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ABSTRACT 

 

Fault Identification, classification and location on Ikeja West – Benin 330kV electric power 

transmission lines have been achieved using wavelet transform and artificial neural networks. 

This work proposed an improved solution based on wavelet transform and neural network 

back-propagation algorithm. The simulated three-phase fault current and voltage waveforms 

in the power transmission-line were first pre-processed and then decomposed using wavelet 

multi-resolution analysis to obtain the high frequency details and low frequency 

approximations. The data parameters of the patterns formed with the high frequency signal 

components were arranged as inputs of the neural network, whose task was to indicate the 

occurrence of a fault on the lines. The data parameters of the patterns formed using low 

frequency approximations were arranged as inputs of the second neural network, whose task 

was to indicate the exact fault type. The new method used both low and high frequency 

information of the fault signal to achieve an exact location of the fault.The neural networks 

were trained to recognize patterns and classify data. Feed forward networks have been 

employed along with back propagation algorithm for each of the three phases in the fault 

location process. Neural network (NN) designs with varying number of hidden layers and 

neurons per hidden layer have been provided to validate the choice of the neural networks in 

each step and simulation environment for real time fault diagnosis and detection was also 

presented. An analysis of the learning and generalization characteristics of elements in power 

system was presented using Neural Network toolbox in MATLAB/SIMULINK environment. 

Cross-Entropies of 8.1803e-3, 7.3899e-3 and 4.2980e-3 were achieved by the successfully 

trained NNs for the fault identification, classification and single line-to-ground fault location 

purposes respectively. Also the simulation results obtained from training the NNs for the fault 

location purposes indicated an average percentage error in the expected fault points of 

0.6500%, 0.5811%, 0.7305% and 0.6447% for single line-to-ground, double line-to-ground, 

double line and three phase fault locations respectively with fault resistance of 15Ω and also 

an average percentage error of the expected results of 0.7284%, 0.7611%, 0.6837% and 

0.6721% for single line-to-ground, double line-to-ground, double line and three phase fault 

locations respectively with fault resistance of 70Ω. These results demonstrated that wavelet 

multi-resolution analysis and neural network pattern recognition approachis efficient in 

identifying and locating faults on transmission lines as satisfactory performance was achieved 
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especially when compared to the conventional methods such as impedance and travelling 

wave methods. 
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CHAPTERONE 

 

INTRODUCTION 

 
1.1 Background of the Study 

 

Several decades ago, there has been a rapid growth in the power grid all over the world which 

eventually led to the installation of a huge number of new transmission and distribution lines. 

Moreover, the introduction of new marketing concepts such as deregulation has increased the 

need for reliable and uninterrupted supply of electric power to the end users who are very 

sensitive to power outages (Das & Novosel, 2000). 

 

Occurrence of a fault in a power system is one of the most important factors that hinder the 

continuous supply of electricity and power(IEEE, 2005). Any abnormal flow of current in a 

power system‟s components is called a fault in the power system. These faults cannot be 

completely avoided since a portion of these faults also occur due to natural reasons which are 

beyond the control of mankind. Hence, it is very important to have a well-coordinated 

protection system that detects any kind of abnormal flow of current in the power system, 

identifies the type of fault and then accurately locates the position of the fault in the power 

system. The faults are usually taken care of by devices that detect the occurrence of a fault 

and eventually isolate the faulted section from the rest of the power system. 

 

As a result, some of the important challenges for the incessant supply of power are detection, 

classification and location of faults (Saha,Das, Verho& Novosel, 2006).  Most of the research 

done in the field of protective relaying of power systems concentrates on transmission line 

fault protection due to the fact that transmission lines are relatively very long and can run 
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through various geographical terrain and hence it can take from a few minutes to several 

hours to physically check the line for faults (Eriksson, Saha& Rockefeller, 2015). 

 

Hence, many utilities are implementing fault locating devices in their power quality 

monitoring systems that are equipped with Global Information Systems for easy location of 

these faults. Fault location techniques can be broadly classified into the following categories 

(Saha, Izykowski, & Rosolowski, 2010): 

 

 ■ Impedance measurement-based methods 

 ■ Travelling-wave phenomenon-based methods 

■ High-frequency components of currents and voltages generated by faults based 

methods 

■ Artificial Intelligence based method. 

 

An overhead transmission line is one of the main components in every electric power system. 

The transmission line is exposed to the environment and the possibility of experiencing faults 

on the transmission line is generally higher than that on other main components. Line faults 

are the most common faults, they may be triggered by lightning strokes, trees may fall across 

lines, fog and salt spray on dirty insulators may cause the insulator strings to flash over, and 

ice and snow loadings may cause insulator strings to fail mechanically (Anamika, Thoke and 

Patel, 2008).  Fault classification, faulted phase selection and location play a critical role in 

the protection for a transmission line. Accurate and fast fault detection, classification and 

location under a variety of fault conditions are important requirements from the point of 

service restoration and reliability. The process of fault classification, faulted phase selection 

and location involves: 
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1. Identifying the type of fault, e.g., single-phase to ground fault, phase-to-phase fault, 

etc. Therefore, the relay can select different algorithm elements to deal with different 

fault situations. 

2. Identifying the faulted-phase to satisfy single-pole tripping and auto-reclosing 

 requirements for operation.  

3. Correct location of the fault distance, the maintenance crew can find and fix the 

problem to restore the service as quickly as possible. Rapid restoration of the service 

reduces outage time and loss of revenue. The speed and accuracy of protective relay 

can be improved by accurate and fast detection and classification (Haque and 

Kashtiban, 2005).  

 

1.2 Problem Statement 

 

Some of the important causes of the incessant and epileptic supply of electric power are 

inaccurate and slow pace of fault detection, classification and location of faults. Power system 

protection is the art of applying and setting up relays or fuses or both, to provide maximum 

sensitivity to faults and abnormal conditions and also to avoid false alarms during normal 

operating conditions (Jain, Thoke, Patel, 2008). So it is desirable that a correct decision be 

made by the protective device as to whether the trouble is an abnormal condition or just a 

transient which the system can absorb and return to normal working condition. The protective 

relays are more of a preventive device which operates after a fault has occurred and it helps in 

minimizing the duration of trouble and limiting the damage, outage time and related 

problems. For the system to operate properly, it is necessary to isolate the trouble area quickly 

with a minimum number of system disturbances. Both failure to operate and incorrect 

operation can result in major system upsets involving increased equipment damage, increased 

personnel hazards and possibly long interruption of service. Wavelet Transform and Artificial 
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Neural Network modelhave been proposed in this dissertation for fast and accurate detection, 

classification and location of the fault position with utmost accuracy. 

 

1.3 Aim and Objectives of the Dissertation 

 

The aim of this dissertation is to model, develop and implementa fault identification and 

location in power transmission lines using multi-resolution analysis (MRA) and pattern 

recognition.The objectives of this dissertation are: 

 

a) To model the three phase 280km long Ikeja-West to Benin 330kVpower 

transmission line.  

b) To perform simulation at various intervals (km) on the model for different fault 

conditions. 

c) To perform feature extraction by decomposing the faulty current and voltage 

waveforms of different fault scenarios into coarse approximations and detail 

coefficients using multi-resolution tool of wavelet transform. 

d) To perform summation analysis of extracted detail and approximation 

coefficients. 

e) To model a neural network based fault detector that can with utmost precision, 

detect faults in power transmission lines. 

f) To model a neural network based fault classifier and locator that can classify 

and locate faults in power transmission lines using Feed-forward networks 

along with back propagation algorithm. 
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1.4 Motivation for the Research 

 

Electrical faults are the most damaging among the disturbances that could possibly happen in 

the power system. Although some faults are transient in nature that occur in just a few cycles, 

they subject the generator to mechanical and temperature stresses beyond its operating limits 

(Khorashadi-Zadeh, 2004). The more frequent the occurrences of these events in the power 

network, the faster will be the rate of deterioration or wear of the network. 

 

The prime motive behind this dissertation is the significant impact a very accurate fault 

locator could make if employed in a power transmission and distribution system, in terms of 

the amount of money and time that can be saved. The main goal of fault location is to locate a 

fault in the power system with the highest practically achievable accuracy. When the physical 

dimensions and the size of the transmission lines are considered, the accuracy with which the 

designed fault locator locates faults in the power system becomes very important. 

 

One of the important aspects that this dissertation concentrates on is the analysis of the 

transmission line‟s phase voltages and currents during various fault conditions and how they 

can be effectively utilized in the design of an efficient fault locator. This dissertation drew its 

initial motivation from (Reddy, and Mohanta, 2008) which demonstrates a method that could 

be used for location of faults in transmission lines using neural fuzzy logic. However, when 

extensively studied, it can be noted that a fault locator with satisfactorily high accuracy can be 

more easily achieved with the help of wavelet transform and artificial neural networks by the 

use of a large amount of data set for training and the learning process. This eliminates the 

need for high proficiency in power systems which is a necessity when working with expert 

fuzzy systems. Hence, this dissertation focuses on the design of a fault locator that can be 

even used by people who aren‟t experts in the field of power systems. 
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1.5 Scope of Work 

 

The scope of this dissertation is to successfully model, develop, test and implement a 

complete strategy for the fault identification and location in power transmission lines using a 

wavelet transform multi-resolution analysis and pattern recognition neural network based 

fault locator that can, with very high accuracy detect, classify and locate faults in power 

transmission lines. A Feed-forward network along with Levenberg-Marquardt and Scaled 

Conjugate Gradient back-propagation algorithm will be employed for each of the three phases 

in the Fault location process. 

 

1.6 Justification of the Dissertation 

  

Transmission lines constitute the major part of electric power system. Transmission and 

distribution lines are vital links between the generating unit and consumers to achieve the 

continuity of electric supply. To economically transfer large blocks of power between systems 

and from remote generating sites, High Voltage (HV) and Extra high voltage (EHV) overhead 

transmission systems are being used. Transmission lines also form a link in interconnected 

system operation for bi-directional flow of power. Transmission lines run over hundreds of 

kilometres to supply electrical power to the consumers (Aggarwal, et al, 1994) and (Bo, et al, 

2000). They are exposed to atmosphere and environmental hazards, hence chances of 

occurrence of fault in transmission line is very high which when they eventually occur has to 

be immediately taken care of in order to minimize damage caused by it.  

 

Having an effective automated means of identifying and determining the location of the fault 

even right from the control-room will significantly improve continuity of power supply.It will 

also facilitate quicker repair, improve system availability and performance, reduce operating 
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cost and save time and effort of maintenance crew searching in, sometimes in harsh 

environmental conditions (Jain, Kale and Thoke, 2006). It has always been an interest for 

engineers to detect and locate the faults in the power system as early as possible. Fast clearing 

and restoration is very essential as it not only provides reliability but sometimes also stops 

propagation of disturbances which may lead to blackouts. 
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CHAPTERTWO 

 

LITERATURE REVIEW 

 

2.1 The Nature and Causes of Power System Faults 

  

The nature of a fault is simply defined as any abnormal condition, which causes a reduction in 

the basic insulation strength between phase conductors, or between phase conductors and 

earth or any earthed screens surrounding the conductors. In practice, a reduction is not 

regarded as a fault until is it is detectable, that is until it results either in an excess current or 

in a reduction of the impedance between conductors, or between conductors and earth, to a 

value below that of the lowest load impedance normal to the circuit (Xia, Zhuang and Huang, 

2010). Thus, a higher degree of pollution on an insulator string, although it reduces the 

insulation strength of the affected phase, does not become a fault until it causes a flashover 

across the string, which in turn produces excess current or other detectable abnormality, for 

example abnormal current in an arc-suppression coil (Tang, et al, 2000). Following are some 

of the main causes:  

 

 2.1.1 Lightning 

 

More than half of the electrical faults occurring on overhead power transmission lines are 

caused by lightning (see Figure 2.1) (Furukawa, Usada, Isozaki, and Irie, 1989). The main 

conventional approaches for reduction of the lightning flashover faults on power lines are 

lowering of the footing resistance and employing of multiple shielding wires, and differential 

insulation. 
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Figure 2.3: Lightning Arrester unit (Zinc Oxide elements in the FRP cylinder aremoulded 

with Ep rubber) (Solanki and Song, 2003) 

 

 

Figure 2.4: Lightning Arrester Unit ZnO (Solanki and Song, 2003) 

Figure 2.1: Flashover Faults on  Figure 2.2: Configuration of  

  Transmission Lines     Lightning Arrester 
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However, these methods have not been sufficient to prevent flashover faults. In the meantime, 

application of arresters to lines has been a better solution in recent years. This alternate 

approach is to install an arrester to prevent the flashover of insulator assemblies. It is 

important that the arrester should be strong enough in order to withstand excessive lightning 

strikes. The suspension-type line arrester was developed by incorporating ZnO elements into 

the shed of a conventional suspension insulator (Figures 2.2, 2.3 and 2.4). It has an arrester 

function along with the normal electrical and mechanical functions of a line insulator. It is a 

gapless type that has the advantage of reliable surge absorption with no delay in discharge. 

The new arrester holds promise not only for the prevention of lightning faults, but also as 

means of overall transmission systems. (Gonen and Turan, 1987). 

 

2.1.2 Pollution  

 

Pollution is commonly caused by deposited soot or cement dust in industrial areas, and by salt 

deposited by wind-borne sea-spray in coastal areas. A high degree of pollution on an insulator 

string, although it reduces the insulation strength of the affected phase, does not become a 

fault until it causes a flashover across the string, which in turn reduces excess current or other 

detectable abnormality, for example abnormal current in an arc-suppression coil.  

 

2.1.3 Fire 

 

The occurrence of fire under transmission lines is responsible for a great number of line 

outages in many countries. Faults are mainly due to conductor to ground short circuit or 

phase-to-phase short circuit depending on line configuration and voltage level. To reduce 

these outages to minimum, the clearance of existing line right-of-way must be increased in 

forests. Clearing of vegetation on the line right of way in such areas is also a consideration. 
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Another problem arising from burning is the contamination of the insulators due to the 

accumulation of particles (soot, dust) on its surfaces. In this case, the line insulation 

requirements should be determined in such a way that the outages under fire could be reduced 

to a minimum. (Fonseca, et al, 1990). 

 

Other causes of faults on overhead lines are trees, birds, aircraft, fog, ice, snow loading, 

punctured or broken insulators, material failure, damages, open-circuit conductors and 

abnormal loading.  

 

2.2 Categorization of Transmission Line Faults 

 

Power system faults may be categorized as shunt faults and series faults. The most occurring 

type of shunt faults is Single Line-to-ground faults (SLG), which is one of the four types of 

shunt faults, which occur along the power lines. This type of fault occurs when one conductor 

falls to ground or contacts the neutral wire. It could also be as a result of falling trees in a 

rainy storm. This type can be represented as in Figure 2.5.  

 

 

 

Figure 2.5: Single Line-to-Ground Fault 
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Figure 2.6: Single Line-to-Line Fault 

 

The second most occurring type of shunt faults is the Line-to-Line fault (LL). It is the result 

of two conductors being short-circuited. As in the case of a large bird standing on one 

transmission line and touching the other, or if a tree branch falls on top of the two of the 

power lines. This type could be represented as in Figure 2.6. 

 

 

 

Figure 2.7: Double Line-to-Ground Fault 
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The third type of fault is the Double Line-to-Ground fault (DLG), Figure 2.7. This can be a 

result of a tree falling on two of the power lines, (Fonseca, et al, 1990) or other causes. The 

fourth and least occurring type of fault is the balanced three phases (Figure 2.8), which can 

occur by a contact bridging the three power lines in many different forms. 

 

 

 

Figure 2.8: Three Phase Fault 

The fourth type of fault which is the balanced three-phase fault is defined as the simultaneous 

short circuit across the three phases. It occurs infrequently, but it is most severe type of fault 

encountered. Because the network is balanced, it is solved on a per-phase basis. The other two 

phases carry identical currents except for phase shift. The reactance of the synchronous 

generator under short circuit conditions is a time-varying quantity, and for network analysis 

three reactances were defined. The sub-transient reactance of the first few cycles has short 

circuit current, transient reactance in the next 30 cycles and the synchronous reactance 

thereafter. Since the duration of the short circuit current depends on the time of operation of 

the protective system, it is not always easy to decide which reactance to use. Generally, the 

sub-transient reactance is used for determining the interrupting capacity of the circuit 

breakers. 
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Series faults can occur along the power lines as the “result of an unbalanced series impedance 

condition of the lines in the case of one or two broken lines for example. In practice, a series 

fault is encountered, for example, when lines (or circuits) that are controlled by circuit 

breakers (or fuses) or any device does not open all the three phases; one or two phases of the 

line (or the circuit) may be open while the other phases or phase is closed.” (Gonen, Turan, 

1987) 

 

2.3 Power Protection Systems 

 

One of the most important components of a power protection system is the relay which is a 

device that trips the circuit breakers when the input voltage and current signals correspond to 

the fault conditions designed for the relay operation. Relays in general can be classified into 

the following categories (Wright, Christopoulos, 1993): 

 

 ■ Type of constructions 

 ■ Type of characteristics  

 ■ Input quantity or stimulus 

 ■ Function they perform 

 

Among the various relays that are used for the protection of power lines distance relays are 

the most relevant to fault locators. Usually a pair of these distance relays is used for the 

protection of a two-terminal transmission line (Ziegler, 2006). 

 

2.4 Transmission Line Fault Location Techniques 
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The transmission line fault location process, as mentioned before, has been researched for a 

while and several innovative and efficient techniques have been proposed andanalyzed by 

several authors (Djuric, Radojevic, Terzija, 1998). These techniques can be broadly classified 

as impedance-based methods, travelling wave based methods and Artificial Intelligence based 

methods. Each of these methods is discussed briefly in the following sub-sections. 

 2.4.1 Impedance Measurement Based Methods 

 

In the case of Impedance based methods, the operation of the distance relay greatly relies on 

the fault resistance and is not successful in cases with very high fault resistance (Eriksson, 

Saha, Rockefeller, 2015). Impedance based methods can be classified into single-ended 

methods and two-ended methods depending upon the number of terminals at which the 

voltage and current data are collected. 

 

The basic logic behind a single-ended impedance-based fault locator is to calculate the 

location of the fault from the apparent impedance seen looking into the line from one end. The 

various impedance-based methods available in literature are discussed in the upcoming 

subsections. 

 

 2.4.1.1 Simple Reactance Method 

 

The measured voltage and current values at the terminal are used to calculate the impedance 

of the line to the fault position as shown in equation 2.1. Once the line impedance per unit 

length has been determined, the fault distance can be calculated accordingly as illustrated by 

equations 2.2 and 2.3(Karl, David, 2009). 

 

  𝑉𝐴 = 𝑥. 𝑍𝐿 . 𝐼𝐴 + 𝑉𝑓        (2.1) 
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Where;𝑉𝐴 is the voltage at terminal A, 

𝑥is the distance to the fault from the terminal A, 

𝐼𝐴is the current flowing out of the terminal A, 𝑉𝑓  is the fault voltage and 

𝑍𝐿is the line impedance. 

 

  𝑉𝐴 = 𝑥. 𝑍𝐿 . 𝐼𝐴 + 𝑅𝑓𝐼𝑓        (2.2) 

 

Where 𝐼𝑓  is the fault current and 𝑅𝑓  is the fault resistance as shown in Fig 2.9. 

 

  𝑥 =
(𝑉𝐴/𝐼𝐴 )

𝑍𝐿
− 

𝑅𝑓

𝑍𝐿 
𝐼𝐴
𝐼𝑓
 

       (2.3) 

 

 

 

Figure 2.9: Faulty Transmission Line illustrating simple-reactance method. 

  

 

2.4.1.2  Takagi Method 

 

The Takagi method (Edmund, Schweitzer, 1988) is a very simple yet innovative single-ended 

impedance based Fault location technique and is illustrated by Fig 2.10. It requires both the 
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pre-fault and fault data and enhances the simple reactance method by minimizing the effect of 

fault resistance and reducing the effect of load flow. 

 

 

Figure 2.10:  A single-phase circuit illustrating Takagi method. 

 

The Fault Resistance is given by 

 

 𝑅𝑓 =  
𝑉𝐴− 𝑍𝐶𝐼𝐴 tanh γ𝑥

(
𝑉𝐴
′′

𝑍𝐶
tanh γ𝑥− 𝐼𝐴

′′ )𝜓𝜀𝑗𝜃
       (2.4) 

 

 

Where;𝑉𝐴 is voltage measured at terminal A, 𝐼𝐴 is the current flowing out of terminal A, γ is 

the propagation constant, 𝑍𝐶  is the characteristic impedance, 𝑍𝐿 is the line impedance, 𝐼𝐴
′′  is 

the superposition current which is the difference between the fault current and the pre-fault 

current. 

 

And 𝑥 =  
𝐼𝑚(𝑉𝐴 .𝐼𝐴

′′ ∗)

𝐼𝑚(𝑍𝐿𝐼𝐴 .𝐼𝐴
′′ ∗)

        (2.5) 

 

is the distance to the fault from terminal A. Where; 
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 𝑍𝐿 =  γ𝑍𝐶          (2.6) 

 

 

 2.4.1.3  Modified Takagi Method 

 

The modified Takagi method also called the Zero Sequence current method does not require 

pre-fault data because it uses zero-sequence current instead of the superposition current for 

ground faults (Aurangzeb, Crossley, Gale, 2001). The location of the fault in this method is 

given by 𝑥 inequation 2.7. 

 

 𝑥 =  
𝐼𝑚(𝑉𝐴 .𝐼𝑅

∗ .𝑒−𝑗𝛽 )

𝐼𝑚(𝑍1𝐿 .𝐼𝐴 .𝐼𝑅
∗ .𝑒−𝑗𝛽 )

        (2.7) 

 

Where 𝐼𝑅
∗  is the conjugate of zero-sequence current and β is the zero-sequence current angle. 

The position of the fault ‘𝑥’ is given by equation 2.7; 𝑉𝐴 is voltage measured at terminal A, 𝐼𝐴 

is the current flowing out of terminal A and 𝑍1𝐿 is the positive sequence line impedance. 

 

 2.4.2 Travelling Wave Based Methods 

 

Travelling wave based methods have been widely used (Bo, Weller, Redfern, 1999) for the 

purpose of fault location and are usually based on the correlation between the forward and 

backward waves travelling along the transmission line as shown in Figure 2.7. The basic idea 

is to successively identify the fault initiated by high-frequency travelling waves at the fault 

locator. 

 

The time taken by the high frequency components for propagation is used for the location of 

fault (Silva, Oleskovicz, Coury, 2004). In Figure 2.11, a single phase lossless transmission 

line of length „l‟ is considered with a travelling wave velocity of υ, capacitance and 
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inductance per unit length „C‟ and „L‟ and a characteristic impedance of 𝑍𝐶 . Assuming the 

occurrence of a fault at a distance of ‘𝑥’ from the terminal A, the voltage and current values 

are given by (2.8) and (2.9). 

 

 

Figure 2.11: Illustration of Travelling wave based Fault Location. 

 

  
𝜕𝑒

𝜕𝑥
=  −𝐿′

𝜕𝑖

𝜕𝑡
        (2.8) 

 

  
𝜕𝑖

𝜕𝑥
=  −𝐶′

𝜕𝑒

𝜕𝑡
        (2.9) 

 

Whose solutions are given by (2.10) and (2.11). 

 

 𝑒 𝑥, 𝑡 =  𝑒𝑓 𝑥 − 𝑣𝑡 +  𝑒𝑟(𝑥 + 𝑣𝑡)              (2.10) 

 𝑖 𝑥, 𝑡 =  
1

𝑍𝐶
𝑒𝑓 𝑥 − 𝑣𝑡 − 

1

𝑍𝐶
𝑒𝑟(𝑥 + 𝑣𝑡)             (2.11) 

 

The times τ𝐴 and τ𝐵taken for the waves to travel from the fault to the discontinuity are to be 

determined using GPS technology. Once this is done, the fault location (𝑥) can be readily 

determined by the followingequation 2.12. 
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 𝑥 =  
𝑙−𝑐(τ𝐴− τ𝐵 )

2
                 (2.12) 

 

Where: 𝑐 is the wave propagation speed of 299.79 m/sec. 

 2.4.3 Artificial Intelligence (AI) Methods 

 

AI is a subfield of computer science that investigates how the action of human beings can be 

mimicked by machines (Warwick, Ekwue and Aggarwal, 2015). Both the numeric, non-

numeric and symbolic computations are included in the area of AI. The mimicking of 

intelligence includes not only the ability to make rational decisions, but also to deal with 

missing data, adapt to existing situations and improve itself in the long time horizon based on 

the accumulated experience. 

From quite a few years, intelligent based methods are being used in the process of fault 

detection and location. Three major families of artificial intelligence based techniques that 

have been widely used in modern power system are (Saha and Kasztenny, 2014): 

 

 ■ Expert System Techniques (XPS), 

■ Fuzzy Logic Systems (FLS), 

 ■ Artificial Neural Networks (ANN). 

  

2.4.3.1  Expert Systems 

 

The first systems included a few heuristic rules based on the expert‟s experience. In such 

systems, the knowledge takes the form of the so called production rules written using the If … 

then … syntax (knowledge base). The system includes also the facts which generally describe 

the domain and the state of the problem to be solved (data base). A generic inference engine 

uses the facts and the rules to deduce new facts which allow the firing of other rules. The 

knowledge base is a collection of domain-specific knowledge and the inference system is the 
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logic component for processing the knowledge base to solve the problem. This process 

continues until the base of facts is saturated and a conclusion has been reached as shown in 

Figure 2.12. To guide the reasoning and to be more efficient, these systems may incorporate 

some strategies known as meta-knowledge. Rule based systems represent still the majority of 

the existing expert systems. 

 

 

 

 

 

 

 

 

 

Figure 2.12: Simplified block diagram of an XPS 

 

There are few applications of XPS to power system protection reported, but all of them solve 

the off-line tasks such as settings coordination, post-fault analysis and fault diagnosis (Saha 

and Kasztenny, 2014). As yet there is no application reported of the XPS technique employed 

as a decision making tool in an on-line operating protective relay. The basic reason for this is 

that there is no extensive rule base that describes the reasoning process applicable to 

protective relaying. Instead, only a few rules or criteria are collected (Wiszniewski and 

Kasztenny, 2013). 

 

2.4.3.2  Fuzzy Logic Systems 

Inference 
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Knowledge 

Base 

Data 
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Solution 
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Fuzzy logic (FL) can be defined as a problem-solving control system methodology that lends 

itself to implementation in systems ranging from simple, small, embedded micro-controllers 

to large, networked, multi-channel personal computer (PC) or workstation-based data 

acquisition and control systems. Fuzzy based classification technique employs a simple, rule-

based IF X AND Y THEN Z approach to a solving control problem rather than attempting to 

model a system mathematically. 

 

With reference to Figure 2.13, the fuzzy approach to protective relaying assumes that 

(Kasztenny, Rosolowski, Saha, Hillstrom, 2015): 

■ The criteria signals are fuzzified in order to account for dynamic errors of the 

measuring algorithms. Thus, instead of real numbers, the signals are represented by 

fuzzy numbers. Since the fuzzification process provides a special kind of flexible 

filtering, faster measuring algorithms that speed up the relays may be used. 

■ The thresholds for the criteria signals are also represented by fuzzy numbers to 

account for the lack of precision in dividing the space of the criteria signals between 

the tripping and blocking regions. 

■ The fuzzy signals are compared with the fuzzy settings. The comparison result is a 

fuzzy logic variable between the Boolean absolute levels of truth and false. 

■ Several relaying criteria are used in parallel. The criteria are aggregated by means of 

formal multi-criteria decision-making algorithms that allow the criteria to be weighted 

according to their reasoning ability. 

■ The tripping decision depends on multi-criteria evaluation of the status of a protected 

element. Additional decision factors may include the amount of available information, 

or the expected costs of the relay mal-operation. 
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Figure 2.13: Simplified block diagram of the fuzzy logic approach 

The Fuzzy BasedFault Classification is based on angular differences among the sequence 

components of the fundamental during fault current as well as on their relative magnitudes. 

The phasor diagram of a phase “a” to ground fault is shown in the Figure 2.14.  

 

 

 

Figure 2.14: Phasor diagram for a-g fault 

 

The zero, positive and negative sequence components of the post fault currents relative to 

phase “a” are denoted as Iaof , Ia1f  and Ia2f  respectively. The angles between the positive and 

negative sequence components of phase a, b and c are given as 

 

 𝑎𝑟𝑔_ 𝐴 =   𝐴𝑟𝑔 𝐼𝑎1𝑓 − 𝐴𝑟𝑔 𝐼𝑎2𝑓  = 00     

 𝑎𝑟𝑔_ 𝐵 =   𝐴𝑟𝑔 𝐼𝑏1𝑓 − 𝐴𝑟𝑔 𝐼𝑏2𝑓  = 1200    (2.13) 

 𝑎𝑟𝑔_ 𝐶 =   𝐴𝑟𝑔 𝐼𝑐1𝑓 − 𝐴𝑟𝑔 𝐼𝑐2𝑓  = 1200 
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The magnitudes of  Iaof , Ia1f  and Ia2f   are related by 

 

 Rof = |Iaof    ̸Ia1f| = 1 and  R2f = |Ia2f   ̸ Ia1f| = 1    (2.14) 

 

Similarly, the magnitudes and angle between the positive and negative sequence components 

are obtained for other types of asymmetric faults. 

 

For every type of fault, there exists a unique set of these five parameters. So it is possible to 

formulate simple logic base for determining the fault type from the values of the five inputs. 

The different inputs are represented by a corresponding fuzzy variable. Now a fuzzy rule will 

be developed using these five variables to detect the type of fault. For example: 

 

If 𝑎𝑟𝑔_ 𝐴 is “approximately 300” and 𝑎𝑟𝑔_ 𝐵 is “approximately 1500” and 𝑎𝑟𝑔_ 𝐶 is 

“approximately 1500” and Rof  is “high” and Rsf  is “high” then fault type is “a-g” 

 

In this method, only 3 parameters are sufficient and it identifies 10 types of short-circuit faults 

accurately. But the main disadvantage with this method is that it is applicable to only 

asymmetric faults and it is not very effective if the aim is to classify not just by the type of 

fault. 

 

  2.4.3.3  Artificial Neural Networks (ANNs) 

The ANNs are very different from expert systems since they do not need a knowledge base to 

work. Instead, they have to be trained with numerous actual cases. An ANN is a set of 

elementary neurons which are connected together in different architectures organized in layers 

of what is biologically inspired. An elementary neuron can be seen like a processor which 
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makes a simple non-linear operation of its inputs producing its single output. The ANN 

techniques are attractive because they do not require tedious knowledge acquisition, 

representation and writing stages and, therefore, can be successfully applied for tasks not fully 

described in advance.  

The ANNs are not programmed or supported by knowledge base as are Expert systems. 

Instead, they learn a response based on a given inputs and required output by adjusting the 

node weights and biases accordingly. The speed of processing, allowing real time 

applications, is also advantage. Since ANNs can provide excellent pattern recognition, they 

are proposed by many researchers to perform different tasks in power system relaying for 

signal processing and decision making (Lukowicz, Rosolowski, 2013). 

 

 

Figure 2.15: A basic three-layer architecture of a feed-forward ANN. 

 

An Artificial Neural Network (ANN) can be described as a set of elementary neurons that are 

usually connected in biologically inspired architectures and organized in several layers 

(Cichoki, Unbehauen, 1993). The structure of a feed-forward ANN, also known as the 

perceptron is shown in Fig 2.15. There are 𝑁𝑖  numbers of neurons in each 𝑖𝑡𝑕 layer and the 

. 

. 

. 
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inputs to these neurons are connected to the previous layer neurons. The input layer is fed 

with the excitation signals. Simply put, an elementary neuron is like a processor that produces 

an output by performing a simple non-linear operation on its inputs (Haykin, 1994). A weight 

is attached to each and every neuron and training an ANN is the process of adjusting different 

weights tailored to the training set. An Artificial Neural Network learns to produce a response 

based on the inputs given by adjusting the node weights. Hence, we need a set of data referred 

to as the training data set, which is used to train the neural network. 

 

In Fig. 2.15, 𝑎1, 𝑎2 … 𝑎𝑁0 is the set of inputs to the ANN. Due to their outstanding pattern 

recognition abilities ANNs are used for several purposes in a wide variety of fields including 

signal processing, computers and decision making. Some important notes on artificial neural 

networks are (Kezunovic, 1997): 

 

■ Either signal features extracted using certain measuring algorithms or even 

unprocessed samples of the input signals are fed into the ANN. 

■ The most recent along with a few older samples of the signals are fed into the 

ANN. 

■ The output provided by the neural network corresponds to the concerned 

decision which might be the type of fault, existence of a fault or the location of 

a fault. 

■ The most important factor that affects the functionality of the ANN is the 

training pattern that is employed. 

■ Pre-processing and post-processing techniques may be employed as well to 

enhance the learning process and reduce the training time of the ANN. 

 



- 27 - 
 

One of the biggest drawbacks of applications that make use of artificial neural networks is 

that no well-defined guide exists to help choose the ideal number of hidden layers to be used 

and the number of neurons per each hidden layer. From a different perspective, it is 

advantageous considering the wonderful ability to generalize. A vital feature of ANN is its 

dedication to parallel computing. Hence it can produce a correct output corresponding to any 

input even if the concerned input was not fed into the ANN during the training process. 

Another challenge in the ANN based application development was to synthesize the algorithm 

for the adaptive learning process (Gail, Carpenter, 1997). The back error-propagation 

algorithm is the basic algorithm in which the neuron weights are adjusted in consecutive steps 

to minimize the error between the actual and the desired outputs. This process is known as 

supervised learning. 

 

Neural networks have seen an explosion of interest over the last few years and are being 

successfully applied across an extraordinary range of problem domains, in areas as diverse as 

finance, medicine, engineering, geology, physics and biology. The excitement stems from the 

fact that these networks are attempts to model the capabilities of the human brain (Vasilic and 

Kezunovic, 2002). From a statistical perspective neural networks are interesting because of 

their potential use in prediction and classification problems. 

 

Artificial neural networks (ANNs) are non-linear data driven self-adaptive approach as 

opposed to the traditional model based methods. They are powerful tools for modelling, 

especially when the underlying data relationship is unknown. ANNs can identify and learn 

correlated patterns between input data sets and corresponding target values (Aggarwal and 

Song, 1997). After training, ANNs can be used to predict the outcome of new independent 

input data. ANNs imitate the learning process of the human brain and can process problems 

involving non-linear and complex data even if the data are imprecise and noisy. Thus they are 
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ideally suited for the modelling of agricultural data which are known to be complex and often 

non-linear (Pao, 2012). 

 

A very important feature of these networks is their adaptive nature, where “learning by 

example” replaces “programming” in solving problems. This feature makes such 

computational models very appealing in application domains where one has little or 

incomplete understanding of the problem to be solved but where training data is readily 

available (Kezunovic, Rikalo and Sobajic, 1995). 

 

These networks are “neural” in the sense that they may have been inspired by neuroscience 

but not necessarily because they are faithful models of biological neural or cognitive 

phenomena (Kezunovic, Rikalo, 1996). In fact, majority of the network are more closely 

related to traditional mathematical and/or statistical models such as non-parametric 

patternclassifiers, clustering algorithms, nonlinear filters, and statistical regression models 

than they are to neurobiology models. 

 

Neural networks (NNs) have been used for a wide variety of applications where statistical 

methods are traditionally employed. They have been used in classification problems, such as 

identifying underwater sonar currents, recognizing speech, and predicting the secondary 

structure of globular proteins (Sidhu, Singh, and Sachdev, 1995). In time-series applications, 

NNs have been used in predicting stock market performance. As statisticians or users of 

statistics, problems are normally solved through classical statistical methods, such as 

discriminant analysis, logistic regression, Bayes analysis, multiple regression, and ARIMA 

time-series models. It is, therefore, time to recognize neural networks as a powerful tool for 

data analysis (Kezunovic, Rikalo and Sobajic, 1996). 
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In conclusion, the XPS, FLS and ANN approaches have their own advantages and limitations. 

XPS and FLS methods require a knowledge base, that is, an expertise body of coded 

information of any particular system under consideration before they could be applied. This 

makes them ill-disposed to generalized application. ANN on the other hand does not require a 

knowledge base hence it is well suited to generalized and rapid deployment. This is the reason 

for the choice of ANN in this dissertation for fault identification and location in electric power 

transmission lines. 

2.5 Power System Fault Identification Techniques 

2.5.1 Fault Identification Using Short Fourier Transform 

 

The Discrete Fourier Transform of the signal gives the frequency components that exist in the 

signal. But since power system fault waveforms are non-stationary by nature and since 

engineers are also interested in determining the place where the fault has occurred, Short 

Time Fourier Transform (STFT) was used for detecting the power system transmission line 

faults. In STFT, the signal is divided into small enough segments, where these segments 

(portions) of the signal can be assumed to be stationary (Robi, 2014). For this purpose, a 

window function “𝑤” is chosen. The width of this window must be equal to the segment of the 

signal where its stationarity is valid. 

 

This window function is first located to the very beginning of the signal. That is, the window 

function is located at 𝑡 = 0. Let's suppose that the width of the window is “T” seconds. At 

this time instant (𝑡 = 0), the window function will overlap with the first 𝑇/2 seconds. The 

window function and the signal are then multiplied. By doing this, only the first 𝑇/2 seconds 

of the signal is being chosen, with the appropriate weighting of the window. Then this product 
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is assumed to be just another signal, whose Fourier transform (FT) is to be taken. In other 

words, FT of this product is taken, just as taking the FT of any signal. 

 

The result of this transformation is the FT of the first 𝑇/2 seconds of the signal. If this portion 

of the signal is stationary, as it is assumed, then there will be no problem and the obtained 

result will be a true frequency representation of the first 𝑇/2 seconds of the signal. The next 

step would be shifting this window to a new location, multiplying with the signal, and taking 

the FT of the product. This procedure is followed; until the end of the signal is reached by 

shifting the window with 𝑡′ seconds intervals. 

Thus, Short Time Fourier Transform of the signal can be defined as 

 

 𝑆 𝑇 𝐹 𝑇 𝑥  𝑡, 𝑓 =  ∫ 𝑥 𝑡 ∗𝑤∗(𝑡 − 𝑡′) ∗𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡    (2.15) 

 

Where;x(t) is the signal, w(t) is the window function and w* is the complex conjugate. Thus, 

this gives a time frequency representation of the signal. So, it gives the frequency response as 

well the occurrence of that frequency in time. It is computationally fast and detects faulted 

waveforms effectively. But this technique depends on the selection of a good window. This is 

called the Resolution problem, in other words choosing the appropriate size of the window 

plays a vital part in the fault detection process. Narrower windows have good time resolution 

but poor frequency resolution, but on the other hand broader windows have good frequency 

resolution but poor time resolution (Robi, 2014). But using the wavelet transform overcomes 

the resolution problem. 

 

 2.5.2 Fault Identification Using Composite Fiber-Optic  

 

In electric power supply services, power transmission lines are very important and very 

indispensable. For that, power transmission lines are equipped with various protection 
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systems that are checked periodically because of the unexpected faults that may destroy the 

lines. For the purpose of protecting these lines, a system was invented to discover the fault 

location using Composite Fiber Optic Overhead Ground Wire (COOGW). This system deals 

mainly with most causes of fault situations such as lightning, dew, snow, fog, or gales. This 

fault location system was developed to find out where electrical fault occurred on overhead 

power transmission lines by detecting the current induced in the ground wire (Anderson, 

2003) and (Cook, 1996). Any fault situation needs the fastest processing in fixing the fault. 

For that, the fault location system helps engineers to detect the point or the section where an 

electrical fault happened in very logic time.  

Since the fault information is uncertain, the fault location deals with the fault information as a 

current distribution pattern throughout the power line, and applies Fuzzy Theory to realize the 

human-like manner of fault used by power engineers. Mainly, the fault location method 

measures the current induced in the COOGW at many points along the line, these points are 

various sensors mounted on the tower and transmits the information to the central monitoring 

station through the optical fiber within the COOGW (Razi, Hagh and Abrabian, 2007). So the 

fault information system is mainly given by sensing and data transmission. Electrical faults 

occurring on power transmission lines can be classified into two types: grounding and short 

circuit fault. 

 

The transmission that gets to the central monitor station deals with current characteristic 

features. In order to locate the fault, engineers must use the features of currents that deal with 

the phase angle and the amplitude and relate these features to Fuzzy Theory (Gaudrat, 

Giusiano, and Huiart, 2004). The idea arose of using Fuzzy Theory as a fault theory algorithm 

similar to this kind of human thinking.  

 

There were some sets for Fuzzy theory:  
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𝑆𝑑𝑙   (large amplitude change), 

𝑆𝑑∅ (large phase angle change),  

𝑆𝑑𝑙𝑝  (large angle change),  

Sis/2 (amplitude approximately half of saturation current Is) and finally,  

𝑆𝑖𝑛  (amplitude larger than normal).  

 

For that the possibility of grounding faults occurring can be expressed by:  

 

 𝑆𝑔 = (𝑆𝑑𝑙  ∪ 𝑆𝑑∅ ∪ 𝑆𝑑𝑙𝑝 ) ∩ 𝑆𝑖𝑛       (2.16) 

Maximum Fault grounding is expressed by  

 

𝐹𝑔 = [𝑚 𝑆𝑑𝑙 + 𝑚 𝑆𝑑∅ + 𝑚 𝑆𝑑𝑙𝑝 ] ∗ 𝑚(𝑆𝑙𝑛)    (2.17)  

 

The possibility of short circuit fault is expressed  

 

𝑆𝑠 =  𝑆𝑑𝑙 ∪ 𝑆𝑑∅ ∪
𝑆𝑖𝑠

2
 ∩ 𝑆𝑙𝑛      (2.18) 

 

2.6 Application of NN to Power System Fault Classification 

 

Different techniques have been used for power system fault classification in the past. In the 

next few sections, a few of these approaches are discussed. 

 

 2.6.1 Back Propagation Neural Network 

 

Various applications of Neural Networks have been used in the past to improve the protection 

scheme in the transmission lines (Gaudrat, Giusiano, and Huiart, 2004). They have been used 

in fault classification, fault section estimation, adaptive relaying and fault diagnosis. Many of 
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these methods are based on back propagation, Radial basis function and Finite Impulse 

response neural networks. A few of these approaches are discussed here. 

 

A typical Back Propagation Neural Network is a non-linear regression technique which 

attempts to minimize the global error. Its training includes both forward and backward 

propagation, with the desired output used to generate the error values for back propagation to 

iteratively improve the output. The back propagation neural network must have at least one 

input layer and one output layer. The hidden layers are optional. A Typical back propagation 

neural network is shown in the Figure 2.12 (Anderson, 2003): 

 

 

Figure 2.16: Back propagation neural network 

 

The Back propagation neural network in Figure 2.16consists of four layers: an input layer 

with two neurons, hidden layers with three and two neurons respectively and an outputlayer 

with one neuron. In Figure 2.16, the output of a neuron in a layer goes to all neurons in the 

following layer and each neuron has its own weights. Initially the weights of the input layer 
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are assumed to be 1 for each input. The output of the back propagation neural network is 

reached by applying input values to the input layer, passing the output of each neuron to the 

following layer as input. 

 

The number of neurons in the input layer depends on the number of possible inputs that are 

available, while the number of neurons in the output layer depends on the number of desired 

outputs. The number of hidden layers and how many neurons in each hidden layer cannot be 

well defined in advance, and could change per network configuration and type of data. In 

general, the addition of a hidden layer could allow the network to learn more complex 

patterns, but at the same time decreases its performance (Anderson, 2003). Ideally, a network 

configuration could be started using a single hidden layer, and more hidden layers would be 

added if it is noticed that the network is not learning as well as it should. 

 

The Back-propagation training algorithm (Anderson, 2003) could be summarized as follows: 

The Input data sample is first presented to the network and then the network‟s output taken 

from the output layer is compared with the desired output and the error is calculated in each 

output neuron. And now for each neuron, a scaling factor called the local error is calculated 

which indicates how much higher or lower the output must be adjusted to match the desired 

output. The weights are modified to lower this local error. This process gets repeated until the 

error falls within the acceptable value (pre-defined threshold) which would indicate that the 

neural network has been trained successfully. On the other side, if the maximum number of 

iterations is reached, then it indicates that the training was not successful. 

 

2.7 Wavelet Transform 
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Transient voltages and currents during fault carry high frequency component or harmonics 

which carry important information regarding type and location of fault. Wavelets can be very 

effectively used in analyzing transient phenomenon of these fault signals. Multi-resolution 

analysis is one of the tools of wavelet transform, which decomposes the original signal to low 

frequency signal called approximations (A) and high frequency signals called details (D) 

(Kim, and Aggarwal, 2000, 2001). Wavelet analysis is a relatively new signal processing tool 

and is applied recently by many researchers in power systems due to its strong capability of 

time and frequency domain analysis. The two areas with most applications are power quality 

analysis and power system protection (Santoso et al, 2013) and (Osman and Malik, 2004). 

 

 

2.8 Characteristics of Neural Networks (NNs) 

 

• The NNs exhibit mapping capabilities, that is, they can map input patterns to their 

associated output patterns. 

• The NNs learn by examples. Thus, NN architectures can be „trained‟ with known 

examples of a problem before they are tested for their „inference‟ capability on 

unknown instances of the problem. They can, therefore, identify new objects 

previously untrained. 

• The NNs possess the capability to generalize. Thus, they can predict new 

outcomes from past trends. 

• The NNs are robust systems and are fault tolerant. They can, therefore, recall full 

patterns from incomplete, partial or noisy patterns. 

• The NNs can process information in parallel, at high speed, and in a distributed 

manner (Coury, and Jorge, 1998) & (Philippe, and Daniel, 2003). 
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2.9 Basics of Artificial Neural Networks 

 

The terminology of artificial neural networks has developed from a biological model of the 

brain (Kumar, Raghuwanshi, Singh, Wallender and Pruitt, 2002). A neural network consists 

of a set of connected cells; the neurons. The neurons receive impulses from either input cells 

or other neurons and perform some kind of transformation of the input and transmit the 

outcome to other neurons or to output cells. The neural networks are built from layers of 

neurons connected so that one layer receives input from the preceding layer of neurons and 

passes the output on to the subsequent layer. 

 

A neuron is a real function of the input vector  𝑦1, … , 𝑦𝑘 . The output is obtained as; 

𝑓 𝑥𝑗  = 𝑓 𝛼𝑗 +  𝑤𝑖𝑗 𝑦𝑗
𝑘
𝑖=1        (2.19) 

 

Where;f is a function, typically the sigmoid (logistic or tangent hyperbolic) function. A 

graphical presentation of neuron is given in Figure 2.17. Mathematically, a Multi-Layer 

Perceptron network is a function consisting of compositions of weighted sums of the 

functions corresponding to the neurons. 
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Figure 2.17: Single Neuron 

 

 2.9.1  Neural Networks Architectures 

 

An ANN is defined as a data processing system consisting of a large number of simple highly 

inter connected processing elements (artificial neurons) in an architecture inspired by the 

structure of the cerebral cortex of the brain. There are several types of architecture of NNs. 

However, the two most widely used NNs are the Feed forward networks and the Recurrent 

networks. 

 

In a feed forward network, information flows in one direction along connecting pathways, 

from the input layer via the hidden layers to the final output layer (Kohzadi, Boyd, 

Kermanshashi, and Kaastra, 1996). There is no feedback (loops) i.e., the output of any layer 

does not affect that same or preceding layer. 

 

Recurrent networks differ from feed forward network architectures in the sense that there is at 

least one feedback loop. Thus, in these networks, for example, there could exist one layer with 

feedback connections. There could also be neurons with self-feedback links, i.e. the output of 

a neuron is fed back into itself as input. 

 

2.9.2  Learning/Training Strategies 

 

The basic concept behind the successful application of neural networks in any field is to 

determine the weights to achieve the desired target and this process is called learning or 

training. The three different learning mechanisms usually employed are supervised, 

unsupervised and reinforced learning.  
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  2.9.2.1  Supervised Learning 

 
In the case of supervised learning the network weights are modified with the prime objective 

of minimization of the error between a given set of inputs and their corresponding target 

values (Tarafdar, Haque and Kashtiban, 2005). Hence, the training data-set is known which is 

a set of inputs and the corresponding targets the neural network should output ideally. This is 

called supervised learning because both the inputs and the expected target values are known 

prior to the training of ANN. 

 

   

2.9.2.2  Unsupervised Learning 

 
On the other hand, in the case of unsupervised learning, the relationship between the inputs 

and the target values are not known. The neural network is trained with a training data set in 

which only the input values are known. Hence, it is very important to choose the right set of 

examples for efficient training. These examples are usually chosen using some sort of a 

similarity principle (Tarafdar, Haque and Kashtiban, 2005). The most commonly used 

unsupervised learning algorithms are the Self-Organizing Map (SOM) and the Adaptive 

Resonance Theory (ART).  

 

2.9.2.3  Reinforced learning 

 

In this method, a teacher though available, does not present the expected answer but only 

indicates if the computed output is correct or incorrect. The information provided helps the 

network in its learning process. A reward is given for a correct answer computed and a 

penalty for a wrong answer. But, reinforced learning is not one of the popular forms of 

learning. 
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The learning strategy employed depends on the structure of the neural network. Feed-forward 

networks are trained using the supervised learning strategy. The supervised learning strategy 

for a feed-forward neural network has been shown in the Fig. 2.18. 

 

The set of input-output pairs (shown in Fig. 2.18) that are used to train the neural network are 

obtained prior to the training process either by using physical measurements or by performing 

some kind of simulations. Fig. 2.18 shows that the teacher teaches the neural network to 

modify its weights according to the error „e‟ between the outputs and the targets. The weights 

of the neural network are then modified iteratively according to (2.20). The general idea 

behind supervised learning and the mathematics involved has been adopted from (Tarafdar, et 

al, 2005). 

 

Figure 2.18: Scheme of supervised learning. 

 

 𝑤𝑗𝑖  𝑛 + 1 = 𝑤𝑗𝑖  𝑛 + ∆𝑤𝑗𝑖 (𝑛)      (2.20) 
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Where: 𝑤𝑗𝑖  𝑛  and 𝑤𝑗𝑖  𝑛 + 1  are the previous and the modified weights connected between 

the ith and the jth adjoining layers respectively. ∆𝑤𝑗𝑖 (𝑛)stands for the correction or 

modification factor and 𝑛 stands for the number of the iteration. If the jth neuron in a single 

layer neural networkis considered, the training efficiency is enhanced by minimizing the error 

between the actual output of the jth neuron and the output that has been dictated by the 

teacher. Let 𝑦𝑗  𝑛  and 𝑝𝑗  𝑛 be the actual and the teacher-requested outputs for the jth neuron 

in the 𝑛𝑡𝑕 iteration. Then the error value of that iteration is given by equation 2.21. 

 

 𝑒𝑗  𝑛 = 𝑝𝑗  𝑛 − 𝑦𝑗 (𝑛)       (2.21) 

The vector e n  that stores the values of all the errors is also a function of the weights w n  

for the corresponding layers‟ inputs. The value by which the weighing coefficients change 

(also called the correction factor) is given by the followingequation 2.22. 

 

 ∆𝑤𝑗𝑖  𝑛 = 𝜂𝑒𝑗  𝑛 𝑥𝑖(𝑛)       (2.22) 

 

Where: 𝑥𝑖  is the ith input signal and η is the rate at which the learning process takes place. As 

mentioned earlier, learning process aims at the minimization of the error function. The same 

criterion can also be achieved by the usage of a Least Squares Method (LSM). Hence, if there 

are L neurons in a particular network, the cost function to be ultimately minimized is given by 

equation 2.23. 

 

 𝑆2 𝑤 =
1

2
 (𝑝𝑗 − 𝑦𝑗 )2𝐿
𝑗=1        (2.23) 
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If the number of learning pairs with an input vector x(n) and an output vector d(n) of the form 

(x(n), d(n)) are P in the training set, then during the nth iteration of the learning process, we 

have: 

 

 𝑆2 𝑤 𝑛  =
1

2
  (𝑝𝑗  𝑛 − 𝑦𝑗 (𝑛))2𝐿

𝑗=1
𝑝
𝑛=1      (2.24) 

 

Since the activation functions that are employed are often non-linear, minimization of the 

aboveequation 2.24 is a non-linear problem. Several numerical methods that can handle non-

linear functions effectively are available and are based on the steepest-decent method. The 

steepest-decent method is an extension to the Laplace‟s method of integral approximation 

where the contour integral in a complex plane is deformed to approach a stationary point in 

the direction of the steepest decent (Vasilic, and Kezunovic, 2004). The back-error-

propagation learning technique is based on the steepest-decent method and is usually widely 

applied in a version known as the Levenberg-Marquardt algorithm (Vasilic, and Kezunovic, 

2004). 

