
2	Vernonia amygdalina	15	0.517	-0660	-0.341	10	0.435	-0.832	-0.362
3	Mimosa invisa	10	0.345	-1.064	-0.367	10	0.435	-0.832	-0.362
4	Piliostigma thonningii	2	0.069	-2.674	-0.185	2	0.087	-2.442	-0.212
		$\mathbf{2 9}$			$\mathbf{1 . 0 8}$	$\mathbf{2 3}$			$\mathbf{1 . 0 7}$

$\mathrm{h}=1.08 ; \operatorname{In}(4)=1.39 ; \mathrm{E}=0.78$
$\mathrm{H}=1.07 ; \ln (4)=1.39 ; \mathrm{E}=0.77$
Farm in Current Usage Site (Slope) -Climbers Rainy Season

Dry Season

S/N	Species	Spp. Popn	Pi	$\mathbf{I n}(\mathbf{P i})$	$\begin{gathered} (\mathbf{P i}) \mathbf{x} \\ \text { In (pi) } \end{gathered}$	Spp. Popn	Pi	$\mathbf{I n}(\mathbf{P i})$	$\begin{array}{r} \hline \mathbf{(P i}) \mathbf{x} \\ \operatorname{In}(\mathbf{p i}) \end{array}$
1	Telfeiria occidentalis	150	0.60	-0.511	-0.307	50	0.556	-0.587	-0.326
2	Desmodium scorpiurus	50	0.2	-1.609	-0.322	20	0.222	-1.505	-0.334
3	Phaseolus vulgaris	50	0.2	-1.609	-0.322	20	0.222	-1.505	-0.334
		250			0.95	90			

$\mathrm{H}=0.95 ; \operatorname{In}(3)=1.099 ; \mathrm{E}=0.86$
$\mathrm{H}=0.99 \quad \mathrm{E}=0.90$
Farm in Current Usage Site (Slope) -Grass
Rainy Season
Dry Season

S/N	Species	Spp. Popn	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$	Spp. Popn	$\mathbf{P i}$	$\mathbf{I n (\mathbf { P i })}$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$
1	Zea mays	-	-	-	-	05	0.1	-2.303	-0.230
2	Paspalum scrobiculatum	-	-	-	-	25	0.5	-0693	-0.347
3	Sorghum arudinaceum	-	-	-	-	10	0.2	-1.609	-0.322
4	Imperata cylindrical	-	-	-	-	02	0.04	-3.219	-0.129
5	Hackelochloa granularis	25	0.595	-0.519	-0.309	-	-	-	-
6	Panicum maxima	10	0.238	-1.435	-0.342	08	0.16	-1.833	-0.293
7	Oryza sativa	02	0.048	-3.037	-0.146	-	-	-	-
8	Cymbopogon cittratus	05	0.119	-2.129	-0.253	-	-	-	-
		$\mathbf{4 2}$			$\mathbf{- 1 . 0 5 0}$	$\mathbf{5 0}$			$\mathbf{- 1 . 3 2 1}$

$$
\mathrm{H}=1.05 ; \operatorname{In}(4)=1.39 ; \mathrm{E}=0.76
$$

$$
\mathrm{H}=1.32 ;=\operatorname{In}(5)=1.61, \mathrm{E}=0.82
$$

6k

Farm in Current Usage Site (Slope)- (Herbs in families)

Rainy Season
Dry Season

S/N	Species	Spp. Popn	Pi	In(Pi)	$\begin{aligned} & (\mathrm{Pi}) \mathbf{x} \\ & \text { In(} \mathrm{pi}) \end{aligned}$	Spp. Popn	Pi	In(Pi)	$\begin{gathered} (\mathrm{Pi}) \times \\ \text { In(pi) } \end{gathered}$
1	Acanthaceae	2	0.016	-4.135	-0.066				
2	Amaranthceae	6	0.048	-3.037	-0.146	3	0.035	-3.352	-0.117
3	Araceae	1	0.008	-4.828	-0.039				
4	Asteraceae	4	0.032	-3.442	-0.11	4	0.047	-3.058	-0.144
5	Capparidaceae	1	0.008	-4.828	-0.039	1	0.012	-4.423	-0.053
6	Commelinaceae	2	0.016	-4.135	-0.066	2	0.024	-3.73	-0.09
7	Convolvulaceae	3	0.024	-3.73	-0.09	2	0.024	-3.73	-0.09
8	Cyperaceae	8	0.063	-2.765	-0.174	4	0.047	-3.058	-0.144
9	Dioscoreaceae	1	0.008	-4.828	-0.039				
10	Euphorbiaceae	5	0.04	-3.219	-0.129	6	0.071	-2.645	-0.188
11	Fabaceae	2	0.018	-4.135	-0.066	2	0.024	-3.73	-0.09
12	Lamiaceae	73	0.579	-0.546	-0.316	52	0.612	-0.491	-0.300
13	Loganiaceae	1	0.008	-4.828	-0.039				
14	Malvaceae	1	0.008	-4.828	-0.039	1	0.012	-4.423	-0.053
15	Mimosoideae	3	0.024	-3.73	-0.09	1	0.012	-4.423	-0.053
16	Musaceae	1	0.008	-4.828	-0.039				
17	Nyctaginaceae	2	0.016	-4.135	-0.066				
18	pedaliaceae	1	0.008	-4.828	-0.039				
19	Piperaceae	1	0.008	-4.828	-0.039				
20	Portulacaceae	2	0.016	-4.135	-0.066	2	0.024	-3.73	-0.09
21	Rubiaceae	3	0.024	-3.73	-0.09	3	0.035	-3.352	-0.117
22	Solanaceae	1	0.008	-4.828	-0.039	1	0.012	-4.423	-0.053
23	Urticaceae	1	0.008	-4.828	-0.039				
24	Verbenaceae	1	0.008	-4.828	-0.039				
25	Bromeliaceae					1	0.012	-4.423	-0.053
		126			-1.90	85			-1.635

$\mathrm{H}=1.90 ; \operatorname{In}(2)=3.18, \mathrm{E}=0.60$

$$
\mathrm{H}=1.635 ;=\operatorname{In}(15) 2.71, \mathrm{E}=0.60
$$

Farm in Current Usage Site (Flat)- Shrubs
Rainy Season Dry Season

$\mathbf{S / N}$	Species	Spp. $\mathbf{P o p}$ \mathbf{n}	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$	Spp. $\mathbf{P o p n}$	$\mathbf{P i}$	$\mathbf{I n (P i)}$	(Pi) \mathbf{x} $\mathbf{I n}(\mathbf{p i})$
1	Manihot esculentum	05	0.143	-1.945	-0.278	02	-0.167	-1.790	-0.299
2	Vernonia amygdalina	20	0.571	-0.560	-0.320	05	0.417	-0.875	-0.365
3	Cajanus cajans	10	0.286	-1.252	-0.358	05	0.417	-0.875	-0.365
		$\mathbf{3 5}$			$\mathbf{0 . 9 6}$	$\mathbf{1 2}$			$\mathbf{1 . 0 2 9}$

$\mathrm{H}=0.96 ; \operatorname{In}(3)=1.099 ; \mathrm{E}=0.87 \quad \mathrm{H}=1.029 ; \operatorname{In}(3)=1.089 ; \mathrm{E}=0.94$

> Farm in Current Usage Site (Flat) - Climbers Rainy Season

S/N	Species	Spp. Popn	$\mathbf{P i}$	$\mathbf{I n (P i)}$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$	Spp. Popn	$\mathbf{P i}$	$\mathbf{I n (\mathbf { P i })}$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$
1	Telfeiria occidentalis	100	0.667	-0.405	-0.270	50	0.714	-0.337	-0.241
2	Desmodium scorpiurus	50	0.333	-1.10	-0.366	20	0.286	-252	-0.358
		$\mathbf{1 5 0}$			$\mathbf{0 . 6 4}$	$\mathbf{7 0}$			$\mathbf{0 . 6 0}$

$\mathrm{H}=0.64 ; \operatorname{In}(2)=0.693 ; \mathrm{E}=0.92$
$\mathrm{H}=0.60 ; \operatorname{In}(2)=0.693 ; \mathrm{E}=0.87$

Farm in Current Usage (Flat)- Grass
 Rainy Season
 Dry Season

$\mathbf{S / N}$	Species	Spp. $\mathbf{P o p}$ \mathbf{n}	$\mathbf{P i}$	$\mathbf{I n}(\mathbf{P i})$	$\mathbf{(P i) \mathbf { x }}$ $\mathbf{I n}(\mathbf{p i})$	Spp. $\mathbf{P o p}$ \mathbf{n}	$\mathbf{P i}$	$\mathbf{I n (\mathbf { P i })}$	$(\mathbf{P i}) \mathbf{x}$ $\mathbf{I n}$ $(\mathbf{p i})$
1	Zea mays	-	-	-	-	15	0.3	-1.204	-0.361
2	Paspalum scrobiculatum	-	-	-	-	15	0.3	-1.204	-0.361
3	Sorghum arundinaceum	-	-	-	-	10	0.2	-1.609	-0.322
4	Imperata cylindrical	03	0.053	-2937	-0.156	10	0.2	-1.609	-0.322
5	Hackelochloa granularis	40	0.702	-0.354	-0.248	-	-	-	-
6	Panicum maxima	07	0.123	-2.096	-0.258	-	-	-	-
7	Oryza sativa	04	0.070	2.660	-0.186	-	-	-	-
8	Cymbopogon cittratus	03	0.053	2.937	-0.156	-	-	-	-
		$\mathbf{5 7}$			$\mathbf{- 1 . 0 0 4}$	$\mathbf{5 0}$			$\mathbf{- 1 . 3 6 6}$

$$
\mathrm{H}=1.00 ; \ln (5)=1.61 ; \mathrm{E}=0.62
$$

$\mathrm{H}=1.37 ;=\operatorname{In}(4)=1.39, \mathrm{E}=0.99$

Farm in Current Usage Site (Flat)-(Herbs in families)
Rainy Season
Dry Season

$\mathbf{S / N}$	Species	Spp. Popn	$\mathbf{P i}$	$\mathbf{I n (P i)}$	(Pi) \mathbf{x} $\mathbf{I n}(\mathbf{p i})$	Spp. Popn	$\mathbf{P i}$	$\mathbf{I n (P i)}$	$\mathbf{(P i)} \mathbf{x}$ $\mathbf{I n}(\mathbf{p i})$
1	Acanthaceae					01	0.028	-3.576	-0.100
2	Amaranthceae	2	0.029	-3.54	-0.103	2	0.056	-2.88	-0.161
3	Asteraceae	4	0.059	-2.830	-0.167	4	0.11	-2.207	-0.243
4	Capparidaceae	1	0.015	-4.200	-0.063	1	0.028	-3.576	-0.100
5	Commelinaceae	1	0.015	-4.200	-0.063	1	0.028	-3.576	-0.100
6	Convolvulaceae	1	0.015	-4.200	-0.063	1	0.028	-3.576	-0.100
7	Cyperaceae	7	0.103	-2.273	-0.234	4	0.11	-2.207	-0.243
8	Euphorbiaceae	4	0.059	-2.830	-0.167	2	0.056	-2.88	-0.161
9	Fabaceae	1	0.015	-4.200	-0.063	1	0.028	-3.576	-0.100
10	Lamiaceae	31	0.456	-4.785	-0.072	11	0.306	-1.184	-0.362
11	Malvaceae	1	0.015	-4.200	-0.063				
12	Mimosoideae	2	0.029	-3.54	-0.103	1	0.028	-3.576	-0.100
13	Nyctaginaceae	1	0.015	-4.200	-0.063				
14	Onagraceae	3	0.044	-3.124	-0.137	1	0.028	-3.576	-0.100
15	Portulacaceae	1	0.015	-4.200	-0.063	2	0.056	-2.88	-0.161
16	Rubiaceae	5	0.074	-2.604	-0.193	2	0.056	-2.88	-0.161
17	Urticaceae	2	0.029	-3.34	-0.103	1	0.028	-3.576	-0.100
18	Hydrophyllaceae	01	0.015	-4.200	-0.063				
19	Pontederiaceae					1	0.028	-3.576	-0.100

$68 \quad-2.07 \quad 36 \quad-2.39$
$H=2.07 ; \operatorname{In}(17)=2.833, E=0.73 \quad H=2.39 ;=\operatorname{In}(16) 2.77, E=0.86$

APPENDIX 7

(Tree forest site)
Importance Values of encountered species from the forest site

S/N	Species Family	Spp	Measure	Position
1	Zanthaxylon zanthaxyloides	05	10.2	$8^{\text {th }}$
2	Spondias mombin	02	4.5	$12^{\text {th }}$
3	Voacanga africana	01	1.22	$24^{\text {th }}$
4	Holarrhena floribunda	05	6.44	$10^{\text {th }}$
5	Elaeis guineensis	10	12.56	$5^{\text {th }}$
6	Sporospamum febrifugum	01	1.20	$25^{\text {th }}$
7	Newbouldia laevis	03	17.7	$3^{\text {rd }}$
8	Senna siamea	10	13.5	$4^{\text {th }}$
9	Dialum guineense	05	3.45	$15^{\text {th }}$
10	Afzelia africana	03	1.33	$22^{\text {nd }}$
11	Eythropleum suaveolens	01	3.88	$14^{\text {th }}$
12	Bridelia ferruginea	01	1.25	$23^{\text {rd }}$
13	Hevea braziliensis	15	6.67	$9^{\text {th }}$
14	Albizia chaevalieri	03	3.20	$16^{\text {th }}$
15	Peltoforum pterocarpum	01	1.44	$20^{\text {th }}$
16	Napoleana imperialis	24	25.64	$1^{\text {st }}$
17	Anthocleista djalonensis	01	11.25	$7^{\text {th }}$
18	Tetrapleura tetraptera	04	5.27	$11^{\text {th }}$
19	Pentaclethra macrophyla	10	11.30	$6^{\text {th }}$
20	Dichrostachys cinerea	02	2.32	$17^{\text {th }}$
21	Milicia excelsa	01	4.23	$13^{\text {th }}$
22	Barteria nigritiana	1.78	$18^{\text {th }}$	
23	Rothmania hispida	01	1.78	
24	Dactyledenia barteria	05	1.35	$21^{\text {st }}$
25	Sterculia tragacantha	23	25.65	$2^{\text {nd }}$
		01	1.60	$9^{\text {th }}$

FOREST SITE

General formula for Determining Importance Values (IVI) using Olax viridis as an example

Techniques
C. 1 (closest Individual Technique)

Sum of distances
28.06
\div
88
0.319
(x2: c.f)
Total Dimensions: Area $=\mathrm{cxw}=(20 \times 20) \mathrm{m} 2=400 \mathrm{~m} 2$

1. Frequency: $+88=(88 / 100 \times 100 / 1)=88$
C. I
N. N
2. Density: $\underline{400}=\underline{400}=\underline{400} \quad \underline{400}=\quad \underline{400}=\underline{400}$

$$
0.319 \times 2(0.638) 2 \quad 0.407 \quad 0.361 \times 1.67(0.602) 20.362
$$

$$
=982.80 \quad=1104.97
$$

3. Rel. Density: $\underline{982.80} \times \underline{100}$

$$
22519.55 \quad 1
$$

$\underline{1104.97 \times 100}$
25428.731

$$
47.07
$$

57.93
4. Rel. Frequency : $100=30.09$ 678
34.45
5. Importance Value

Absolute values for Dry Season from the Forest site Density
C. I
Frequency
22,519.55 678

Absolute value for Rainy season from the Forest site Density
C. I
22,789.55
Frequency
690

APPENDIX

Forest site

S/N		Rainy		Dry
1	Cissus araliodes	20	32.83	0
2	Rauvolfia vomitorium	05	2.81	05
3	Gongronema latifolia	20	10.66	05
4	Ananas comosus	10	10.52	10
5	Byrsocarpus coccineus	44	22.06	44
6	Dioscorea dumentorum	10	5.07	0
7	Alchornea cordifolia	05	5.28	05
8	Olax viridis	204	68.89	180
9	Peuraria phaseoloides	30	9.34	05
10	Bambusa vulgaris	20	50.0	20
11	Smilax anceps	209	72.55	180
12	Mimosa invisa	05	29.18	05

GRASSES (Forest site)

1	Imperata cylindrica	50	12.0	50
2	Cymbopogon cittratus	10	10.0	10

APPENDIX III
 DRY SEASON FLAT A
 SHORT-TERM FALLOW SITE SITE B MANAGED (IMPORTANCE VALUES)

1. Total Dimensions (90x 90) Ft -8100ft
$1 \mathrm{~m}=3.3$ feet $: .90 \mathrm{ft}=$
$90 \quad 3.3=27.3 \mathrm{~m}$
0027m
a:. $\quad(27 \times 27) m=729 m$
5\% Sampling intensity
$=5 / 100 \times 7.29=7.29$
$=36$ quadrat
b. Sampling technique $=$ Random sampling technique to avoid bias.
c. Using coordinates $\mathrm{AB} \& \mathrm{BC}$