 

The back-error-propagation algorithm chooses random weights for the neural network nodes, 

feeds in an input pair and obtains the result. Then, the error for each node is calculated 

starting from the last stage and by propagating the error backwards (Lahiri, Pradhan and 

Mukhopadhyaya, 2005). Once this is done, the weights are updated and the process is 

repeated with the entire set of input output pairs available in the training data set. This process 

is continued till the network converges with respect to the desired targets. The back-error-

propagation technique is widely used for several purposes including its application to error 

functions (other than the sum of squared errors) and for the evaluation of Jacobian and 

Hessian matrices. The correction values are calculated as functions of errors estimated from 
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the minimization ofequation 2.24. This process is carried out layer by layer throughout the 

network in the backward direction. This algorithm is pictorially depicted in Fig 2.19. 

 

The corresponding weighing vectors are shown in blocks 𝐀(𝐌), 𝐀(𝐌−𝟏), … , 𝐀(𝟏)and the errors 

that are propagated to the lower layers are calculated and stored in the blocks 

𝐁(𝐌−𝟏), 𝐁(𝐌−𝟐), … , 𝐁(𝟐). The back-error-propagation algorithm has been implemented in 

many ways but the basic idea remains the same. The only thing that changes in each of these 

implementations is the method used for the calculation of the weights that are iteratively 

upgraded when passed backward from layer to layer in the neural network. 

 

 

  

Figure 2.19 Structure of back-error-propagation algorithm [adopted from Vasilic,  

  and Kezunovic, (2004)] 
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The modifications involved are also used in the training process of recurrent networks 

(Vasilic and Kezunovic, 2004). The rate at which the learning process takes place can be 

estimated by keeping a check on the correction values in successive stages. The total number 

of iterations required to achieve satisfactory convergence rate depends on the following 

factors: 

● Size of the neural network 

● Structure of the network 

● The problem being investigated 

● The learning strategy employed 

● Size of the training/learning set 

 

The efficiency of a chosen ANN and the learning strategy employed can be estimated by 

using the trained network on some test cases with known output values. This test set is also a 

part of the learning set. Hence, the entire set of data consists of the training data set along with 

the testing data set. The former is used to train the neural network and the latter is used to 

evaluate the performance of the trained artificial neural network. 

 

2.10 Types of Neural Networks 

 

The most important class of neural networks for real world problems solving includes 

 • Multilayer Perceptron 

 • Radial Basis Function Networks 

 • Kohonen Self Organizing Feature Maps 

  

 2.10.1  Multilayer Perceptrons 
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The most popular form of neural network architecture is the multilayer perceptron (MLP). A 

multilayer perceptron: 

• has any number of inputs. 

• has one or more hidden layers with any number of units. 

• uses linear combination functions in the input layers. 

• uses generally sigmoid activation functions in the hidden layers. 

• has any number of outputs with any activation function. 

• has connections between the input layer and the first hidden layer, between the 

hidden layers, and between the last hidden layer and the output layer. 

 

Given enough data, enough hidden units, and enough training time, an MLP with just one 

hidden layer can learn to approximate virtually any function to any degree of accuracy. (A 

statistical analogy is approximating a function with nth order polynomials.) For this reason, 

MLPs are known as universal approximators and can be used when there is little prior 

knowledge of the relationship between inputs and targets. Although one hidden layer is 

always sufficient provided there are enough data, there are situations where a network with 

two or more hidden layers may require fewer hidden units and weights than a network with 

one hidden layer, so using extra hidden layers sometimes can improve generalization 

(Dalstein and Kulicke, 1995) and (Magnago and Abur, 2014). 

 

 2.10.2  Radial Basis Function Networks 

 

Radial basis functions (RBF) networks are also feedforward, but have only one hidden layer. 

An RBF network: 

• has any number of inputs. 
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• typically has only one hidden layer with any number of units. 

• uses radial combination functions in the hidden layer, based on the squared 

Euclidean distance between the input vector and the weight vector. 

• typically uses exponential or softmax activation functions in the hidden layer, in 

which case the network is a Gaussian RBF network. 

• has any number of outputs with any activation function. 

• has connections between the input layer and the hidden layer, and between the 

hidden layer and the output layer. 

 

MLPs are said to be distributed-processing networks because the effect of a hidden unit can 

be distributed over the entire input space. On the other hand, Gaussian RBF networks are said 

to be local-processing networks because the effect of a hidden unit is usually concentrated in a 

local area centered at the weight vector. 

  

 2.10.3  Kohonen Neural Network 

 

Self-Organizing Feature Map (SOFM, or Kohonen) networks are used quite differently to the 

other networks. Whereas all the other networks are designed for supervised learning tasks, 

SOFM networks are designed primarily for unsupervised learning. At first glance this may 

seem strange. Without outputs, what can the network learn? The answer is that the SOFM 

network attempts to learn the structure of the data (Lipmann, 1989) and (Bouthiba, 2004). 

One possible use is therefore in exploratory data analysis. A second possible use is in novelty 

detection.  
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Figure 2.20: A Kohonen Neural Network Applications 

 

SOFM networks can learn to recognize clusters in the training data, and respond to it. If new 

data, unlike previous cases, is encountered, the network fails to recognize it and this indicates 

novelty. A SOFM network has only two layers: the input layer, and an output layer of radial 

units (also known as the topological map layer). 

 

Neural networks have proven to be effective mapping tools for a wide variety of problems and 

consequently they have been used extensively by practitioners in almost every application 

domain ranging from agriculture to zoology. Since neural networks are best at identifying 

patterns or trends in data, they are well suited for prediction or forecasting applications. A 

very small sample of applications has been indicated in the next paragraph.  

 

Anderson, 2003 developed neural network model for forecasting financial and economic time 

series. Kohzadi, Boyd, Kermanshashi, and Kaastra, 1996 used a feed-forward neural network 

to compare ARIMA and neural network price forecasting performance. Lipmann, 
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(1989)demonstrated the applicability of neural network technology for plant diseases 

forecasting. Tarafdar, Haque and Kashtiban, 2005 provided the general summary of the work 

in ANN forecasting, providing the guidelines for neural network modelling, general paradigm 

of the ANNs especially those used for forecasting, modelling issue of ANNs in forecasting 

and relative performance of ANN over traditional statistical methods. Tarafdar, Haque and 

Kashtiban, 2005also developed the models for predicting milk production from farm inputs 

using standard feed forward ANN. Kumar, et al, (2002) studied utility of neural networks for 

estimation of daily grass reference crop evapotranspiration and compared the performance of 

ANNs with the conventional method used to estimate evapo-transpiration.  

 

Omid, Omidvar, Elliott,(1997) developed MLP based forecasting model for maximum and 

minimum temperatures for ground level at Dum Dum station, Kolkata on the basis of daily 

data on several variables, such as mean sea level pressure, vapour pressure, relative humidity, 

rainfall, and radiation for the period 1989-95. Gaudrat, Giusiano and Huiart, (2004) compared 

the performance of MLP and that of linear regression for epidemiological data with regard to 

quality of prediction and robustness to deviation from underlying assumptions of normality, 

homoscedasticity and independence of errors. 

 

The large number of parameters that must be selected to develop a neural network model for 

any application indicates that the design process still involves much trial and error. The next 

section provides a practical introductory guide for designing a neural network model. 

 

2.11 Development of an ANN model 

The various steps in developing a neural network model are: 

 

 A.  Variable selection 
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The input variables important for modelling variable(s) under study are selected by suitable 

variable selection procedures. 

 

 B.  Formation of training, testing and validation sets 

 

The data set is divided into three distinct sets called training, testing and validation sets. The 

training set is the largest set and is used by neural network to learn patterns present in the 

data. The testing set is used to evaluate the generalization ability of a supposedly trained 

network (Pao and Sobajic, 1988). A final check on the performance of the trained network is 

made using validation set. 

 

 C.  Neural network architecture 

 

Neural network architecture defines its structure including number of hidden layers, number 

of hidden nodes and number of output nodes etc (Hagan, Demuth, Beale, 1996). 

 

 • Number of hidden layers: The hidden layer(s) provide the network with its ability 

to generalize. In theory, a neural network with one hidden layer with a sufficient number of 

hidden neurons is capable of approximating any continuous function. In practice, neural 

network with one and occasionally two hidden layers are widely used and have to perform 

very well. 

 

 • Number of hidden nodes: There is no magic formula for selecting the optimum 

number of hidden neurons. However, some thumb rules are available for calculating number 

of hidden neurons. A rough approximation can be obtained by the geometric pyramid rule 

proposed by (Master, 1993). For a three-layer network with 𝑛 input and 𝑚 output neurons, the 

hidden layer would have sqrt(n*m) neurons. 
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 • Number of output nodes: Neural networks with multiple outputs, especially if these 

outputs are widely spaced, will produce inferior results as compared to a network with a 

single output. 

 • Activation function: Activation functions are mathematical formulae that determine 

the output of a processing node. Each unit takes its net input and applies an activation 

function to it. Non-linear functions have been used as activation functions such as logistic, 

tanh etc. The purpose of the transfer function is to prevent output from reaching very large 

value which can „paralyze‟ neural networks and thereby inhibit training. Transfer functions 

such as sigmoid are commonly used because they are nonlinear and continuously 

differentiable which are desirable for network learning (Eisa and Tayeb, (2013) and (Zhihong 

and Jean-Claud, 2000). 

 

D.  Evaluation Criteria 

 

The most common error function minimized in neural networks is the sum of squared errors 

and this is the one used in this work. Other error functions offered by different software 

include least absolute deviations, least fourth powers, asymmetric least squares and 

percentage differences. 

 

 E.  Neural Network Training 

 

Training a neural network to learn patterns in the data involves iteratively presenting it with 

examples of the correct known answers. The objective of training is to find the set of weights 

between the neurons that determine the global minimum of error function. This involves 

decision regarding the number of iteration i.e., when to stop training a neural network and the 

selection of learning rate (a constant of proportionality which determines the size of the 

weight adjustments made at each iteration) and momentum values (how past weight changes 
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affect current weight changes) (Stacchini et al, 2001) and (Venkatesan and Balamurugan, 

2001). 

 

 2.11.1 Software 

 

Several softwares on neural networks have been developed, to cite a few; 

 

Commercial Software: Statistica Neural Network, TNs2Server, DataEngine, Know Man 

Basic Suite, Partek, Saxon, ECANSE - Environment for Computer Aided Neural Software 

Engineering, Neuroshell, Neurogen, Matlab:Neural Network Toolbar. 

 

Freeware Software: Net II, Spider Nets Neural Network Library, NeuDC, Binary Hopfeild 

Net with free Java source, Neural shell, PlaNet, Valentino Computational Neuroscience Work 

bench, Neural Simulation language version-NSL, Brain neural network Simulator. 

 

The computing world has a lot to gain from neural networks. Their ability to learn by example 

makes them very flexible and powerful. A large number of claims have been made about the 

modelling capabilities of neural networks, some exaggerated and some justified. Hence, to 

best utilize ANNs for different problems, it is essential to understand the potential as well as 

limitations of neural networks. For some tasks, neural networks will never replace 

conventional methods, but for a growing list of applications, the neural architecture will 

provide either an alternative or a complement to these existing techniques (Zadeh, 2006). 

 

2.12 Review of Related Literature 

 

In the work of Mamta and Patel, (2012), they presented the application of wavelet multi 

resolution analysis in combination with artificial neural network for classification and location 
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of single line to ground fault only. The method uses energy of spectrum of detail coefficients 

at levels 1 and 5 (D1 and D5) for two consecutive data windows for classification and 

location of faults as shown in Figure 2.21. 

 

 

 

Fig. 2.21: Decaying transient energy of faulted and healthy lines 

 

Wavelet transform was used to get details D1 and D5 of the voltage signals. Capabilities of 

neural network in pattern classification were utilized to classify the faults. After successful 

classification, details of fault signals were used to locate the fault. Simulation studies were 

performed for fault conditions with faults at different phases, at different locations and at 

different fault inception angles and performance of the proposed scheme was investigated. 

 

The classification of faults was close to exact and the location of the faults was identified with 

above 90% accuracy. But the limitations of this work are that results were provided for only 

one type of fault which is single line to ground faults. One of the targets of our proposed 

algorithm and scheme will be to extend it to other faults also with improved effectiveness. 
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Hasabe and Vaidya, (2014)in their work performed fault detection and fault classification on 

220kV transmission line. Their technique depends upon the current signals. The features were 

extracted from the current signals by using wavelet transform. A moving data window of one 

cycle (400 samples) was taken and decomposition was done and energy of the details 

coefficients at level 5 was obtained for each data window. As the fault signals contain the 

high amount of harmonic components, the energy of the signal increases at the occurrence of 

fault as shown in Fig. 2.22. 

 

The feature vector was then given as input to the neural network. Simulation studies were 

performed and the performance of the scheme with different system parameters and 

conditions was investigated. The test result showed that the accuracy obtained with the 

“tansig-logsig” transfer function for hidden layers I and II was satisfactory. But, the paper 

dealt with fault detection and classification only and could not generate enough information as 

per the location of the faults. Hence, this dissertation has tried to extend the research to other 

power system protection problems, such as finding fault location as well. 

 

 

Fig. 2.22: Energy of the detail level 5 vs. window number. 
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Fault classification and location on a series compensated transmission line using artificial 

neural network of different faults namely SLG, LL, LLG, and LLL at 50km, 100km, 150km, 

200km, 250km, 300km has been performed by Girish and Nitin, (2015). A feed forward 

neural network was created to accurately classify and locate fault as close as possible to its 

actual location. The simulation was done in Matlab 2014 using neural network tool box on a 

300km series compensated line. The result showed that the fault was classified accurately in 

shortest of time & the fault was located within the marginal limits. The average error was 

calculated, & found that it was below 5%. But, aside the challenge of not pre-processing the 

input data vector of the neural network, the intervals of the fault locations simulated were too 

high or far apart and as a result interpolating for a value (location) between any two 

consecutive locations did not yield expected result/response. 

 

The challenge of pre-processing the input data-set was taken care by Kale, Bhide, Bedekar 

and Mohan, (2008) as they proposed an accurate technique of automation of identification of 

faults on parallel transmission lines. The method employed depended on the current signals 

extracted from the local relay location. Wavelet Transform was used to extract distinctive 

features in the input signals. This feature vector then acts as input to the neural network 

improving its speed and accuracy. Capabilities of neural network in pattern classification were 

utilized. Simulation studies were performed and the performance of the scheme with different 

system parameters and conditions was investigated. The proposed algorithm was found to be 

immune to the effect of mutual coupling, fault resistance, remote end infeed, fault location 

and fault inception angle.But there were no adequate information/data about the fault location. 

Though the paper deals with fault classification only but can be extended to the other power 

system protection problems such as finding fault location. 
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Atul and Navita, (2015) presented a neural network approach for fault detection and 

classification in double circuit transmission line. The neural network was trained by various 

sets of data available from simulation of the model for different faults conditions. Their 

proposed method is as shown in Figure 2.23. In Figure 2.23, the current signals from the 

power system were sampled at 12.5 KHz frequency. For fault detection and classification 

seven samples of current was taken and given as inputs to ANN which gives output either 1 or 

0 indicating fault state or no-fault state. 

 

The obtained simulation result showed that the proposed scheme was able to classify the 

faulty phase and faulty transmission line correctly. But the entire process of detecting and 

classifying fault by ANN was cumbersome and sluggish and a lot is involved. The reason for 

this is that the raw input data sets were fed into the neural network without pre-processing 

them. Having identified this as a challenge, a concise effort has been made in this work to 

address that, hence a processing tool called wavelet transform has been used to take care of 

the challenge. 
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Figure 2.23: ANN Scheme for fault detection and classification used by Atul and Navita, 

(2015) 

 

Hiroyuki, Hikaru, Toshiyuki and Shoichi, (2002) understood the importance of pre-processing 

the extracted signals before feeding them into the neural network, which was why they 

employed the processing tool of Fast Fourier transform (FFT). In their paper, a new hybrid 

method was proposed to handle a fault detection problem that estimates the location and type 

of fault. The proposed method applied Fast Fourier transform (FFT) to the measured current 

waveforms in three phases to extract features of fault. The results in frequency domain were 

given to Deterministic Annealing (DA) clustering as input variables. FFT itself also works as 

a pre-conditional technique for Multi-Layer Perceptron (MLP). The proposed method made 

use of DA clustering and MLP. DA clustering was more effective in a sense of global 

clustering that was not affected by the initial solutions. DA clustering played an important 

role to classify input data of MLP into clusters. MLP was constructed at each cluster. That 

allowed MLP to learn efficiently because of data similarity. The proposed method was 

applied to a sample system. A comparison was made between the proposed and conventional 

methods. The simulation results have shown that the proposed method was much better than 

the conventional ones. Compared with the conventional method, the proposed method had 

reduced the average error of 30% and the maximum error of 17.1% in terms of the fault 

location. Also, it had contributed to improving the recognition rate of 7.2% in terms of the 

fault type (Hiroyuki, et al, 2002). But one major issue with this approach is the choice of data 

pre-processing tool used; Fast Fourier transform which is associated with resolution problem.  

 

And ordinary Fourier transform of a signal gives information about all the frequencies present 

in the signal but does not give any information about the time at which these frequencies were 

present. Wavelet transform is a tool which helps the signal to be analyzed in time as well as 
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frequency domain effectively. It provides non-uniform division of frequency domain i.e. it 

uses short window at high frequencies and long window at low frequencies. Using multi-

resolution analysis, a particular band of frequencies present in the fault signal can be 

analyzed. Fourier transform and wavelet transform are the two major tools which are a great 

help in frequency domain analysis of any signal (Abdollahi and Seyedtabali, 2010). 

 

In their work, Nanand Mladen, (2014) proposed an improved solution based on wavelet 

transform and self-organized neural network aimed at solving the problem of differentiating 

the internal faults from external ones using local-end data and providing the exact fault type at 

the same time. The paper applied advanced signal processing and artificial intelligence 

techniques to achieve that objective. A comprehensive protection scheme wasdesigned as 

shown in Figure 2.24. 
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Figure 2.24: Overview of proposed protection scheme by Nanand Mladen, (2014) 

 

Figure 2.24 shows the three-phase secondary voltage and current signals 

(𝑉𝑎 , 𝑉𝑏 , 𝑉𝑐 , 𝑎𝑛𝑑 𝐼𝑎 , 𝐼𝑏 , 𝐼𝑐) which were obtained at the sampling rate of 200 kHz. The zero-

sequence voltage and current 3𝑉0 𝑎𝑛𝑑 3𝐼0 were obtained by adding up the values. 

Theproperties of the proposed scheme were as explained. The signal pre-processing stage 

eliminated most of the influences from pre-fault loads, system conditions and power swings 

while the wavelet transform provided an efficient way to extract signal components at 

different frequency bands. The neural network provided an intelligent method and a “soft” 

criterion for feature comparison (Nan at el, 2014). Both high frequency details and low 

frequency approximations were used in the proposed method and that can avoid confusing 

fault conditions with other kinds of non-fault disturbances. The protection tasks were 

distributed into two neural networks so that each neural network had different task as both 

neural networks took half cycle data window, therefore the protection speed was satisfied. 

Unfortunately, as a serious weakness, the proposed approach has the generalization for 

different fault and system operating conditions, as well as different system parameters. It 

needs to be further studied and adjusted to cope with different system structures such as 

parallel lines and multi-terminal lines. 

 

Mohammad and Rahul, 2014 worked on finding different types of fault in transmission lines 

with the help of two different materials. The scheme used neural network and wavelet 

transform together, to choose a proper way for solving the problem. Wavelet transform has 

strong mathematical, very fast and accurate tools for transient signal processing in the 

transmission lines. Artificial neural network that can make a difference between measured 

signals and associated signal that has different pattern was used (Mohammad at el, 2014). The 
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algorithm used time-frequency analysis of faulted transient line with the help of wavelet 

transform, and then this allowed the artificial neural network to identify what phase was 

inflicted with fault. Matlab software was used for simulation of fault signals and verifying the 

correctness of the algorithm. There were different types of fault which was given to the 

software and the result showed where and what phase that was faulty. Notwithstanding, the 

choice of the size of the data set used for the simulation was very small and would not allow 

for conclusive decision to be made. 

 

Karthikeyan, (2007) aimed at detecting and classifying the power system transmission line 

faults. To deal with the problem of an extremely large data-set with different fault situations, a 

three step optimized Neural Network approach was proposed. The approach utilized Discrete 

Wavelet Transform for detection and two different types of self-organized, unsupervised 

Adaptive Resonance Theory Neural Networks for classification. The fault scenarios were 

simulated using Alternate Transients Program and the performance of this highly improved 

scheme was compared with the existing techniques. The simulation results proved that the 

proposed technique handled large data more efficiently and time of operation was 

considerably less when compared to the existing methods. Being highly interested in the 

proposed network handling large data, Karthikeyan, (2007) was unable to suggest a model to 

test and validate the results obtained from the neural networks; by implication the accuracy of 

the results cannot be guaranteed. 

 

Mollanezhad and Akbari, (2013) presented a Probabilistic Neural Network (PNN) and new 

feature selection technique for fault classification in transmission lines. Initially, wavelet 

transform was used for feature extraction from half cycle of post-fault three phase currents at 

one end of line. In the proposed method, three classifiers corresponding to three phases were 
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fed by normalized particular features as Wavelet Energy Ratio (WER) and Ground Index 

(GI).  

 

Figure 2.25 shows the structure of the proposed fault classification system by Mollanezhad 

and Akbari, (2013). The algorithm consists of three stages, including feature extraction, 

feature selection and fault classification. The system takes half cycle of the post-fault from the 

three phase currents at the current recorder (relay location). The ground current was 

calculated from the samples of the three line currents 𝐼𝑔 = 𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 . In this algorithm, 

three PNNs and one ground detector (GD) had been used for fault classification method. Each 

of the three PNNs (PNNa, PNNb, PNNc) is used to identify the faulted phase(s) and the 

ground detector (GD) was used to determine the involvement of the ground in the fault. At the 

output of each PNN, the value „1‟ and „0‟ denotes the presence or absence of the fault, 

respectively. 
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Figure 2.25: Structure of the fault classifier by Mollanezhad and Akbari, 2013. 

 

The PNNs were trained to provide faulted phase selection in different ten fault types. Finally, 

logic outputs of classifiers and GI identify the fault type. The feasibility of the proposed 

algorithm was tested on transmission line using PSCAD/EMTDC software. Variation of 

operating conditions in train cases was limited, but it was wide for test cases. Also, quantity of 

the test data-sets was larger than the train data-sets. The results indicated that the proposed 

technique was of high speed, accurate and robust for a wide variation in operating conditions 

and noisy environments. But the accuracy of the results was not verified more so when only 

half cycle post fault currents was used for the classification instead of the entire cycle. 

 

The advantages of DWT over FFT and STFT in feature extraction were demonstrated by 

Amit and Abhijit, (2016) in their proposed method for locating fault point. The advantages are 
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due to good time and frequency localization characteristics. Analysis results presented, clearly 

showed that particular wavelet components can be used as the features to locate the fault. 

Then an accurate fault location technique based on ANN was developed. As an ANN was 

trained to classify the fault type, another separate ANNs were designed to accurately locate 

the actual fault position on a practical system. In this respect, three-layer feed-forward ANNs 

and the Levenberg-Marquardt (LM) algorithm was used to adjust the weights and biases to 

achieve the desired non-linear mapping from inputs to outputs. Through a series of tests and 

modifications, it was shown that the ANNs can very accurately classify the type of fault under 

different system and fault conditions. Thus, it can be concluded that the proposed approach 

based on combined WT and ANN was robust to different case studies; this is a significant 

advantage and can be directly attributed to the fact that WT technique effectively extracts the 

very crucial time-frequency features from transient signals and ANN approach is able to give 

a very high accuracy in the fault classification and fault location. But these results were based 

on the probabilistic predictions as a result they are subject to failure. 

 

In the work of Srinivasa and Baddu, (2013), the proposed algorithm presented a fault 

discrimination method based on the three-phase current and voltage waveforms measured 

when fault events occurred in the power transmission-line network. The algorithm for fault 

classification employed wavelet multi-resolution analysis (MRA) to overcome the difficulties 

associated with conventional voltage and current based measurements due to effect of factors 

such as fault inception angle, fault impedance and fault distance. The proposed algorithm for 

fault location was different from conventional algorithms that were based on deterministic 

computations on a well-defined model to be protected. The wavelet transform captured the 

dynamic characteristics of the non-stationary transient fault signals using wavelet MRA 

coefficients. Using wavelet MRA technique, the summation of detail coefficients for sixth 
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level were extracted from the current signal. From the magnitude of only the detail coefficient 

summations, the presence of fault in a particular phase was detected. A generalized algorithm 

based on wavelets was verified for the classification of transmission line faults. The 

advantage of this algorithm is that it is independent of fault location, impedance and inception 

angle but it lacks the capability to provide enough information that will help to crystallize the 

location of the faults. 

 

Xinzhou, Wei and Tao, (2009) in their work titled:“Fault classification and faulted-phase 

selection based on the initial current travelling wave”, proposed an algorithm of fault 

classification and faulted phase selection for a single circuit transmission line based on the 

initial current travelling wave. Identification of simultaneous faults on transmission system 

using wavelet transform was proposed. However, authors have reported that further 

improvement in their proposed algorithm was needed to achieve the desired accuracy.  

 

Das, Singh and Sinha, (2006) showed an application of artificial neural network approach to 

fault classification for double circuit transmission lines using superimposed sequence 

components of current signals. Comparison of the Fourier Transform method with Wavelet 

Transform method for detection and classification of faults on transmission lines was done. 

But the authors have reported that wavelet transform based approach gave better results only 

when more than one phase was involved in the fault. It may be noted that majority of the 

faults are ground faults that involve only one of the phase conductors and ground. 

 

Bo, 1998 used a specially designed multi-channel filter to extract the transient current signals 

for two signal outputs 𝐼𝑓1, 𝐼𝑓2 with centre frequency at 80kHz and 1kHz respectively. Then 

the ratio of the energy spectrum for 𝐼𝑓1, 𝐼𝑓2 was calculated and compared to a threshold to 
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find out whether the fault is internal or external. The advantage of this method was justified 

by the result from a performance study. Still some issues are yet to be addressed by this 

method: 

 

a) The direction of the external faults cannot be distinguished since only the  

  current signal was used. The method also had no phase selection function  

  available; 

 b)  The theoretical basis for selection of the centre frequency of the extracted  

  features and selection of the thresholds was not apparent; 

c)  The reliability of the method was unknown since only high frequency signal 

was used. It may be affected by the disturbance from noise, switching, 

lightning, etc; 

 d)  There were no extensive studies provided for the performance evaluation  

  under various fault conditions. As mentioned earlier, the boundary conditions

  are highly dependent on fault type, fault resistance, fault angle, etc. 

 

Vasilic and Kezunovic, (2005) provided a new boundary protection scheme aimed at solving 

those issues that could not be addressed by Bo, (1998). First of all, the voltage and current 

signal will both be used; this can provide more information about the direction of the fault 

point. The new scheme used wavelet transform as the feature extraction tool thus there was no 

need to design extra filters. Wavelet transform has a strong capability of extracting the signal 

component under different frequency bands while retaining the time domain information. 

Secondly, the extracted features would be handled using a self-organized neural network 

algorithm (Vasilic, and Kezunovic, 2005). With its strong capability of generalization and 

training mechanism, it could be used as an alternative solution when theoretical basis for 
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dealing with the fault generated high frequency signal components was not well defined. The 

neural network based algorithm is also capable of implementing a superior fault classification 

scheme. Finally, the new scheme used both the low and high frequency components of the 

fault signal to eliminate impact from non-fault disturbances. The reliability and robustness of 

the method will be verified by an extensive study for various kinds of faults. 

 

2.13 Summary of Literature Review/Knowledge Gap 

 

This work has successfully reviewed a lot of works done by different researchers in 

application of MRA and/or NN pattern recognition for fault identification and location in 

transmission lines. 

 

However, none of the works in the available literatures, has yet explored pattern recognition 

based fault identification and location in an overhead transmission line using the summation 

of the decomposed detail coefficients of the extracted faulty voltage and current waveforms 

for all the three phases for ten different faults and also for non-fault case. 

 

Additionally, the case study network (the Nigerian 330kV Ikeja-West to Benin Power 

transmission line) is yet to have simulation procedures and results peculiar and specific to its 

parameters. 
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CHAPTER THREE 

 

MATERIALS ANDMETHODS 

 

The materials used in this work are as follows: 

 

3.1 Laptop Computer System 

 

Shortened to just laptop is a small, portable personal computer (PC) with a „„clamshell‟‟ form 

factor, typically having a thin LCD or LED computer screen mounted on the inside of the 

upper lid of the clamshell and an alphanumeric keyboard on the inside of the lower lid. The 

clamshell is opened up to use the computer. For this work, given the volume of data and 

multiple continuous tasks of neural networks, there is minimum specifications of laptop that 

can be used. More so when the MATLAB software 2016 edition used for this work could not 

be run on a computer with 32-bit operating system. Hence the basic specification of the HP 

250 laptop computer used for this work is as follows: 

 

 Processor:   Intel(R) Celeron(R) CPU N2820 @ 2.13GHz  

 Installed memory (RAM): 4.00 GB (3.90 GB usable) 

 System type:   64-bit Operating System, x64-based processor 

 Storage:   500GB 

 Screen Size:   15.6 inches 

 Windows edition:  Windows 8.1 Pro @ 2013 Microsoft Corporation. 

 
3.2 Ikeja West – Benin 330kVTransmission Line 
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The Nigerian Ikeja West – Benin Electric Power Transmission Line is the second longest 

330kV transmission line of about 280kM long, located at the southern part of Nigerian grid 

system. At the Ikeja West end it has the Egbin Generating Station of 637MW feeding into it 

and at the Benin end it has two generators supplying it. The generators are Sapele Generating 

Station(GS) with 70MW capacity and Delta IV GS with capacity 498MW. The three main 

factors on which the choice of this network is made are basically because of its long distance, 

availability of records and proximity to the research center. 

 

3.3 Power World Simulator for power Flow Direction Determination 

 

For the simulation of the network and determination of power flow direction the 

PowerWorld
TM

 Simulator Version 12.0 licensed by Power World Corporation (for University 

Educational Use) is utilized. This simulator has the ability to perform numerous power 

system analyses like transient, contingency analysis, stability analysis and the determination 

of many other important parameters that are relevant for reliable operation of the system. 

 

The rich interactive user interface of the simulator can be assessed at the run and edit modes. 

It is at the edit mode that the one-line diagram is constructed with symbolic representation of 

the network components of loads, generators, transformers and circuit breakers at their 

relative position to each other. Thereafter load flow analysis can be executed in the run mode 

using any iterative method of choice on its 2D interface. 

 

The simulator can analyse multiple power sources on the network system, predicting the 

network bus voltages, transmission line losses and determine bus active and reactive powers. 

The one–line diagram of the network when solved, displays results with animated capacity. 
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The simulator by default indicates dynamically the direction of power flow by the movement 

of arrows on the transmission lines. 

 

The run mode of power world simulator enables the simulation of the Nigeria 330kVIkeja 

West – Benin Transmission Line. The load flow for this model was implemented using 

Newton-Raphson interactive method. Bus voltages, phase angle, line losses, real and reactive 

power and line flows are obtained by inserting line impedance data, load and generation 

schedules into the dialogue box of power world simulator operated in the edit mode.  

 

The one line diagram of the network is shown in the run mode with the resultant power flow 

indicated by the direction of dynamic arrows (in run mode) in Figure 3.2. From Figure 3.2 it 

can be seen that the resultant power flow is in the direction of bus B (Benin) to bus A (Ikeja 

West) 

 

3.4 Matrix Laboratory Software 

 

Matrix Laboratory Software, in short form known as Matlab, is a multi-paradigm numerical 

computing environment and proprietary programming language developed by MathWorks. 

Matlab allows matrix manipulations, plotting functions and data, implementations of 

algorithms, creation of user interfaces, and interfacing with programs written in other 

languages, including C, C++, CII, Java, Fortran and Python.  

 

In this work, Matlab is used to perform fault analysis, wavelet decompositions, and train and 

test the neural networks. The results of the fault simulations in Matlab Simulink environment 

were sent to Matlab workspace from where wavelet transformation was performed on them 

using the wavelet graphic user interface (GUI) and the new results were still stored in Matlab 
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workspace. The results were now fed to the neural network GUI from the workspace for 

training and testing the neural network for pattern recognition. 

 

3.5 AutoCAD 

 

AutoCAD is a commercial computer-aided design (CAD) and drafting software application 

developed and marketed by Autodesk. It has a few vertical programs for disciple 

enhancements such as:  

AutoCAD Advance steel,  

AutoCAD Architecture,  

AutoCAD Civil 3D,  

AutoCAD Electrical,  

AutoCAD escad,  

AutoCAD Map 3D, 

AutoCAD Mech, etc. 

In this work, AutoCAD2007 was used to draw the sketch of the chosen neural networks as 

shown in chapter four. 

 

3.6 Data 

 

Data is a set of subjects with respect to qualitative or quantitative variables. Data and 

information or knowledge are often used interchangeably; however, data becomes information 

when it is viewed in context or in post-analysis. 

 

All the data used in this work was extracted from the model of Figure 3.3 after performing 

simulations. The data was captured by the Matlab „„To Workspace block‟‟  in discrete form. 
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For each type of fault simulated there is data associated with it as captured and this is known 

as raw data. The data was pre-processed by decomposing the data into detail coefficients and 

coarse approximations using wavelet transform analysis and these data set of data is known as 

the pre-processed data. These data were summed up as illustrated in Appendix B and 

subdivided into the training data, testing data and validation data. A sample of the pre-

processed and summed-up data for single line to ground fault is shown in Appendix H. 

 

These training data, testing data and validation data were now fed into the chosen neural 

networks for purpose of training and testing the neural networks such that they can master the 

patterns. For the purpose of training 60% of the entire data was used, for testing 20% and for 

validation the remaining 20% was used. 

 

3.7 Outline of the Proposed Scheme 

 

Each of the steps taken in this dissertation has been depicted in the flowchart shown in Figure 

3.1. Firstly, the entire data is extracted and collected from the model of Figure 3.3 after 

simulation with the help of “To Workspace block”. While the two scopes, labelled Vabc and 

Iabc display the results of the fault analysis graphically as shown in Figure 3.6 – 3.15. The 

“To Workspace block” was used to captured the results in discrete forms and sent to Matlab 

workspace for storage and further actions. From the Matlab workspace the data is 

decomposed and filtered into low frequency bands & high frequency bands using multi-

resolution analysis (MRA) tool of wavelet transform. The results are graphically presented in 

Figure 3.17 – 3.26 and were still sent back to MATLAB workspace in discrete form for 

further action to be taken on the data. 
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From there, using the Matlab codes as shown in Appendix A and B, these results 

(decomposed signals) are summed up as 𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐  which are the summation of the 5th 

level detail coefficients of both the decomposed voltage and current waveforms for the three 

phases or the summation of the 5th level approximations for both the decomposed current and 

voltage  
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Figure 3.1: Flowchart outline of the proposed scheme. 

waveforms for the three phases or the summation of both the 5th level details and 

approximations of both the decomposed current and voltage waveforms for the three phases 

for detection, classification and location of faults respectively. These 𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐  (sample 

shown in Appendix H) are now inputted into the respective neural networks for training and 

testing the networks for mastering in other to recognize the patterns in the data for 

identification, classification and location purposes. These results were subdivided into three 

sets namely the training (60%), the testing (20%) and validation (20%) data sets before 

importing them into Matlab neural network graphic user interface (GUI) for the purpose of 

training and testing different chosen neural networks as discussed in subsequent sections. 

 

Then, the excellent pattern recognition and classification abilities of neural networks have 

been cleverly utilized in this dissertation to address the issue of transmission line fault finding 

on the adopted Nigerian Transmission line.   

 

The second step in the process is fault detection using neural networks. Once it is known that 

a fault has occurred on the transmission line, the next step is to classify the fault into the 

different categories based on the phases that are faulted. Then, the final step is to pin-point the 

position of the fault on the transmission line. 
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The goal of this dissertation as stated before is to propose an integrated method to perform 

each of these tasks using wavelet multi-resolution analysis tool and pattern recognition 

capability of artificial neural networks. A back-propagation based neural network has been 

used for the purpose of fault detection and another similar one for the purpose of fault 

classification. For each of the different kinds of faults, separate neural networks have been 

employed for the purpose of fault location. 

3.8 Modelling the Power Transmission Line System 

 

 

Figure 3.2: One-line diagram of the Nigerian 330kV Ikeja West - Benin transmission line 

system (the studied system). 

 

The Nigerian 330kV Ikeja West - Benin transmission line system has been adopted and used 

to develop and implement the proposed strategy using ANNs. Figure 3.2shows a PowerWorld 

Simulator one-line diagram(in run mode) of the system that has been used throughout the 

research. PowerWorld was used to determine the direction of flow of energy in the model. 

The system consists of two buses of 330kV each located on each ends of the transmission 

line. The transmission line has been modelled using distributed parameters so that it more 

280km 

B 

A 
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accurately describes a very long transmission line. The fault record of the transmission line is 

as shown in Table 3.1 for information sake. These fault records actually have no impact or 

effect in the behaviour of the transmission line, therefore they played no role in modelling the 

transmission line. The line parameters (as obtained from Appendix G) determine the 

behaviour of the transmission line and have been used to characterize the transmission line.  

 

Table 3.1: Number of Occurrence of Over-Current (O/C) Faults on Ikeja West – Benin 

Transmission Line (From TCN, 2019) 

Fault Type  Fault Nature 

Notation by TCN 

Year 

2016 2017 2018 

Phase to Ground  A-G O/C R∅ + E/F 12 8 14 

Phase to Ground B-G O/C Y∅ + E/F 9 17 11 

Phase to Ground C-G O/C B∅ + E/F 13 10 9 

Double Phase AB O/C R, Y∅ 16 12 10 

Double Phase BC O/C Y, B∅ 13 26 7 

Double Phase CA O/C B, R∅ 6 11 12 

Double Phase to 

Ground 

AB-G O/C R, Y∅ + E/F 18 24 19 

Double Phase to 

Ground 

BC-G O/C Y, B∅ + E/F 28 15 17 

Double Phase to 

Ground 

CA-G O/C B, R∅ + E/F 14 21 16 

Three Phase ABC O/C R, Y, B∅ 7 4 6 

Total No of 

Occurrence 

  136 148 121 

 

Where; O/C stands for overcurrent; R∅, Y∅ and B∅ stands for red, yellow and blue phases 

respectively; E/F stands for earth fault. Therefore, O/C R, Y∅+E/F implies overcurrent on red 

and yellow phases plus earth fault. 



- 74 - 
 

 

This power system was remodelled and simulated using the SimPowerSystems toolbox in 

Simulink with the help of Matlab (R2016a). A snapshot of the model used for obtaining the 

trainingand testing data sets is shown in Figure 3.3. In Figure 3.3, Z1- Z0 are the source 

impedances of the generators on either side. A „„three-phase fault block‟‟ was used to 

simulate faults at various positions on the transmission line.The three phase V-I measurement 

block is used to measure the voltage and current samples at the terminal A. The transmission 

line (1 and 2 together) is 280 km long and the three-phase fault block is used to simulate 

various types of faults at varying locations along the transmission line with different fault 

resistances. 

 

  

Figure 3.3: Snapshot of the studied model in SimPowerSystems. 
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The complete specifications of the components in theIkeja-west to Benin transmission line 

model in Figure 3.3 are as listed in sub-sections 3.7.1 - 3.7.6 and the values of the line 

parameters are lifted from Appendix G: 

 

3.8.1 Three Phase Source 

 
As can be seen, there are two three phase sources which are connected to the transmission line 

at both sides. Both power sources from left to right have generation capacity of 637MW and 

568MW respectively. 

Table 3.2: Parameters of the two Power Sources 

S/N Parameters Egbin Power 

Plant(Source A 

at the Left) 

Delta IV + 

Sapele power 

plants (Source B 

at the Right) 

1 Installed Capacity (MW) 637 568 

2 Phase to phase rms voltage (V) 330e3 330e3 

3 Phase angle of phase A (degree) 0 -30 

4 Frequency (Hz) 50 50 

5 Internal connection Yg Yg 

6 Three phase short circuit level at base 

voltage (VA) 

250e6 1915e6 

7 Base voltage (Vrms ph-ph) 330e3 330e3 

8 X/R ratio 12.37/2.46 12.37/2.46 

 

 

3.8.2 Circuit Breaker 

 

One of the components in Figure 3.3 is the circuit breaker. In both circuit breakers, all the 

parameters are the same and they are listed below. These blocks are connected in series with 

the three-phase transmission lines that are to be opened when fault occurs. The breaker timing 

is defined directly from the dialog box or applied as an external logical signal. From the 
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'External control' box, the external control input will be adjusted. Parameters for both circuit 

breakers: 

 

Transition times(s)     = [1/60] 

Breaker resistance Ron (ohms)  = 0.001 

Snubbers resistance Rp (ohms)   = 1𝑒6  

Snubbers capacitance Cp (Farad)   = Positive infinity 

Initial status of breakers    = closed 

 

3.8.3 Three Phase Series RLC Load 

 

The parameters of the Three phase series RLC load are as underlisted: 

Configuration       = Y grounded 

Nominal phase to phase voltage Vn (Vrms)   = 330𝑒3 

Nominal frequency Fn (Hz)     = 50 

Active power P (W)      = 1205𝑒6 

Inductive reactive power QL (Positive Var)   = 240 

Capacitive reactive power QC (0)    = 100 

 

 

3.8.4 Distributed Parameters Line 

 

One of the major components is the distributed parameters line, and the parameters of two of 

them are the same except in length, (it was broken into two parts of length in km), and the 

reason is that the line is about 280km long, during the modelling different places of fault 

occurrence are needed to be chosen, so that the total length of these two blocks should be 

280km at each point in time. For example, if it is needed to show that the fault is happening at 

90km from source A, then the length of the first line (block) will be set at 90km whilethe 
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length of the second line will be set at 190km. Rest of the length in different part will be same 

during the modelling, but if there is need to change the output of the signal, each part can be 

changed.  

 

This block implements an N-phases distributed parameter line model. The RLC parameters 

are specified by [N×N] matrices. In modelling the three-phase symmetrical line, the complete 

[N×N] matrices were specified by simply entering the sequence parameters vectors: the 

positive and zero sequence parameters for the three-phase transposed line. This block has 

these parameters amounts: 

Table 3.3: Parameters of the Distributed Parameter Lines (Appendix G) 

S/N Parameters Amount 

1 Number of phases [N] 3 

2 Frequency used for RLC specification (Hz) 50 

3 Resistance per unit length (ohms/kM) [N×N 

matrix] 

[0.01010.0799] 

4 Inductance per unit length (H/kM) [N×N 

matrix] 

[1.637𝑒−3 12.626𝑒−3] 

5 Capacitance per unit length (F/kM) [N×N 

matrix]  

[1.162𝑒−9 7.751𝑒−9] 

6 Line length (kM) It is selective and the total length 

of the both sides should be equal 

to 280km because the 

transmission line is supposed to 

be 280km 

7 Measurements 

 

Phase to ground voltage is being 

measured 

 

 

3.8.5 Three Phase V-I Measurement 
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Another component in of Figure 3.3 is the three-phase V-I measurement. From the Figure, 

they are two, one at right and one at left. These blocks were shrunk to form a bus-bar like 

structure. Their parameter is almost same, the difference is only in their output signal label of 

voltage and current. At the left, the label is Iabc  for current and for voltage is Vabc  and at the 

right, the label for current is Iabc1 and for voltage is Vabc1. The block can output the voltages 

and currents in per unit values or in volts and amperes. 

 

Figure 3.4, shows the „„V-I measurement‟‟ component in isolation. There are two ports which 

are labelled Vabc (three phase voltage) and Iabc (three phase current) and they are to be 

connected to the „„scope blocks‟‟and „„To Workspace blocks‟‟ for their output to be displayed 

graphically and be sent to Matlab environment in discrete form respectively. 

 
 

 

 

Figure 3.4: Three Phase V-I Measurement 

 

3.8.6 Three Phase Fault: 

 

Another component in of Figure 3.3 is the three phase fault. With this block, different types of 

faults and also resistance for ground line can be chosen. The block has different phases (phase 

A, phase B, phase C) and also ground fault. Combination of any of them can be 
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chosentogether with or without ground. In other words, this block was used to program a fault 

(short-circuit) between any phase and the ground. The fault timing was defined directly from 

the dialog box (though an external logical signal can be applied). If the 'External control' box 

was checked, the external control input would appear. Parameters: 

 

Fault resistance Ron (ohms)  =   15 

Transition status [1, 0, 1 ...)  =   [1 0] 

Transition times (s)   =   [1/60 5/60] 

Snubbers resistance Rp (ohms) =   1𝑒6 

Sunbbers capacitance Cp (Farad) =   Positive infinity 

Measurement    =   none 

 

 

Figure 3.5, shows the connection of the „„scope blocks‟‟ and„„To Workspace blocks‟‟ 

components. These two components are used for results collections in pictorial and discrete 

forms respectively. 

 

 

Figure 3.5: Voltage and current blocks to scope blocks and „„To workspace blocks‟‟ 

 

3.9  Acquisition of Data and Pre-Processing 
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A reduction in the size of the neural network improves the performance of the same and this 

can be achieved by performing feature extraction using wavelet transformation of the input 

signal. By doing this, all of the important and relevant information present in the waveforms 

of the voltage and current signals can be used effectively. The fault currents and voltages have 

been generated from the model of Figure 3.3 after simulation using Matlab as shown in 

Figures 3.6 – 3.15for fault condition of L-G, L-L, L-L-G and L-L-L. Moreover, the sampling 

time taken for the analysis is 100us, which relates to a sampling frequency of 10 kHz.  

 

Figure 3.6 is the waveform of the current of the single line to ground fault on phase A 

measured at 140km away from source A during occurrence of fault on the line. The red, blue 

and green curves represent fault conditions of phases A, B and C respectively. From the graph 

it can be seen that the fault occurred at 50ms after which the magnitude of fault current on 

phase A rose reasonably while the other two phases almost remained stable which is clear 

from the Figure 3.6.  
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Fig. 3.6: Current waveform of LG Fault on phase A at a distance of 140kM from the 

source 

 

Figure 3.7 is the corresponding waveform of the voltage of the single line to ground fault on 

phase A measured at 140km away from source A during occurrence of a transient fault on the 

line. As aforementioned, the red, blue and green curves represent fault conditions of phases A, 

B and C respectively.  The fault has caused a voltage drop on phase A when the fault occurred 

after 50ms. The other two phases almost remained stable.  

 

 

Fig. 3.7: Voltage waveform of LG Fault on phase A at a distance of 140kM from the 

source 
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Fig. 3.8: Current waveform of LL-G Fault on phase A & B at a distance of 140km from 

the source 

In Figure 3.8, the red, blue and green curves represent fault conditions of phases A, B and C 

respectively. Figure 3.8 is the waveform of the current of the double line to ground fault on 

phase A and B measured at 140km away from source A during occurrence of a transient fault 

on the line. From the graph it can be seen that the fault occurred at 50ms after which the 

magnitude of fault current on phases A and B rose reasonably high (enough to cause flow 

disruption) while the other phase almost remained stable which is clear from the Figure 3.8.  
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Fig. 3.9: Voltage waveform of LL-G Fault on phase A & B at a distance of 140km from 

the source 

 

Figure 3.9 is the corresponding waveform of the voltage of the double line to ground fault on 

phase A measured at 140km away from source A during occurrence of a transient fault on the 

line. The red, blue and green curves represent fault conditions of phases A, B and C 

respectively.  The fault has caused voltage drops on phases A and B after the fault occurred at 

50ms. Phase C almost remained stable.  

 

Figure 3.10 shows the current waveform of the double line (without ground) fault on phase A 

and B measured at 140km away from source A during occurrence of a transient fault on the 

line. The red, blue and green curves represent fault conditions of phases A, B and C 

respectively. From the graph it can be seen that the fault occurred at 50ms after which the 
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magnitude of fault current on phases A and B increased leading to instability in the system. 

The phase C almost remained stable as shown in the Figure 3.10.  

 

 

 

Fig. 3.10: Current waveform of LL Fault on phases A & B at a distance of 140km from 

the source 

 

Figure 3.11 shows the corresponding voltage waveform of the double line fault on phase A 

and B measured at 140km away from source A during occurrence of a transient fault on the 

line. As aforementioned, the red, blue and green curves represent fault conditions of phases A, 

B and C respectively.  The fault has caused significant voltage drops on phases A and Bwhen 

the fault occurred at 50ms. Phase C almost remained stable.  
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Fig. 3.11: Voltage waveform of LL Fault on phase A & B at a distance of 140km from 

the source 

 

In Figure 3.12, the red, blue and green curves represent fault conditions of phases A, B and C 

respectively. Figure 3.12 depicts the current waveforms of three phase fault (with or without 

ground) on phase A, B and C measured at 140km away from source A during occurrence of a 

fault on the line. From the graph it can be seen that the fault occurred at 50ms after which the 

magnitude of fault current on the three phases rose reasonably high, enough to cause flow 

disruption.  
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Fig. 3.12: Current waveform of LLL Fault on all the phases at a distance of 140km from 

the source 

 

 

 

Fig. 3.13: Voltage waveform of LLL Fault on all the phases at a distance of 140km from 

the source 
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Figure 3.13 depicts the corresponding voltage waveforms of three phase fault (with or without 

ground) measured at 140km away from source A during occurrence of a transient fault on the 

line. As said above, the red, blue and green curves represent fault conditions of phases A, B 

and C respectively. The fault has caused simultaneousvoltage drops on phases A, B and C 

after the fault occurred at 50ms. 

 

 

 

Fig. 3.14: Current waveform of No Fault condition on all the phases at a distance of 

140km from the source 

 

 

 

In Figure 3.14, the red, green and blue curves represent fault conditions of phases A, B and C 

respectively. Figure 3.14 depicts the current waveforms of No fault on phase A, B and C 

captured at 140km away from source A. From the graph it can be seen that the magnitude of 

currents on the three phases remained unchanged.  
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Fig. 3.15: Voltage waveform of No Fault condition on all the phases at a distance of 

140km from the source 

 

Figure 3.15 depicts the corresponding voltage waveforms of No fault condition measured at 

140km away from source A at no fault condition. As aforementioned, the red, green and blue 

curves represent fault conditions of phases A, B and C respectively. The voltage of the three 

phases (phases A, B and C) has remained unchanged. 