AB	BC	

S/n	Species	Position	Total Quads	Quad.1	Quad.2	Quad.3	Quad.4
1.	Vernonia cinerea	42 nd	02	-	01	01	-
2.	Melochia corchorifolia	50 th	01	-	-	01	-
3.	Leucas martinicensis	50 th	01	-	-	-	01
4.	Acanthospermum hispidium	38 th	03	-	-	01	02
5.	Ludwigia decurrens	38 th	03	-	-	01	02
6.	Euphorbia hirta	14 th	18	05	10	-	03
7.	Sporobolus pyramidalis	1 st	120	20	40	30	30
8	Boerhavia diffusa	6 th	18	06	05	04	03
9.	Hackelochloa granularis	49 th	02	02	-	-	-
10.	Ipomoea aquatica	37 th	04	-	-	02	02
11.	Sphenoclea zeylanica	48 th	03	-	-	03	-
12	Rhynchelytrum repens	50 th	4.1	01	-	-	01
13.	Ananas comosus	21 st	10	-	05	05	-
14.	Sorghum arundinaceum	$20^{\text {th }}$	12	-	-	02	10
15.	Malvastrum coromandelianum	42 nd	02	01	-	01	-
16.	Hyptis lanceolata	$26^{\text {th }}$	07	-	02	05	-
17	Cyathula prostrata	42 nd	02	-	01	-	01
18.	Pupalia lappaceae	$33^{\text {rd }}$	05	-	-	03	02
19.	Paspalum conjugatum	$42^{\text {nd }}$	02	01	-	-	01
20	Eclipta alba	$38^{\text {th }}$	03	-	-	02	01
21.	Fimbristylis littoralis	$42^{\text {nd }}$	02	01	-	01	-
22.	Oldenlandia corymbosa	$7^{\text {th }}$	17	05	05	04	03
23.	Heterotis grandifolia	$50^{\text {th }}$	01	01	-	-	-

24.	Mariscus flabelliformis	$17^{\text {th }}$	15	-	05	-	10
25.	Cyperus esculentus	$30^{\text {th }}$	06	04	-	02	-
26.	Euphorbia heterophylla	$21^{\text {st }}$	10	05	-	-	05
27.	Cynodon dactylon	$2^{\text {nd }}$	75	05	10	30	30
28.	Mitracarpus villosus	$11^{\text {th }}$	14	-	02	05	04
29.	Diodia sarmentosa	10 th	16	01	10	03	02
30.	Chromolaena odorata	$26^{\text {th }}$	07	02	-	-	05
31.	Gomphrena celosioides	$3^{\text {rd }}$	35	20	-	05	10
32.	Paspalum scrobiculatum	$35^{\text {th }}$	10	-	10	-	-
33.	Commelina erecta	$19^{\text {th }}$	09	-	03	03	03
34.	Alternanthera sessilis	$11^{\text {th }}$	14	03	04	02	05
35.	Spermacoce ocymoides	$7^{\text {th }}$	17	05	04	03	05
36.	Mariscus alternifolia	$21^{\text {st }}$	10	05	05	-	-
37	Setaria barbata	$15^{\text {th }}$	14	04	05	05	-
38.	Panicum maxima	$20^{\text {th }}$	30	20	-	10	-
39.	Imperata cylindrica	$16^{\text {th }}$	17	-	10	-	07
40	Cleome rutidosperma	$30^{\text {th }}$	06	-	05	-	01
41.	Setaria longiseta	$30^{\text {th }}$	06	-	03	03	-
42.	Aspilia africana	$47^{\text {th }}$	05	-	05	-	-
43.	Desmodium scorpiurus	$26^{\text {th }}$	07	-	04	03	-
44.	Cyperus rotundus	$4^{\text {th }}$	35	-	-	30	05
45.	Phyllanthus amarus	$7^{\text {th }}$	17	05	05	05	02
46.	Elaeis guineensis $($ seedling $)$	$30^{\text {th }}$	06	-	05	-	01
47.	Cocos nucifera (seedling)	$33^{\text {rd }}$	05	-	03	-	02
48	Spermacoce verticillata	38 th	03	02	-	01	-
49.	Hypoestes cancellata	26 th	07	-	-	05	02
50	Kyllinga erecta	$17^{\text {th }}$	15	-	-	10	05
51.	Asystasia gangentica	$26^{\text {th }}$	07	-	05	02	-
52.	Kyllinga pumilla	$21^{\text {st }}$	10	-	-	05	05
53.	Boerhavia coccinea	$13^{\text {th }}$	30	-	-	-	30
54.	Digitaria horizontalis	21 st	10	-	-	05	05
55.	Laggera aurita	$35^{\text {th }}$	10	-	-	-	10
707	Total per quadrat		707	126	172	203	216

(A)DENSITY =

$\begin{array}{llllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array} 19$

020101030318120180204030110120207020502
202122232425262728293931
737373737373737373737373
$0302170115 \quad 06107514160735$
73730.2470 .0270 .0410 .1370 .0270 .027
0.0270 .0140 .0140 .0410 .0411 .6450 .2470 .0550 .0140 .1630 .0960 .0680 .0270 .0410 .0270 .2330 .014 0.2050 .0820 .1371 .0270 .1920 .2190 .0960 .479

(B) REL. DENSITY

0.2750 .1430 .1430 .1430 .4180 .4182 .51616 .7532 .5160 .2750 .5600 .4181 .3951 .6700 .2750 .978 $0.2750 .6930 .2750 .4180 .2752 .3730 .1432 .0880 .8351 .39510 .4591 .955 \quad 2.2300 .9784 .8780 .027$ 9.819
(c) FREQUENCY

$\begin{array}{lllllllllllllll}50 & 25 & 25 & 50 & 50 & 75 & 100 & 100 & 25 & 25 & 50 & 25 & 25 & 50 & 50 \\ 50 & 50 & 50\end{array}$
2/4 2/4 2/4 2/4 4/4 1/4 2/4 2/4 2/4 4/4 4/4 4/4 4/4 3/4
$505050501002550505010010010050 \quad 75$
3050
(D) REL. FREQUENCY
$1.6390 .8200 .8201 .6391 .6392 .4593 .2793 .2790 .8201 .639 \quad 0.8200 .8201 .6391 .6391 .6391 .639$
1.6391 .6391 .6391 .6391 .6393 .2790 .8201 .6391 .6391 .6393 .2793 .2793 .2791 .6392 .459
(E) IMPORTANCE VALUE
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
1.9140 .9630 .9632 .0572 .0574 .97520 .032005 .7951 .095

42nd 50th 50th 38th 38th 14th 1st 6th 49th
$\begin{array}{llllllllll}10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
2.1991 .2380 .9633 .0343 .3091 .9142 .6171 .9142 .3321 .639

37th 48th 50th 21st 20th 42nd 26th 42nd 33rd 42nd $\begin{array}{llllllllll}20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29\end{array}$
2.0571 .9145 .6520 .9633 .7272 .4743 .03413 .7385 .2345 .234

30th 21st 2nd 11th 10th
3031
$2.617 \quad 7.337$
26th 3rd

DENSITY

$48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53$

$\begin{array}{lllllllllllllllll}0.041 & 0.096 & 0.205 & 0.096 & 0.137 & 0.411 & 0.137 & 0.137 & 0.137 & 0.123\end{array}$

34	35	36	37	38	39	40	41	42	43

$\begin{array}{llllllllll}\frac{73}{14} & \frac{73}{17} & \frac{73}{10} & \frac{73}{14} & \frac{73}{30} & \frac{73}{17} & \frac{73}{06} & \frac{73}{06} & 73 & \frac{73}{07}\end{array}$
$\begin{array}{lllllllllllll}0.192 & 0.233 & 0.137 & 0.192 & 0.411 & 0.233 & 0.082 & 0.082 & 0.068 & 0.096\end{array}$
$\begin{array}{llll}44 & 45 & 46 & 47\end{array}$
$\begin{array}{llll}\frac{73}{35} & \frac{73}{17} & \frac{73}{06} & \frac{73}{05}\end{array}$
0.4790 .2330 .0820 .068
(B) REL. DENSITY
$\begin{array}{llllllllll}0.418 & 0.978 & 2.088 & 0.978 & 1.395 & 4.186 & 1.395 & 1.395 & 1.395 & 1.253\end{array}$
$\begin{array}{lllllllllll}1.955 & 2.373 & 1.395 & 1.955 & 4.186 & 2.373 & 0.835 & 0.693 & 0.978 & 4.878\end{array}$
2.3730 .8350 .693
(C) FREQUENCY
$\begin{array}{lllllllllllll}2 / 4 & 2 / 4 & 2 / 4 & 2 / 4 & 2 / 4 & 2 / 4 & 2 / 4 & 2 / 4 & 1 / 4 & 3 / 4 & 4 / 4 & 4 / 4 & 2 / 4\end{array}$
$\begin{array}{lllllllllllll}50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 25 & 75 & 100 & 100 & 50\end{array}$
$\begin{array}{llllllllll}3 / 4 & 2 / 4 & 2 / 4 & 2 / 4 & 2 / 4 & 1 / 4 & 2 / 4 & 2 / 4 & 4 / 4 & 2 / 4 \\ 2 / 4\end{array}$
$\begin{array}{lllllllllll}75 & 50 & 50 & 50 & 50 & 25 & 50 & 50 & 100 & 50 & 50\end{array}$
(D) REL. FREQUENCY

1.639	1.639	1.639	1.639	1.639	0.820	1.639	0.820	0.820	2.459	3.279	3.279	1.639	2.459

$\begin{array}{llll}1.639 & 1.639 & 1.639 & 1.639\end{array}$
$\begin{array}{llllll}0.820 & 1.639 & 1.639 & 3.279 & 1.639 & 1.639\end{array}$
(E) IMPORTANCE VALUE

48	49	50	51	52	53	54	55	32
2.057	2.617	3.727	2.617	3.034	5.006	3.034	2.215	2.215
38th	26 th	17 th	26 th	21 st	13 th	21 st	35 th	35 th
33	34	35	36	37	38	39	40	41
3.712	5.234	5.652	3.034	4.414	5.825	4.012	2.474	2.474
19th	11 th	7 th	21 st	15 th	5 th	16 th	30 th	30 th
42	43	44	45	46	47			

$\begin{array}{llllll}1.513 & 2.617 & 6.517 & 5.652 & 2.474 & 2.332\end{array}$ 47th 26th 4th 7th 30th 33rd

APPENDIX IV
 DRY SEASON SLOPE

Short Term Fallow Site Site B- Managed (Importance Values)

1. Total Dimensions (90×90) $\mathrm{ft}-8100 \mathrm{ft}$

$$
\begin{gathered}
1 \mathrm{~m}=3.3 \text { feet } .: 90 \mathrm{ft} \\
90 \div 3.3=27.3 \mathrm{~m}=27 \mathrm{~m}
\end{gathered}
$$

a. $\quad .:(27 \times 27) \mathrm{m}=729 \mathrm{~m}$
b $\quad 5 \%$ Sampling intensity
$=5 / 100 \times 7.29=7.29$
$=36$ quadrat
c. Sampling technique $=$ Random sampling technique to avoid bias

Using coordinates $\mathrm{AB} \& \mathrm{BC} \quad \mathrm{AB} \quad \mathrm{BC}$

S/N	Species	Position	Total Quads	Quad.1	Quad. $\mathbf{2}$	Quad.3	Quad.4
1.	Asytasia gangentica	4 th	70	20	30	10	10
2.	Aspilia Africana	1 st	225	35	70	100	20
3.	Ocimum basilicum	10 th	15	-	10	05	-
4.	Chromolaena adorata	$3^{\text {rd }}$	95	05	20	20	50
5.	Mucuna pruriens	$7^{\text {th }}$	12	05	-	05	-
6.	Sporobolus pyramidalis	$9^{\text {th }}$	20	10	-	10	-
7.	Desmodium scorpiurus	$2^{\text {nd }}$	100	20	30	30	20
8.	Imperata cylindrica	$10^{\text {th }}$	15	10	-	-	05
9.	Citrus cinenses $($ seedlings $)$	$5^{\text {th }}$	20	05	05	05	05
10.	Paspalum scrobiculatum	$16^{\text {th }}$	05	05	-	-	-
11.	Cynodon dactylon	$5^{\text {th }}$	20	05	05	05	05
12.	Boerhavia erecta	$12^{\text {th }}$	13	-	10	03	-
13.	Setaria longiseta	$22^{\text {nd }}$	03	-	03	-	-
14	Manihot esculentum	$8^{\text {th }}$	10	03	-	02	05
15	Gomphrena celosioides	$16^{\text {th }}$	05	-	-	-	05
16.	Phyllanthus amarus	$13^{\text {th }}$	10	05	05	-	-

17.	Commelina erecta	$14^{\text {th }}$	08	05	-	03	-
18.	Hypoesthes cancellata	$16^{\text {th }}$	05	-	-	-	05
19.	Cyathula prostrata	$16^{\text {th }}$	05	-	-	05	-
20.	Solenostemon monostachyus	$21^{\text {st }}$	04	04	-	-	-
21.	Andropogon gayanus (stand)	$15^{\text {th }}$	15	-	-	15	-
22.	Newbouldia laevis	$23^{\text {rd }}$	02	-	02	-	-
23.	Acalypha fimbriata	$16^{\text {th }}$	05	-	-	-	05
24.	Rottboellia cochinchinensis	$24^{\text {th }}$	02	-	02	-	-

DENSITY

1	2	3	4	5	6	7	8	9	10
$\frac{70}{73}$	$\frac{225}{73}$	$\frac{15}{73}$	$\frac{95}{73}$	$\frac{12}{73}$	$\frac{20}{73}$	$\frac{100}{73}$	$\frac{15}{73}$	$\frac{20}{73}$	$\frac{05}{73}$

0.9593 .0820 .2051 .3010 .1640 .2741 .3700 .2050 .2740 .068
$\begin{array}{llllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$
$\begin{array}{llllllllll}\frac{20}{73} & \frac{13}{73} & \frac{03}{73} & \frac{10}{73} & \frac{05}{73} & \frac{10}{73} & \frac{08}{73} & \frac{05}{73} & \frac{05}{73} & \frac{04}{73}\end{array}$
0.2740 .1780 .0410 .1370 .0680 .1370 .1100 .0680 .0550 .205
$\begin{array}{llll}21 & 22 & 23 & 24\end{array}$
$15 \quad 02 \quad 05 \quad 02$
$\underline{73} \quad \underline{73} \quad \underline{73} \quad 73$
$\begin{array}{llll}0.205 & 0.207 & 0.068 & 0.027\end{array}$
9. 365
(B) REL. DENSITY
10.24032 .9102 .18913 .8921 .7512 .92614 .6292 .1892 .9260 .7261 .90100 .4381 .4630 .7261 .463
$\begin{array}{lllllll}1.175 & 0.726 & 0.726 & 0.587 & 2.189 & 0.288 & 0.726\end{array} 0.288$
(C) FREQUENCY
$\begin{array}{lllllllllll}4 / 4 & 4 / 4 & 2 / 4 & 4 / 4 & 3 / 4 & 2 / 4 & 4 / 4 & 2 / 4 & 4 / 4 & 1 / 4 & 2 / 4\end{array}$
$\begin{array}{lllllllllll}100 & 100 & 50 & 100 & 75 & 50 & 100 & 50 & 100 & 100 & 50\end{array}$
$\begin{array}{lllllllllll}1 / 4 & 3 / 4 & 1 / 4 & 2 / 4 & 2 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4\end{array}$
$\begin{array}{lllllllllll}25 & 75 & 25 & 50 & 50 & 25 & 25 & 25 & 25 & 25 & 25\end{array}$
1300
(D) REL. FREQUENCY
7.6927 .6923 .8467 .6925 .7693 .8467 .6923 .8467 .6921 .9237 .6923 .8461 .9235 .7691 .9233 .846 $\begin{array}{llllllllllll}3.846 & 1.923 & 1.923 & 1.923 & 1.923 & 1.923 & 1.923 & 1.923\end{array}$
(E) IMPORTANCE VALUE

1	2	3	4	5	6	7	8	-		
17.932	40.6026 .03521 .5847 .526 .77222 .3216 .03510 .6182 .649									
4th	1st	10th	3 rd	7th	9th	2nd	10th	5th	16th	
11	12	13	14	15	16	17	18	19	20	
10.618	5.747	2.361	7.232	2.6	545.	95.0	2.6	92.6	2.51	5th
12th	22nd 8th 16th 13th 14th 16th 16th 21st									
4.112	2.211	2.6492 .211								
15th	23rd	16th 24th								

APPENDIX

RAINY SEASON SHORT TERM FALLOW SITE

S/n	Species	Position	Total Quads	Quad. 1	$\begin{aligned} & \text { Quad. } \\ & 2 \end{aligned}$	Quad. 3	Quad. 4
1.	Ageratum conyzoides	$2^{\text {nd }}$	80	20	20	20	20
2.	Sporobolus pyramidalis	$3^{\text {rd }}$	65	10	30	05	20
3.	Imperata cylindrica	$19^{\text {th }}$	10	-	05	-	05
4.	Paspalum scrobiculatum	$13^{\text {th }}$	15	-	10	-	10
5.	Cynodon dactylon	$35^{\text {th }}$	05	05	-	-	-
6.	Brachiara lata	$46^{\text {th }}$	02	-	-	02	-
7.	Commelina erecta	$6^{\text {th }}$	15	-	05	05	05
8.	Ludwigia hyssopifolia	$9^{\text {th }}$	20	05	15	-	-
9.	Bidens pilosa	$4^{\text {th }}$	40	10	20	05	05
10.	Kyllinga pumilla	$19^{\text {th }}$	10	-	-	05	05
11.	Digitaria gayana	$26^{\text {th }}$	08	03	05	-	-
12.	Panicum maxima	$29^{\text {th }}$	07	-	-	02	05
13.	Desmodium scorpiurus	$6^{\text {th }}$	20	05	05	05	05
14.	Hyptis lanceolata	$35^{\text {th }}$	05	-	-	05	-
15.	Asystasia gigantica	$43^{\text {rd }}$	03	-	-	-	03
16.	Setaria barbata	$13^{\text {th }}$	15	-	05	10	-
17.	Cymbopogon giganteus	$7^{\text {th }}$	25	10	10	-	05
18.	Euphorbia heterophylla	$35^{\text {th }}$	05	05	-	-	-
19.	Ipomoea triloba	$19^{\text {th }}$	10	05	05	-	-
20.	Synedrella nodiflora	$28^{\text {th }}$	15	-	-	15	-
21.	Amaranthus viridis	$46^{\text {th }}$	02	-	-	-	02
22.	Polygonum salicifolium	$46^{\text {th }}$	02	02	-	-	-
23.	Scleria verrucosa	$46^{\text {th }}$	02	-	-	02	-
24.	Cyperus haspan	$46^{\text {th }}$	02	-	-	02	-
25.	Colocasia esculentum	$9^{\text {th }}$	20	-	10	-	10
26.	Spermacoce ocymoides	$35^{\text {th }}$	05	-	05	-	-
27	Phyllantus amarus	$19^{\text {th }}$	10	05	-	05	-
28.	Euphorbia hirta	$30^{\text {th }}$	06	-	03	-	03
29.	Panicum laxum	$9^{\text {th }}$	20	10	-	-	10
30.	Kyllinga squamulata	$19^{\text {th }}$	10	-	05	05	-
31.	Luffa cylindrica	$46^{\text {th }}$	02	-	-	-	02
32.	Mitracarpus villosus	$19^{\text {th }}$	10	05	05	-	-
33.	Oldenlandia corymbosa	$6^{\text {th }}$	15	-	05	05	05
34.	Cocos nucifera (seedling)	$32^{\text {nd }}$	04	02	-	-	02
35.	Chromolaena odorata	$31^{\text {st }}$	06	-	03	03	-
36.	Psidium guajava (seedling)	$46^{\text {th }}$	02	-	-	02	-
37.	Acroceras zizanioides	$1^{\text {st }}$	90	-	40	30	20
38.	Ludwigia decurrens	$12^{\text {th }}$	11	03	03	05	-
39	Fuirena ciliaris	$43^{\text {rd }}$	03	03	-	-	-
40	Mariscus alternifolia	$19^{\text {th }}$	10	05	05	-	-
41.	Ipomoea involucrata	$34^{\text {th }}$	10	-	-	10	-

42.	Hackelochloa granularis	$5^{\text {th }}$	30	10	01	10	-
43.	Croton hirtus	$46^{\text {th }}$	02	-	-	-	02
44.	Gomphrena celosioides	$26^{\text {th }}$	08	03	-	05	-
45.	Mariscus flabelliformis	$6^{\text {th }}$	15	05	05	05	-
46.	Fimbristylis littoralis	$35^{\text {th }}$	05	-	-	-	05
47.	Ananas comosus	$35^{\text {th }}$	05	-	-	-	05
48.	Amarathus hybridus	$15^{\text {th }}$	20	20	-	-	-
49.	Boerhavia diffusa	$15^{\text {th }}$	20	-	20	-	-
50.	Commelina diffusa	$43^{\text {rd }}$	03	03	-	-	-
51.	Diodia samentosa	$35^{\text {th }}$	05	-	-	-	05
52.	Sacciolepis africana	$46^{\text {th }}$	02	-	-	02	-
53.	Heterotis rotundifolus	$15^{\text {th }}$	20	-	20	-	-
54.	Hypoestes cancellata	$15^{\text {th }}$	20	20	-	-	-
55.	Ludwigia octovalvis	$35^{\text {th }}$	05	-	05	-	-
56.	Eichhornia crassipes	$33^{\text {rd }}$	10	-	-	10	-

FLAT B

(A) DENSITY

1	2	3	4	5	6	7	8	9	10	11
$\frac{80}{73}$	$\frac{65}{73}$	$\frac{10}{73}$	$\frac{15}{73}$	$\frac{05}{73}$	$\underline{02}$	$\frac{15}{3}$	$\frac{20}{73}$	$\underline{73}$	$\underline{40}$	$\underline{10}$
73	$\underline{08}$	73	73							

1.0960 .8900 .1370 .2050 .0680 .2070 .2050 .2740 .5480 .1370 .110
$\begin{array}{llllllllll}12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21\end{array}$

$\begin{array}{lllllllllll}0.096 & 0.274 & 0.068 & 0.041 & 0.205 & 0.342 & 0.068 & 0.137 & 0.205 & 0.027\end{array}$

22	23	24	25	26	27	28	29	30	31

$\underline{02}$	$\underline{02}$	$\underline{02}$	$\underline{20}$	$\underline{05}$	$\underline{10}$	$\underline{06}$	$\underline{20}$	$\underline{10}$	$\underline{02}$

73	73	73	73	73	73	73	73	73	73
0.027	0.027	0.027	0.274	0.068	0.137	0.082	0.274	0.137	0.027

32	33	34	35	36	37	38	39	40	41
$\frac{10}{73}$	$\frac{15}{73}$	$\frac{04}{73}$	$\frac{06}{73}$	$\frac{02}{73}$	$\frac{90}{73}$	$\frac{11}{73}$	$\frac{03}{73}$	$\frac{10}{73}$	$\frac{10}{73}$

0.137	0.205	0.055	0.082	0.027	1.233	0.151	0.041	0.137
0.137								

42	43	44	45	46	47	48	49	50	51

$\frac{30}{73}$	$\frac{02}{73}$	$\frac{08}{73}$	$\frac{15}{73}$	$\frac{05}{73}$	$\frac{05}{73}$	$\frac{20}{73}$	$\frac{20}{73}$	$\frac{03}{73}$	$\frac{05}{73}$

$\begin{array}{lllllllllllllllllll}0.411 & 0.027 & 0.110 & 0.205 & 0.068 & 0.068 & 0.274 & 0.274 & 0.041 & 0.068\end{array}$
$\begin{array}{lllll}52 & 53 & 54 & 55 & 56\end{array}$
$\begin{array}{lllll}\underline{02} & \underline{20} & \underline{20} & \underline{05} & \underline{10}\end{array}$
$\begin{array}{lllll}73 & 73 & 73 & 73 & 73\end{array}$
$\begin{array}{llllll}0.027 & 0.274 & 0.274 & 0.068 & 0.137 & \mathbf{1 0 . 7 7 1}\end{array}$

(B) REL. DENSITY

1	2	3	4	5	6	7	8	9	10

10.1758 .2631 .2721 .9030 .6310 .2511 .9032 .5445 .0881 .272
$\begin{array}{llllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$
1.2010 .8912 .5440 .6310 .3811 .9033 .1750 .6311 .2721 .903

```
21
0.251 0.251 0.251 0.251 2.544 0.631 1.272 0.761 2.544 1.272
31
0.251 1.272 1.903 0.511 0.761 0.25111.447 1.402 0.381 1.272
41
1.272 3.816 0.251 1.021 1.903 0.631 0.631 2.544 2.544 0.381
    51
0.631
(C) FREQUENCY
4/4
100}10
1/4 1/4}2/4 3/4 3/4 2/4 1/4 1/4 1/4 1/4 1/4 1/4 2/4 1/4
25
2/4
50
2/4
50
1/4
25 25 25 25
(D) REL. FREQUENCY
```



```
2
(E) IMPORTANCE VALUE
2nd 3rd 19th 13th 35th 46th 6th 9th 4th 19th
14.175 12.263 3.272 3.903 1.631 1.251 4.903 4.544 9.088 3.272 26th 29th 6th 35th 43rd
13th 7th 35th 19th 28th
3.021 2.891 6.544 1.631 1.381 3.903 6.175 1.631 3.272 2.903
46th 46th 46th 46th 9th 35th 19th 30th 9th 19th
1.251 1.251 1.251 1.251 4.544 1.631 3.272 2.761 4.544 3.272
46th 19th 6th 32nd 31st 46th 1st 12th 43rd 19th
1.251 3.272 4.903 2.511 2.761 1.251 14.447 4.402 1.381 3.272
34th 5th 46th 26th 6th 35th 35th 15th 15th 43rd
2.272 6.816 2.251 3.021 4.903 1.631 1.631 3.544 3.544 1.381
35th 46th 15th 15th 35th 33rd
1.631 1.251 3.544 3.544 1.631 2.272
```


APPENDIX RAINY SEASON SLOPE B
 SHORT-TERM FALLOW SITE

S/n	Species	Position	Total Quads	Quad. 1	Quad. 2	Quad. 3	Quad. 4
1.	Citrus sinensis (seedling)	$9^{\text {th }}$	10	5	5	-	-
2.	Ananas comosus	$10^{\text {th }}$	30	15	15	-	-
3.	Phyllanthus amarus	$13^{\text {th }}$	15	-	5	5	5
4.	Bidens pilosa	$6^{\text {th }}$	55	10	10	20	15
5.	Ageratum conyzoides	$1{ }^{\text {st }}$	80	20	20	20	20
6.	Boerhavia diffusa	$2^{\text {nd }}$	90	30	30	30	-
7.	Setaria longiseta	$16^{\text {th }}$	15	-	-	10	05
8.	Mitracarpus villosus	$5^{\text {th }}$	65	20	15	20	10
9.	Sporobolus pyramidalis	$21^{\text {st }}$	05	03	-	-	02
10.	Setaria barbata	$7^{\text {th }}$	35	20	10	05	-
11.	Peperomia pellucida	$2^{\text {nd }}$	90	-	40	20	30
12.	Paspalum scrobiculatum	$25^{\text {th }}$	05	05	-	-	-
13.	Eragrostis atrovirens	$25^{\text {th }}$	05	-	05	-	-
14.	Oldenlandia corymbosa	$20^{\text {th }}$	06	-	-	03	03
15.	Diodia sarmentosa	$15^{\text {th }}$	20	-	10	10	-
16.	Kyllinga erecta	$14^{\text {th }}$	25	05	-	-	20
17.	Ludwigia decurrens	$23^{\text {rd }}$	10	10	-	-	-
18.	Amaranthus hybridus	$2^{\text {nd }}$	85	40	-	30	15
19.	Imperata cylindrica	$12^{\text {th }}$	17	02	10	05	-
20.	Commelina diffusa	$16^{\text {th }}$	15	-	10	-	05
21.	Cymbopogun compressus	$43^{\text {rd }}$	02	-	02	-	-
22.	Andropogon tectorum	$25^{\text {th }}$	05	-	-	05	-
23.	Panicum laxum	$25^{\text {th }}$	05	-	-	-	05
24.	Ludwigia abyssinica	$43^{\text {rd }}$	02	02	-	-	-
25.	Zea mays	$19^{\text {th }}$	07	-	-	02	07
26.	Musa paradisiacal	$43^{\text {rd }}$	02	-	02	-	-
27	Colocasia esulentum	$25^{\text {th }}$	05	-	05	-	-
28.	Commelina erecta	$18^{\text {th }}$	10	05	05	-	-
29.	Acroceras zizaniodes	$8^{\text {th }}$	35	-	-	05	30
30	Oldenlandia herbacea	$46^{\text {th }}$	01	01	-	-	-
31.	Kylling a pumila	$25^{\text {th }}$	05	-	-	05	-
32.	Alternanthera sessilis	$25^{\text {th }}$	05	-	05	-	-
33.	Boerhavia coccinea	$22^{\text {nd }}$	15	-	-	15	-
34.	Cymbopogon giganteus	$23^{\text {rd }}$	10	10	-	-	-
35.	Euphorbia hirta	$25^{\text {th }}$	05	-	-	-	05
36.	Desmodium scorpiurus	$25^{\text {th }}$	05	-	-	-	05
37.	Luffa cylindrica	$25^{\text {th }}$	05	-	-	-	05
38.	Ipomoea involucrate	$25^{\text {th }}$	05	-	-	05	-
39.	Tridax procumbens	$25^{\text {th }}$	05	05	-	-	-
40.	Cyperus haspan	$25^{\text {th }}$	05	-	05	-	-
41.	Cyperus difformis	$25^{\text {th }}$	05	05	-	-	-
42.	Heterotis rotundifolia	$25^{\text {th }}$	05	-	05	-	-
43.	Ocimum basilicum	$11^{\text {th }}$	40	-	40	-	-

44.	Synedrella nodiflora	$5^{\text {th }}$	05	-	-	05	-
45.	Spermacoce ocymoides	$25^{\text {th }}$	05	-	-	-	05
46.	Spigelia anthelmia	$25^{\text {th }}$	05	-	-	05	-

DENSITY

10	30	15	55	80	90	15	65	05	35	90
73	73	73	73	73	73	73	73	73	73	73
0.137	0.411	0.205	0.753	1.096	1.233	0.205	0.890	0.068	0.479	1.233
05	05	06	20	25	10	85	17	15	02	05
73	73	73	73	73	73	73	73	73	73	73

$\begin{array}{lllllllllllllllllllll}0.068 & 0.068 & 0.082 & 0.274 & 0.342 & 0.137 & 1.164 & 0.233 & 0.205 & 0.207 & 0.068\end{array}$
$\begin{array}{lllllllllll}02 & 07 & 02 & 05 & 10 & 35 & 01 & 05 & 05 & 15 & 10\end{array}$ $\begin{array}{lllllllllll}73 & 73 & 73 & 73 & 73 & 73 & 73 & 73 & 73 & 73 & 73\end{array}$ 0.0270 .0960 .0270 .0680 .1370 .4790 .0140 .0680 .0680 .2050 .137 $\begin{array}{lllllllllll}05 & 05 & 05 & 05 & 05 & 05 & 05 & 05 & 40 & 05 & 05\end{array}$ $\begin{array}{lllllllllll}73 & 73 & 73 & 73 & 73 & 73 & 73 & 73 & 73 & 73 & 73\end{array}$
$0.0680 .0680 .0680 .068 \quad 0.0680 .068 \quad 0.0680 .068 \quad 0.5480 .0680 .068$ 05
73
0.068
12.068
(B) REL. DENSITY
1.1353 .4061 .6996 .249 .08210 .2171 .6997 .3750 .5633 .96910 .217
0.5630 .5630 .6792 .2702 .8342 .8341 .1359 .66451 .9311 .6990 .224
0.5630 .5630 .2240 .7950 .2240 .5631 .1353 .9690 .1160 .5630 .563
1.6991 .1350 .5630 .5630 .5630 .5630 .5630 .5630 .5630 .5634 .541
0.5630 .5630 .563
(c) FREQUENCY

$4 / 4$	$2 / 4$	$3 / 4$	$4 / 4$		$4 / 4$	$3 / 4$	$2 / 4$	$4 / 4$	$2 / 4$	$3 / 4$	$3 / 4$
$3 / 4$											
100	50	75	100	100	75	50	100	50	75	75	25
$1 / 4$	$2 / 4$	$2 / 4$	$2 / 4$	$1 / 4$	$3 / 4$	$3 / 4$	$2 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	
25	50	50	50	25	75	75	50	25	25	25	25
$2 / 4$	$1 / 4$	$1 / 4$	$2 / 4$	$2 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
50	25	25	50	50	25	25	25	25	25	25	25
$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$		
25	25	25	25	25	25	25	25	25	25		

(D) REL. FREQUENCY
$\begin{array}{llllllllllll}5 & 2.5 & 3.75 & 5 & 5 & 3.75 & 2.5 & 5 & 2.5 & 3.75 & 3.75 & 1.25\end{array}$
$\begin{array}{lllllllllll}1.25 & 2.5 & 2.5 & 2.5 & 1.25 & 3.75 & 3.75 & 2.5 & 1.25 & 1.25 & 1.25 \\ 1.25\end{array}$
$\begin{array}{llllllllllll}2.5 & 1.25 & 1.25 & 2.5 & 2.5 & 1.25 & 1.25 & 1.25 & 1.25 & 1.25 & 1.25 & 1.25\end{array}$
$\begin{array}{lllllllll}1.25 & 2.5 & 1.25 & 1.25 & 1.25 & 1.25 & 1.25 & 1.25 & 1.25 \\ 1.25\end{array}$
(E) IMPORTANCE VALUE

9th 10th 13th 6th 1st 2nd 16th 5th 21st 7th
6.1355 .9065 .44911 .2414 .08213 .9674 .19912 .3753 .0637 .719

2nd 25th 25th 20th 15th 14th 23rd 2nd 12th 16th 43rd 13.9671 .8131 .8133 .1794 .775 .3342 .38513 .3955 .6814 .1991 .474 25th 25th 43rd 19th 43rd 25th 18th 8th 46th 25th 25th 1.8131 .8131 .4743 .2951 .4741 .8133 .6356 .4691 .3661 .8131 .813

22nd 23rd 25th 25th 25th 25th 25th 25th 25th 25th 11th
2.9492 .3851 .8131 .8131 .8131 .8131 .8131 .8131 .8131 .8135 .791

APPENDIX 7

LONG TERM FALLOW SITE C (DETERMINING IMPORTANCE VALUES (SLOPE) DRY SEASON (UNMANAGED)
Total Dimensions $(80 \times 80) \mathrm{ft}=24 \mathrm{~m}$
$1 \mathrm{~m}=3.3$ feet $: .80 \mathrm{ft}=$

$$
\begin{aligned}
& \quad 80 \div 3.3=24.4=24 \mathrm{~m} \\
& \text { i.e }(24 \times 24)=576 \\
& \therefore \quad 5 \% \text { Sampling intensity } \\
& =5 / 100 \times 576=29 \\
& =29 \text { quadrat }
\end{aligned}
$$