 

These results for each simulation are captured and stored in Matlab with the help of the „„To 

Workspace blocks‟‟ tool as shown in Figure 3.5. Then to perform wavelet decomposition, 

these captured results or data are imported into the Matlab wavelet toolbox where they are 

decomposed into detail coefficients and coarse approximations using the multi-resolution 

analysis tool as presented.  
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3.10 Wavelet Transform Analysis of Fault Signals 

 

From the point of linear algebra, a signal (fault signal) can be decomposed into linear 

combination of the basis if the signal is in the space spanned by the basis. Given a one-

dimensionalfault signal𝑓 𝑥 , it can be expressed as, 

 

  𝑓 𝑥 =  𝛼𝑘∅𝑘𝑘 (𝑥)       (3.1) 

 

Where𝑘 is an integer index of the finite or infinite sum, the 𝛼𝑘  are expansion coefficients, 𝑥 is 

the continuous variable in space and the ∅𝑘(𝑥)are expansion functions, or the basis. To 

realize the set of function  ∅𝑘 , a scaled and shifted function ∅𝑟,𝑠(𝑥) of some basic function 

(𝑘) are used as stated below: 

 

  ∅𝑟,𝑠 𝑥 = 2
𝑟

2 ∅(2𝑟𝑥 − 𝑠)      (3.2) 

𝑟, 𝑠 ∈ 𝑍 

 

Where 𝑟 𝑎𝑛𝑑 𝑠 are the scaling and the shift parameters respectively. And thus, the class of 

functions ∅𝑟,𝑠 𝑥   are called the Scaling functions. If  𝑟 is fixed to some value as 𝑟 = 𝑟0, 

which implies that the only variable is 𝑠, then the ∅𝑟0  ,𝑠 𝑥  can be used to cover only a limited 

space of the entire square integrable space, 𝐿2(𝑅). The class of functions which are used to 

cover the difference sub-space are called the Wavelet functions and are mathematically 

represented as   

 

  𝜑𝑟,𝑠 𝑥 = 2
𝑟

2 𝜑(2𝑟𝑥 − 𝑠)      (3.3) 

 

The relationship between the scaling and the wavelet functions is give below 
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  𝜑 𝑥 =  𝑕𝜑(𝑛) 2∅𝑘 (2𝑥 − 𝑛)     (3.4) 

       𝑛 ∈ 𝑍 

𝑕𝜑(𝑛)is the coefficient associated with the shift parameter (𝑛) 

Therefore, given a set of scaling  ∅𝑟0  ,𝑠 𝑥   and wavelet 𝜑𝑟,𝑠 𝑥  functions, the continuous 

function 𝑓 𝑥  can be approximated as below: 

 

 𝑓 𝑥 =  𝛼𝑟0  ,𝑠∅𝑟0  ,𝑠𝑆  𝑥 +   𝑏𝑟,𝑠𝜑𝑟,𝑠𝑠 (𝑥)∞
𝑟=𝑟0

    (3.5) 

         𝑟 ≥ 𝑟0 

Where the coefficients 𝛼𝑟0  ,𝑠 and 𝑏𝑟,𝑠 can be realized as: 

 

   𝛼𝑟0  ,𝑠 = ∫𝑓 𝑥 ∅𝑟0  ,𝑠𝑥 𝑑𝑥 

 

   𝑏𝑟,𝑠 = ∫𝑓 𝑥 𝜑𝑟,𝑠𝑥 𝑑𝑥 

 

The definition of continuous wavelet transform (CWT) for a given signal x(t) with respect to a 

mother wavelet (t) is: 

 

  𝐶𝑊𝑇 𝑎, 𝑏 =
1

 2
∫ 𝑥(𝑡)𝜑  

𝑡−𝑏

𝑎
 𝑑𝑡

∞

∞
     (3.6) 

 

where a is the scale factor and b is the translation factor. 

 

For CWT, t, and b are all continuous. Unlike Fourier transform, the wavelet transform 

requires selection of a mother wavelet for different applications. One of the most popular 

mother wavelets found for power system transient analysis in the literature is Daubechies‟s 

wavelet family. In this work, the db5 wavelet is selected as the mother wavelet for detecting 
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the short duration, fast decaying fault generated transient signals. Db5 is suitable for power 

analysis especially fault analysis unlike other mother wavelets like Haar, Morlet, Simlet etc 

which are good for analysing images and pictures (Hasabe and Vaidya, 2014).  

 

 3.10.1  Discrete Wavelet Transform of the Fault Signals 

 

The application of wavelet transform in engineering areas usually requires discrete wavelet 

transform (DWT), which implies the discrete form of t, a, b in section (3.10).Here, the 

discrete form of the values r, k, a, 𝑥, and 𝑓(𝑥) will now be j, s, w, n and  𝑠(𝑥) respectively. 

The representation of DWT can be written as: 

 

  𝑊∅ 𝑗0, 𝑘 =
1

 𝑀
 𝑠 𝑛 ∅𝑗0 ,𝑘𝑛 (𝑛)     (3.7) 

       𝑗 ≥ 𝑗0 

  𝑊𝜑 𝑗, 𝑘 =
1

 𝑀
 𝑠 𝑛 𝜑𝑗 ,𝑘𝑛 (𝑛)     (3.8) 

 

Where, 𝑠 𝑛  is the discrete fault signal to be decomposed, 1
 𝑀
  is a normalizing factor. 

Equations 3.7 and 3.8 are the scaling function and the wavelet transform respectively. 

Normally, if 𝑗0 is fixed at zero (0), M is selected to be 2𝐽 ; 𝑀 = 2𝐽 and summation is 

performed up to j= 0, 1, 2, …, J-1, then the discrete form of the wavelet function 𝜑𝑟,𝑠 is now; 

 

  𝜑𝑗 ,𝑘 𝑛 = 2
𝑗

2𝜑(2𝑗𝑛 − 𝑘)      (3.9) 

 

Putting 𝜑𝑗 ,𝑘 𝑛  into equation 3.8 gives 

 

 𝑊𝜑 𝑗, 𝑘 =
1

 𝑀
 𝑠 𝑛 𝑛 ∗ 2

𝑗

2𝜑(2𝑗𝑛 − 𝑘)     (3.10) 
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But the relationship between the scaling function and the discrete wavelet function is given 

by, 

 

  𝜑 𝑛 =  𝑕𝜑 𝑝  2 ∗ ∅(2𝑛 − 𝑝)𝑝      (3.11) 

 

Where, 𝑝 is the new shift parameter, n is the scaling parameter and 𝑕𝜑 is a high-pass filter. 

If equation 3.11 is scaled up by a factor to the power j and shifted by k unit i.e. to get 

𝜑(2𝑗𝑛 − 𝑘),equation 3.11 can be written as 

 

  𝜑 2𝑗𝑛 − 𝑘 =  𝑕𝜑 𝑝  2 ∗ ∅(2(2𝑗𝑛 − 𝑘) − 𝑝)𝑝    (3.12) 

Let 𝑝 = 𝑚 − 2𝑘, then 𝑚 = 𝑝 + 2𝑘 

 

Then, 

 𝜑 2𝑗𝑛 − 𝑘 =  𝑕𝜑 𝑚 − 2𝑘  2 ∗ ∅(2𝑗+1𝑛 −𝑚)𝑝     (3.13) 

 

Putting(3.13) into(3.10) gives; 

 

 𝑊𝜑 𝑗, 𝑘 =
1

 𝑀
 𝑠 𝑛 𝑛 ∗ 2

𝑗

2 ∗   𝑕𝜑 𝑚 − 2𝑘  2 ∗ ∅(2𝑗+1𝑛 −𝑚)𝑝  

 

Interchanging the summation order gives; 

 

𝑊𝜑 𝑗, 𝑘 =  𝑕𝜑 𝑚 − 2𝑘  
1

 𝑀
 𝑠 𝑛 𝑛 ∗ 2

𝑗+1

2 ∗ ∅(2𝑗+1𝑛 − 𝑚) 𝑚   (3.14) 

 

Relatingequation 3.10 with equation 3.14; 

 

𝑊∅ 𝑗 + 1,𝑚 =
1

 𝑀
 𝑠 𝑛 

𝑛

∗ 2
𝑗+1

2 ∗ ∅(2𝑗+1𝑛 −𝑚) 

Therefore,  



- 93 - 
 

 𝑊𝜑 𝑗, 𝑘 =  𝑕𝜑 𝑚 − 2𝑘 𝑊∅ 𝑗 + 1,𝑚 𝑚      (3.15) 

In very similar way, can be obtained; 

 

 𝑊∅ 𝑗, 𝑘 =  𝑕∅ 𝑚 − 2𝑘 𝑊∅ 𝑗 + 1,𝑚 𝑚      (3.16) 

 

The implication ofequations3.15 and 3.16 is that a scaling function 𝑊∅ 𝑗 + 1,𝑚  is being 

convolved with a highpass analysis filter 𝑕𝜑 𝑚 − 2𝑘  to yield the detail information and low 

pass analysis filter 𝑕∅ 𝑚 − 2𝑘  to yield the coarse approximations of the fault signals 

respectively. This decomposition of the fault signal by successive high pass and low pass 

filtering of the time domain signal is called multi-resolution analysis (MRA). In a block 

diagram, up to fifth level decomposition is represented as shown in Figure 3.16. 

 

The discrete wavelet transform (DWT) of the fault signal represents a 1-D signal 𝑠 𝑛  in 

terms of shifted versions of a low-pass scaling function and shifted and dilated versions of a 

prototype band pass wavelet function. 

 

Having converted the continuous fault signals into discrete signals, the sampled signals 

𝑊∅ 𝑗 + 1,𝑚  are passed through a high pass filter 𝑕𝜑 𝑚 − 2𝑘 and a low pass filter 𝑕∅ 𝑚 −

2𝑘 . A process called wavelet decomposition using multi-resolution analysis. Then the 

outputs from both filters are decimated by 2 to obtain the detail coefficients and the 

approximation coefficients at level 1 (D1 and A1). The approximation coefficients are then 

sent to the second stage to repeat the procedure. Finally, the fault signal is decomposed at the 

expected level.  

 

 



- 94 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(n) G(n) 

2↓ 2↓ 

Vabc /Iabc (n) 

Detail 1  

D1(n) 

Approximation 1  

A1 (n) 

H(n) G(n) 

2↓ 2↓ 

Detail 2  

D2(n) 

Approximation 2  

A2 (n) 

H(n) G(n) 

2↓ 2↓ 

Detail 3  

D3(n) 

Approximation 3  

A3 (n) 

H(n) G(n) 

2↓ 2↓ 

Detail 4  

D4(n) 

Approximation 4  

A4 (n) 

H(n) G(n) 

2↓ 2↓ 

Detail 5  

D5(n) 

Approximation 5  

A5 (n) 



- 95 - 
 

 

3.11 Decomposition of the Signals (𝐈𝐚𝐛𝐜 𝐚𝐧𝐝 𝐕𝐚𝐛𝐜) using Multi-resolution Tool of 

Wavelet Transform in Matlab 

 

In order to reduce the computational burden, the sampling frequency should not be too high 

but it should be high enough to capture all the information concerning the faults. The 

generated current and voltage signal (see Figure 3.6 to 3.15) for each case is analyzed using 

wavelet transform. A sampling frequency of 10 kHz is selected. Daubechies wavelet Db5 is 

used as mother wavelet.This is becauseDb5 has good performance results for power system 

fault analysis(Hasabe and Vaidya, 2014). Detail coefficients of fault current and voltage 

signals in 5th level (d5), give the frequency components corresponding to second and third 

harmonics. On this basis, summation of 5th level detail coefficients of the three phase currents 

Ia , Ib  and Icand voltage Va , Vb  and Vcare being used for the purpose of detection of faults in 

the transmission line. 

 

The total number of wavelet levels considered is 5. Hence a fifth level wavelet output 

corresponds to a frequency band of 5-10 kHz. Down sampling by two was done at succeeding 

levels leading to a third level output corresponding to a frequency band of 2.5-5 kHz, i.e. it 

consists of 2nd and 3rd harmonic components and are predominant in the situation of 

transmission line faults. The wavelet toolbox in Matlab has been used for DWT operation. 

Different decomposition levels such as A5 (Approximation at level five); detail levels one, 

two, three, represented as D1, D2, D3, D4, D5 respectively were extracted using wavelet 

toolbox. The Appendix B gives summations of wavelet coefficients of fifth values for voltage 

and current in phases A, B and C respectively for single line to ground (L-G), double line to 

ground (L-LG), double line (L-L), and three phase symmetrical (L-L-L) faults for different 

fault inception angles and fault locations.  

Fig. 3.16: FifthLevel Multi-Resolution Analysis (MRA) representation of  

Iabc  and Vabc  
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Figures 3.17 - 3.26 show the wavelet decomposition of the Simulink extracted fault 

waveforms of Figures 3.6- 3.15 respectively via multi-resolution analysis. The sampling 

frequency is 10kHz, the signal information captured by D1 is between 2.5kHz and 5kHz of 

the frequency band. D2 captures the information between 0.125 kHz and 0.25 kHz. D3 

captures the information between 0.0625kHz and 0.125kHz, and A3 retains the rest of the 

information of original signal between 0 and 0.0625kHz.By such means, useful information 

from the original signal can easily be extracted into different frequency bands and at the same 

time the information is matched to the related time period. 

 

 

Figure 3.17: Decomposed signal of Current waveform of LG Fault on phase A at a distance 

of 140km from the source 

 

Figure 3.17 depicts the snapshot of the fifth level decomposition of the sampled current 

waveforms of LG fault on phase A (of Figure 3.6). Db5 wavelet has been used to make a 5-
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level decomposition. 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent the detail coefficients for level 1, 2, 3, 4, 

and 5 respectively while 𝑎5 is the fifth level approximation coefficient. As clearly shown, the 

three phases are concatenated together of matric data of 9141x3 in all. The first set of data of 

3047x1 in a column is for phase A, the second set of data of 3047x1 is for phase B and the 

third set of data of 3047x1 is for phase C. The information of original signal is clearly 

represented at each frequency band. 

 

 

Figure 3.18: Decomposed signal of voltage waveform of LG Fault on phase A at a distance 

of 140km from the source 

 

The snapshot of the fifth level decomposition of the sampled voltage waveforms of LG fault 

on phase A (of Figure 3.7) is depicted in Figure 3.18. 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent the 

detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth level 

approximation coefficient. As clearly shown, the three phases are concatenated together of 
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matric data of 9141x3 in all. The first set of data of 3047x1 in a column (from 1 to 3047 in x 

axis) is for phase A, the second set of data of 3047x1 (from 3048 to 6095 in x axis) is for 

phase B and the third set of data of 3047x1 (from 6096 to 9141 in x axis) is for phase C. 

 

 

Figure 3.19: Decomposed signal of Current waveform of LLG Fault on phase A at a 

distance of 140km from the source 

 

Figure 3.19 shows the snapshot of the fifth level decomposition of the sampled current 

waveforms of LLG fault on phase A and B (of Figure 3.8). 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent 

the detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth level 

approximation coefficient. As clearly shown, the three phases are concatenated together of 

matric data of 9021x3 in all. The first set of data of 3007x1 in a column is for phase A, the 

second set of data of 3007x1 is for phase B and the third set of data of 3007x1 is for phase C. 

The information of original signal is clearly represented at each frequency band. 
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Figure 3.20: Decomposed signal of voltage waveform of LLG Fault on phase A at a 

distance of 140km from the source 

 

The snapshot of the fifth level decomposition of the sampled voltage waveforms of LLG fault 

on phase A and B (of Figure 3.9) is shown in Figure 3.20. 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent the 

detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth level 

approximation coefficient. As clearly shown, the three phases are concatenated together of 

matric data of 9021x3 in all. The first set of data of 3007x1 in a column is for phase A, the 

second set of data of 3007x1 is for phase B and the third set of data of 3007x1 is for phase C. 

 

Figure 3.21 depicts the snapshot of the fifth level decomposition of the sampled current 

waveforms of LL fault on phase A and B (of Figure 3.10). 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent the 

detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth level 
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approximation coefficient. As clearly shown, the three phases are concatenated together of 

matric data of 9420x3 in all. The first set of data of 3140x1 in a column is for phase A, the 

second set of data of 3140x1 is for phase B and the third set of data of 3140x1 is for phase C. 

The information of original signal is clearly represented at each frequency band. 

 

 

Figure 3.21: Decomposed signal of Current waveform of LL Fault on phase A at a distance 

of 140km from the source 

 

The snapshot of the fifth level decomposition of the sampled voltage waveforms of LL fault 

on phase A and B (of Figure 3.11) is depicted in Figure 3.22. 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent 

the detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth level 

approximation coefficient. As clearly shown, the three phases are concatenated together of 

matric data of 9420x3 in all. The first set of data of 3140x1 in a column is for phase A, the 
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second set of data of 3140x1 is for phase B and the third set of data of 3140x1 is for phase C. 

The information of original signal is clearly represented at each frequency band. 

 

Figure 3.22: Decomposed waveform of voltage waveform of LL Fault on phase A at a 

distance of 140km from the source 

 



- 102 - 
 

 

Figure 3.23: Decomposed waveform of Current waveform of LLL Fault on the three phases 

at a distance of 140km from the source 

Figure 3.23 shows the snapshot of the fifth level decomposition of the sampled current 

waveforms of LLL fault on the three phases (of Figure 3.12). 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent 

the detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth level 

approximation coefficient. As clearly shown, the three phases are concatenated together of 

matric data of 6768x3 in all. The first set of data of 2256x1 in a column is for phase A, the 

second set of data of 2256x1 is for phase B and the third set of data of 2256x1 is for phase C. 
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Figure 3.24: Decomposed signal of voltage waveform of LLL Fault on the three phases at a 

distance of 140km from the source 

 

The snapshot of the fifth level decomposition of the sampled voltage waveforms of LLL fault 

on the three phases (of Figure 3.13) is shown in Figure 3.24. 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 represent 

the detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth level 

approximation coefficient. As clearly shown, the three phases are concatenated together of 

matric data of 6768x3 in all. The first set of data of 2256x1 in a column is for phase A, the 

second set of data of 2256x1 is for phase B and the third set of data of 2256x1 is for phase C. 

The information of original signal is clearly represented at each frequency band. 

 

Figure 3.25 shows the snapshot of the fifth level decomposition of the sampled current 

waveforms of No fault condition on the three phases (of Figure 3.14). 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 

represent the detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth 



- 104 - 
 

level approximation coefficient. As clearly shown, the three phases are concatenated together 

along the row with matric data of 18897x3 in all. The first set of data of 6299x1 in a column 

is for phase A, the second set of data of 6299x1 is for phase B and the third set of data of 

6299x1 is for phase C. 

 

Figure 3.25: Decomposed waveform of Current waveform of No Fault condition on the 

three phases at a distance of 140km from the source 

The snapshot of the fifth level decomposition of the sampled voltage waveforms of No fault 

condition on the three phases (of Figure 3.15) is shown in Figure 3.26. 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 

represent the detail coefficients for levels 1, 2, 3, 4, and 5 respectively while 𝑎5 is the fifth 

level approximation coefficient. As clearly shown, the three phases are concatenated together 

of matric data of 18897x3 in all. The first set of data of 6299x1 in a column is for phase A, the 
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second set of data of 6299x1 is for phase B and the third set of data of 6299x1 is for phase C. 

The information of original signal is clearly represented at each frequency band. 

 

 

Figure 3.26: Decomposed signal of voltage waveforms of No Fault condition on the three 

phases at a distance of 140km from the source 

 

The wavelet toolbox in Matlab was used for the above signal decompositions as it provides a 

lot of useful techniques for wavelet analysis.Based on the sampling rate the signal is divided 

into 12 decomposition levels. Among different levels only 5th level is considered for analysis 

because the frequency corresponding to this level is covering 2nd and 3rd harmonics which 

are dominant in the fault conditions. 
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As stated before in section 3.7, the new results or data (decomposed signals) are sent back to 

Matlab workspace in readiness for further usage. From there, using the Matlab codes as 

shown in Appendix A and B, these results (decomposed signals) are summed up as 𝑊𝑎 , 𝑊𝑏 , 

and 𝑊𝑐  which are the summation of the 5th level detail coefficients of both the decomposed 

voltage and current waveforms for the three phases or the summation of the 5th level 

approximations for both the decomposed current and voltage waveforms for the three phases 

or the summation of both the 5th level details and approximations of both the decomposed 

current and voltage waveforms for the three phases fault detection, classification and location 

respectively.These𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐(sample shown in Appendix H) are now used as input to 

the respective neural networks for training and testing them for mastering in other to 

recognize the patterns for identification, classification and location purposes. 

 

Finally, these data are imported in the Matlab neural network graphic user interface (GUI) for 

the purpose of training and testing different chosen neural networks as discussed below. 

 

3.12 Model of a Neuron 

 

A basic neuron model as shown in Fig 3.27 can be described by a function that calculates the 

output as a function of a number of inputs to it. The basic idea behind the entire neuron 

model, including the activation functions illustrated below, has been adopted from (Anderson, 

2003). 
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Figure 3.27: Mathematical Model of a Neuron. 

 

The output of the neuron is given by  

 

 𝑓 𝜑 =  𝑓( 𝑤𝑖𝑎𝑖
𝑁0
𝑖=0 )       (3.17) 

 

Where: w0a0 is the threshold value (polarization),f φ  is the neuron activation function, φ is 

the summation output signal and y is the neuron output. 

 

  𝜑 =  𝑾𝑻𝑨        (3.18) 

 

Where:  𝑾 =   𝑤0𝑤1 … 𝑤𝑁0
 ,   𝑨 =   𝑎0𝑎1 … 𝑎𝑁0

 
𝑻
    (3.19) 

 

The activation function acts as a squashing function, such that the output of a neuron in a 

neural network is between certain values (usually 0 and 1, or -1 and 1). An activation function 

decides how powerful the output from the neuron should be, based on the sum of its inputs. 

Depending upon the application‟s requirements, the most appropriate activation function is 
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chosen. The activation function f (φ) can be in different forms.A few of which are illustrated 

below: 

 

▪ Threshold (or Step) Function 

 

This takes on a value of 0 if the summed input is less than a certain threshold value (φ), and 

the value 1 if the summed input is greater than or equal to the threshold value. 

 

  𝑓 𝜑 =   
1,   if φ ≥ 0
0,   if φ < 0

  

 

 

 

Figure 3.28: Step activation function 

 

▪ Piece wise linear function 

 

This function again can take on the values of 0 or −1, but can also take on values between 

that depending on the amplification factor in a certain region of linear operation. 

 

 

  𝑓 𝜑 =  

1,   for φ > 1
−1,   for φ < −1

   𝜑,   for − 1 < 𝜑 < 1
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Figure 3.29: Piece wise linear activation function. 

 

 

▪ Sigmoid bipolar function 

 

This function can range between 0 and 1, but it is also sometimes useful to use the -1 to 1 

range. An example of the sigmoid function is the hyperbolic tangent function 

 

 

 𝑓 𝜑 = tanh 𝛽𝜑 =
1 −  𝑒−2𝛽𝜑

1 +  𝑒−2𝛽𝜑  

 

 

 

Figure 3.30: Bipolar activation function. 
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▪ Sigmoid unipolar function 

 
This function can range between 0 and 1 and in this work the Sigmoid activation function has 

been used since the emphasis is that the neural network output should be 0 or 1 (no or yes). 

 

 𝑓 𝜑 =  
1

1+ 𝑒−𝛽𝜑
 

 

 

 

Figure3.31: Sigmoid unipolar activation function. 

 

Based on the way the neurons are interconnected in a model, neural networks can be broadly 

classified into two types namely feed-forward and feed-back networks. As the name suggests, 

feedback networks unlike feed-forward networks have a feedback connection fed back into 

the network along with the inputs. Due to their simplicity and the existence of a well-defined 

learning algorithm, only feed-forward networks have been used in this dissertation for the 

simulation and hence the application is presented in the upcoming sections. 

  

3.13 The Feed-forward Networks 

 

Feed-forward networks are the simplest neural networks where there is no feedback 

connection involved in the network and hence the information travel is unidirectional (El-
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Sharkawi, Niebur, 1996). A feed-forward network with 𝑎N0 input and 𝑦NR  outputsignals is 

shown in Fig 3.32. The computation process in the ith layer can be described by the following 

(3.20) 

 

  𝒑(𝑖) =  𝑓(𝑖) 𝒘(𝑖)𝒈(𝑖−1)       (3.20) 

 

Where  𝒑(𝑖) =   𝑝1
(𝑖)
𝑝2

(𝑖)
𝑝3

(𝑖)
 … 𝑝𝑁𝑖

(𝑖)
 
𝑻

  is the fault signal vector at the output of the ith layer. 

 

And     𝑾(𝑖) =  

 

 
 

𝑤10
(𝑖)

𝑤11
(𝑖)

… 𝑤1𝑁𝑖−1

(𝑖)

𝑤20
(𝑖)

𝑤21
(𝑖)

… 𝑤2𝑁𝑖−1

(𝑖)

⋮

𝑤𝑁𝑖0
(𝑖)

⋮

𝑤𝑁𝑖1
(𝑖)

⋱
…

⋮

𝑤𝑁𝑖𝑁𝑖−1

(𝑖)
 

 
 

     is the weighing matrix between the (i-1)th 

and the ith layer. 

 

 𝒈(𝑖−1) =   
𝐴                     𝑓𝑜𝑟 𝑖 = 1

 
1

𝒑(𝑖−1)        𝑓𝑜𝑟 𝑖 = 2,3, … , 𝑅
      (3.21) 

 

A is the vector containing the input signals,𝒇(𝑖) is the activation function of the neurons in the 

ith layer and pis the number of processing layers. All the neurons in a particular layer are 

assumed to be similar in all aspects and the number of hidden layers can be more than one and 

is usually determined by the purpose of the neural network. The output of the processed 

neural network is represented by the output vector: 

 

 𝒚 =  𝒑(𝑹) =  [y1y2y3  … yNR
]𝑇      (3.22) 
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Figure 3.32: Structure of a two-layered feed-forward network. 

 

3.14 The Training or Learning Process 

  

Two important steps in the application of neural networks for any purpose are training and 

testing. The first of the two steps namely training of the chosen neural networks is dealt with 

in this section. Training is the process by which the neural network learns from the inputs and 

updates its weights accordingly. In order to train the neural network, a set of data called the 

training data-set is needed which is a set of input output pairs fed into the neural network. 

Thereby, the neural network is taught what the output should be, when that particular input is 

fed into it. The ANN slowly learns the training set and slowly develops an ability to 

generalize upon this data and will eventually be able to produce an output when a new data is 

provided to it. During the training process, the neural network‟s weights are updated with the 

prime goal of minimizing the performance function. This performance function can be user 

defined, but usually feed-forward networks employ Mean Square Error as the performance 

function and the same is adopted throughout this work. 

𝒂𝑵𝒐 
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As already mentioned, all the voltages and currents fed into the neural network are the 

summation of the wavelet decomposed fault voltage and current values of all the three phases. 

The outputs, depending upon the purpose of the neural network might be the fault condition, 

the type of fault or the location of the fault on the transmission line. 

 

For the task of training the neural networks for different stages, sequential feeding of input 

and output pair has been adopted. In order to obtain a large training set for efficient 

performance, each of the ten kinds of faults has been simulated at different locations along the 

considered transmission line. 

 

Apart from the type of fault, the phases that are faulted and the distance of the fault along the 

transmission line, thefault distance has been varied at an incremental factor of every 15kmon 

a 280km transmission line. That is, at every 15km, the 10 kinds of faults were simulated. 

 

3.14.1  Training the Fault Identification Neural Network 

 

Various topologies of Multi-Layer Perceptron have been studied, for the purpose of fault 

identification. The various factors that played a role in deciding the ideal topology are the 

network size, the learning strategy employed and the training data set size. 

 

The back-propagation algorithm has been adopted as the ideal topology, after an exhaustive 

study. Even though the basic back-propagation algorithm is relatively slow due to the small 

learning rates employed, few techniques can significantly enhance the performance of the 

algorithm. One of such strategy is to use the Levenberg-Marquardt or Scaled Conjugate 

Gradient optimization technique. The selection of the apt network size is very vital because 

this not only reduces the training time but also greatly enhance the ability of the neural 
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network to represent the problem in hand. Unfortunately, there is no thumb rule that can 

dictate the number of hidden layers and the number of neurons per hidden layer in a given 

problem. 

 

In this work, in the first stage which is the fault identification phase, the network takes in 

three inputs (𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐) at a time, which are the summation of the detail coefficients of 

both current and voltage for all three phases. The entire input data set (3047x3 vector matrix 

as generated in Appendix B) are subdivided into three; 60%, 20%, 20% for the training set, 

validation set and testing set respectively giving a set of three inputs and one output in each 

input-output pair. Large and enough percentage of the input data obtained has to be used as 

the training data-set so as to give the NN enough data samples to learn or master. Hence, the 

choice of the 60% for training the NN in this work.The output of the neural network is just a 

yes or a no (1 or 0) depending on whether or not a fault has been detected.  

 

3.14.2  Training the Fault Classifier Neural Network 

 

Fault classifiers based on neural networks made use of multilayer perceptron neural network 

and employed the back-propagation learning strategy. Although back-propagation learning 

strategy as aforementioned is inherently slow in learning and poses difficulty in choosing the 

optimal size of the network, it is undoubtedly the ideal strategy to be employed when there is 

a large training set available because back-propagation algorithm can provide a very compact 

distributed representation of complex data sets. 

 

The same process that was employed in the previous section (section 3.14.1) is also followed 

in this section in terms of the design and development of the classifier neural network. The 

designed network takes in sets of three inputs (𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐) at a time, which are the 

summation of the coarse approximations of both current and voltage for all three phases. The 



- 115 - 
 

entire input data set (3007x3 vector matrix as generated in Appendix B) are subdivided into 

three; 60%, 20%, 20% for the training set, validation set and testing set respectively giving a 

set of three inputs and one output in each input-output pair. The neural network has four 

outputs, each of them corresponding to the fault condition of each of the three phases and one 

output for the ground line. Hence, the outputs are either a 0 or 1 denoting the absence or 

presence of a fault on the corresponding line (A, B, C or G). Where A, B and C denote the 

three phases of the transmission line and G denotes the ground. Hence the various possible 

permutations can represent each of the various faults accordingly. The proposed neural 

network was able to accurately distinguish between the ten possible categories of faults. The 

truth table representing the faults and the ideal output for each of the faults is illustrated in 

Table 3.4. 

 

Table 3.4: Fault classifier ANN outputs for various faults 

 

Type of 

Fault 

Network Outputs 

A B C G 

 

L-G 

A-G Fault 1 0 0 1 

B-G Fault 0 1 0 1 

C-G Fault 0 0 1 1 

 

L-L 

A-B Fault 1 1 0 0 

B-C Fault 0 1 1 0 

C-A Fault 1 0 1 0 

 

L-L-G 

 

A-B-G Fault 1 1 0 1 

B-C-G Fault 0 1 1 1 

C-A-G Fault 1 0 1 1 
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3 -Phase A-B-C Fault 1 1 1 0 

 

 

3.14.3a Training the Neural Network for Single Line – Ground Fault 

Location 

 

Feed forward back – propagation neural networks have been surveyed for the purpose of 

single line – ground fault location, mainly because of the availability of sufficient relevant 

data for training. In order to train the neural network, several single phase faults have been 

simulated on the transmission line model. For each of the three phases, faults have been 

simulated at every 15km on the 280km long transmission line. Here, the summed-up detail 

coefficients and approximations (𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐) of the decomposed fault currents and 

voltage of the three phases, are given as inputs to the neural network. The entire input data set 

(3047x3 vector matrix) are subdivided into three; 60%, 20%, 20% for the training set, 

validation set and testing set respectively giving a set of three inputs and one output in each 

input-output pair. The output of the neural network is the distance of the fault from terminal 

A. Efficiency of each of the trained networks was analyzed based on their regression 

performance and their performance in the testing phase. The test performance plots are 

obtained by simulating various faults on different phases at varying locations and calculating 

the error in the output produced by the Neural Network as shown in chapter four. 

 

3.14.3b Training the Neural Network for Line – Line Fault Location 

 
 

Because of the availability of sufficient data to train the network, feed forward back – 

propagation neural networks have been surveyed for the purpose of line – line fault location 

and secondly training automatically stops when generalization stops improving, as indicated 
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by a decrease in the mean square error of the validation curves (see chapter four). In order to 

train the neural network, several line – line faults have been simulated on the transmission 

line model. For each pair formed by the three phases, faults have been simulated at every 

15km on a 280km long transmission line. In this case, the summed-up detail and 

approximation coefficients (𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐) of the fault currents and voltages of the three 

phases, are given as inputs to the neural network. The entire input data set (which is a 3140x3 

vector matrix) are subdivided into three; 60%, 20%, 20% for the training set, validation set 

and testing set respectively giving a set of three inputs and one output in each input-output 

pair. The output of the neural network is the distance to the fault from terminal A. Hence, 

each input output pair consists of three inputs and one output. An exhaustive survey on 

various neural networks has been performed by varying the number of hidden layers and the 

number of neurons per hidden layer. 

 

3.14.3c Training the Neural Network for Double Line – Ground Fault 

Location 

 

 

Feed forward back – propagation algorithm was once again used for the purpose of double 

line – ground fault location on transmission lines. The reason for doing so, as already 

mentioned is that these networks perform very efficiently when there is availability of a 

sufficiently large training data set. For the purpose of training the neural network, several 

double line – ground faults have been simulated on the modelled transmission line (Figure 

3.3) on each of the three phases. The various factors that were varied were the fault distance 

(incremented by 15km each time) and the phases that were faulted. In this case, the summed-

up detail and approximation coefficients (𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐) of the decomposed fault currents 

and voltages of the three phases, were given as inputs to the neural network.  The entire input 

data set (which is a 3007x3 vector matrix) is subdivided into three; 60%, 20%, 20% for the 
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training set, validation set and testing set respectively giving a set of three inputs and one 

output in each input-output pair. The neural network‟s output is the distance to the fault from 

terminal A. Thus, each input output pair fed into the neural network has a set of three inputs 

and one output. 

3.14.3d Training the Neural Network for Three Phase Fault Location 

 

Feed forward back – propagation algorithm was once again used for the purpose of three 

phase fault location on transmission lines. The reason for doing so, as already mentioned is 

that these networks perform very efficiently when there is availability of a sufficiently large 

training data set. For the purpose of training the neural network, several three phase faults 

have been simulated on the modelled transmission line. The various factors that were varied 

were the fault distance (incremented by 15km each time) and the fault resistance (one of the 

chosen ten different fault resistances).  

 

Here, the summed-up detail and approximation coefficients (𝑊𝑎 , 𝑊𝑏 , and 𝑊𝑐) of the 

decomposed fault currents and voltages of the three phases, are given as inputs to the neural 

network. The entire input data set (which is a 2256 x3 vector matrix) is subdivided into three; 

60%, 20%, 20% for the training set, validation set and testing set respectively giving a set of 

three inputs and one output in each input-output pair. The neural network‟s output is the 

distance to the fault from terminal A. Thus, each input output pair fed into the neural network 

has a set of three inputs and one output.  

 

3.15 Training Process of the Neural Networks using Back-Propagation 

Algorithm 

 

As mention in section 3.14, the basic concept behind the successful application of neural 

networks in any field is to determine the weights to achieve the desired target and this process 
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is called learning or training. The network weights are modified with the prime objective of 

minimization of the error between a given set of inputs and their corresponding target values. 

However, in this work, the back-propagation algorithm is employed in training all the neural 

networks. The steps below are mathematical calculation and illustration of network back-

propagation algorithm. For this purpose, a NN architecture of (3.3.4.1) has been adopted as 

shown in Figure 3.33. 

 

From Figure 3.33,𝛿𝑕1, 𝛿𝑕2, 𝛿𝑕3, 𝛿𝑕4, 𝛿𝑕5, 𝛿𝑕6, 𝛿𝑕7  and 𝛿𝑜1 are the local gradients of all 

the eight nodes (neurons) n1, n2, n3, n4, n5, n6, n7 and n8 respectively. Where v1, v2, v3, v4, 

v5, v6, v7 and v8 are the algebraic sum of all the inputs to the nodes (neurons) n1, n2, n3, n4, 

n5, n6, n7 and n8 respectively and w is the synaptic weight, b is the bias weight, y is the 

actual neuron output, and d8 is the desired (target) output. 
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Figure 3.33: Mathematical Implementation of Back-Propagation Algorithm 

Step 1: Performing the First Forward Pass (Feed-forward) 

The aim here is to determine the actual output (𝑦8) of the network (Figure 3.33) and from 

there the error (e) can be calculated. The algebraic sums (V) of the inputs to the neurons and 

the actual outputs (y) of individual neurons in the network are determined as follows: 

 

𝑣1 = 1 ∗ 𝑏1 + 𝑥1 ∗ 𝑤11 + 𝑥2 ∗ 𝑤21 + 𝑥3 ∗ 𝑤31    

𝑦1 = 𝑓 𝑣1         3.23 

 𝑣2 = 1 ∗ 𝑏2 + 𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤22 + 𝑥3 ∗ 𝑤32    
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𝑦2 = 𝑓 𝑣2         3.24 

𝑣3 = 1 ∗ 𝑏3 + 𝑥1 ∗ 𝑤13 + 𝑥2 ∗ 𝑤23 + 𝑥3 ∗ 𝑤33    

𝑦3 = 𝑓 𝑣3         3.25 

𝑣4 = 1 ∗ 𝑏4 + 𝑦1 ∗ 𝑤14 + 𝑦2 ∗ 𝑤24 + 𝑦3 ∗ 𝑤34    

𝑦4 = 𝑓 𝑣4         3.26 

𝑣5 = 1 ∗ 𝑏5 + 𝑦1 ∗ 𝑤15 + 𝑦2 ∗ 𝑤25 + 𝑦3 ∗ 𝑤35    

𝑦5 = 𝑓 𝑣5         3.27 

𝑣6 = 1 ∗ 𝑏6 + 𝑦1 ∗ 𝑤16 + 𝑦2 ∗ 𝑤26 + 𝑦3 ∗ 𝑤36    

𝑦6 = 𝑓 𝑣6         3.28 

𝑣7 = 1 ∗ 𝑏7 + 𝑦1 ∗ 𝑤17 + 𝑦2 ∗ 𝑤27 + 𝑦3 ∗ 𝑤37    

𝑦7 = 𝑓 𝑣7         3.29 

𝑣8 = 1 ∗ 𝑏8 + 𝑦4 ∗ 𝑤48 + 𝑦5 ∗ 𝑤58 + 𝑦6 ∗ 𝑤68 + 𝑦7 ∗ 𝑤78    

𝑦8 = 𝑓 𝑣8         3.30 

Now,  

the error (𝑒) = desired output (𝑑8) − actual output (𝑦8) 

   𝑒 = 𝑑8 − 𝑦8 

Step 2: Performing the First Backward Pass (Back-propagation) 
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The aim here is to use the error obtained to adjust the synaptic weights in other to minimize 

the error. The neuron activation function used is sigmoid activation function as written in 

(3.31) 

 

 𝑓 𝑣 =
1

1+exp ⁡(−𝑣)
       (3.31) 

And its derivative is 

 𝑓 ′ 𝑣 = 𝑓 𝑣 [1−𝑓 𝑣 ]              (3.32) 

 

First the local gradient (𝛿𝑜1) of the output neuron (n8) in the network of Figure 3.33 is 

determined as:  

 𝛿𝑜1 = 𝑓 ′ 𝑣8 ∗ 𝑒  = 𝑓 ′ 𝑣8 ∗ (𝑑8 − 𝑦8) 

= 𝑓 ′ 1 ∗ 𝑏8 + 𝑦4 ∗ 𝑤48 ∗ 𝑦5 ∗ 𝑤58 + 𝑦6 ∗ 𝑤68 + 𝑦7 ∗ 𝑤78 ∗ (𝑑8 − 𝑦8)(3.33) 

Next the local gradients of all the seven hidden neurons starting from those in the last (2nd) 

hidden layer to those in the first hidden layer are determined as: 

 

 For the 2nd Hidden Layer 

𝛿𝑕4  = 𝑓 ′ 𝑣4 ∗ (𝛿𝑜1 ∗ 𝑤48)  

= 𝑓 ′ 1 ∗ 𝑏4 + 𝑦1 ∗ 𝑤14 ∗ 𝑦2 ∗ 𝑤24 + 𝑦3 ∗ 𝑤34 ∗ (𝛿𝑜1 ∗ 𝑤48)          (3.34) 

𝛿𝑕5  = 𝑓 ′ 𝑣5 ∗ (𝛿𝑜1 ∗ 𝑤58)  

= 𝑓 ′ 1 ∗ 𝑏5 + 𝑦1 ∗ 𝑤15 ∗ 𝑦2 ∗ 𝑤25 + 𝑦3 ∗ 𝑤35 ∗ (𝛿𝑜1 ∗ 𝑤58)          (3.35) 
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𝛿𝑕6  = 𝑓 ′ 𝑣6 ∗ (𝛿𝑜1 ∗ 𝑤68)  

= 𝑓 ′ 1 ∗ 𝑏6 + 𝑦1 ∗ 𝑤16 ∗ 𝑦2 ∗ 𝑤26 + 𝑦3 ∗ 𝑤36 ∗ (𝛿𝑜1 ∗ 𝑤68)          (3.36) 

𝛿𝑕7  = 𝑓 ′ 𝑣7 ∗ (𝛿𝑜1 ∗ 𝑤78)  

= 𝑓 ′ 1 ∗ 𝑏7 + 𝑦1 ∗ 𝑤17 ∗ 𝑦2 ∗ 𝑤27 + 𝑦3 ∗ 𝑤37 ∗ (𝛿𝑜1 ∗ 𝑤78)          (3.37) 

 

  For the First Hidden Layer 

 

𝛿𝑕1  = 𝑓 ′ 𝑣1 ∗   𝛿𝑕4 ∗ 𝑤14 ∗  𝛿𝑕5 ∗ 𝑤15 ∗ (𝛿𝑕6 ∗ 𝑤16) ∗ (𝛿𝑕7 ∗ 𝑤17)  (3.38) 

𝛿𝑕2  = 𝑓 ′ 𝑣2 ∗   𝛿𝑕4 ∗ 𝑤24 ∗  𝛿𝑕5 ∗ 𝑤25 ∗ (𝛿𝑕6 ∗ 𝑤26) ∗ (𝛿𝑕7 ∗ 𝑤27)  (3.39) 

𝛿𝑕3  = 𝑓 ′ 𝑣3 ∗   𝛿𝑕4 ∗ 𝑤34 ∗  𝛿𝑕5 ∗ 𝑤35 ∗ (𝛿𝑕6 ∗ 𝑤36) ∗ (𝛿𝑕7 ∗ 𝑤37)  (3.40) 

 

Step 3: 

Adjusting the weights of the network with the local gradients as obtained using the back-

propagation general learning rule: 

 𝒘 𝒏 + 𝟏 = 𝒘 𝒏 + 𝜶 ∗ 𝒘(𝒏 − 𝟏) + 𝜼 ∗ 𝜹(𝒏) ∗ 𝒚            (3.41) 

Where, 𝑤 𝑛 + 1  is the new weight, 𝑤 𝑛  is the current weight, 𝑤(𝑛 − 1) is the previous 

weight, 𝛼 is the mobility factor, 𝜂 is the learning rate or the training parameter, 𝛿(𝑛) is the 

current local gradient. 

Applying (3.41) to Figure 3.33, the new weights read: 

 𝑤48 𝑛 + 1 = 𝑤48 𝑛 + 𝛼 ∗ 𝑤48(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦4       (3.42) 
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 𝑤58 𝑛 + 1 = 𝑤58 𝑛 + 𝛼 ∗ 𝑤58(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦5          (3.43) 

 𝑤68 𝑛 + 1 = 𝑤68 𝑛 + 𝛼 ∗ 𝑤68(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦6          (3.44) 

 𝑤78 𝑛 + 1 = 𝑤78 𝑛 + 𝛼 ∗ 𝑤78(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦7          (3.45) 

𝑤14 𝑛 + 1 = 𝑤14 𝑛 + 𝛼 ∗ 𝑤14(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 𝑦1          (3.46) 

 𝑤15 𝑛 + 1 = 𝑤15 𝑛 + 𝛼 ∗ 𝑤15(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 𝑦1          (3.47) 

 𝑤16 𝑛 + 1 = 𝑤16 𝑛 + 𝛼 ∗ 𝑤16(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 𝑦1          (3.48) 

 𝑤17 𝑛 + 1 = 𝑤17 𝑛 + 𝛼 ∗ 𝑤17(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 𝑦1          (3.49) 

𝑤24 𝑛 + 1 = 𝑤24 𝑛 + 𝛼 ∗ 𝑤24(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 𝑦2          (3.50) 

 𝑤25 𝑛 + 1 = 𝑤25 𝑛 + 𝛼 ∗ 𝑤25(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 𝑦2          (3.51) 

 𝑤26 𝑛 + 1 = 𝑤26 𝑛 + 𝛼 ∗ 𝑤26(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 𝑦2          (3.52) 

 𝑤27 𝑛 + 1 = 𝑤27 𝑛 + 𝛼 ∗ 𝑤27(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 𝑦2          (3.53) 

𝑤34 𝑛 + 1 = 𝑤34 𝑛 + 𝛼 ∗ 𝑤34(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 𝑦3          (3.54) 

 𝑤35 𝑛 + 1 = 𝑤35 𝑛 + 𝛼 ∗ 𝑤35(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 𝑦3          (3.55) 

 𝑤36 𝑛 + 1 = 𝑤36 𝑛 + 𝛼 ∗ 𝑤36(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 𝑦3          (3.56) 

 𝑤37 𝑛 + 1 = 𝑤37 𝑛 + 𝛼 ∗ 𝑤37(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 𝑦3          (3.57) 

 𝑤11 𝑛 + 1 = 𝑤11 𝑛 + 𝛼 ∗ 𝑤11(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 𝑥1          (3.58) 

 𝑤12 𝑛 + 1 = 𝑤12 𝑛 + 𝛼 ∗ 𝑤12(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 𝑥1          (3.59) 

𝑤13 𝑛 + 1 = 𝑤13 𝑛 + 𝛼 ∗ 𝑤13(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 𝑥1          (3.60) 
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 𝑤21 𝑛 + 1 = 𝑤21 𝑛 + 𝛼 ∗ 𝑤21(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 𝑥2          (3.61) 

 𝑤22 𝑛 + 1 = 𝑤22 𝑛 + 𝛼 ∗ 𝑤22(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 𝑥2          (3.62) 

𝑤23 𝑛 + 1 = 𝑤23 𝑛 + 𝛼 ∗ 𝑤23(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 𝑥2          (3.63) 

𝑤31 𝑛 + 1 = 𝑤31 𝑛 + 𝛼 ∗ 𝑤31(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 𝑥3          (3.64) 

 𝑤32 𝑛 + 1 = 𝑤32 𝑛 + 𝛼 ∗ 𝑤32(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 𝑥3         (3.65) 

𝑤33 𝑛 + 1 = 𝑤33 𝑛 + 𝛼 ∗ 𝑤33(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 𝑥3          (3.66) 

𝑏8 𝑛 + 1 = 𝑏8 𝑛 + 𝛼 ∗ 𝑏8(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 1           (3.67) 

 𝑏7 𝑛 + 1 = 𝑏7 𝑛 + 𝛼 ∗ 𝑏7(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 1           (3.68) 

 𝑏6 𝑛 + 1 = 𝑏6 𝑛 + 𝛼 ∗ 𝑏6(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 1         (3.69) 

 𝑏5 𝑛 + 1 = 𝑏5 𝑛 + 𝛼 ∗ 𝑏5(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 1           (3.70) 

𝑏4 𝑛 + 1 = 𝑏4 𝑛 + 𝛼 ∗ 𝑏4(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 1           (3.71) 

 𝑏3 𝑛 + 1 = 𝑏3 𝑛 + 𝛼 ∗ 𝑏3(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 1           (3.72) 

 𝑏2 𝑛 + 1 = 𝑏2 𝑛 + 𝛼 ∗ 𝑏2(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 1    (3.73) 

𝑏1 𝑛 + 1 = 𝑏1 𝑛 + 𝛼 ∗ 𝑏1(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 1           (3.74) 

3.15.1  Applying Specific Values to Step 1, 2 and 3 

 

For further illustration, a complete forward and backward sweep of the feedforward network 

(3.3.4.1 architecture) is performed as shown below using the back-propagation algorithm 

discussed in section 3.15 with specific values. In this case the neural network architecture of 

(3.3.4.1) is used as shown in Figure 3.34with the parameter values attached. The values of the 
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initial weights are chosen arbitrary and the inputs (x1, x2 and x3) are the representatives of 

the summation of the decomposed signals (Wa, Wb and Wc respectively).   

 

 

 

Figure 3.34: A (3.3.4.1) NN Architecture with the corresponding weights shown 

Assumptions: 

Let the desired (target) output (d) = 0.9 and actual output (y) is unknown, 

Learning rate, 𝜂 = 0.25, 

Mobility Factor, 𝛼 = 0.0001 
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The Forward Pass 

𝑣1 = 1 ∗ 𝑏1 + 𝑥1 ∗ 𝑤11 + 𝑥2 ∗ 𝑤21 + 𝑥3 ∗ 𝑤31   

= 1 ∗ 0.1 + 0.1 ∗  −0.2 + 0.9 ∗ 0.1 + 0.5 ∗ 0.1 = 0.22  

𝑦1 = 𝑓 𝑣1 = 𝑓 0.22 =
1

1+exp ⁡(−0.22)
= 0.555  

𝑣2 = 1 ∗ 𝑏2 + 𝑥1 ∗ 𝑤12 + 𝑥2 ∗ 𝑤22 + 𝑥3 ∗ 𝑤32   

= 1 ∗ 0.1 + 0.1 ∗  −0.1 + 0.9 ∗ 0.3 + 0.5 ∗ (−0.2) = 0.26  

𝑦2 = 𝑓 𝑣2 = 𝑓 0.26 =
1

1+exp ⁡(−0.26)
= 0.565  

𝑣3 = 1 ∗ 𝑏3 + 𝑥1 ∗ 𝑤13 + 𝑥2 ∗ 𝑤23 + 𝑥3 ∗ 𝑤33   

= 1 ∗ 0.2 + 0.1 ∗  −0.1 + 0.9 ∗ 0.4 + 0.5 ∗ 0.3 = 0.7  

𝑦3 = 𝑓 𝑣3 = 𝑓 0.7 =
1

1+exp ⁡(−0.7)
= 0.66819  

𝑣4 = 1 ∗ 𝑏4 + 𝑦1 ∗ 𝑤14 + 𝑦2 ∗ 𝑤24 + 𝑦3 ∗ 𝑤34   

= 1 ∗ 0.3 + 0.555 ∗ 0.2 + 0.565 ∗ (−0.4) + 0.66819 ∗ 0.1 = 0.251819  

𝑦4 = 𝑓 𝑣4 = 𝑓 0.251819 =
1

1+exp ⁡(−0.251819 )
= 0.56262  

𝑣5 = 1 ∗ 𝑏5 + 𝑦1 ∗ 𝑤15 + 𝑦2 ∗ 𝑤25 + 𝑦3 ∗ 𝑤35   

= 1 ∗ 0.2 + 0.555 ∗ 0.3 + 0.565 ∗ 0.1 + 0.66819 ∗ (−0.3) = 0.22254  

𝑦5 = 𝑓 𝑣5 = 𝑓 0.22254 =
1

1 + exp⁡(−0.22254)
= 0.55541 

𝑣6 = 1 ∗ 𝑏6 + 𝑦1 ∗ 𝑤16 + 𝑦2 ∗ 𝑤26 + 𝑦3 ∗ 𝑤36   
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= 1 ∗ 0.1 + 0.555 ∗ 0.2 + 0.565 ∗ 0.3 + 0.66819 ∗ 0.4 = 0.64778 

𝑦6 = 𝑓 𝑣6 = 𝑓 0.64778 =
1

1 + exp⁡(−0.64778)
= 0.65651 

𝑣7 = 1 ∗ 𝑏7 + 𝑦1 ∗ 𝑤17 + 𝑦2 ∗ 𝑤27 + 𝑦3 ∗ 𝑤37   

= 1 ∗ 0.2 + 0.555 ∗ 0.1 + 0.565 ∗ 0.2 + 0.66819 ∗ 0.2 = 0.50088  

𝑦7 = 𝑓 𝑣7 = 𝑓 0.50088 =
1

1 + exp⁡(−0.50088)
= 0.62267 

 

𝑣8 = 1 ∗ 𝑏8 + 𝑦4 ∗ 𝑤48 + 𝑦5 ∗ 𝑤58 + 𝑦6 ∗ 𝑤68 + 𝑦7 ∗ 𝑤78   

= 1 ∗ 0.3 + 0.56262 ∗ 0.2 + 0.55541 ∗ 0.1 + 0.65651 ∗ 0.2 + 062267 ∗ 0.3 = 0.78617 

 𝑦8 = 𝑓 𝑣8 = 𝑓 0.78617 =
1

1+exp ⁡(−0.78617 )
= 0.68701 

Please note the activation function, 𝑓 𝑣  used in the forward pass (feed-forward) and not its 

derivative 𝑓 ′ 𝑣  which is used during the backward pass (back-propagation).  

Then,  

the error (𝑒) = target output (𝑑8) − actual output (𝑦8) 

   = 0.9 − 0.68701 = 0.21299 

Therefore, after the forward pass, there is an error of 0.21299 which means the back-

propagation is required to adjust the weights in other to get the weights that will reduce the 

error to the global minimal value. The idea is that the actual output should be equal to the 

target output. 
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 The Backward Pass 

Here, the target is to go backward to find out the new weights of the network. This is achieved 

by applying back-propagation algorithm. First the local gradients of the neurons (nodes) are 

calculated as was done before but in this case there are specific values. The local gradients of 

the eight neurons are as follows starting with that of the output neuron. 