S/n	Species	Posit ion	Total Quads	Quad. $\mathbf{1}$	Quad. $\mathbf{2}$	Quad. $\mathbf{3}$	Quad. $\mathbf{4}$	Quad. $\mathbf{5}$	Qua $\mathbf{d . 6}$
1.	Imperata cylindrica	$1^{\text {st }}$	230	40	30	50	20	50	40
2.	Aspilia africana	$2^{\text {nd }}$	85	30	05	20	20	-	10
3.	Brachiara lata	$34^{\text {th }}$	02	-	-	-	-	02	-
4.	Phyllanthus malvaceorum	$28^{\text {th }}$	05	05	-	-	-	-	-
5.	Schwenkia americana	$34^{\text {th }}$	02	-	02	-	-	-	-
6.	Commelina erecta	$7^{\text {th }}$	22	02	10	-	05	-	05
7.	Panicum maxima	$21^{\text {st }}$	04	02	-	-	-	-	02
8.	Desmodium scorpiurus	$4^{\text {th }}$	50	-	10	15	20	05	-
9.	Stachytarpheta jamaicensis	$3^{\text {rd }}$	35	-	05	05	10	10	05
10.	Cynodon dactylon	$5^{\text {th }}$	35	10	10	-	-	10	05
11	Hypoestes cancellata	$8^{\text {th }}$	40	05	-	05	-	30	-
12.	Mucuna pruriens	$13^{\text {th }}$	10	-	-	-	05	-	05
13.	Phyllanthus amarus	$13^{\text {th }}$	10	-	05	-	05	-	05
14.	Crotolaria retusa	$12^{\text {th }}$	13	03	10	-	-	-	-
15.	Paspalum conjugatum	$32^{\text {nd }}$	03	-	-	-	-	-	03
16.	Paspalum scrobiculatum	$9^{\text {th }}$	15	05	-	05	05	-	-
17.	Diodia sarmentosa	$28^{\text {th }}$	05	-	-	-	-	-	05
18.	Mimosa invisa	$26^{\text {th }}$	10	-	-	--	-	10	-
19.	Sarcocephalum laxiflora (Stands)	$25^{\text {th }}$	20	-	-	-	-	-	20
20.	Musa sapientum	$21^{\text {st }}$	04	02	-	02	-	-	-
21.	Digitaria gayana	$28^{\text {th }}$	05	-	-	-	-	05	-
22.	Croton lobatus	$6^{\text {th }}$	25	10	05	10	-	-	05
23.	Setaria longiseta	$24^{\text {th }}$	25	-	-	25	-	-	-
24.	Asytasia gangentica	$18^{\text {th }}$	07	-	05	-	02	-	-
25.	Musa paradisiaca	$19^{\text {th }}$	05	-	-	03	02	-	-
26.	Manihot esculenta	$10^{\text {th }}$	10	05	-	--	03	-	02
27.	Sida acuta	$34^{\text {th }}$	02	-	-	-	-	02	-
28.	Ipomoea triloba	$11^{\text {th }}$	09	02	02	05	-	-	-
29.	Ipomoea eriocarpa	$17^{\text {th }}$	07	-	-	-	-	02	05

30.	Chromolaena odorata	$13^{\text {th }}$	10	05	-	05	-	-	-
31.	Vernonia cinerei	$34^{\text {th }}$	02	-	-	-	-	-	02
32.	Tridax procumbrens	$28^{\text {th }}$	05	-	-	-	05	-	-
33.	Gomphrena celosioides	$19^{\text {th }}$	05	03	-	-	02	-	-
34.	Setaria barbata	$28^{\text {th }}$	05	-	05	-	-	-	-
35.	Ipomoea involucrate	$16^{\text {th }}$	08	-	-	-	-	-	08
36.	Ananas comosus	$32^{\text {nd }}$	03	-	03	-	-	-	-
37	Axonopus compressus	$23^{\text {rd }}$	30	-	-	-	-	30	-
38.	Alchornea cordifolia (stand)	$26^{\text {th }}$	10	-	10	-	-	-	-

(A) Density
12.982

230	85	02	05	02	22	04	50	35	35
58	58	58	58	58	58	58	58	58	58

3.9661 .4660 .0860 .3790 .0690 .8620 .6030 .6900 .1720 .172

40	10	10	13	03	15	05	10	20	04

$\begin{array}{llllllllll}58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
0.6900 .1720 .1720 .2240 .0520 .2590 .0860 .1720 .3450 .069

05	25	25	07	05	10	02	09	07	10
58	58	58	58	58	58	58	58	58	58

0.0860 .4310 .4310 .1210 .0860 .1720 .0340 .0340 .1210 .172
$\begin{array}{cccccccc}02 & 05 & 05 & 05 & 08 & 03 & 30 & 10 \\ 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
$0.034 \quad 0.0860 .0860 .086 \quad 0.138 \quad 0.0520 .5170 .172$

(B) REL. DENSITY

30.5511 .2930 .2620 .6620 .2622 .9190 .5326 .6404 .6454 .6455 .3151 .3251 .3251 .7250 .4011 .995
0.6621 .3252 .6580 .5320 .6623 .3200 .9320 .6621 .3250 .2621 .1940 .9321 .3250 .2520 .6620 .6621 .063
0.4013 .9821 .325
1366.9
(C) FREQUENCY
$\begin{array}{lllllllllllll}6 / 6 & 5 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 4 / 6 & 2 / 6 & 4 / 6 & 5 / 6 & 4 / 6 & 3 / 6 & 2 / 6 & 2 / 6\end{array}$
$10083.316 .716 .716 .766 .733 .366 .783 .366 .750 \quad 33.333 .3$
$\begin{array}{llllllllllll}2 / 6 & 1 / 6 & 3 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 4 / 6 & 1 / 6 & 2 / 6 & 2 / 6\end{array} 3 / 6$
$33.316 .75016 .716 .716 .733 .316 .766 .716 .7 \quad 33.333 .350$
$\begin{array}{llllllllllll}1 / 6 & 3 / 6 & 2 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 1 / 6\end{array}$
$16.750 \quad 33.3 \quad 33.316 .716 .733 .316 .733 .316 .716 .716 .7$

(D) REL. FREQUENCY

7.3166 .0941 .2221 .2221 .2224 .8802 .4364 .8806 .0944 .8802 .436
2.436 2.436/1.222 3.6581 .2221 .2221 .2222 .4361 .2221 .2222 .436
$2.4363 .6581 .2223 .657 / 2.4362 .4361 .2221 .2222 .4361 .2222 .436$
1.2221 .2221 .222

(E) IMPORTANCE VALUE

1st $2^{\text {nd }}$ 34th 27th 34th 6th 22 nd 3 rd 4 th 5 th 37.86617 .3871 .4841 .8841 .4847 .7992 .96811 .52010 .7399 .252

9th 15th 15th 13th 32nd 7th 27th 24th 14th 22nd 4.9833 .7613 .7614 .1611 .6235 .6531 .8842 .5473 .8802 .968 26th 11th 11th 19th 9th 24th 34th 10th 19th 15th 1.8844 .5424 .5423 .3683 .0984 .9831 .4844 .8523 .3683 .761 26th 27th 21st 27th 18th 32nd 8th 24th

APPENDIX VIII
LONG TERM FALLOW SITE C (DETERMINING IMPORTANCE VALUES (SLOPE) RAINY SEASON (UNMANAGED)

S/n	Species	Position	Total Quads	$\begin{aligned} & \text { Quad. } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Quad. } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Quad. } \\ & \mathbf{3} \end{aligned}$	$\begin{array}{\|l} \hline \text { Quad. } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Quad. } \\ 5 \end{array}$	Quad.6
1.	Mucuna pruriens	$7^{\text {th }}$	65	10	05	10	20	-	20
2.	Desmodium scorpiurus	$3{ }^{\text {rd }}$	90	10	10	20	20	20	10
3.	Panicum maxima	$4^{\text {th }}$	70	05	05	10	10	20	20
4.	Imperata cylindrica	$1{ }^{\text {st }}$	150	30	20	30	10	30	30
5.	Alternanthera braziliensis	$10^{\text {th }}$	65	-	30	15	20	-	-
6.	Sarcocephalum Laxiflora (stand)	$14^{\text {th }}$	25	15	-	-	-	10	-
7.	Pennisetum pedicellatum	$20^{\text {th }}$	25	-	10	-	10	05	-
8.	Hachelochloa granularis	$10^{\text {th }}$	65	30	-	15	-	-	20
9.	Musa paradisiaca	$14^{\text {th }}$	25	-	10	-	10	05	-
10.	Aspilia africana	$2^{\text {nd }}$	95	05	10	20	20	20	20
11.	Heterotis rotundifolia	$26^{\text {th }}$	20	20	-	-	-	-	-
12.	Ageratum conyzoides	$6^{\text {th }}$	70	10	20	20	10	10	10
13.	Ipomoea triloba	$12^{\text {th }}$	45	-	-	-	10	15	20
14.	Mimosa invisa	$9^{\text {th }}$	90	40	-	20	30	-	-
15.	Waltheria indica	$12^{\text {th }}$	45	-	15	-	10	20	-
16.	Manihot esculentum	$5^{\text {th }}$	40	10	5	5	5	5	10
17.	Ipomoea involucrata	$13^{\text {th }}$	35	-	5	-	10	-	20
18.	Ipomoea triloba	$8^{\text {th }}$	40	20	-	10	-	5	5
19.	Phyllanthus amarus	$16^{\text {th }}$	15	5	-	5	-	5	-
20.	Sida acuta	$27^{\text {th }}$	05	-	-	-	-	-	05
21.	Melastromastrum capitatum	$16^{\text {th }}$	15	-	5	-	5	-	5
22.	Digitaria gayana	$16^{\text {th }}$	15	5	5	5	-	-	-
23.	Mitracarpus villosus	$22^{\text {nd }}$	10	-	-	-	5	5	-
24.	Sporobolus pyramidalis	$27^{\text {th }}$	05	-	-	-	--	-	5
25.	Pennisetum polystachion	$27^{\text {th }}$	05	-	-	5	-	-	-
26.	Synedrela nodiflora	$27^{\text {th }}$	05	-	-	5	-	-	-
27.	Hibiscus asper	$27^{\text {th }}$	05	-	-	-	-	-	5
28.	Saccharum officinarum	$27^{\text {th }}$	05	05	-	-	-	-	-
29.	Bidens pilosa	$27^{\text {th }}$	05	-	-	-	-	5	-
30	Alternanthera sessilis	$19^{\text {th }}$	40	-	30	10	-	-	-
31.	Justicia flava	$27^{\text {th }}$	05	-	-	-	5	-	-
32.	Digitaria nuda	$27^{\text {th }}$	05	-	-	-	5	-	-
33.	Mariscus alternifolia	$21^{\text {st }}$	15	10	5	-	-	-	-
34.	Zornia latifolia	$22^{\text {nd }}$	10	-	-	-	-	5	5

35.	Oldenlandlia corymbosa	$27^{\text {th }}$	05	5	-	-	-	-	-
36	Crotolaria retusa	$22^{\text {nd }}$	10	-	-	-	-	5	5
37	Commelina erecta	$22^{\text {nd }}$	10	-	-	5	5	-	-

DENSITY

21.552

65	90	70	150	65	25	25	65	25	95	20	70	45

58	58	58	58	58	58	58	58	58	58	58	58	58

1.1211 .5521 .2072 .5861 .1210 .4310 .1431 .1210 .4311 .6380 .3451 .2070 .776

90	45	40	35	40	15	05	15	15	10	05	05	05			
58	58	58	58	58	58	58	58	58	58	58	58	58	1.552	0.776	0.690
0.603	0.690														

$0.2590 .0860 .2590 .2590 .1720 .0860 .086 \quad 0.086$

05	05	05	40	05	05	15	10	05	10	10
58	58	58	58	58	58	58	58	58	58	58

$\begin{array}{lllllllllll}58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
$0.0860 .0860 .0860 .6900 .0860 .0860 .2590 .1720 .086 \quad 0.172 \quad 0.172$

(B) REL. DENSITY

5.2017 .2015 .60011 .9995 .2012 .02 .05 .2012 .07 .6001 .6005 .6003 .6007 .2013 .6003 .022 .7983 .202 1.2020 .3991 .2021 .2020 .7890 .3990 .3990 .3990 .3990 .3990 .3993 .2020 .3990 .3991 .2020 .7980 .399 0.7980 .798

(C FREQUENCY

1700.1

$\begin{array}{lllllllllllllllllll} & 5 / 6 & 6 / 6 & 6 / 6 & 6 / 6 & 3 / 6 & 2 / 6 & 3 / 6 & 3 / 6 & 6 / 6 & 1 / 6 & 5 / 6 & 3 / 6 & 83.3 & 100 & 100 & 100 & 50 & 50 \\ 33.3 & 50\end{array}$ $\begin{array}{llll}100 & 16.7 & 83.3 & 50\end{array}$
$\begin{array}{lllllllllll}3 / 6 & 3 / 6 & 6 / 6 & 3 / 6 & 4 / 6 & 3 / 6 & 1 / 6 & 3 / 6 & 3 / 6 & 2 / 6 & 1 / 6\end{array} 1 / 6$
$\begin{array}{llllllllllll}50 & 50 & 100 & 50 & 66.7 & 50 & 16.7 & 50 & 50 & 33.3 & 16.7 & 16.7\end{array}$
$\begin{array}{lllllllllll}1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 2 / 6 & 1 / 6 & 2 / 6\end{array} \quad 2 / 6$
$\begin{array}{lllllllllll}16.7 & 16.7 & 16.716 .7 & 33.3 & 16.7 & 16.7 & 33.3 & 33.3 & 16.7 & 33.3 & 33.3\end{array}$
(D) REL. FREQUENCY
$\begin{array}{lllllllllllllllll}4.900 & 5.882 & 5.882 & 5.882 & 2.941 & 2.941 & 1.959 & 2.941 & 5.882 & 0.982 & 4.900 & 2.941 / 2.941 & 2.941 & 5.882\end{array}$
$\begin{array}{llllllllllllllll}2.941 & 5.882 & 2.941 & 3.923 & 2.941 & 0.982 / 2.941 & 2.941 & 1.959 & 0.982 & 0.982 & 0.982 & 0.982 & 0.982 & 0.982\end{array}$
$\begin{array}{lllllll}1.959 & 0.982 & 1.959 & 1.959 & 0.982 & 1.959 & 1.959\end{array}$
(E) IMPORTANCE VALUE

7th 3rd 4th 1st 10th 14th 20th 10th 14th 2nd 26th 6th 10.1013 .08311 .48217 .8818 .1424 .9413 .9418 .1424 .94113 .4822 .58210 .500

12th 12th 12 th $5^{\text {th }}$ 13th 8 th 16 th 22 nd 27 th 16 th $22^{\text {nd }} 27^{\text {th }}$
6.54110 .1426 .5419 .0845 .7397 .1254 .1434 .1431 .3814 .1432 .7571 .381

27th 27 th 27 th $27^{\text {th }} 19$ th 27 th 27 th 21 st 22 nd 27 th 22 nd 22 nd 1.3811 .3811 .3811 .3815 .1611 .3811 .3813 .1612 .7571 .3812 .7572 .757

ENTIRE FARM UNDER CURRENT USAGE SITE D (DETERMINING ABUNDANCE IMPORTANCE VALUES (SLOPEY)
 DRY SEASON -MANAGED

Total Dimensions $(80 \times 80) \mathrm{ft}=$
$1 \mathrm{~m}=3.3 \mathrm{ft} \ldots$
$\ldots(24 \times 24)=576$
5% sampling intensity $=5 / 100 \times 576 / 1=576$
=
29 quadrats

S/n	Species	Position	Total Quads	Quad. 1	Quad. 2	Quad. 3	$\begin{array}{\|l} \hline \text { Quad. } \\ \hline \end{array}$	Quad. 5	$\begin{aligned} & \hline \text { Qua } \\ & \text { d.6 } \end{aligned}$
1.	Amaranthus spinosus	31st	05	05	-	-	-	-	-
2.	Zea mays	$18^{\text {th }}$	15	10	-	-	05	-	-
3.	Vernonia amygdalina	$7^{\text {th }}$	30	05	05	05	05	05	05
4.	Talinum triangulare	$3^{\text {rd }}$	110	20	20	20	10	10	30
5.	Phyllanthus amarus	$22^{\text {nd }}$	08	-	-	-	-	03	08
6.	Cynodon dactylon	$2^{\text {nd }}$	140	-	10	30	50	50	-
7.	Ocimum basilicum	$1^{\text {st }}$	300	50	50	50	50	50	50
8.	Gomphrena celosioides	$4^{\text {th }}$	120	40	-	30	20	10	20
9.	Sporobolus pyramidalis	$4^{\text {th }}$	120	-	10	30	20	30	30
10.	Panicum repens	$31^{\text {st }}$	05	-	-	05	-	-	-
11.	Mariscus altermifolia	$31^{\text {st }}$	05	-	05	-	-	-	-
12.	Commelina erecta	$12^{\text {th }}$	20	05	-	-	05	05	05
13.	Portulaca oleracea	$15^{\text {th }}$	40	-	20	-	-	20	-
14.	Desmodium scorpiurus	$12^{\text {th }}$	20	-	05	05	05	05	05
15.	Euphorbia hirta	$20^{\text {th }}$	10	05	-	-	05	-	-
16.	Euphorbia heterophyla	$16^{\text {th }}$	15	05	-	05	05	-	-
17.	Mimosa invisa	$12^{\text {th }}$	20	05	05	-	-	05	05
18.	Setaria longiseta	$11^{\text {th }}$	35	05	10	-	-	-	20
19.	Setaria barbata	$29^{\text {th }}$	10	-	10	-	-	-	-
20	Brachiaria deflexa	$23^{\text {rd }}$	20	-	-	-	20	-	-
21.	Cypenus rotundus	$18^{\text {th }}$	15	-	-	-	-	05	10
22.	Ageratum conyzoides	$20^{\text {th }}$	10	-	-	05	-	05	-
23.	Rottboellia cochinchinensis	$23^{\text {rd }}$	20	-	-	-	-	-	20
24.	Piliostigma thonningii (stand)	$28^{\text {th }}$	15	-	-	-	--	-	15
25.	Paspalum scrobiculatum	$10^{\text {th }}$	30	05	10	05	10	-	-
26.	Ananas melanguena	$9^{\text {th }}$	60	-	-	-	-	50	10
27.	Commelina diffusa	$8^{\text {th }}$	45	-	20	05	10	-	10
28.	Sorghum arundinaceum	$23^{\text {rd }}$	20	-	-	-	20	-	-
29.	Hyptis lanceolata	$23^{\text {rd }}$	20	-	-	-	-	-	20
30.	Ipomoea triloba	$31^{\text {st }}$	05	05	-	-	-	-	-
31	Cleome rutidospema	$17^{\text {th }}$	13	05	05	03	-	-	-
32.	Synedrella nodiflora	$31^{\text {st }}$	05	-	-	-	-	-	05
33.	Ipomoea eriocarpa	$17^{\text {th }}$	15	-	-	-	10	05	-