 𝛿𝑜1 = 𝑓 ′ 𝑣8 ∗ 𝑒 

= 𝑓 𝑣8  1 − 𝑓 𝑣8  ∗ 𝑑8 − 𝑦8 

= 0.78617 1 − 0.78617 ∗ (0.9 − 0.68701) = 0.03581 

𝛿𝑕4 = 𝑓 ′ 𝑣4 ∗  𝛿𝑜1 ∗ 𝑤48  

= 𝑓 𝑣4  1 − 𝑓 𝑣4  ∗  𝛿𝑜1 ∗ 𝑤48  

= 0.251819 1 − 0.251819 ∗ (0.03581 ∗ 0.2) = 0.00135 

𝛿𝑕5 = 𝑓 ′ 𝑣5 ∗  𝛿𝑜1 ∗ 𝑤58  

= 𝑓 𝑣5  1 − 𝑓 𝑣5  ∗  𝛿𝑜1 ∗ 𝑤58  

= 0.22254 1 − 0.22254 ∗ (0.03581 ∗ 0.1) = 0.00062 

𝛿𝑕6 = 𝑓 ′ 𝑣6 ∗  𝛿𝑜1 ∗ 𝑤68  

= 𝑓 𝑣6  1 − 𝑓 𝑣6  ∗  𝛿𝑜1 ∗ 𝑤68  

= 0.64778 1 − 0.64778 ∗ (0.03581 ∗ 0.2) = 0.00163 

𝛿𝑕7 = 𝑓 ′ 𝑣7 ∗  𝛿𝑜1 ∗ 𝑤78  

= 𝑓 𝑣7  1 − 𝑓 𝑣7  ∗  𝛿𝑜1 ∗ 𝑤78  
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= 0.50088 1 − 0.50088 ∗ (0.03581 ∗ 0.3) = 0.00269 

 𝛿𝑕1 = 𝑓 ′ 𝑣1 ∗   𝛿𝑕4 ∗ 𝑤14 +  𝛿𝑕5 ∗ 𝑤15 +  𝛿𝑕6 ∗ 𝑤16 +  𝛿𝑕7 ∗ 𝑤17   

  = 0.22 1 − 0.22 ∗  
 0.00135 ∗ 0.2 +  0.00062 ∗ 0.3 

+ 0.00163 ∗ 0.2 +  0.00269 ∗ 0.1 
 = 0.00018 

𝛿𝑕2 = 𝑓 ′ 𝑣2 ∗   𝛿𝑕4 ∗ 𝑤24 +  𝛿𝑕5 ∗ 𝑤25 +  𝛿𝑕6 ∗ 𝑤26 +  𝛿𝑕7 ∗ 𝑤27   

  = 0.26 1 − 0.26 ∗  
 0.00135 ∗ −0.4 +  0.00062 ∗ 0.1 

+ 0.00163 ∗ 0.3 +  0.00269 ∗ 0.2 
 = 0.00011 

𝛿𝑕3 = 𝑓 ′ 𝑣3 ∗   𝛿𝑕4 ∗ 𝑤34 +  𝛿𝑕5 ∗ 𝑤35 +  𝛿𝑕6 ∗ 𝑤36 +  𝛿𝑕7 ∗ 𝑤37   

  = 0.7 1 − 0.7 ∗  
 0.00135 ∗ 0.1 +  0.00062 ∗ −0.3 

+ 0.00163 ∗ 0.4 +  0.00269 ∗ 0.2 
 = 0.00024 

Next is to adjust the weights of the network using the general learning rule expression of 

(3.41): 

  𝒘 𝒏 + 𝟏 = 𝒘 𝒏 + 𝜶 ∗ 𝒘(𝒏 − 𝟏) + 𝜼 ∗ 𝜹(𝒏) ∗ 𝒚   

𝑤48 𝑛 + 1 = 𝑤48 𝑛 + 𝛼 ∗ 𝑤48(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦4 

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.03581 ∗ 0.56262 = 0.20506 

𝑤58 𝑛 + 1 = 𝑤58 𝑛 + 𝛼 ∗ 𝑤58(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦5 

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.03581 ∗ 0.55541 = 0.10498 

𝑤68 𝑛 + 1 = 𝑤68 𝑛 + 𝛼 ∗ 𝑤68(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦6 

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.03581 ∗ 0.65651 = 0.20590 

𝑤78 𝑛 + 1 = 𝑤78 𝑛 + 𝛼 ∗ 𝑤78(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 𝑦7 

   = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗ 0.03581 ∗ 0.62267 = 0.30560 
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𝑤14 𝑛 + 1 = 𝑤14 𝑛 + 𝛼 ∗ 𝑤14(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 𝑦1 

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.00135 ∗ 0.555 = 0.20021 

𝑤15 𝑛 + 1 = 𝑤15 𝑛 + 𝛼 ∗ 𝑤15(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 𝑦1 

   = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗ 0.00062 ∗ 0.555 = 0.30012 

𝑤16 𝑛 + 1 = 𝑤16 𝑛 + 𝛼 ∗ 𝑤16(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 𝑦1 

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.00163 ∗ 0.555 = 0.20025 

𝑤17 𝑛 + 1 = 𝑤17 𝑛 + 𝛼 ∗ 𝑤17(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 𝑦1 

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.00269 ∗ 0.555 = 0.10038 

𝑤24 𝑛 + 1 = 𝑤24 𝑛 + 𝛼 ∗ 𝑤24(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 𝑦2 

   = −0.4 + 0.0001 ∗ −0.4 + 0.25 ∗ 0.00135 ∗ 0.565 = −0.39985 

𝑤25 𝑛 + 1 = 𝑤25 𝑛 + 𝛼 ∗ 𝑤25(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 𝑦2 

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.00062 ∗ 0.565 = 0.10089 

𝑤26 𝑛 + 1 = 𝑤26 𝑛 + 𝛼 ∗ 𝑤26(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 𝑦2 

   = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗ 0.00163 ∗ 0.565 = 0.30026 

𝑤27 𝑛 + 1 = 𝑤27 𝑛 + 𝛼 ∗ 𝑤27(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 𝑦2 

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.00269 ∗ 0.565 = 0.20040 

𝑤34 𝑛 + 1 = 𝑤34 𝑛 + 𝛼 ∗ 𝑤34(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 𝑦3 

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.00135 ∗ 0.0.66819 = 0.10024 
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𝑤35 𝑛 + 1 = 𝑤35 𝑛 + 𝛼 ∗ 𝑤35(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 𝑦3 

   = −0.3 + 0.0001 ∗ −0.3 + 0.25 ∗ 0.00062 ∗ 0.66819 = −0.29993 

𝑤36 𝑛 + 1 = 𝑤36 𝑛 + 𝛼 ∗ 𝑤36(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 𝑦3 

   = 0.4 + 0.0001 ∗ 0.4 + 0.25 ∗ 0.00163 ∗ 0.66819 = 0.40031 

𝑤37 𝑛 + 1 = 𝑤37 𝑛 + 𝛼 ∗ 𝑤37(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 𝑦3 

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.00269 ∗ 0.66819 = 0.20047 

𝑤11 𝑛 + 1 = 𝑤11 𝑛 + 𝛼 ∗ 𝑤11(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 𝑥1 

   =  −0.2 + 0.0001 ∗  −0.2 + 0.25 ∗ 0.00018 ∗ 0.1 = −0.20002 

 𝑤12 𝑛 + 1 = 𝑤12 𝑛 + 𝛼 ∗ 𝑤12(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 𝑥1 

   =  −0.1 + 0.0001 ∗  −0.1 + 0.25 ∗ 0.0011 ∗ 0.1 = −0.10001 

 𝑤13 𝑛 + 1 = 𝑤13 𝑛 + 𝛼 ∗ 𝑤13(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 𝑥1 

   =  −0.1 + 0.0001 ∗  −0.1 + 0.25 ∗ 0.00024 ∗ 0.1 = −0.10000 

𝑤21 𝑛 + 1 = 𝑤21 𝑛 + 𝛼 ∗ 𝑤21(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 𝑥2 

   =  0.1 + 0.0001 ∗  0.1 + 0.25 ∗ 0.00018 ∗ 0.9 = 0.10004 

 𝑤22 𝑛 + 1 = 𝑤22 𝑛 + 𝛼 ∗ 𝑤22(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 𝑥2  

   = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗ 0.00011 ∗ 0.9 = 0.30005 

 𝑤23 𝑛 + 1 = 𝑤23 𝑛 + 𝛼 ∗ 𝑤23(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 𝑥2 

   =  0.4 + 0.0001 ∗  0.4 + 0.25 ∗ 0.00024 ∗ 0.9 = 0.40009 
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 𝑤31 𝑛 + 1 = 𝑤31 𝑛 + 𝛼 ∗ 𝑤31(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 𝑥3 

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.00018 ∗ 0.5 = 0.10003 

 𝑤32 𝑛 + 1 = 𝑤32 𝑛 + 𝛼 ∗ 𝑤32(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 𝑥3  

   = −0.2 + 0.0001 ∗ −0.2 + 0.25 ∗ 0.00011 ∗ 0.5 = −0.20001 

𝑤33 𝑛 + 1 = 𝑤33 𝑛 + 𝛼 ∗ 𝑤33(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 𝑥3  

   = 0.3 + 0.0001 ∗ −0.3 + 0.25 ∗ 0.00024 ∗ 0.5 = 0.30006 

𝑏8 𝑛 + 1 = 𝑏8 𝑛 + 𝛼 ∗ 𝑏8(𝑛 − 1) + 𝜂 ∗ 𝛿𝑜1(𝑛) ∗ 1    

   = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗ 0.03581 ∗ 1 = 0.30898 

𝑏7 𝑛 + 1 = 𝑏7 𝑛 + 𝛼 ∗ 𝑏7(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕7(𝑛) ∗ 1    

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.00269 ∗ 1 = 0.20069 

𝑏6 𝑛 + 1 = 𝑏6 𝑛 + 𝛼 ∗ 𝑏6(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕6(𝑛) ∗ 1    

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.00163 ∗ 1 = 0.10042 

𝑏5 𝑛 + 1 = 𝑏5 𝑛 + 𝛼 ∗ 𝑏5(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕5(𝑛) ∗ 1    

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.00062 ∗ 1 = 0.20018 

𝑏4 𝑛 + 1 = 𝑏4 𝑛 + 𝛼 ∗ 𝑏4(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕4(𝑛) ∗ 1    

   = 0.3 + 0.0001 ∗ 0.3 + 0.25 ∗ 0.00135 ∗ 1 = 0.30037 

𝑏3 𝑛 + 1 = 𝑏3 𝑛 + 𝛼 ∗ 𝑏3(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕3(𝑛) ∗ 1    

   = 0.2 + 0.0001 ∗ 0.2 + 0.25 ∗ 0.00024 ∗ 1 = 0.20008 
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𝑏2 𝑛 + 1 = 𝑏2 𝑛 + 𝛼 ∗ 𝑏2(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕2(𝑛) ∗ 1    

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.00011 ∗ 1 = 0.10004 

𝑏1 𝑛 + 1 = 𝑏1 𝑛 + 𝛼 ∗ 𝑏1(𝑛 − 1) + 𝜂 ∗ 𝛿𝑕1(𝑛) ∗ 1    

   = 0.1 + 0.0001 ∗ 0.1 + 0.25 ∗ 0.00018 ∗ 1 = 0.10004 

 

Now these new weights as calculated above are used to perform another (second) forward 

pass. 

 

 Second Forward Pass (First Iteration) 

 

𝒗𝟏(𝒏 + 𝟏) = 1 ∗ 𝑏1(𝑛 + 1) + 𝑥1 ∗ 𝑤11(𝑛 + 1) + 𝑥2 ∗ 𝑤21(𝑛 + 1) + 𝑥3 ∗ 𝑤31(𝑛 + 1)

 = 1 ∗ 0.10004 + 0.1 ∗  −0.20002 + 0.9 ∗ 0.10004 + 0.5 ∗ 0.10003 = 0.220089 

𝒚𝟏(𝒏 + 𝟏) = 𝑓 𝑣1(𝑛 + 1) = 𝑓 0.220089 =
1

1+exp ⁡(−0.220089 )
= 0.55480  

𝒗𝟐(𝒏 + 𝟏) = 1 ∗ 𝑏2(𝑛 + 1) + 𝑥1 ∗ 𝑤12(𝑛 + 1) + 𝑥2 ∗ 𝑤22(𝑛 + 1) + 𝑥3 ∗ 𝑤32(𝑛 + 1) 

= 1 ∗ 0.10004 + 0.1 ∗  −0.10001 + 0.9 ∗ 0.30005 + 0.5 ∗ (−0.20001) = 0.260079  

𝒚𝟐(𝒏 + 𝟏) = 𝑓 𝑣2(𝑛 + 1) = 𝑓 0.260079 =
1

1+exp ⁡(−0.260079 )
= 0.56466  

𝒗𝟑(𝒏 + 𝟏) = 1 ∗ 𝑏3(𝑛 + 1) + 𝑥1 ∗ 𝑤13(𝑛 + 1) + 𝑥2 ∗ 𝑤23(𝑛 + 1) + 𝑥3 ∗ 𝑤33(𝑛 + 1) 

= 1 ∗ 0.20008 + 0.1 ∗  −0.10000 + 0.9 ∗ 0.40009 + 0.5 ∗ 0.30006 = 0.700191 

𝒚𝟑(𝒏 + 𝟏) = 𝑓 𝑣3(𝑛 + 1) = 𝑓 0.700191 =
1

1+exp ⁡(−0.700191 )
= 0.66823  
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𝒗𝟒(𝒏 + 𝟏) = 1 ∗ 𝑏4(𝑛 + 1) + 𝑦1(𝑛 + 1) ∗ 𝑤14(𝑛 + 1) + 𝑦2(𝑛 + 1) ∗ 𝑤24(𝑛 + 1) 

        +𝑦3(𝑛 + 1) ∗ 𝑤34(𝑛 + 1) 

= 1 ∗ 0.30037 + 0.55480 ∗ 0.20021 + 0.56466 ∗ (−0.39985) + 0.66823 ∗ 0.10024  

          = 0.25265 

𝒚𝟒(𝒏 + 𝟏) = 𝑓 𝑣4(𝑛 + 1) = 𝑓 0.25265 =
1

1+exp ⁡(−0.25265 )
= 0.56283  

𝒗𝟓(𝒏 + 𝟏) = 1 ∗ 𝑏5(𝑛 + 1) + 𝑦1(𝑛 + 1) ∗ 𝑤15(𝑛 + 1) + 𝑦2(𝑛 + 1) ∗ 𝑤25(𝑛 + 1) 

        +𝑦3(𝑛 + 1) ∗ 𝑤35(𝑛 + 1) 

= 1 ∗ 0.20018 + 0.55480 ∗ 0.30012 + 0.56466 ∗ 0.10089 + 0.66823 ∗ (−0.29993) 

          = 0.22323  

𝒚𝟓(𝒏 + 𝟏) = 𝑓 𝑣5(𝑛 + 1) = 𝑓 0.22323 =
1

1 + exp⁡(−0.22323)
= 0.55558 

𝒗𝟔(𝒏 + 𝟏) = 1 ∗ 𝑏6(𝑛 + 1) + 𝑦1(𝑛 + 1) ∗ 𝑤16(𝑛 + 1) + 𝑦2(𝑛 + 1) ∗ 𝑤26(𝑛 + 1) 

        +𝑦3(𝑛 + 1) ∗ 𝑤36(𝑛 + 1) 

= 1 ∗ 0.10042 + 0.55480 ∗ 0.20025 + 0.56466 ∗ 0.30026 + 0.66823 ∗ 0.40031 

          = 0.64856 

𝒚𝟔(𝒏 + 𝟏) = 𝑓 𝑣6(𝑛 + 1) = 𝑓 0.64856 =
1

1 + exp⁡(−0.64856)
= 0.65669 

𝒗𝟕(𝒏 + 𝟏) = 1 ∗ 𝑏7(𝑛 + 1) + 𝑦1(𝑛 + 1) ∗ 𝑤17(𝑛 + 1) + 𝑦2(𝑛 + 1) ∗ 𝑤27(𝑛 + 1) 

        +𝑦3(𝑛 + 1) ∗ 𝑤37(𝑛 + 1) 

= 1 ∗ 0.20069 + 0.55480 ∗ 0.10038 + 0.56466 ∗ 0.20040 + 0.66823 ∗ 0.20047

         = 0.50350 
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𝒚𝟕(𝒏 + 𝟏) = 𝑓 𝑣7(𝑛 + 1) = 𝑓 0.50350 =
1

1 + exp⁡(−0.50350)
= 0.62328 

𝒗𝟖(𝒏 + 𝟏) = 1 ∗ 𝑏8(𝑛 + 1) + 𝑦4(𝑛 + 1) ∗ 𝑤48(𝑛 + 1) + 𝑦5(𝑛 + 1) ∗ 𝑤58(𝑛 + 1) 

     +𝑦6(𝑛 + 1) ∗ 𝑤68(𝑛 + 1) + 𝑦7(𝑛 + 1) ∗ 𝑤78(𝑛 + 1) 

= 1 ∗ 0.30898 + 0.56283 ∗ 0.20506 + 0.55558 ∗ 0.10498 + 0.65669 ∗ 0.20590 

        +062328 ∗ 0.30560 = 0.80841 

 𝒚𝟖(𝒏 + 𝟏) = 𝑓 𝑣8(𝑛 + 1) = 𝑓 0.80841 =
1

1+exp ⁡(−0.80841 )
= 0.69177 

 

Please note the activation function, 𝑓 𝑣  used in the forward pass (feed-forward) and not its 

derivative 𝑓 ′ 𝑣  which is used during the backward pass (back-propagation).  

Therefore,  

the error (𝑒(𝑛 + 1)) = target output (𝑑8) − actual output (𝑦8(𝑛 + 1)) 

    = 0.9 − 0.69177 = 0.20823 

 

Then after one complete forward and backward pass new weights and output have been 

obtained. The results are compared with the old inputs and output as shown in Table 3.5. 

 

From the Table 3.5 the error reduced after the first forward and backward pass from 

0.21299 𝑡𝑜 0.20823. The forward and backward passes continue until the error becomes 

almost zero. The results obtained after a few more complete forward and backward passes are 

as shown in Table 3.5. 
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Table 3.5: Comparison of the results obtained after one complete forward and backward pass 

 

S/N Component Old New (After One 

Iteration) 

1 𝑣1 0.22000 0.22009 

2 𝑦1 0.55500 0.55480 

3 𝑣2 0.26000 0.26008 

4 𝑦2 0.56500 0.56466 

5 𝑣3 0.70000 0.70019 

6 𝑦3 0.66819 0.66823 

7 𝑣4 0.25182 0.25265 

8 𝑦4 0.56262 0.56283 

9 𝑣5 0.22254 0.22323 

10 𝑦5 0.55541 0.55558 

11 𝑣6 0.64778 0.64856 

12 𝑦6 0.65651 0.65669 

13 𝑣7 0.50088 0.50350 

14 𝑦7 0.62267 0.62328 

15 𝑣8 0.78617 0.80841 

16 𝑦8 0.68701 0.69177 

 𝑒 = 𝑑8 − 𝑦8 0.9 − 0.68701

= 0.21299 

0.9 − 0.69177

= 0.20823 

 

After the second pass (iteration) 𝑒 =  0.20003 

After the third pass (iteration) 𝑒 =  0.16253 

After the fourth pass (iteration) 𝑒 =  0.14505 

After 50 passes (iteration) 𝑒 =  0.01053 

After 100 passes (iteration) 𝑒 =  0.00319 
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After 300 passes (iteration) 𝑒 =  0.00038 

Error is getting reduced after each pass until it converges (target and actual output equal each 

other). So, this is how the neural networks were trained using back-propagation algorithm. 

 

3.16 The Testing Process 

 

After training as already mentioned in the section 3.15, the next important step to be 

performed before the application of neural networks is to test the trained neural network. 

Testing the artificial neural network is very important in order to make sure the trained 

network can generalize well and produce desired outputs when new data is presented to it. 

 

There are three techniques that were used to test the performance of the trained networks, they 

are discussed in this section. One such technique was to plot the best linear regression fit 

between the actual neural network‟s outputs and the desired targets. Analyzing the slope of 

this line gives us an idea on the training process. Ideally the slope should be 1. Also, the 

correlation coefficient (r), of the outputs and the targets measures how well the ANN‟s 

outputs track the desired targets. The closer the value of „r‟ is, to 1, the better the performance 

of the neural network. Another technique employed to test the neural network was to plot the 

confusion matrix and look at the actual number of cases that have been classified positively 

by the neural network. Ideally, if this percentage is a 100 it means there has been no confusion 

in the classification process. Hence, if the confusion matrix indicates very low positive 

classification rates, it indicates that the neural network might not perform well. The last and a 

very obvious means of testing the neural network was to present it with a whole new set of 

data with known inputs and targets and calculate the percentage error in the neural networks 
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output. If the average percentage error in the ANN‟s output is acceptable, the neural network 

has passed the test and can be readily applied for future use. 

 

The Neural Network toolbox in Simulink by The MathWorks divides the entire set of data 

provided to it into three different sets namely the training set, validation set and the testing 

set. The training data set as indicated above is used to train the network by computing the 

gradient and updating the network weights. The validation set is provided to the network 

during the training process (just the inputs without the outputs) and the error in validation data 

set is monitored throughout the training process. When the network starts over fitting the data, 

the validation errors increase and when the number of validation fails increase beyond a 

particular value, the training process stops to avoid further over fitting the data and the 

network is returned at the minimum number of validation errors. The test set was not used 

during the training process but was used to test the performance of the trained network. If the 

test set reaches the minimum value of MSE at a significantly different iteration than the 

validation set, then the neural network will not be able to provide satisfactory performance. 

 

 

 

 

 

 

 

 

CHAPTER FOUR 
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RESULTS AND DISCUSSION 

 

4.1 Fault Identification 

 

4.1.1 Simulation Results of Training the Fault Identification Neural Network 

 

For illustration purposes, several neural networks (with varying number of hidden layers and 

neurons per hidden layer) that achieved satisfactory performance are shown and the best 

neural network has been described further in detail. Figures 4.1 – 4.2 show the error 

performance plots of neural networks with 2 and 1 hidden layers respectively. After extensive 

simulations, the desired network has five hidden layers with 8 neurons in the first hidden 

layer, 10 neurons in the second hidden layer, 20 neurons in the third hidden layer, 15 neurons 

in the fourth hidden layer and 6 neurons in the fifth hidden layer. The plot of the mean square 

error performance result of the desired or chosen network has been depicted in Fig 4.3 and the 

plot of various error performance results have been shown in Figures 4.4 – 4.7.  Appendix C 

shows the Matlab codes for the various plots. 

 

Fig 4.1 shows the plot of the training performance result of the neural network 3.15.10.1 

(3neurons in the input layer, two hidden layers with fifteen and ten neurons in them 

respectively and one neuron in the output layer). The network did not achieve the desired 

Cross-Entropy goal of 1e-2 by the end of the training process, so it has been considered to not 

have been trained correctly. 
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Figure 4.1: Mean-square error performance of the network (3.15.10.1). 

 

 

 

Figure 4.2: Mean-square error performance of the network (3.25.1). 
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Figure 4.2 shows the plot of training performance result of the neural network with 3.25.1 

configuration (3 neurons in the input layer, one hidden layer with 25 neurons and one neuron 

in the output layer). It is to be noted that the neural network could not achieve the Cross-

Entropy goal of 1e-2 by the end of the training process. Therefore, it did not train 

satisfactorily.  

 

 

 

Figure 4.3: Mean-square error performance of the network (3.8.10.20.15.6.1). 

 

Figure 4.3 shows the plot of training performance result of the neural network with 

(3.8.10.20.15.6.1) configuration (3 neurons in the input layer, 5 hidden layers with 8, 10, 20, 
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15 and 6 neurons in them respectively and one neuron in the output layer). From the training 

performance plots of Figure 4.3, it is to be noted that very satisfactory training performance 

has been achieved by the neural network with the (3.8.10.20.15.6.1) configuration (3 neurons 

in the input layer, 5 hidden layers with 8, 10, 20, 15 and 6 neurons in them respectively and 

one neuron in the output layer). The overall Cross-Entropy of the trained neural network is 

way below the value of 1e-2 and is actually8.18036e-3 by the end of the training process. 

Hence this has been chosen as the ideal ANN for the purpose of fault detection. 

 

4.1.2 Simulation Results of Testing the Fault Identification Neural Network 

 

Once the neural network has been trained, its performance has to be tested by three different 

factors. The first of these is by plotting the best linear regression that relates the targets to the 

outputs as shown in Fig 4.4. 
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Figure 4.4: Regression fit of the outputs vs. targets for the network (3.8.10.20.15.6.1). 

The correlation coefficient (r) is a measure of how well the neural network‟s targets can track 

the variations in the outputs (0 being no correlation at all and 1 being complete correlation). 

The correlation coefficient in this case has been found to be0.99967 which indicates excellent 

correlation. 

 

 

 

Figure 4.5: Confusion matrices for Training, Testing and Validation Phases. 

 

Another means of testing the performance of the neural network is to plot the confusion 

matrices for the various types of errors that occurred for the trained neural network. Fig 4.5 

plots the confusion matrix for the three phases of training, testing and validation. The 
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diagonal cells in white colour indicate the number of cases that have been classified correctly 

by the neural network and the off-diagonal cells which are in pink indicate the number of 

cases that have been wrongly classified by the ANN. The last cell in blue in each of the 

matrices indicates the total percentage of cases that have been classified correctly in green and 

the vice-versa in red. It can be seen that the chosen neural network has 98.7% accuracy in 

fault identification. 

 

After the test set has been fed into the neural network and the results obtained, it was noted 

that the efficiency of the neural network in terms of its ability to detect the occurrence of a 

fault is a 98.7%. Hence the neural network can, with utmost accuracy, differentiate a normal 

situation from a fault condition on a transmission line. 

 

 

 

Figure 4.6: Overview of the ANN (3.8.10.20.15.6.1) chosen for fault detection. 
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Figure 4.6 presents a snapshot of the trained ANN with the (3.8.10.20.15.6.1) configuration 

and it is to be noted that the number of iterations required for the training process were 55. It 

can be seen that the mean square error in fault detection achieved by the end of the training 

process was 9.43e-5 and that the number of validation check fails were zero by the end of the 

training process. 

 

 

 

Figure 4.7: Chosen ANN for Fault Detection(3.8.10.20.15.6.1) 

 

The structure of the chosen neural network for fault detection is shown in Fig 4.7 with the 

input layer, hidden layers and the output layer labelled. It is to be noted that there are 3 

neurons in the input layer, 5 hidden layers with 8, 10, 20, 15 and 6 neurons in them 

respectively and one neuron in the output layer. This is a pictorial representation of how the 

neurons in the respective layers are connected together through the synaptic weights. It shows 

the interconnections between the input layer and the hidden layers, and also between the 
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hidden layers and the output layer. Any given neuron Figure 4.7 is connected to all the 

neurons in the layer in front. 

 

 

4.2 Fault Classification 

 

Once a fault has been detected on the power line, the next step is to identify the type of fault. 

This section presents the results of the fault classification phase using neural networks. The 

results of the different neural networks that were trained and tested are provided which is 

followed by that of the chosen network. 

 

4.2.1 Simulation Results of Training the Fault Classifier Neural Network 

 

Back-propagation networks with a variety of combinations of hidden layers and the number of 

neurons per hidden layer have been analyzed. Of these, the ones that achieved satisfactory 

performance are shown followed by the best neural network which has been described further 

in detail. Figures 4.8 – 4.12 show the error performance plots of neural networks with 3, 2, 2, 

1 and 2 hidden layers respectively. After extensive simulations, the desired network has three 

hidden layers with 12 neurons in the first hidden layer, 35 neurons in the second hidden layer, 

24 neurons in the third hidden layer (3.12.35.24.4). The chosen network has been depicted in 

Fig 4.13 and the various error performance plots have been shown in Figures 4.14 – 4.17. 

Appendix D shows the Matlab codes for the various plots. 

 

Fig 4.8 shows the training performance plot of the neural network 3.10.5.25.4 (3 neurons in 

the input layer, 3 hidden layers with 10, 5 and 25 neurons in them respectively and four 

neurons in the output layer). It can be seen that the best validation performance in terms of the 
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Cross-Entropy by the end of the training process is 2.4416e-2 which is greater than the 

desired Cross-Entropy of 1e-2. So the network did not train correctly. 

 

 

 

Figure 4.8: Mean-square error performance of the network with configuration 

(3.10.5.25.4). 
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Figure 4.9: Mean-square error performance of the network with configuration (3.20.10.4). 

Figure 4.9 shows the training performance plot of the neural network 3.20.10.4 (3 neurons in 

the input layer, 2 hidden layers with 20 and 10 neurons in them respectively and four neurons 

in the output layer). It can be seen that the best validation performance in terms of the Cross-

Entropy by the end of the training process is 3.1333e-2. Hence, training was not correctly 

done. 
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Figure 4.10: Mean-square error performance of the network with configuration (3.10.5.4). 

 

Figure 4.10 shows the training performance plot of the neural network 3.10.5.4 (3 neurons in 

the input layer, 2 hidden layers with 10 and 5 neurons in them respectively and four neurons 

in the output layer). It can be seen that the best validation performance in terms of the Cross-

Entropy by the end of the training process in this case is 3.6285e-2. Training was not 

successful. 
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Figure 4.11: Mean-square error performance of the network with configuration (3.20.4). 

 

Figure 4.11 shows the training performance plot of the neural network 3.20.4 (3 neurons in 

the input layer, 1 hidden layer with 20 neurons in it and four neurons in the output layer). It 

can be seen that the best validation performance in terms of the Cross-Entropy by the end of 

the training process in this case is 4.6742e-2. The network failed to train correctly. 

 

Figure 4.12 shows the training performance plot of the neural network 3.10.5.4 (3neurons in 

the input layer, two hidden layers with 10 and 5 neurons in them respectively and four 

neurons in the output layer). It can be seen that the best validation performance in terms of the 

Cross-Entropy by the end of the training process in this case almost hit the Cross-Entropy 

goal of 1e-2 and is 1.119e-2. But then it did not train correctly. 

 



- 152 - 
 

 

 

Figure 4.12: Mean-square error performance of the network with configuration (3.10.5.4). 

 

 

 

Figure 4.13: Mean-square error performance of the network with configuration 

(3.12.35.24.4). 
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Figure 4.13 shows the training performance plot of the neural network 3.12.35.24.4 (3 

neurons in the input layer, 3 hidden layers with 12, 35 and 24 neurons in it respectively and 

four neurons in the output layer). It can be seen that the best validation performance in terms 

of the Cross-Entropy by the end of the training process in this case is 7.3899e-3 which is 

below the Cross-Entropy goal of 1e-2. Hence, the training was successful. 

 

From the above training performance plots, it is to be noted that satisfactory training 

performance has been achieved by the neural network with the 3.12.35.24.4 configuration (3 

neurons in the input layer, 12, 35 and 24 neurons in the hidden layers respectively and four 

neurons in the output layer). The overall Cross-Entropy of the trained neural network is 

7.3899e-3 and it can be seen from Figure4.13 that the testing and the validation curves have 

similar characteristics which is an indication of efficient training. Hence this has been chosen 

as the ideal ANN for the purpose of fault classification. 

 

4.2.2 Simulation Results of Testing the Fault Classifier Neural Network 

 

Once the neural network has been trained, its performance has been tested by taking three 

different factors into consideration. The first of these is by plotting the best linear regression 

that relates the targets to the outputs as shown in Figure 4.14. The correlation coefficient in 

this case was found to be 0.98108 which indicates satisfactory correlation between the targets 

and the outputs. The dotted line in the figure indicates the ideal regression fit and the red solid 

line indicates the actual fit of the neural network. It can be seen that both lines track each 

other very closely which is an indication of very good performance by the neural network. 
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Figure 4.14: Regression fit of the Outputs vs. Targets of ANN with configuration 

(3.12.35.24.4). 

 

The second approach of testing the performance of the neural network is to plot the confusion 

matrices for the various types of errors that occurred for the trained neural network. Figure 

4.15 plots the confusion matrix for the three phases of training, testing and validation. The 

diagonal cells in white colour indicate the number of cases that have been classified correctly 

by the neural network and the off-diagonal cells which are in pink indicate the number of 

cases that have been wrongly classified by the ANN. The last cell in blue in each of the 

matrices indicates the total percentage of cases that have been classified correctly in green and 

the vice-versa in red. It can be seen that the chosen neural network has 98.0% accuracy in 

fault classification. 
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Figure 4.15: Confusion matrices for Training, Testing and Validation Phases of the ANN 

with configuration (3.12.35.24.4). 

 

The third step in the testing process is to create a separate set of data called the test set to 

analyze the performance of the trained neural network. A total of 300 different test cases have 

been simulated with 200 cases corresponding to different types of faults (about 20 cases for 

each of the ten faults where the fault resistance and the fault location have been varied in each 

case). The rest of the 100 cases correspond to the no-fault situation. 

 

After the test set has been fed into the neural network and the results obtained, it was noted 

that the efficiency of the neural network in terms of its ability to identify the type of the fault 

is a 99 percent. Hence the neural network can, with utmost accuracy, differentiate between the 

ten possible types of faults on a transmission line. 
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Figure 4.16: Overview of the ANN with configuration (3.12.35.24.4), chosen as fault 

classifier. 

 

Figure 4.16 provides an overview on the neural network and is a screen shot of the training 

window simulated using the Artificial Neural Network Toolbox in Simulink. Important things 

to be noted are that the training process converged in about 144 iterations and that the 

performance in terms of mean square error achieved by the end of the training process was 

6.26e-3. 

 

Figure 4.17 shows the structure of the chosen ANN for the purpose of fault classification and 

the neural network has 3 neurons in the input layer, 12, 35 and 24 neurons in the hidden layers 

respectively and four neurons in the output layer as shown. Each of the neurons in the output 

layer would indicate the fault condition on each of the three phases (A, B and C) and the 

fourth neuron is to identify if the fault is a ground fault. An output of 0 corresponds to no fault 

while an output of 1 indicates that the phase is faulted and the combinations give the fault 

type. 
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Figure 4.17: Chosen ANN for Fault Classification (3.12.35.24.4). 

 

4.3 Fault Location 

 

This section shows the results of the design, development and the implementation of the 

neural network based fault locators for each of the various types of faults. This forms the third 

step in the entire process of fault location after the inception of the fault. The following 

subsections deal with the various kinds of faults and their error performances individually. 

 

4.3.1 Single Line – Ground Faults 
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Now that the occurrence of a fault on a transmission line can be detected and also classified 

into various fault categories, the next step is to pin-point the location of the fault from either 

ends of the transmission line. Three possible single line – ground faults exist (A-G, B-G, C-

G), corresponding to each of the three phases (A, B or C) being faulted. 

 

4.3.1a  Simulation Results of Training the Neural Network for Single  

  Line – Ground Fault Location 

 

Firstly, a few of the various neural networks (with varying combination of hidden layers and 

number of neurons per hidden layer) that performed reasonably well are presented along with 

their respective error performances and then the chosen neural network is shown with all its 

characteristics depicted in detail. Efficiency of each of the trained networks is analyzed based 

on their regression performance and their performance in the testing phase. The test 

performance plots are obtained by simulating various faults on different phases at varying 

locations and calculating the error in the output produced by the Neural Network. Figures 

4.18 – 4.23 show the error performance and regression plots of neural networks with 2, 2 and 

2 hidden layers. The chosen neural network, after extensive simulations has three hidden 

layers with 8 neurons in the first hidden layer, 10 neurons in the second hidden layer, 20 

neurons in the third hidden layer (3.8.10.20.1).The chosen network has been depicted in 

Figure 4.24 and its various error performance plots have been shown in Figures 4.25 – 4.30. 

Appendix E shows the Matlab codes for the various plots. 

 

Figure 4.18 plots the best linear regression fit between the outputs and the targets of the neural 

network with 3 neurons in the input layer, 2 hidden layers with 25 and 15 neurons in them 

respectively and 1 neuron in the output layer (3.25.15.1). The correlation coefficient (r) as 

mentioned earlier is a measure of how well the neural network relates the outputs and the 
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targets. The closer the value of r is to 1, the better the performance of the neural network. The 

value of r in this case is found to be 0.89799. In order to test the performance of this network, 

12 different single phase faults have been simulated on different phases with the fault distance 

being incremented by 25km in each case and the percentage error in calculated output has 

been presented.  

 

 

 

Figure 4.18: Regression fit of the Outputs vs. Targets with configuration (3.25.15.1). 
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Figure 4.19: Test Phase performance of the Neural Network with configuration  (3.25.15.1). 

Figure 4.19 shows the results of this test conducted on the neural network (3.25.15.1). The 

maximum error is almost 6.28% which is not acceptable. 

 

Figure 4.20 plots the best linear regression fit between the outputs and the targets of the neural 

network with 3 neurons in the input layer, 5 and 20 neurons in the hidden layers respectively 

and 1 neuron in the output layer (3.5.20.1). The value of the correlation coefficient r in this 

case is found to be 0.9959. In order to test the performance of this network, 19 different single 

phase faults have been simulated on different phases with the fault distance being incremented 

by 15km in each case and the percentage error in calculated output has been presented. Fig 

4.21 shows the plot of results of this test conducted on the neural network (3.5.20.1). The 

maximum error is around 5.58% which is not very satisfactory. 
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Figure 4.20: Regression fit of the outputs versus targets with configuration (3.5.20.1). 

 

 

Figure 4.21: Test phase performance of the ANN with configuration (3.5.20.1) 
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Figure 4.22 plots the best linear regression fit between the outputs and the targets of the neural 

network with 6 neurons in the input layer, 12 and 25 neurons in the hidden layers respectively 

and 1 neuron in the output layer (3.12.25.1). The value of the correlation coefficient r in this 

case is found to be 0.89906. 

 

Figure 4.22: Regression fit of the outputs versus targets with configuration (3.12.25.1). 

 

 

Figure 4.23: Test phase performance of the neural network with configuration (3.12.25.1). 
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In order to test the performance of this network, 19 different single phase faults have been 

simulated on different phases with the fault distance being incremented by 15km in each case 

and the percentage error in calculated output has been presented. Fig 4.23 shows the results of 

this test conducted on the neural network (3.12.25.1). The maximum error is around 4.07% 

which is still not satisfactory. 

 

Figure 4.24 plots the best linear regression fit between the outputs and the targets of the neural 

network with 3 neurons in the input layer, 8, 10 and 20 neurons in the 3 hidden layers 

respectively and 1 neuron in the output layer (3.8.10.20.1). The value of the correlation 

coefficient r in this case is found to be 0.99924 which is by far the best and the closest to one 

and the network has been chosen as the best trained network. 

 

 

 

Figure 4.24: Regression fit of the outputs versus targets with configuration (3.8.10.20.1). 
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Figure 4.25: Test phase performance of the ANN with configuration (3.8.10.20.1). 

 

In order to test the performance of this network, 19 different single phase faults have been 

simulated on different phases with the fault distance being incremented by 15km in each case 

and the percentage error in calculated output has been calculated. Figure 4.25 shows the 

results of this test conducted on the neural network (3.8.10.20.1). It can be seen that the 

maximum error is around 1.78% which is very satisfactory. It is to be noted that the average 

error in fault location is just 0.89%. 
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Figure 4.26: Overview of the chosen ANN with configuration (3.8.10.20.1). 

 

Figure 4.26 shows an overview of the chosen ANN and it can be seen that the training 

algorithm used is Levenberg - Marquardt algorithm. The performance function chosen for the 

training process is mean square error.  

 

4.3.1b Simulation Results of Testing the Neural Network for Single 

 Line – Ground  Fault Location 

 

Several factors have been considered while testing the performance of the neural networks. 

One prime factor that evaluates the efficiency of the ANN is the test phase performance 

already illustrated in Fig 4.27. As already mentioned, the average and the maximum error 

percentages are in tolerable ranges and hence the network‟s performance is considered 

satisfactory. 
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Figure 4.27: Mean-square error performance of the network with configuration 

(3.8.10.20.1). 

 

Figure 4.27 plots the mean-square error as a function of time during the learning process and 

it can be seen that the achieved Cross-Entropy is about 4.298e-3 which is way below the 

Cross-Entropy goal of 1e-2. 

 

The result of another form of analysis is provided by Figure4.28, which is the gradient and 

validation performance plot. It can be seen that there is a steady decrease in the gradient and 

also that the number of validation fails are 0 during the entire process which indicates smooth 

and efficient training. 
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Figure 4.28: Gradient and validation performance of the network with configuration 

(3.8.10.20.1). 

 

The third factor that is considered while evaluating the performance of the network is the 

correlation coefficient of each of the various phases of training, validation and testing. Figure 

4.29 shows the regression plots of the various phases such as training, testing and validation. 

It can be seen that the best linear fit very closely matches the ideal case with an overall 

correlation coefficient of 0.99924. 
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Figure 4.29: Regression plots of various phases of learning of the ANN with configuration 

(3.8.10.20.1). 

 

Fig 4.30 shows the structure of the chosen ANN for single line – ground faults with 3 neurons 

in the input layer, 8, 10, and 20 neurons in the 3 hidden layers respectively and 1 neuron in 

the output layer (3.8.10.20.1).This is a pictorial representation of how the neurons in the 

respective layers are connected together through the synaptic weights. It shows the 

interconnections between the input layer and the hidden layers, and also between the hidden 
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layers and the output layer. It can be seen that any given neuron is connected to all the 

neurons in the layer in front. 

 

 
 

Figure 4.30: Structure of the chosen ANN with configuration(3.8.10.20.1). 

 

Table 4.1 illustrates the percentage errors in Fault location as a function of Fault Distance and 

Fault Resistance. Two different cases have been considered (shown in adjacent columns), one 

with a fault resistance of 15 Ohms and another with a fault resistance of 70 Ohms. It is to be 

noted that the resistance of 15 Ohms was used as a part of training data set and hence the 

average percentage error in fault location in this case is 0.65%. The second case illustrates the 

same with a different fault resistance of 70 Ohms which is relatively very high and is not a 

part of the training set. Hence, the performance of the neural network in this case illustrates its 

ability to generalize and react upon new data. It is to be noted that the average error in this 
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case is 0.7284% which is very satisfactory. Thus, the neural networks performance is 

considered satisfactory and can be used for the purpose of single line – ground fault location. 

 

Table 4.1: Percentage errors as a function of fault distance and fault resistance for the 

ANN chosen for single line - ground fault location. 

 

 

Serial 

No: 

% Error vs. Fault Distance 

(Fault Resistance = 15 Ω) 

% Error vs. Fault Distance 

(Fault Resistance = 70 Ω) 

Fault 

Distance 

(KM) 

Estimated 

Fault 

Location 

Percentage 

Error 

Fault 

Distance 

(KM) 

Estimated 

Fault 

Location 

Percentage 

Error 

1 5 4.95 0.01 10 10.06 0.6 

2 20 20.25 1.25 25 25.20 0.80 

3 35 35.28 0.80 40 40.52 1.30 

4 50 50.13 0.26 55 54.87 0.24 

5 65 65.75 1.15 70 69.51 0.70 

6 80 80.49 0.61 85 85.76 0.88 

7 95 95.58 0.61 100 101.12 1.12 

8 110 111.12 1.02 115 115.49 0.43 

9 125 125.79 0.63 130 131.02 0.78 

10 140 141.53 1.09 145 146.06 0. 73 

11 155 153.86 0.74 160 161.07 0.67 

12 170 171.05 0.62 175 174.50 0.29 

13 185 185.88 0.48 190 191.84 0.97 

14 200 201.13 0.57 205 207.01 0.98 

15 215 214.56 0.2 220 222.05 0.93 

16 230 229.49 0.22 235 236.02 0.43 

17 245 246.62 0.66 250 251. 89 0.76 

18 260 258.15 0.71 265 266.37 0.52 

19 275 273.01 0.72 280 282.00 0.71 

 

 

4.3.2  Line – Line Faults 
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The results of the design, development and performance of neural networks for the purpose of 

Line–Line fault location are discussed in this section. Now that the occurrence of a single line 

– ground fault on a transmission line can be determined,the next task is to pin-point the 

location of the line – line fault from either ends of the transmission line when it occurs. Three 

possible line – line faults exist (A-B, B-C, C-A), corresponding to each of the three phases (A, 

B or C) being faulted. 

 

4.3.2a  Simulation Results of Training the Neural Network for Line –  

  Line Fault Location 

 

An exhaustive survey on various neural networks has been performed by varying the number 

of hidden layers and the number of neurons per hidden layer. Certain neural networks that 

achieved satisfactory performance are presented first along with their error performance plots. 

Of these ANNs, the most appropriate ANN is chosen based on its Cross Entropy performance 

and the Regression coefficient of the Outputs versus Targets. Figures 4.31 – 4.32 show the 

Cross-Entropy and the Test phase performance plots of the neural networks 3.10.20.5.1 with 3 

hidden layers. Figures 4.33 – 4.34 show the Cross-Entropy and the Test phase performance 

plots of the neural network 3.10.1 with 1 hidden layer. 

 

Figure 4.31 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 3 hidden layers with 24, 18 and 5 neurons in 

them respectively and 1 neuron in the output layer (3.24.18.5.1). It can be seen that the best 

Cross-Entropy performance of this neural network is 2.8469e-2which is above the Cross-

Entropy goal of 1e-2. It was found that the correlation coefficient between the outputs and the 

targets was 0.80269 in this case which is not very satisfactory. 
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The chosen neural network has four hidden layers with 12 neurons in the first hidden layer, 5 

neurons in the second hidden layer, 15 neurons in the third hidden layer and 30 neurons in the 

fourth hidden layer (3.12.5.15.30.1). 

 

 

 

Figure 4.31: Mean Square Error performance plot with configuration (3.24.18.5.1). 

 

In order to test the performance of this network, 19 different line – line faults have been 

simulated on different phases with the fault distance being incremented by 15km in each case 

and the percentage error in calculated output has been calculated. Figure 4.32 shows the 

results of this test conducted on the neural network (3.24.18.5.4). The maximum error is 

around 7.35% which again is not satisfactory. 
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Figure 4.32: Test Phase performance of the ANN with configuration (3.24.18.5.1). 

 

 

 

Figure 4.33: Mean Square Error performance plot with configuration (3.10.5.1). 
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Figure 4.33 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 10 neurons in the hidden layer and 1 neuron in 

the output layer (3.10.1). It can be seen that the best Cross-Entropy performance of this neural 

network is 4.1518e-2 which is above the Cross-Entropy goal of 1e-2. It was found that the 

correlation coefficient between the outputs and the targets was 0.7025 for this neural network 

and this is not acceptable. 

 

 

 

Figure 4.34: Test Phase performance of the ANN with configuration (3.10.1). 

 

In order to test the performance of this network, 19 different line – line faults have been 

simulated on different phases with the fault distance being incremented by 15 km in each case 

and the percentage error in calculated output has been calculated. Fig 4.34 shows the results 

of this test conducted on the neural network (3.10.1). The maximum error is around 5.06% 

which is unacceptable. 
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Figure 4.35: Mean Square Error performance of the ANN with configuration   

  (3.12.5.15.30.1). 

 

Figure 4.35 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 4 hidden layers with 12, 5, 15 and 30 neurons in 

them respectively and 1 neuron in the output layer (3.12.5 .15.30.1). It can be seen that the 

best Cross-Entropy performance of this neural network is 6.4741e-3 which is below the 

Cross-Entropy goal of 1e-2. It was found that the correlation coefficient between the outputs 

and the targets was 0.99648 for this neural network. Therefore, this network has been trained 

correctly. 

 

In order to test the performance of this network, 19 different phase to phase faults have been 

simulated on different phases with the fault distance being incremented by 15km in each case 

and the percentage error in calculated output has been presented. 
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Figure 4.36: Test phase performance of the neural network with configuration   

  (3.12.5.15.30.1). 

 

 

Figure 4.36 shows the results of this test conducted on the neural network (3.12.5.15.30.1). It 

can be seen that the maximum error is around 1.37% which is very satisfactory. It is to be 

noted that the average error in fault location is 0.97 percent. Hence, this neural network has 

been chosen as the ideal network for the purpose of line – line fault location on transmission 

lines. 

 

Figure 4.37 shows an overview of the chosen ANN and it can be seen that the training 

algorithm used is Levenberg - Marquardt algorithm. The performance function chosen for the 

training process is mean square error. Fig 4.38shows the plots the best linear regression fit 

between the outputs and the targets and the correlation coefficient for the same has been 

found to be 0.99648 which is a decently good regression fit. 

 



- 177 - 
 

 

 

Figure 4.37: Overview of the chosen ANN for Line-Line Faults (3.12.5.15.30.1). 

 

 

 

Figure 4.38: Regression fit of the outputs versus targets with configuration 

  (3.12.5.15.30.1) 
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4.3.2b  Simulation Results of Testing the Neural Network for Line –  

  Line Fault Location 

 

Several factors have been considered while testing the performance of the chosen neural 

network. One prime factor that evaluates the efficiency of the ANN is the test phase 

performance plot which is already illustrated in Figure 4.36. As already mentioned, the 

average and the maximum error percentages are in tolerable ranges and hence the network‟s 

performance is considered satisfactory. Another means of evaluating the ANN is provided by 

Fig 4.39, which is the gradient and validation performance plot. It can be seen that there is a 

steady decrease in the gradient and also that the number of validation fails did not exceed 1 

during the entire process which indicates smooth and efficient training because the validation 

and the test phases reached the Cross-Entropy goal at the same time approximately. 

 

 

Figure 4.39: Gradient and validation performance plot of the ANN (3.12.5.15.30.1). 
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The third factor that is considered while evaluating the performance of the network is the 

correlation coefficient of each of the various phases of training, validation and testing. Figure 

4.40 shows the regression plots of the various phases such as training, testing and validation. 

It can be seen that the best linear fit very closely matches the ideal case with an overall 

correlation coefficient of 0.98648. 

 

 

 

Figure 4.40: Regression plots of the various phases of learning of the chosen ANN  

  (3.12.5.15.30.1). 
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Figure 4.41 shows the structure of the chosen ANN for line – line faults with 3neurons in the 

input layer, 4 hidden layers with 12, 5, 15 and 30 neurons in them respectively and 1 neuron 

in the output layer (3.12.5.15.30.1). This is a pictorial representation of how the neurons in the 

respective layers are connected together through the synaptic weights. It shows the 

interconnections between the input layer and the hidden layers, and also between the hidden 

layers and the output layer. It can be seen that any given neuron is connected to all the 

neurons in the layer in front. 

 

 

Figure 4.41: Structure of the chosen Neural Network (3.12.5.15.30.1). 

 

Table 4.2 illustrates the percentage errors in Fault location as a function of Fault Distance and 

Fault Resistance. Two different cases have been considered (shown in adjacent columns), one 

with a fault resistance of 15 Ohms and another with a fault resistance of 70 ohms. It is to 
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benoted that the resistance of 15 Ohms was used as a part of training data set and hence the 

average percentage error in fault location in this case is 0.5811 %.  

 

Table 4.2: Percentage errors as a function of fault distance and fault resistance for the 

ANN chosen for line - line fault location. 

 

 

Serial 

No: 

% Error vs. Fault Distance 

(Fault Resistance = 15 Ω) 

% Error vs. Fault Distance 

(Fault Resistance = 70 Ω) 

Fault 

Distance 

(Km) 

Estimated 

Fault 

Location 

Percentage 

Error 

Fault 

Distance 

(Km) 

Estimated 

Fault 

Location 

Percentage 

Error 

1 5 5.07 1.40 10 10.08 0.80 

2 20 20.17 0.85 25 25.13 0.52 

3 35 35.12 0.34 40 41.28 0.07 

4 50 50.04 0.08 55 55.51 0.93 

5 65 65.18 0.28 70 70.47 0.67 

6 80 80.39 0.49 85 86.16 1.36 

7 95 95.38 0.04 100 100.82 0.82 

8 110 110.17 0.15 115 115.89 0.77 

9 125 125.37 0.30 130 130.88 0.68 

10 140 140.95 0.68 145 146.16 0.80 

11 155 154.84 0.10 160 161.00 0.63 

12 170 170.98 0.56 175 176.96 1.12 

13 185 186.03 0.56 190 191.92 1.01 

14 200 201.32 0.66 205 206.81 0.88 

15 215 213.56 0.67 220 221.19 0.54 

16 230 228.56 0.63 235 236.73 0.74 

17 245 247.43 0.99 250 251.00 0.40 

18 260 262.76 1.06 265 266.82 0.69 

19 275 278.30 1.2 280 282.88 1.03 

 

The second case illustrates the same with a different fault resistance of 70 ohms which is 

relatively very high and is not a part of the training set. Hence, the performance of the neural 
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network in this case illustrates its ability to generalize and react upon new data. It is to be 

noted that the average error in this case is just 0.7611 % which is still very satisfactory. Thus, 

the neural networks performance is considered satisfactory and can be used for the purpose of 

line – line fault location. 