34.	Sarcocephalum laxiflora (stand)	$31^{\text {st }}$	05	-	05	-	-	-	-
35.	Digitaria gayana	$31^{\text {st }}$	05	-	-	-	-	-	05
36.	Oldenlandlia herbacea	$44^{\text {th }}$	03	-	-	-	03	-	-
37.	Sida garckeana	$44^{\text {th }}$	03	-	-	03	-	-	-
38.	Bidens pilosa	$31^{\text {st }}$	05	-	-	-	05	-	-
39.	Manihot esculenta	$31^{\text {st }}$	05	-	-	05	-	-	-
40	Panicum laxum	$31^{\text {st }}$	05	-	-	-	-	-	05
41.	Croton lobatus	$20^{\text {th }}$	12	02	10	-	-	--	-
42.	Imperata cylindrica	$31^{\text {st }}$	05	-	-	-	05	-	-
43.	Panicum maxima	$23^{\text {rd }}$	20	-	-	20	-	-	-
44.	Cypenus esculentus	$31^{\text {st }}$	05	-	-	05	-	-	-
45.	Spermacoce ocymoides	$6^{\text {th }}$	100	50	-	-	-	-	50
46.	Mitracarpus villosus	$31^{\text {st }}$	05	-	-	-	-	05	-
47.	Mariscus flabelliformis	$31^{\text {st }}$	05	-	-	-	05	-	-
48.	Pupalia lappacea	$29^{\text {th }}$	10	10	-	-	-	-	-

DENSITY

05	15	30	110	08	140	300	120	120	05	05
58	58	58	58	58	58	58	58	58	58	58
0.086	0.259	0.517	1.897	0.138	2.414	5.172	2.069	2.069	0.086	0.0
20	40	20	10	15	20	35	10	20	15	10
58	58	58	58	58	58	58	58	58	58	58

$$
0.3450 .6900 .3450 .1720 .2590 .3450 .6030 .1720 .3450 .2590 .172
$$

20	15	30	60	45	20	20	05	13	05	15

58	58	58	58	58	58	58	58	58	58	58

58	58	58	58	58	58	58	58	58	58	58

0.0860 .00860 .0520 .0520 .0860 .00860 .0860 .2070 .0860 .3450 .086
$\begin{array}{llll}100 & 05 & 05 & 10\end{array}$
$58 \quad 58 \quad 58 \quad 58$
$1.724 \quad 0.0860 .0860 .172 \quad 24.034$
(B) FREQUENCY
$\begin{array}{llllllllllll}1 / 6 & 2 / 6 & 6 / 6 & 6 / 6 & 2 / 6 & 4 / 6 & 6 / 6 & 5 / 6 & 5 / 6 & 1 / 6 & 1 / 6 & 4 / 6\end{array}$ $\begin{array}{lllllllllllll}16.7 & 33.3 & 100 & 100 & 33.6 & 16.7 & 100 & 83.3 & 83.3 & 16.7 & 16.7 & 66.7\end{array}$ $\begin{array}{llllllllllll}2 / 6 & 4 / 6 & 2 / 6 & 3 / 6 & 4 / 6 & 3 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 2 / 6 & 1 / 6 & 1 / 6\end{array}$ $\begin{array}{llllllllllllll}33.6 & 66.7 & 33.6 & 50 & 66.7 & 50 & 16.7 & 16.7 & 33.6 & 33.6 & 16.7 & 16.7\end{array}$ $\begin{array}{llllllllllll}4 / 6 & 2 / 6 & 4 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 3 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 1 / 6\end{array}$ $\begin{array}{llllllllllll}66.7 & 33.6 & 66.7 & 16.7 & 16.7 & 16.7 & 50 & 16.7 & 33.6 & 16.7 & 16.7 & 16.7\end{array}$ $\begin{array}{llllllllllll}1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 1 / 6\end{array}$ $\begin{array}{lllllllllllllllllllllll}16.7 & 16.7 & 16.7 & 16.7 & 33.6 & 16.7 & 16.7 & 16.7 & 33.6 & 16.7 & 16.7 & 16.7\end{array}$
(C) REL. DENSITY
0.3581 .0782 .1517 .8930 .57410 .04421 .5208 .6098 .6090 .3580 .3581 .4352 .8711 .4350 .7161 .078
1.4352 .5090 .7161 .4351 .4351 .0780 .7161 .4351 .0782 .1514 .3023 .2291 .4351 .4350 .3580 .9320 .358
1.0780 .3580 .3580 .2160 .2160 .3580 .3580 .3580 .8610 .3581 .4350 .3587 .1730 .3580 .716
(D) REL. FREQUENCY
0.9521 .9165 .7035 .7031 .9163 .0845 .7034 .7504 .7500 .9520 .952
3.8041 .9163 .8041 .9162 .8513 .8042 .8510 .9520 .9521 .9161 .9160 .9520 .9523 .8041 .9163 .8040 .952 0.9520 .9522 .8510 .9521 .9160 .9520 .9520 .9520 .9520 .9520 .9520 .9521 .9160 .9520 .9521 .9160 .952 0.9520 .952
(E) IMPORTANCE VALUE

31st 18th 7th 3rd 22nd 2nd 1st 4th 4th 31st 31st 1.312 .9947 .85413 .5962 .4913 .84827 .22313 .35913 .3591 .311 .31 12th 15th 12th 20th 16th 12th 11th 29th 23rd 18th 20th 5.2394 .7875 .2392 .6323 .9295 .2395 .361 .6682 .3872 .9942 .632 23rd 28th 10th 9th 8th 23rd 23rd 31st 17th 31st 17th 31st 2.3872 .035 .9556 .2167 .0332 .3872 .3871 .313 .7831 .312 .9941 .31 31st 44th 44th 31st 31st 31st 20th 31st 23rd 31st 6th 31st 1.311 .1681 .1681 .311 .311 .312 .7771 .312 .3871 .319 .0891 .31

31st 29th
1.311 .668

APPENDIX X

ENTIRE FARM UNDER CURRENT USAGE SITE D (DETERMINING IMPORTANCE VALUE (SLOPEY)

RAINY SEASON - MANAGED
(80 X80)ft
6 quadrats

S/n	Species	Position	Total Quads	Quad. $\mathbf{1}$	Quad. $\mathbf{2}$	Quad. $\mathbf{3}$	Quad. $\mathbf{4}$	Quad. $\mathbf{5}$	Quad $\mathbf{6}$
1.	Musa paradisiaca	$40^{\text {th }}$	06	-	03	-	03	-	-
2.	Ageratum conyzoides	$1^{\text {st }}$	125	15	30	20	30	20	30
3.	Vernonia amygdalina	$8^{\text {th }}$	40	10	5	05	05	10	5
4.	Mimosa invisa	$22^{\text {nd }}$	15	-	05	05	05	-	-
5.	Bidens pilosa	$4^{\text {th }}$	75	10	20	10	20	10	05
6.	Hackelochloa granularis	$9^{\text {th }}$	35	10	-	05	10	-	10
7.	Ipomoea involucrata	$30^{\text {th }}$	10	-	05	-	-	05	-
8.	Euphorbia hirta	$17^{\text {th }}$	25	-	-	-	05	10	10
9.	Euphorbia heterophylla	$23^{\text {rd }}$	20	-	10	10	-	-	-
10.	Manihot esculentum	$25^{\text {th }}$	09	-	-	-	03	03	03
11.	Digitaria gayana	$30^{\text {th }}$	10	05	05	-	-	-	-
12.	Mariscus flabelliformis	$12^{\text {th }}$	35	-	05	20	10	-	-
13.	Mariscus alternifolia	$6^{\text {th }}$	55	-	20	05	20	05	05
14.	Cyperus rotundus	$30^{\text {th }}$	10	-	-	-	-	05	05
15.	Commelina erecta	$38^{\text {th }}$	08	-	-	-	-	03	05
16.	Spermacoce ocymoides	$3^{\text {rd }}$	90	-	30	20	20	20	20
17.	Oldenlandlia corymbosa	$5^{\text {th }}$	65	20	05	15	05	10	10
18.	Boerhavia diffusa	$2^{\text {nd }}$	120	30	20	10	20	10	20
19.	Mucuna pruriens	$54^{\text {th }}$	03	-	03	-	-	-	-
20.	Cyathula prostrata	$54^{\text {th }}$	03	-	-	-	-	03	-
21.	Kyllinga pumila	$17^{\text {th }}$	25	10	05	10	-	-	-
22.	Kyllinga erecta	$20^{\text {th }}$	20	-	05	10	-	-	-
23.	Cyperus haspan	$12^{\text {th }}$	35	20	-	-	05	-	10
24.	Echinochloa obtusiflora	$47^{\text {th }}$	05	-	-	-	-	05	-
25.	Cyperus iria	$38^{\text {th }}$	20	10	-	-	-	-	10
26.	Lessia hexandra	$54^{\text {th }}$	05	-	-	05	-	-	-

27.	Paspalum scrobiculatum	$42^{\text {nd }}$	08	-	-	-	03	05	-
28.	Mimosa pigra	$15^{\text {th }}$	03	-	-	-	03	-	-
29.	Ananas melanguena	$27^{\text {th }}$	05	-	05	-	-	-	-
30.	Talinum triangulare	$10^{\text {th }}$	40	05	05	05	05	10	10
31.	Phyllanthus amarus	$21^{\text {st }}$	20	05	05	05	05	05	05
32.	Sporobolus pyramidalis	$23^{\text {rd }}$	20	-	10	10	-	-	-
33.	Zea mays	$29^{\text {th }}$	09	03	-	03	-	03	-
34.	Ocimum maxima	$26^{\text {th }}$	20	-	-	-	10	-	10
35.	Brachiara lata	$47^{\text {th }}$	05	-	-	-	-	-	05
36.	Brachiara deflexa	$40^{\text {th }}$	15	10	05	-	-	-	-
37.	Mitracarpus villosus	$10^{\text {th }}$	06	-	-	03	-	03	-
38.	Spigelia anthelmia	$19^{\text {th }}$	06	-	-	03	-	03	-
39.	Panicum laxum	$15^{\text {th }}$	45	20	10	-	05	05	05
40.	Acroceras zizaniodes	$26^{\text {th }}$	30	-	-	-	10	-	20
41.	Mimosa pudica	$30^{\text {th }}$	15	-	-	-	05	10	-
42.	Gomphrena celosioides	$42^{\text {nd }}$	15	-	10	05	-	-	-
43.	Ipomoea triloba	$6^{\text {th }}$	10	10	-	-	-	-	-
44.	Commelina diffusa	$35^{\text {th }}$	05	05	-	-	-	-	-
45.	Ocimum basilicum	$29^{\text {th }}$	80	-	20	30	-	30	-
46.	Spermacoce verticillata	$54^{\text {th }}$	15	-	-	-	15	-	-
47.	Celosia leptostachyus	$35^{\text {th }}$	05	-	-	-	05	-	-
48.	Ipomoea eriocarpa	$34^{\text {th }}$	03	-	-	03	-	-	-
49.	Peperomia pellucida	$36^{\text {th }}$	30	20	-	10	-	-	-
50.	Digitaria nuda	$54^{\text {th }}$	03	-	-	-	-	-	03
51.	Portulacastrum	$54^{\text {th }}$	03	-	03	-	-	-	-
52.	Alternanthera sessilis	$12^{\text {th }}$	35	20	-	-	-	10	05
53.	Celosia isertii	$54^{\text {th }}$	03	-	-	-	03	-	-
54.	Amaranthus hybridus	$64^{\text {th }}$	02	-	-	-	-	-	02
55.	Axonopus compressus	$48^{\text {th }}$	05	-	05	-	-	-	-
56.	Plastostoma africanum	$48^{\text {th }}$	05	-	-	05	-	-	-
57.	Sida linifolia	$48^{\text {th }}$	05	-	-	05	-	-	-
58.	Sesamum indicum	$48^{\text {th }}$	05	-	-	-	-	-	05
59.	Zea mays	$24^{\text {th }}$	11	-	05	-	03	-	03
60.	Fimbristylis littoralis	$54^{\text {th }}$	03	03	-	-	-	-	-
61.	Acanthospermum hispidum	$44^{\text {th }}$	10	-	-	10	-	-	-
62.	Solenostemum monostachyus	$48^{\text {th }}$	05	-	-	05	-	-	-
63.	Boerhavia coccinea	$35^{\text {th }}$	15	-	-	-	-	-	15
64.	Stachytarpheta cayennensis	$54^{\text {th }}$	03	-	-	--	-	03	-
65.	Pouzolzia	$64^{\text {th }}$	02	02	-	-	-	-	-
66.	Setaria barbata	$28^{\text {th }}$	13	10	03	-	-	-	-
67.	Cleome viscosa	$64^{\text {th }}$	02	-	-	-	02	-	-
68.	Cymbopogon cittratus	$44^{\text {th }}$	10	-	-	-	-	10	-
69.	Alchomea cordifolia (stand)	$44^{\text {th }}$	10	-	10	-	-	-	-
70.	Colocasia esculentum	$64^{\text {th }}$	02	02	-	-	--	-	-
71.	Dioscorea dumentosum	$64^{\text {th }}$	02	-	-	-	-	-	02
72.	Cajanus cajan	$64^{\text {th }}$	02	-	-	02	-	-	-

A DENSITY

66	125	40		15	75	35	10	25	20	09	10
58	58	58	58	58	58	58	58	58	58	58	
0.103	2.155	0.690	0.259	1.293	0.603	1.172	0.431	0.345	0.155	0.172	
35	55	10	08	90	65	120	03	03	25	20	
58	58	58	58	58	58	58	58	58	58	58	
0.603	0.948	0.172	0.138	1.552	1.121	2.069	0.052	0.052	0.431	0.345	
35	05	20	05	08	03	05	40	20	20	09	20
58	58	58	58	58	58	58	58	58	58	58	58

0.6030 .0860 .3450 .0860 .1380 .0520 .0860 .6900 .3450 .3450 .1550 .345

05	15	06	06	45	30	15	15	10	05	80

58	58	58	58	58	58	58	58	58	58	58

0.0860 .2590 .1030 .1030 .7760 .5170 .2590 .2590 .1720 .0861 .379

15	05	03	30	03	03	35	03	02	05	05
58	58	58	58	58	58	58	58	58	58	58

$\begin{array}{lllllllllll}05 & 05 & 11 & 03 & 10 & 05 & 15 & 03 & 02 & 13 & 02\end{array}$
$\begin{array}{lllllllllll}58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
0.0860 .0860 .1900 .0520 .1720 .0860 .2590 .0520 .0340 .2240 .034
$\begin{array}{lllllll}13 & 02 & 10 & 10 & 02 & 02 & 02\end{array}$
$\begin{array}{lllllll}58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
0.1720 .0340 .1720 .1720 .0340 .0340 .034
2672.6

B FREQUENCY
$\begin{array}{llllllllllll}2 / 6 & 6 / 6 & 6 / 6 & 3 / 6 & 6 / 6 & 4 / 6 & 2 / 6 & 3 / 6 & 2 / 6 & 3 / 6 & 2 / 6 & 2 / 6\end{array}$
$\begin{array}{lllllllllll}33.6 & 100 & 100 & 50 & 100 & 66.7 & 33.6 & 50 & 33.6 & 50 & 33.6 \\ 50\end{array}$
$\begin{array}{lllllllllll}5 / 6 & 2 / 6 & 2 / 6 & 4 / 6 & 6 / 6 & 6 / 6 & 1 / 6 & 1 / 6 & 3 / 6 & 3 / 6 & 3 / 6\end{array} 1 / 6$
$83.333 .633 .6 \quad 66.7 \quad 100 \quad 100 \quad 16.7 \quad 33.6 \quad 50$
$\begin{array}{lllllllllll}2 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 6 / 6 & 4 / 6 & 2 / 6 & 3 / 6 & 2 / 6 & 1 / 6\end{array} 2 / 6$ 33.616 .733 .616 .716 .710066 .733 .6 $\begin{array}{llllllllllll}2 / 6 & 2 / 6 & 5 / 6 & 2 / 6 & 2 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 3 / 6 & / 6 & 1 / 6 & 1 / 6\end{array}$ $\begin{array}{lllllllllll}33.6 & 16.7 & 83.3 & 33.6 & 33.6 & 33.6 & 16.7 & 16.7 & 50 & 16.7 & 16.7\end{array} 16.7$ $\begin{array}{llllllllllll}2 / 6 & 1 / 6 & 1 / 6 & 3 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 3 / 6 & 1 / 6\end{array}$ $\begin{array}{llllllllllll}33.6 & 16.7 & 16.7 & 50 & 16.7 & 16.7 & 16.7 & 16.7 & 16.7 & 16.7 & 50 & 16.7\end{array}$ $\begin{array}{llllllllllll}1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6\end{array}$ $\begin{array}{lllllllllllll}16.7 & 16.7 & 16.7 & 16.7 & 16.7 & 33.6 & 16.7 & 16.7 & 16.7 & 16.7 & 16.7 & 16.7\end{array}$ C. REL. DENSITY
$\begin{array}{llllllll}0.595 & 12.447 & 3.985 & 1.496 & 7.468 & 3.483 & 0.993 & 2.489 \\ 1.993 & 0.895\end{array}$
$0.993 \quad 3.4835 .4750 .9930 .7978 .9646 .47511 .9500 .300 \quad 0.300$
$\begin{array}{lllllllllll}2.489 & 1.993 & 3.483 & 0.497 & 0.797 & 0.300 & 0.497 & 3.985 & 1.993 & 1.993\end{array}$
$\begin{array}{lllllllllllllllll}0.895 & 1.993 & 0.497 & 1.496 & 0.595 & 0.595 & 4.482 & 2.9986 & 1.496 & 1.496\end{array}$ 0.9930 .4977 .9651 .4960 .4970 .3001 .4960 .3000 .9930 .300
$0.3003 .4830 .3000 .1960 .497 \quad 0.4970 .4970 .4971 .0970 .300$
$0.9930 .4971 .4960 .300 \quad 0.196 \quad 1.294 \quad 0.196 \quad 0.9930 .9930 .196$
0.1960 .1960 .196

D. REL. DENSITY

$1.2573 .7423 .7421 .8713 .7422 .4961 .2571 .8711 .2571 .8711 .257 \quad 1.8713 .1171 .2571 .2572 .496$
3.7423 .7420 .6250 .6251 .8711 .8711 .8710 .6251 .2570 .6251 .2570 .6250 .6253 .7422 .4961 .2571 .871 1.2570 .6251 .2571 .2571 .2573 .1171 .2571 .2570 .6250 .6251 .8710 .6250 .6250 .6251 .2570 .6250 .625 1.8710 .6250 .6250 .6250 .6250 .6251 .8710 .6250 .6250 .6250 .6250 .6251 .2570 .6250 .6250 .6250 .625 0.6250 .6250 .625

IMPORTANCE VALUE

40th 1st 8th 22nd 4th 9th 30th 17th 23rd 25th 30th 12th 1.852 16.189 7.727 3.36711 .215 .9792 .254 .363 .252 .7662 .255 .354 6th 30th 38th 3rd 5th 2nd 54th 54th 17th 20th 12th
8.5922 .252 .05411 .4610 .21715 .6920 .9250 .9254 .363 .8645 .354 48th 38 th 54 th 42 nd 15 th 27 th 10 th 21 st 23 rd 29 th 26 th 47 th 1.1222 .0540 .9251 .7544 .6132 .6185 .7533 .3913 .252 .3682 .7531 .22 40th 10th 19th 15th 26th 30th 41st 6th 35th 29th 54th 1.8525 .7354 .2434 .6132 .7532 .251 .7548 .5922 .1212 .3680 .925 35th 54th 30th 54th 54th 12th 54th 64th 48th 48th 48th 2.1210 .9252 .250 .9250 .9255 .3540 .9250 .8211 .1221 .1221 .122 48th 24th 54th 44th 48th 35th 54th 64th 28th 64th 44th 1.1222 .9680 .9251 .6181 .1222 .1210 .9250 .8212 .5510 .8211 .618 44th 64th 64th 64th 64th 1.6180 .8210 .8210 .8210 .821

APPENDIX XI
 ENTIRE FARM UNDER CURRENT USAGE SITE E (DETERMINING IMPORTANCE VALUES (FLAT) DRY SEASON - MANAGED

Site D Total Dimension (80×80)ft (3×3) quadrt
5% of 57657.6
$=5 / 100 \times 576 / 1=7.29$
$=29$ quadrats

S/n	Species	Position	Total Quads	Quad. 1	Quad. 2	Quad. 3	Quad. 4	Quad. 5	Quad. 6
1.	Telfeira occidentalis	$1^{\text {st }}$	180	50	-	20	30	30	50
2.	Sporobolus pyramidalis	$2^{\text {nd }}$	145	05	30	10	30	50	20
3.	Zea mays	$7^{\text {th }}$	40	05	05	10	10	05	05
4.	Paspalum scrobiculatum	$11^{\text {th }}$	20	05	-	05	-	05	05
5.	Imperata cylindrica	$20^{\text {th }}$	10	05	-	05	-	-	-
6.	Cynodon dactylon	$5^{\text {th }}$	100	-	30	10	20	10	30
7.	Ocimum basilicum	$6^{\text {th }}$	110	30	50	30	-	-	-
8.	Vernonia amygdalina	$19^{\text {th }}$	15	-	-	-	10	05	-
9.	Setaria longiseta	$28^{\text {th }}$	05	-	-	-	-	-	05
10.	Talinum triangulare	$17^{\text {th }}$	30	-	-	-	10	-	20
11.	Axonopus compressus	$28^{\text {th }}$	05	05	-	-	-	-	-
12.	Spermacoce ocymoides	$3^{\text {rd }}$	150	20	20	-	30	50	30
13.	Diodia sarmentosa	$28^{\text {th }}$	05	-	05	-	-	-	-
14.	Portuluca oleracea	$12^{\text {th }}$	25	10	-	05	-	10	-
15.	Mimosa invisa	$12^{\text {th }}$	25	-	05	-	10	-	10
16.	Setaria barbata	$25^{\text {th }}$	20	-	-	20	-	-	-
17.	Digitaria nuda	$4^{\text {th }}$	120	-	50	30	20	20	-
18.	Brachiaria deflexa	$26^{\text {th }}$	10	-	-	-	-	-	10
19.	Digitaria gayana	$28^{\text {th }}$	05	05	-	-	-	-	-
20	Mariscus alternifolia	$20^{\text {th }}$	10	-	-	-	05	05	-
21.	Manihot esculentum	$28^{\text {th }}$	05	-	-	-	-	-	05
22.	Ananas melanguena	$22^{\text {nd }}$	35	20	-	-	10	05	-

23.	Desmodium scopiurus	$20^{\text {th }}$	10	-	-	-	-	05	05
24.	Echinochloa colona	$9^{\text {th }}$	35	20	15	-	-	-	-
25.	Cyperus esculentus	$8^{\text {th }}$	45	20	15	10	-	-	-
26.	Cleome rutidosperma	$20^{\text {th }}$	10	-	05	-	-	05	-
27.	Synedrela nodiflora	$16^{\text {th }}$	20	-	-	-	05	10	05
28.	Amaranthus viridis	$28^{\text {th }}$	05	-	-	05	-	-	-
29.	Bidens pilosa	$12^{\text {th }}$	25	10	-	-	05	-	10
30.	Ageratumconyzoides	$28^{\text {th }}$	05	-	-	-	-	-	05
31.	Commelina erecta	$12^{\text {th }}$	25	-	10	10	05	-	-
32.	Eleusine indica	$20^{\text {th }}$	10	05	-	05	-	-	-
33.	Ludwigia decurrens	$28^{\text {th }}$	05	-	-	-	05	-	-
34.	Heteranthera califolia	$28^{\text {th }}$	05	-	-	-	05	-	-
35.	Fimbristylis littoralis	$28^{\text {th }}$	05	05	-	-	-	-	-
36.	Justicia flava	$41^{\text {st }}$	03	-	-	-	03	-	-
37.	Gomphrena celosioides	$26^{\text {th }}$	10	-	-	-	-	-	10
38.	Ipomoea aquatica	$28^{\text {th }}$	05	-	05	-	-	-	-
39.	Cyperus iria	$28^{\text {th }}$	05	05	-	-	-	-	-
40	Sorghum arundinaceum	$18^{\text {th }}$	40	-	-	-	-	40	-
41.	Phyllanthus amarus	$28^{\text {th }}$	05	-	-	-	-	-	05

A. DENSITY

180	145	40	20	10	100	110	15	05	30	05	150
58	58	58	58	58	58	58	58	58	58	58	58

3.1032 .50 .670 .3450 .7241 .7241 .8970 .2590 .0862 .5860 .0862 .586

05	25	25	20	120	10	05	10	05	35	10	35

58	58	58	58	58	58	58	58	58	58	58	58

0.4310 .4310 .3450 .3452 .0690 .1720 .0860 .1720 .0860 .6030 .1720 .603

$\begin{array}{llllllllllll}58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
0.7760 .172050 .0860 .4310 .0860 .4310 .1720 .0860 .0860 .0860 .052
$\begin{array}{lllll}10 & 05 & 05 & 40 & 05\end{array}$
$\begin{array}{lllll}58 & 58 & 58 & 58 & 58\end{array}$
$0.1720 .0860 .0860 .670 .086 \mathbf{2 0 . 5 2 4}$

B. FREQUENCY

S/n	Species	Position	Total Quads	Quad. 1	$\begin{array}{\|l\|} \hline \text { Quad. } \\ \mathbf{2} \\ \hline \end{array}$	Quad. 3	Quad. 4	Quad. 5	$\begin{aligned} & \text { Qua } \\ & \text { d. } 6 \\ & \hline \end{aligned}$
1.	Sporobolus pyramidalis	$2^{\text {nd }}$	115	-	40	-	50	05	20
2.	Ageratum conyzoides	$5^{\text {th }}$	70	15	-	20	10	10	15
3.	Vernonia amydalina	$6^{\text {th }}$	55	05	05	05	10	20	10
4.	Kyllinga pumila	$13^{\text {th }}$	25	-	10	-	10	05	-
5.	Bidens pilosa	$10^{\text {th }}$	40	-	-	15	-	10	15
6.	Cymbopogon cittratus (stand)	$41^{\text {st }}$	05	05	-	-	-	-	-
7.	Oldenlandlia corymbosa	$3^{\text {rd }}$	85	30	-	30	05	10	10
8.	Cyperus haspan	$7^{\text {th }}$	40	-	05	10	05	10	10

9.	Ocimum basilicum	$1^{\text {st }}$	160	-	20	30	30	50	30
10.	Cynodon dactylon	$12^{\text {th }}$	30	10	10	10	-	-	-
11.	Mimosa pudica	$27^{\text {th }}$	10	-	-	-	-	05	05
12.	Kyllinga erecta	$16^{\text {th }}$	30	05	-	05	20	-	-
13.	Evolvulus alsinoides	$38^{\text {th }}$	10	10	-	-	-	-	-
14.	Panicum laxum	$4^{\text {th }}$	95	30	-	30	15	-	20
15.	Leesier hexandra	$38^{\text {th }}$	10	-	10	-	-	-	-
16.	Ludwigia decurrens	$54^{\text {th }}$	03	-	-	-	03	-	-
17.	Heterotis rotundifolia	$41^{\text {st }}$	05	-	-	-	-	05	-
18.	Panicum repens	$54^{\text {th }}$	03	-	-	-	-	-	03
19.	Ludwigia hysopifolia	$16^{\text {th }}$	20	05	-	-	-	10	05
20.	Desmodium scorpiurus	$25^{\text {th }}$	15	05	10	-	-	-	-
21.	Manihot esculentum	$27^{\text {th }}$	10	-	-	05	05	-	-
22.	Alternanthera sessilis	$16^{\text {th }}$	20	10	-	-	-	05	05
23.	Phyllanthus amarus	$11^{\text {th }}$	20	-	05	05	-	05	05
24.	Ludwigia abyssinica	$41^{\text {st }}$	05	-	-	-	05	-	-
25.	Commelina diffusa	$21^{\text {st }}$	15	05	05	05	-	-	-
26.	Sida linifolia	$36^{\text {th }}$	08	-	-	05	03	-	-
27.	Eichinochloa colona	$22^{\text {nd }}$	25	10	-	-	-	-	15
28.	Setaria barbata	$20^{\text {th }}$	30	-	-	10	-	20	-
29.	Eichinochloa obtusiflora	$37^{\text {th }}$	15	-	15	-	-	-	-
30.	Eleusine indica	$27^{\text {th }}$	10	-	-	05	-	05	-
31.	Fimbristylis littoralis	$9^{\text {th }}$	40	-	20	-	10	05	05
32.	Euphorbia hirta	$41^{\text {st }}$	05	05	-	-	-	-	-
33.	Boerhavia diffusa	$13^{\text {th }}$	25	10	10	05	-	-	-
34.	Mitracarpus villosus	$16^{\text {th }}$	20	-	10	05	-	-	-
35.	Digitaria nuda	$41^{\text {st }}$	05	-	-	-	-	-	-
36.	Cyperus esculentus	41st	05	-	-	-	05	-	-
37.	Mariscus flabelliformis	$22^{\text {nd }}$	25	05	-	-	-	-	20
38.	Imperata cylindrica	$41^{\text {st }}$	05	-	-	-	05	-	-
39.	Oryza sativa	$41^{\text {st }}$	05	-	-	-	-	05	-
40.	Talinum triangulare	$27^{\text {th }}$	10	-	05	05	-	-	-
41.	Cleome rutidosperma	$41^{\text {st }}$	05	05	-	-	-	-	-
42.	Mariscus alternifolia	$27^{\text {th }}$	10	-	-	05	-	05	-
43.	Gomphrena celosioides	$15^{\text {th }}$	35	-	30	-	05	-	-
44.	Digitaria gayana	$24^{\text {th }}$	20	-	-	-	-	05	15
45.	Mimosa invisa	$27^{\text {th }}$	10	-	05	-	05	-	-
46.	Euphorbia heterophylla	$27^{\text {th }}$	10	-	-	05	-	05	-
47.	Chlorus piloris	$54^{\text {th }}$	03	03	-	-	-	-	-
48.	Panicum maxima	$27^{\text {th }}$	10	-	-	-	-	05	05
49.	Hackelochloa granularis	$8^{\text {th }}$	50	20	-	10	-	-	20
50.	Spermacoce ocymoides	$38^{\text {th }}$	10	-	-	-	10	-	-
51.	Diodia sarmentosa	$25^{\text {th }}$	15	-	10	-	-	-	05
52.	Pouzolzia guinnensis	$27^{\text {th }}$	10	05	-	-	05	-	-
53.	Hydrolea palustris	$41^{\text {st }}$	05	-	-	-	-	-	05
54.	Pentodon pentandra	$41^{\text {st }}$	05	-	-	-	-	05	-
55.	Laportea aestuans	$41^{\text {st }}$	05	-	05	-	-	-	-

APPENDIX XII
 ENTIRE FARM UNDER CURRENT USAGE SITE E (DETERMINING IMPORTANCE VALUES (FLAT) RAINY SEASON - MANAGED

DENSITY

115	70	55	25	40	05	85	40	160	30	10	30
58	58	58	58	58	58	58	58	58	58	58	58

1.9831 .2070 .9480 .4310 .670 .0861 .4660 .672 .7590 .1720 .517
$\begin{array}{llllllllllll}10 & 95 & 10 & 03 & 05 & 03 & 20 & 15 & 10 & 20 & 20 & 05\end{array}$
$\begin{array}{llllllllllll}58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
0.1721 .6380 .1720 .0520 .0860 .0520 .3450 .2590 .1720 .3450 .3450 .086
$\begin{array}{llllllllllll}15 & 08 & 25 & 30 & 15 & 10 & 40 & 05 & 25 & 20 & 05 & 05\end{array}$
$\begin{array}{llllllllllll}58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
0.2590 .1380 .4310 .5170 .2590 .1710 .670 .0860 .4310 .3450 .0860 .086
$\begin{array}{llllllllllll}25 & 05 & 05 & 10 & 05 & 10 & 35 & 20 & 10 & 10 & 03 & 10\end{array}$
$\begin{array}{llllllllllll}58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & 58\end{array}$
0.4310 .0860 .0860 .1720 .0860 .1720 .6030 .3450 .1720 .1720 .0520 .172

02664 ! $0266 \angle 1$	0e9にを 08912ε	$\begin{aligned} & 280 \\ & 090 \end{aligned}$	$\left.\right\|_{8 v} ^{c 86} 9 \varepsilon$	2841 2841	6000	ข¢E 6	paunsse you seoueven jents 3 paunsse seoveruen jenb3	in
1043 PIS	vocuapi! veow	(pener-z) 6 is	1 P	1	$6{ }^{6}$	4		

120298	Ec88z 2	2L06 2	S\%	Ma	
02289 !	85016 \&	Ob21 11	92	kuley	1/1
Ueaw 10.13 PIS	vonpinal PIS	บeaw	N	uose9s	

152104 2011

$\stackrel{\rightharpoonup}{ }$	8895011	8082%	［ EHO_{1}	
21	t＋590 01	9L8E OL	Kddols	$1 \mathrm{PrO}_{1}$
21	899¢z z！		1ela	
21	＊ 61628	L66106	1×101	
9	\＆бzzz 8	LLZZ6	Addols	NO
9	60800 0t	L961．	$1{ }^{\text {P }}$ ¢	
2.	カャ¢かしとし	00LE ¢	18101	
9	8ていとで	¢¢¢9 11	Kddois	кuley
9	2と198か	298191	18］」	
N		บeaw	${ }^{\text {20，}} 15$	uoseas