 

4.3.3 Double Line – Ground Faults 

 

The results of the design, development and performance of neural networks for the purpose 

ofDouble Line – Ground fault location are shown and discussed in this section. The third 

category of faults is the double line – ground faults. Three possible double line – ground faults 

exist which are denoted as ABG, BCG and ACG (based on which two of the three phases A, 

B and C are faulted). 

 

4.3.3a Simulation Results of Training the Neural Network for Double Line – 

Ground Fault Location 

 

A few neural networks that achieved satisfactory performance are presented first along with 

their error performance plots. Of these ANNs, the most appropriate ANN is chosen based on 

its Cross Entropy performance and the Regression coefficient of the Outputs vs. Targets. 

Figures 4.42 – 4.47 show the Cross-Entropy and the Test phase performance plots of the 

neural networks (3.20.1),(3.10.15.1)and (3.20.15.1) with 1 and 2 hidden layers respectively. 

Figures 4.48 – 4.49 show the MSE and the Test phase performance plots of the neural 

network 3.10.5.1 and 3.21.35.15.7.1 which has shown satisfactory performance. After 

exhaustive survey, the chosen neural network has four hidden layers with 21 neurons in the 

first hidden layer, 35 neurons in the second hidden layer, 15 neurons in the third hidden layer 

and 7 neurons in the fourth hidden layer (3.21.35.15.7.1). 
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Figure 4.42: Mean Square Error performance of the ANN with configuration (3.20.1). 

 

Figure 4.42 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 20 neurons in the hidden layer and 1 neuron in 

the output layer (3.20.1). It can be seen that the best Cross-Entropy performance of this neural 

network is 3.1913e-2 which is above the Cross-Entropy goal of 1e-2 (denoted by the blue 

dotted line). It was found that the correlation coefficient between the outputs and the targets 

was 0.91393 in this case. Therefore, the network failed to train correctly. 

 

In order to test the performance of this network, 19 different double line – ground faults have 

been simulated on different phases with the fault distance being incremented by 15km in each 

case and the percentage error in ANN‟s output has been calculated. Figure4.43 shows the 

results of this test conducted on the neural network (3.20.1). It can be seen that the maximum 

error is higher than 5.9% which is exorbitantly high. 
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Figure 4.43: Test Phase performance of the ANN with configuration (3.20.1). 

 

 

 

Figure 4.44: Mean Square Error performance of the ANN with configuration   

  (3.10.15.1). 
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Figure 4.44 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 10 and 15 neurons in the hidden layers 

respectively and 1 neuron in the output layer (3.10.15.1). It can be seen that the best Cross-

Entropy performance of this neural network is 2.1305e-2 which is below the Cross-Entropy 

goal of 1e-2 (denoted by the blue dotted line in the figure). It was found that the correlation 

coefficient between the outputs and the targets was 0.96804 for this neural network which is 

not satisfactory. 

 

 

 

Figure 4.45: Test Phase performance of the ANN with configuration (3.10.15.1). 

 

In order to test the performance of this network the same method adopted for the earlier case 

is followed. 19 different double line – ground faults have been simulated on different phases 

with the fault distance being incremented by 15km in each case and the percentage error in 

ANN‟s output has been calculated. Figure 4.45 shows the results of this test conducted on the 
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neural network (3.10.15.1). It is to be noted that the maximum error is higher than 4.27% 

which is too high for this purpose. 

 

Figure 4.46 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 2 hidden layers with 20 and 15 neurons in them 

respectively and 1 neuron in the output layer (3.20.15.1). It can be seen that the best Cross-

Entropy performance of this neural network is 2.7218e-2 which is above the Cross-Entropy 

goal of 1e-2 (denoted by the blue dotted line in the figure). It was found that the correlation 

coefficient between the outputs and the targets was 0.99813 for this neural network. 

 

 

 

Figure 4.46: Mean Square Error performance of the neural network with configuration 

(3.20.15.1). 

 

In order to test the performance of this network the same method adopted for the earlier case 

is followed. 19 different double line – ground faults have been simulated on different phases 

with the fault distance being incremented by 15 km in each case and the percentage error in 
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ANN‟s output has been calculated. Fig 4.47 shows the results of this test conducted on the 

neural network (3.20.15.1). It is to be noted that the maximum error is higher than 4.25% 

which is still not satisfactory for this purpose. 

 

 

 

Figure 4.47: Test Phase performance of the ANN (3.20.15.1). 

 

Fig 4.48 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 4 hidden layers with 21, 35, 15 and 7 neurons in 

them respectively and 1 neuron in the output layer (3.21.35.15.7.1). It can be seen that the 

best Cross-Entropy performance of this neural network is 2.1645e-3at epoch 7which is below 

the Cross-Entropy goal of 1e-2 (denoted by the blue dotted line in the figure). It was found 

that the correlation coefficient between the outputs and the targets was 0.99329 for this neural 

network which indicates very good regression fit. 
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Figure 4.48: Mean Square Error performance of the neural network with configuration 

(3.21.35.15.7.1). 

 

 

 

Figure 4.49: Test phase performance of the ANN (3.21.35.15.7.1). 
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In order to test the performance of this network, 19 different double line – ground faults have 

been simulated on different phases with the fault distance being incremented by 15km in each 

case and the percentage error in calculated output has been calculated. Figure 4.49 shows the 

results of this test conducted on the neural network (3.21.35.15.7.1). It can be seen that the 

maximum error is around 1.69% which is very satisfactory. It is to be noted that the average 

error in fault location is just 0.863 percent. Hence, this neural network has been chosen as the 

ideal network for the purpose of double line – ground fault location on transmission lines. 

 

Figure 4.50 shows an overview of the chosen ANN and it can be seen that the training 

algorithm used is Levenberg - Marquardt algorithm. The performance function chosen for the 

training process is mean square error. Figure 4.51 plots the best linear regression fit between 

the outputs and the targets. As already mentioned, the correlation coefficient in this case is 

found to be 0.99329 which is very good. 

 

 

 
 

Figure 4.50: Overview of the chosen ANN (3.21.35.15.7.1) for Double Line-Ground Faults. 
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Figure 4.51: Regression fit of the outputs versus targets with configuration(3.21.35.15.7.1). 

 

4.3.3b Simulation Results of Testing the Neural Network for Double Line – 

Ground Fault Location 

  

Now that the neural network has been trained, the next important step is to analyze the 

performance of this network which is called testing. The methods and means by which this 

neural network has been tested are discussed here under. One important factor that helps test 

the network is the test phase performance plot as shown in Fig 4.49. It is to be noted that both 

the average as well as the maximum error percentages are in acceptable levels and hence the 

networks performance is satisfactory. Another means of determining the efficiency of a 

trained neural network is to check the gradient and validation performance plot as shown in 

Fig 4.52. It can be seen that there is a steady decrease in the gradient and also that the 

maximum number of validation fails is 3 during the training process. This indicates efficient 

training because the validation phase follows the test phase closely if the number of validation 
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fails is low. This further implies that the neural network can generalize new data fed into it 

more effectively. 

 

 

 

Figure 4.52: Gradient and validation performance plot of ANN with configuration 

(3.21.35.15.7.1). 

 

 

Figure 4.53: Regression plots of the various stages of learning of ANN (3.21.35.15.7.1). 
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The third factor that is considered while evaluating the performance of the network is the 

correlation coefficient of each of the various phases of training, validation and testing. Figure 

4.53 shows the regression plots of the various phases such as training, testing and validation. 

It can be seen that the best linear fit very closely matches the ideal case with an overall 

correlation coefficient of 0.99329. 

 

Figure 4.54 shows the structure of the chosen ANN for double line - ground fault location 

with 3 neurons in the input layer, 4 hidden layers with 21, 35, 15 and 7 neurons in them 

respectively and 1 neuron in the output layer (3.21.35.15.7.1). This is a pictorial 

representation of how the neurons in the respective layers are connected together through the 

synaptic weights. It shows the interconnections between the input layer and the hidden layers, 

and also between the hidden layers and the output layer. It can be seen that any given neuron 

is connected to all the neurons in the layer in front. 

 

 

Figure 4.54: Structure of the chosen ANN (3.21.35.15.7.1). 
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Table 4.3 illustrates the percentage errors in fault location as a function of Fault Distance and 

Fault Resistance. Two different cases have been considered (shown in adjacent columns), one 

with a fault resistance of 15 Ohms and another with a fault resistance of 70 Ohms.  

 

Table 4.3: Percentage errors as a function of fault distance and fault resistance for the 

ANN chosen for double line - ground fault location. 

 

 

Serial 

No: 

% Error vs. Fault Distance 

(Fault Resistance = 15 Ω) 

% Error vs. Fault Distance 

(Fault Resistance = 70 Ω) 

Fault 

Distance 

(km) 

Estimated 

Fault 

Location 

Percentage 

Error 

Fault 

Distance 

(km) 

Estimated 

Fault 

Location 

Percentage 

Error 

1 5 4.92 1.60 10 10.08 0.08 

2 20 20.07 0.35 25 25.11 0.44 

3 35 35.23 0.66 40 40.03 0.08 

4 50 50.21 0.42 55 55.41 0.75 

5 65 65.12 0.18 70 70.15 0.21 

6 80 80.67 0.84 85 85.18 0.21 

7 95 95.41 0.43 100 100.77 0.77 

8 110 110.27 0.25 115 116.67 1.45 

9 125 126.34 1.07 130 128.30 1.31 

10 140 141.55 1.11 145 146.17 0.81 

11 155 153.87 0.73 160 161.02 0.64 

12 170 171.32 0.78 175 174.21 0.45 

13 185 186.23 0.66 190 191.55 0.82 

14 200 201.83 0.92 205 207.22 1.08 

15 215 216.76 0.82 220 221.68 0.76 

16 230 232.00 0.87 235 237.02 0.86 

17 245 243.00 0.82 250 252.01 0.80 

18 260 261.68 0.65 265 267.02 0.76 

19 275 273.01 0.72 280 282.00 0.71 
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It is to be noted that the resistance of 15 Ohms was used as a part of training data set and 

hence the average percentage error in fault location in this case is 0.7305%. The second case 

illustrates the same with a different fault resistance of 70 Ohms which is relatively very high 

and is not a part of the training set. Hence, the performance of the neural network in this case 

illustrates its ability to generalize and react upon new data. It is to be noted that the average 

error in this case is 0.6837% which is still acceptable. Thus, the neural networks performance 

is considered satisfactory and can be used for the purpose of double line – ground fault 

location. 

 

4.3.4 Three Phase Faults 

 

The results of the design, development and performance of neural networks for the purpose of 

three-phase fault location are discussed in this section. The fourth and the final category of 

faults are the three phase faults. There exists only one kind of three phase faults which is 

denoted as ABC fault where in all the three phases A, B and C are faulted. 

 

4.3.4a  Simulation Results of Training the Neural Network for Three  

  Phase Fault Location 

 

A few neural networks that achieved satisfactory performance are presented first along with 

their error performance plots. Of these ANNs, the most appropriate ANN is chosen based on 

its Cross-Entropy and the Regression coefficient of the Outputs vs. Targets. Figures 4.55 – 

4.57show the Cross-Entropy and the Test phase performance plots of the neural network 

3.16.10.1 with 2 hidden layers. Figures 4.58 –4.60 show the Cross-Entropy and the Test phase 

performance plots of the neural network 3.24.1 with 1 hidden layer which gives unsatisfactory 

performance. After exhaustive survey, the chosen neural network has five hidden layers with 

6 neurons in the first hidden layer, 21 neurons in the second hidden layer, 16 neurons in the 
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third hidden layer, 10 neurons in the fourth hidden layer and 5 neurons in the fifth hidden 

layer (3.6.21.16.10.5.1). 

 

 

 

Figure 4.55: Regression fit of the outputs versus targets of ANN with configuration 

(3.16.10.1). 

 

 

Figure 4.55 plots the best linear regression fit between the outputs and the targets of the neural 

network with 3 neurons in the input layer, 2 hidden layers with 16 and 10 neurons in them 

respectively and 1 neuron in the output layer (3.16.10.1). The correlation coefficient (r) as 

mentioned earlier is a measure of how well the neural network relates the outputs and the 

targets. The closer the value of r is, to 1, the better the performance of the neural network. The 

value of r in this case is found to be 0.87906. Therefore, the training is considered 

unsuccessful. 

 

Figure 4.56 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 2 hidden layers with 17 and 5 neurons in them 
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respectively and 1 neuron in the output layer (3.17.5.1). It can be seen that the best Cross-

Entropy performance of this neural network is 3.0847e-2 which is below the Cross-Entropy 

goal of 1e-2 (denoted by the blue line). 

 

 

 

Figure 4.56: MSE performance of the neural network with configuration (3.17.5.1). 
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Figure 4.57: Test Phase performance of the ANN with configuration (3.17.5.1). 

In order to test the performance of this network, 19 different three phase faults have been 

simulated on the transmission line with the fault distance being incremented by15km in each 

case and the percentage error in ANN‟s output has been calculated. Figure4.57 shows the 

results of this test conducted on the neural network (3.17.5.1). It can be seen that the 

maximum error is higher than 4.38% which is fairly satisfactory. However neural networks 

that can perform better are more desirable. 

 

 

 

Figure 4.58: MSE performance of the neural network with configuration (3.24.1). 

 

Figure 4.58 shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 1 hidden layer with 24 neurons in it and 1 neuron 

in the output layer (3.24.1). It can be seen that the best Cross-Entropy performance of this 
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neural network is 4.0894e-2 which is below the Cross-Entropy goal of 1e-2 (denoted by the 

blue dotted line). 

Figure 4.59 plots the best linear regression fit between the outputs and the targets of the neural 

network with 3 neurons in the input layer, 1 hidden layer with 24 neurons in it and 1 neuron in 

the output layer (3.24.1). The correlation coefficient (r) as mentioned earlier is a measure of 

how well the neural network relates the outputs and the targets. The closer the value of r is, to 

1, the better the performance of the neural network. The value of r in this case is found to be 

0.99804 which is an improvement from the previous case (3.17.5.1) but still not satisfactory. 
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Figure 4.59: Regression fit for the outputs versus targets of ANN with configuration 

(3.24.1). 

 

In order to test the performance of this network, 19 different three phase faults have been 

simulated on the transmission line with the fault distance being incremented by15km in each 

case and the percentage error in ANN‟s output has been calculated. Figure 4.60 shows the 

results of this test conducted on the neural network (3.24.1). It can be seen that the maximum 

error is just lower than 3.1% which is a significant improvement from the previous case but 

still need improvement. 

 

 

 

Figure 4.60: Test Phase performance of the ANN with configuration (3.24.1). 

 

Figure 4.61 plots the best linear regression fit between the outputs and the targets of the neural 

network with 3 neurons in the input layer, 3 hidden layers with 6, 21, 16, 10 and 5 neurons in 

them respectively and 1 neuron in the output layer (3.6.21.16.10.5.1). The correlation 
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coefficient (r) as mentioned earlier is a measure of how well the neural network relates the 

outputs and the targets. The closer the value of r is, to 1, the better the performance of the 

neural network. The value of r in this case is found to be 0.99897 which is very close to 1. 

 

 

Figure 4.61: Regression fit of the outputs versus targets of ANN (3.6.21.16.10.5.1). 
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Figure 4.62: Test Phase performance of the ANN (3.6.21.16.10.5.1). 

In order to test the performance of this network, 19 different three phase faults have been 

simulated on the transmission line with the fault distance being incremented by 15 km in each 

case and the percentage error in ANN‟s output has been calculated. Figure 4.62 shows the 

results of this test conducted on the neural network (3.6.21.16.10.5.1). It can be seen that the 

maximum error is around 1.4% which is very satisfactory. It is to be noted that the average 

error in fault location is 0.677%. Hence, this neural network has been chosen as the ideal 

network for the purpose of three phase fault location on transmission lines. 

 

Figure4.63shows an overview of the chosen ANN and it can be seen that the training 

algorithm used is Levenberg - Marquardt algorithm. The performance function chosen for the 

training process is mean square error. 
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Figure 4.63: Overview of the chosen neural network for three phase fault location. 

 

Figure4.64shows the performance of the neural network (in terms of training, testing and 

validation) with 3 neurons in the input layer, 4 hidden layers with 6, 21, 16, 10 and 5 neurons 

in them respectively and 1 neuron in the output layer (3.6.21.16.10.5.1). It can be seen that the 

best Cross-Entropy performance of this neural network is 1.9196e-3 (denoted by the dotted 

green line) which is below the Cross-Entropy goal of 1e-2 (denoted by the blue dotted line). 
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Figure 4.64: Mean Square Error performance of the neural network (3.6.21.16.10.5.1). 

 

4.3.4b  Simulation Results of Testing the Neural Network for Three  

  Phase Fault Location 

 

Now that the neural network has been trained, the next step is to analyze the performance of 

this network which is called testing. The results of the methods and means by which this 

neural network has been tested are discussed here in this section. One important factor that 

helps test the network is the test phase performance plot as shown in Fig 4.64. It is to be noted 

that both the average as well as the maximum error percentages in accurately determining the 

location of the fault are in acceptable levels and hence the network‟s performance is 

satisfactory. 
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Figure 4.65: Gradient and validation performance plots of the ANN (3.6.21.16.10.5.1). 

  

Another important means of determining the efficiency of a trained neural network is to check 

the gradient and validation performance plot as shown in Figure4.65. It can be seen that there 

is a steady and smooth decrease in the gradient and also that the maximum number of 

validation fails is 0 during the training process. This indicates efficient training because the 

validation phase follows the test phase closely if the number of validation fails is low. This is 

further indicated by the test and validation curves on Figure 4.66. This further implies that the 

neural network can generalize new data fed into it more effectively. 
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Figure 4.66: Regression plots of the various phases of learning of the ANN 

(3.6.21.16.10.5.1). 

 

The third factor that is considered while evaluating the performance of the network is the 

correlation coefficient of each of the various phases of training, validation and testing. 

Figure4.66shows the regression plots of the various phases such as training, testing and 

validation. It can be seen that the best linear fit very closely matches the ideal case with an 

overall correlation coefficient of 0.99897. 

 

Figure4.67shows the structure of the chosen ANN for three-phase faults with 3neurons in the 

input layer, 5 hidden layers with 6, 21, 16, 10 and 5 neurons in them respectively and 1 

neuron in the output layer (3.6.21.16.10.5.1). 
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Figure 4.67: Structure of the chosen ANN (3.6.21.16.10.5.1). 

 

Table 4.4 illustrates the percentage errors in Fault location as a function of Fault Distance and 

Fault Resistance. Two different cases have been considered (shown in adjacent columns), one 

with a fault resistance of 15 Ohms and another with a fault resistance of 70 Ohms. It is to be 

noted that the resistance of 15 Ohms was used as a part of training data set and hence the 

average percentage error in fault location in this case is 0.6447%. The second case illustrates 

the same with a different fault resistance of 70 Ohms which is relatively very high and is not a 

part of the training set. Hence, the performance of the neural network in this case illustrates its 

ability to generalize and react upon new data. It is to be noted that the average error in this 

case is 0.6721% which is still acceptable. Thus, the neural networks performance is 

considered satisfactory and can be used for the purpose of three phase fault location. 
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Table 4.4: Percentage errors as a function of fault distance and fault resistance for the 

ANN chosen for three phase fault location. 

 

 

Serial 

No: 

% Error vs. Fault Distance 

(Fault Resistance = 15 Ω) 

% Error vs. Fault Distance 

(Fault Resistance = 70 Ω) 

Fault 

Distance 

(km) 

Estimated 

Fault 

Location 

Percentage 

Error 

Fault 

Distance 

(km) 

Estimated 

Fault 

Location 

Percentage 

Error 

1 5 5.03 0.60 10 10.12 1.20 

2 20 20.18 0.90 25 25.20 0.80 

3 35 35.16 0.46 40 39.96 0.10 

4 50 50.09 0.18 55 55.46 0.84 

5 65 64.11 1.37 70 70.23 0.33 

6 80 80.28 0.35 85 84.11 1.05 

7 95 95.53 0.56 100 99.46 0.54 

8 110 110.10 0.09 115 114.79 0.18 

9 125 125.66 0.53 130 131.72 1.32 

10 140 140.83 0.59 145 146.22 0.84 

11 155 154.03 0.63 160 161.21 0.76 

12 170 171.22 0.72 175 174.00 0.57 

13 185 185.73 0.39 190 191.32 0.69 

14 200 202.10 1.05 205 206.71 0.83 

15 215 216.37 0.64 220 221.14 0.52 

16 230 231.78 0.77 235 236.12 0.48 

17 245 246.33 0.54 250 251. 32 0.53 

18 260 258.00 0.77 265 265.88 0.33 

19 275 278.00 1.09 280 277.60 0.86 

 

 

4.4 Validation Check 
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As a way of validatory check on the results obtained in this work, effort has been made to 

compare the results to those obtained by authors whose works were among those reviewed in 

section 2.13. 

 

Table 4.5: Percentage errors as a function of fault distance for single line to ground fault 

location. Copied from Mamta and Patel,(2012) 

Type of 

Fault 

Location of Fault 

(kM) 

Wavelet and ANN 

based Fault Locator 

Output (kM) 

Percentage 

Error 

LG-A 

 

55 53.9622 -1.88 

78 77.2255 -0.99 

92 92.0286 0.09 

134 139.2605 3.9 

167 176.5844 5.74 

LG-B 28 27.4472 -1.97 

87 90.3275 3.82 

103 103.2484 0.241 

145 148.303 2.27 

176 189.379 7.6 

LG-C 15 13.6723 -8.85 

38 36.9657 -2.72 

97 95.8447 1.19 

116 113.323 -2.3 

182 179.2931 -1.48 

 

 

For the results of single line to ground fault location obtained in this work, when compared to 

the work done by Mamta and Patel,(2012) which is among the works reviewed in the related 

literatures, the percentage error margins were significantly reduced. The average percentage 

errors recorded by Mamta and Patel,(2012) for line – ground faults on phase A, B and C were 
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2.52%, 3.18% and 3.31% respectively as calculated from Table 4.5 whereas in this work an 

average percentage error of 0.65% and 0.7284% were achieved for 15 Ohms and 70 Ohms 

fault resistances respectively as aforementioned, thereby confirming the potency of the 

method proposed in this work. 

 

For the results of line to line fault location, when compared to the work done by Girish and 

Nitin,(2015) which is among the works reviewed in the related literatures, the percentage 

error margins were significantly reduced. The average percentage error recorded by Girish 

and Nitin,(2015) was 3.35% as also inferred from Table 4.6 whereas in this work an average 

percentage error of 0.5811% and 0.7611 % were achieved for 15 Ohms and 70 Ohms fault 

resistances respectively as aforementioned, thereby confirming the potency of the method 

proposed in this work. 

 

Table 4.6: Percentage errors as a function of fault distance for line to line fault location. 

Copied from Girish and Nitin,(2015) 

S/No Fault Distance 

(kM) 

Measured Fault 

Distance (kM) 

Percentage 

Error 

1 50 41.61 2.79 

2 100 89.97 3.34 

3 150 138.69 3.77 

4 200 190 3.34 

5 250 237.875 4.04 

6 300 291.6 2.8 

 

For the results of double line to ground fault location, (Ayyagari, 2011) in their work reported 

an average percentage error of 1.122% as confirmed by Table 4.7. But in this work an average 

percentage error of 0.7305% and 0.6837% were achieved for 15 Ohms and 70 Ohms fault 
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resistances respectively. It can also be seen that the percentage error margins were 

significantly reduced., thereby confirming the potency of the method proposed in this work. 

 

Table 4.7: Percentage errors as a function of fault distance for double line to ground fault 

location. Copied from (Ayyagari, 2011) 

S/No Fault Distance 

(kM) 

Measured Fault 

Distance (kM) 

Percentage 

Error 

1 50 51.17 0.39 

2 100 102.52 0.84 

3 150 153.63 1.21 

4 200 201.98 0.66 

5 250 255.19 1.73 

 

For the results of three phase fault location, (Ayyagari, 2011) also in their work reported an 

average percentage error of 0.836% as confirmed by Table 4.8. But in this work an average 

percentage error of 0.6437% and 0.6721 % were achieved for 15 Ohms and 70 Ohms fault 

resistances respectively. It can also be seen that the percentage error margins were 

significantly reduced, which again confirms the potency of the method proposed in this work. 

 

Table 4.8: Percentage errors as a function of fault distance for three phase fault location. 

Copied from (Ayyagari, 2011) 

S/No Fault Distance 

(kM) 

Measured Fault 

Distance (kM) 

Percentage 

Error 

1 50 51.41 0.47 

2 100 103.03 1.01 

3 150 152.37 0.79 

4 200 201.99 0.63 

5 250 253.84 1.28 

CHAPTER FIVE 
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CONCLUSION, FINDINDS AND RECOMMENDATION 

 

5.1 Conclusions 

 

This dissertation has implemented the usage of neural networks as an alternative and effective 

method for the detection, classification and location of faults on transmission lines. The 

methods employed, make use of the summation of the wavelet decomposed fault voltage and 

current values of all the three phases as inputs to the neural networks. Various possible kinds 

of faults namely single line-ground, line-line, double line-ground and three phase faults have 

been taken into consideration in this work and separate ANNs have been implemented for 

each of these faults. 

 

All the neural networks used in this dissertation belong to the back-propagation neural 

network architecture with either Levenberg-Marquardt or Scaled Conjugate Gradient 

algorithm. A fault location scheme for the transmission line system, right from the detection 

of faults on the line to the fault location stage has been devised successfully by using artificial 

neural networks. 

 

The simulation results obtained proved that satisfactory performance has been achieved by all 

of the proposed neural networks in general. As further illustrated, depending on the 

application of the neural network and the size of the training data set, the size of the ANN (the 

number of hidden layers and number of neurons per hidden layer) keeps varying. The 

importance of choosing an appropriate ANN configuration, in order to get the best 

performance from the network, has been stressed upon in this work. The sampling frequency 

adopted for sampling the voltage and current waveforms in this work is just 10 kHz which is 
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very low compared to what has been used in the literatures (a major portion of the works in 

literature utilized 12 kHz – 25 kHz). 

 

This is of significant importance because, the lower the sampling frequency, the lesser the 

computational burden on the industrial computer that uses the neural networks. This means a 

lot of energy savings because a continuous online detection scheme of this kind consumes a 

large amount of energy, a major portion of which is due to the continuous sampling of 

waveforms. The above mentioned are some significant improvements that this work offers 

over existing neural network based techniques for transmission line fault location. 

 

Matlab R2016a along with the SimPowerSystems toolbox in Simulink was used to simulate 

the entire power transmission line model and to obtain the training data set. In order to train 

and analyze the performance of the neural networks, the Artificial Neural Networks Toolbox 

was used extensively. 

 

5.2 Findings 

Some important findings that can be drawn from this dissertation are: 

 

∎ Neural Networks are indeed a reliable and attractive scheme for an ideal 

transmission line fault location scheme especially in view of the increasing 

complexity of the modern power transmission systems. 

∎ It was very essential to investigate and analyze the advantages of a particular 

neural network structure and learning algorithm before choosing it for an 

application because there should be a trade-off between the training 

characteristics and the performance factors of any neural network. 
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∎ The results obtained proved that satisfactory performance was achieved by all 

the modelled NN based fault detectors. Back-Propagation NNs were very 

efficient when sufficiently large training data set was available. Also, the low 

average percentage errors obtained showed that the NNs had a high degree of 

precision and accuracy in fault finding when compared to the other existing 

methods. 

 

5.3 Recommendation  

 

The following are the recommendations suggested. Firstly, ANN should be introduced in 

protectionof the transmission lines in Nigerian grid system as this will go a long way in faster 

response to repairs and restoration of the faulted transmission lines within the network.  

 

Secondly, as there are still many areas of ANNapart from Multilayer perceptron to be 

explored like self-organizing feature map (SOFM or Kohonen) networks and radial basis 

neural (RBF) network as hinted in sub-section 2.10.2 and 2.10.3, power system protection 

researchers should channel their resources and time to this area since the results of this work 

showed that multi-layer perceptron ANN has high efficiency when it comes to fault detections 

and locations. As it would be quite useful to analyze all these possible neural network types 

and to provide a comparative analysis on each of the architectures and their performance 

characteristics.  

 

Finally, Levenberg-Marquardt (LM) back-propagation algorithm is good when there is 

sufficient amount of training data-set as it provides very fast convergence when compared to 

other learning algorithms but when the NN size is enormously big, LM algorithm becomes 

slower as there would high increase in the Jacobian matrix to be computed. Effort, therefore, 
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should be made by researchers to improve further the convergence rate of LM algorithm 

under this condition. 

 

5.4 Contribution to Knowledge 

 

The contributions to knowledge are itemized as follows: 

 

► The dissertation has successfully developed a multi-resolution analysis (MRA) and 

pattern recognition based fault identification and location in an overhead transmission 

line using the summation of the decomposed detail coefficients and approximations of 

the extracted faulty voltage and current waveforms for all the three phases for ten 

different faults and also non-fault case. 

 

► The case study network (the Nigerian 330kV Ikeja West – Benin Power Transmission 

line system) has received simulation procedure and results specific to its parameters 

which enabled this work to explore the peculiarity of the Nigerian power system. 
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APPENDIX 

 

A. MATLAB DECOMPOSITION OF THE EXTRACTED FAULT WAVEFORMS 

>> % From Workspace (Iabc and Vabc are sent workspace from  

% simulink environment after simulation) 

>> Va = Vabc(:,1); % 1x3047 matrix vector 

>> Vb = Vabc(:,2); 

>> Vc = Vabc(:,3); 

>> Ia = Iabc(:,1); 

>> Ib = Iabc(:,2); 

>> Ic = Iabc(:,3); 

>> % After Wavelet Decomposition Va, Vb, Vc, Ia, Ib, Ic becomes 

>> % dVa, dVb, dVc, dIa, dIb, dIc respectively 

% dVa_sum, etc are 1x3047 matrix vectors 

 

B. MATLAB SUMMATION OF THE DETAIL AND APPROXIMATION 

COEFFICIENTS OF THE DECOMPOSED WAVEFORMS 

>> dVa_sum = (dVa(1,:)+dVa(2,:)+dVa(3,:)+dVa(4,:)+dVa(5,:)); 

>> dVb_sum = (dVb(1,:)+dVb(2,:)+dVb(3,:)+dVb(4,:)+dVb(5,:)); 

>> dVc_sum = (dVc(1,:)+dVc(2,:)+dVc(3,:)+dVc(4,:)+dVc(5,:)); 

>> dIa_sum = (dIa(1,:)+dIa(2,:)+dIa(3,:)+dIa(4,:)+dIa(5,:)); 



- 228 - 
 

>> dIb_sum = (dIb(1,:)+dIb(2,:)+dIb(3,:)+dIb(4,:)+dIb(5,:)); 

>> dIc_sum = (dIc(1,:)+dIc(2,:)+dIc(3,:)+dIc(4,:)+dIc(5,:)); 

>> Wa = dVa_sum + dIa_sum; % 1x3047 matrix vector 

>> Wb = dVb_sum + dIb_sum; 

>> Wc = dVc_sum + dIc_sum; 

>> Wa = Wa‟; 

>> Wb = Wb‟; 

>> Wc = Wc‟; 

>> W = [Wa, Wb, Wc];% Input to the neural network, Wcan be a  

% 3047x3, 3007x3, 3140x3 or 2256x3 matrix vector 

 

C. RESULTS FOR FAULT IDENTIFICATION 

 

i) Mean Square ErrorPerformance Plot 

 

function createfigure(X1, YMatrix1, X2, Y1, X3, Y2, X4, Y3) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, Y2, X4, Y3) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  X3:  vector of x data 

%  Y2:  vector of y data 

%  X4:  vector of x data 

%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:17:59 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTPERFORM','NumberTitle','off',... 

    'Name','Neural Network Training Performance (plotperform), Epoch 87, Validation stop.'); 

 

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on'); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 87]); 

%% Uncomment the following line to preserve the Y-limits of the axes 
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% ylim(axes1,[0.09 1.1]); 

hold(axes1,'all'); 

 

% Create multiple lines using matrix input to semilogy 

semilogy1 = semilogy(X1,YMatrix1,'Parent',axes1,'LineWidth',2); 

set(semilogy1(1),'Color',[0 0 1],'DisplayName','Train'); 

set(semilogy1(2),'Color',[0 0.8 0],'DisplayName','Validation'); 

set(semilogy1(3),'Color',[1 0 0],'DisplayName','Test'); 

 

% Create semilogy 

semilogy(X2,Y1,'Parent',axes1,'LineStyle',':','Color',[0 0.48 0],... 

    'DisplayName','Best'); 

 

% Create semilogy 

semilogy(X3,Y2,'Parent',axes1,'MarkerSize',16,'Marker','o','LineWidth',1.5,... 

    'LineStyle','none',... 

    'Color',[0 0.48 0]); 

 

% Create semilogy 

semilogy(X4,Y3,'Parent',axes1,'LineStyle',':','Color',[0 0 0]); 

 

% Create title 

title('Best Validation Performance is 0.26986 at epoch 81',... 

    'FontWeight','bold',... 

    'FontSize',12); 

 

% Create ylabel 

ylabel('Mean Squared Error  (mse)','FontWeight','bold','FontSize',12); 

 

% Create xlabel 

xlabel('87 Epochs','FontWeight','bold','FontSize',12); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

 

% Create legend 

legend(axes1,'show'); 

 

ii) Regression Fit 
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function createfigure(X1, YMatrix1, X2, Y1, YMatrix2, X3, YMatrix3, X4, YMatrix4, X5) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, YMATRIX2, X3, YMATRIX3, X4, 

YMATRIX4, X5) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  YMATRIX2:  matrix of y data 

%  X3:  vector of x data 

%  YMATRIX3:  matrix of y data 

%  X4:  vector of x data 

%  YMATRIX4:  matrix of y data 

%  X5:  vector of x data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:30:47 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTREGRESSION','NumberTitle','off',... 

    'Name','Neural Network Training Regression (plotregression), Epoch 87, Validation stop.'); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

 

% Create axes 

axes1 = axes('Parent',figure1,... 

    'Position',[0.13 0.593876272242609 0.304276096520464 0.331123727757391],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[0 1]); 

box(axes1,'on'); 

hold(axes1,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 0.32*Target + 0.33','FontWeight','bold','FontSize',12); 
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% Create title 

title('Training: R=0.62376','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot1 = plot(X1,YMatrix1,'Parent',axes1); 

set(plot1(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot1(2),'LineWidth',2,'DisplayName','Fit'); 

 

% Create plot 

plot(X2,Y1,'Parent',axes1,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend1 = legend(axes1,'show'); 

set(legend1,'Location','NorthWest'); 

 

% Create axes 

axes2 = axes('Parent',figure1,... 

    'Position',[0.587518430936152 0.593876272242609 0.317481569063848 

0.331123727757391],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes2,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes2,[0 1]); 

box(axes2,'on'); 

hold(axes2,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 0.075*Target + 0.6','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Validation: R=0.19465','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot2 = plot(X1,YMatrix2,'Parent',axes2); 

set(plot2(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot2(2),'LineWidth',2,'Color',[0 1 0],'DisplayName','Fit'); 

 

% Create plot 
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plot(X3,Y1,'Parent',axes2,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend2 = legend(axes2,'show'); 

set(legend2,'Location','NorthWest'); 

 

% Create axes 

axes3 = axes('Parent',figure1,... 

    'Position',[0.13 0.11 0.304276096520464 0.329981370316705],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes3,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes3,[0 1]); 

box(axes3,'on'); 

hold(axes3,'all'); 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 0.16*Target + 0.44','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Test: R=0.29941','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot3 = plot(X1,YMatrix3,'Parent',axes3); 

set(plot3(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot3(2),'LineWidth',2,'Color',[1 0 0],'DisplayName','Fit'); 

 

% Create plot 

plot(X4,Y1,'Parent',axes3,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend3 = legend(axes3,'show'); 

set(legend3,'Location','NorthWest'); 

 

% Create axes 

axes4 = axes('Parent',figure1,... 

    'Position',[0.587518430936152 0.11 0.317481569063848 0.329981370316705],... 
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    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes4,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes4,[0 1]); 

box(axes4,'on'); 

hold(axes4,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 0.25*Target + 0.4','FontWeight','bold','FontSize',12); 

 

% Create title 

title('All: R=0.48534','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot4 = plot(X1,YMatrix4,'Parent',axes4); 

set(plot4(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot4(2),'LineWidth',2,'Color',[0.4 0.4 0.4],'DisplayName','Fit'); 

 

% Create plot 

plot(X5,Y1,'Parent',axes4,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend4 = legend(axes4,'show'); 

set(legend4,'Location','NorthWest'); 

 

 

iii) Confusion Plot 

 

function createfigure(X1, Y1, Y2, Y3) 

%CREATEFIGURE(X1, Y1, Y2, Y3) 

%  X1:  vector of x data 

%  Y1:  vector of y data 

%  Y2:  vector of y data 

%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:38:30 

 

% Create figure 
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figure1 = figure('Tag','TRAINING_PLOTTRAINSTATE','NumberTitle','off',... 

    'Name','Neural Network Training Training State (plottrainstate), Epoch 87, Validation 

stop.'); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

% uicontrol(...); 

 

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on',... 

    'XTickLabel','',... 

    'Position',[0.13 0.709264705882353 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 87]); 

box(axes1,'on'); 

hold(axes1,'all'); 

 

% Create semilogy 

semilogy(X1,Y1,'Parent',axes1,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('gradient'); 

 

% Create title 

title('Gradient = 0.12202, at epoch 87'); 

 

% Create axes 

axes2 = axes('Parent',figure1,'XTickLabel','',... 

    'Position',[0.13 0.409632352941176 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes2,[0 87]); 

box(axes2,'on'); 

hold(axes2,'all'); 

 

% Create plot 

plot(X1,Y2,'Parent',axes2,'MarkerFaceColor',[1 0 0],'Marker','diamond',... 

    'LineWidth',1,... 

    'LineStyle','none'); 

 

% Create ylabel 

ylabel('val fail'); 
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% Create title 

title('Validation Checks = 6, at epoch 87'); 

 

% Create axes 

axes3 = axes('Parent',figure1,'Position',[0.13 0.11 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes3,[0 87]); 

box(axes3,'on'); 

hold(axes3,'all'); 

 

% Create plot 

plot(X1,Y3,'Parent',axes3,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('lr'); 

 

% Create xlabel 

xlabel('87 Epochs'); 

 

% Create title 

title('Learning Rate = 0.69738, at epoch 87'); 

 

 

D. RESULTS FOR FAULT CLASSIFICATION 

 

i) Mean Square ErrorPerformance Plot 

 

function createfigure(X1, YMatrix1, X2, Y1, X3, Y2, X4, Y3) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, Y2, X4, Y3) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  X3:  vector of x data 

%  Y2:  vector of y data 

%  X4:  vector of x data 

%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:22:42 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTPERFORM','NumberTitle','off',... 

    'Name','Neural Network Training Performance (plotperform), Epoch 115, Validation 

stop.'); 
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% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on'); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 115]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[9e-05 1.1]); 

hold(axes1,'all'); 

 

% Create multiple lines using matrix input to semilogy 

semilogy1 = semilogy(X1,YMatrix1,'Parent',axes1,'LineWidth',2); 

set(semilogy1(1),'Color',[0 0 1],'DisplayName','Train'); 

set(semilogy1(2),'Color',[0 0.8 0],'DisplayName','Validation'); 

set(semilogy1(3),'Color',[1 0 0],'DisplayName','Test'); 

 

% Create semilogy 

semilogy(X2,Y1,'Parent',axes1,'LineStyle',':','Color',[0 0.48 0],... 

    'DisplayName','Best'); 

 

% Create semilogy 

semilogy(X3,Y2,'Parent',axes1,'MarkerSize',16,'Marker','o','LineWidth',1.5,... 

    'LineStyle','none',... 

    'Color',[0 0.48 0]); 

 

% Create semilogy 

semilogy(X4,Y3,'Parent',axes1,'LineStyle',':','Color',[0 0 0]); 

 

% Create title 

title('Best Validation Performance is 0.0009082 at epoch 109',... 

    'FontWeight','bold',... 

    'FontSize',12); 

 

% Create ylabel 

ylabel('Mean Squared Error  (mse)','FontWeight','bold','FontSize',12); 

 

% Create xlabel 

xlabel('115 Epochs','FontWeight','bold','FontSize',12); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 
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% Create legend 

legend(axes1,'show'); 

 

 

ii) Regression Fit 

 

function createfigure(X1, YMatrix1, X2, Y1, YMatrix2, X3, YMatrix3, X4, YMatrix4, X5) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, YMATRIX2, X3, YMATRIX3, X4, 

YMATRIX4, X5) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  YMATRIX2:  matrix of y data 

%  X3:  vector of x data 

%  YMATRIX3:  matrix of y data 

%  X4:  vector of x data 

%  YMATRIX4:  matrix of y data 

%  X5:  vector of x data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:35:21 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTREGRESSION','NumberTitle','off',... 

    'Name','Neural Network Training Regression (plotregression), Epoch 261, Minimum 

gradient reached.'); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

 

% Create axes 

axes1 = axes('Parent',figure1,... 

    'Position',[0.13 0.593876272242609 0.304276096520464 0.331123727757391],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[0 1]); 

box(axes1,'on'); 
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hold(axes1,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 0.0023','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Training: R=1','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot1 = plot(X1,YMatrix1,'Parent',axes1); 

set(plot1(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot1(2),'LineWidth',2,'DisplayName','Fit'); 

 

% Create plot 

plot(X2,Y1,'Parent',axes1,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend1 = legend(axes1,'show'); 

set(legend1,'Location','NorthWest'); 

 

% Create axes 

axes2 = axes('Parent',figure1,... 

    'Position',[0.587518430936152 0.593876272242609 0.317481569063848 

0.331123727757391],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes2,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes2,[0 1]); 

box(axes2,'on'); 

hold(axes2,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 7e-06','FontWeight','bold','FontSize',12); 

 

% Create title 
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title('Validation: R=1','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot2 = plot(X1,YMatrix2,'Parent',axes2); 

set(plot2(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot2(2),'LineWidth',2,'Color',[0 1 0],'DisplayName','Fit'); 

 

% Create plot 

plot(X3,Y1,'Parent',axes2,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend2 = legend(axes2,'show'); 

set(legend2,'Location','NorthWest'); 

 

% Create axes 

axes3 = axes('Parent',figure1,... 

    'Position',[0.13 0.11 0.304276096520464 0.329981370316705],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes3,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes3,[0 1]); 

box(axes3,'on'); 

hold(axes3,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 0.98*Target + 0.0077','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Test: R=0.99998','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot3 = plot(X1,YMatrix3,'Parent',axes3); 

set(plot3(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot3(2),'LineWidth',2,'Color',[1 0 0],'DisplayName','Fit'); 

 

% Create plot 

plot(X4,Y1,'Parent',axes3,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 
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    'Color',[0 0 0]); 

 

% Create legend 

legend3 = legend(axes3,'show'); 

set(legend3,'Location','NorthWest'); 

 

% Create axes 

axes4 = axes('Parent',figure1,... 

    'Position',[0.587518430936152 0.11 0.317481569063848 0.329981370316705],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes4,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes4,[0 1]); 

box(axes4,'on'); 

hold(axes4,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 0.99*Target + 0.0029','FontWeight','bold','FontSize',12); 

 

% Create title 

title('All: R=0.99998','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot4 = plot(X1,YMatrix4,'Parent',axes4); 

set(plot4(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot4(2),'LineWidth',2,'Color',[0.4 0.4 0.4],'DisplayName','Fit'); 

 

% Create plot 

plot(X5,Y1,'Parent',axes4,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend4 = legend(axes4,'show'); 

set(legend4,'Location','NorthWest'); 

 

 

iii) Confusion Plot 

 

function createfigure(X1, Y1, Y2, Y3) 
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%CREATEFIGURE(X1, Y1, Y2, Y3) 

%  X1:  vector of x data 

%  Y1:  vector of y data 

%  Y2:  vector of y data 

%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:39:47 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTTRAINSTATE','NumberTitle','off',... 

    'Name','Neural Network Training Training State (plottrainstate), Epoch 115, Validation 

stop.'); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on',... 

    'XTickLabel','',... 

    'Position',[0.13 0.709264705882353 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 115]); 

box(axes1,'on'); 

hold(axes1,'all'); 

 

% Create semilogy 

semilogy(X1,Y1,'Parent',axes1,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('gradient'); 

 

% Create title 

title('Gradient = 0.007177, at epoch 115'); 

 

% Create axes 

axes2 = axes('Parent',figure1,'XTickLabel','',... 

    'Position',[0.13 0.409632352941176 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes2,[0 115]); 

box(axes2,'on'); 

hold(axes2,'all'); 
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% Create plot 

plot(X1,Y2,'Parent',axes2,'MarkerFaceColor',[1 0 0],'Marker','diamond',... 

    'LineWidth',1,... 

    'LineStyle','none'); 

 

% Create ylabel 

ylabel('val fail'); 

% Create title 

title('Validation Checks = 6, at epoch 115'); 

 

% Create axes 

axes3 = axes('Parent',figure1,'Position',[0.13 0.11 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes3,[0 115]); 

box(axes3,'on'); 

hold(axes3,'all'); 

 

% Create plot 

plot(X1,Y3,'Parent',axes3,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('lr'); 

 

% Create xlabel 

xlabel('115 Epochs'); 

 

% Create title 

title('Learning Rate = 2.7338, at epoch 115'); 

 

E. RESULTS FOR FAULT LOCATION 

 

i) Test PhasePerformance Plot 

 

function createfigure(X1, YMatrix1, X2, Y1, X3, Y2, X4, Y3) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, Y2, X4, Y3) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  X3:  vector of x data 

%  Y2:  vector of y data 

%  X4:  vector of x data 
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%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:26:09 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTPERFORM','NumberTitle','off',... 

    'Name','Neural Network Training Performance (plotperform), Epoch 261, Minimum 

gradient reached.'); 

 

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on'); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 261]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[9e-11 1.1]); 

hold(axes1,'all'); 

 

% Create multiple lines using matrix input to semilogy 

semilogy1 = semilogy(X1,YMatrix1,'Parent',axes1,'LineWidth',2); 

set(semilogy1(1),'Color',[0 0 1],'DisplayName','Train'); 

set(semilogy1(2),'Color',[0 0.8 0],'DisplayName','Validation'); 

set(semilogy1(3),'Color',[1 0 0],'DisplayName','Test'); 

 

% Create semilogy 

semilogy(X2,Y1,'Parent',axes1,'LineStyle',':','Color',[0 0.48 0],... 

    'DisplayName','Best'); 

 

% Create semilogy 

semilogy(X3,Y2,'Parent',axes1,'MarkerSize',16,'Marker','o','LineWidth',1.5,... 

    'LineStyle','none',... 

    'Color',[0 0.48 0]); 

 

% Create semilogy 

semilogy(X4,Y3,'Parent',axes1,'LineStyle',':','Color',[0 0 0]); 

 

% Create title 

title('Best Validation Performance is 2.4041e-10 at epoch 261',... 

    'FontWeight','bold',... 

    'FontSize',12); 

 

% Create ylabel 

ylabel('Mean Squared Error  (mse)','FontWeight','bold','FontSize',12); 

 

% Create xlabel 
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xlabel('261 Epochs','FontWeight','bold','FontSize',12); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

% Create legend 

legend(axes1,'show'); 

 

% Create line 

annotation(figure1,'line',[0.132142857142857 0.905357142857143],... 

    [0.596619047619052 0.595238095238095],'LineStyle','-.'); 

 

 

ii) Confusion Plot 

 

function createfigure(X1, YMatrix1, X2, Y1, X3, Y2, X4, Y3) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, Y2, X4, Y3) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  X3:  vector of x data 

%  Y2:  vector of y data 

%  X4:  vector of x data 

%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:27:55 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTPERFORM','NumberTitle','off',... 

    'Name','Neural Network Training Performance (plotperform), Epoch 258, Minimum 

gradient reached.'); 

 

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on'); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 258]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[9e-10 0.011]); 

hold(axes1,'all'); 
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% Create multiple lines using matrix input to semilogy 

semilogy1 = semilogy(X1,YMatrix1,'Parent',axes1,'LineWidth',2); 

set(semilogy1(1),'Color',[0 0 1],'DisplayName','Train'); 

set(semilogy1(2),'Color',[0 0.8 0],'DisplayName','Validation'); 

set(semilogy1(3),'Color',[1 0 0],'DisplayName','Test'); 

 

% Create semilogy 

semilogy(X2,Y1,'Parent',axes1,'LineStyle',':','Color',[0 0.48 0],... 

    'DisplayName','Best'); 

 

% Create semilogy 

semilogy(X3,Y2,'Parent',axes1,'MarkerSize',16,'Marker','o','LineWidth',1.5,... 

    'LineStyle','none',... 

    'Color',[0 0.48 0]); 

 

% Create semilogy 

semilogy(X4,Y3,'Parent',axes1,'LineStyle',':','Color',[0 0 0]); 

 

% Create title 

title('Best Validation Performance is 1.5877e-06 at epoch 258',... 

    'FontWeight','bold',... 

    'FontSize',12); 

 

% Create ylabel 

ylabel('Mean Squared Error  (mse)','FontWeight','bold','FontSize',12); 

 

% Create xlabel 

xlabel('258 Epochs','FontWeight','bold','FontSize',12); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

 

% Create legend 

legend(axes1,'show'); 

 

 

iii) Mean Square ErrorPerformance Plot 

  

function createfigure(X1, Y1, Y2, Y3) 

%CREATEFIGURE(X1, Y1, Y2, Y3) 
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%  X1:  vector of x data 

%  Y1:  vector of y data 

%  Y2:  vector of y data 

%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:41:01 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTTRAINSTATE','NumberTitle','off',... 

    'Name','Neural Network Training Training State (plottrainstate), Epoch 261, Minimum 

gradient reached.'); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

 

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on',... 

    'XTickLabel','',... 

    'Position',[0.13 0.709264705882353 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 261]); 

box(axes1,'on'); 

hold(axes1,'all'); 

 

% Create semilogy 

semilogy(X1,Y1,'Parent',axes1,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('gradient'); 

 

% Create title 

title('Gradient = 9.871e-06, at epoch 261'); 

 

% Create axes 

axes2 = axes('Parent',figure1,'XTickLabel','',... 

    'Position',[0.13 0.409632352941176 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes2,[0 261]); 

box(axes2,'on'); 

hold(axes2,'all'); 
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% Create plot 

plot(X1,Y2,'Parent',axes2,'MarkerFaceColor',[1 0 0],'Marker','diamond',... 

    'LineWidth',1,... 

    'LineStyle','none'); 

 

% Create ylabel 

ylabel('val fail'); 

% Create title 

title('Validation Checks = 0, at epoch 261'); 

 

% Create axes 

axes3 = axes('Parent',figure1,'Position',[0.13 0.11 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes3,[0 261]); 

box(axes3,'on'); 

hold(axes3,'all'); 

 

% Create plot 

plot(X1,Y3,'Parent',axes3,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('lr'); 

 

% Create xlabel 

xlabel('261 Epochs'); 

 

% Create title 

title('Learning Rate = 3391.619, at epoch 261'); 

 

iv) Regression Fit 

 

function createfigure(X1, YMatrix1, X2, Y1, YMatrix2, X3, YMatrix3, X4, YMatrix4, X5) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, YMATRIX2, X3, YMATRIX3, X4, 

YMATRIX4, X5) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  YMATRIX2:  matrix of y data 

%  X3:  vector of x data 

%  YMATRIX3:  matrix of y data 
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%  X4:  vector of x data 

%  YMATRIX4:  matrix of y data 

%  X5:  vector of x data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:36:17 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTREGRESSION','NumberTitle','off',... 

    'Name','Neural Network Training Regression (plotregression), Epoch 258, Minimum 

gradient reached.'); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 

 

% uicontrol(...); 

 

% Create axes 

axes1 = axes('Parent',figure1,... 

    'Position',[0.13 0.593876272242609 0.304276096520464 0.331123727757391],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[0 1]); 

box(axes1,'on'); 

hold(axes1,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 0.0022','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Training: R=1','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot1 = plot(X1,YMatrix1,'Parent',axes1); 

set(plot1(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot1(2),'LineWidth',2,'DisplayName','Fit'); 

 

% Create plot 



- 249 - 
 

plot(X2,Y1,'Parent',axes1,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend1 = legend(axes1,'show'); 

set(legend1,'Location','NorthWest'); 

 

% Create axes 

axes2 = axes('Parent',figure1,... 

    'Position',[0.587518430936152 0.593876272242609 0.317481569063848 

0.331123727757391],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes2,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes2,[0 1]); 

box(axes2,'on'); 

hold(axes2,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 0.0013','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Validation: R=1','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot2 = plot(X1,YMatrix2,'Parent',axes2); 

set(plot2(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot2(2),'LineWidth',2,'Color',[0 1 0],'DisplayName','Fit'); 

 

% Create plot 

plot(X3,Y1,'Parent',axes2,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend2 = legend(axes2,'show'); 

set(legend2,'Location','NorthWest'); 

 

% Create axes 
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axes3 = axes('Parent',figure1,... 

    'Position',[0.13 0.11 0.304276096520464 0.329981370316705],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes3,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes3,[0 1]); 

box(axes3,'on'); 

hold(axes3,'all'); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 5.6e-05','FontWeight','bold','FontSize',12); 

% Create title 

title('Test: R=1','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot3 = plot(X1,YMatrix3,'Parent',axes3); 

set(plot3(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot3(2),'LineWidth',2,'Color',[1 0 0],'DisplayName','Fit'); 

 

% Create plot 

plot(X4,Y1,'Parent',axes3,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend3 = legend(axes3,'show'); 

set(legend3,'Location','NorthWest'); 

 

% Create axes 

axes4 = axes('Parent',figure1,... 

    'Position',[0.587518430936152 0.11 0.317481569063848 0.329981370316705],... 

    'PlotBoxAspectRatio',[1 1 1]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes4,[0 1]); 

%% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes4,[0 1]); 

box(axes4,'on'); 

hold(axes4,'all'); 

 

% Create xlabel 
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xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 0.0017','FontWeight','bold','FontSize',12); 

 

% Create title 

title('All: R=1','FontWeight','bold','FontSize',12); 

 

% Create multiple lines using matrix input to plot 

plot4 = plot(X1,YMatrix4,'Parent',axes4); 

set(plot4(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 

set(plot4(2),'LineWidth',2,'Color',[0.4 0.4 0.4],'DisplayName','Fit'); 

 

% Create plot 

plot(X5,Y1,'Parent',axes4,'Marker','o','LineStyle','none',... 

    'DisplayName','Data',... 

    'Color',[0 0 0]); 

 

% Create legend 

legend4 = legend(axes4,'show'); 

set(legend4,'Location','NorthWest'); 

 

v) Gradient and validation performance plots 

 

function createfigure(X1, Y1, Y2, Y3) 

%CREATEFIGURE(X1, Y1, Y2, Y3) 

%  X1:  vector of x data 

%  Y1:  vector of y data 

%  Y2:  vector of y data 

%  Y3:  vector of y data 

 

%  Auto-generated by MATLAB on 11-Feb-2017 11:42:05 

 

% Create figure 

figure1 = figure('Tag','TRAINING_PLOTTRAINSTATE','NumberTitle','off',... 

    'Name','Neural Network Training Training State (plottrainstate), Epoch 258, Minimum 

gradient reached.'); 

 

% uicontrol currently does not support code generation, enter 'doc uicontrol' for correct input 

syntax 

% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc guide' for more 

information 
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% uicontrol(...); 

 

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on',... 

    'XTickLabel','',... 

    'Position',[0.13 0.709264705882353 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[0 258]); 

box(axes1,'on'); 

hold(axes1,'all'); 

 

% Create semilogy 

semilogy(X1,Y1,'Parent',axes1,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('gradient'); 

 

% Create title 

title('Gradient = 9.7126e-06, at epoch 258'); 

 

% Create axes 

axes2 = axes('Parent',figure1,'XTickLabel','',... 

    'Position',[0.13 0.409632352941176 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes2,[0 258]); 

box(axes2,'on'); 

hold(axes2,'all'); 

 

% Create plot 

plot(X1,Y2,'Parent',axes2,'MarkerFaceColor',[1 0 0],'Marker','diamond',... 

    'LineWidth',1,... 

    'LineStyle','none'); 

 

% Create ylabel 

ylabel('val fail'); 

 

% Create title 

title('Validation Checks = 0, at epoch 258'); 

 

% Create axes 

axes3 = axes('Parent',figure1,'Position',[0.13 0.11 0.775 0.19093662464986]); 

%% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes3,[0 258]); 
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box(axes3,'on'); 

hold(axes3,'all'); 

 

% Create plot 

plot(X1,Y3,'Parent',axes3,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

 

% Create ylabel 

ylabel('lr'); 

% Create xlabel 

xlabel('258 Epochs'); 

 

% Create title 

title('Learning Rate = 2929.808, at epoch 258'); 

 

 

F. SIGNAL DECOMPOSITION OF CURRENT AND VOLTAGE WAVEFORMS 

OF ALL THE FOUR TYPES OF FAULTS 

 

 

P1: Decomposed signal of voltage waveform of LG Fault of phase A at a distance of 

140km from the source 
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P2: Decomposed signal of voltage waveform of LG Fault of phase B at a distance of 

140km from the source 

 

 

P3: Decomposed signal of voltage waveform of LG Fault of phase C at a distance of 

140km from the source 
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P4: Decomposed signal of current waveform of LG Fault of phase A at a distance of 

140km from the source 

 

 

P5: Decomposed signal of current waveform of LG Fault of phase B at a distance 

of 140km from the source 



- 256 - 
 

 

P6: Decomposed signal of current waveform of LG Fault of phase C at a distance 

of 140km from the source 

 

 

P7: Decomposed signal of voltage waveform of LLG Fault of phase A at a distance 

of 140km from the source 
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P8: Decomposed signal of voltage waveform of LLG Fault of phase B at a distance 

of 140km from the source 

 

 

P9: Decomposed signal of voltage waveform of LLG Fault of phase C at a distance 

of 140km from the source 
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P10: Decomposed signal of current waveform of LLG Fault of phase A at a distance 

of 140km from the source 

 

 

P11: Decomposed signal of current waveform of LLG Fault of phase B at a distance 

of 140km from the source 
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P12: Decomposed signal of current waveform of LLG Fault of phase C at a distance 

of 140km from the source 

 

 

P13: Decomposed signal of voltage waveform of LL Fault of phase A at a distance 

of 140km from the source 
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P14: Decomposed signal of voltage waveform of LL Fault of phase B at a distance 

of 140km from the source 

 

 

P15: Decomposed signal of voltage waveform of LL Fault of phase C at a distance 

of 140km from the source 
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P16: Decomposed signal of current waveform of LL Fault of phase A at a distance 

of 140km from the source 

 

 

P17: Decomposed signal of current waveform of LL Fault of phase B at a distance 

of 140km from the source 
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P18: Decomposed signal of current waveform of LL Fault of phase C at a distance 

of 140km from the source 

 

 

P19: Decomposed signal of voltage waveform of LLL Fault of phase A at a distance 

of 140km from the source 
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P20: Decomposed signal of voltage waveform of LLL Fault of phase B at a distance 

of 140km from the source 

 

 

P21: Decomposed signal of voltage waveform of LLL Fault of phase C at a distance 

of 140km from the source 
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P22: Decomposed signal of current waveform of LLL Fault of phase A at a distance 

of 140km from the source 

 

 

P23: Decomposed signal of current waveform of LLL Fault of phase B at a distance 

of 140km from the source 
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P24: Decomposed signal of current waveform of LLL Fault of phase C at a distance 

of 140km from the source 
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G NIGERIAN 330KV TRANSMISSION LINE PARAMETERS (Ogbuefi 

and Madueme, 2015) 
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H PART OF RESULTS OF APPENDIX B 

>> w 

 

w = 

 

   1.0e+04 * 

 

  Columns 1 through 7 

 

   -0.6537   -0.4414   -0.2693   -0.2993   -0.3309   -0.1639   -

0.0056 

   -0.0918   -0.2976   -0.4773   -0.5936   -0.7209   -0.9091   -

1.0840 

    0.7409    0.7350    0.7432    0.8903    1.0499    1.0720    

1.0894 

 

 Columns 8 through 14 

 

    0.1093    0.2839    0.4454    0.5838    0.6953    0.7768    

0.8587 

   -1.2469   -1.3933   -1.5038   -1.5808   -1.6280   -1.6614   -

1.6615 

    1.1384    1.1111    1.0611    1.0006    0.9373    0.8901    

0.8091 

 

  Columns 15 through 21 

 

    0.9272    0.9793    1.0100    1.0244    1.0178    0.9828    

0.8991 

   -1.6280   -1.5650   -1.4940   -1.3977   -1.2471   -1.0776   -

0.8151 

    0.7080    0.5936    0.4927    0.3827    0.2394    0.1056   -

0.0726 

 

  Columns 22 through 28 

 

    0.8374    0.7694    0.5953    0.5054    0.4180    0.2149    

0.0853 

   -0.6663   -0.5054   -0.1689   -0.0038    0.1571    0.4321    

0.5991 

   -0.1591   -0.2516   -0.4135   -0.4883   -0.5614   -0.6329   -

0.6699 

 

  Columns 29 through 35 

 

   -0.0477   -0.2175   -0.3911   -0.5487   -0.7022   -0.8302   -

0.9477 

    0.7594    0.9383    1.0962    1.2236    1.3398    1.4444    

1.5424 

   -0.6967   -0.7054   -0.6891   -0.6585   -0.6207   -0.5968   -

0.5770 

 

  Columns 36 through 42 

 

   -1.1034   -1.1941   -1.2522   -1.2917   -1.3199   -1.3308   -

1.3363 

    1.6439    1.7219    1.7841    1.8407    1.8843    1.9084    

1.8992 

   -0.5225   -0.5095   -0.5132   -0.5301   -0.5453   -0.5581   -

0.5425 

 

  Columns 43 through 49 

 

   -1.3199   -1.2931   -1.2495   -1.1881   -1.1146   -1.0279   -

0.9271 

    1.8707    1.8104    1.7338    1.6404    1.5095    1.3657    

1.2141 

   -0.5291   -0.4938   -0.4585   -0.4238   -0.3631   -0.3021   -

0.2469 

 

  Columns 50 through 56 

 

   -0.8122   -0.6679   -0.5148   -0.3265   -0.1620   -0.0039    

0.1504 

    1.0537    0.8472    0.6568    0.4149    0.2052    0.0011   -

0.2115 

   -0.1964   -0.1288   -0.0856   -0.0256    0.0269    0.0810    

0.1481 

 

  Columns 57 through 63 

 

    0.3106    0.4769    0.6989    0.8742    1.0180    0.9689    

0.9177 

   -0.4211   -0.6140   -0.8309   -0.9872   -1.1087   -1.1338   -

1.1540 

    0.2068    0.2433    0.2484    0.2401    0.2290    0.3150    

0.3985 

 

  Columns 64 through 70 

 

    1.0707    1.1296    1.0666    1.0409    1.0534    1.1159    

1.1617 

   -1.2614   -1.3129   -1.4367   -1.5414   -1.6347   -1.7001   -

1.7931 

    0.3654    0.3712    0.3467    0.3679    0.4163    0.4746    

0.4785 

 

  Columns 71 through 77 

 

    1.1034    1.0153    0.9597    0.9667    0.9027    0.8136    

0.7158 

   -1.8669   -1.9083   -1.9460   -1.9067   -1.8819   -1.8491   -

1.8115 

    0.4697    0.5110    0.5769    0.6369    0.6937    0.6692    

0.6801 

 

  Columns 78 through 84 

 

    0.6614    0.6385    0.5727    0.4602    0.3572    0.3040    

0.2350 

   -1.7256   -1.6138   -1.4521   -1.2924   -1.1201   -0.9779   -

0.8396 

    0.6440    0.5757    0.4611    0.3887    0.3194    0.3286    

0.3200 

 

  Columns 85 through 91 

 

    0.1407    0.0448   -0.0540   -0.1042   -0.1578   -0.2231   -

0.3244 

   -0.6425   -0.4474   -0.2045    0.0292    0.2574    0.4525    

0.6644 

    0.2615    0.1735    0.0539   -0.0783   -0.2002   -0.2944   -

0.3782 

 

  Columns 92 through 98 
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   -0.3992   -0.4679   -0.5506   -0.6412   -0.7465   -0.8488   -

0.9298 

    0.8417    1.0201    1.2082    1.3680    1.5059    1.6338    

1.7528 

   -0.4300   -0.4614   -0.4825   -0.4874   -0.4704   -0.4519   -

0.4424 

 

  Columns 99 through 105 

 

   -0.9827   -1.0299   -1.0741   -1.0660   -1.0373   -1.0192   -

0.9885 

    1.8557    1.9524    2.0363    2.1002    2.1616    2.2045    

2.2257 

   -0.4499   -0.4732   -0.4881   -0.5329   -0.5880   -0.6136   -

0.6506 

 

  Columns 106 through 112 

 

   -0.9576   -0.9246   -0.8879   -0.8356   -0.7845   -0.7422   -

0.6804 

    2.2226    2.1797    2.1064    2.0274    1.9250    1.7407    

1.5349 

   -0.6751   -0.6673   -0.6351   -0.6276   -0.6105   -0.4843   -

0.3506 

 

  Columns 113 through 119 

 

   -0.6048   -0.5132   -0.4098   -0.2969   -0.2034   -0.1318   -

0.0612 

    1.3358    1.0808    0.8436    0.6481    0.4364    0.2469    

0.0378 

   -0.2528   -0.1415   -0.0752   -0.0360   -0.0027    0.0489    

0.1302 

 

  Columns 120 through 126 

 

    0.0130    0.0938    0.1776    0.2571    0.3926    0.4746    

0.5543 

   -0.1985   -0.4284   -0.6411   -0.8438   -1.0831   -1.2335   -

1.3879 

    0.2378    0.3411    0.4188    0.4725    0.4822    0.4980    

0.5033 

 

  Columns 127 through 133 

 

    0.6636    0.7773    0.8741    0.9536    1.0406    1.1037    

1.1223 

   -1.5482   -1.6761   -1.7902   -1.8868   -1.9770   -2.0554   -

2.1075 

    0.4715    0.4218    0.3751    0.3520    0.3151    0.2901    

0.3133 

 

  Columns 134 through 140 

 

    1.1187    1.1414    1.1293    1.0861    1.0376    1.0087    

0.9753 

   -2.1554   -2.1773   -2.1833   -2.1863   -2.1737   -2.1002   -

1.9970 

    0.3482    0.3251    0.3417    0.4004    0.4511    0.4214    

0.3774 

 

  Columns 141 through 147 

 

    0.9295    0.8636    0.7858    0.6994    0.6029    0.4956    

0.3924 

   -1.8631   -1.7006   -1.5152   -1.3107   -1.1071   -0.9073   -

0.7254 

    0.3270    0.2728    0.2101    0.1422    0.0900    0.0490    

0.0301 

 

  Columns 148 through 154 

 

    0.2925    0.1978    0.1094    0.0107   -0.0758   -0.1421   -

0.2094 

   -0.5433   -0.3551   -0.1604    0.0664    0.2888    0.4837    

0.6661 

    0.0224    0.0017   -0.0407   -0.1030   -0.1816   -0.2548   -

0.3079 

 

  Columns 155 through 161 

 

   -0.2841   -0.3961   -0.5032   -0.6322   -0.6983   -0.7784   -

0.9036 

    0.8370    1.0213    1.1854    1.3580    1.4765    1.5849    

1.7010 

   -0.3521   -0.3640   -0.3603   -0.3302   -0.3142   -0.2808   -

0.2056 

 

  Columns 162 through 168 

 

   -0.9944   -1.0575   -1.1040   -1.1241   -1.1410   -1.1465   -

1.1529 

    1.7919    1.8750    1.9470    2.0035    2.0459    2.0728    

2.0734 

   -0.1666   -0.1448   -0.1326   -0.1499   -0.1675   -0.1973   -

0.1947 

 

  Columns 169 through 175 

 

   -1.1304   -1.0854   -1.0407   -1.0096   -0.9629   -0.8843   -

0.7981 

    2.0585    2.0371    1.9979    1.8856    1.7196    1.5816    

1.4306 

   -0.2023   -0.2478   -0.2785   -0.2271   -0.1464   -0.1349   -

0.1127 

 

  Columns 176 through 182 

 

   -0.7171   -0.6294   -0.5295   -0.4155   -0.3209   -0.2322   -

0.1338 

    1.2867    1.1336    0.9468    0.7450    0.5882    0.4213    

0.2129 

   -0.1119   -0.1056   -0.0786   -0.0506   -0.0526   -0.0408    

0.0032 

 

  Columns 183 through 189 

 

   -0.0299    0.0661    0.1382    0.2156    0.3049    0.4197    

0.5328 

   -0.0084   -0.2331   -0.4289   -0.6171   -0.7999   -0.9804   -

1.1443 

    0.0606    0.1313    0.1962    0.2411    0.2740    0.2791    

0.2690 

 

  Columns 190 through 196 

 

    0.6157    0.7007    0.8184    0.9243    1.0192    1.0889    

1.1205 

   -1.2830   -1.4101   -1.5319   -1.6348   -1.7313   -1.8165   -

1.8945 

    0.2654    0.2434    0.1776    0.1194    0.0709    0.0365    

0.0513 

 

  Columns 197 through 203 
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    1.1473    1.2227    1.2218    1.2059    1.1749    1.1391    

1.1054 

   -1.9617   -1.9916   -2.0206   -2.0377   -2.0375   -2.0218   -

1.9621 

    0.0712    0.0011    0.0257    0.0710    0.1013    0.1481    

0.1533 

 

  Columns 204 through 210 

 

    1.0644    1.0072    0.9346    0.8529    0.7631    0.6623    

0.5580 

   -1.8769   -1.7511   -1.6193   -1.4448   -1.2713   -1.1137   -

0.9328 

    0.1370    0.0987    0.0865    0.0506    0.0306    0.0212    

0.0127 

 

  Columns 211 through 217 

 

    0.4453    0.3470    0.2498    0.1492    0.0366   -0.0596   -

0.1406 

   -0.7368   -0.5792   -0.4101   -0.2201    0.0001    0.2198    

0.4200 

    0.0018    0.0128    0.0118   -0.0170   -0.0636   -0.1227   -

0.1780 

 

  Columns 218 through 224 

 

   -0.2315   -0.3303   -0.4526   -0.5942   -0.6657   -0.7418   -

0.8631 

    0.6139    0.7955    0.9739    1.1534    1.2745    1.3909    

1.5025 

   -0.2121   -0.2334   -0.2248   -0.1830   -0.1769   -0.1533   -

0.0742 

 

  Columns 225 through 231 

 

   -0.9710   -1.0499   -1.1253   -1.1812   -1.2069   -1.2286   -

1.2373 

    1.5943    1.6819    1.7619    1.8331    1.8944    1.9380    

1.9664 

   -0.0071    0.0343    0.0806    0.1048    0.0890    0.0747    

0.0618 

 

  Columns 232 through 238 

 

   -1.2229   -1.1966   -1.1664   -1.1264   -1.0823   -1.0216   -

0.9441 

    1.9859    1.9864    1.9583    1.9063    1.8056    1.6864    

1.5526 

    0.0262   -0.0111   -0.0323   -0.0450   -0.0153    0.0068    

0.0166 

 

  Columns 239 through 245 

 

   -0.8576   -0.7654   -0.6674   -0.5680   -0.4614   -0.3550   -

0.2539 

    1.3965    1.2515    1.0898    0.9273    0.7551    0.5892    

0.4244 

    0.0287    0.0286    0.0286    0.0237    0.0209    0.0095    

0.0078 

 

  Columns 246 through 252 

 

   -0.0910   -0.0049    0.0834    0.1614    0.2824    0.3767    

0.4631 

    0.1305   -0.0518   -0.2397   -0.4372   -0.6408   -0.8119   -

0.9599 

    0.0388    0.0653    0.1192    0.1648    0.1865    0.1986    

0.1958 

 

  Columns 253 through 259 

 

    0.5467    0.6573    0.7630    0.8766    0.9587    1.0357    

1.1188 

   -1.0936   -1.2393   -1.3584   -1.4638   -1.5486   -1.6340   -

1.7102 

    0.1885    0.1551    0.1087    0.0275   -0.0285   -0.0770   -

0.1342 

 

  Columns 260 through 266 

 

    1.1763    1.2107    1.2193    1.2413    1.2308    1.2023    

1.1544 

   -1.7766   -1.8321   -1.8755   -1.8841   -1.8887   -1.8783   -

1.8630 

   -0.1521   -0.1573   -0.1455   -0.1779   -0.1601   -0.1219   -

0.0792 

 

  Columns 267 through 273 

 

    1.1075    1.0564    0.9887    0.8961    0.7946    0.6868    

0.5882 

   -1.7836   -1.6689   -1.5321   -1.3712   -1.2199   -1.0643   -

0.9164 

   -0.0961   -0.1223   -0.1458   -0.1596   -0.1523   -0.1484   -

0.1231 

 

  Columns 274 through 280 

 

    0.4887    0.3777    0.2428    0.1434    0.0541   -0.0419   -

0.1433 

   -0.7771   -0.6156   -0.4220   -0.2752   -0.1130    0.0763    

0.2848 

   -0.0951   -0.0783   -0.0642   -0.0450   -0.0488   -0.0737   -

0.1151 

 

  Columns 281 through 287 

 

   -0.2345   -0.3146   -0.3877   -0.4978   -0.5982   -0.6995   -

0.7870 

    0.4786    0.6444    0.7946    0.9559    1.0907    1.2182    

1.3221 

   -0.1526   -0.1754   -0.1923   -0.1697   -0.1408   -0.1026   -

0.0505 

 

  Columns 288 through 294 

 

   -0.8642   -0.9717   -1.0488   -1.1016   -1.1181   -1.1170   -

1.1734 

    1.4011    1.4781    1.5399    1.5943    1.6493    1.6957    

1.6765 

    0.0098    0.1097    0.1733    0.2126    0.2139    0.1894    

0.3023 

 

  Columns 295 through 301 

 

   -1.1464   -1.1020   -1.0479   -0.9833   -0.9145   -0.8372   -

0.7394 

    1.6777    1.6714    1.6297    1.5789    1.4685    1.3522    

1.2199 

    0.2727    0.2195    0.2135    0.1712    0.1775    0.1757    

0.1688 
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  Columns 302 through 308 

 

   -0.6321   -0.5238   -0.4203   -0.3185   -0.2177   -0.0841    

0.0426 

    1.0641    0.9447    0.8035    0.6750    0.5511    0.3590    

0.1874 

    0.1535    0.1142    0.0789    0.0376   -0.0020   -0.0228   -

0.0621 

 

  Columns 309 through 315 

 

    0.1340    0.2085    0.3074    0.3848    0.4649    0.5557    

0.6171 

    0.0627   -0.0777   -0.2597   -0.4271   -0.5978   -0.7611   -

0.8819 

   -0.0950   -0.1067   -0.0996   -0.0714   -0.0523   -0.0638   -

0.0745 

 

  Columns 316 through 322 

 

    0.5484    0.4763    0.5301    0.5853    0.6619    0.7039    

0.7269 

   -0.8859   -0.8893   -0.9984   -1.0834   -1.1521   -1.2010   -

1.2426 

    0.0081    0.0939    0.0741    0.0386   -0.0384   -0.0986   -

0.1397 

 

  Columns 323 through 329 

 

    0.7254    0.7533    0.7222    0.6662    0.5737    0.4759    

0.3776 

   -1.2743   -1.2935   -1.2927   -1.2690   -1.2524   -1.2072   -

1.1238 

   -0.1588   -0.2234   -0.2321   -0.2085   -0.1588   -0.1084   -

0.0870 

 

  Columns 330 through 336 

 

    0.2682    0.1365   -0.0004   -0.1031   -0.0180    0.1586    

0.4430 

   -1.0333   -0.9719   -1.0209   -0.8947   -0.9479   -0.9147   -

0.6438 

   -0.0587    0.0292    0.2421    0.2351    0.2287    0.2879    

0.5729 

 

  Columns 337 through 343 

 

    0.5285    0.6025    0.5792    0.3602    0.1223   -0.0758   -

0.3035 

   -0.5122   -0.4327   -0.3166   -0.1371    0.0913    0.3112    

0.3300 

    0.7054    0.7308    0.7341    0.8121    0.8880    0.9213    

0.7982 

 

  Columns 344 through 350 

 

   -0.5704   -0.6950   -0.7358   -0.6727   -0.5643   -0.4561   -

0.3315 

    0.2896    0.2802    0.2720    0.2793    0.2831    0.2718    

0.4356 

    0.5787    0.3815    0.1392   -0.0646   -0.2740   -0.4967   -

0.5004 

 

  Columns 351 through 357 

 

   -0.2256   -0.2183   -0.2318   -0.3508   -0.4970   -0.4735   -

0.4824 

    0.6610    0.8690    1.0371    1.2240    1.4461    1.5301    

1.4234 

   -0.3973   -0.2770   -0.1847   -0.0982    0.0006   -0.0398   -

0.2640 

 

  Columns 358 through 364 

 

   -0.4403   -0.3115   -0.1602   -0.0391    0.0043    0.0041    

0.0207 

    1.2327    1.0492    0.8953    0.7832    0.6972    0.6997    

0.7880 

   -0.5416   -0.8144   -1.0586   -1.2429   -1.3853   -1.4046   -

1.3077 

 

  Columns 365 through 371 

 

    0.0708    0.1424    0.2409    0.3727    0.5534    0.7063    

0.7651 

    0.9074    0.9887    1.0169    0.9966    0.9340    0.7777    

0.5668 

   -1.1599   -1.0411   -0.9596   -0.9043   -0.8588   -0.8593   -

0.9154 

 

  Columns 372 through 378 

 

    0.7368    0.6351    0.4520    0.2086   -0.0296   -0.1388   -

0.0857 

    0.3418    0.1563    0.0123   -0.1078   -0.2076   -0.2798   -

0.3204 

   -0.9676   -0.9540   -0.8666   -0.7139   -0.4907   -0.1938    

0.0530 

 

  Columns 379 through 385 

 

    0.0259    0.1951    0.3594    0.4253    0.3779    0.2525    

0.1214 

   -0.3790   -0.4768   -0.5775   -0.6804   -0.8238   -0.8862   -

0.9286 

    0.2705    0.4505    0.6189    0.7694    0.8860    0.9226    

0.9740 

 

  Columns 386 through 392 

 

   -0.0770   -0.2648   -0.4145   -0.4833   -0.4364   -0.3373   -

0.2843 

   -1.0215   -1.0999   -1.2054   -1.2899   -1.3268   -1.3313   -

1.2673 

    1.0267    1.0868    1.1386    1.1907    1.2683    1.3642    

1.4962 

 

  Columns 393 through 399 

 

   -0.3111   -0.4021   -0.5192   -0.6533   -0.6818   -0.7328   -

0.7889 

   -1.1431   -0.9999   -0.9026   -0.8487   -0.9302   -0.9272   -

0.9464 

    1.6509    1.7981    1.8795    1.8814    1.6891    1.5878    

1.4620 

 

  Columns 400 through 406 

 

   -0.7355   -0.6764   -0.6045   -0.5708   -0.5311   -0.4754   -

0.3843 

   -0.9437   -0.8964   -0.7864   -0.6089   -0.4133   -0.2211   -

0.0788 
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    1.3302    1.2117    1.0947    1.0674    1.0396    0.9659    

0.8354 

 

  Columns 407 through 413 

 

   -0.2473   -0.0508    0.0730    0.1479    0.2141    0.2305    

0.2247 

    0.0175    0.0841    0.0791    0.0861    0.1332    0.2302    

0.3739 

    0.6286    0.2931    0.0033   -0.2703   -0.5102   -0.7386   -

0.9067 

 

  Columns 414 through 420 

 

    0.2381    0.2855    0.3597    0.4424    0.5275    0.5546    

0.5141 

    0.5683    0.7898    0.9685    1.1470    1.2492    1.3612    

1.4206 

   -1.0538   -1.1572   -1.2332   -1.3441   -1.4644   -1.6216   -

1.7945 

 

  Columns 421 through 427 

 

    0.4721    0.4460    0.3912    0.4168    0.5364    0.6658    

0.7773 

    1.4470    1.4244    1.4542    1.4635    1.4269    1.4048    

1.3860 

   -1.9095   -2.0103   -2.0867   -2.1264   -2.1466   -2.1344   -

2.0963 

 

  Columns 428 through 434 

 

    0.8043    0.7759    0.6487    0.5129    0.4268    0.3596    

0.2738 

    1.3970    1.3773    1.3469    1.2585    1.1508    1.0244    

0.8941 

   -2.0106   -1.9218   -1.7963   -1.7025   -1.6186   -1.5414   -

1.3861 

 

  Columns 435 through 441 

 

    0.2206    0.1848    0.1333    0.0558   -0.0517   -0.2200   -

0.3587 

    0.7760    0.6694    0.5937    0.5318    0.4655    0.3407    

0.1907 

   -1.1761   -0.9743   -0.7287   -0.4894   -0.2383    0.0467    

0.2745 

 

  Columns 442 through 448 

 

   -0.4508   -0.5420   -0.6016   -0.6340   -0.6326   -0.5965   -

0.5267 

    0.0136   -0.2012   -0.3828   -0.5489   -0.7347   -0.8971   -

1.0646 

    0.4784    0.6627    0.8210    1.0131    1.2623    1.4778    

1.6354 

 

  Columns 449 through 455 

 

   -0.4357   -0.3579   -0.2841   -0.2531   -0.2601   -0.2681   -

0.2344 

   -1.2115   -1.3743   -1.5645   -1.7329   -1.8260   -1.9232   -

2.0078 

    1.7755    1.8840    1.9636    2.0176    2.0654    2.0872    

2.1041 

 

  Columns 456 through 462 

 

   -0.1952   -0.1317   -0.0800   -0.0114    0.1137    0.2125    

0.2591 

   -2.0265   -2.0288   -1.9994   -1.9605   -1.9431   -1.9252   -

1.8690 

    2.1202    2.1098    2.0911    2.0533    1.9530    1.7960    

1.6366 

 

  Columns 463 through 469 

 

    0.3095    0.3479    0.4055    0.5050    0.6190    0.6728    

0.7152 

   -1.7963   -1.7073   -1.6020   -1.4600   -1.2732   -1.0915   -

0.8986 

    1.4506    1.2815    1.0945    0.8789    0.6517    0.4667    

0.2646 

 

  Columns 470 through 476 

 

    0.7574    0.7807    0.8072    0.8249    0.8164    0.7821    

0.7174 

   -0.6957   -0.4966   -0.3101   -0.1397    0.0597    0.2832    

0.5291 

    0.0286   -0.2371   -0.5112   -0.7397   -0.9505   -1.1321   -

1.2739 

 

  Columns 477 through 483 

 

    0.6275    0.5249    0.3879    0.1928   -0.0138   -0.2089   -

0.3971 

    0.7840    1.0210    1.2612    1.5120    1.7319    1.9177    

2.0830 

   -1.3903   -1.4893   -1.5768   -1.6566   -1.7148   -1.7436   -

1.7423 

 

  Columns 484 through 490 

 

   -0.5589   -0.7363   -0.8835   -1.0068   -1.1152   -1.2309   -

1.3613 

    2.2190    2.3579    2.4590    2.5173    2.5402    2.5297    

2.4843 

   -1.7150   -1.6428   -1.5577   -1.4675   -1.3703   -1.2544   -

1.1155 

 

  Columns 491 through 497 

 

   -1.4693   -1.5765   -1.6563   -1.7434   -1.7282   -1.7054   -

1.6815 

    2.4146    2.3251    2.2095    2.0217    1.8662    1.6860    

1.4832 

   -0.9700   -0.7921   -0.5966   -0.2924   -0.1187    0.0509    

0.2365 

 

  Columns 498 through 504 

 

   -1.6502   -1.6004   -1.5091   -1.3926   -1.2270   -1.0471   -

0.8676 

    1.1962    0.9360    0.6640    0.3816    0.0664   -0.2223   -

0.4801 

    0.4792    0.6569    0.8183    0.9768    1.1375    1.2732    

1.3693 

 

  Columns 505 through 511 

 

   -0.6826   -0.4521   -0.2143    0.0081    0.2420    0.4993    

0.7885 
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   -0.7226   -0.9824   -1.2181   -1.4055   -1.5771   -1.7362   -

1.8784 

    1.4310    1.4501    1.4280    1.3795    1.3106    1.2162    

1.0840 

 

  Columns 512 through 518 

 

    1.0529    1.3041    1.5671    1.7811    1.9619    2.1393    

2.2878 

   -1.9840   -2.0621   -2.1181   -2.1385   -2.1257   -2.0695   -

1.9776 

    0.9406    0.7760    0.5684    0.3639    0.1571   -0.0861   -

0.3263 

 

  Columns 519 through 525 

 

    2.3783    2.4346    2.4874    2.4813    2.4456    2.3815    

2.2773 

   -1.8693   -1.7526   -1.5413   -1.3829   -1.2114   -0.9998   -

0.7682 

   -0.5166   -0.6804   -0.9357   -1.0859   -1.2240   -1.3832   -

1.5180 

 

  Columns 526 through 532 

 

    2.0658    1.9138    1.7507    1.4986    1.2932    1.0923    

0.8124 

   -0.3495   -0.1676    0.0091    0.3016    0.4768    0.6443    

0.8532 

   -1.7221   -1.7494   -1.7625   -1.7883   -1.7612   -1.7306   -

1.6636 

 

  Columns 533 through 539 

 

    0.5703    0.2764    0.0144   -0.2495   -0.5585   -0.7566   -

0.9450 

    1.0054    1.1655    1.2887    1.3841    1.4689    1.4892    

1.4918 

   -1.5807   -1.4500   -1.3092   -1.1371   -0.9067   -0.7264   -

0.5403 

 

  Columns 540 through 546 

 

   -1.1576   -1.3703   -1.6090   -1.7416   -1.8581   -1.9683   -

2.0480 

    1.4745    1.4243    1.3223    1.2304    1.1218    0.9762    

0.7977 

   -0.3132   -0.0550    0.2821    0.5058    0.7310    0.9910    

1.2528 

 

  Columns 547 through 553 

 

   -2.1046   -2.1101   -2.0897   -2.0394   -1.9116   -1.8238   -

1.7175 

    0.5308    0.3521    0.1697   -0.0522   -0.3602   -0.5196   -

0.6703 

    1.5773    1.7606    1.9213    2.0893    2.2687    2.3410    

2.3858 

 

  Columns 554 through 560 

 

   -1.5835   -1.3828   -1.1802   -0.9425   -0.7009   -0.4535   -

0.2257 

   -0.8349   -1.0387   -1.2175   -1.3856   -1.5254   -1.6303   -

1.7023 

    2.4193    2.4240    2.3999    2.3290    2.2252    2.0817    

1.9259 

 

  Columns 561 through 567 

 

    0.0566    0.2783    0.4906    0.7972    0.9278    1.0472    

1.2793 

   -1.7648   -1.7815   -1.7669   -1.7143   -1.6356   -1.5478   -

1.3532 

    1.7073    1.5037    1.2779    0.9186    0.7083    0.5009    

0.0727 

 

  Columns 568 through 574 

 

    1.3437    1.4057    1.4899    1.5048    1.5011    1.4770    

1.4156 

   -1.2223   -1.0984   -0.8263   -0.6318   -0.4184   -0.1949    

0.0762 

   -0.1225   -0.3084   -0.6626   -0.8718   -1.0815   -1.2809   -

1.4913 

 

  Columns 575 through 581 

 

    1.3135    1.2011    1.0704    0.8862    0.7144    0.5315    

0.2423 

    0.3796    0.6350    0.8821    1.1723    1.4043    1.6181    

1.8894 

   -1.6936   -1.8370   -1.9533   -2.0586   -2.1181   -2.1487   -

2.1308 

 

  Columns 582 through 588 

 

    0.0845   -0.0688   -0.3034   -0.4811   -0.6542   -0.8798   -

1.0860 

    2.0166    2.1187    2.2497    2.3182    2.3711    2.4006    

2.3898 

   -2.1009   -2.0499   -1.9470   -1.8378   -1.7173   -1.5209   -

1.3033 

 

  Columns 589 through 595 

 

   -1.2363   -1.3416   -1.4968   -1.5925   -1.6559   -1.7373   -

1.7211 

    2.3294    2.2526    2.1175    1.9786    1.8194    1.5275    

1.3400 

   -1.0925   -0.9105   -0.6206   -0.3865   -0.1641    0.2094    

0.3810 

 

  Columns 596 through 602 

 

   -1.6866   -1.6211   -1.5364   -1.4539   -1.3187   -1.1524   -

0.9677 

    1.1413    0.7662    0.5453    0.3451    0.0587   -0.2221   -

0.4934 

    0.5454    0.8553    0.9913    1.1089    1.2597    1.3742    

1.4609 

 

  Columns 603 through 609 

 

   -0.7565   -0.4400   -0.2566   -0.0707    0.3062    0.5195    

0.7269 

   -0.7574   -1.1006   -1.2615   -1.4170   -1.6854   -1.8165   -

1.9414 

    1.5137    1.5407    1.5183    1.4880    1.3793    1.2969    

1.2144 

 

  Columns 610 through 616 
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    0.9984    1.2554    1.5131    1.7153    1.8645    2.0575    

2.1940 

   -2.0705   -2.1606   -2.2062   -2.2119   -2.1972   -2.1381   -

2.0540 

    1.0719    0.9050    0.6931    0.4967    0.3329    0.0807   -

0.1400 

 

  Columns 617 through 623 

 

    2.2747    2.3399    2.3737    2.3662    2.3261    2.2477    

2.1294 

   -1.9609   -1.8154   -1.6238   -1.4154   -1.2313   -0.9847   -

0.7146 

   -0.3139   -0.5246   -0.7500   -0.9509   -1.0947   -1.2629   -

1.4146 

 

  Columns 624 through 630 

 

    1.9858    1.8294    1.5769    1.3840    1.1772    0.9696    

0.7053 

   -0.4674   -0.2423    0.0879    0.2872    0.4725    0.6461    

0.8466 

   -1.5184   -1.5871   -1.6648   -1.6713   -1.6498   -1.6156   -

1.5518 

 

  Columns 631 through 637 

 

    0.4681    0.1359   -0.1737   -0.4290   -0.6432   -0.9074   -

1.1348 

    1.0089    1.2052    1.3565    1.4413    1.4958    1.5355    

1.5474 

   -1.4769   -1.3410   -1.1828   -1.0124   -0.8527   -0.6282   -

0.4127 

 

  Columns 638 through 644 

 

   -1.3910   -1.6001   -1.7866   -1.9591   -2.0680   -2.1520   -

2.2140 

    1.5252    1.4775    1.3920    1.2658    1.1459    1.0170    

0.8594 

   -0.1342    0.1226    0.3946    0.6933    0.9221    1.1350    

1.3546 

 

  Columns 645 through 651 

 

   -2.2448   -2.2405   -2.1931   -2.1176   -2.0071   -1.8354   -

1.7005 

    0.6598    0.4457    0.2202    0.0131   -0.1964   -0.4546   -

0.6046 

    1.5850    1.7948    1.9730    2.1045    2.2036    2.2900    

2.3050 

 

  Columns 652 through 658 

 

   -1.5528   -1.3811   -1.1641   -0.9287   -0.6336   -0.4088   -

0.1850 

   -0.7476   -0.8959   -1.0578   -1.2114   -1.3733   -1.4609   -

1.5184 

    2.3003    2.2770    2.2218    2.1402    2.0070    1.8697    

1.7035 

 

  Columns 659 through 665 

 

    0.0411    0.2988    0.5677    0.7517    0.9220    1.0892    

1.2421 

   -1.5596   -1.5780   -1.5733   -1.5350   -1.4788   -1.3971   -

1.2829 

    1.5185    1.2792    1.0056    0.7833    0.5568    0.3079    

0.0408 

 

  Columns 666 through 672 

 

    1.3993    1.4822    1.5412    1.5830    1.5909    1.5677    

1.5060 

   -1.1041   -0.9496   -0.7777   -0.5718   -0.3047   -0.0459    

0.2287 

   -0.2952   -0.5325   -0.7636   -1.0112   -1.2862   -1.5219   -

1.7347 

 

  Columns 673 through 679 

 

    1.4075    1.2993    1.1758    1.0043    0.8371    0.6565    

0.3577 

    0.5221    0.7608    0.9867    1.2419    1.4538    1.6505    

1.9094 

   -1.9296   -2.0600   -2.1625   -2.2462   -2.2909   -2.3071   -

2.2671 

 

  Columns 680 through 686 

 

    0.2207    0.0839   -0.1910   -0.3437   -0.4894   -0.7321   -

0.9075 

    1.9992    2.0704    2.1952    2.2268    2.2511    2.2660    

2.2341 

   -2.2199   -2.1544   -2.0042   -1.8831   -1.7616   -1.5339   -

1.3266 

 

  Columns 687 through 693 

 

   -1.0523   -1.2516   -1.3484   -1.4207   -1.5107   -1.5584   -

1.5841 

    2.1685    2.0569    1.9422    1.8148    1.6308    1.4197    

1.1879 

   -1.1162   -0.8053   -0.5937   -0.3941   -0.1201    0.1387    

0.3962 

 

  Columns 694 through 700 

 

   -1.5755   -1.5360   -1.4616   -1.3556   -1.2196   -1.0616   -

0.8405 

    0.9243    0.6521    0.3908    0.1095   -0.1651   -0.4382   -

0.7605 

    0.6511    0.8838    1.0708    1.2461    1.3847    1.4998    

1.6009 

 

  Columns 701 through 707 

 

   -0.6496   -0.4390   -0.1966    0.1018    0.3887    0.6166    

0.8284 

   -1.0008   -1.2297   -1.4644   -1.7089   -1.9123   -2.0493   -

2.1598 

    1.6503    1.6687    1.6611    1.6071    1.5236    1.4327    

1.3314 

 

  Columns 708 through 714 

 

    1.0658    1.2988    1.5687    1.7063    1.8227    1.9519    

2.0720 

   -2.2546   -2.3194   -2.3514   -2.3431   -2.3098   -2.2453   -

2.1308 

    1.1888    1.0206    0.7827    0.6368    0.4872    0.2934    

0.0588 

 

  Columns 715 through 721 
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    2.1705    2.2281    2.2339    2.2049    2.1485    2.0591    

1.9445 

   -1.9831   -1.7944   -1.6196   -1.4181   -1.1614   -0.9084   -

0.6560 

   -0.1874   -0.4336   -0.6143   -0.7868   -0.9871   -1.1507   -

1.2885 

 

  Columns 722 through 728 

 

    1.7638    1.6091    1.4318    1.2283    0.9827    0.7039    

0.4791 

   -0.3263   -0.1172    0.0953    0.3252    0.5756    0.8302    

1.0022 

   -1.4374   -1.4919   -1.5272   -1.5535   -1.5582   -1.5341   -

1.4813 

 

  Columns 729 through 735 

 

    0.2503    0.0017   -0.2714   -0.5762   -0.8532   -1.1155   -

1.3758 

    1.1554    1.3012    1.4366    1.5623    1.6443    1.6903    

1.6976 

   -1.4057   -1.3030   -1.1652   -0.9861   -0.7911   -0.5748   -

0.3217 

 

  Columns 736 through 742 

 

   -1.6054   -1.7945   -1.9928   -2.1657   -2.2676   -2.3257   -

2.3697 

    1.6726    1.6279    1.5431    1.4121    1.2775    1.1484    

0.9431 

   -0.0672    0.1666    0.4498    0.7537    0.9901    1.1773    

1.4267 

 

  Columns 743 through 749 

 

   -2.3745   -2.3502   -2.2821   -2.1864   -2.0562   -1.8111   -

1.6609 

    0.7367    0.5625    0.3348    0.1326   -0.0759   -0.4181   -

0.5652 

    1.6378    1.7877    1.9473    2.0538    2.1321    2.2292    

2.2261 

 

  Columns 750 through 756 

 

   -1.5051   -1.1625   -0.9858   -0.8072   -0.4474   -0.2404   -

0.0400 

   -0.6985   -0.9921   -1.0879   -1.1844   -1.3707   -1.4361   -

1.4801 

    2.2036    2.1546    2.0736    1.9916    1.8181    1.6765    

1.5201 

 

  Columns 757 through 763 

 

    0.3246    0.4944    0.6581    0.9680    1.1069    1.2361    

1.4541 

   -1.5515   -1.5405   -1.5280   -1.4761   -1.4121   -1.3329   -

1.1398 

    1.2269    1.0461    0.8699    0.5082    0.3052    0.0968   -

0.3142 

 

  Columns 764 through 770 

 

    1.5306    1.5970    1.6819    1.6918    1.6915    1.6553    

1.5816 

   -1.0086   -0.8758   -0.5650   -0.3760   -0.1806    0.0906    

0.3668 

   -0.5220   -0.7212   -1.1169   -1.3157   -1.5109   -1.7459   -

1.9484 

 

  Columns 771 through 777 

 

    1.4776    1.3528    1.2100    1.0110    0.8568    0.6960    

0.5128 

    0.6355    0.8789    1.1049    1.3646    1.5350    1.6855    

1.8300 

   -2.1131   -2.2317   -2.3150   -2.3755   -2.3918   -2.3814   -

2.3429 

 

  Columns 778 through 784 

 

    0.2886    0.0639   -0.1654   -0.3822   -0.5999   -0.8199   -

1.0039 

    1.9712    2.0814    2.1605    2.2040    2.2121    2.1868    

2.1244 

   -2.2598   -2.1453   -1.9950   -1.8217   -1.6122   -1.3669   -

1.1205 

 

  Columns 785 through 791 

 

   -1.1418   -1.2934   -1.4164   -1.4929   -1.5379   -1.5744   -

1.5574 

    2.0385    1.9090    1.7454    1.5624    1.3695    1.0656    

0.8488 

   -0.8967   -0.6156   -0.3289   -0.0695    0.1684    0.5087    

0.7086 

 

  Columns 792 through 798 

 

   -1.5170   -1.4547   -1.3349   -1.2085   -1.0447   -0.8085   -

0.6344 

    0.6237    0.3679    0.0446   -0.2271   -0.5036   -0.8447   -

1.0545 

    0.8933    1.0868    1.2904    1.4356    1.5482    1.6532    

1.6889 

 

  Columns 799 through 805 

 

   -0.4578   -0.1511    0.0459    0.2414    0.5044    0.7488    

0.9789 

   -1.2535   -1.5522   -1.7227   -1.8780   -2.0526   -2.1835   -

2.2806 

    1.7113    1.7033    1.6768    1.6366    1.5482    1.4347    

1.3017 

 

  Columns 806 through 812 

 

    1.2434    1.4159    1.5673    1.7099    1.8568    1.9967    

2.0682 

   -2.3550   -2.3798   -2.3758   -2.3480   -2.2783   -2.1657   -

2.0479 

    1.1116    0.9639    0.8085    0.6381    0.4214    0.1689   -

0.0203 

 

  Columns 813 through 819 

 

    2.1149    2.1407    2.1373    2.0959    2.0123    1.9082    

1.7625 

   -1.9069   -1.7250   -1.4943   -1.1961   -0.9353   -0.7122   -

0.4385 

   -0.2080   -0.4156   -0.6429   -0.8997   -1.0770   -1.1960   -

1.3240 
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  Columns 820 through 826 

 

    1.5846    1.3641    1.1320    0.9164    0.6953    0.4368    

0.1519 

   -0.1592    0.1409    0.4133    0.6275    0.8254    1.0327    

1.2312 

   -1.4254   -1.5050   -1.5453   -1.5439   -1.5208   -1.4695   -

1.3831 

 

  Columns 827 through 833 

 

   -0.1820   -0.4172   -0.6515   -0.8817   -1.1390   -1.3787   -

1.7266 

    1.4279    1.5385    1.6258    1.6964    1.7474    1.7766    

1.7498 

   -1.2459   -1.1213   -0.9744   -0.8147   -0.6084   -0.3980   -

0.0231 

 

  Columns 834 through 840 

 

   -1.8848   -2.0167   -2.1491   -2.2975   -2.3837   -2.4141   -

2.4170 

    1.7160    1.6503    1.5706    1.3760    1.2372    1.0618    

0.8739 

    0.1688    0.3664    0.5785    0.9215    1.1466    1.3523    

1.5431 

 

  Columns 841 through 847 

 

   -2.3735   -2.3129   -2.1837   -2.0700   -1.9221   -1.7434   -

1.4954 

    0.6859    0.4980    0.2135    0.0279   -0.1618   -0.3629   -

0.6044 

    1.6876    1.8149    1.9702    2.0421    2.0838    2.1063    

2.0998 

 

  Columns 848 through 854 

 

   -1.2711   -1.0284   -0.6581   -0.4611   -0.2698    0.0598    

0.2710 

   -0.7915   -0.9635   -1.1966   -1.2712   -1.3297   -1.4322   -

1.4630 

    2.0626    1.9918    1.8547    1.7324    1.5996    1.3723    

1.1920 

 

  Columns 855 through 861 

 

    0.4761    0.7259    0.9295    1.1321    1.3481    1.4595    

1.5583 

   -1.4895   -1.4927   -1.4647   -1.3898   -1.2654   -1.1570   -

1.0453 

    1.0134    0.7668    0.5351    0.2577   -0.0827   -0.3025   -

0.5130 

 

  Columns 862 through 868 

 

    1.6799    1.7396    1.7732    1.7696    1.7411    1.6913    

1.6217 

   -0.8314   -0.6465   -0.4374   -0.1353    0.0768    0.2813    

0.4909 

   -0.8484   -1.0930   -1.3357   -1.6343   -1.8179   -1.9726   -

2.1127 

 

  Columns 869 through 875 

 

    1.5017    1.3563    1.1873    1.0347    0.8424    0.6199    

0.4280 

    0.7411    0.9910    1.2173    1.3902    1.5649    1.7340    

1.8446 

   -2.2428   -2.3474   -2.4046   -2.4250   -2.4073   -2.3539   -

2.2726 

 

  Columns 876 through 882 

 

    0.2350   -0.0132   -0.2928   -0.5073   -0.6655   -0.8529   -

1.0200 

    1.9364    2.0275    2.0929    2.1008    2.0740    2.0240    

1.9438 

   -2.1714   -2.0142   -1.8001   -1.5934   -1.4085   -1.1711   -

0.9238 

 

  Columns 883 through 889 

 

   -1.2399   -1.3236   -1.3905   -1.4690   -1.5240   -1.5424   -

1.5143 

    1.7947    1.6675    1.5217    1.3334    1.0767    0.8333    

0.5875 

   -0.5548   -0.3439   -0.1312    0.1356    0.4472    0.7092    

0.9269 

 

  Columns 890 through 896 

 

   -1.4587   -1.3146   -1.2101   -1.0880   -0.8601   -0.6991   -

0.5380 

    0.3362   -0.0751   -0.2948   -0.5161   -0.8746   -1.0827   -

1.2815 

    1.1225    1.3897    1.5048    1.6041    1.7347    1.7818    

1.8195 

 

  Columns 897 through 903 

 

   -0.2887   -0.0303    0.1997    0.4160    0.7050    0.8945    

1.0734 

   -1.5443   -1.7766   -1.9573   -2.1008   -2.2539   -2.3323   -

2.3867 

    1.8330    1.8069    1.7575    1.6847    1.5489    1.4378    

1.3132 

 

  Columns 904 through 910 

 

    1.2479    1.4327    1.6198    1.7542    1.8660    2.0088    

2.0345 

   -2.4183   -2.4201   -2.3853   -2.3179   -2.2201   -2.0270   -

1.8899 

    1.1705    0.9874    0.7654    0.5637    0.3541    0.0182   -

0.1446 

 

  Columns 911 through 917 

 

    2.0454    2.0710    2.0146    1.9511    1.8118    1.6830    

1.5503 

   -1.7404   -1.3620   -1.1730   -0.9877   -0.5949   -0.3821   -

0.1717 

   -0.3050   -0.7091   -0.8416   -0.9634   -1.2169   -1.3008   -

1.3785 

 

  Columns 918 through 924 

 

    1.3551    1.1331    0.9158    0.6885    0.2662    0.0655   -

0.1328 

    0.1157    0.3940    0.6302    0.8467    1.1926    1.3215    

1.4373 
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   -1.4708   -1.5271   -1.5460   -1.5352   -1.4588   -1.3870   -

1.3044 

 

  Columns 925 through 931 

 

   -0.4295   -0.7221   -0.9730   -1.2707   -1.5088   -1.7253   -

1.9729 

    1.5924    1.7066    1.7913    1.8456    1.8674    1.8468    

1.7816 

   -1.1629   -0.9846   -0.8183   -0.5748   -0.3586   -0.1216    

0.1913 

 

  Columns 932 through 938 

 

   -2.0948   -2.1966   -2.3246   -2.3891   -2.4297   -2.4343   -

2.4017 

    1.7192    1.6536    1.5066    1.3747    1.2232    0.9832    

0.8076 

    0.3755    0.5430    0.8180    1.0144    1.2066    1.4511    

1.5941 

 

  Columns 939 through 945 

 

   -2.3353   -2.2470   -2.0906   -1.9242   -1.7192   -1.5113   -

1.2571 

    0.6267    0.4258    0.1519   -0.0898   -0.3284   -0.5383   -

0.7529 

    1.7086    1.8212    1.9387    2.0140    2.0476    2.0496    

2.0100 

 

  Columns 946 through 952 

 

   -0.9997   -0.7281   -0.4650   -0.1538    0.0894    0.3326    

0.6037 

   -0.9417   -1.1053   -1.2397   -1.3680   -1.4419   -1.4901   -

1.5223 

    1.9414    1.8335    1.7047    1.5218    1.3525    1.1575    

0.9186 

 

  Columns 953 through 959 

 

    0.8308    1.0367    1.3086    1.4350    1.5505    1.7044    

1.7766 

   -1.5152   -1.4796   -1.3785   -1.2902   -1.1843   -0.9852   -

0.8337 

    0.6844    0.4429    0.0699   -0.1448   -0.3662   -0.7193   -

0.9429 

 

  Columns 960 through 966 

 

    1.8348    1.8743    1.8698    1.8391    1.7741    1.6691    

1.5654 

   -0.6806   -0.4226   -0.1872    0.0272    0.2675    0.5335    

0.7377 

   -1.1542   -1.4517   -1.6826   -1.8663   -2.0416   -2.2026   -

2.3031 

 

  Columns 967 through 973 

 

    1.4432    1.2628    1.0993    0.9193    0.6741    0.4810    

0.2852 

    0.9329    1.1625    1.3333    1.4889    1.6692    1.7765    

1.8606 

   -2.3761   -2.4253   -2.4326   -2.4082   -2.3433   -2.2576   -

2.1458 

 

  Columns 974 through 980 

 

    0.0626   -0.1944   -0.4662   -0.6659   -0.8158   -1.0008   -

1.1592 

    1.9322    1.9856    2.0084    1.9813    1.9263    1.8344    

1.7074 

   -1.9949   -1.7912   -1.5422   -1.3154   -1.1106   -0.8336   -

0.5483 

 

  Columns 981 through 987 

 

   -1.2765   -1.3734   -1.4601   -1.4938   -1.5004   -1.4819   -

1.4134 

    1.5623    1.3984    1.1725    0.9787    0.7669    0.5152    

0.1884 

   -0.2858   -0.0250    0.2875    0.5151    0.7335    0.9667    

1.2250 

 

  Columns 988 through 994 

 

   -1.3362   -1.2311   -1.1012   -0.9121   -0.7094   -0.4816   -

0.2720 

   -0.0510   -0.2964   -0.5573   -0.8637   -1.1510   -1.4213   -

1.6407 

    1.3872    1.5275    1.6584    1.7759    1.8604    1.9029    

1.9127 

 

  Columns 995 through 1001 

 

   -0.0500    0.2247    0.4176    0.6018    0.7963    1.0001    

1.2237 

   -1.8377   -2.0437   -2.1680   -2.2719   -2.3592   -2.4194   -

2.4485 

    1.8877    1.8190    1.7504    1.6701    1.5629    1.4193    

1.2248 

 

  Columns 1002 through 1008 

 

    1.3729    1.5089    1.6424    1.7696    1.8678    1.9326    

1.9582 

   -2.4332   -2.3917   -2.3215   -2.2096   -2.0616   -1.8776   -

1.6805 

    1.0602    0.8829    0.6790    0.4400    0.1939   -0.0550   -

0.2777 

 

  Columns 1009 through 1015 

 

    1.9523    1.9133    1.8401    1.7400    1.6122    1.4262    

1.2526 

   -1.4618   -1.1506   -0.9176   -0.6812   -0.4146   -0.0880    

0.1714 

   -0.4905   -0.7627   -0.9226   -1.0588   -1.1977   -1.3382   -

1.4240 

 

  Columns 1016 through 1022 

 

    1.0558    0.7406    0.5503    0.3613   -0.0573   -0.2665   -

0.4731 

    0.4223    0.7771    0.9456    1.1038    1.4108    1.5312    

1.6467 

   -1.4782   -1.5177   -1.4959   -1.4652   -1.3535   -1.2647   -

1.1736 

 

  Columns 1023 through 1029 

 

   -0.8438   -1.0559   -1.2581   -1.6439   -1.7847   -1.9101   -

2.1205 
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    1.8056    1.8741    1.9236    1.9521    1.9380    1.9260    

1.8400 

   -0.9619   -0.8182   -0.6655   -0.3082   -0.1533   -0.0158    

0.2805 

 

  Columns 1030 through 1036 

 

   -2.2235   -2.3119   -2.3796   -2.4215   -2.4274   -2.3928   -

2.3260 

    1.7669    1.6797    1.5622    1.4076    1.1809    0.9954    

0.7972 

    0.4566    0.6322    0.8174    1.0138    1.2465    1.3974    

1.5287 

 

  Columns 1037 through 1043 

 

   -2.2016   -2.0740   -1.9269   -1.7374   -1.5068   -1.2314   -

0.9896 

    0.4990    0.2957    0.0903   -0.1440   -0.3891   -0.6399   -

0.8195 

    1.7026    1.7783    1.8367    1.8814    1.8959    1.8713    

1.8091 

 

  Columns 1044 through 1050 

 

   -0.7736   -0.4735   -0.2075    0.0418    0.4111    0.6095    

0.8015 

   -0.9539   -1.1288   -1.2569   -1.3544   -1.4656   -1.4919   -

1.4975 

    1.7275    1.6023    1.4644    1.3126    1.0546    0.8824    

0.6960 

 

  Columns 1051 through 1057 

 

    1.1610    1.3054    1.4410    1.6553    1.7623    1.8609    

1.9495 

   -1.4696   -1.4168   -1.3667   -1.2275   -1.1151   -0.9842   -

0.8074 

    0.3086    0.1114   -0.0743   -0.4278   -0.6472   -0.8767   -

1.1421 

 

  Columns 1058 through 1064 

 

    2.0076    2.0227    2.0000    1.9509    1.8513    1.7483    

1.6257 

   -0.5885   -0.3447   -0.1274    0.0746    0.3479    0.5558    

0.7536 

   -1.4191   -1.6779   -1.8725   -2.0255   -2.1993   -2.3042   -

2.3794 

 

  Columns 1065 through 1071 

 

    1.3919    1.2578    1.1123    0.8158    0.6467    0.4838    

0.2535 

    1.0466    1.1689    1.2808    1.5036    1.5874    1.6615    

1.7490 

   -2.4384   -2.4267   -2.3931   -2.3195   -2.2341   -2.1453   -

2.0025 

 

  Columns 1072 through 1078 

 

    0.0223   -0.2385   -0.4850   -0.6829   -0.8512   -1.0597   -

1.1843 

    1.8087    1.8434    1.8403    1.8001    1.7347    1.6240    

1.5112 

   -1.8310   -1.6049   -1.3553   -1.1172   -0.8835   -0.5643   -

0.3269 

 

  Columns 1079 through 1085 

 

   -1.2940   -1.3920   -1.4758   -1.5220   -1.5260   -1.4948   -

1.4282 

    1.3777    1.2242    1.0167    0.7879    0.5334    0.2781    

0.0023 

   -0.0837    0.1678    0.4590    0.7341    0.9926    1.2167    

1.4259 

 

  Columns 1086 through 1092 

 

   -1.3172   -1.1671   -1.0200   -0.8732   -0.6405   -0.4288   -

0.2601 

   -0.3188   -0.6445   -0.9043   -1.1273   -1.4213   -1.6526   -

1.8168 

    1.6360    1.8117    1.9243    2.0005    2.0619    2.0814    

2.0769 

 

  Columns 1093 through 1099 

 

   -0.0168    0.1982    0.3941    0.6648    0.8251    0.9752    

1.1186 

   -2.0158   -2.1635   -2.2701   -2.3769   -2.4112   -2.4199   -

2.4089 

    2.0326    1.9652    1.8760    1.7121    1.5861    1.4447    

1.2903 

 

  Columns 1100 through 1106 

 

    1.2778    1.4153    1.6328    1.6841    1.7168    1.7670    

1.7709 

   -2.3675   -2.2992   -2.1293   -2.0066   -1.8609   -1.6514   -

1.4064 

    1.0896    0.8839    0.4965    0.3225    0.1440   -0.1156   -

0.3645 

 

  Columns 1107 through 1113 

 

    1.7525    1.6914    1.5975    1.4853    1.3653    1.2195    

1.0403 

   -1.1978   -0.9309   -0.6260   -0.3810   -0.1456    0.1074    

0.3746 

   -0.5547   -0.7606   -0.9715   -1.1043   -1.2197   -1.3269   -

1.4149 

 

  Columns 1114 through 1120 

 

    0.8146    0.6134    0.3922    0.1391   -0.1503   -0.4275   -

0.7064 

    0.6624    0.8811    1.0971    1.3175    1.5372    1.7174    

1.8673 

   -1.4771   -1.4945   -1.4893   -1.4566   -1.3870   -1.2899   -

1.1608 

 

  Columns 1121 through 1127 

 

   -0.9968   -1.2678   -1.4870   -1.7001   -1.9218   -2.0747   -

2.1974 

    1.9900    2.0741    2.1220    2.1431    2.1265    2.0863    

2.0171 

   -0.9932   -0.8063   -0.6350   -0.4430   -0.2047   -0.0116    

0.1803 

 

  Columns 1128 through 1134 
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   -2.3163   -2.3801   -2.4185   -2.4349   -2.4032   -2.3333   -

2.1903 

    1.8990    1.7772    1.6362    1.3995    1.2086    0.9980    

0.6424 

    0.4172    0.6029    0.7823    1.0354    1.1946    1.3353    

1.5479 

 

  Columns 1135 through 1141 

 

   -2.0632   -1.9279   -1.7295   -1.4936   -1.2659   -1.0208   -

0.6803 

    0.4511    0.2645    0.0036   -0.2561   -0.4719   -0.6681   -

0.9185 

    1.6122    1.6634    1.7259    1.7497    1.7378    1.6890    

1.5988 

 

  Columns 1142 through 1148 

 

   -0.4617   -0.2485    0.1071    0.3240    0.5400    0.7967    

1.0448 

   -1.0427   -1.1540   -1.3200   -1.3905   -1.4469   -1.4908   -

1.5016 

    1.5044    1.4025    1.2128    1.0665    0.9069    0.6941    

0.4568 

 

  Columns 1149 through 1155 

 

    1.3344    1.4974    1.6446    1.8353    1.9494    2.0476    

2.1280 

   -1.4683   -1.4200   -1.3532   -1.2216   -1.1054   -0.9853   -

0.8171 

    0.1340   -0.0774   -0.2913   -0.6138   -0.8440   -1.0623   -

1.3108 

 

  Columns 1156 through 1162 

 

    2.1730    2.1705    2.1331    2.0757    1.9815    1.8577    

1.7013 

   -0.6276   -0.3628   -0.1429    0.0338    0.2463    0.4556    

0.6678 

   -1.5454   -1.8077   -1.9902   -2.1095   -2.2278   -2.3133   -

2.3691 

 

  Columns 1163 through 1169 

 

    1.5087    1.3065    1.1064    0.8570    0.5731    0.3366    

0.1329 

    0.8808    1.0618    1.2071    1.3606    1.5052    1.5889    

1.6361 

   -2.3895   -2.3683   -2.3136   -2.2176   -2.0784   -1.9255   -

1.7691 

 

  Columns 1170 through 1176 

 

   -0.0709   -0.2721   -0.4937   -0.7086   -0.9307   -1.0764   -

1.2024 

    1.6640    1.6723    1.6592    1.6191    1.5414    1.4491    

1.3358 

   -1.5931   -1.4003   -1.1655   -0.9105   -0.6107   -0.3727   -

0.1334 

 

  Columns 1177 through 1183 

 

   -1.3168   -1.4225   -1.5069   -1.5383   -1.5391   -1.4930   -

1.4279 

    1.2038    1.0200    0.7927    0.5848    0.3607    0.0333   -

0.2133 

    0.1130    0.4025    0.7142    0.9535    1.1784    1.4596    

1.6411 

 

  Columns 1184 through 1190 

 

   -1.3421   -1.2175   -1.0359   -0.8708   -0.7277   -0.5012   -

0.3085 

   -0.4626   -0.7484   -1.0662   -1.3067   -1.4833   -1.7191   -

1.8926 

    1.8047    1.9659    2.1021    2.1775    2.2110    2.2204    

2.2011 

 

  Columns 1191 through 1197 

 

   -0.1421    0.1216    0.2762    0.4352    0.5993    0.7985    

0.9803 

   -2.0208   -2.1812   -2.2461   -2.2909   -2.3201   -2.3301   -

2.3092 

    2.1629    2.0596    1.9699    1.8557    1.7208    1.5317    

1.3289 

 

  Columns 1198 through 1204 

 

    1.1963    1.2934    1.3799    1.4770    1.5749    1.6471    

1.6279 

   -2.2363   -2.1480   -2.0351   -1.8918   -1.6772   -1.4041   -

1.2137 

    1.0400    0.8547    0.6551    0.4148    0.1023   -0.2430   -

0.4142 

 

  Columns 1205 through 1211 

 

    1.5930    1.5301    1.4478    1.3680    1.2426    1.0901    

0.8504 

   -1.0172   -0.6719   -0.4382   -0.2157    0.0554    0.3224    

0.6606 

   -0.5758   -0.8583   -1.0095   -1.1523   -1.2981   -1.4126   -

1.5111 

 

  Columns 1212 through 1218 

 

    0.6718    0.4788    0.2476   -0.0313   -0.2898   -0.5594   -

0.8459 

    0.8762    1.0859    1.3178    1.5578    1.7551    1.9255    

2.0767 

   -1.5480   -1.5646   -1.5655   -1.5265   -1.4654   -1.3661   -

1.2307 

 

  Columns 1219 through 1225 

 

   -1.0744   -1.2821   -1.4957   -1.7022   -1.8816   -2.0321   -

2.1603 

    2.1743    2.2443    2.2910    2.3051    2.2839    2.2267    

2.1368 

   -1.0999   -0.9622   -0.7953   -0.6029   -0.4023   -0.1946    

0.0235 

 

  Columns 1226 through 1232 

 

   -2.2608   -2.3254   -2.3486   -2.3364   -2.2837   -2.1944   -

2.0790 

    2.0080    1.8507    1.6706    1.4642    1.2046    0.9358    

0.6873 

    0.2528    0.4747    0.6780    0.8722    1.0791    1.2586    

1.3917 

 

  Columns 1233 through 1239 
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   -1.9303   -1.7332   -1.5460   -1.3415   -1.1122   -0.8423   -

0.5653 

    0.4261    0.1364   -0.0858   -0.3001   -0.5217   -0.7578   -

0.9710 

    1.5042    1.5968    1.6317    1.6416    1.6339    1.6000    

1.5363 

 

  Columns 1240 through 1246 

 

   -0.2789   -0.0166    0.2450    0.6395    0.8440    1.0359    

1.3957 

   -1.1573   -1.2990   -1.4122   -1.5422   -1.5813   -1.6033   -

1.5945 

    1.4363    1.3156    1.1671    0.9027    0.7374    0.5674    

0.1989 

 

  Columns 1247 through 1253 

 

    1.5436    1.6959    1.9263    2.0427    2.1313    2.2201    

2.2637 

   -1.5587   -1.5250   -1.4026   -1.3121   -1.2100   -1.0414   -

0.8425 

    0.0151   -0.1709   -0.5237   -0.7306   -0.9213   -1.1787   -

1.4212 

 

  Columns 1254 through 1260 

 

    2.2832    2.2594    2.1892    2.1064    2.0065    1.8830    

1.7228 

   -0.6680   -0.4597   -0.2030   -0.0373    0.1268    0.2988    

0.4926 

   -1.6152   -1.7997   -1.9862   -2.0691   -2.1332   -2.1819   -

2.2153 

 

  Columns 1261 through 1267 

 

    1.5343    1.2900    1.0848    0.8620    0.6281    0.3526    

0.0514 

    0.6894    0.9034    1.0449    1.1734    1.2906    1.4033    

1.4988 

   -2.2237   -2.1934   -2.1297   -2.0354   -1.9188   -1.7558   -

1.5502 

 

  Columns 1268 through 1274 

 

   -0.1523   -0.3500   -0.5504   -0.7610   -0.9623   -1.2182   -

1.3312 

    1.5235    1.5304    1.5236    1.4944    1.4438    1.3219    

1.2183 

   -1.3712   -1.1804   -0.9732   -0.7334   -0.4815   -0.1037    

0.1129 

 

  Columns 1275 through 1281 

 

   -1.4205   -1.5295   -1.5890   -1.6389   -1.6469   -1.6253   -

1.5574 

    1.0903    0.9028    0.7124    0.5223    0.2041   -0.0185   -

0.2622 

    0.3301    0.6267    0.8766    1.1166    1.4428    1.6437    

1.8196 

 

  Columns 1282 through 1288 

 

   -1.4737   -1.3124   -1.2067   -1.0717   -0.9216   -0.7009   -

0.5101 

   -0.5197   -0.8526   -1.0548   -1.2509   -1.4442   -1.6663   -

1.8315 

    1.9934    2.1650    2.2615    2.3226    2.3658    2.3672    

2.3415 

 

  Columns 1289 through 1295 

 

   -0.3043   -0.0259    0.1314    0.2831    0.5010    0.7102    

0.9205 

   -1.9730   -2.1275   -2.1771   -2.2077   -2.2408   -2.2361   -

2.2076 

    2.2773    2.1534    2.0457    1.9247    1.7398    1.5258    

1.2871 

 

  Columns 1296 through 1302 

 

    1.1224    1.2671    1.3581    1.4684    1.5397    1.5754    

1.5931 

   -2.1294   -2.0201   -1.8862   -1.7011   -1.4903   -1.2991   -

1.0196 

    1.0070    0.7530    0.5282    0.2327   -0.0494   -0.2764   -

0.5735 

 

  Columns 1303 through 1309 

 

    1.5693    1.5070    1.3820    1.2708    1.1580    0.9782    

0.7558 

   -0.7804   -0.5197   -0.1288    0.1000    0.3106    0.6027    

0.9004 

   -0.7890   -0.9873   -1.2533   -1.3707   -1.4687   -1.5809   -

1.6562 

 

  Columns 1310 through 1316 

 

    0.5456    0.3129    0.0021   -0.2031   -0.4006   -0.6745   -

0.9156 

    1.1523    1.3900    1.6680    1.8239    1.9622    2.1194    

2.2307 

   -1.6978   -1.7029   -1.6702   -1.6207   -1.5616   -1.4449   -

1.3151 

 

  Columns 1317 through 1323 

 

   -1.1365   -1.4193   -1.5794   -1.7137   -1.8247   -1.9451   -

2.0337 

    2.3124    2.3703    2.3771    2.3494    2.3089    2.2228    

2.1292 

   -1.1759   -0.9510   -0.7978   -0.6357   -0.4842   -0.2776   -

0.0955 

 

  Columns 1324 through 1330 

 

   -2.1714   -2.1930   -2.1694   -2.1393   -2.0634   -1.9793   -

1.8555 

    1.8889    1.7371    1.5412    1.3586    1.0671    0.8330    

0.5910 

    0.2824    0.4559    0.6281    0.7807    0.9963    1.1463    

1.2645 

 

  Columns 1331 through 1337 

 

   -1.6769   -1.5038   -1.3229   -1.1198   -0.8872   -0.6345   -

0.3774 

    0.2765    0.0501   -0.1692   -0.3978   -0.6326   -0.8588   -

1.0536 

    1.4004    1.4538    1.4921    1.5176    1.5198    1.4934    

1.4310 
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  Columns 1338 through 1344 

 

   -0.1055    0.1971    0.5019    0.7666    1.0187    1.3566    

1.5311 

   -1.2302   -1.3961   -1.5348   -1.6267   -1.6872   -1.7167   -

1.7092 

    1.3357    1.1990    1.0330    0.8601    0.6685    0.3601    

0.1782 

 

  Columns 1345 through 1351 

 

    1.6964    1.9585    2.0863    2.1923    2.3071    2.3703    

2.3995 

   -1.6917   -1.6068   -1.5401   -1.4661   -1.3156   -1.1621   -

1.0118 

   -0.0048   -0.3516   -0.5462   -0.7261   -0.9915   -1.2081   -

1.3877 

 

  Columns 1352 through 1358 

 

    2.3960    2.3588    2.2846    2.1551    2.0319    1.8890    

1.7171 

   -0.7917   -0.5975   -0.3967   -0.1327    0.0442    0.2235    

0.4117 

   -1.6042   -1.7613   -1.8878   -2.0224   -2.0761   -2.1125   -

2.1287 

 

  Columns 1359 through 1365 

 

    1.5092    1.2515    1.0257    0.7907    0.5177    0.1930   -

0.0842 

    0.6115    0.8294    0.9821    1.1157    1.2516    1.3808    

1.4577 

   -2.1207   -2.0809   -2.0079   -1.9064   -1.7693   -1.5738   -

1.3734 

 

  Columns 1366 through 1372 

 

   -0.3051   -0.5391   -0.7623   -1.0161   -1.1915   -1.3453   -

1.4938 

    1.4886    1.5026    1.4905    1.4427    1.3750    1.2815    

1.1511 

   -1.1836   -0.9635   -0.7281   -0.4265   -0.1835    0.0638    

0.3427 

 

  Columns 1373 through 1379 

 

   -1.6237   -1.7141   -1.7581   -1.7807   -1.7692   -1.7302   -

1.6603 

    0.9642    0.7543    0.5619    0.3616    0.0899   -0.1510   -

0.3939 

    0.6595    0.9597    1.1961    1.4192    1.6793    1.8811    

2.0541 

 

  Columns 1380 through 1386 

 

   -1.5242   -1.4217   -1.3080   -1.1789   -1.0051   -0.8277   -

0.5668 

   -0.7062   -0.8921   -1.0672   -1.2394   -1.4264   -1.5883   -

1.7772 

    2.2303    2.3138    2.3751    2.4183    2.4315    2.4160    

2.3440 

 

  Columns 1387 through 1393 

 

   -0.3935   -0.2088   -0.0317    0.1972    0.3938    0.6319    

0.8119 

   -1.8711   -1.9448   -1.9996   -2.0437   -2.0564   -2.0394   -

1.9888 

    2.2647    2.1536    2.0312    1.8465    1.6626    1.4075    

1.1769 

 

  Columns 1394 through 1400 

 

    0.9755    1.1894    1.2647    1.3260    1.4525    1.4594    

1.4661 

   -1.8988   -1.7471   -1.6157   -1.4825   -1.1784   -1.0045   -

0.8278 

    0.9233    0.5577    0.3510    0.1565   -0.2740   -0.4549   -

0.6384 

 

  Columns 1401 through 1407 

 

    1.4506    1.4016    1.3292    1.2054    1.0724    0.9161    

0.6975 

   -0.5470   -0.3019   -0.0569    0.2501    0.5073    0.7658    

1.0744 

   -0.9037   -1.0997   -1.2723   -1.4555   -1.5797   -1.6819   -

1.7719 

 

  Columns 1408 through 1414 

 

    0.4984    0.2915    0.0181   -0.1837   -0.3838   -0.5863   -

0.8146 

    1.3212    1.5465    1.8008    1.9634    2.1044    2.2271    

2.3376 

   -1.8197   -1.8380   -1.8189   -1.7796   -1.7206   -1.6408   -

1.5230 

 

  Columns 1415 through 1421 

 

   -1.0553   -1.2244   -1.3789   -1.5462   -1.7212   -1.8467   -

1.9122 

    2.4200    2.4505    2.4501    2.4178    2.3375    2.2295    

2.1086 

   -1.3647   -1.2260   -1.0712   -0.8716   -0.6163   -0.3828   -

0.1964 

 

  Columns 1422 through 1428 

 

   -1.9620   -1.9898   -1.9942   -1.9606   -1.8889   -1.7821   -

1.6081 

    1.9525    1.7611    1.5196    1.2556    1.0042    0.7393    

0.3865 

    0.0095    0.2287    0.4746    0.7050    0.8847    1.0428    

1.2216 

 

  Columns 1429 through 1435 

 

   -1.4597   -1.3031   -1.1200   -0.8940   -0.6215   -0.4086   -

0.1882 

    0.1618   -0.0579   -0.2987   -0.5609   -0.8393   -1.0192   -

1.1873 

    1.2979    1.3609    1.4188    1.4550    1.4608    1.4279    

1.3755 

 

  Columns 1436 through 1442 

 

    0.0607    0.3305    0.6282    0.9007    1.1671    1.4551    

1.6570 

   -1.3570   -1.5148   -1.6615   -1.7663   -1.8401   -1.8826   -

1.8908 
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    1.2963    1.1842    1.0334    0.8656    0.6730    0.4276    

0.2338 

 

  Columns 1443 through 1449 

 

    1.8389    2.0031    2.1584    2.2971    2.3732    2.4218    

2.4472 

   -1.8764   -1.8395   -1.7643   -1.6485   -1.5375   -1.4101   -

1.2309 

    0.0374   -0.1636   -0.3941   -0.6487   -0.8357   -1.0117   -

1.2162 

 

  Columns 1450 through 1456 

 

    2.4289    2.3680    2.2800    2.1602    1.9930    1.7940    

1.5651 

   -0.9771   -0.7588   -0.5701   -0.3557   -0.1063    0.1492    

0.3977 

   -1.4518   -1.6092   -1.7098   -1.8045   -1.8867   -1.9432   -

1.9628 

 

  Columns 1457 through 1463 

 

    1.3403    1.1131    0.7706    0.5522    0.3389    0.0209   -

0.2063 

    0.5985    0.7677    1.0028    1.1124    1.2080    1.3417    

1.4054 

   -1.9388   -1.8808   -1.7734   -1.6646   -1.5469   -1.3626   -

1.1991 

 

  Columns 1464 through 1470 

 

   -0.4296   -0.6603   -0.8968   -1.1540   -1.3292   -1.4828   -

1.6269 

    1.4522    1.4783    1.4751    1.4336    1.3703    1.2825    

1.1686 

   -1.0225   -0.8181   -0.5782   -0.2796   -0.0411    0.2002    

0.4582 

 

  Columns 1471 through 1477 

 

   -1.7598   -1.8670   -1.9342   -1.9637   -1.9527   -1.8967   -

1.8316 

    1.0067    0.8181    0.6045    0.3942    0.1597   -0.1191   -

0.3198 

    0.7531    1.0489    1.3297    1.5695    1.7930    2.0158    

2.1514 

 

  Columns 1478 through 1484 

 

   -1.7522   -1.6375   -1.4768   -1.3207   -1.1418   -0.8227   -

0.6694 

   -0.5140   -0.7297   -0.9633   -1.1461   -1.3151   -1.5739   -

1.6558 

    2.2662    2.3672    2.4402    2.4668    2.4569    2.3966    

2.3252 

 

  Columns 1485 through 1491 

 

   -0.5173   -0.1482    0.0208    0.1917    0.4385    0.6696    

0.8556 

   -1.7254   -1.8893   -1.9128   -1.9322   -1.9458   -1.9184   -

1.8557 

    2.2427    2.0375    1.8920    1.7405    1.5073    1.2488    

1.0000 

 

  Columns 1492 through 1498 

 

    1.0118    1.2525    1.3267    1.3894    1.4994    1.5105    

1.5185 

   -1.7628   -1.5770   -1.4481   -1.3145   -1.0303   -0.8565   -

0.6839 

    0.7510    0.3245    0.1215   -0.0749   -0.4690   -0.6539   -

0.8345 

 

  Columns 1499 through 1505 

 

    1.4935    1.4226    1.3245    1.2115    0.9684    0.8293    

0.6843 

   -0.3929   -0.0840    0.1899    0.4409    0.8636    1.0695    

1.2655 

   -1.1005   -1.3386   -1.5144   -1.6523   -1.8320   -1.8988   -

1.9498 

 

  Columns 1506 through 1512 

 

    0.3705    0.2057    0.0501   -0.1899   -0.4295   -0.6440   -

0.8430 

    1.6157    1.7718    1.9139    2.0918    2.2361    2.3362    

2.3997 

   -1.9862   -1.9776   -1.9641   -1.9018   -1.8066   -1.6922   -

1.5566 

 

  Columns 1513 through 1519 

 

   -1.0888   -1.2315   -1.3619   -1.4855   -1.6111   -1.7127   -

1.8097 

    2.4390    2.4299    2.3969    2.3433    2.2505    2.1284    

1.9427 

   -1.3501   -1.1984   -1.0350   -0.8577   -0.6394   -0.4157   -

0.1330 

 

  Columns 1520 through 1526 

 

   -1.8475   -1.8561   -1.8455   -1.7905   -1.7118   -1.6051   -

1.4805 

    1.7714    1.5754    1.3434    1.0144    0.7861    0.5478    

0.2920 

    0.0761    0.2807    0.5020    0.7761    0.9257    1.0573    

1.1885 

 

  Columns 1527 through 1533 

 

   -1.2998   -1.1119   -0.8915   -0.6712   -0.4225   -0.0757    

0.1352 

   -0.0167   -0.2981   -0.5720   -0.8102   -1.0407   -1.3217   -

1.4662 

    1.3165    1.4100    1.4635    1.4814    1.4632    1.3974    

1.3310 

 

  Columns 1534 through 1540 

 

    0.3389    0.6826    0.9057    1.1246    1.3646    1.5865    

1.8554 

   -1.5949   -1.7748   -1.8677   -1.9466   -2.0078   -2.0384   -

2.0226 

    1.2560    1.0922    0.9620    0.8221    0.6432    0.4519    

0.1672 

 

  Columns 1541 through 1547 

 

    1.9943    2.1120    2.2309    2.3368    2.4076    2.4284    

2.4108 
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   -1.9935   -1.9449   -1.8684   -1.7328   -1.5780   -1.3851   -

1.2098 

   -0.0007   -0.1671   -0.3625   -0.6041   -0.8296   -1.0432   -

1.2009 

 

  Columns 1548 through 1554 

 

    2.3550    2.2445    2.1301    2.0024    1.8531    1.6535    

1.4411 

   -0.9977   -0.6834   -0.4893   -0.3003   -0.1007    0.1357    

0.3567 

   -1.3573   -1.5610   -1.6408   -1.7020   -1.7523   -1.7893   -

1.7978 

 

  Columns 1555 through 1561 

 

    1.1353    0.9051    0.6663    0.4319    0.1368   -0.1258   -

0.4232 

    0.6372    0.8077    0.9557    1.0924    1.2384    1.3518    

1.4444 

   -1.7725   -1.7128   -1.6219   -1.5243   -1.3752   -1.2260   -

1.0212 

 

  Columns 1562 through 1568 

 

   -0.6980   -0.9613   -1.1767   -1.3819   -1.5913   -1.7472   -

1.8796 

    1.5010    1.5106    1.4922    1.4398    1.3531    1.2489    

1.1251 

   -0.8030   -0.5493   -0.3156   -0.0579    0.2382    0.4983    

0.7545 

 

  Columns 1569 through 1575 

 

   -2.0170   -2.0759   -2.1100   -2.1256   -2.1041   -2.0536   -

1.9596 

    0.9008    0.7490    0.5832    0.4194    0.2001   -0.0281   -

0.2673 

    1.1162    1.3269    1.5268    1.7062    1.9040    2.0817    

2.2269 

 

  Columns 1576 through 1582 

 

   -1.8553   -1.7268   -1.4705   -1.3253   -1.1776   -0.7990   -

0.6515 

   -0.4634   -0.6501   -0.9595   -1.0869   -1.1956   -1.4704   -

1.5162 

    2.3187    2.3768    2.4300    2.4122    2.3732    2.2695    

2.1677 

 

  Columns 1583 through 1589 

 

   -0.4982   -0.1867    0.0246    0.2228    0.4135    0.6263    

0.8095 

   -1.5768   -1.6936   -1.7347   -1.7421   -1.7324   -1.6908   -

1.6329 

    2.0750    1.8803    1.7101    1.5193    1.3189    1.0645    

0.8234 

 

  Columns 1590 through 1596 

 

    1.0309    1.1853    1.3067    1.4212    1.4687    1.5020    

1.5150 

   -1.5273   -1.4143   -1.2637   -1.0644   -0.8891   -0.7109   -

0.4582 

    0.4964    0.2290   -0.0430   -0.3569   -0.5796   -0.7911   -

1.0568 

 

  Columns 1597 through 1603 

 

    1.4919    1.4332    1.3364    1.2020    1.0406    0.8788    

0.7065 

   -0.1907    0.0835    0.3720    0.6736    0.9640    1.2119    

1.4371 

   -1.3013   -1.5167   -1.7084   -1.8756   -2.0046   -2.0907   -

2.1436 

 

  Columns 1604 through 1610 

 

    0.4685    0.3028    0.1320   -0.0416   -0.2406   -0.4377   -

0.6725 

    1.6951    1.8516    1.9947    2.1200    2.2334    2.3177    

2.3787 

   -2.1635   -2.1544   -2.1267   -2.0784   -1.9928   -1.8800   -

1.7062 

 

  Columns 1611 through 1617 

 

   -0.8328   -0.9880   -1.1452   -1.3148   -1.4541   -1.5643   -

1.6331 

    2.3886    2.3721    2.3327    2.2509    2.1385    1.9851    

1.8140 

   -1.5558   -1.3841   -1.1875   -0.9361   -0.6844   -0.4208   -

0.1809 

 

  Columns 1618 through 1624 

 

   -1.6730   -1.7013   -1.6694   -1.6202   -1.5490   -1.4320   -

1.2769 

    1.6119    1.3101    1.1026    0.8929    0.6279    0.3195   -

0.0129 

    0.0612    0.3912    0.5668    0.7273    0.9212    1.1125    

1.2898 

 

  Columns 1625 through 1631 

 

   -1.1371   -0.9819   -0.7969   -0.5846   -0.3331   -0.0702    

0.2057 

   -0.2416   -0.4672   -0.7069   -0.9490   -1.2042   -1.4363   -

1.6465 

    1.3787    1.4491    1.5038    1.5336    1.5373    1.5064    

1.4407 

 

  Columns 1632 through 1638 

 

    0.4876    0.7534    1.0166    1.3347    1.5034    1.6569    

1.8630 

   -1.8282   -1.9726   -2.0887   -2.1850   -2.2196   -2.2346   -

2.2220 

    1.3406    1.2192    1.0721    0.8503    0.7162    0.5778    

0.3590 

 

  Columns 1639 through 1645 

 

    2.0337    2.1504    2.2463    2.3224    2.3371    2.3328    

2.3037 

   -2.1685   -2.1037   -1.9947   -1.8356   -1.6899   -1.5311   -

1.3215 

    0.1347   -0.0467   -0.2517   -0.4868   -0.6471   -0.8017   -

0.9823 

 

  Columns 1646 through 1652 
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    2.2344    2.1105    1.9879    1.8439    1.6564    1.4263    

1.1562 

   -1.0608   -0.7448   -0.5470   -0.3450   -0.0956    0.1690    

0.4478 

   -1.1736   -1.3657   -1.4410   -1.4989   -1.5608   -1.5954   -

1.6041 

 

  Columns 1653 through 1659 

 

    0.9458    0.7294    0.4932    0.2347   -0.0339   -0.3937   -

0.6131 

    0.6221    0.7865    0.9513    1.1110    1.2568    1.4095    

1.4748 

   -1.5679   -1.5159   -1.4444   -1.3456   -1.2229   -1.0158   -

0.8617 

 

  Columns 1660 through 1666 

 

   -0.8275   -1.0421   -1.3130   -1.5320   -1.7461   -1.9388   -

2.0472 

    1.5127    1.5398    1.5339    1.5111    1.4416    1.3369    

1.2349 

   -0.6852   -0.4977   -0.2209    0.0208    0.3045    0.6019    

0.8123 

 

  Columns 1667 through 1673 

 

   -2.1388   -2.2196   -2.2706   -2.2907   -2.2721   -2.2151   -

2.0957 

    1.1266    0.9693    0.8055    0.5656    0.3917    0.2073   -

0.0651 

    1.0121    1.2503    1.4651    1.7251    1.8805    2.0078    

2.1608 

 

  Columns 1674 through 1680 

 

   -1.9811   -1.8561   -1.6938   -1.4929   -1.2733   -1.0330   -

0.7579 

   -0.2455   -0.4152   -0.6048   -0.8007   -0.9767   -1.1386   -

1.2998 

    2.2266    2.2713    2.2986    2.2935    2.2499    2.1716    

2.0577 

 

  Columns 1681 through 1687 

 

   -0.4703   -0.2300   -0.0070    0.2945    0.4921    0.6837    

0.8735 

   -1.4335   -1.5103   -1.5530   -1.5905   -1.5786   -1.5547   -

1.5119 

    1.9037    1.7403    1.5600    1.2960    1.0865    0.8709    

0.6384 

 

  Columns 1688 through 1694 

 

    1.0619    1.2389    1.3659    1.4689    1.5728    1.6134    

1.6277 

   -1.4392   -1.3272   -1.1939   -1.0373   -0.7882   -0.5962   -

0.3923 

    0.3772    0.0884   -0.1719   -0.4315   -0.7846   -1.0172   -

1.2355 

 

  Columns 1695 through 1701 

 

    1.6156    1.5481    1.4767    1.3803    1.2544    1.0668    

0.9271 

   -0.1392    0.1878    0.4275    0.6626    0.9154    1.2009    

1.3878 

   -1.4764   -1.7360   -1.9042   -2.0430   -2.1698   -2.2677   -

2.3149 

 

  Columns 1702 through 1708 

 

    0.7714    0.6082    0.3948    0.1718   -0.0569   -0.2421   -

0.4431 

    1.5621    1.7230    1.8915    2.0365    2.1446    2.2029    

2.2387 

   -2.3335   -2.3312   -2.2863   -2.2083   -2.0877   -1.9608   -

1.7957 

 

  Columns 1709 through 1715 

 

   -0.6744   -0.8436   -0.9984   -1.1772   -1.3004   -1.4016   -

1.5179 

    2.2523    2.2218    2.1667    2.0738    1.9562    1.8099    

1.5792 

   -1.5779   -1.3782   -1.1683   -0.8966   -0.6558   -0.4083   -

0.0612 

 

  Columns 1716 through 1722 

 

   -1.5454   -1.5532   -1.5536   -1.5175   -1.4406   -1.3505   -

1.2409 

    1.4002    1.2127    0.9799    0.6990    0.3617    0.1345   -

0.0958 

    0.1452    0.3405    0.5737    0.8185    1.0789    1.2161    

1.3367 

 

  Columns 1723 through 1729 

 

   -1.1035   -0.9268   -0.7133   -0.5038   -0.2775   -0.0048    

0.2763 

   -0.3469   -0.6203   -0.9101   -1.1538   -1.3852   -1.6258   -

1.8395 

    1.4504    1.5471    1.6234    1.6576    1.6627    1.6306    

1.5632 

 

  Columns 1730 through 1736 

 

    0.5184    0.7446    1.0254    1.2167    1.3989    1.5796    

1.7640 

   -1.9987   -2.1255   -2.2438   -2.3030   -2.3395   -2.3522   -

2.3273 

    1.4803    1.3810    1.2185    1.0862    0.9405    0.7727    

0.5633 

 

  Columns 1737 through 1743 

 

    1.9183    2.0398    2.1190    2.1720    2.2172    2.1953    

2.1521 

   -2.2672   -2.1645   -2.0398   -1.8838   -1.6315   -1.4575   -

1.2729 

    0.3489    0.1247   -0.0791   -0.2882   -0.5857   -0.7378   -

0.8792 

 

  Columns 1744 through 1750 

 

    2.0841    1.9655    1.8005    1.6510    1.4894    1.2671    

1.0345 

   -1.0297   -0.7330   -0.4068   -0.1968    0.0079    0.2743    

0.5191 

   -1.0544   -1.2325   -1.3937   -1.4541   -1.4973   -1.5414   -

1.5536 

 

  Columns 1751 through 1757 
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    0.7928    0.4826    0.2620    0.0315   -0.2080   -0.5063   -

0.7780 

    0.7480    1.0041    1.1555    1.2900    1.4160    1.5422    

1.6345 

   -1.5407   -1.4867   -1.4174   -1.3215   -1.2080   -1.0359   -

0.8565 

 

  Columns 1758 through 1764 

 

   -1.0563   -1.3374   -1.5712   -1.7485   -1.9651   -2.1129   -

2.2156 

    1.6927    1.7173    1.6989    1.6666    1.5782    1.4859    

1.3805 

   -0.6365   -0.3799   -0.1277    0.0819    0.3868    0.6270    

0.8352 

 

  Columns 1765 through 1771 

 

   -2.3447   -2.3675   -2.3759   -2.3577   -2.2877   -2.2066   -

2.0942 

    1.1127    0.9863    0.8572    0.6300    0.3850    0.1978    

0.0141 

    1.2320    1.3812    1.5187    1.7276    1.9027    2.0088    

2.0802 

 

  Columns 1772 through 1778 

 

   -1.9108   -1.7448   -1.5693   -1.3587   -1.1135   -0.8562   -

0.5896 

   -0.2540   -0.4422   -0.6170   -0.8046   -0.9921   -1.1561   -

1.2931 

    2.1648    2.1871    2.1863    2.1633    2.1057    2.0123    

1.8827 

 

  Columns 1779 through 1785 

 

   -0.3155   -0.0347    0.2428    0.5023    0.7190    0.9207    

1.1726 

   -1.4089   -1.4970   -1.5563   -1.5774   -1.5644   -1.5248   -

1.4375 

    1.7244    1.5317    1.3135    1.0751    0.8454    0.6040    

0.2649 

 

  Columns 1786 through 1792 

 

    1.3151    1.4375    1.5488    1.6423    1.7118    1.7463    

1.7406 

   -1.3469   -1.2383   -1.1052   -0.9282   -0.7199   -0.4345   -

0.1809 

    0.0319   -0.1992   -0.4436   -0.7141   -0.9919   -1.3118   -

1.5596 

 

  Columns 1793 through 1799 

 

    1.7036    1.6327    1.5188    1.3871    1.2511    1.0899    

0.8272 

    0.0437    0.3069    0.5911    0.8482    1.0645    1.2789    

1.5579 

   -1.7473   -1.9396   -2.1100   -2.2353   -2.3156   -2.3687   -

2.3851 

 

  Columns 1800 through 1806 

 

    0.6902    0.5502    0.1828    0.0439   -0.0900   -0.3917   -

0.5448 

    1.6737    1.7753    2.0035    2.0474    2.0862    2.1604    

2.1515 

   -2.3640   -2.3254   -2.1862   -2.0913   -1.9963   -1.7687   -

1.6067 

 

  Columns 1807 through 1813 

 

   -0.6998   -0.9066   -1.0724   -1.2070   -1.3601   -1.4258   -

1.4779 

    2.1301    2.0829    2.0021    1.8920    1.7219    1.5672    

1.3969 

   -1.4303   -1.1763   -0.9298   -0.6850   -0.3617   -0.1414    

0.0810 

 

  Columns 1814 through 1820 

 

   -1.5168   -1.5376   -1.5264   -1.4657   -1.3713   -1.2641   -

1.1109 

    1.2117    0.9754    0.7128    0.3996    0.1195   -0.1214   -

0.4171 

    0.3051    0.5621    0.8136    1.0661    1.2518    1.3855    

1.5280 

 

  Columns 1821 through 1827 

 

   -0.9371   -0.7314   -0.4856   -0.2520   -0.0461    0.2344    

0.5133 

   -0.7006   -0.9860   -1.2759   -1.5107   -1.6975   -1.9160   -

2.1018 

    1.6377    1.7174    1.7615    1.7627    1.7436    1.6816    

1.5885 

 

  Columns 1828 through 1834 

 

    0.7367    0.9407    1.2397    1.4025    1.5486    1.6890    

1.8432 

   -2.2237   -2.3135   -2.3964   -2.4198   -2.4184   -2.3973   -

2.3296 

    1.4870    1.3729    1.1567    1.0173    0.8699    0.7084    

0.4864 

 

  Columns 1835 through 1841 

 

    1.9612    2.0569    2.1210    2.1436    2.1369    2.0958    

2.0221 

   -2.2350   -2.0924   -1.9224   -1.7280   -1.5293   -1.2318   -

1.0072 

    0.2738    0.0355   -0.1986   -0.4156   -0.6076   -0.8640   -

1.0149 

 

  Columns 1842 through 1848 

 

    1.9160    1.7765    1.5631    1.3549    1.1567    0.9510    

0.7226 

   -0.7707   -0.4940   -0.1449    0.1391    0.3613    0.5714    

0.7819 

   -1.1453   -1.2825   -1.4182   -1.4940   -1.5180   -1.5225   -

1.5045 

 

  Columns 1849 through 1855 

 

    0.4770    0.1647   -0.1044   -0.3805   -0.7203   -0.9369   -

1.1448 

    0.9850    1.2107    1.3747    1.5111    1.6407    1.6981    

1.7398 

   -1.4620   -1.3754   -1.2702   -1.1306   -0.9203   -0.7612   -

0.5950 



285 
 

 

  Columns 1856 through 1862 

 

   -1.4575   -1.6384   -1.8024   -1.9902   -2.1364   -2.2595   -

2.3621 

    1.7638    1.7563    1.7353    1.6720    1.5818    1.4605    

1.2747 

   -0.3063   -0.1180    0.0671    0.3183    0.5546    0.7991    

1.0874 

 

  Columns 1863 through 1869 

 

   -2.3983   -2.4045   -2.3902   -2.3269   -2.2262   -2.1132   -

1.9755 

    1.1446    1.0070    0.8384    0.5950    0.3301    0.1360   -

0.0581 

    1.2536    1.3975    1.5519    1.7319    1.8961    1.9772    

2.0336 

 

  Columns 1870 through 1876 

 

   -1.7926   -1.5662   -1.3083   -1.0784   -0.8559   -0.5360   -

0.3114 

   -0.2765   -0.5100   -0.7414   -0.9108   -1.0489   -1.2264   -

1.3146 

    2.0691    2.0763    2.0497    1.9891    1.9048    1.7624    

1.6261 

 

  Columns 1877 through 1883 

 

   -0.0877    0.1479    0.4067    0.6583    0.9218    1.1266    

1.2852 

   -1.3853   -1.4489   -1.4935   -1.5119   -1.4891   -1.4333   -

1.3559 

    1.4731    1.3010    1.0868    0.8536    0.5673    0.3067    

0.0707 

 

  Columns 1884 through 1890 

 

    1.4745    1.6153    1.7022    1.7758    1.8197    1.8265    

1.7962 

   -1.2224   -1.0657   -0.9191   -0.7263   -0.5059   -0.2186    

0.0407 

   -0.2521   -0.5497   -0.7832   -1.0495   -1.3138   -1.6078   -

1.8369 

 

  Columns 1891 through 1897 

 

    1.7403    1.6515    1.5086    1.3940    1.2675    1.1195    

0.9318 

    0.2637    0.4997    0.7777    0.9636    1.1378    1.3102    

1.4889 

   -2.0040   -2.1512   -2.2864   -2.3575   -2.4053   -2.4296   -

2.4207 

 

  Columns 1898 through 1904 

 

    0.6879    0.5155    0.3380    0.1500   -0.0676   -0.2865   -

0.5447 

    1.6792    1.7785    1.8609    1.9308    1.9868    2.0201    

2.0271 

   -2.3671   -2.2940   -2.1989   -2.0808   -1.9192   -1.7336   -

1.4824 

 

  Columns 1905 through 1911 

 

   -0.7210   -0.8831   -1.0386   -1.1979   -1.3210   -1.4129   -

1.4736 

    1.9924    1.9254    1.8354    1.6964    1.5393    1.3521    

1.1509 

   -1.2715   -1.0423   -0.7967   -0.4985   -0.2183    0.0608    

0.3228 

 

  Columns 1912 through 1918 

 

   -1.5055   -1.5034   -1.4641   -1.3961   -1.2355   -1.1275   -

1.0081 

    0.9065    0.6511    0.3939    0.1320   -0.2805   -0.4845   -

0.6896 

    0.5990    0.8523    1.0702    1.2641    1.5160    1.6120    

1.6976 

 

  Columns 1919 through 1925 

 

   -0.7300   -0.5693   -0.4218   -0.1162    0.0535    0.2288    

0.4883 

   -1.0934   -1.2891   -1.4682   -1.7648   -1.9086   -2.0418   -

2.2047 

    1.8234    1.8584    1.8900    1.8809    1.8551    1.8130    

1.7163 

 

  Columns 1926 through 1932 

 

    0.7487    0.9316    1.1075    1.2945    1.4979    1.6627    

1.7752 

   -2.3336   -2.4040   -2.4450   -2.4582   -2.4320   -2.3683   -

2.2827 

    1.5849    1.4723    1.3375    1.1637    0.9341    0.7056    

0.5074 

 

  Columns 1933 through 1939 

 

    1.8644    1.9415    1.9798    1.9942    1.9771    1.9224    

1.8314 

   -2.1653   -2.0010   -1.8144   -1.6038   -1.3326   -1.0939   -

0.8426 

    0.3009    0.0595   -0.1654   -0.3904   -0.6446   -0.8284   -

0.9888 

 

  Columns 1940 through 1946 

 

    1.6580    1.5205    1.3828    1.0960    0.9258    0.7532    

0.4155 

   -0.4392   -0.2299   -0.0273    0.3706    0.5556    0.7358    

1.0445 

   -1.2188   -1.2906   -1.3555   -1.4666   -1.4815   -1.4890   -

1.4600 

 

  Columns 1947 through 1953 

 

    0.2148    0.0109   -0.4058   -0.6079   -0.8036   -1.1787   -

1.3684 

    1.1951    1.3370    1.5813    1.6722    1.7555    1.8643    

1.8976 

   -1.4098   -1.3478   -1.1755   -1.0642   -0.9519   -0.6856   -

0.5293 

 

  Columns 1954 through 1960 

 

   -1.5513   -1.7918   -1.9984   -2.1360   -2.2478   -2.3491   -

2.4217 

    1.9228    1.9144    1.8638    1.7997    1.7166    1.5886    

1.4140 
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   -0.3714   -0.1226    0.1346    0.3362    0.5312    0.7604    

1.0077 

 

  Columns 1961 through 1967 

 

   -2.4462   -2.4329   -2.3767   -2.2886   -2.1664   -1.9912   -

1.8297 

    1.2449    1.0729    0.8339    0.6128    0.3855    0.1105   -

0.0841 

    1.2013    1.3600    1.5428    1.6758    1.7809    1.8807    

1.9138 

 

  Columns 1968 through 1974 

 

   -1.6498   -1.4388   -1.1894   -0.9130   -0.6251   -0.3691   -

0.1160 

   -0.2769   -0.4795   -0.6891   -0.8910   -1.0647   -1.1894   -

1.2912 

    1.9267    1.9183    1.8785    1.8040    1.6898    1.5585    

1.4072 

 

  Columns 1975 through 1981 

 

    0.2195    0.4463    0.6630    0.8816    1.1100    1.3407    

1.4911 

   -1.4017   -1.4473   -1.4709   -1.4726   -1.4396   -1.3662   -

1.2807 

    1.1822    1.0010    0.8080    0.5910    0.3296    0.0255   -

0.2104 

 

  Columns 1982 through 1988 

 

    1.6229    1.7414    1.8446    1.9253    1.9649    1.9676    

1.9280 

   -1.1775   -1.0505   -0.8856   -0.6803   -0.4678   -0.2420    

0.0078 

   -0.4454   -0.6909   -0.9590   -1.2450   -1.4972   -1.7256   -

1.9358 

 

  Columns 1989 through 1995 

 

    1.8539    1.7589    1.6435    1.4671    1.3316    1.1778    

1.0087 

    0.2540    0.4778    0.6865    0.9357    1.0869    1.2299    

1.3668 

   -2.1079   -2.2367   -2.3300   -2.4028   -2.4185   -2.4077   -

2.3755 

 

  Columns 1996 through 2002 

 

    0.7942    0.5701    0.2581    0.0792   -0.1035   -0.3274   -

0.5818 

    1.5143    1.6409    1.7787    1.8174    1.8375    1.8546    

1.8393 

   -2.3084   -2.2111   -2.0368   -1.8966   -1.7341   -1.5273   -

1.2575 

 

  Columns 2003 through 2009 

 

   -0.8293   -0.9578   -1.0741   -1.2377   -1.3324   -1.4136   -

1.4799 

    1.7892    1.7066    1.6107    1.4581    1.3141    1.1635    

0.9735 

   -0.9599   -0.7488   -0.5366   -0.2204    0.0183    0.2501    

0.5064 

 

  Columns 2010 through 2016 

 

   -1.5159   -1.5097   -1.4678   -1.3881   -1.2709   -1.1334   -

0.9878 

    0.7352    0.4896    0.2231   -0.0755   -0.3840   -0.6654   -

0.9127 

    0.7807    1.0201    1.2447    1.4636    1.6549    1.7987    

1.9005 

 

  Columns 2017 through 2023 

 

   -0.8033   -0.5784   -0.3403   -0.1415    0.0543    0.2924    

0.5522 

   -1.1800   -1.4582   -1.7098   -1.8909   -2.0418   -2.1946   -

2.3219 

    1.9833    2.0366    2.0501    2.0323    1.9875    1.9021    

1.7698 

 

  Columns 2024 through 2030 

 

    0.7513    0.9179    1.2168    1.3267    1.4268    1.6702    

1.7145 

   -2.3918   -2.4256   -2.4420   -2.4057   -2.3518   -2.2126   -

2.0991 

    1.6406    1.5076    1.2252    1.0790    0.9250    0.5424    

0.3846 

 

  Columns 2031 through 2037 

 

    1.7591    1.8498    1.8612    1.8502    1.8175    1.7483    

1.6366 

   -1.9927   -1.7639   -1.5794   -1.3745   -1.1551   -0.8727   -

0.5468 

    0.2336   -0.0859   -0.2818   -0.4756   -0.6624   -0.8757   -

1.0897 

 

  Columns 2038 through 2044 

 

    1.5005    1.3655    1.1942    1.0038    0.6755    0.4868    

0.2854 

   -0.2610   -0.0323    0.2299    0.4848    0.8623    1.0409    

1.2079 

   -1.2395   -1.3332   -1.4241   -1.4886   -1.5378   -1.5277   -

1.4933 

 

  Columns 2045 through 2051 

 

   -0.1552   -0.3466   -0.5254   -0.8573   -1.1001   -1.3328   -

1.5758 

    1.5321    1.6346    1.7443    1.8991    1.9862    2.0411    

2.0689 

   -1.3769   -1.2880   -1.2189   -1.0418   -0.8861   -0.7083   -

0.4931 

 

  Columns 2052 through 2058 

 

   -1.7824   -1.9621   -2.1836   -2.2707   -2.3344   -2.3944   -

2.4294 

    2.0602    2.0268    1.9217    1.8459    1.7478    1.6085    

1.3663 

   -0.2777   -0.0647    0.2619    0.4248    0.5866    0.7858    

1.0631 

 

  Columns 2059 through 2065 

 

   -2.4190   -2.3586   -2.2757   -2.1161   -1.9748   -1.8120   -

1.6185 
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    1.1365    0.9258    0.7283    0.4112    0.1992   -0.0151   -

0.2438 

    1.2824    1.4328    1.5474    1.7049    1.7756    1.8271    

1.8622 

 

  Columns 2066 through 2072 

 

   -1.3756   -1.1420   -0.8881   -0.4800   -0.2733   -0.0793    

0.3073 

   -0.4887   -0.6867   -0.8714   -1.1423   -1.2402   -1.3207   -

1.4651 

    1.8642    1.8287    1.7596    1.6223    1.5135    1.3999    

1.1578 

 

  Columns 2073 through 2079 

 

    0.4869    0.6723    0.9391    1.1898    1.3986    1.5659    

1.7287 

   -1.4928   -1.5253   -1.5413   -1.5199   -1.4588   -1.3766   -

1.2520 

    1.0058    0.8530    0.6022    0.3301    0.0602   -0.1893   -

0.4767 

 

  Columns 2080 through 2086 

 

    1.8811    1.9839    2.0456    2.0761    2.0649    2.0143    

1.9540 

   -1.0824   -0.9021   -0.7384   -0.5194   -0.2622   -0.0221    

0.1730 

   -0.7988   -1.0818   -1.3073   -1.5567   -1.8027   -1.9922   -

2.1270 

 

  Columns 2087 through 2093 

 

    1.8493    1.7118    1.5477    1.3873    1.1909    0.9407    

0.7439 

    0.4055    0.6399    0.8568    1.0305    1.2090    1.4047    

1.5217 

   -2.2548   -2.3516   -2.4045   -2.4178   -2.3999   -2.3454   -

2.2656 

 

  Columns 2094 through 2100 

 

    0.5447    0.3248    0.0761   -0.2277   -0.4131   -0.5890   -

0.7661 

    1.6165    1.7030    1.7766    1.8380    1.8336    1.8068    

1.7583 

   -2.1612   -2.0278   -1.8527   -1.6103   -1.4205   -1.2178   -

0.9923 

 

  Columns 2101 through 2107 

 

   -0.9468   -1.1159   -1.2743   -1.4004   -1.4753   -1.5171   -

1.5389 

    1.6785    1.5752    1.4295    1.2550    1.0696    0.8823    

0.5205 

   -0.7316   -0.4592   -0.1552    0.1454    0.4057    0.6347    

1.0184 

 

  Columns 2108 through 2114 

 

   -1.5146   -1.4653   -1.4028   -1.2634   -1.1151   -0.9357   -

0.7768 

    0.3055    0.0851   -0.1472   -0.4863   -0.7907   -1.0725   -

1.2974 

    1.2091    1.3802    1.5500    1.7497    1.9058    2.0082    

2.0742 

 

  Columns 2115 through 2121 

 

   -0.5589   -0.3540   -0.1323    0.1153    0.3059    0.4868    

0.6960 

   -1.5470   -1.7558   -1.9439   -2.1269   -2.2393   -2.3239   -

2.3920 

    2.1058    2.1098    2.0763    2.0116    1.9335    1.8372    

1.6960 

 

  Columns 2122 through 2128 

 

    0.9145    1.1388    1.2997    1.4138    1.5567    1.6750    

1.7444 

   -2.4278   -2.4261   -2.3831   -2.3166   -2.2007   -2.0495   -

1.8873 

    1.5133    1.2873    1.0834    0.9028    0.6440    0.3746    

0.1428 

 

  Columns 2129 through 2135 

 

    1.7857    1.8145    1.7824    1.7231    1.6505    1.5292    

1.3748 

   -1.7080   -1.4128   -1.2021   -0.9790   -0.7402   -0.4260   -

0.0985 

   -0.0777   -0.4017   -0.5803   -0.7441   -0.9103   -1.1032   -

1.2763 

 

  Columns 2136 through 2142 

 

    1.2356    1.0840    0.8836    0.6582    0.2981    0.1010   -

0.0998 

    0.1224    0.3392    0.5935    0.8439    1.1918    1.3511    

1.4955 

   -1.3581   -1.4232   -1.4771   -1.5021   -1.4900   -1.4521   -

1.3957 

 

  Columns 2143 through 2149 

 

   -0.5244   -0.7236   -0.9110   -1.2433   -1.4354   -1.6102   -

1.7766 

    1.7537    1.8455    1.9396    2.0495    2.0937    2.1086    

2.1075 

   -1.2293   -1.1219   -1.0287   -0.8062   -0.6583   -0.4983   -

0.3310 

 

  Columns 2150 through 2156 

 

   -1.9650   -2.1109   -2.2476   -2.3386   -2.3828   -2.3874   -

2.3646 

    2.0660    2.0111    1.9017    1.7701    1.5926    1.4315    

1.2376 

   -0.1010    0.0998    0.3458    0.5686    0.7902    0.9559    

1.1270 

 

  Columns 2157 through 2163 

 

   -2.3136   -2.2163   -2.1050   -1.9609   -1.7700   -1.5126   -

1.2756 

    1.0063    0.7422    0.5325    0.3084    0.0427   -0.2662   -

0.5016 

    1.3073    1.4741    1.5725    1.6525    1.7273    1.7788    

1.7772 

 

  Columns 2164 through 2170 
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   -1.0656   -0.8101   -0.5655   -0.2338    0.0168    0.2634    

0.5380 

   -0.6714   -0.8617   -1.0219   -1.2158   -1.3381   -1.4319   -

1.5110 

    1.7371    1.6718    1.5875    1.4496    1.3213    1.1685    

0.9731 

 

  Columns 2171 through 2177 

 

    0.8416    1.0890    1.2795    1.4963    1.6811    1.8481    

1.9855 

   -1.5546   -1.5576   -1.5321   -1.4771   -1.3938   -1.2772   -

1.1283 

    0.7130    0.4687    0.2526   -0.0192   -0.2872   -0.5709   -

0.8572 

 

  Columns 2178 through 2184 

 

    2.0840    2.1440    2.1685    2.1540    2.1175    2.0552    

1.9508 

   -0.9530   -0.7690   -0.5773   -0.3161   -0.1269    0.0620    

0.2895 

   -1.1311   -1.3750   -1.5911   -1.8379   -1.9905   -2.1172   -

2.2403 

 

  Columns 2185 through 2191 

 

    1.7771    1.6476    1.4992    1.3385    1.1219    0.9183    

0.6034 

    0.5693    0.7302    0.8820    1.0294    1.1985    1.3319    

1.5101 

   -2.3464   -2.3777   -2.3812   -2.3680   -2.3204   -2.2501   -

2.1135 

 

  Columns 2192 through 2198 

 

    0.3844    0.1593   -0.0678   -0.3429   -0.5605   -0.7630   -

1.0125 

    1.6000    1.6620    1.7080    1.7306    1.7164    1.6668    

1.5772 

   -1.9844   -1.8213   -1.6402   -1.3877   -1.1559   -0.9038   -

0.5647 

 

  Columns 2199 through 2205 

 

   -1.1356   -1.2458   -1.4574   -1.4991   -1.5319   -1.5634   -

1.5420 

    1.4835    1.3831    1.1082    0.9600    0.8102    0.5031    

0.2981 

   -0.3479   -0.1373    0.3491    0.5391    0.7217    1.0603    

1.2439 

 

  Columns 2206 through 2212 

 

   -1.5192   -1.4309   -1.3234   -1.1966   -1.0549   -0.8610   -

0.6763 

    0.0965   -0.2320   -0.5188   -0.7691   -1.0147   -1.2881   -

1.5151 

    1.4227    1.6629    1.8422    1.9657    2.0696    2.1490    

2.1914 

 

  Columns 2213 through 2219 

 

   -0.4748   -0.2426   -0.0586    0.1206    0.3133    0.5286    

0.7914 

   -1.7233   -1.9265   -2.0589   -2.1643   -2.2542   -2.3232   -

2.3709 

    2.1981    2.1691    2.1175    2.0437    1.9409    1.7946    

1.5795 

 

  Columns 2220 through 2226 

 

    0.9261    1.0554    1.2350    1.3846    1.4960    1.6034    

1.6595 

   -2.3584   -2.3255   -2.2598   -2.1571   -2.0378   -1.8625   -

1.6798 

    1.4322    1.2701    1.0247    0.7725    0.5418    0.2591    

0.0204 

 

  Columns 2227 through 2233 

 

    1.6827    1.6881    1.6462    1.5924    1.5073    1.3769    

1.2186 

   -1.4676   -1.1558   -0.9419   -0.7299   -0.4559   -0.1487    

0.1516 

   -0.2151   -0.5323   -0.7043   -0.8624   -1.0514   -1.2282   -

1.3701 

 

  Columns 2234 through 2240 

 

    1.0431    0.8610    0.5082    0.3205    0.1278   -0.1849   -

0.4045 

    0.4174    0.6613    1.0590    1.2385    1.4024    1.6443    

1.7864 

   -1.4606   -1.5223   -1.5672   -1.5589   -1.5302   -1.4594   -

1.3820 

 

  Columns 2241 through 2247 

 

   -0.6160   -0.8669   -1.1056   -1.4603   -1.6060   -1.7400   -

1.9331 

    1.9217    2.0497    2.1481    2.2235    2.2375    2.2359    

2.2022 

   -1.3057   -1.1828   -1.0425   -0.7633   -0.6315   -0.4959   -

0.2690 

 

  Columns 2248 through 2254 

 

   -2.0884   -2.1853   -2.2750   -2.3264   -2.3348   -2.3152   -

2.2503 

    2.1242    2.0515    1.9050    1.7427    1.5438    1.3606    

1.0791 

   -0.0358    0.1338    0.3700    0.5837    0.7910    0.9545    

1.1712 

 

  Columns 2255 through 2261 

 

   -2.1695   -2.0581   -1.9215   -1.7277   -1.5069   -1.2491   -

1.0236 

    0.8813    0.6658    0.4285    0.1417   -0.1404   -0.4128   -

0.6112 

    1.2882    1.3924    1.4930    1.5859    1.6474    1.6619    

1.6348 

 

  Columns 2262 through 2268 

 

   -0.8005   -0.5505   -0.2901    0.0844    0.3305    0.5718    

0.8156 

   -0.7855   -0.9668   -1.1360   -1.3453   -1.4495   -1.5210   -

1.5766 

    1.5859    1.5173    1.4261    1.2609    1.1190    0.9491    

0.7610 

 

  Columns 2269 through 2275 
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    1.0949    1.3551    1.5794    1.7615    1.9449    2.0797    

2.1831 

   -1.6018   -1.6009   -1.5595   -1.5022   -1.3891   -1.2733   -

1.1306 

    0.5069    0.2457   -0.0199   -0.2593   -0.5558   -0.8065   -

1.0524 

 

  Columns 2276 through 2282 

 

    2.2777    2.2988    2.3001    2.2699    2.1957    2.1143    

1.9788 

   -0.8780   -0.7372   -0.5995   -0.3785   -0.1519    0.0447    

0.2665 

   -1.3997   -1.5616   -1.7006   -1.8914   -2.0438   -2.1590   -

2.2454 

 

  Columns 2283 through 2289 

 

    1.8042    1.6522    1.4919    1.2753    1.0580    0.6955    

0.4865 

    0.5008    0.6467    0.7873    0.9580    1.1063    1.3292    

1.4119 

   -2.3050   -2.2989   -2.2792   -2.2332   -2.1643   -2.0246   -

1.8984 

 

  Columns 2290 through 2296 

 

    0.2708    0.0727   -0.1507   -0.3635   -0.6303   -0.8604   -

1.0381 

    1.4677    1.5080    1.5310    1.5405    1.5275    1.4810    

1.3978 

   -1.7385   -1.5807   -1.3803   -1.1769   -0.8971   -0.6207   -

0.3597 

 

  Columns 2297 through 2303 

 

   -1.1771   -1.3552   -1.4549   -1.5263   -1.5826   -1.6013   -

1.5913 

    1.3048    1.1264    0.9797    0.8145    0.6162    0.3373    

0.1067 

   -0.1277    0.2288    0.4752    0.7118    0.9664    1.2639    

1.4847 

 

  Columns 2304 through 2310 

 

   -1.5486   -1.4542   -1.3656   -1.2664   -1.1563   -1.0032   -

0.8490 

   -0.1432   -0.4749   -0.6977   -0.9008   -1.0936   -1.3103   -

1.5072 

    1.6918    1.9291    2.0633    2.1672    2.2500    2.3135    

2.3561 

 

  Columns 2311 through 2317 

 

   -0.5399   -0.3959   -0.2454   -0.0861    0.1321    0.3442    

0.5591 

   -1.8086   -1.9257   -2.0084   -2.0894   -2.1645   -2.2247   -

2.2441 

    2.3486    2.3217    2.2537    2.1754    2.0324    1.8805    

1.6849 

 

  Columns 2318 through 2324 

 

    0.7582    0.9073    1.0456    1.1847    1.3057    1.4359    

1.4667 

   -2.2308   -2.1698   -2.0880   -1.9714   -1.8263   -1.6017   -

1.4250 

    1.4726    1.2624    1.0424    0.7866    0.5206    0.1657   -

0.0417 

 

  Columns 2325 through 2331 

 

    1.4769    1.4781    1.4532    1.4050    1.3035    1.2046    

1.0795 

   -1.2236   -1.0158   -0.7340   -0.4589   -0.1436    0.0757    

0.3047 

   -0.2533   -0.4623   -0.7192   -0.9461   -1.1600   -1.2802   -

1.3842 

 

  Columns 2332 through 2338 

 

    0.9253    0.7165    0.4554    0.2652    0.0652   -0.1454   -

0.3941 

    0.5621    0.8602    1.1873    1.3902    1.5766    1.7564    

1.9369 

   -1.4874   -1.5768   -1.6427   -1.6554   -1.6418   -1.6111   -

1.5429 

 

  Columns 2339 through 2345 

 

   -0.6179   -0.9631   -1.1423   -1.3095   -1.4507   -1.5967   -

1.7294 

    2.0875    2.2583    2.3333    2.3694    2.3937    2.3871    

2.3660 

   -1.4695   -1.2952   -1.1910   -1.0599   -0.9430   -0.7904   -

0.6366 

 

  Columns 2346 through 2352 

 

   -1.9106   -2.0303   -2.0893   -2.1100   -2.1238   -2.1037   -

2.0534 

    2.2822    2.1723    2.0249    1.8862    1.6506    1.4483    

1.2238 

   -0.3715   -0.1419    0.0644    0.2237    0.4731    0.6555    

0.8296 

 

  Columns 2353 through 2359 

 

   -1.9555   -1.8407   -1.7070   -1.5345   -1.3149   -1.0545   -

0.8743 

    0.9002    0.6897    0.4719    0.2074   -0.0904   -0.4064   -

0.5794 

    1.0553    1.1510    1.2350    1.3271    1.4053    1.4608    

1.4538 

 

  Columns 2360 through 2366 

 

   -0.6899   -0.2960   -0.0908    0.1062    0.4679    0.6792    

0.8878 

   -0.7447   -1.0642   -1.1951   -1.3212   -1.5091   -1.5924   -

1.6531 

    1.4346    1.3602    1.2859    1.2150    1.0412    0.9132    

0.7653 

 

  Columns 2367 through 2373 

 

    1.2512    1.4402    1.6172    1.8258    2.0020    2.1591    

2.2785 

   -1.7203   -1.7292   -1.7415   -1.7195   -1.6682   -1.5673   -

1.4352 

    0.4691    0.2890    0.1242   -0.1063   -0.3338   -0.5918   -

0.8433 
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  Columns 2374 through 2380 

 

    2.3514    2.3959    2.4166    2.3969    2.3412    2.2325    

2.1114 

   -1.3084   -1.1834   -0.9863   -0.8171   -0.6292   -0.3679   -

0.1618 

   -1.0431   -1.2125   -1.4304   -1.5798   -1.7121   -1.8646   -

1.9496 

 

  Columns 2381 through 2387 

 

    1.9656    1.7506    1.5699    1.3733    1.1615    0.9102    

0.6444 

    0.0418    0.3045    0.4738    0.6381    0.7982    0.9673    

1.1234 

   -2.0074   -2.0551   -2.0437   -2.0114   -1.9597   -1.8775   -

1.7678 

 

  Columns 2388 through 2394 

 

    0.3402    0.0375   -0.2034   -0.4104   -0.6512   -0.8664   -

1.1635 

    1.2688    1.3786    1.4308    1.4584    1.4755    1.4677    

1.4082 

   -1.6090   -1.4160   -1.2274   -1.0480   -0.8243   -0.6013   -

0.2447 

 

  Columns 2395 through 2401 

 

   -1.3174   -1.4508   -1.5670   -1.6907   -1.7758   -1.8375   -

1.8650 

    1.3377    1.2342    1.1278    0.9462    0.7868    0.5546    

0.2988 

   -0.0203    0.2166    0.4392    0.7445    0.9890    1.2830    

1.5662 

 

  Columns 2402 through 2408 

 

   -1.8405   -1.8043   -1.7070   -1.5953   -1.4719   -1.3432   -

1.1064 

    0.0566   -0.1438   -0.4313   -0.6839   -0.8965   -1.0801   -

1.3463 

    1.7838    1.9480    2.1383    2.2792    2.3684    2.4233    

2.4527 

 

  Columns 2409 through 2415 

 

   -0.9594   -0.7964   -0.6121   -0.3750   -0.1354    0.0934    

0.2918 

   -1.4793   -1.6038   -1.7276   -1.8567   -1.9543   -2.0078   -

2.0272 

    2.4387    2.4002    2.3397    2.2317    2.0897    1.9145    

1.7354 

 

  Columns 2416 through 2422 

 

    0.5380    0.7901    0.9773    1.0991    1.2376    1.3365    

1.4324 

   -2.0311   -1.9989   -1.9246   -1.8285   -1.6882   -1.5379   -

1.3521 

    1.4931    1.2088    0.9473    0.7294    0.4505    0.2014   -

0.0803 

 

  Columns 2423 through 2429 

 

    1.5122    1.5351    1.5259    1.4850    1.4090    1.3098    

1.1364 

   -1.1135   -0.9128   -0.6955   -0.4176   -0.1424    0.1372    

0.4997 

   -0.3987   -0.6223   -0.8304   -1.0674   -1.2667   -1.4470   -

1.6361 

 

  Columns 2430 through 2436 

 

    1.0070    0.8546    0.6670    0.4040    0.1630   -0.0902   -

0.3029 

    0.7198    0.9402    1.1905    1.4838    1.7271    1.9355    

2.0863 

   -1.7268   -1.7948   -1.8574   -1.8878   -1.8902   -1.8453   -

1.7834 

 

  Columns 2437 through 2443 

 

   -0.5321   -0.8026   -0.9900   -1.1551   -1.3279   -1.4950   -

1.6608 

    2.2146    2.3385    2.4008    2.4376    2.4476    2.4205    

2.3533 

   -1.6825   -1.5359   -1.4107   -1.2825   -1.1196   -0.9255   -

0.6925 

 

  Columns 2444 through 2450 

 

   -1.8003   -1.8917   -1.9519   -2.0079   -2.0063   -1.9793   -

1.9181 

    2.2476    2.1257    1.9769    1.7542    1.5547    1.3375    

1.0379 

   -0.4474   -0.2339   -0.0250    0.2538    0.4516    0.6418    

0.8802 

 

  Columns 2451 through 2457 

 

   -1.8271   -1.7060   -1.4941   -1.3418   -1.1823   -0.8299   -

0.6504 

    0.7848    0.5277    0.1385   -0.0668   -0.2662   -0.6796   -

0.8403 

    1.0423    1.1783    1.3556    1.4085    1.4485    1.5095    

1.4907 

 

  Columns 2458 through 2464 

 

   -0.4771   -0.1487    0.0773    0.3114    0.5636    0.8370    

1.1345 

   -0.9939   -1.2496   -1.3932   -1.5265   -1.6500   -1.7574   -

1.8428 

    1.4710    1.3984    1.3159    1.2150    1.0864    0.9204    

0.7082 

 

  Columns 2465 through 2471 

 

    1.3682    1.5816    1.8148    1.9858    2.1332    2.2876    

2.3618 

   -1.8848   -1.8978   -1.8769   -1.8303   -1.7612   -1.6251   -

1.5138 

    0.5166    0.3162    0.0620   -0.1554   -0.3720   -0.6625   -

0.8480 

 

  Columns 2472 through 2478 

 

    2.4038    2.4276    2.4128    2.3648    2.2682    2.1445    

1.9851 

   -1.3848   -1.2267   -0.9910   -0.7658   -0.5227   -0.2943   -

0.0678 
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   -1.0189   -1.2010   -1.4219   -1.5989   -1.7455   -1.8502   -

1.9173 

 

  Columns 2479 through 2485 

 

    1.7853    1.5813    1.3652    1.0642    0.8495    0.6231    

0.3858 

    0.1859    0.4035    0.6063    0.8554    0.9918    1.1148    

1.2319 

   -1.9713   -1.9847   -1.9714   -1.9196   -1.8413   -1.7379   -

1.6177 

 

  Columns 2486 through 2492 

 

    0.0936   -0.1762   -0.4522   -0.7173   -0.9447   -1.1398   -

1.4455 

    1.3561    1.4472    1.5078    1.5335    1.5179    1.4800    

1.3566 

   -1.4497   -1.2710   -1.0556   -0.8163   -0.5732   -0.3402    

0.0889 

 

  Columns 2493 through 2499 

 

   -1.5691   -1.6698   -1.8387   -1.8770   -1.9296   -1.9527   -

1.9405 

    1.2661    1.1565    0.8905    0.7442    0.6165    0.3187    

0.1154 

    0.3030    0.5133    0.9482    1.1328    1.3130    1.6340    

1.8251 

 

  Columns 2500 through 2506 

 

   -1.8837   -1.8018   -1.6869   -1.5665   -1.3492   -1.2221   -

1.0649 

   -0.0989   -0.3398   -0.5756   -0.7914   -1.0798   -1.2131   -

1.3438 

    1.9826    2.1416    2.2625    2.3579    2.4290    2.4352    

2.4087 

 

  Columns 2507 through 2513 

 

   -0.8741   -0.6135   -0.3902   -0.1582    0.0916    0.2889    

0.4775 

   -1.4895   -1.6542   -1.7689   -1.8502   -1.9101   -1.9216   -

1.9130 

    2.3637    2.2678    2.1592    2.0084    1.8184    1.6327    

1.4355 

 

  Columns 2514 through 2520 

 

    0.6718    0.8649    1.0603    1.1760    1.2796    1.3724    

1.4556 

   -1.8835   -1.8229   -1.7191   -1.6018   -1.4657   -1.3094   -

1.1129 

    1.2117    0.9580    0.6588    0.4258    0.1861   -0.0629   -

0.3427 

 

  Columns 2521 through 2527 

 

    1.5158    1.5209    1.4914    1.4186    1.3246    1.2133    

0.9981 

   -0.8606   -0.6414   -0.4069   -0.0878    0.1816    0.4502    

0.8433 

   -0.6552   -0.8795   -1.0845   -1.3308   -1.5062   -1.6636   -

1.8415 

 

  Columns 2528 through 2534 

 

    0.8543    0.6911    0.5124    0.1726   -0.0425   -0.2662   -

0.5294 

    1.0627    1.2720    1.4885    1.8130    2.0031    2.1527    

2.3033 

   -1.9170   -1.9631   -2.0010   -1.9855   -1.9606   -1.8865   -

1.7738 

 

  Columns 2535 through 2541 

 

   -0.6973   -0.8511   -1.1100   -1.2921   -1.4232   -1.5793   -

1.7058 

    2.3687    2.4214    2.4677    2.4662    2.4278    2.3520    

2.2381 

   -1.6714   -1.5703   -1.3577   -1.1742   -1.0046   -0.7727   -

0.5323 

 

  Columns 2542 through 2548 

 

   -1.7894   -1.8618   -1.9191   -1.9111   -1.8751   -1.8185   -

1.7145 

    2.1068    1.9373    1.6983    1.5028    1.2914    1.0468    

0.7310 

   -0.3174   -0.0755    0.2208    0.4082    0.5837    0.7717    

0.9836 

 

  Columns 2549 through 2555 

 

   -1.5630   -1.4319   -1.2882   -1.0278   -0.8543   -0.6828   -

0.4316 

    0.3695    0.1530   -0.0590   -0.4159   -0.6076   -0.7939   -

1.0358 

    1.1935    1.2790    1.3472    1.4437    1.4619    1.4767    

1.4674 

 

  Columns 2556 through 2562 

 

   -0.1669    0.1460    0.4304    0.6661    0.9407    1.1904    

1.5071 

   -1.2563   -1.4734   -1.6374   -1.7521   -1.8646   -1.9461   -

2.0023 

    1.4232    1.3274    1.2069    1.0861    0.9240    0.7557    

0.4952 

 

  Columns 2563 through 2569 

 

    1.6979    1.8663    2.0175    2.1775    2.2945    2.3963    

2.4471 

   -2.0165   -1.9993   -1.9701   -1.8940   -1.8126   -1.6608   -

1.5092 

    0.3186    0.1331   -0.0473   -0.2835   -0.4820   -0.7355   -

0.9379 

 

  Columns 2570 through 2576 

 

    2.4507    2.4289    2.3656    2.2514    2.1369    2.0064    

1.8208 

   -1.3186   -1.1325   -0.8930   -0.5917   -0.4147   -0.2395    

0.0012 

   -1.1321   -1.2964   -1.4725   -1.6597   -1.7222   -1.7669   -

1.8220 

 

  Columns 2577 through 2583 

 

    1.5830    1.3363    1.0681    0.8226    0.5686    0.2617    

0.0089 
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    0.2670    0.5114    0.7298    0.8946    1.0356    1.1924    

1.2941 

   -1.8500   -1.8477   -1.7979   -1.7172   -1.6042   -1.4541   -

1.3030 

 

  Columns 2584 through 2590 

 

   -0.2330   -0.5187   -0.7561   -0.9853   -1.2479   -1.4166   -

1.5639 

    1.3782    1.4476    1.4730    1.4645    1.4172    1.3552    

1.2787 

   -1.1453   -0.9289   -0.7168   -0.4792   -0.1693    0.0613    

0.2852 

 

  Columns 2591 through 2597 

 

   -1.7081   -1.8347   -1.9488   -2.0080   -2.0422   -2.0433   -

1.9960 

    1.1739    1.0324    0.8346    0.6672    0.4888    0.2675   -

0.0015 

    0.5342    0.8023    1.1142    1.3409    1.5534    1.7758    

1.9975 

 

  Columns 2598 through 2604 

 

   -1.9450   -1.8752   -1.7865   -1.6520   -1.4869   -1.2869   -

1.0651 

   -0.1729   -0.3408   -0.5120   -0.7141   -0.9203   -1.1207   -

1.3024 

    2.1179    2.2161    2.2985    2.3661    2.4072    2.4076    

2.3676 

 

  Columns 2605 through 2611 

 

   -0.8527   -0.6548   -0.3212   -0.1227    0.0723    0.2663    

0.4891 

   -1.4362   -1.5343   -1.6851   -1.7374   -1.7674   -1.7805   -

1.7682 

    2.2889    2.1890    2.0063    1.8600    1.6951    1.5141    

1.2791 

 

  Columns 2612 through 2618 

 

    0.6878    0.9240    1.0760    1.2030    1.3229    1.4363    

1.4969 

   -1.7277   -1.6426   -1.5495   -1.4287   -1.2882   -1.0720   -

0.8799 

    1.0400    0.7186    0.4734    0.2257   -0.0347   -0.3643   -

0.6170 

 

  Columns 2619 through 2625 

 

    1.5225    1.5120    1.4649    1.4065    1.2167    1.1101    

1.0152 

   -0.6603   -0.2946   -0.0828    0.1221    0.5954    0.7858    

0.9710 

   -0.8622   -1.2174   -1.3822   -1.5285   -1.8122   -1.8959   -

1.9862 

 

  Columns 2626 through 2632 

 

    0.8019    0.6381    0.4638    0.2869    0.0734   -0.1326   -

0.4236 

    1.2838    1.4896    1.6757    1.8442    2.0149    2.1557    

2.3040 

   -2.0856   -2.1277   -2.1394   -2.1311   -2.0883   -2.0231   -

1.8804 

 

  Columns 2633 through 2639 

 

   -0.5790   -0.7363   -0.8914   -1.0925   -1.2495   -1.4079   -

1.5348 

    2.3573    2.3839    2.3952    2.3791    2.3356    2.2435    

2.1218 

   -1.7783   -1.6476   -1.5038   -1.2866   -1.0862   -0.8356   -

0.5870 

 

  Columns 2640 through 2646 

 

   -1.6345   -1.6934   -1.7312   -1.7462   -1.7123   -1.6515   -

1.5423 

    1.9554    1.7869    1.5792    1.3199    1.0856    0.8443    

0.4965 

   -0.3209   -0.0935    0.1520    0.4263    0.6267    0.8072    

1.0458 

 

  Columns 2647 through 2653 

 

   -1.4301   -1.3022   -1.1333   -0.9191   -0.6891   -0.4758   -

0.2440 

    0.2488   -0.0001   -0.2814   -0.5768   -0.8441   -1.0599   -

1.2705 

    1.1813    1.3022    1.4147    1.4960    1.5332    1.5357    

1.5145 

 

  Columns 2654 through 2660 

 

    0.0068    0.3207    0.5859    0.8462    1.1478    1.3526    

1.5397 

   -1.4757   -1.6949   -1.8544   -1.9792   -2.0900   -2.1430   -

2.1766 

    1.4689    1.3742    1.2684    1.1330    0.9422    0.7904    

0.6369 

 

  Columns 2661 through 2667 

 

    1.7206    1.8967    2.0628    2.1845    2.2766    2.3540    

2.3710 

   -2.1881   -2.1721   -2.1181   -2.0360   -1.9223   -1.7425   -

1.5955 

    0.4675    0.2755    0.0553   -0.1485   -0.3543   -0.6115   -

0.7755 

 

  Columns 2668 through 2674 

 

    2.3623    2.3286    2.2447    2.1381    1.9954    1.7769    

1.6058 

   -1.4334   -1.2265   -0.9502   -0.7128   -0.4632   -0.1261    

0.0662 

   -0.9289   -1.1021   -1.2946   -1.4253   -1.5322   -1.6508   -

1.6720 

 

  Columns 2675 through 2681 

 

    1.4270    1.1736    0.9039    0.6585    0.3736    0.0297   -

0.1775 

    0.2480    0.4934    0.7177    0.9018    1.0854    1.2752    

1.3563 

   -1.6750   -1.6670   -1.6216   -1.5603   -1.4591   -1.3048   -

1.1787 

 

  Columns 2682 through 2688 
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   -0.3805   -0.7469   -0.9453   -1.1358   -1.3912   -1.6206   -

1.7907 

    1.4252    1.5164    1.5370    1.5459    1.5238    1.4575    

1.3766 

   -1.0447   -0.7696   -0.5917   -0.4101   -0.1326    0.1630    

0.4140 

 

  Columns 2689 through 2695 

 

   -1.9277   -2.0545   -2.1505   -2.2205   -2.2367   -2.2300   -

2.1942 

    1.2791    1.1493    0.9891    0.7489    0.5899    0.4216    

0.2189 

    0.6486    0.9052    1.1615    1.4716    1.6469    1.8084    

1.9752 

 

  Columns 2696 through 2702 

 

   -2.1007   -2.0085   -1.8843   -1.7142   -1.5365   -1.3447   -

1.0352 

   -0.0436   -0.2270   -0.4085   -0.6220   -0.8009   -0.9705   -

1.2085 

    2.1442    2.2355    2.2928    2.3362    2.3374    2.3152    

2.2437 

 

  Columns 2703 through 2709 

 

   -0.8367   -0.6260   -0.4276   -0.1627    0.0578    0.3435    

0.5986 

   -1.3188   -1.4107   -1.4841   -1.5616   -1.6040   -1.6293   -

1.6185 

    2.1555    2.0368    1.9117    1.7243    1.5463    1.2858    

1.0199 

 

  Columns 2710 through 2716 

 

    0.7984    0.9531    1.1240    1.2724    1.4349    1.5114    

1.5551 

   -1.5638   -1.4988   -1.3998   -1.2808   -1.0724   -0.9064   -

0.7082 

    0.7654    0.5457    0.2758    0.0084   -0.3625   -0.6050   -

0.8469 

 

  Columns 2717 through 2723 

 

    1.5817    1.5707    1.5400    1.4191    1.3435    1.2479    

1.0672 

   -0.4698   -0.2256    0.0194    0.4244    0.6159    0.8087    

1.1133 

   -1.1119   -1.3450   -1.5594   -1.8435   -1.9594   -2.0566   -

2.1805 

 

  Columns 2724 through 2730 

 

    0.9293    0.8064    0.6109    0.4465    0.2288    0.0020   -

0.2133 

    1.3047    1.4743    1.6845    1.8345    1.9863    2.1143    

2.2012 

   -2.2340   -2.2807   -2.2954   -2.2810   -2.2151   -2.1163   -

1.9879 

 

  Columns 2731 through 2737 

 

   -0.3758   -0.6380   -0.7705   -0.9032   -1.0603   -1.2311   -

1.4077 

    2.2439    2.2838    2.2647    2.2215    2.1573    2.0507    

1.8854 

   -1.8681   -1.6458   -1.4943   -1.3183   -1.0969   -0.8196   -

0.4777 

 

  Columns 2738 through 2744 

 

   -1.4579   -1.4899   -1.5514   -1.5379   -1.5298   -1.4913   -

1.4192 

    1.7473    1.5977    1.3124    1.1173    0.9286    0.6541    

0.3714 

   -0.2894   -0.1078    0.2389    0.4206    0.6012    0.8372    

1.0478 

 

  Columns 2745 through 2751 

 

   -1.2974   -1.1653   -1.0048   -0.7975   -0.5966   -0.3837   -

0.1035 

    0.0761   -0.1808   -0.4451   -0.7481   -0.9989   -1.2321   -

1.4932 

    1.2214    1.3461    1.4498    1.5455    1.5955    1.6158    

1.5967 

 

  Columns 2752 through 2758 

 

    0.1194    0.3474    0.5664    0.8141    1.0461    1.3332    

1.4877 

   -1.6759   -1.8434   -1.9890   -2.1245   -2.2250   -2.3011   -

2.3246 

    1.5564    1.4961    1.4226    1.3104    1.1789    0.9679    

0.8369 

 

  Columns 2759 through 2765 

 

    1.6314    1.8098    1.9689    2.0735    2.1467    2.2061    

2.2126 

   -2.3265   -2.2997   -2.2271   -2.1330   -2.0007   -1.8144   -

1.6499 

    0.6951    0.4900    0.2582    0.0595   -0.1460   -0.3918   -

0.5626 

 

  Columns 2766 through 2772 

 

    2.1966    2.1590    2.0812    1.9724    1.8278    1.6265    

1.4428 

   -1.4743   -1.2555   -0.9830   -0.7328   -0.4750   -0.1554    

0.0754 

   -0.7223   -0.9036   -1.0982   -1.2395   -1.3528   -1.4711   -

1.5182 

 

  Columns 2773 through 2779 

 

    1.2494    1.0254    0.7708    0.5145    0.2469   -0.0633   -

0.3164 

    0.2971    0.5322    0.7672    0.9742    1.1610    1.3457    

1.4683 

   -1.5465   -1.5576   -1.5380   -1.4887   -1.4080   -1.2824   -

1.1519 

 

  Columns 2780 through 2786 

 

   -0.5671   -0.8459   -1.1453   -1.3995   -1.6006   -1.8089   -

1.9868 

    1.5664    1.6487    1.6988    1.7097    1.6931    1.6462    

1.5721 

   -0.9992   -0.8028   -0.5535   -0.3102   -0.0925    0.1626    

0.4147 

 

  Columns 2787 through 2793 
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   -2.1597   -2.2573   -2.3263   -2.3793   -2.3953   -2.3752   -

2.3107 

    1.4415    1.3296    1.1997    1.0417    0.8164    0.6162    

0.4018 

    0.7182    0.9277    1.1266    1.3376    1.5789    1.7590    

1.9089 

 

  Columns 2794 through 2800 

 

   -2.2050   -2.0539   -1.9081   -1.7423   -1.5244   -1.2591   -

1.0184 

    0.1608   -0.0894   -0.2837   -0.4693   -0.6860   -0.9104   -

1.0764 

    2.0442    2.1433    2.1918    2.2116    2.2104    2.1696    

2.0947 

 

  Columns 2801 through 2807 

 

   -0.7973   -0.4315   -0.2303   -0.0380    0.3616    0.5296    

0.6957 

   -1.1992   -1.3845   -1.4455   -1.4878   -1.5705   -1.5579   -

1.5445 

    1.9965    1.8160    1.6758    1.5258    1.2089    1.0283    

0.8488 

 

  Columns 2808 through 2814 

 

    0.9843    1.1300    1.2604    1.4509    1.5392    1.6151    

1.6846 

   -1.4934   -1.4272   -1.3455   -1.1776   -1.0418   -0.8959   -

0.6814 

    0.5092    0.2972    0.0851   -0.2734   -0.4973   -0.7192   -

1.0032 

 

  Columns 2815 through 2821 

 

    1.7176    1.7161    1.6758    1.5942    1.4889    1.3796    

1.2264 

   -0.4431   -0.1925    0.0793    0.3683    0.6287    0.8449    

1.0906 

   -1.2745   -1.5236   -1.7551   -1.9625   -2.1176   -2.2245   -

2.3170 

 

  Columns 2822 through 2828 

 

    1.0378    0.8494    0.6857    0.4847    0.2717    0.0066   -

0.2358 

    1.3414    1.5474    1.6960    1.8459    1.9741    2.0973    

2.1743 

   -2.3792   -2.3968   -2.3817   -2.3306   -2.2458   -2.1039   -

1.9385 

 

  Columns 2829 through 2835 

 

   -0.4163   -0.5840   -0.7708   -0.9534   -1.1592   -1.2698   -

1.3576 

    2.1944    2.1886    2.1606    2.1046    2.0027    1.8901    

1.7510 

   -1.7780   -1.6046   -1.3898   -1.1511   -0.8435   -0.6203   -

0.3933 

 

  Columns 2836 through 2842 

 

   -1.4292   -1.4899   -1.5306   -1.5379   -1.5047   -1.4322   -

1.3385 

    1.5927    1.3867    1.1636    0.8804    0.6029    0.3469    

0.0935 

   -0.1635    0.1033    0.3671    0.6576    0.9017    1.0853    

1.2449 

 

  Columns 2843 through 2849 

 

   -1.1590   -1.0220   -0.8670   -0.7002   -0.4766   -0.2530    

0.0432 

   -0.2885   -0.5281   -0.7605   -0.9877   -1.2456   -1.4793   -

1.7397 

    1.4475    1.5501    1.6275    1.6879    1.7221    1.7323    

1.6964 

 

  Columns 2850 through 2856 

 

    0.2774    0.5105    0.8242    0.9982    1.1618    1.4084    

1.5978 

   -1.9247   -2.0748   -2.2352   -2.3024   -2.3582   -2.4011   -

2.3990 

    1.6473    1.5643    1.4110    1.3041    1.1964    0.9927    

0.8011 

 

  Columns 2857 through 2863 

 

    1.7286    1.8553    1.9608    2.0723    2.1053    2.1097    

2.0993 

   -2.3661   -2.2943   -2.1902   -2.0115   -1.8700   -1.7079   -

1.5198 

    0.6376    0.4390    0.2295   -0.0608   -0.2353   -0.4018   -

0.5794 

 

  Columns 2864 through 2870 

 

    2.0550    1.9660    1.8561    1.7293    1.5787    1.3893    

1.1811 

   -1.2552   -0.9271   -0.7045   -0.4836   -0.2505    0.0104    

0.2720 

   -0.7999   -1.0389   -1.1516   -1.2457   -1.3282   -1.3997   -

1.4530 

 

  Columns 2871 through 2877 

 

    0.8786    0.6850    0.4781    0.1601   -0.0665   -0.2842   -

0.5972 

    0.6035    0.7815    0.9477    1.1818    1.3165    1.4394    

1.5818 

   -1.4820   -1.4665   -1.4258   -1.3420   -1.2500   -1.1553   -

0.9846 

 

  Columns 2878 through 2884 

 

   -0.8529   -1.0953   -1.4611   -1.6440   -1.7985   -2.0808   -

2.1648 

    1.6716    1.7299    1.7656    1.7612    1.7419    1.6314    

1.5624 

   -0.8187   -0.6346   -0.3045   -0.1171    0.0566    0.4494    

0.6024 

 

  Columns 2885 through 2891 

 

   -2.2548   -2.3758   -2.4205   -2.4312   -2.4239   -2.3605   -

2.2804 

    1.5000    1.3083    1.1863    1.0534    0.8895    0.6361    

0.4267 

    0.7548    1.0675    1.2342    1.3778    1.5344    1.7244    

1.8538 
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  Columns 2892 through 2898 

 

   -2.1583   -1.9967   -1.8272   -1.6430   -1.4047   -1.1299   -

0.8664 

    0.2051   -0.0453   -0.2415   -0.4315   -0.6514   -0.8713   -

1.0427 

    1.9532    2.0420    2.0687    2.0745    2.0561    2.0012    

1.9091 

 

  Columns 2899 through 2905 

 

   -0.6413   -0.3619   -0.0997    0.1843    0.4550    0.7104    

0.9244 

   -1.1591   -1.2849   -1.3778   -1.4558   -1.5016   -1.5106   -

1.4858 

    1.8004    1.6469    1.4775    1.2715    1.0466    0.8001    

0.5614 

 

  Columns 2906 through 2912 

 

    1.1199    1.3546    1.4889    1.6014    1.7027    1.7833    

1.8402 

   -1.4305   -1.3196   -1.2174   -1.0973   -0.9532   -0.7620   -

0.5323 

    0.3106   -0.0349   -0.2715   -0.5041   -0.7495   -1.0213   -

1.3079 

 

  Columns 2913 through 2919 

 

    1.8531    1.8343    1.7823    1.6644    1.5713    1.4712    

1.3512 

   -0.2548   -0.0211    0.2059    0.5242    0.7139    0.8927    

1.0727 

   -1.5983   -1.8132   -1.9883   -2.1885   -2.2851   -2.3639   -

2.4239 

 

  Columns 2920 through 2926 

 

    1.1938    1.0137    0.7931    0.5578    0.3516    0.1620   -

0.1076 

    1.2629    1.4438    1.6210    1.7735    1.8723    1.9395    

2.0108 

   -2.4567   -2.4576   -2.4140   -2.3313   -2.2239   -2.1015   -

1.9032 

 

  Columns 2927 through 2933 

 

   -0.3540   -0.5382   -0.7081   -0.8879   -1.0530   -1.2413   -

1.3165 

    2.0395    2.0235    1.9838    1.9143    1.8120    1.6421    

1.5028 

   -1.6855   -1.4854   -1.2757   -1.0264   -0.7590   -0.4008   -

0.1863 

 

  Columns 2934 through 2940 

 

   -1.3762   -1.4494   -1.4738   -1.4829   -1.4505   -1.3898   -

1.2891 

    1.3507    1.1252    0.9222    0.7133    0.4097    0.1523   -

0.1206 

    0.0255    0.3242    0.5516    0.7696    1.0407    1.2375    

1.4097 

 

  Columns 2941 through 2947 

 

   -1.0984   -0.9688   -0.8398   -0.5397   -0.3844   -0.2263    

0.0261 

   -0.5261   -0.7421   -0.9468   -1.3344   -1.5099   -1.6817   -

1.9089 

    1.6245    1.7109    1.7865    1.8740    1.8943    1.9080    

1.8828 

 

  Columns 2948 through 2954 

 

    0.2860    0.4850    0.6861    0.9022    1.1565    1.2948    

1.4231 

   -2.1019   -2.2290   -2.3336   -2.4178   -2.4740   -2.4803   -

2.4598 

    1.8159    1.7441    1.6475    1.5155    1.3175    1.1855    

1.0367 

 

  Columns 2955 through 2961 

 

    1.5428    1.6675    1.7668    1.8728    1.9066    1.9145    

1.9049 

   -2.4168   -2.3351   -2.2272   -2.0426   -1.8824   -1.6945   -

1.4788 

    0.8740    0.6676    0.4604    0.1699   -0.0242   -0.2199   -

0.4262 

 

  Columns 2962 through 2968 

 

    1.8557    1.7785    1.6630    1.4418    1.2928    1.1495    

0.8643 

   -1.1677   -0.9192   -0.6569   -0.2073   -0.0006    0.1941    

0.5580 

   -0.6881   -0.8593   -1.0061   -1.2345   -1.2922   -1.3436   -

1.4223 

 

  Columns 2969 through 2975 

 

    0.6910    0.5168    0.2623   -0.0066   -0.3327   -0.5672   -

0.7996 

    0.7375    0.9160    1.1431    1.3507    1.5612    1.6927    

1.8040 

   -1.4285   -1.4328   -1.4053   -1.3440   -1.2285   -1.1255   -

1.0044 

 

  Columns 2976 through 2982 

 

   -1.0364   -1.2894   -1.5265   -1.7845   -1.9538   -2.0991   -

2.2293 

    1.9023    1.9799    2.0328    2.0459    2.0374    1.9997    

1.9430 

   -0.8659   -0.6905   -0.5063   -0.2614   -0.0835    0.0994    

0.2863 

 

  Columns 2983 through 2989 

 

   -2.3474   -2.4224   -2.4547   -2.4507   -2.4057   -2.3226   -

2.2019 

    1.8316    1.7088    1.5542    1.3914    1.1765    0.9364    

0.7029 

    0.5158    0.7136    0.9005    1.0593    1.2292    1.3862    

1.4991 

 

  Columns 2990 through 2996 

 

   -2.0594   -1.8821   -1.6651   -1.4206   -1.1843   -0.9373   -

0.6034 

    0.4924    0.2657    0.0177   -0.2267   -0.4280   -0.6121   -

0.8302 
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    1.5670    1.6164    1.6475    1.6473    1.6124    1.5494    

1.4336 

 

  Columns 2997 through 3003 

 

   -0.3784   -0.1567    0.1114    0.4069    0.7197    0.9059    

1.0835 

   -0.9463   -1.0514   -1.1694   -1.2711   -1.3476   -1.3681   -

1.3735 

    1.3248    1.2082    1.0580    0.8643    0.6279    0.4622    

0.2900 

 

  Columns 3004 through 3010 

 

    1.2477    1.4005    1.6012    1.7687    1.8824    1.9633    

2.0227 

   -1.3662   -1.3434   -1.2660   -1.1559   -1.0396   -0.9087   -

0.6530 

    0.1185   -0.0571   -0.3353   -0.6128   -0.8429   -1.0545   -

1.3698 

 

  Columns 3011 through 3017 

 

    2.0332    2.0262    1.9419    1.8836    1.8246    1.6327    

1.5149 

   -0.5345   -0.4288   -0.1234   -0.0348    0.0435    0.2950    

0.3786 

   -1.4987   -1.5974   -1.8184   -1.8488   -1.8681   -1.9276   -

1.8934 

 

  Columns 3018 through 3024 

 

    1.3842    1.1774    0.9594    0.7632    0.5236    0.2437    

0.0455 

    0.4606    0.6037    0.7250    0.8069    0.8926    0.9801    

1.0120 

   -1.8449   -1.7811   -1.6844   -1.5701   -1.4163   -1.2238   -

1.0575 

 

  Columns 3025 through 3031 

 

   -0.1452   -0.3379   -0.5371   -0.7260   -0.9185   -1.0882   -

1.2037 

    1.0289    1.0321    1.0138    0.9718    0.9018    0.8155    

0.7245 

   -0.8837   -0.6942   -0.4768   -0.2458    0.0167    0.2727    

0.4792 

 

  Columns 3032 through 3038 

 

   -1.2880   -1.3818   -1.4020   -1.3975   -1.3766   -1.3071   -

1.2120 

    0.6387    0.4514    0.3391    0.2195    0.0734   -0.1469   -

0.3427 

    0.6493    0.9305    1.0629    1.1780    1.3032    1.4540    

1.5547 

 

  Columns 3039 through 3045 

 

   -1.0700   -0.9178   -0.7362   -0.4494   -0.2878   -0.1335    

0.2169 

   -0.5465   -0.7159   -0.8707   -1.1052   -1.1379   -1.1354   -

1.2553 

    1.6165    1.6337    1.6069    1.5546    1.4258    1.2689    

1.0384 

 

  Columns 3046 through 3047 

 

    0.3821    0.5113 

   -1.1905   -1.0891 

    0.8085    0.5778 

 

>> 
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