			28	$80926 Z 8$	［101 papajo\％
			¢8	¢¢ع ¢¢0 1	1 PO
		29806	62	66082 LL	1037
912	E¢i	80121	！	801 て！	adois ．uoseas
999	002	10281	t	10281	adols
100	$6 \mathrm{6m} 11$	O\＆ 29805	－	OعL $\angle 9801$	uoseas
000	21828	L928 8264	เ	L9L＇8L6L	\deosepu｜
600	201\％	LEL $\varepsilon \angle \varepsilon$	ε	201ヵ6 611	－өpow pөpanoう
				sajenbs	
615	1	ajents urew	IP	fo uns III edx ${ }_{\text {L }}$	asinos

£8	8265001	D0920		
it	LLてとて6	906L\％	${ }^{\text {a d dois }}$	1 라이
てt	6 6 888 01	06120	1eld	
$\angle \varepsilon$	9zoer 9	18289	$1 \mathrm{EP} \mathrm{O}_{1}$	
81	92905 9	68 E 19	Kddois	Na
51	LO6BES	92189	19」	
9＊	12902 11	LعOs ¢i	$1 \mathrm{HO} \mathrm{O}_{1}$	
$\varepsilon ะ$	ozzzs or	と8ャ9てし	Kddols	kuiey
$\varepsilon \Sigma$	98126て，	1698か	109］	
N	UопEinal pis	บeaw	adols	uoseas

sonsyeas annduวsac

$\begin{aligned} & 6919 Z^{\prime}! \\ & 6919 Z^{\prime} \downarrow \end{aligned}$	$\begin{aligned} & 0066 \angle 9 \\ & 0066 \angle \mathrm{~g} \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 90 \mathrm{~g} \mathrm{Gt} \\ & 8 \mathrm{l} \end{aligned}$	$\begin{aligned} & 969 \forall \\ & 969 \Rightarrow \end{aligned}$	882	0021	paunsse ןou saวueuen jenbョ paunsse saวue！ue＾ןenbヨ	IN1
ә๐иәәџ 10．4 3 ＇PIS		（pe\｜pi－z） 6 IS	1 p	1	6 S	y		

ว1！แนว ภินO｜U！̣ SSEID

$\begin{aligned} & \hline \nabla \nabla 069 \\ & 00990 \downarrow \end{aligned}$	$\begin{aligned} & 9 \varepsilon \varepsilon 8\llcorner 乙 \\ & 8 \varepsilon 6 \varepsilon \varepsilon \varepsilon \end{aligned}$	$\begin{aligned} & \text { O90\& } \downarrow \\ & \text { OgOL OL } \end{aligned}$	$\begin{aligned} & \text { Ot } \\ & 01 \end{aligned}$	रuley	1 N
Ueaw J013 PlS	UOTEEINEG P45	ueaw	N	uoseas	

（ $6 \angle \nabla=$ perenbs y parsn（p \forall ）$\angle E G^{\prime}=$ pasenbs $y^{\prime} \mathrm{E}$

$\begin{aligned} & 1 \angle 0 \\ & 9 \angle 0 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$	G9G ε OSt \downarrow غ9961 － 20 OOL こ8で 6	『\＆s 9 ャ6でとて てヤらてて LLが8てし Z68 \＆ 99 19909	$\begin{aligned} & \angle Z \\ & 8 z \\ & \downarrow Z \\ & \llcorner \\ & \llcorner \end{aligned}$		
615	\pm	әנenbs ueaw	1 p		20ınos

82	8LZャG＇	8L619	$\mid \mathrm{ElO} /$	
$\geqslant 1$	18282 乙		KddoIS	
$\nabla 1$	ちでヤOE \downarrow	00ع乙 9	$1 \mathrm{lel}_{5}$	
Z1	88EOZ	E81く＇乙	$\mid \mathrm{ElO}, 1$	
9	10LZL	$\varepsilon \varepsilon \varepsilon \angle ' 乙$	KddolS	NO
9	$\angle 6629^{\circ}$	ยع0L ${ }^{\text {c }}$	1815	
91	$\angle 9669^{\circ}$ ¢	6950\％	1 PlO	
8	$\angle 6 ヵ 0 S^{\circ} \mathrm{C}$	88 LCG	KddolS	Kuley
8	06LZLE	OGL88	181」	
N		ueəW	2dols	uoseas

soḷs！̣ę̧ an！̣d！̣วsą

$\stackrel{\rightharpoonup}{ }$	8895011	8082%	［ EHO_{1}	
21	t＋590 01	9L8E OL	Kddols	$1 \mathrm{PrO}_{1}$
21	899¢z z！		1ela	
21	＊ 61628	L66106	1×101	
9	\＆бzzz 8	LLZZ6	Addols	NO
9	60800 0t	L961．	$1{ }^{\text {P }}$ ¢	
2.	カャ¢かしとし	00LE ¢	18101	
9	8ていとで	¢¢¢9 11	Kddois	кuley
9	2と198か	298191	18］」	
N		บeaw	${ }^{\text {20，}} 15$	uoseas

			28	$80926 Z 8$	［101 papajo\％
			¢8	¢¢ع ¢¢0 1	1 PO
		29806	62	66082 LL	1037
912	E¢i	80121	！	801 て！	adois ．uoseas
999	002	10281	t	10281	adols
100	$6 \mathrm{6m} 11$	O\＆ 29805	－	OعL $\angle 9801$	uoseas
000	21828	L928 8264	เ	L9L＇8L6L	\deosepu｜
600	201\％	LEL $\varepsilon \angle \varepsilon$	ε	201ヵ6 611	－өpow pөpanoう
				sajenbs	
615	1	ajents urew	IP	fo uns III edx ${ }_{\text {L }}$	asinos

£8	8265001	D0920		
it	LLてとて6	906L\％	${ }^{\text {a d dois }}$	1 라이
てt	6 6 888 01	06120	1eld	
$\angle \varepsilon$	9zoer 9	18289	$1 \mathrm{EP} \mathrm{O}_{1}$	
81	92905 9	68 E 19	Kddois	Na
51	LO6BES	92189	19」	
9＊	12902 11	LعOs ¢i	$1 \mathrm{HO} \mathrm{O}_{1}$	
$\varepsilon ะ$	ozzzs or	と8ャ9てし	Kddols	kuiey
$\varepsilon \Sigma$	98126て，	1698か	109］	
N	UопEinal pis	บeaw	adols	uoseas

sonsyeas annduวsac

$\begin{aligned} & 6919 Z^{\prime} \downarrow \\ & 6919 Z^{\prime} \downarrow \end{aligned}$	$\begin{aligned} & 0066 \angle 9 \\ & 0066 \angle 9 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 90 \mathrm{Gl} \\ & 81 \end{aligned}$	$\begin{aligned} & 969 \downarrow \\ & 96 \varsigma \downarrow \end{aligned}$	882	0021	paunsse ןou saวueuen ןenbヨ paunsse saวue！uen ןenb	IN1
ә๐шәฆ！ 10．ヨ ${ }^{\text {P PIS }}$	әоиวมнй иеәW	（penter－z） 615	IP	1	6 S	\pm		

$\begin{aligned} & \forall \nabla 069 \\ & 00990 । \end{aligned}$	$\begin{aligned} & 9 \varepsilon \varepsilon 8\llcorner 乙 \\ & 8 \varepsilon 6 \varepsilon \varepsilon \varepsilon \end{aligned}$	$\begin{aligned} & 090 \varepsilon \star \\ & \text { OgOL OL } \end{aligned}$	$\begin{aligned} & \mathrm{Ot} \\ & \mathrm{OL} \end{aligned}$		｜N｜
บeaw Iowg pls	UOTEIAEG P4S	ueaw	N	uoseas	

（ $6 \angle \nabla=$ perenbs y parsn（p \forall ）$\angle E G^{\prime}=$ pasenbs $y^{\prime} \mathrm{E}$

$\begin{aligned} & 1 \angle 0 \\ & 9 \angle 0 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$	G9G ε OSt \downarrow غ9961 － 20 OOL こ8で 6	『\＆s 9 ャ6でとて てヤらてて LLが8てし Z68 \＆ 99 19909	$\begin{aligned} & \angle Z \\ & 8 z \\ & \downarrow Z \\ & \llcorner \\ & \llcorner \end{aligned}$		
615	\pm	әנenbs ueaw	1 p		20ınos

82	8LでG \＆	8L619	\mid｜elol	
＞1	$1828 乙$ 乙	9EGレ＇\dagger	AddoIS	¢ $¢ \bigcirc \bigcirc 1$
＋1	¢ても0¢ \dagger	00\＆て 9	$1 \mathrm{lel}_{5}$	
Zl	8ccoz－	E8LL＇Z	｜enol	
9	10LZ	¢ $\varepsilon \lll$	Kddols	$N 0$
9	$\angle 6629$－	\＆عOLて	181」	
91	＜9669＇ε	$69+0^{\circ} \mathrm{L}$	$1 \mathrm{Pl} 1 \times 1$	
8	26ヤOS 2	88LてG	Kddols	Kuley
8	06LZLE	OGL8 8	$1 \mathrm{Pl}_{1}$	
N	Uоற̧e！＾ә］pls	ueәW	2dois	uosees

APPENDIX 8

Tree forest

	Season	N	Mean	Std deviation	Std Error Mean
IVI	Rainy	25	11.1240	3.91098	1.58220
	Dry	25	7.9072	2.28833	.85767

	Levene's Test for Equality of variance		t-test for equality of Means				
	F	Sig	i	df	Sig (2-tailed)	Mean Difference	Std. Error Difference
Equal variances assumed	7.334	0.009	1.787	48	080	3.21680	1.79970
Equal variances not assumed			1.787	36.982	082	3.21680	1.79970

Shrub forest

	Season	\mathbf{N}	Mean	Std deviation	Std Error Mean
IVI	Rainy	11	16.8364	8.62337	2.60004
	Dry	11	6.5727	3.18122	.95917

	Levene's Test for Equality of variance		t-test for equality of Means				
	F	Sig	i	df	Sig (2-tailed)	Mean Difference	Std. Error Difference
Equal variances assumed	19.260	. 000	3.704	20	001	10.26364	2.77133
Equal variances not assumed			3.704	12.672	003	10.26364	2.77133

Short Term Fallow Site Season and Slope (tree)

Descriptive Statistics
Dependent Variable IVI

Season	Slope	Mean	Std Deviation	\mathbf{N}
Rainy season	Flat	9.6286	6.36598	7
	Sloppy	9.4829	6.91107	7
	Total	9.5557	6.38391	14
	Flat	14.0500	10.62992	7
	Sloppy	6.0743	4.73715	7
	Total	10.0621	8.92385	14
	Flat	11.8383	88.72462	14
	Sloppy	7.7786	5.96067	14
	Total	8.8089	7.61786	28

Dependent Variable IVI

Season	Slope	Mean	Std Deviation	\mathbf{N}
Rainy season	Flat	15.1867	14.85132	6
	Sloppy	11.5533	12.31128	6
	Total	13.3700	13.14344	12
Dry season	Flat	11.1617	10.00809	6
	Sloppy	9.2217	8.22293	6
	Total	10.1917	8.79144	12
Total	Flat	13.1742	12.25568	12
	Sloppy	10.3875	10.05544	12
	Total	11.7808	11.05528	24

Tests of Between Subjects Effects
Dependent Variable IVI

Source	Type III sum of squares	df	Mean Square	F	Sig.
Corrected Model	111.505	3	37.168	275	842
Intercept	3330.913	1	3330.913	24.678	000
Season	60.611	1	60.611	.449	510
Slope	46.593	1	46.593	.346	563
Season *Slope	4.301	1	4.301	.032	860
Error	2699.538	20	134.977		
Total	6141.956	24			

Descriptive Statistics
Dependent Variable IVI

Season	Slope	Mean	Std Deviation	N
Rainy season	Flat	14.3691	12.9218	23
	Sloppy	12.6483	10.57220	23
	Total	13.5037	11.70571	46
	Flat	6.3126	5.38907	19
	Sloppy	6.1389	5.54626	18
	Total	6.2281	5.39025	37
	Flat	10.7190	10.89849	42
	Sloppy	9.7905	9.23277	41
	Total	10.2604	10.05928	83

Tests of Between Subjects Effects
Dependent Variable IVI

Source	Type III sum of squares	df	Mean Square	F	Sig.
Corrected Model	1119.410^{a}	3	373.137	4.107	.000
Intercept	7978.767	1	7878.767	87.812	.000
Season	1085.730	1	1085.730	11.949	.001
Slope	18.201	1	18.201	.200	.655
Season *Slope	12.106	1	12.108	.133	.716
Error	7178.099	79	90.862		
Total	17035.335	83			
Corrected Total	8297.508	82			

a. R Squared = $\mathbf{1 3 5}$ (Adjusted R Squared = 102)

Group Statistics

	Season	\mathbf{N}	Mean	Std deviation	Std Error Mean
IVI	Rainy	10	10.1050	3.33938	1.05600
	Dry	10	4.3060	2.18336	.69044

Grass in long term site

	Levene's Test for Equality of variance		t-test for equality of Means				
	F	Sig	i	df	Sig (2-tailed)	Mean Difference	Std. Error Difference
Equal variances assumed	1.200	. 288	4.596	18	. 000	5.79900	1.26169
Equal variances not assumed			4.596	15.506	. 000	5.79900	1.26169

Descriptive Statistics
Dependent Variable IVI

Season	Slope	Mean	Std Deviation	\mathbf{N}
Rainy season	Flat	8.8750	3.72190	8
	Sloppy	5.2188	2.50497	8
	Total	7.0469	3.59967	16
	Flat	2.7033	1.62997	6
	Sloppy	2.7333	.72701	6
	Total	2.7183	1.20338	12
	Flat	6.2300	4.30424	14
	Sloppy	4.1536	2.28281	14
	Total	5.1918	3.54218	28

Tests of Between Subjects Effects
Dependent Variable IVI

Source	Type III sum of squares	df	Mean Square	F	Sig.
Corrected Model	181.953^{a}	3	60.651	9.282	.000
Intercept	653.892	1	653.892	100.074	.000
Season	128.477	1	128.477	19.663	.000
Slope	22.642	1	22.542	3.450	.076
Season *Slope	23.294	1	23.294	3.565	.071
Error	156.818	24	6.534		
Total	1093.501	28			
Corrected Total	338.771	27			

a. R Squared $=.537$ (Adjusted R Squared $=479$)

Regression

(DataSet0)C/Users/Dr. F. C. Eze/Desktop/Forest-Trees Rainy season (Unmanaged).Sav.

Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\text {a }}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.816^{\mathrm{a}}$.666	.652	3.86358

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	Df	Mean Square	F	Sig.	
1	Regression	684.912		1	684.912	45.883
	Residual	343.328		23	14.927	
	Total	1028.240		24		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.	
	B		Std Error			.215
1	(Constant)	.236	1.098		.832	
	Abundance measure	.738	.109	.816	6.774	.000

a. Dependent Variable Spp. Popn.

Regression

(DataSet0)C/Users/Dr. F. C. Eze/Desktop/Forest-Trees Dry season (Unmanaged).Sav.

Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\text {a }}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.816^{\mathrm{a}}$.666	.652	3.86358

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	Df	Mean Square	F	Sig.	
1	Regression	684.912		1	684.912	45.883
	Residual	343.328		23	14.927	
	Total	1028.240		24		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.	
	B		Std Error			.215
1	(Constant)	.236	1.098		.832	
	Abundance measure	.738	.109	.816	6.774	.000

a. Dependent Variable Spp. Popn.

Regression

(DataSet1)C/Users/Dr. F. C. Eze/Desktop/Forest-Climbers Rainy season (Unmanaged).Sav.

Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\mathrm{a}}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.928^{\mathrm{a}}$.861	.828	32.88338

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	26774.734		1	26774.734	24.761
	Residual	4325.266		4	1081.316	
	Total	31100.000		5		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	--10.753	18.012		-. 597	. 583
Abundance measure	2.708	. 544	. 928	4.976	. 008

a. Dependent Variable Spp. Popn.

Regression

(DataSet1)C/Users/Dr. F. C. Eze/Desktop/Forest-Climbers Dry season (Unmanaged).Sav.

Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\mathrm{a}}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1.000^{a}	1.000	.999	2.27513

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	Df	Mean Square	F	Sig.	
1	Regression	20411.490		1	20411.490	3.943 E 3
	Residual	5.176		1	5.176	
	Total	20416.667		2		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	-1.115	1.667		-. 669	. 625
Abundance measure	2.898	. 046	1.000	62.796	. 010

a. Dependent Variable Spp. Popn.
Regression
(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Forest-Site Shrubs (Rainy).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.841^{\mathrm{a}}$.708	.679	42.34793

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	43447.525		1	43447.525	24.227
	Residual	17933.475		10	1793.348	
	Total	61381.000		11		$.001^{\mathrm{a}}$

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	-18.695	18.325		-1.020	. 332
Abundance measure	2.526	. 513	. 841	4.922	. 001

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Forest-Site Shrubs (Dry).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.848^{\mathrm{a}}$.719	.691	37.41902

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	35802.418		1	35802.418	25.570
	Residual	14001.832		10	1400.183	
	Total	49804.250		11		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.
	B	Std Error	Beta		
1 (Constant)	-22.747	16.192		-1.405	. 190
Abundance measure	2.293	. 454	. 848	5.057	. 000

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Forest-Site Grass Rainy season (unmanaged).Sav.

> Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\mathrm{a}}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1.000^{a}	1.000		

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	1250.000		1	1250.000	
	Residual	.000		0		
	Total	1250.000		1		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.	
	B		Std Error			
1	(Constant)	43.182	.000			
	Abundance measure	.568	.000	1.000		

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Forest-Site Grass Dry season (unmanaged).Sav.

Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\text {a }}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1.000^{a}	1.000		

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	1250.000		1	1250.000	
	Residual	.000		0		
	Total	1250.000		1		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.	
	B		Std Error			
1	(Constant)	43.182	.000			
	Abundance measure	.568	.000	1.000		

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Forest-Site -Tree Rainy season (unmanaged).Sav.

Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\mathrm{a}}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.283^{\mathrm{a}}$.080	-.104	12.02196

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	63.077		1	63.077	.436
	Residual	7.22 .637		5	144.527	
	Total	785.714		6		

a. Predictor (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	11.703	8.475		1.381	. 226
Abundance measure	. 494	. 748	. 283	. 661	. 536

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Trees (managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	642^{a}	.412	.295	9.60890

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	324.059		1	324.059	3.510
	Residual	461.655		5	92.331	
	Total	785.714		6		

a. Predictors (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	31.546	8.840		3.565	0.16
Abundance measure	-2.254	1.203	-. 642	-1.873	. 120

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Shrubs (managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.349^{\mathrm{a}}$.122	.098	35.79917

a. Predictor (Constant), Abundance measures

ANOVA ${ }^{\text {a }}$

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	711.091		1	711.091	.555
	Residual	5126.409		4	1281.602	
	Total	5837.500		5		

a. Predictors (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	51.746	35.681		1.450	. 221
Abundance measure	-2.171	2.915	-. 349	-. 745	. 498

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Grass (Rainy season).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.993^{\mathrm{a}}$.986	.985	1.49178

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	1602.413		1	1602.413	720.054
	Residual	22.254		10	2.225	
	Total	1624.667		11		

a. Predictors (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	-670	. 595		-1.127	. 286
Abundance measure (Flat)	. 452	. 017	. 993	26.834	. 000

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Grass (Dry season).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.997^{\mathrm{a}}$.993	.993	1.26774

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	2407.595		1	2407.595	1.498 E 3
	Residual	16.072		10	1.607	
	Total	2423.667		11		

a. Predictors (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	. 576	. 452		1.275	. 231
Abundance measure (Flat)	. 410	. 011	. 997	38.705	. 000

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Grass (Rainy season).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.918^{\mathrm{a}}$.843	.828	1.73497

a. Predictor (Constant), Abundance measures

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	162.149		1	162.149	53.668
	Residual	30.101		10	3.010	
	Total	192.250		11		

a. Predictors (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	. 203	. 745		. 273	. 791
Abundance measure (Flat)	. 333	. 045	. 918	7.339	. 000

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Grass (Dry season).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.957^{\mathrm{a}}$.917	.900	1.23013

a. Predictor (Constant), Abundance measures (Slope)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	83.291		1	83.291	55.042
	Residual	7.566		5	1.513	
	Total	90.857		6		

a. Predictors (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	. 538	. 863		-. 624	. 560
Abundance measure (Flat)	. 472	. 064	. 957	7.419	. 001

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Herbs in family Dry season (managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.938^{\mathrm{a}}$.879	.872	1.02551

a. Predictor (Constant), Abundance measures (Flat)

ANOVA $^{\text {a }}$

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	129.806		1	129.806	123.427
	Residual	17.879		17	1.052	
	Total	147.684	18			

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\mathbf{a}}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	1.315	. 268		4.912	. 000
Abundance measure (Flat)	. 039	. 003	. 938	11.110	. 000

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Herbs in family Dry season (managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.938^{\mathrm{a}}$.879	.872	1.02551

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	129.806		1	129.806	123.427
	Residual	17.879		17	1.052	
	Total	147.684		18		

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	1.315	. 268		4.912	. 000
Abundance measure (Flat)	. 039	. 003	. 938	11.110	. 000

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Herbs-Slope Dry season (unmanaged).Sav.

Variables Entered/Removed

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\mathrm{a}}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.395^{\mathrm{a}}$.156	.015	.75008

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.
1	Regression	.624		1	.624
	Residual	3.376		6	.563
	Total	4.000		7	

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	1.735	. 347		5.006	. 002
Abundance measure (Flat)	-. 004	. 004	-. 395	-1.053	. 333

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Herbs-Slope Dry season (unmanaged).Sav.

Model	Variable Entered	Variable Removed	Method
1	Abundance measure $^{\mathrm{a}}$		Enter

a. All requested variable entered
b. Dependent Variable Spp. Popn

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.395^{\text {a }}$.156	.015	.75008

a. Predictor (Constant), Abundance measures

ANOVA $^{\text {a }}$

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	.624		1	.624	1.110
	Residual	3.376		6	.563	
	Total	4.000		7		

a. Predictors (Constant), Abundance measures
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.
	B	Std Error			
1 (Constant)	1.735	. 347		5.006	. 002
Abundance measure (Flat)	-. 004	. 004	-. 395	-1.053	. 333

[^1]
Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Short Term fallow Site Herbs in family Dry season (managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.861^{\mathrm{a}}$.741	.723	1.19824

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	57.649		1	57.469	40.152
	Residual	20.101		14	1.436	
	Total	77.750		15		

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Spp. Popn.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	1.257	. 348		3.617	. 003
Abundance measure (Flat)	. 023	. 004	. 861	6.337	. 000

a. Dependent Variable Spp. Popn.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Long Term fallow Site Grass (Rainy season).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.966^{\mathrm{a}}$.934	.924	8.63765

a. Predictor (Constant), Abundance measures (Slope)

ANOVA $^{\text {a }}$

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	7361.737		1	7361.737	98.671
	Residual	522.263		7	74.609	
	Total	7884.000		8		

a. Predictors (Constant), Abundance measures (Slope)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	-3.881	3.773		-1.029	. 338
Abundance measure (Flat)	. 623	. 063	. 966	9.933	. 000

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Shrubs-Rainy season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.991^{\mathrm{a}}$.983	.974	11.89513

a. Predictor (Constant), Abundance measures (Slope)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	16261.762		1	16261.762	114.929
	Residual	282.988		2	141.494	
	Total	16544.750		3		

a. Predictors (Constant), Abundance measures (Slope)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.
	B	Std Error	Beta		
1 (Constant)	-51.723	10.554		-4.901	. 039
Abundance measure (Slope)	5.053	. 471	. 991	10.720	. 009

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Shrubs-Dry season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.908^{\mathrm{a}}$.825	.781	2.22556

a. Predictor (Constant), Abundance measures (Slope)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	93.521	1	93.521	18.881	$.012^{\mathrm{a}}$
	Residual	19.812		4	4.953	
	Total	113.333		5		

a. Predictors (Constant), Abundance measures (Slope)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.
	B	Std Error	Beta		
1 (Constant)	-1.313	1.845		-. 711	. 516
Abundance measure (Slope)	. 419	. 096	. 908	4.345	. 012

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Shrubs in family-Rainy season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.297^{\mathrm{a}}$.088	-.824	45.96194

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	204.167		1	204.167	.097
	Residual	2112.500		1	2112.500	
	Total	2316.667		2		$.808^{\mathrm{a}}$

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients		t

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Shrubs in family-Dry season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.240^{\mathrm{a}}$.058	-.413	54.76756

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	367.779		1	367.770	.123
	Residual	5998.971		2	2999.486	
	Total	6366.750		3		

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.
	B	Std Error	Beta		
1 (Constant)	31.737	34.787		. 912	. 458
Abundance measure (Flat)	. 134	. 381	. 240	. 350	. 760

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Grass-Dry season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.730^{\mathrm{a}}$.532	.298	8.55616

a. Predictor (Constant), Abundance measures (Slope)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	166.584		1	166.584	2.276
	Residual	146.416		2	73.208	
	Total	313.000		3		

a. Predictors (Constant), Abundance measures (Slope)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.
	B	Std Error	Beta		
1 (Constant)	21.171	8.267		2.561	. 125
Abundance measure (Slope)	-. 593	. 393	-. 730	-1.508	. 270

a. Dependent Variable Species Population.
(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Grass-Dry season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.911^{\mathrm{a}}$.829	.772	4.25393

a. Predictor (Constant), Abundance measures (Slope)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	263.712		1	263.712	14.573
	Residual	54.288		3	18.096	
	Total	318.000		4		

a. Predictors (Constant), Abundance measures (Slope)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.
	B	Std Error	Beta		
1 (Constant)	-6.091	4.625		-1.317	. 279
Abundance measure (Slope)	. 894	. 234	. 911	3.817	. 032

a. Dependent Variable Species Population.
(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Grass in family-Rainy season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.186^{\mathrm{a}}$.034	.287	18.23523

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	35.629		1	35.629	.107
	Residual	997.571		3	332.524	
	Total	1033.200		4		$.765^{\mathrm{a}}$

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.
	B	Std Error	Beta		
1 (Constant)	13.674	10.713		1.276	. 292
Abundance measure (Flat)	-. 152	. 463	-. 186	-. 327	. 765

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Grass in family-Dry season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.192^{\mathrm{a}}$.037	-.444	3.46944

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	11.481	4.061		2.827	. 106
Abundance measure (Flat)	. 037	. 134	. 192	. 277	. 808

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Herbs in family-Rainy season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.117^{\mathrm{a}}$.014	-.033	3.59914

a. Predictor (Constant), Abundance measures (Slope)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	3.795	1	3.795	.293	$.594^{\mathrm{a}}$
	Residual	272.031		21	12.954	
	Total	275.826	22			

a. Predictors (Constant), Abundance measures (Slope)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	3.410	. 959		3.557	. 002
Abundance measure (Slope)	-. 005	. 010	-. 117	-. 541	. 594

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Herbs in family-Dry season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.038^{\mathrm{a}}$.001	-.082	3.50002

a. Predictor (Constant), Abundance measures (Slope)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	212	1	.212	.017	$.897^{\mathrm{a}}$
	Residual	147.002	12	12.250		
	Total	147.214	13			

a. Predictors (Constant), Abundance measures (Slope)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients		t

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Herbs in family-Rainy season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.919^{\mathrm{a}}$.846	.836	1.66211

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	241.576	1	241.576	87.444	000^{a}
	Residual	44.202		16	2.763	
	Total	285.778	17			

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Species Population.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	. 577	. 476		1.212	. 243
Abundance measure (Flat)	. 034	. 004	. 919	9.351	. 000

a. Dependent Variable Species Population.

Regression

(DataSet1) C:/Users/Dr. F. C. Eze/Desktop/Farm in current usage site Herbs in family-Dry season (Managed).Sav.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.884^{\mathrm{a}}$.799	.786	1.46330

a. Predictor (Constant), Abundance measures (Flat)

ANOVA a

Model	Sum of squares	df	Mean Square	F	Sig.	
1	Regression	127.764	1	127.764	59.668	000^{a}
	Residual	32.119	15	2.141		
	Total	150.882	16			

a. Predictors (Constant), Abundance measures (Flat)
b. Dependent Variable Species Population.

Coefficients ${ }^{\mathbf{a}}$

Model	Unstandardized Coefficients		Standardized coefficients Beta	t	Sig.
	B	Std Error			
1 (Constant)	.720	. 413		1.744	. 243
Abundance measure (Flat)	. 021	. 003	. 894	7.725	. 000

a. Dependent Variable Species Population.

107028780
T-Test for percentage Nitrogen for the Dry/Rainy seasons at $20-40 \mathrm{~cm}$ soil depth.

Qq ว

:2*Se7ec:

2. The mearffierence is asficanta the of 0.001 is less than 0.05

EQ1		SbS 1	:0262 \&	896z3-	[5106	6zess!	<992z b	wosens Kivey- uosmas	$14 \mathrm{P}^{2} \mathrm{C}$
	if	1	206dn	13 MTT	บe\%W DU3 Pis	Wopurag PIS	บอว\%		
			$\text { 2xuas, } 10$ 						
			savarini pajed						

69.	1 29	7	vospes husey 8 ucseas kod	142 d
${ }^{3} 5$	vopera:00	N		

suonejaddıàul

58	$\begin{aligned} & 656.5 \\ & 9<58 . \end{aligned}$	${ }_{9}^{9}$	$\begin{aligned} & \angle g \angle E \% \\ & \text { EELL } \end{aligned}$	uoseas kuey vosens Ku
	บวrenal 715	N	usav	

Interpretations

E00	s	$50 ¢ 5$	E8CL9	Freez	6¢580	9:602	¢¢¢ऽ	Uoseas fuey- uoseas No	$13{ }^{3}$
(pa\|ce)-z) 51 s	$1 P$.	jedon	J2m07	LeaN CuI PIS	wolyenad pis	นеว ${ }^{\text {¢ }}$		
			sexcajaila parad						

295°	108	9	Uoseng kury s ucseas tag	12190
δ_{15}	U	N		

$\begin{aligned} & 20090 \\ & 20180 \end{aligned}$	عOL*!	$\left.\right\|_{8} ^{8}$	$\begin{aligned} & 88 P \varepsilon \\ & 2 t>8 \end{aligned}$	uoseas Kurey uoseas $N 0$	$148{ }^{\text {d }}$
Leaw 013 P9	ucgrinac PIS	N	Ueaw		

suolieyaddalu｜

118	109\％	9	
615	UCOE，2110？	N	

$\begin{aligned} & 91160 \\ & 02290 \end{aligned}$	$\left\lvert\, \begin{aligned} & \angle \varepsilon \angle O 0^{\circ} \\ & \angle E S \zeta \end{aligned}\right.$	9	$\begin{aligned} & \angle 902 \\ & 8808 \end{aligned}$	voseas kufey uoseas K－C b $1 \mathrm{Re}_{\mathrm{d}}$
บをอก ヒ上ヨ P1S	uctueneg PIS	N	Lean	

：0．24cス7n
T－Test for percentage organic carbon for the Dry／Rainy seasons at $20-40 \mathrm{~cm}$ soil depth．

suogezeidazu

895	O0\%	9			
B/S	บ01ptixes	N			
suopepano sa\|dures pejed					
$\begin{aligned} & 81201 \\ & 82 Z \% \end{aligned}$	$\begin{aligned} & 210 s z \\ & 2 c 80 \end{aligned}$	5	$\begin{aligned} & \angle 999^{\circ} \\ & \angle 59\rangle^{\prime} \end{aligned}$	uoseas Kuyy vosees Aic	$1{ }^{1 / 8}$
Ue2W 0.0 J PIS	ucprenac P1S	N	บean		

[^2]
suonerardatul

157	$95{ }^{\circ}$	9	Uuses kusy y wosees NO
S/S	บア\|ㅍํ $1: 00$	N	

$\begin{aligned} & 320: 0 \\ & 3.501 \end{aligned}$	20950 99/LS	9	EEVE $128 \% 6$	Nosees fuify Hestes No
vean 047 dis	иорерал '71S	N	LeaN	

T-Test for percentage organic matter for the Dry/Rainy seasons at $20-40 \mathrm{~cm}$ soil depth.
Interpretation The sites are non-significant for \%age Nitrogen since the p-value of 0.995 is greater than 005

966	1.20	100	$\begin{aligned} & 16 \\ & 9 \\ & 5 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \\ & 000 \end{aligned}$	scnorg uपum schorg uaanac
615	$=$	2.enbs ueaw	$1 p$	sarenbs y^{0} uns	
					सnsay

:Dataseta.
Oneway ANOVA for percentage Nitrogen for the Dry/Rainy seasons at $\mathbf{0 - 2 0} \mathbf{c m}$ soil depth for sites

808	900	$\begin{aligned} & 027 \\ & 285 \end{aligned}$	16	$\left\lvert\, \begin{aligned} & \cos 7 \varepsilon \\ & \operatorname{czs} 2 \\ & \angle E 6 \end{aligned}\right.$	sonosg uपa,
Bis	1	2.ents veaw	\#	sarenbs 10 uns	
					yinsey

$10=$ ESO = EC

Oneway ANOVA for pH for the Dry/Rainy seasons at $\mathbf{0 - 2 0} \mathbf{c m}$ soil depth for sites

498	$120 \cdot$	280	10	$\|$OC9 858 600	[6101
Bs_{5}	\pm	a.erog ueaw	p	sererss 10 uns	
					רsor

S0

Interpretation: The sites are non-significant for cage matter carbon since the p-value of 0.987 is greater thar, 005

<66	$90 \cdot$	$\begin{aligned} & \mathrm{cez} \\ & 0 \varepsilon \sigma^{\prime} \end{aligned}$	$\begin{aligned} & 11 \\ & 9 \\ & 5 \end{aligned}$	928:	scino g uman schorg uaampag
8	\pm	arenis uean	19	saxrbs jo wns	
					\#nsoy

828	6Z£	$\begin{aligned} & 65 \varepsilon^{\prime} \\ & 815 \end{aligned}$	[11	S\%1'z	scinojg ulyam
${ }^{6} 5$	1	arerbs ueaw	1	sarenbs 10 uns	
					มกระy

Oneway ANOVA for percentage organic matter for the Dry/Rainy seasons at $0-20 \mathrm{~cm}$ soil depth for sites

[^0]:

[^1]: a. Dependent Variable Spp. Popn.

[^2]:

