ENHANCING PROCESS PERFORMANCE IN CABLE MANUFACTURING, USING A SYNERGETIC SUPPORT OF SIX SIGMA-DMAIC AND KNOWLEDGE MANAGEMENT CONCEPTS

BY

U-DOMINIC, CHUKWUEBUKA MARTINJOE

NAU/PG/Ph.D./2014377001F

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL /PRODUCTION ENGINEERING

FACULTY OF ENGINEERING

NNAMDI AZIKIWE UNIVERSITY, AWKA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTORATE DEGREE (Ph.D.) IN

INDUSTRIAL ENGINEERING

2019.

CERTIFICATION

I, CHUKWUEBUKA MARTINJOE U-DOMINIC, hereby certify that I am responsible for the work submitted in this dissertation and that this is an original work, which has not been submitted to this university or any other institution for the award of a degree or diploma.

Signature of Candidate

Date

APPROVAL PAGE

This is to certify that this dissertation was done by U-Dominic, Chukwuebuka Martinjoe, with registration no. 2014377001F, a student of the Department of Industrial/Production Engineering in the Faculty of Engineering for the award of Doctorate degree in Engineering.

Prof. H.C. Godwin	Date
(Supervisor)	
Dr. C.E. Mgbemena	
(HOD, Industrial/ Production Engr'g)	Date
Prof. G.C Ovuworie	Date
(External Examiner)	
Prof. H.C. Godwin	Date
(Dean Faculty of Engineering)	
Prof. P.K. Igbokwe	Date
(Dean, School of Postgraduate Studies)	

DEDICATION

Dedicated to God Almighty, my comforter.

And

My family

ACKNOWLEDGEMENT

My sincere gratitude goes to God Almighty, the Omni potent God, who has always been with me throughout this programme.

I acknowledge and appreciate my supervisor, Professor H.C. Godwin, from whom I have learnt a lot about life. Thank you so much, Sir.

I am particularly grateful to the Head of the Department, Dr. E.C Mgbemena, Dr. C.E. Chinwuko, Professor C.C. Ihueze and the entire staff and students of the Department of Industrial and Production Engineering, Nnamdi Azikiwe University, Awka, for their encouragement and support throughout the programme.

I am indebted to thank the CEO, Cutix Cable PLC, Mr. Ifeanyi Uzodike, Tgst. (Mrs) Ijeoma Obiora, Engr. Arinze Okwuosa and the entire staff of Cutix Cable PLC, for their assistance and unfettered support.

I could not have finished this study without the constant prayer, encouragement and support from my amiable wife, Bar. Charity and son, Master Testimony and Dr. A.C.C. Ezeabasili. Cable manufacturing industry is a field with a lot of variations and defects in its processes, the product quality is essential and variation in products is also a critical concern. The level of commitment to quality required to manufacture cable products in the country is enriching day by day. Making defective products in cable manufacturing, even though they can all be recovered, re-ground and the material used again, is uneconomic and non-productive because there is a large amount of money invested in the rejected product and extra energy and labor must then be spent on material recovery. Further consequences from a compromised cable product apart from the economic implications can be seen in the form of electric shocks, electrocution incidence and undisputed difficulty in delivering electrical energy to a load efficiently. In cable manufacturing, product quality is essential and variation in product is a critical issue but in most cases, results from solutions to cable defects identified during process improvement projects are not sustained so is imperative to keep extrusion systems up and running and solutions for eliminating errors and defects from cable extrusion systems are necessary. However, many solutions of integrating Knowledge Management and Six Sigma have been applied into many fields to solve similar problems of sustaining results from projects, but such integrations has not been applied in cable manufacturing industry in Nigeria or developed yet. Many organizations in the past have sought strategies to improve their extrusion process and product quality but none of the approaches were able to tackle the ever challenges of absorptive capacity (not-invented-here syndrome), development and exploration of organizational social capital, best practice replications and co-location creation. This study looked at variation and its causes, and how to improve and control a process using a synergetic support of Six Sigma-DMAIC and Knowledge Management concepts. The proposed Six Sigma-DMAIC-KM integrated solution has been validated in a cable manufacturing company in order to enhance the organizational performance. The improvements of project performance and application impacts of the proposed solution have been investigated by comparing the initial and final capability of the process of the executed projects, by comparing the initial and final Sigma level of the executed projects, by comparing initial and final economic impact assessment of the executed project. A hierarchy of decision was modeled to prioritize defect judgments on Insulation thickness failures and Insulation Surface flaws. An extrusion model was developed for predicting the appropriate cable dimension. Appropriate engineering specification was designed and tightened from $(T\pm0.185)$ to $(T\pm0.032)$ such that a Six sigma process could easily be captured. The completion of the study resulted to peak improvement in the capability performance, for the cable diameter using the newly-designed engineering tolerance, Cp increased from 0.22 to 1.43, Cpk increased from 0.3 to 1.23, CR decreased from 447.43% to 69.96%, ZU improved from -0.88 to 3.68, and ZL now moved from 2.22 to 4.89. DPMO reduced from 810,000 to 10, thus improving the Sigma level from the value of 0.6 to 5.2. On the Insulation thickness using the newly-derived engineering tolerance, Cp value increased from 0.45 to 0.90, Cpk increased from -0.035 to 0.09, ZU increased from -0.11 to 0.28, and ZL from 2.79 to 5.17. CR reduced from 223% to 110%, and total rejection rate was reduced from 54.64% to 38.97%. A significant reduction in DPMO from 570,000 to 420,000 was achieved, thus improving the Sigma level from 1.3 to 1.7. The economic impact assessment for the cable diameter project using quality loss function has shown that the quality loss attributed to every single 1.0s (mm) coil produced has reduced from the initial cost of N7.34 to \aleph 2.08. The percentage decrease in annual loss is estimated at about 72%, an indication that annual loss before the improvement was reduced from N 1,783,620 to N505,440 after the process improvement. The quantity of non-conformed 1.0s (mm) cable rejected due to Insulation Surface flaws was reduced by 38.22% from the acceptable defect quantity, and about 5.6% reduction when compared with the entitlement value in the previous years. A generic knowledge-based support tool was developed in a MATLAB graphical user Interface environment that will help cable manufacturing organizations in replicating improvement studies. In general, the proposed improvement solution would serve as practical guide for adoption for cable manufacturing companies and other manufacturing companies in order to improve process performance and in becoming more knowledgeable.

Table of Contents	PAGE
Title page	i
Certification page	ii
Approval page	iii
Dedication	iv
Acknowledgement	V
Abstract	vi

CHAPTER ONE	INTRODUCTION	
1.1	Background of the Study	4
1.2	Statement of the Problem	4
1.3	Aim & Objectives	5
1.4	Scope of the Study	5
1.5	Significance of the Study	6
CHAPTER TWO	I ITERATURE REVIEW	

CHAPTER TWO LITERATURE REVIEW

2.1	Six Sigma Developments	7
2.2	Six Sigma Structure	14
2.3	Six Sigma Metric	14
2.3.1	The Sigma Capability	15
2.4	Six Sigma Implementation/ Applications	17
2.4.1	Six Sigma Applications in Service Sectors	20
2.4.2	Six Sigma Applications in a Small-and-Medium Enterprise (SME)	23
2.4.3	Six Sigma and Quality Management Approaches	24
2.4.4	Six Sigma Integration	26
2.4.5	Six Sigma and Innovation	27

2.4.6	Six Sigma and Organizational Sustenance	28
2.4.7	Six Sigma Benefits	29
2.4.8	Confrontational Concerns on Six Sigma Improvement Strategies	30
2.5	Knowledge Management (KM)	32
2.5.1	Knowledge Conversion Processes	33
2.5.2	Knowledge Management Viewpoint	36
2.5.3	Knowledge Management Critical Success Factors (CSFs)	37
2.5.4	Knowledge Management Models and Tools	40
2.5.5	Community of Practice (CoP)	44
2.5.6	Practical Concerns on KM Functions	46
2.5.7	KM Metrics	47
2.5.8	Knowledge Creation within Six Sigma Quality Management	48
2.6	Knowledge Gap	54
CHAPTE	ER THREE MATERIALS AND METHOD	
3.1	Research Design	56
3.1.1	Data Collection	57
3.1.2	Software Packages used in the Study	61
3.2	Validation Case Study	62
3.2.1	Overview of Cable Extrusion System	64
3.3	The Define Phase	65
3.4	The Measure Phase	66
3.4.1	Materials and Equipment for Measuring the Cable Diameter and Thickness	67
3.4.2.	Attribute Gage Measurements Study and Collection of Data	68
3.4.3.	Gage Repeatability and Reproducibility (R & R)	69
3.4.4.	Sample Selection in Gage Repeatability and Reproducibility (R & R)	Study 69

3.4.5	Process Capability Studies	71
3.4.6.	Sample Size Selection	71
3.4.6.1.	Process Standard Deviation ($\hat{\sigma}$)	73
3.4.6.2.	Process Capability (Cp)	73
3.4.6.3	Process Capability Index (Cpk)	74
3.4.6.4	Process Capability Index (Cpm)	75
3.4.6.5	Capability Ratio (CR) Index	75
3.4.6.6	The ZU Index	77
3.4.6.7	The ZL Index	77
3.4.6.8	Precautions	77
3.5.	The Analyze phase	78
3.5.1	Brainstorming and Fish Bone (Cause-and-Effect) Diagram	78
3.5.2	Cause Validation Matrix	79
3.5.3	The Analytic Hierarchy Process (AHP)	79
3.6	The Improve Phase	80
3.6.1	Method Study	80
3.6.2.	Design of Experiment	81
3.6.2.1.	Counting Degree of Freedom (DOF)	82
3.6.3	Collection of Data	84
3.6.4	Response Surface Methodology (RSM)	84
3.7	Tolerance Interval Design	86
3.8	Time Study	87
3.8.1	Data Collection Steps	87
3.9	The Control Phase	88
3.10	Economic Impact Assessment	89

3.11	Develo	opment of the Generic Knowledge based Tool	90
3.12	Ethical	Consideration	91
CHAPTER F	OUR:	RESULTS AND DISCUSSION	
4.1		Introduction	92
4.1.1		The Define Phase	92
4.2		The Measure Phase	97
4.2.1		Measurement System Analysis (MSA)	97
4.2.1.1		Gage Repeatability and Reproducibility Analysis on the Ca Diameter	uble Core 99
4.2.2		Process Capability Analysis (PCA)	101
4.2.2.1		Process Capability Assumptions	101
4.2.2.2		Test validation of first Assumption for the Baseline Cable Measurement	diameter 102
4.2.2.3		Test Validation of the Second Assumption for the Baseli diameter Measurement	ne Cable 103
4.2.2.4		Process Capability Index Estimations for the Baseline Conditions	Process 104
4.2.3		Baseline Process Capability Analysis for the Cable I Thickness	Insulation 105
4.2.3.1		Test validation of the first Assumption for Insulation 7 Measurements	Fhickness 108
4.2.3.2		Test Validation of the Second Assumption for Insulation	Thickness
		Measurements	109
4.2.4		Process Capability Index Estimations for the Insulation 7	Thickness
		Baseline Process Conditions.	110
4.3		The Analyze Phase	111
4.3.1		Analytical Hierarchy Process (AHP)	119
4.3.2		Analyze Phase Review	131

4.3.3	The Improve Phase	131
4.3.4	Method Study	136
4.3.4.1	Conductor Positioning in Cable Extrusion Process	141
4.3.5	Analysis on the Experimental Design	143
4.3.5.1	Confirmation Tests	154
4.3.6.1	Test Validation of First Assumption for Normality of Data	155
4.3.6.2	Test Validation of the Second Assumption for Normality of Data	156
4.3.6.3	Tolerance Design	160
4.3.6.4	Process Capability Estimation for Cable Insulation Thickness after	r the
	Process Improvement.	162
4.3.6.5	Test validation of first Assumption for Cable Insulation Thickness	165
4.3.6.6	Test Validation of the Second Assumption for Cable Insula Thickness	ation 166
4.3.6.7.	Assessing the Capability of the Baseline Data for the Cable Diam using the newly designed engineering tolerance	neter, 171
4.3.6.8	Assessing the capability of the baseline data for the cable Insulatio	n
	thickness, using newly derived engineering tolerance.	176
4.4	Derivation of Standard Time and Work Target Estimation	178
4.4.1	Study Assumptions	179
4.5	The Control Phase	181
4.6	Entire Process Review	188
4.7	Economic Impact Analysis Before and After the Improvement	193
4.7.1	Economic Impact Estimation After Improvement	197
4.8	Development of a Graphical User Interface Support System	202
4.8.1	General Consideration in User Interface Support Systems	203
4.8.2	Data Presentation	204

4.8.3	System Walk Through	206
CHAPTER FIVE	CONCLUSION AND RECOMMENDATIONS	
5.1	Summary of Findings	211
5.2	Achievement of Research Aim	213
5.3	Contributions to Knowledge	213
5.4	Recommendation for Further Research	213
REFERENCES		

APPENDIX

LIST OF FIGURES

Figure 1:	Cable failures and quality implications	3
Figure 2.1	The standard normal distribution graph	9
Figure 2.2:	Six Sigma definitions	10
Figure 2.3:	Normal standard distribution with deviation	11
Figure 2.4:	Defect rate (DPMO) versus process sigma level	11
Figure 2.5:	Lean six sigma green belt certification	12
Figure 2.6:	High-level DMAIC process flow	13
Figure 2.7:	Six sigma DMADV methodology	14
Figure 2.8:	Off-center process leading to high scrap and rework cost	15
Figure 2.9:	The four knowledge conversion processes	35
Figure 2.10:	Communities of practice and organization performance	45
Figure 2.11:	A framework for learning and Knowledge creation in quality improvement	49
Figure 3.1:	Flowchart of the Research Design representing the Entire Improvement c	ycle
Figure 3.2:	Knowledge Management Process Model	50 57
Figure 3.3:	Knowledge dynamics in CoP environment.	58
Figure 3.4:	The Proposed conceptualized Improvement strategy.	59
Figure 3.5:	Process Flow Diagram of Anuka Cable Production line of Cutix Cable Plc	62
Figure 3.6:	SIPOC diagram of Anuka Cable Production line of Cutix Cable Plc	63
Figure 3.7:	Wire extrusion system	64
Figure 3.8:	Flow chart of wire extrusion method	64
Figure 3.9:	Components of Extruder chamber	65
Figure 3.10:	Flow chart of Process Capability Analysis	72
Figure 3.11	Relationship of Cp parameters	73
Figure 3.12:	Relationship of Cpk parameters	77

Figure 3.13:	Process capability related to use of target values	75
Figure 3.14:	Off-centered process	76
Figure 3.15:	Fishbone Diagram	79
Figure 3.16:	General model of the process	82
Figure 3.17:	Central Composite Design flow diagram	86
Figure 3.18:	Data collection process	88
Figure 3.19:	Graphical representation for quality loss function for nominal is the best	90
Figure 3.20:	Flowchart for the Generic Graphical User Interface Support S Development.	ystem 91
Figure 4.1:	Pareto chart of defects (Cutix Cable Plc, Anuka Cable Plant)	94
Figure 4.2:	Pareto chart of defects (Cutix Cable Plc, Anuka Cable Plant)	95
Figure 4.3:	Measurement System Analysis results for the attribute data	99
Figure 4.4:	Measurement Analysis results for the variable data	100
Figure 4.5:	X-Bar-R chart of the Cable diameter data	103
Figure 4.6:	Histogram of the cable diameter baseline measurements	103
Figure 4.7:	Normal Probability plot of the cable diameter baseline Measurements	104
Figure 4.8:	Graphical illustration of the cable diameter baseline Measurements	104
Figure 4.9:	X-Bar-R chart of the Cable Insulation thickness data	109
Figure 4.10:	Histogram of the cable Insulation thickness baseline data	109
Figure 4.11:	Normal Probability plot on the cable Insulation thickness baseline data.	109
Figure 4.12:	Graphical illustration of the cable insulation thickness baseline data	110
Figure 4.13:	Process flow diagram (TEKO-50 extrusion process line)	111
Figure 4.14:	Brainstorming diagram of Insulation thickness & Insulation Surface defe causatives.	ect and 111
Figure 4.15:	Cause and Effect diagram on the Cable Insulation Thickness Failures	112
Figure 4.16:	Cause and Effect diagram on the Cable Insulation Surface Flaws	112
Figure 4.17:	Modeled decision hierarchy for producing cable with Improved Insulatio	n

	Thickness.	120
Figure 4.18:	Graphical representation of criteria and their prioritized judgments	122
Figure 4.19: 1	Modeled decision hierarchy with the prioritized judgments for the Cable	e
]	insulation thickness	123
Figure 4.20: Figure 4.21:	Ranking of the sub criteria/ sub causes for improving Inst thickness in Cable Pareto Chart of sub causes of Insulation Thickness Failures	sulation 124
Figure 4.22:	Modeled decision hierarchy for improved cable Insulation S	125 Surface 126
Figure.4.23.	Graphical representation of criteria and their prioritized judgmen Insulation Surface Flaws.	nts for 127
Figure.4.24:	Modeled decision hierarchy with the prioritized judgments Cable Insulation Surface.	for the 128
Figure.4.25.	Ranking of the sub criteria/ sub causes for Cable Insulation s flaws	Surface 130
Figure. 4.26.	Pareto Chart of sub-causes for Insulation Surface Flaws	131
Figure.4.27.	Process Flow Chart (AS-IS Method)	138
Figure. 4.28.	Extrusion Start-up Operation (Improved Method)	141
Figure 4.29.	Diagrammatic representation of Extrusion Machine's Tips and I	Die 141
Figure 4.30.	Cross sectional view of Cross head and the centering Bolts	142
Figure 4.31.	Main effect plot for signal-to-noise (nominal is best) for the diameter	e Cable 147
Figure 4.32.	Main effect plot for means (nominal is best) for the Cable diame	eter 147
Fig.4.33 (a & b)) Normal probability plot of the residual (R1 &R2).	151
Fig.4.34 (a & b): Residual vs. Run for R1 & R2	152
Fig. 4.35(a & b)	2D Contour plot for R1 & R2	152
Fig. 4.36(a & b)	3D Contour Plot for R1 & R2	153
Figure 4.37:	X-Bar-R Chart for core Cable diameter after process Improvement	ent 155
Figure 4.38:	Histogram for the Cable diameter data after the process	

Improvement

Figure 4.39:	Normal Probability plot for the Cable diameter data after the process Improvement. 157
Figure 4.40:	X-Bar-R chart for the transformed data after the process Improvement
Figure 4.41:	Capability analysis for the Cable diameter measurements after the process Improvement 159
Figure 4.42:	Capability analysis for the Cable diameter after the process Improvement 161
Figure 4.43:	X-bar-R chart on Cable Insulation thickness after the process Improvement 165
Figure 4.44 :	Histogram for the Cable Insulation thickness after the process Improvement 166
Figure 4.45:	Normal Probability plot on the Cable Insulation thickness data after the process Improvement. 166
Figure 4.46:	Box-Cox plot of Cable Insulation thickness after the process Improvement 169
Figure: 4.47:	X-Bar-R chart on Cable Insulation thickness on transformed data 167
Figure 4.48:	Process capability report on Cable Insulation thickness after the process Improvement. 170
Figure 4.49:	Process Capability analysis on the baseline data using the newly- derived engineering tolerance. 171
Figure 4.50:	Process Capability analysis on the baseline data for the Cable Insulation thickness using the newly- derived engineering tolerance. 176
Figure 4.51:	Six Sigma Common Causes and Special Causes 181
Figure 4.53:	I-MR-R/S chart for Cable diameter for the first production shift 185
Figure 4.54:	I-MR-R/S chart for Cable diameter for the second production shift 185
Figure 4.55:	I-MR-R/S chart for the Cable diameter for the third production shift 185
Figure 4.56:	I-MR-R/S chart for the Cable diameter for the fourth production shift 186
Figure 4.57:	I-MR-R/S chart for Cable diameter for the fifth production shift 186
Figure 4.58:	I-MR-R/S chart for Cable diameter for the sixth production shift 186

156

Figure 4.59:	I-MR-R/S chart for Cable diameter for the seventh production shift	ft 187
Figure 4.60:	I-MR-R/S chart for Cable diameter for the eight production shift	187
Figure 4.61:	I-MR-R/S chart for Cable diameter for the ninth production shift	187
Figure 4.62:	A Graphical Overview of the Generic User Support System	204
Figure 4.63	Required Input Format for the Historical data	205
Figure 4.64	Required Input Format for the Cable Diameter Measurements	205
Figure 4.65	Required Input Format for Cable Insulation Thickness Measureme	nts
Figure 4.66	Home Screen of the Graphical User Interface	200 207
Figure 4.67	An Overview of the Problem definition and Defect Stratification	207
Figure 4.68	An Overview of the Specified System Specification and Data uploa	ad 208
Figure 4.69	An Overview on the Data analysis and Capability Summary	208
Figure 4.70	Design Flowchart of the Capability Index Studies	209
Figure 4.71:	Screen Shot View of the Improvement Page/Summary.	209
Figure 4.72	Flowchart of the Simulation and optimization operation of Software	the 210

LIST OF TABLES

Table 2.1:	Sigma Levels and DPMO	11
Table 2.2:	Barriers to Cultural Change and Possible Solutions	40
Table 2.3:	Knowledge Management Application Model	40
Table 2.4:	Knowledge Management Tools and Methods	43
Table 2.5:	Knowledge Management (KM) Metrics and Scope	48
Table 2.6:	Description of Practices that Links Knowledge and Quality Managemen	t 51
Table 3.1:	Critical to Quality Characteristics Considered in the MSA	67
Table 3.2:	Measurement System Analysis Design	71
Table 4.1:	Records on 1.0mm Single Core House Wiring Cables Produced from Feb.2017Source: Cutix Cable PLC Umuannuka PCP1 Plant	2013- 93
Table 4.2:	Quantity of 1.0mm Single House Wiring Cables Rejected from Feb.2017	2013- 93
Table 4.3:	Financial Cost (₦) of 1.0mm Single Wires Rejected as a Result of I from (2013-Feb.2017) at Anuka Cable Plant	Defects 94
Table 4.4:	Project Charter	96
Table 4.5:	Measurement System Analysis- Attribute Data (Cable Insulation smooth	ness) 98
Table: 4.6:	The Benchmark Interpretation for kappa Value	99
Table 4.7:	Measurement System Analysis- Variable Data (Core diameter)	99
Table 4.8:	Gage R & R Metrics Guidelines	101
Table 4.9:	Product Description for cable diameter measurement specifications	102
Table 4.10:	The Baseline Measurements for the Cable Core Diameter	102
Table 4.11:	Product Description for cable Insulation Thickness measurement specifications	105
Table 4.12:	The Baseline Measurements for Cable Insulation Thickness	106
Table 4.13:	Cause Validation Matrix for Insulation Thickness Failures	114
Table 4.14:	Cause Validation Matrix for Insulation Surface Flaws	116

Table 4.15:	Main Criteria Comparison Table for the Improved Cable Insulation Thick	tness 121
Table 4.16:	Normalized Matrix for the Principal Eigen Vector for the Main Criteria	121
Table 4.17:	Consistency Indices for the Improved Insulation Thickness Sub criteria	122
Table 4.18:	Derived Factor Priorities for the Improved Cable Insulation Thickness	124
Table 4.19:	Normalized Matrix for the Principal Eigen Vector for the Main Criteria	127
Table 4.20:	Derived Factor Priorities for the Improved Cable Insulation Surface	129
Table: 4.21:	Solutions for Reducing Insulation Thickness Failures	132
Table: 4.22:	Solutions for Reducing Insulation Surface Flaws in Cable Extrusion Proc	ess
Table 4.23:	Flow Process Chart (AS -IS)	134
Table 4.24:	Summary of the Process Sequence (AS -IS)	138
Table: 4.25.	Flow Process Chart (Improved method)	139
Table 4.26:	Summary of the Process Sequence (Improved Method)	140
Table 4.27:	Cable Diameter Experimental Data	144
Table 4.28:	ANOVA Table for the Cable Diameter Experiment	145
Table 4.29:	Determining the Degree of Freedom (DOF)	145
Table 4.30:	Experimental Layout using an L16 Orthogonal Array	146
Table 4.31:	Results / Outcome of the Experimental Design using Taguchi Method	148
Table 4.32:	Experimental Design using Central Composite Design and Response val	lue
Table 4.33:	Fit summary Response 1: Preheated PVC	149
Table 4.34:	Response 2: Non preheated PVC	149
Table 4.35:	ANOVA table for cable dimension using Preheated PVC	150
Table 4.36:	ANOVA table for cable dimension using Non-preheated PVC	150
Table 4.37:	Optimization using desirability criterion	153
Table 4.38:	Cable Diameter Measurements after the Process Improvement	155

Table 4.39:	Cable Diameter Data after Improvement (after Transformation)	158
Table 4.40:	Process Capability Index Estimations Values for the Cable Diamete the Process Improvement)	r (After 160
Table 4.41:	Population Standard Deviation Derivations	161
Table 4.42:	Cable Insulation Thickness Data after the Process Improvement	163
Table 4.43:	Engineering Specification for Cable Insulation Thickness after Improv	vement 167
Table 4.44:	Transformed Insulation Thickness Data after Process Improvement	168
Table 4.45:	Capability Index Results for the Core Cable Diameter Measurements	172
Table 4.46:	Comparing Index Results on the Baseline Data for the Cable Diamet the Old and New Engineering Tolerance.	er using 173
Table 4.47:	Comparing Index Results on the Cable Diameter Measurements bet after the Process Improvement	fore and 174
Table 4.48:	Capability Index Results for the Cable Insulation Thickness	175
Table 4.49:	Comparing Index Results on the Baseline Data for the Cable In Thickness using the Derived Tolerance before and after the Improvement	sulation Process 177
Table 4.50:	Comparing Index Results on the Cable Insulation Thickness Measu before and after the Process Improvement	rements 178
Table 4.51:	Observed Time for Start-up Operation	179
Table 4.52:	Production / Work Target Estimation Analysis	180
Table 4.53:	Characteristics of Common Causes and Special Causes of Variation	182
Table 4.54:	Categorization of Special and Common Causes Variation in Cable E Process	xtrusion 182
Table 4.55:	Cable Diameter Measurements Used for the Control Charts	184
Table 4.56:	Control Plan Template for Monitoring the Improved Process	188
Table 4.57:	Quality Loss Attributes to Deviations of the Cable Diameter f Specified Target Value (Before the Improvement)	rom its 194
Table 4.58:	Quality Loss Attributes to Deviations of the Core Cable Diameter Specified Target Value (after Improvement)	from its 197
Table 4.59:	Quality Improvement by Tightening Tolerance	200

Table 4.60:	Records on 1.0s (mm) Cables Produced from 2013- Dec.2017	201
Table 4.61:	Quantity of 1.0s (mm) Cables Rejected from 2013- Dec.2017	202

LIST OF ABBREVIATIONS

Repeatability: This is variation observed when the same operator measures the same part repeatedly with the same device.

Reproducibility: This is variation observed when different operators measure the same part using the same device.

Gage R & R = Gauge Repeatability and Reproducibility

CoP= Community of Practice

DPMO = Defect Per Million Opportunity

DOF = Degree of Freedom

DOE = Design of Experiment

PFD = Process Flow Diagram

MSA = Measurement System Analysis

PCA = Process Capability Analysis

COPQ = Cost of Poor Quality

VOC = Voice of Customer

Baseline: is the actual performance of the process that is to be improved.

Entitlement: is the best possible performance that has been observed recently or was observed in a benchmarking study.

 $\mathbf{C} \& \mathbf{E} = \mathbf{Cause} \& \mathbf{Effect}$

PVC = Polyvinyl Chloride

1.0s (mm) = one millimeter single core wire

ANOVA= Analysis of Variance

Defect: Departure of a quality characteristic from its intended level or state.

Defective: Unit of product or service containing at least one defect, or having several imperfections that in combination cause the unit not to satisfy intended normal usage requirements.

CTQ: Critical -To-Quality Characteristics

ITF: Insulation Thickness Failures

ICD: Inconsistent Cable Dimension

ISF: Insulation Surface Flaws

NL: No Label

WL: Wrong Label

TPs: Torn Poly-sheets

UCL = Upper Control Limit

LCL = Lower Control Limit

USL = Upper Specification Limit

LSL= Lower Specification Limit

 $\boldsymbol{\sigma} = \text{Sigma}$

Cp= Process Capability

Cpk= Process Capability Index

Cpm: This index is referred to as Taguchi Index, and is defined as the ability of the process to be clustered around the target or nominal value.

CR = Capability Ratio

ZU: This index measures the process location relative to its standard deviation and the upper requirement.

ZL: This index, measures the process location relative to its standard deviation and the upper requirement.

B_T= Basic Time

Z: is the distance, measured in standard deviation, from the process mean to the specification limit.

 $\sigma^2 = Variance$

 σ t = Total Process Standard Deviation;

 $\sigma_{\rm P}$ = Part-to-Part Standard Deviation;

PV = Part-to-Part Variation;

Ndc = Number of Distinct Categories.

%P/T

S*O = Sample * Operator

 \overline{x} = Mean

R= Range

 $\overline{\overline{X}}$ = Grand Average

QAD = Quality Assurance Department

MD = Manufacturing Department

PCP1 = Power Cable Plant 1

PCP2 = Power Cable Plant 2

CPU: is the position of the total process variation in relation to the upper specification limit.

CPL: is the position of the total process variation in relation to the lower specification limit.

 $\mathbf{T} = \text{Target}$

S/N = Signal-to-Noise Ratio

 $\mathbf{S/N_N} = \mathbf{Signal-to-Noise\ Nominal}$

- \mathbf{r} = Measure of Error Precision
- **CI** = Consistency Index
- **CR** = Consistency Ratio
- **RI**: = Random Index
- **CP** = Criteria Priorities
- SCp = Sub Criteria Priorities
- **GP** = Global Priorities
- **CCD** = Central Composite Design
- $\mathbf{S}_{\mathbf{T}} = \mathbf{S}$ tandard Time
- $\mathbf{R}_{\mathbf{T}\mathbf{A}}$ = Relaxation Time Allowance
- C_{TA} = Contingency Time Allowance
- $\mathbf{t}_{i} = individual observed time$
- $\mathbf{t} = Average time for performing the element$
- SPC = Statistical Process Control
- **GEMBA** = Direct Observation.
- **SOP** = Standard Operating Procedure
- **MPa** = Mega Pascal
- **RPM** = Revolution Per Minute
- L16 (4^2) =
- $\infty = Alpha$
- λ = Lambda

Anderson Darling Test Statistics: Measures how well the data follow a particular distribution.

Box-Cox Transformation: Used to transform data to follow a normal distribution.

Sigma Level

MSD = Mean Square Deviation

 $\Delta \mathbf{o} = deviation$

Variable Data: data that can be measured on a continuous basis, example; temperature, weight, height, etc.xxvi

Attribute Data: data that consists of classifications rather than measurement e.g. "good", "bad".

QAD = Quality Assurance Department

MD = Manufacturing Department

LIST OF APPENDICES

APPENDIX A:	Agreement Analysis Worksheet	235
APPENDIX B:	Gage R &R Study-ANOVA Method	238
APPENDIX C:	Table of Control Chart Constants	239
APPENDIX D:	Table of Areas under Standard Normal Curve	240
APPENDIX D2	Table of Areas under Standard Normal Curve	241
APPENDIX E:	Abridged Six Sigma Conversion Table	243
APPENDIX F:	Analytical Hierarchical Process (AHP)	244
APPENDIX G:	Analytical Hierarchical Process (AHP)	257
APPENDIX H:	Random Index Table	268
APPENDIX I:	Questionnaire/ Interview Questions	269
APPENDIX J:	Table of Two-way ANOVA with Replication	270
APPENDIX K:	Taguchi Design Output Display	271
APPENDIX L:	Response Surface Method Optimization Display	273
APPENDIX M:	Factors for Tolerance Intervals	277
APPENDIX N:	Average Time Computational Analysis	278
APPENDIX O:	ILO Recommendation Table of Relaxation Allowances	308
APPENDIX P:	I-MR-R/S (Between/within) Chart	309
APPENDIX Q:	Generic Graphical User Interface Computational Analysis	312
APPENDIX R:	GUI Visual Displays	358
APPENDIX S:	Study Application Letter to Cutix Cable Plc	362
APPENDIX T:	Acknowledgement Letter from Cutix Cable Plc	363
APPENDIX U:	Publications from the Study So Far	364

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

The intense competition among business organizations globally is becoming more interesting and most organizations are gearing towards manufacturing defect-free products. It has been a common place occurrence in industries that out of specification variations are usually detected too late, and most often after part production. Variations have been a problem since beginning of industrialization and were initially handled by setting specification limits for important production characteristics (Mokhlesi and Azad, 2009). As time passed, focus moved away from the finished products but towards improving the capability of production process (Garvin, 1988). A critical factor in reducing cost and increasing product quality lies in the ability to predict and then minimize manufacturing variations found in processes (Chen et al., 2005).

Cable manufacturing industry is a field with a lot of variations and defects in its processes, the product quality is essential and variation in product is also a critical concern. Use of compromised cable quality in Nigeria is frowned upon and not acceptable across all electrical testing criterions, so the level of commitment to quality required to manufacture cable products in the country is enriching day by day. However, finding the cause of the defect in cables may be a lengthy process since it requires consideration of material, machine, die and process. The origin of extrusion defects is not always understood due to complexities in extrusion coating processes (Sollogoub et. al, 2011), but failures or defects which are normally occurring in cable extrusion process are due to three main causes; mould design, material selection and processing. Most failures that often occur in extrusion line during

processing can be seen in the form of Insulation surface flaws, extruder surging, thickness variation, uneven wall thickness, diameter variation and centering problem etc. These defects are more disturbing ones since they affect the homogeneity and the integrity of the polymer film. Insulation Surface flaws occur when the insulation integrity of the conductors is compromised, and are the most common cause of problems in electrical equipment (Reuter-Hanney, 2017). Cable insulation may be considered good when leakage current is negligible but since there is no perfect insulator even good insulation allows some small amount of leakage current. When there are insulation flaws, there is always leakage of current exceedingly above a specific design limit and can lead to defective cable products as it would be difficult for the product to deliver electrical energy to a load efficiently. Insulation Surface Flaws manifest in the form of dark spots, dimples, pimples, cavity, pinholes, air cavity etc. Its odd consequences are seen in form of electric shocks, high voltage failures, and electrocution, as exposed conductive parts may in some cases also become live due to isolation faults.

Part of the quality problems mostly encountered in cable processing is also seen in form of inconsistency in the dimension of cable extruded. The impact of this quality defects are seen in two forms over-dimensioned cable, and under-dimensioned cable products. These are the two notable production odd consequences attached to inconsistent cable forms. Firstly, over-dimensioned cable is a clear indication of materials wastage, and the associated consequences are seen in increased production cost and customer dissatisfaction due to practical difficulties always encountered when working with over dimensioned cables. Secondly, when a cable is under-dimensioned, there is high chance that the cable will fail insulation thickness test. This production odd if neglected and the defect products are sold to market will lead to electric shocks as a result of energy leaks and increased chances of electrocution incidence. These defects seriously affect the aesthetic aspect, the barrier properties and the mechanical strength of the coated substrate and also cause a big damage to the company's reputation.

Making defective products in cable manufacturing, even though they can all be recovered, reground and the material used again, is uneconomic and non-productive because there is a large amount of money invested in the rejected product and extra energy and labor must then be spent on material recovery. It is best avoided since they are directly reflected in the organization's financial bottom line.

Figure 1. Cable failures and quality implications

Figure 1 describes recovery action that is taken when defect occurs in an extruded cable product. The erroneous products are subjected to a process called "peeling" which is conducted on the peeling machine. The cable insulation is peeled out to recover the copper conductor for other use and the diagram above clearly describes quality consequences associate with this process. The peeling operation leads to wire tensioning which causes reductions in the original conductor diameter (Low conductor diameter). Most of the recovered input conductors have limitations in use, and in some cases, the recovered wires are drawn to a smaller size of wire, and also into a finely drawn dimension depending on the original size of the peeled products. It is imperative to keep extrusion systems up and running and solutions for eliminating errors and defects from cable extrusion systems are necessary.

Many organizations have sought strategies such as Lean manufacturing (Chanarungruengkij, et al. 2017); Lean Six Sigma (Paramech, 2013); QC tools and DMAIC methodologies

(Mondal, et al., 2015); design of experiment (Abdulkareem, et al. 2014), to improve process and product quality. It has been observed through extensive literature review that none of the approaches presently used to solve process-related problems in cable manufacturing processes emphasized on ways to tackle the ever challenges of absorptive capacity (notinvented-here syndrome), development and exploration of organizational social capital, best practice replications and co-location creation.

Since critical knowledge loss occurs through job transfer, retirement, retrenchment, mobility and alternative work arrangements, it is right to deploy logical and systematic solutions/procedures to determine the origin of these defects in a processing line if actually defects are to be eliminated. To this end, one strongly believes that by deploying Six Sigma-DMAIC in agreement with KM principles, organizations can gain an advantage of having both strategies work side-by-side towards an overall goal. Hence, it will be ideal to incorporate Knowledge Management (KM) concept in Six Sigma DMAIC's framework to solve some of the aforementioned quality challenges in cable manufacturing where observational studies are much, and knowledge of the workforce is very vital.

1.1 Statement of Problem

In cable manufacturing, product quality is essential and variation in product is a critical issue, but in most cases results from solutions to cable defects identified during process improvement projects are not sustained. This anomaly is likened to the outsourcing of improvement functions to external professionals most of the time and also due to absence of knowledge-based solution, robust enough to solve most of the real life quality problems that prevails in a dynamic cable manufacturing environment. Hence there exists a need for an efficient deployment strategy applicable in cable manufacturing that will aid organizations in their improvement studies to solve real life problems as well as to become a knowledgeable organization.

1.3 Aim & Objectives

The aim and objectives of the study are as presented below.

1.3.1 Aim of the Study

The aim of this research is to enhance process performance in cable manufacturing using a synergetic support of Six Sigma-DMAIC and Knowledge Management concepts.

1.3.2 **Objectives of the Study**

The following objectives were pursued in order to achieve the aim stated above.

- 1. To build up an improvement approach by incorporating Knowledge Management strategies/tools within a Six Sigma-DMAIC's improvement framework.
- 2. To validate the new approach through practical application in a cable manufacturing industry.
- 3. To assess the potential contribution and economic implications of the improvement solution.
- 4. To develop a generic user interface support system for easy replication of the improvement solutions.

1.4 Scope of the Study

The study focused on quality improvement, and defect reduction in a manufacturing system. The validation study was carried out at the Anuka cable Plant of the Cutix cable PLC located at Umuanuka Village Otollo Nnewi, in Anambra State, and was limited to extrusion of 1.0mm Single core house wiring cable from TEKO-50 extrusion line. The Community of

Practice (CoP) used in this study comprises of four heterogeneous mixes of personnel's formed from these departments; Quality Assurance Department (QAD), Manufacturing Department (MD). All the data used in this study were obtained through direct measurements within the eleven (11) month study period, except the historical data that were once used to prioritize the key Projects.

1.4 Significance of the Study

The demand for more synergic supports among process management initiatives has been widely discussed in the literature and there has never been any emphatic statement upholding any of these initiatives over one another. The outcome of this study will proffer efficient technical means of eliminating defects and losses in cable production systems, through careful diagnosis and systematic problem-assessments approach, thus saving the cable manufacturing industry from undue economic losses. The conceptual model should provide an employee capability development atmosphere through careful identification of knowledge domains, retention of already learnt knowledge and building strong social capital within the organization. In a more general dimension, the study would immensely contribute in narrowing the gap between Six Sigma and Knowledge Management studies in Africa and other regions. Lastly, this study could introduce to the existing body of process improvement studies, a form of integration tactics that would benefit process improvement practitioners in cable manufacturing companies, on the matching advantages of these two distinct disciplines "Six-Sigma and Knowledge Management" that have been scarcely reported in the process improvement studies conducted in Nigeria.

CHAPTER TWO

LITERATURE REVIEW

2.0 Six Sigma Developments

The Six Sigma methodology was introduced by Motorola Inc. in the USA in the late 1980s. Companies, such as General Electric, Allied-Signal, Honeywell and many others, followed shortly after and also made it an integral part of their leadership development activities (General Electric, 1997). Since then, this quality concept has been associated with myriads of definitions both in the academic and in the practitioner's literature. Settling on this definition by Linderman et al. (2003), Six Sigma can be defined as an organized and systematic method for strategic process improvement as well as new product/service development that utilizes statistical techniques in causing defect reduction. Although the original focus of Six Sigma was on manufacturing, it has been applied in a non-manufacturing context with minor adaptations (Does et al., 2002). Six Sigma tread the path of rigorous project approach and extensive use of analytic and quality tools. Its structured team approach to solving problem has introduced in its formation a platform that breeds and diffuses knowledge.

Six Sigma is a business strategy that seeks to identify and eliminate causes of defects or failures in business processes by focusing on outputs that are critical to customer (Snee, 1999). Its DMAIC method is rather a general method and its original task-domain was variation reduction especially in manufacturing processes (De Mast and Lokkerbol 2012). The method was later used for more general tasks, such as quality improvement, efficiency

improvement; cost reduction, etc. Six Sigma's DMAIC is a problem solving method mainly used in manufacturing processes. A problem solving method can be generic or specific for a certain task-domain (Newell, 1969). DMAIC is applied in practice as a generic problem solving improvement approach (McAdam & Lafferty, 2004). The objectives of Six Sigma are to increase the profit margin and improve financial gain through minimizing the defects rate of products. Successful implementation of Six Sigma-DMAIC approach has been widely reported in the literature. Originally, DMAIC concept has provided applicable framework to satisfy requirement for critical to quality characteristics. Its potency in process improvement studies cannot be overemphasized and its integration advantage and applications in various fields, are fast gaining wider recognition. Six Sigma is one of the most important and popular developments in the quality field (Knowles, 2011). However, research on Six Sigma subject irrespective of its impressive track records in practices is still at the low level (Zhang et al., 2009). This is as a result of divergent views and set perceptions on the Six Sigma subject. Some scholars understand Six Sigma simply as the repackaging of the well-known total quality management (TQM) (Beer, 2003), while others view it as a management fad. The concern of Six Sigma being perceived as a management fad, according to Zhang et al (2009), has prevented many scholars from conducting rigorous research on Six Sigma. The research territory to date on Six Sigma subject has been found only within North America region with only a few studies in Europe and Asia (Ahirvar &Verma, 2012; Wang et al., 2004). As a result of this and many more reasons, Six Sigma studies in order parts of the globe become essential to gain further insights and to have a proper generalization into cultural issues that may affect the theory and practice of Six Sigma (Ahirvar &Verma, 2012). On this premise, it now becomes pertinent to have an in-depth understanding of Six Sigma subject, by first reviewing existing literature.

The concept of Six Sigma is based on achieving a quality standard of fewer than 3.4 defects per million opportunities (DPMO) (Bothe, 2002). The special thing about Six Sigma compared to other process improvement methods is the mathematical approach. It is assumed that each business process can be described as a mathematical function.

$$Y = F(x) \tag{2.1}$$

This equation describes the relationship between the three key items, output, Process, and input. Equation (2.1) reads "Y is a function of X". Where "Y" refers to the output, "X" refers to the key measures of the process variables (inputs and/ or the process itself). The Sigma (σ) is a parameter of distribution function, which expresses the variability of a given quality characteristics compared to the expected value of the mean (μ). The smaller the σ , the smaller the risk that a portion of measurement variable will fall outside the given limit values. Six Sigma means to produce such small variation around the process mean so that within the tolerance range, there will be exactly 12 units of σ . This quality improvement programme was developed by Motorola engineers in 1986, and their quality improvement goals were set such that process variability is at \pm 6 Standard deviations from the process mean, signifying that customer specifications are met and can only produce 3.4 non-conforming products. These 3.4 DPMO computations assume a 1.5 sigma shift in the process mean, and are based on these two assumptions:

1. That the process output follows a normal distribution, and,

2. That the process means may in the long term shift up to 1.5 standard deviations.

According to Omar et al (2012), a standard deviation is a statistical way to describe how much variation exists in a set of data, a group of items, or a process. Any process that is at Six Standard deviations is highly capable, signifying that customer specifications are met.

Figure 2.1. The standard normal distribution graph (Source: Midas+ Statist Solutions Group 2018)

Graphically, Figure 2.1, described a standard normal distribution where A: A" distance simply means that 68.26% of values are within 1 standard deviation of the mean; B: B" distance shows that 95.46% of values are within 2 standard deviations of the mean, and C: C' distance also denote that 99.73% of values are within 3 standard deviations of the mean. Under the C-C" scenario, which is at Six Sigma, the process would produce up to 3.4 parts per million (ppm) non-conforming to specifications. As depicted in Fig.2.2, a Six Sigma process has a process mean that is six standard deviations from the nearest specification limit, thus providing enough shields between the process natural variation and the specification limits.

Figure 2.2. Six Sigma definitions (Source: http://leansixsigmadefinition.com/glossary/six-sigma/)

Although in most cases, even stable processes are prone to disturbances that can often lead to shifting in the mean of the process. At 1.5 standard deviation shift of the process mean one way or the other, the most number of defects the process will produce can be calculated as

P(Z>4.5) + P(Z>7.5) (Bothe, 2002). Since P (Z>7.5) is virtually zero, Six Sigma is technically P (Z>4.5), which is 3.4 per million opportunities. However, this drifting mean aspect of Six Sigma metric has been a source of controversy (Montgomery & Woodall, 2008).

http://www.howardgitlow.com/definitionsofsixsigma.htm). Some on Six Sigma improvement strategy argued that if the mean is drifting, a prediction of up to 3.4 DPMO may not be very reliable because the mean might shift by more than the

sigma assuming the normal distribution. Six Sigma methods have two major perspectives, the statistical and business perspective (Andersson, Eriksson, & Tortensson 2006).

allowed 1.5 standard deviations. Fig. 2.2 shows the relationship between DPMO and process

Figure 2.4. Defect rate versus process sigma level (Source: Linderman et al., 2003).

From a statistical point of view, the term Six Sigma is defined as having less than 3.4 defects per million opportunities or a success rate of 99.9997%.

Sigma Level	Defects per million	Yield
One	690,000	30.85%
Two	308,000	69.15%

 Table 2.1: Sigma Levels and DPMO

Three	66,800	93.32%
Four	6,210	99.38%
Five	230	99.977%
Six	3.4	99.99966%

Note. Adapted from http://leansixsigmadefinition.com/glossary/six-sigma/)

Similarly, Gilbert (2003) shares in the perspective of viewing Six Sigma as a business strategy along with some Six sigma practitioners by describing it as a way of doing business to meet or exceed customer's needs and expectations. Six Sigma has its origin in quality engineering, which has traditionally had a strong emphasis on statistical methods (Demast & Lobberkol, 2012), and does provide an effective means for deploying and implementing statistical thinking (Snee, 1990). Six Sigma structured improvement procedure we have two known methodology DMAIC and DMADV. These two are the most commonly used Six Sigma methodologies used to attain a single goal under different circumstances and problem areas. DMAIC is an acronym for Define, Measure, Analyze, Improve, and Control, and is a structured problem-solving procedure.

http://www.optiontrain.com/Lean_Six_Sigma_Green_Belt_Certification_Training.php).

cdn.ttgtmedia.com/searchSoftwareQuality/downloads/ect01TreasurechestSixSigma.pdf).

The essence of DMAIC method is to reduce variation in a process, in order to achieve high conformance quality in customer's terms. DMAIC is a revised version of well-known problem-solving methods such as Plan-Do-Check-Action (PDCA) and Plan-Do-Study-Action (PDSA) (Zhang et al., 1999). Six Sigma DMAIC approach of continuous improvement facilitates change on a steady and progressive basis (Banuelas & Antony, 2003), and work within the framework of the existing processes. The DMAIC steps are basically used for any process improvement project. This approach comprises of five steps and each step addressed certain tools and techniques. It offers a structured approach to solving problems and improving results. DMAIC is concerned about removing variability out of the existing processes. DMAIC methodology forces project leaders to capture problems in terms of facts and measurable variables. Typical DMAIC projects are selected based on their expected contribution to improving efficiency, cost or customer value (Pande et al., 2000).

However, Demast and Lobberkol (2012), as part of their conclusion in analyzing Six Sigma DMAIC method from the perspective of problem-solving, consider the strategy as a weak guide for less routine projects in which human-dynamics, subjective perceptions, and

personal values are important aspects. On the other hand, Chakrabarty and Tan (2007) described DMADV as the incorporation of more innovative tools such as the theory of creative problem solving and axiomatic design which DMAIC does not. According to Eckes (2001) (as cited in Banuelas & Antony, 2003) DMADV is suitable when any of these situations arise; when a new process is required to assist an organization to achieve a strategic objective, and when a current process is irreparably broken.

https://theblogspotblog.wordpress.com/2014/02/18/six-sigma-methodology/).

2.2 Six Sigma Structure

A well-organized Six Sigma infrastructure is necessary for an organization to carry out the related improvement projects (Hung & Sung, 2011). Six Sigma responsibilities are well defined and in an organizational context cuts across numerous ranks in a well-coordinated formation (Sinha & Van de Ven, 2005). Black belt is a full time Six Sigma practitioner who had rigorous training in the statistical methods used to gather and analyze data in a Six Sigma project. A green belt is a Six Sigma practitioner usually part-time who has been trained in the Six sigma DMAIC problem-solving methodology and basic statistical tools, whereas champions are heads of business divisions or process owners who run the processes.

2.3 Six Sigma Metric

A metric is a specification or attribute against which the outputs of a process are compared and declared acceptable or unacceptable. Six Sigma metrics can be in the form of a number of complaints, percentage scrap, cost of poor quality (COPQ), defect rate, process capability, first-time yield, throughput yield. In general, Six Sigma methodology and process capability analysis (PCA) occupy important places in quality and process improvement initiatives (Senvar & Tozan, 2010). Six Sigma typically monitors the process using control charts, which compares control limits with specification limits to determine process capability (Murugappan & Keeni, 2003).

2.3.1 The Sigma Capability

The Sigma capability is the number of standard deviations from the mean, and is also called "**Z-score**" or "**Standard score**". This metric is also used to standardize a distribution (that is, used to convert a normal distribution to a standard normal distribution).

$$Z = \frac{X - \mu}{\sigma} \tag{2.2}$$

where; x is the specification limit, μ is the mean, and σ is the standard deviation.

Figure 2.8. Off-center process leading to high so ^Z and rework cost (Source: Day R.E (2016) Discovery Lean Six Sigma (2016). https://leansixsigma.community/blog/view/15352/process-capability-what-it-is-and-how-it-helps)

From the graph, Z capability is the distance, measured in standard deviation, from the process mean to the specification limit, and the shaded area denotes defect probability. For a Six Sigma process, the error probability is 0.0000034 (meaning there are only 3.4 defects per million delivered units). For a three sigma process, the probability of error is 0.0668 (66,800 defects per million units). The sigma or Z capability is the simple metric for measuring a process's capability to produce defect-free products. The presence of process variations especially the special causes makes prediction impossible and thereby making the meaning of

a capability index unclear. As a result of this complex nature of most manufacturing processes, it requires vibrant monitoring and successive improvement strategies. The best way to quantify variation causes and categorically predict the operational state of any given process is through capability studies. Capabilities of processes are monitored through PCs using capability indices to provide the numerical measures of the capability. The capability indices relate the voice of the customer to the voice of the process (Steiner et al., 2014).

However, a better understanding of the relationship between the standard specification limit and control limit is required for an adequate understanding of PC (Chowdhurry, 2013). PCs have gained wide recognition for the past four decades, and its deployment has gone deep in industrial and service sector organizations. The concept has been applied in most of the manufacturing industries; the concept has been applied in silicon-filler manufacturing process (Chen et al., 2006; in electronic industry (Motton et al., 2008); in aluminum capacitor manufacturing process (Pearn & Road, 1997); in drug manufacturing companies (Akeem et al., 2013); in automotive industry (Kane 1986). It is pertinent to note some assumptions and mandatory procedural conditions in any PCs so that one does not misrepresent the true capability of a process. These procedural assumptions and conditions are as follows:

- 1. The process is in statistical control.
- 2. The distribution of the process considered is normal.
- 3. As a rule of thumb, a minimum of 50 randomly selected samples must be chosen for process capability studies, a minimum of 20 subgroups, and subgroup size, of at least four.
- 4. The data chosen for process capability studies should attempt to encompass all natural variations.
- 5. The process to be studied should be devoid of any special causes of variation.

Process capability indices (PCIs) relate the engineering specification to the behaviour of the process (Bangphan et al., 2014), and can be viewed as effective and excellent means of measuring product quality and performance (Chen et al., 2006). Its numerical value increases when the variability decreases and it is unit less. The greatest value of these indices is that their use encourages efforts to prevent the production of non-conforming products. This capability measures are developed based on various criteria such as process consistency, process departure from a target, process yield, and process loss. Industrial benefits of applying this capability concept are described by (Kane, 1986), as:

- 1. Prevention of non-conforming product,
- 2. Continuous improvement,
- 3. Enhancing communication between the manufacturer and the suppliers by creating a common language.
- 4. Prioritization of process for improvement.
- 5. locating / identification of process variability, and
- 6. Assessment of quality systems.

2.4 Six Sigma Implementation/ Applications

Six Sigma implementation requires resource commitments in terms of money, time, and effort from the entire workforce. A uniform way to implement Six Sigma usually remains a myth as Six Sigma implementation processes and styles differ from company to company, country to country due to the uniqueness of experiences and nature of problems (Moosa & Sajid, 2010). Identification of factors critical to the success of Six Sigma implementation plays a vital role in the development of an adaptive Six Sigma framework (Amar & Davis, 2008; Burton & Sams, 2005). Moosa and Sajid (2010) explored and analyzed the critical success and failure factors of implementing Six Sigma in organizations based on lesson drawn from real life practices, case studies, and available literature. The researcher attributed

most failures to the implementation approach to lack of standard model available for Six Sigma implementation and to a number of social factors that prevail in the organization. Antony and Coronado (2002) identified 12 typical critical success factors as:

- 1. Management involvement and commitment
- 2. Cultural change
- 3. Communication
- 4. Organization infrastructure
- 5. Training
- 6. Linking six sigma to business
- 7. Linking six sigma to customer
- 8. Linking six sigma to human resource
- 9. Linking six sigma to suppliers
- 10. Understanding tools and techniques within six sigma
- 11. Project management skills
- 12. Project prioritization and selection

Kwak and Anbari (2004), in their own classification, identified four factors as being more critical for a successful Six Sigma projects implementation:

- 1. Management involvement and organizational commitment- organizational infrastructure needs to be established with well-trained individuals ready for actions.
 - 2. Project selection, management, and control skills- The project has to be feasible, organizationally and financially beneficial, and customer oriented.
- Encouraging and accepting cultural change: there should be a clear communication plan, and scheme for motivating individuals facing cultural change in order to overcome resistance.

4. Continuous education and training: - organizations need to continuously learn and adopt the latest trends and techniques that are outside the Six Sigma domain that might be useful to complement the Six Sigma approach.

However, (Llorenz-Montes and Molina, 2006; McAdam and Lafferty, 2004) suggested that the implementation of Six Sigma programme needs successful change management of behavioural and work processes to achieve the desired result as inadequate knowledge sharing capability as one of the factors that inhibit successful change. Successful Six Sigma projects are recorded with some organizations like Seagate, Kodak, Honeywell, Texas Instruments, Boeing, Dupont, Toshiba, Sony, and Ford. Allied-Signal, a technology, and manufacturing company applied Six sigma principles to design recertification of aircraft engines in the 1990s and were able to save more than \$600 million in 1991 (Raisinghani, 2005). Six Sigma based methodology has been used to optimize the variables of SAW Boom machine operational process to increase the sigma level from 1.8 to 3 and reduction of COPQ from \$35,500 to \$5,500 per annum (Desai & Shrivastava, 2008).

In automotive designs, Zhan, in 2008, applied Six Sigma methodologies to reduce the average motor speed variation during Pulse-width Modulation (PWM) control using simulation to establish the baseline performance for the existing design. "The DMAIC Six Sigma approaches have been utilized in a food manufacturing company to decrease the defect rate of small custard buns by 70% from the baseline to its entitlement" (Hung & Sung, 2011). In a textile industry, Six Sigma methodologies have been used to improve yarn quality (Gupta, 2013). Similarly, this methodology has also been used to reduce defects in a fine grinding process of an automotive company from 16.6 to 1.19% (Antony, et al., 2011). According to Jirasukprasert et al.(2012), a reduction in the amount of defect was achieved in a rubber gloves manufacturing industry through the application of Six Sigma methodologies. The process improvement according to these researchers has aided the company to earn a

savings of approximately \$ 2.4 million for the subject year. Although the original focus of Six Sigma was on manufacturing, it has been applied in a non-manufacturing context with minor adaptations (Does et al., 2002).

2.4.1 Six Sigma Applications in Service Sectors

In non-manufacturing, Six Sigma has been applied in the healthcare sector (Wang et al., 2004). Six Sigma applications in healthcare facilities are much vital to minimize medical errors and total eradication of mistakes. In health institutions, poor administrative awareness and absence of administrative systems in hospitals has reflected negatively on the performance of the health service in both public and private sector and this has an indirect effect on customer's satisfaction (Omar et al., 2012). Incessant delays in the provision of hospital beds in Our Lourdes Regional Medical Centre, Louisana was corrected through careful implementation of Six Sigma projects (Sager & Ling, 2007). The Red Cross hospital which is a general hospital based in Netherland has successfully integrated Six Sigma within ISO 9001:200 quality management system to generate annual savings of 1.2 million euro (Heuvel et al., 2005). Allen et al 2010 have also described the application of Six Sigma DMAIC technique in streamlining patient discharge process at a community hospital. The researchers were able to achieve a significant reduction in the average discharge time from 3.3 to 2.8h and missing chart data was also reduced by 62%. A lot of success stories have been recorded by the pioneer Health centers that adopted this approach like Froedtert, Chicago's Northwestern Memorial hospital, mission's heartland health and Kentucky's common wealth health (Lasater, 2006). Common wealth Health Corporation embrace Six Sigma deployment in order to build more effective teamwork around motivated employee under transformed organizational outlook. By working in conjunction with general electric medical systems, common wealth Health Corporation has completed well over 150 Six Sigma projects since the union in 1998. From the vast reviewed works of literature in the

health practitioner's domain, financial benefits have not been the most prioritized benefits for Six Sigma deployment unlike in manufacturing & service sectors. Six Sigma practitioners in health sector give more priority to customer satisfaction, quality of care / service, timeliness, speed / convenience over cost. Six Sigma projects has been successfully in finance sector to improve timely reimbursement of claims (Lazarus & Butler,2001), expand cash flow capacity,(Heuvel et al., 2005), streamlining the process of healthcare delivery (Ettinger, 2001), and reducing the inventory of surgical equipment and related costs (Revere & Black 2003). Six Sigma approach optimizes the average and reduces the variance of desired process (Ganti, 2004). Ganti (2004) in her work on Six Sigma and healthcare, enlisted few hospitals that have used Six Sigma as, Long Island Jewish N.Y, standard medical center, CA, Northwestern memorial, IL, M.D Anderson, TX, Virtual health system, NJ, Charleston Area Medical center, CT, Verdugo Hills hospital, CA, John Hopkins hospital, MD, Good Samaritan Hospital, Oh.

At Anderson Cancer Center in the University of Texas, Six Sigma was embraced and improved service operations to a reasonable extent (Benedetto, 2003). Also in the same institution, outpatient's CT exam lab, patient preparation times were reduced from 45minutes to less than five minutes in many cases and there was a 45% increase in examinations with no additional machines or shifts (Elsberry, 2000). Six Sigma program has also been used to enhance performance in a pollution prevention program. According to Calia et al. (2009), implementation of Six Sigma organizational structure and methodology improved significantly the performance of the pollution prevention program, thus the total number of pollution prevention projects increased 6.9 times and the total tonnes of pollution prevented increased by 62% in relation to the period before the Six Sigma implementation. Six Sigma applications have also been extended to supply chain (Tjahjono et al., 2012).

In the US banking industry, Bank of America and Citigroup were considered as organizations that heavily invested in Six Sigma and benefited from it (Rucker, 2000; Roberts, 2007). A good number of financial institutions including Bank of America (BOA) (Roberts, 2004), American Express (Bolt et al., 2000; Doran, 2003) improved their service outlook greatly in terms of accuracy in cash allocation, variation reduction in collector performance, and reduction in documentary credits defects, reducing check collection defects, and reducing variation in collector performance In order words, Six Sigma has penetrated into most sectors such as engineering and construction (Eckhouse, 2003), in telecommunication (Moreton, 2003), and has also inspired a considerable amount of academic literature (Brady & Allen, 2006).

Notwithstanding with the contributions Six Sigma has made in both manufacturing and nonmanufacturing sector, Abolemaged (2010) observed an increasing gap between the number of Six Sigma articles that focused in manufacturing than in service sector starting from 2005. Chakrabarty and Tan (2012) also assert that the use of Six Sigma is relatively high among many western organizations, and with a limited spread in service industries. This is as a result of intangible and immeasurable service processes (Chakrabarty & Tan 2007; Wyper & Harrison 2000; Hensley & Dobie (2005)). The authors shared the benefits manufacturing sector has over service sector in terms of Six Sigma implementation; use of statistical tools and techniques, ease of data collection and continuity of the process. "The use of gauge repeatability and reproducibility also is common in manufacturing but not so in services, as a result of non-repeatable nature of service processes" (Does et al., 2002). More so, the nature of services and the way customers tends to evaluate service quality pose important challenges for Six Sigma (Nakhai & Neves, 2009).

2.4.2 Six Sigma Applications in a Small-and-Medium Enterprise (SME)

Six Sigma implementation are associated mainly with large manufacturing organizations which have good resources and technology in place (Amar, & Davis, 2008). Six Sigma improvement strategies were not structured basically to favor big organizations alone (Snee & Hoerl, (2003). Although its propagation through small and medium enterprises has been largely overlooked (He & Goh, 2015). Antony et al., (2005) highlighted common challenges with Six Sigma implementation in a small-and-medium enterprise to inadequate education and training as it is harder for smaller companies to free up top talented people to engage in training. (Davies, 2003) attributed challenges faced by SME with Six sigma strategy to cost of implementation. However, the growing importance of supply chain management issues in global market environment has greatly linked larger firms dependency on small to medium sized enterprises (SMEs) for the provision of high-quality products and /services at low costs (Antony et al., 2005). In describing these levels of dependency, some researchers have refuted the wide negative claims with some positive attributes inherent in SME structure.

According to Cazgnazzo, and Taticchi, (2010) small-and-medium enterprise is much more flexible than large ones and hence changes are introduced fairly quickly. Small companies are more agile, and much easier to buy-in management support and commitments, as opposed to large organizations (Antony et al., 2005; Adam et al., 2003). Some of the advantages of small-businesses embarking on Six Sigma initiatives according to Wilson (2004) encompass strong owner influence, fewer layers between the top management hierarchy and frontline workers, rapid and effective internal communication, and a limited number of locations. For a successful implementation of Six Sigma initiative in a small-and-medium enterprise, Spanyi and Wurtzel (2003) identified the following elements as vital:

- 1. Visible management commitment
- 2. Clear definition of customer requirements

- 3. A shared understanding of core business processes and their critical characteristics.
- 4. Rewarding and recognizing the team members
- 5. Communicating the success and failure stories, and
- 6. Selecting the right people and the right projects.

2.4.3 Six Sigma and Quality Management Approaches

Quality management can be described as a new way of thinking about the organizational management in the direction of improvement (Andersson et al., 2006). Six Sigma improvement strategies are the latest and most effective technique in the quality engineering and management spectrum (Desai & Shrivastava, 2008). It incorporates a systematic, scientific, statistical and smarter approach for management innovation, that builds on previous ones like TQC, TQM, and well-suited in the knowledge-based information society (Park, 2003). Six Sigma is not entirely new with respect to prior quality tools or principles, but the deployment approach and emergent structure of Six Sigma are new (Schroeder et al., 2008; Parast, 2011). The Six Sigma method only fully commences a project after establishing adequate monetary justification (Brady & Allen, 2006).

Many proponents of Six Sigma approach claimed that the approach has developed beyond a quality approach into a broader process improvement concept (Nonthaleerak & Hendry, 2008). Six Sigma methodologies is a step further development of the improvement cycle by Shewart and Deming (Anderson et al., 2006). The difference between PDCA/ PDSA and Six Sigma is ultimately on goal setting. While Six Sigma is very specific on goal specification, the other strategies as proposed by Deming's rely on "Do best goals". Six Sigma is known for employing specific challenging process improvement goals (Pande et al., 2000). Six Sigma edge over other quality management concepts is seen in the detailed quality tools, focused attention on financial results, and problem-solving methods, and lastly on the new approaches of sustaining the gains (Kletsjo et al., 2001). Most of the quality management concepts that

have been widely promoted in literature and in practice are TQM, Six Sigma, lean manufacturing, business process re-engineering, just-in-time (JIT), Kaizen and Business excellence, Baldrige model, Statistical Quality Control (SQC), and Six Sigma is one of the more recent quality improvement initiatives to gain popularity and acceptance in many industries across the globe (Wang et al., 2009). However, Six Sigma differs from other quality improvement programs due to their measurable and quantifiable goals (Anderson et al., 2006).

Contrary to TQM, Six Sigma allows organizations to measure process capability and improvement efforts internally and externally (Aboelmaged, 2010). An improvement methodology is one of the clear differences between six sigma and TQM. In Six Sigma, there are two major improvement methodologies DMAIC & DMADV, while improvement cycle in TQM is comprised of four stages. The core advantages of Six Sigma over TQM according to Schroeder et al., (2008) is on focused attention on financial and business result, the use of specific metrics such as Critical-to-quality (CTQ), DPMO, use of a structured method for process improvement, and the use of a significant number of full-time improvement specialists. TQM generally focused on organizational result rather than on business result (Quinn, 2003). In Six Sigma programme, all improvements are economically justified (Andersson et al., 2006). However, the use of Total Quality Management (TQM) as an overall quality program is still prevalent in modern industry but many companies are extending this kind of initiative to incorporate strategic and financial issues (Harry, 2000). There are four aspects of Six Sigma strategy that are not emphasized in other business improvement methodologies and total quality management (TQM) (Antony et al., 2005). These aspects are as follows:

1. Six Sigma distinctively emphasis on quantifiable project outcome.

- Six Sigma has been very successful in integrating both process and organic aspects of continuous improvement.
- 3. Six Sigma methodologies (define-measure-analyze-improve-control) link the tools and techniques in a sequential manner.
- 4. Six Sigma creates a powerful infrastructure for training of champions, master black belts, black belts, green belts and yellow belts.

2.4.4 Six Sigma Integration

Sustainable results can only be achieved when an integrated and cohesive approach is adopted with respect to training and learning (Alsagheer & Mohammed, 2011). Snee (2000) calls for research to help practitioners identify a robust set of improvement tools to be used in conjunction with the DMAIC process. Through a proper integration between Six Sigma methodology and other improvement/management initiatives, any process can be improved into infinite position. However, as has been reported in the existing literature, most of these integrations fail to take full advantage of each methodology due to organizational constraints/philosophy. The integration challenge is to create the best process and organizational infrastructure to support each of these methods and to align these infrastructures so that the integrated initiatives are complementary. In recent time, a lot of studies that focused on the shared relationship between Six Sigma and other innovative management and practices were as follows; integrating and comparing principles and characteristic of Six Sigma with Total Quality Management (Revere & Black, 2003; Hammer & Goding, 2001), integrating and comparing principles and characteristics of Six Sigma with human resource functions (Wyper & Harrison, 2001), integrating with the theory of constraints (Ehie & Sheu, 2005), integrating with lean production (Gupta, 2013; Aboelmaged 2010; Andersson et al., 2006; Arnheiter & Maleyeff, 2005; Bendell, 2006; chang & Su, 2007; Pojasek, 2003; Pepper, & Spedding, 2009; Dahlgaard & Dahlgaard-park,

2006; Ferng & Price, 2005; Pickrell et al., 2005; De Koning et al., 2008; Cupryk et al., 2007; Marti 2005; Antony et al., 2003), integrating with Balanced score card SCOR model (Knowles et al., 2005), integrating Six Sigma with ISO 9000 (Catherwood, 2002), Integrating with ISO 9001 (Dalgleish, 2005), and integrating Six Sigma with the capability maturity model (Murugappen & Kenni, 2003) are all part of the quality community's effort to maximize the positive effect of the Six Sigma method. Martin (2006) incorporate an operation research technique in analyze phase.

2.4.5 Six Sigma and Innovation

The premise of Six Sigma is that improving an organization's processes can lead to consistent output that is welcomed by customers (Zhang et al., 2009), but what happens when customers taste changes or competition heighten has not been given wide recognition. Few researchers have proposed theoretical models explaining why process management will impede innovation and empirically tested the relationship in the paint industry. Due to the complexity and dynamism inherent in the management of processes in the operations setting, research on process management remains a challenge in operation management field (Buffa, 1980). Six Sigma mechanistic approaches to improvement are highly prescriptive in mandating how improvement effort should be implemented. The contemporary business environment is most appropriately characterized by versatile customer requirement, complex global supply chains, and fierce global competition. Such mechanistic approach may likely not be appropriate for organizations operating in a dynamic environment, thus organizations need to be adaptive.

Six Sigma initiatives according to some set of researchers are not very effective in environments where the rate of technological change is intense. Process management, in particular, deals with minimizing sources of variability in internal and external activities (Panirselvam et al., 1999; Silver, 2004), which Six Sigma methodology is assumed to be one. Because of the focus of process management programs in variance reduction for improving the operations and continuous improvement of activities in a firm, over-emphasis on these programs affects the balance between exploitation and exploration (Benner & Tushman, 2003). In other words, Garvin (1991) is of the opinion that focusing much on process management will have negative effects on innovation, and may negate long-term performance. In the pursuit of higher operational effectiveness and organizational performance, scholars and practitioners are looking for new approaches to improve operational performance, boost profitability and enhance competitiveness (Parast, 2011). Six Sigma is about overall management strategy, culture, and change, and the organization needs to build all of this into a sound corporate strategy plan (Antony et al., 2005), thus to incorporate all these in an organization is to integrate other innovative approaches like knowledge management (KM). Schroeder at al., (2008) also suggested a specified number of additional research projects using contingency theory, organizational learning, and organization change theories to ensure organizations' innovation processes are not hindered.

2.4.6 Six Sigma and Organizational Sustenance

Some researchers, like Demast and Lobberkol (2012), recommend DMAIC methodology suitable for empirical problems varying from well-structured to semi-structured, but not to ill-structured problems or pluralistic messes of subjective problems (people problem solving). Recently, operations management scholars have recognized that "incorporating" human behavior into operation management models will yield more realistic insights" (Boudreau et al., 2003). According to March (1981), "systems that engage in exploitation to the exclusion of exploration are likely to find themselves trapped in suboptimal condition". It is vital to find and sustain an appropriate balance between exploration and exploitation for system to survive. Attempt in balancing exploration and exploitation is demonstrated in the differences made between refinement of a prevailing technology and invention of a new one (Winter 1971; Levinthal & March 1981). Operations management should not be understood as a

purely technical problem but must be considered simultaneously with behavioral underpinnings (Linderman, et al., 2003). Recent studies have now re-focused research attention to incorporate psychological, and contextual human side of Six Sigma (Buch & Tolentini, 2006), goal setting (Linderman et al., 2006), organizational context, and psychological safety (Choo, Linderman, Schroeder, 2007). Six Sigma benefits can only be sustained by having a mechanism that will address product innovation, the pattern of change in customer base, and environmental uncertainty, while improving organizational processes.

2.3.7 Six Sigma Benefits

Traditionally, between 1989 and early 90s, the aspiration of many quality improvement practitioners/proponents was to improve and maintain a process three(3) sigma (Fursule et al., 2012), and which is half-way to what Six Sigma stands to offer in terms of improvement levels. Six Sigma benefits are numerous as counted in both manufacturing and service industries. The most cited benefit of Six Sigma in the literature is customer satisfaction (Aboelmaged, 2010). In the area of manufacturing, Six Sigma benefits are highlighted in various areas such as reduction in in-process defect levels, reduction of customer's complaint, reduction of the production lead time, improving process capabilities, reduction in the cost of poor quality (COPQ), reduction in unplanned maintenance hours, etc. On the other benefits derived by service organizations for successful Six Sigma includes, reduction in documentary defects, timely and accurate claim reimbursement, improved report accuracy, reduced defect rate in service processes (Kwak & Anbari, 2004). In academics, the three main contributions of Six Sigma to academic according to Brady and Allen (2006) are aligned to increased emphasis on complete case studies, the development of a large market of industrial nonexperts that are interested in practically oriented research, and lastly its approaches are core specific with a well formalized structure.

2.4.8 Confrontational Concerns on Six Sigma Improvement Strategies

There is a need to better understand organizational and contextual variables that facilitate or impede effective implementation of Six Sigma. There is a little theoretical support on the effectiveness of Six Sigma projects on organizational achievements, and the existing literature seems to suggest that Six Sigma may hinder an organization's effort to be innovative. Alsagheer and Mohammed (2011) stated that Six Sigma challenges are multidimensional due to many reasons, ranging from a commitment from management, the bottom-up and top-down communication mechanisms, unrealistic expectations, inappropriate resources, inappropriate projects and problem definitions and failure to sustain the results of Six Sigma projects. There is more works on Six Sigma subjects, and this demands academicians in quality improvement tenants to unravel in other to narrow the existing gap between its theories and practical applications (Schroeder et al., 2006). In aerospace companies as documented by Zimmerman and Weiss (2005), less than 50% of the respondents were satisfied with their Six Sigma programmes Similar survey was made on healthcare companies and the revelation showed that 54% of the surveyed subjects do not intend to embrace Six Sigma programs (Feng & Manuel, 2007). On the same vein, Home depot and 3M were also among big enterprise that showed their disdain with the output of the Six Sigma projects (Hindo, 2007).

However, the ability of Six Sigma to achieve both efficiency and innovation has been challenged from different perspectives, which most researchers have argued that the utilization of process management methodologies favours exploitative innovation at the expense of eliminating explorative innovation. With much emphasis on process improvement and variance reduction, Six Sigma would impede product innovation and radical change (Parast, 2011). Many quality management proponents argued that Six Sigma projects focus primarily on understanding and identification of critical characteristics to the existing customers (Harry, 1998; Dasgupta, 2003; Evans & Lindsay, 2005), at the expense of threatening the ability of the firm to identify new customers and introduce new products and/ or services. Thirdly, as a spin-off of quality management, Six Sigma maintains a strong emphasis on setting specific goals (Linderman et al., 2003), and according to Pande et al., (2000) setting a clear goal is central to Six Sigma and as such, cannot address the core principles of quality management such as a culture of learning, continuous improvement of processes, and a system view of the organization.

However, the ability of Six Sigma to achieve both efficiency and innovation has been challenged from different perspectives. Benner and Tushman (2003) are of the opinion that too much dependent on Six Sigma improvement methodology will only encourage only exploitative innovation. With much emphasis on process improvement and variance reduction, Six Sigma would impede product innovation and radical change (Parast, 2011). There are cases of six sigma project failures in literature, amidst their wide promotion in the practitioner's literature (Fursule et al., 2012). Chandra (2008) attributed poor program implementation and poor utilization of expert knowledge, as the reasons why Six Sigma projects fail. Further study by Gopal (2008) has linked Six Sigma implementation failures as a result of the poor commitment from organizational management. Parast (2011) has related most Six Sigma failures to lack of means or structures to address radical innovations. Zimmerman and Weiss, (2005) linked many Six Sigma improvement program failures to wrongfully identified projects. There is also a growing concern that Six Sigma or other process improvement programs fail because they do not consider the human side of implementation (Fursule, et al., 2012).

It is also observed from the literature review that most Six Sigma organizations fail to develop a shared vision of the methodology and expectations from it and often do not have an organized approach towards Six Sigma. To achieve the maximum advantages in the form of removed defects, continuous improvement and sustainability, Six Sigma need to be integrated with other strategic frameworks like knowledge management (KM) that are targeted at achieving corporate sustainability.

2.5 Knowledge Management (KM)

The economic leverage of knowledge has become valued and many organizations have turned their attention to the value created by knowledge workers (Conway, & Sligar (2002). Recent IT platforms and tools along with human-oriented approaches can help greatly in knowledge-sharing processes (Rao, 2005). Contemporary technologies such as the internet, intranet, and wireless media, are transforming the very way knowledge is experienced and transformed (Norris et al. (2003). According to Rao (2005), "KM" can be defined as a systematic discipline and set of approaches to enable information and knowledge to grow, flow, and create value in an organization". This involves human, communication, enabling tools, best practices, and communities of practice. Knowledge management entails vigorous processes and practices that are constantly implied in humans, as well as in groups and in physical structures too (Alavi & Leidner, 2001). Knowledge management is actually aimed at making tacit knowledge explicit in order to be shared and to be reused across an organization (Ghani, 2009). According to Beijerse, (1997) companies on the average only used 20% of the knowledge that was potentially available in the organization, and thus losses huge amounts of money annually reinventing things that already existed. The challenge to manage the knowledge assets of the organization introduces a new business philosophy described as knowledge management, which is about connecting people to people and people to information to create a competitive advantage (Andersen, 1998). Sustainable guarantor to competitive advantage has been aligned with proper knowledge management (Grant, 1996), and organizations are leveraging their knowledge wealth to bring forth organizational expectations.

Knowledge management can be a problematic term and can mean different thing to different people (UNDP, 2007). Another idea according to Basu (1999) is that "KM is the process of creating, capturing, and using knowledge to enhance organizational performance". In other words, knowledge management according to Omotayo (2015) is a highly interdisciplinary field that attracts scholars and practitioners from various fields (philosophy, information science, library science, economics, management, sociology, and engineering etc.). The principal reasons for the continued KM are linked to globalization of business, technological advances, workforce dynamism and organizational survival. Primarily, knowledge management emphasize on achieving a well-defined organization specific goal by collectively applying the domain knowledge of the whole workforce (Library, et al., 2005). However, in order to manage knowledge properly, one should carefully learn how to manage effectively key components like people, knowledge, processes and technology (Desouza, 2011). A complete knowledge management system is characterized with four elements; knowledge creation and capture, knowledge sharing and enrichment, information storage and retrieval, and knowledge dissemination (Dalkir, 2005). The purpose of knowledge management according to Depres and Chauvel (2001) "is to enhance organizational performance by explicitly designing and implementing tools, processes, systems, structures, and cultures to improve the creation, sharing, and use of different types of knowledge that are critical for decision-making". Naturally, organizations survives based on their ability to create, and retain already created knowledge and be competitively relevant knowledge creation is primarily a human process, though technology can facilitate knowledge creation but cannot replace people (Omotayo, 2015).

2.5.1 Knowledge Conversion Processes

Knowledge conversion process helps knowledge move from individual knowledge to organizational knowledge through interactions (Linderman et al., 2004). This form of

interaction brings about what is called the four modes of knowledge conversion, which according to Nonaka and Takeuchi (1995), occurs through socialization, externalization, combination, and internalization. Knowledge management (**KM**) has been described as a key driver of organizational performance (Bousa & Venkitachalam, (2013). It is beneficial to all sectors such as education banking, telecommunications, production/manufacturing, public sectors etc. (Omotayo, 2015; Teng & Song, 2011). It is important to know that the selection of a suitable KM strategy not only depends on the type of knowledge to be shared but also on the environment the organization operates in. A quite number of challenges present themselves in today's economy causing firms to take an increased interest in knowledge management, probably because of the aging workforce, rapid advance in technology, service retrenchment and retirement (Malone, 2002). Since the organizational knowledge is lost through this conditions, instituting and adapting knowledge-based management system becomes a global sustenance practice.

The hallmark of every new economy is its ability to realize economic value from their collection of knowledge assets as well as their assets of information, production distribution, and affiliation (Gold et al., 2001). Recently, the evolution of global knowledge-based economy has resulted in a shift from the traditional production factors such as land, capital and labour to that of knowledge. At present, most organizations compete on their knowledge-based assets, and their ability to improve processes to bring new products to the market faster and more cheaply (Economic Intelligent Unit, 2007). Uriarte, (2008) characterize knowledge as one that cannot be consumed by the application, or lost during transfer, that which is abundant but the ability to use it is scarce, and that which are easily lost on a daily basis. Searching through so many definitions from various authors, the definition from Leonard (1998) is adopted, which states that knowledge is information that is relevant, actionable, and at least partially based on experience. Commonly, knowledge is known to be in two orders,

tacit and explicit knowledge. The tacit form of knowledge is personal and it is accumulated through study and experience. It can be shared and communicated through various activities and mechanisms such as conversations, on-the-job training, workshop, seminars etc. however, due to its subjective nature, it is hard to formalize this form of knowledge (Dinakar, 2016). The management of tacit knowledge is not common and the current technology-based knowledge management has not developed a fully effective means for the extraction of tacit knowledge (Uriarte, 2008). The other knowledge form is known as the explicit. According to (De Tienne & Ann Jackson, 2001, Duffy, 2000), explicit knowledge is that which is already documented: located in files, manuals, databases.

However, both types of knowledge can be produced as a result of interactions & innovations, and complement each other such that without tacit knowledge it will be difficult, if not impossible to understand explicit knowledge. The creation and diffusion of knowledge have become increasingly factors in competitiveness, and understanding of knowledge plays a central role in understanding organizational improvement activities. The SEIC model rightly described the knowledge creation process or mode, which helped in understanding the dynamic nature of knowledge and knowledge moves from individual knowledge to organizational knowledge through socialization, externalization, combination and internalization.

	TACIT KNOWLEDGE TO	EXPLICIT KNOWLEDGE
TACIT KNOWLEDGE	SOCIALISATION (sharing experiences with others)	EXTERNALISATION (writing down tacit knowledge)
TO EXPLICIT KNOWLEDGE	INTERNALISATION (Learning by doing)	COMBINATION (Systemizing it into a knowledge system)

Figure 2.9. The four knowledge conversion processes (Arendt, 2008)

The socialization process focuses on tacit to tacit knowledge linking to create new knowledge through interaction processes (Dinakar, 2016). This mode of knowledge conversion requires that individuals interact with one another, however, this interaction may occur without the use of language in terms of mentoring, observation, imitation and practice which are ways to share tacit knowledge. The externalization is a process of articulating tacit knowledge into such explicit knowledge as concepts. This stage is known as the knowledge crystallization point, and focuses on linking tacit knowledge to explicit, and is triggered by a dialogue intended to create concepts from tacit knowledge. In the knowledge combination process, new and existing explicit knowledge are assembled into a more systematic knowledge. This often occurs through re-experiencing what was learned, as is often the case in learning-by-doing. The use of operating manuals for various machines or equipment, oral stories, diagrams is quintessential examples of explicit knowledge that are used for internalization.

2.5.2 Knowledge Management Viewpoint

Knowledge management is majorly categorized into people management and information management. These two main paradigms are the computational view of knowledge management and the organic view of knowledge management which are derived from different epistemological positions, positivism and social constructionism (Swan, Newell, Scarbrough & Hislop, 1999), and shares common interest which are to the benefit of the organization (Pan & Scarbrough, 1999). A computational view of knowledge management approaches, view knowledge management as a process of identifying empirically validated facts and the key knowledge management initiatives, and under this include IT infrastructure, data warehouses and virtual centres of expertise, and other technical procedures. The organic view emphasizes the role of people, group dynamics, social and cultural factors, and networks (Argote, 2005). The human or organic side focuses on the sense-making behaviours

of individuals, social relations and cultural factors when handling organizational knowledge (Easterby-Smith & Prieto, 2008).

Organizational success is assured when processes and technology are merged together with employee's knowledge assets (Omotayo, 2015). This integrative perspective describes the organization from both the technological and human approaches, suggesting that IT and social factors are independent but interacting components (Easterby-Smith & Prieto, 2008). For instance, where most processes are not routinized or standardized, the human solution becomes preferable. The primary objective of knowledge management research and practices is to facilitate the efficacy of knowledge sharing among organizational members (Desouza, 2003). In relation to the primary objective it enhances both knowledge exploitation and exploration, and also shares the cost of not knowing and shortens learning cycle (Swan et al., 1999). To be precise, inefficiencies are reduced through proper knowledge coordination (Hibbard, 1997). Knowledge management approaches include self-service, networks, and communication of practice (CoP), and the transfer of best practices. Networks and community of practice (CoP) are the most vibrant and powerful KM approach used in quality management initiatives. Impact of other process improvement strategies is enhanced as a result of due cognizance to proper knowledge management (Uriarte, 2008). However, no general approach to managing knowledge has been commonly accepted up till now (Wiig, 1997; Uriarte, 2008), but the success of its implementation is achieved by modifying an organization's culture in ways that encourage and support desired knowledge attitudes and behaviors. Further success of KM program lies with apt alignment with the business goal, for without which is a futile exercise (Dalkir, 2005).

2.5.3 Knowledge Management Critical Success Factors (CSFs)

A suitable KM should be well adjusted to the situation and context of the organization at hand (Liebowitz, 1999; Soliman & Spooner, 2000). Skyme and Amidon (1997) highlighted

seven key success factors that would enhance deployment of knowledge management practices in an organization. These include a strong link to a business objective, a compelling vision and structure, knowledge leadership, a well-developed technology infrastructure and systematic organizational knowledge processes, a knowledge creating and sharing culture, and continuous learning. In an exploratory study on 31 KM projects, Davenport et al., (1998) also align KM success to a clear link to economic value, a clear purpose and language, multiple channels for knowledge transfer, a standard and flexible knowledge structure, a knowledge-friendly culture, change in motivational practices and senior management support, and a technical and organizational infrastructure. Liebowitz (1999) proposed six vital **CSFs** to make KM successful in organizations. His suggestions were on; committed senior management leadership, the presence of chief knowledge officer (CKO) and KM infrastructure, knowledge source, incentives, supportive culture, and lastly KM system and tools. However, Wong (2005) posit that solely linking incentives and rewards to individual performance or outcome will result to unhealthy competition and will be detrimental to knowledge sharing culture. Uriarte, (2008) broadly described these KM CSFs as pillars of knowledge management, and categorized them into four: Management and organizations; infrastructure; content management systems, and culture. Reportedly, the commonest impediments to effective knowledge sharing have always been with negligence and lack of commitment (Huber, 1991; Leonard-Barton, 1990). A committed organization is one that ensures availability of an up-to-date knowledge of the entire system of concern without incubating any fear for the loss of supremacy. A certain level of technology and infrastructural support are required for all knowledge management system to be effective. Organizational structure can impede adequate knowledge sharing mainly in cases where there is weaker co-location (Appleyard, 2002; Doz, & Santos, 1997; Kogut & Zander, 1993), knowledge diversity (Pascale, 1999; Lam, 1997), and unfriendly relationships between knowledge source and recipients (Ghoshal, & Bartlett, 1994, Nonaka, 1994). Most of the problems with knowledge management system are basically with the content management. The roles and responsibilities for maintaining and updating content should be clearly delineated to facilitate steady updates for both new and pre-existing events. Culture, on the other hand, may support or undermine discipline in managing and sharing knowledge. Organizational culture can be readjusted by reallocating work assignments, introducing new tools and procedures (De Stricker, 2014). Culture comes into being through constant communication among the members of the organization can be defined as a set of mechanisms such as informal values, norms, and beliefs that guides mode of interaction within and outside the organization (Wenger et al 2002). Incompatibility of culture can pose a serious barrier to effective sharing, and thus to the entire knowledge management system. Many factors such as efficient human resource management, organizational culture are attributed to purposeful knowledge management systems. However, the debate on the most important enabler for knowledge management among knowledge management proponents has always been between technology and people, but a great number of reports consider people to be the most important and argued that knowledge management that focuses mainly on technology often fail.

S/N	Cultural barrier	Possible solution	
1	Lack of time and meeting places	Hold seminars and e-meetings, re-design	
		physical workspaces.	
2	Status and rewards to knowledge	Establish incentives and include them in	
	owners	performance evaluations, develop role models.	
3	Lack of absorptive capacity (Not-	Hire for openness, educate current workforce,	
	invented-here syndrome)	use nonhierarchical approach based on quality of	
		ideas and not status of source.	
4	Intolerance of mistakes and need	Accept and reward creativity and collaboration.	
	for helps, lack of trust	Ensure there is no loss of status for not knowing	
		everything.	
5	Lack of common language	Establish a knowledge taxonomy and knowledge	
		dictionary for knowledge content through the	
		creation of co-location environment.	

 Table 2.2: Barriers to Cultural Change and Possible Solutions

Source: (Adapted from Dalkir, K., (2005): Knowledge Management in Theory and Practice).

2.5.4 Knowledge Management Models and Tools

Most of the management models in literature are basically concern in addressing ways of managing knowledge in a wider perspective. Though in the context of process study, much emphasizes are always laid on the **SEIC** model which is also most widely used model in practice. Tables 2.3 contain the list of knowledge Management models found in the literature.

S/N	KM –Models	Model Description		
1	SECI Model	This model was developed by Ikujiro Nonaka together with Hirotaka		
		Takeuchi in (1995). A model of a knowledge creating process to		
		understand the dynamic nature of knowledge creation and to manage		
		such a process effectively.		
2	Capability	An organizational model that describes five evolutionary stages in		
	Maturity	which processes in an organization are managed. Though this model		
	Model	refers to the management of processes in an organization, it can be		
_		easily adapted to manage knowledge.		

 Table 2.3: Knowledge Management Application Model

 Table 2.3: Knowledge Management Application Model

S/N	KM –Models	Model Description		
3	Business	BI applications mainly consist of systems and technologies for		
	Intelligence model	monitoring, gathering information, reporting, analysis, and		
		profiling.		
4	Johari Window	Developed by Joseph Luft and Harry Ingham. The model is an		
		information processing model that can be represented in a 2 by		
		2 matrix form. This model employs the interactions between		
		two sources of information, the Self and the others. It has four		
		quadrants; Arena, Blind spot, Façade, Unknown		
5	Three worlds of	Three worlds of knowledge (Karl Popper)		
	knowledge (Karl	This model was developed by Popper to help him solve the		
	Popper)	mind-body problem and also to understand the interactions		
		between the physical, the mental and the manifestation of		
		human mind.		
6	Bridging	This model shows that most of the organizational knowledge is		
	Epistemologies	based on the understanding of the nature of that knowledge.		
		Developed by S.D.N Cook and J.S Brown		
7	Pyramid to	It describes the structural and functional relationships between		
	Wisdom & DIKW	data, information, knowledge, and wisdom. The knowledge		
	Model	pyramid led to the foundation of DIKW Model. The DIKW		
	(RusselAckoff)	model stands for Data, Knowledge, Information, and Wisdom		
		of decision making.		
8.	Knowledge Life	Knowledge is managed in a continuous cycle of production &		
	cycle (Joseph, M	integration with a focus on innovation.		
	Firestone &	z		
	McElroy).			
9	The knowledge	A framework that can be used for learning, capturing, sharing		
	management	and exploiting knowledge and experience. According to the		
	method	model proponents, knowledge is something that resides in the		
	(Collison& Geoff	minds of individuals and is not something that can be controlled		
	Parcell)	or managed.		

 Table 2.3: Knowledge Management Application Model

	KM –Models	Model Description		
S/N				
10	Six knows knowledge	This is the simplest knowledge management, model. The		
	(Lundvall& Johnson)	model is quite expressive and similar to DIKW model.		
11	K2BE (Knowledge to	The K2BE roadmap is a rough process model for installing		
	Business Excellence)	professional knowledge management. It consists of four		
		fundamental sections and five phases		
12	Choo Sense-Making	The Sense-Making KM model is focused on three aspects;		
	KM model (1998)	Sense making, knowledge creation, and decision-making		
		skills. In general, the model focuses on how informational		
		elements are selected and fed into organizational actions.		
13	Bukowitz& Williams	This Knowledge management model plans on how		
	model	establishments should create and increase knowledge to arrive		
		to an expected worth.		
14	Complex Adaptive	Under this model, an organization is seen as an adaptive		
	system models	complex system. Its principles are based on cybernetics,		
		which uses communications and control mechanisms in order		
		to understand, describe and predict what a viable organization		
		should do.		
15	Zack Knowledge	The model is extracted from work on the design and		
	Management model	development of information products, in Meyer and Zack's		
		approach		
16	Boisot I-space model	The model considers organizations as living organisms and		
		requires a dynamic knowledge management strategy. This		
		model can be seen as a three-dimensional cube with the		
		following dimensions: from uncodified to codified, from		
		concrete to abstract.		

 Table 2.3: Knowledge Management Application Model

S/N	KM –Models	Image: Addition Model Description			
17	Von Krogh	This model precisely differentiates between individual knowledge			
	&Roos Model	and social knowledge. It analyses :			
	(1995)	 Why and how knowledge gets to the workers of a company. Why and how knowledge arrives at the organization What does knowledge mean for the workers as well as the organization, and What are the barriers to Organizational Knowledge 			
		Management?			
18	WIIG KM model	This model is marked with the basic principle which states that, for			
	(1993)	knowledge to be useful and valuable, it must be organized and			
		synchronized. Some of the essential dimensions in the WIIGS KM			
		model are; completeness, connectedness, congruency, perspective,			
		and purpose.			

Note. Adapted from (Dalkir, (2005); Frost, (2012)

Knowledge Management tools and methods are classified into two, the non-information Technology (IT) methods and tools, and the Information Technology (IT). Young (2010) compiled twenty Knowledge Management tools and methods as agreed by the Asian Productivity Organization (**APO**), and are tabulated in the Table 2.4.

S/N	Non-IT tools and methods	S/N	IT tools and methods
1	Brainstorming	12	Document libraries
2	Learning and Idea curve	13	Knowledge bases (Wikis etc.)
3	Peer Assist	14	Blogs
4	Learning Reviews	15	Social Network Services
5	After Action Review	16	Voice and voice-over-Internet Protocol (VOIP)
6	Storytelling	17	Advanced Search tools
7	Collaborative physical work pace	18	Building knowledge clusters

 Table 2.4: Knowledge Management Tools and Methods

S/N	Non-IT tools and methods	S/N	IT tools and methods
1	APO knowledge management	19	Expert Locator
	Assessment tool		
2	Knowledge café	20	Collaborative Virtual Spaces
3	Community of practice		
4	Taxonomy		

 Table 2.4: Knowledge Management Tools and Methods

Source: (Young, 2010).

2.5.5 Community of Practice (CoP)

Regardless of what business one is doing, the ability to compete is based on the knowledge of its employees. Many companies already know that the knowledge of their employees is their most valuable asset (squierer, 2006). According to the CEO of the American Productivity & Quality Centre (APQC) Carla O'Dell, networks and communities of practice (CoP) are probably the most vibrant and powerful knowledge management approaches. CoP provides an easy entry point in knowledge management with enormous benefits and readily overcome cultural barriers to knowledge sharing (Asoh, Belardo, & Neilson, 2002). The primary goal of any organization is to integrate the specialized knowledge of many individuals to maximize efficiency (Grant, 1996). As knowledge resides within each organization both explicitly and implicitly, organizations must find ways in which to manage the processes by which knowledge is created and applied (Quintas, et al., 1997; Davenport & Klahr, 1998). Organizational knowledge and ideas are adequately maintained through a social process other than the sum of the individual cognitions (Gheradi & Yanow, 2003). Critical knowledge loss occurs by a job transfer, retirement, mobility and alternative work arrangements. According to Omotayo, (2015) "when an employee leaves an organization, his idea, information, experience, contacts, relationships and insights leave with him if no attempts are made to identify, capture and share this knowledge in the organization". To capture knowledge for further use in any organization certainly entails workers should be working in groups (Hislop,

2013; Dul et al., 2011). The Phrase community of practice was introduced by Wenger & Leave in the 90's and is the most interesting informal network from a knowledge management point of view.

Figure 2.10. Communities of practice and organization performance (Adapted from Lesser, & Stock (2001)).

The community of practice is a knowledge-based social structure where a group of people with a common interest are united about a topic or set of problems; thereby deepen their knowledge and expertise by interacting on an ongoing basis (Wenger, McDermott & Snyder, 2002). This environment supports faster problem solving, cuts down on duplication of effort, and provides potentially unlimited access to expertise (Leask et al., 2008). In the context of knowledge management (KM), community of practices is formed intentionally or spontaneously to share and create common skills, knowledge, and expertise among employee. Malone, 2002) described as a step formed toward developing a learning organization. The community of practice model allows for the exploration of the implicit knowledge (Skalicky & West, 2014), and further leads participants towards the greater attainment of social capital (Bourdieu, 1997), connections, relationships, and expression of a common understanding and context of problems (Wenger et al., 2002). The size of CoP varies from 2-3 people to thousands of people, and members of expertise could be either homogeneous or heterogeneous (Young, 2010), meaning it could be a group of people in a specialized field or
group of people from different specialty, depending on the nature of the assignment to be carried out. In anticipation of the expected organizational outcome, the goals of a community of practices should be aligned with the goals of the organization (Brown & Gray, 1995).

2.5.6 Practical Concerns on KM Functions

The common challenge concerning knowledge management is that the actual situation is unique in every organization (Mittelmann, 2004), and there is still no absolute method for measuring KM organization (Gupta et al., 2000). Other problems faced by knowledge management functions are attributed to culture, organizational structure, trust, job security. The willingness of individuals to share their knowledge in an organization heavily depends on the organizational culture (Kucza, 2001). Cultural issues are the largest obstacles to implementing successful knowledge management strategies (Hibbard & Carrillo, 1998; Wong, 2005). One cultural aspect which is key for KM is a collaboration (Goh, 2002), thus knowledge transfer requires individual to come together to interact, exchange ideas and share knowledge with one another. The second challenge is in identifying those knowledge domains possessing potential value for the firm and ways of converting them into actual value (Malone, 2002) because most individuals that possess unique knowledge hold a monopolistic power and are reluctant to relinquish that power (Davenport & Prusack, 2000).

Another most internal barrier to the flow of knowledge is lack of communication between functions in the company. Lastly is security; as most of the employees hide valuable knowledge that can equip them as better entrepreneurs, if their job is threatened. In order words, most organizations are reluctant to engage in knowledge management program because they are afraid that some vital organizational information will be compromised. By accessing, sharing, and implementing both explicit and tacit knowledge, organizations can influence behaviour and achieve improved performance both individually and organizationally, and the more effective organizations are at learning, the more likely they will be at being innovative (Argyris, 1992).

2.5.7 KM Metrics

Measurement is undoubtedly the least developed aspect of knowledge management and without measurable success, enthusiasm and support for knowledge management are unlikely to continue" (De Brun, 2005). Knowledge measurement is developing into a new research field in the area of knowledge management (Jennex & Smolnk, 2009). While there are many empirical based metric systems available online, many knowledge management practitioners believe that because knowledge is intangible, knowledge management cannot be measured (Milton, 2009). Metrics are essential for the advancement of research and practice in an area (Kankanhalli & Tan, 2005). The development of KM metrics has begun in recent years and these metrics are being applied by some organizations in measuring organizational knowledge management capabilities (Ranjit, 2004). The measurement metrics is necessary to determine the extent to which an organization utilizes its knowledge assets. However, Tiwana (2002) warns against choosing too many metrics that will tip people off from business goals. According to Rao, (2005) organizational success depends on the performance maximization across these five dimensions of KM metrics; technology, process, knowledge, employee, and business. These KM metrics and their scope are enlisted in Table 2.5.

Scope of KM	Sample parameter
Metrics	
Technology	Number of e-mails, usage of online forums, number of database queries,
metrics	Web site traffic, duration of portal sessions, number of search queries,
	number of blogs, number of alerts
Process	Faster response times to queries, meeting international certification
metrics	standards, more real-time interactions with clients, tighter collaboration
	with suppliers and distributors, more direct channels to customers, more
	accurate content taxonomies, more secure communications
Knowledge	Number of employee ideas submitted, number of knowledge asset queries,
Metrics	number of knowledge assets reused, best practices created, rate of
	innovation, active CoPs, knowledge retention, quicker access to
	knowledge assets. knowledge ("flow" and "stock" measures)
Employee	Degree of bonding with colleagues, improved performance in CoPs, peer
metrics	validation, feeling of empowerment, growth in trust, satisfaction with
	reward/recognition, retention in company, decrease in time to competency,
	more accountability, responsible risk-taking, increased motivation
Employee	Degree of bonding with colleagues, improved performance in CoPs, peer
metrics	validation, feeling of empowerment, growth in trust, satisfaction with
	reward/recognition, retention in company, decrease in time to competency,
	more accountability, responsible risk-taking, increased motivation

Source: Rao, (2005).

2.5.8 Knowledge Creation within Six Sigma Quality Management

Learning and knowledge creation in quality improvement relate to how an organization manages the cognitive processes of its members (MacDuffie, 1997). The relationship with organizational cognition is critical because how a quality program successfully changes practices in an organization depends on how the cognitive processes of its organizational members are managed (Reger et al., 1994). It is of utmost benefit that Six Sigma Projects are

understood from a knowledge management perspective. Choo et al., (2007) developed a knowledge-based framework for Six Sigma projects by focusing on two complementary sources of knowledge creation in Six Sigma projects; prescribed methodology and organizational context.

Figure 2.11. A framework for learning and Knowledge creation in quality improvement. Source: (Choo et al 2007)

These two perspectives reflect the dual emphasis of technical (prescribed methodology) and social (organizational context). Technical dimension (e.g tools and techniques) requires having a method built on the efficient process and cumulative experience acquired through a repetitive structured process. The social dimension (leadership, organizational culture, etc.) puts more emphasis on the social environment in knowledge creation, by designing a creative environment for organizational members. Before Choo et al., 2007 study, there has been a little insight into how a quality advantage can become more sustainable as a result of insufficient understanding on how the technical and social components of quality practices lead to learning and knowledge creation.

The researchers examine how learning and knowledge creation can be facilitated in a Six Sigma projects by effectively implementing both perspectives in order to generate a higher level of knowledge such that a sustainable quality advantage will be sustained. KM theories enrich our understanding of quality management (Linderman et al., 2004). Arendt, (2008) succinctly add that the knowledge of the individuals and the explicit knowledge of the organization are the bedrock of the successful application of Six Sigma projects. In Six Sigma projects, for example, the team members comprising of experts and regular workers are closely connected with the affected process. In this team collaboration, these experts now share tacit knowledge with the rest of the group, so a common understanding of the entire process is gained. Linderman in 2004 with his co-researchers made some propositions in relation to quality management and knowledge creation as vital integrations for an improved firm performance, and further advocates for deploying quality practices that support the knowledge creation (socialization, processes externalization, combination, and internalization). This organizational knowledge creation process is continuous and ideally creates a "knowledge spiral" as it moves from an individual to a group to the organization.

Most of the quality improvements attained in most organizations are always not well sustained mainly because of the outsourcing of improvement functions to external process improvement practitioners. It is more effective to have members of an organization as an integral part of the improvement project than handing off or turning over a project (Leavitt, 2002). According to Arendt, (2008) employees being exposed to Six Sigma projects through their participation as team members not only share their knowledge but also gain new knowledge. On the other hand, Six Sigma practitioners need to learn from KM strategies that sustain change, by leveraging Six Sigma achievements over a long term. This process improvement innovation of incorporating KM in Six Sigma strategy in an organization will create a systematic problem-solving culture among members, thereby making members of the organization direct members of the given functional group. The idea will be to move people from a departmental thinking in which they are least inclined to share information all the way up to an ideal where knowledge is shared intuitively. Currently, knowledge management has

stood out a foundation for competitive advantage and has contributed in the successful implementation of Six Sigma. (Gowen et al., 2008). Barton and Byard, (2008) assent to the early arguments, that Six Sigma's positive improvement results can only be well sustained if implemented in a knowledge-based environment.

Knowledge	Socialization	Externalization	Combination	Internalization
	(Tacit to Tacit)	(Tacit to	(Explicit to	(Explicit to
Quality		Explicit)	Explicit)	Tacit)
Customer	The extent of	The extent that	The extent of	The extent of
satisfaction	interactions	customer needs	information	monitoring and
	between	are articulated or	analysis	providing
	organizational	conceptualized.	conducted on	feedback on
	members and		customer data.	customer
	customers.			information.
	The extent of	The extent that	The extent of	The extent of
Continuous	interactions	improvement	information	on-going process
improvement	between	ideas are	analysis	monitoring and
	organizational	articulated in the	conducted on	control.
	members in	form of theories,	problem	
	improvement	concepts, or	understanding	
	activities.	cause-and-effect	and diagnosis.	
		reasoning.		
System View	The extent of	The extent that	The extent that	The extent that
	interactions	organization	organization	organization
	between	conceptualize	synthesizes	consistently acts
	heterogeneous	the purpose and	information	in conformance
	organizational	aim of system	from	with its purpose,
	members.		heterogeneous	aim and strategy.
			sources.	

 Table 2.6: Description of Practices that Link Knowledge and Quality Management

Source: Linder man et al., (2004)

Table 2.6 describes practices that link knowledge and quality management considering knowledge conversion processes and few quality measurement parameters. Arendt, (2008) succinctly added that the knowledge of the individuals and the explicit knowledge of the organization are the bedrock of a successful application of Six Sigma projects. Recently, operations management scholars have recognized that "incorporating" human behavior into operation management models will yield more realistic insights (Boudreau et al., 2003). However, Antony (2004), had earlier argued that improvement in decision-making, communication, and learning processes cannot be achieved with Six Sigma projects since they are designed to deal with specific quantifiable and measurable improvement goals. Six Sigma integrations with other management models and methods have become the focal and contentious subject of debate among the circles of quality/ process improvement proponents.

Recent un-impressive records on failed Six Sigma projects globally has awakened most quality improvement proponents to engage in concerted research efforts to unravel answers to poor Six Sigma project executions. (Kwak & Anbari, (2004); Antony (2004b); Parast, (2011); Alsagheer & Mohammed, (2011)), through their concerted research efforts aligned Six Sigma failures to organizations inability to retain knowledge and sustain learning environment. Based on the experiences in the literature concerning many manufacturing companies that have implemented Six Sigma technique without creating the underlying culture of learning, and incessant loss of control to the newly improved process begot the era of shared relationship between Six Sigma and knowledge management (KM) integration. The quest for establishing corporate and sustainable management models start to gain wider recognition in the last decade, hence era of propositions in Six Sigma-KM integration subjects swoops more ground in quality improvement palace.

However, some of recently reported Six Sigma and Knowledge Management integrations from the available literature are basically on organizations that already have Six Sigma certified experts, thus a discouraging factor for organizations that would want to adopt the strategy newly due to the responsibilities of acquiring Six Sigma experts. The available integration efforts have failed to consider prevailing realities among organizations that are at their teething quality management level to solve domain-specific problems. Some of the recently proposed Six Sigma and KM integrations, as well as their individual shortcomings, are as highlighted below:

- Proposed integrated knowledge representation (IKR) model (Yeung, 2004). The proposed model has very little interaction with the basic Six Sigma steps. Its complex-IT platform and budgetary set-up requirements made it more conducive to only large organizations.
- 2. Proposed Process-based knowledge creation and opportunities model (Wu & Lin, 2009). In this proposed model, the KM process is vague and not clearly described. A proposed integrated PRAND MODEL (Alsagheer & Mohammed, 2011). The idea of the model is to have a specialized process research development team in the company. This idea of having a specialized team may deter organizations at a teething quality management level from adopting due to the presumed high resource requirements.
- Proposed SEIC/SIPOC Continuous Loop model (Nold III, 2011). KM process was not distinctively highlighted, except the knowledge conversion processes.
- Proposed Knowledge flow in Chinese s] Six Sigma teams model (Zou & Lee, 2010).
 Only Chinese cultural environment was considered.

In summary, most of the Knowledge gained in Six Sigma-DMAIC is difficult to sustain over time especially when competent staffs that were involved in improvement projects are retired, retrenched or through job rotations. Recently, Six Sigma and Knowledge Management (**KM**) integration approaches have been recognized as part of the ongoing process improvement initiatives to make Six Sigma-DMAIC approach a more viable solution in tackling similar quality related problems in manufacturing firms. Although many solutions of integrating Knowledge Management and Six Sigma have been applied into a number of fields such as hospital (Gowen et al 2008), textile industry (Baral, 2014), IT system management (Nguyen, 2017), such integration has not been applied in cable manufacturing industry in Nigeria. In cable manufacturing where observational studies are much, knowledge of workforce is very vital in every improvement studies and most experienced staffs leave with their individual knowledge of the process due to retirement, retrenchments, and during job rotations without transferring them. Most cable industries have over the years tried a good number of improvement strategies to help save on the cost of not knowing, but are still faced with some real life problems in their manufacturing processes due to process knowledge loss, and lack of knowledgeable workers. Hence a solution to the aforementioned challenges becomes imminent and requires a robust methodology that can be used as a model for transfer of best practices and contains Silos effect.

Furthermore, most cable making organizations are more engrossed in instituting a quality management system, and often pay less attention to selection of appropriate tools that will guide them to success. Although most cable manufacturing organizations are ISO certified, it is pertinent for these organisations to be conscious of the fact that ISO does not suggest any tools, methods or solutions on how to improve, but mainly on following standardized procedures. Hence, there is utmost need to always develop improvement strategies that can be utilized as a tool within a quality management system to meet ISO requirements.

2.6 Knowledge Gap

The quest for efficient and sustainable strategy for tackling process and product variability especially in cable manufacturing companies is yet to be satisfied. The efficacy of Incorporating Knowledge Management within Six Sigma-DMAIC in tackling such manufacturing process challenges has not been explored. Moreover, Six Sigma implementation processes and styles differ from company to company, country to country due to the uniqueness of experiences, nature of problems and maturity level of quality management. Thus there is need for indigenous study and adaptation of the improvement strategy in industrial settings, with particular reference to the Anuka cable plant of the Cutic Cable Plc.

CHAPTER THREE

MATERIALS AND METHOD

3.1 Research Design

A uniform way to implement Six Sigma-DMAIC usually remains a myth (Moosa & Sajid, 2010) and its application, according to Tennant (2002), is still novel. In this study, power of generality trade-off was explored by augmenting the Six Sigma methodology with domain-specific adaptations which includes the introduction of additional Knowledge Management techniques in the existing method to make it more powerful for application. Figure 3.1 describe the entire improvement cycle, starting at the conceptual level of the improvement solution, where the essential tools and procedures are integrated for improvement functions. The second phase in the research design is an empirical research, saddled with the responsibility of validating the conceptualized solution in an industrial setting. The third phase of the research design is concerned with the economic evaluation of the proposed solution. The last phase on the research design flow chart is concerned with the development of Knowledge based tool for easy replication of the improvement solution.

Fig. 3.1. Flowchart of the Research Design representing the Entire Improvement cycle

3.1 The Underlying Philosophy for the Development of the Improvement Strategy.

In the development of the improvement strategy, the matching advantage of these two distinct disciplines Six Sigma and knowledge management were explored. The knowledge management concept that was explored laid emphasis on the social environment through the use of Cop and other non-IT techniques. The Knowledge management ideas in the conceptual development was based on the informal knowledge in tacit order, and the need to move people from a departmental thinking in which they are least inclined to share information all the way up to an ideal where knowledge is shared intuitively. Figures 3.2 & 3.3 aid in the proper understanding of the underlying Knowledge management idea that precipitate to the model development.

Fig. 3.2: Knowledge Management Process Model

The knowledge process model as described in Figure 3.2 how organizational knowledge are enriched as each member of the unified group of Cop becomes more knowledgeable on chosen projects through the knowledge dynamics processes in a Cop environment. The modeled processes are distinctively in three separate parts, knowledge need identification, knowledge creation/sharing and knowledge coordination. This organizational knowledge creation process is continuous and ideally creates a "knowledge spiral" as it moves from an individual to a group and to the organization which is the eventual goal through active documentations.

Figure 3.3: Knowledge dynamics in CoP environment.

The Cop interaction as described in Figure 3.3 would create knowledge spiral whereby tacit knowledge of member group involved in the improvement studies are made explicit. During the improvement studies, knowledge are created, shared and are often located within the cognitive domain of the members involved in the improvement function. Knowledge at this stage is seen as mobile team knowledge which is still transitory and can be lost due to a number of factors such as retrenchment, retirement etc. The mobile team knowledge order are transferred to organizational knowledge through proper documentation and update on the standard operating procedure (SOP) of the organization. On the other hand, Six Sigma DMAIC is a rigorous and systematic approach to improvement, capable of providing platform for knowledge creation across its phases and is an ideal improvement framework for incorporation of knowledge management techniques. However, attempts on the matching advantage of these two disciplines, Knowledge Management and Six Sigma-DMAIC, has been made in a number of fields but such integration has not been applied in cable manufacturing, where observational studies are much and knowledge of workforce is very vital in every improvement studies. The research examined how learning and knowledge can be facilitated in a Six Sigma projects by effectively implementing both perspectives, KM and Six Sigma-DMAIC, in order to generate a higher level of knowledge such that a sustainable quality advantage would be sustained in cable manufacturing at the study object. The conceptualized approach was of a typical five phased DMAIC structure, with some adaptive modifications. In the proposed hybrid structure shown in figure 3.4 , Knowledge Management techniques were incorporated in the typical DMAIC framework to make the methodology more engaging and resourceful for improvement functions. The conceptual approach considered all these DMAIC phases in its implementation and in a chronological order.

Figure 3..4. The Proposed conceptualized Improvement strategy.

The aim of each stage is briefly described as follows:

- Phase 1: Phase one was the "Define Phase" and the research aim at this phase was centered on the identification of real life problems. The Define phase of the Six Sigma-DMAIC provides the socialization environment, just like a reflection of the Nonaka SEIC model, where sharing experiences with other members aid in transfer of tacit knowledge. The idea of initiating the Cop in this phase was as a result of informal knowledge representation in tacit order and core knowledge creation takes place at the group level as the team engages in improvement studies. Important task and techniques were incorporated like the Project charter and After action review session. These two tools would provide the externalization experience as tacit knowledge were made explicit through writing down tacit knowledge
- Phase 2: This second phase, The Measure phase, was aimed at understanding the baseline performance of the system/process though the use of important tools and execution of tasks such as Measurement System Analysis (MSA), Process Capability Analysis (PCA) and eventual After action review (AAR). Three knowledge interactions are likely observed at this stage, socialization, Internalisation and externalization.
- Phase 3: This third phase, The Analyze phase, was aimed at investigating reasons for the identified problems. During this team participation, the individual members of the team made explicit their innate tacit potentials. Three knowledge creation modes socialization, externalization and internalisation were found in the third phase of DMAIC. Knowledge moved from tacit to tacit, tacit to explicit and from explicit to tacit. Some of the important tasks and tools incorporated at this phase included brainstorming, cause and effect diagram, Cause Validation matrix, Analytic Hierarchial Process (AHP) and eventual after action review (AAR).

- Phase 4: The fourth phase was the "Improve phase" and was aimed at setting up probable solutions to eliminate the identified problems. Some of the important techniques incorporated at this phase include, semi-structured interview, method study, experimental design, process capability studies, engineering tolerance design, time study and eventual after action review (AAR).
- Phase 5: The fifth phase, The Control phase, was to ensure that all the implemented solutions were maintained and controlled consistently. This phase is incorporated for systemizing knowledge created in the process into a knowledge system through the updating of the standard operating processure (SOP) of the system. Documented explicit knowledge of the Cop members were converted to organizational knowledge after the entire phase review. The prototypical of the envisaged knowledge management process is mapped in Figure 3.2, The improvement projects would provide the knowledge-based resources that it will benefit internal operations of the organization, outside the participants' cognitive domain.

3.1.1 Data collection

Most of the qualitative data used in this study come from interviews, and discussions with involved personnel. Quantitative data have also been collected mostly in the Define, Measure, Analyze and Improve phases of the DMAIC's framework.

3.1.2 Software Packages used in this Study

The following software packages were used for data analysis in this study:

- 1. Minitab-17 Software was used for statistical analysis and graphical representation.
- 2. Free web based AHP Software by Goepel (2018) was used to prioritize the criticality of defects.
- 3. Design Expert-11 was used for the experimental design

4. MATLAB Software was used to develop the Knowledge-based support tool.

3.2 Validation Case Study

In this study we looked at variation and its causes, and how to improve and control a process using the synergetic support of Six Sigma-DMAIC and Knowledge Management concepts. The Integrated solution was validated in a cable manufacturing company "Cutix cable Plc." located in Umuannuka, Otollo Nnewi in Anambra State of Nigeria. Figure 3.5 is the flow diagram for the validation.

Figure 3.5. Process Flow Diagram of Anuka Cable Production line of Cutix Cable Plc.

The company is mainly involved in the production of different types of cables. Anuka cable plant station is basically for the production of primary house wiring cables, while Power cable plants (PCP I & II) station are mainly for the production of 'Armored' cables and compounding of PVC materials used for insulation. The company has earned a good reputation in the whole of Africa for production of high quality cables, and their quality management system is ISO 9001 certified.

Figure 3.6. .SIPOC diagram of Anuka Cable Production line of Cutix Cable Plc Supplier-Input-Process-Output-Customer (SIPOC) as shown in Figure 3.6 is drawn for more clarifications on the process elements and aids in troubleshooting and formulation of hypothesis that would be tested during the Analyze Phase.

3.2.1 Overview of Cable Extrusion System

Figure 3.7. Wire extrusion system

An extrusion system includes a crosshead designed to receive and distribute material for extrusion and a die and tip defining an extrusion cavity in mechanical communication with the crosshead. The crosshead is designed to vibrate at an ultrasonic frequency and transfer vibration to the die and tip during wire. Payoff section is configured to hold and supply wire to the crosshead. The payoff is coupled to a rotating mechanism configured to facilitate unwind and supply wire from reels. A water trough designed to receive and cool coated wire; Take-up section designed to receive and store cooled cable.

Figure.3.8: Flow chart of wire extrusion method

Experimental adjustments to the extrusion process may allow some reduction of some undesirable attributes under certain conditions but may lack repeatability of a desirable set of physical attributes, thus making it difficult to implement any experimental adjustments to real world manufacturing scenarios (Briskey, 2014).

Figure 3.9. Components of Extruder chamber

The process of cable extrusion is a continuous transportation and transformation of poly vinyl chloride (**PVC**) pellets into a molten paste. A rotating screw does the transportation, where the pellets are fed into the extruder from a feed hopper. The extruder ends up in a die that applies the melt on to the copper wire. There are three zones in the extruder, feed zone, melting zone, and pump zone. In the feed zone, the **PVC** pellets are compressed between the barrel and the screw. The melting zone, also called the compression zone does most of the melting. Next zone, the pump zone, does the final transportation of the homogenous polymer material with constant temperature and pressure to the die. The research was conducted with the help of the initiated project team from the case company following the conceptualized DMAIC approach in executing the projects towards a logical solution of the problems.

3.3 The Define Phase

This phase of the DMAIC methodology aimed to define the goals and scope of the improvement projects in terms of customer requirements and to develop a process that delivers these requirements. The first step towards solving any problem in Six Sigma methodology is by formulating a team associated with the process. In this study, the team build-up session was formulated through series of meetings with departmental heads in the organization to help select individuals with recognized skills, passion and knowledge of the process. Afterwards, an introductory meeting was held with the selected members that made up the target group/ community to share ideas and need for establishing a learning

community within the process cycle. The objective of the formulated team was to develop common skills on Six Sigma-DMAIC improvement strategies, as well as to harness knowledge and shared expertise among the participants. A moderator was appointed based on his knowledge about a wide range of topics that were discussed during the meetings. Member meetings were made flexible enough such that sometimes members meet every day during break hours to discuss selected projects and most times once every week. Mode of member interaction was through face-to-face interactions, mobile communication and electronic messages mainly through WhatSapp.

A project charter was developed by this team, containing all the necessary details of the project charter was developed by this team, containing all the necessary details of the project like the project objectives, project duration, resources available, project scope and boundaries, and also the expected results from the projects. In this phase, Graphical tool like Pareto chart was used also to prioritize the key projects. The end of each Six Sigma-DMAIC phase was concluded with a phase review session to assess the group's achievements towards the overall organizational goals. The extracted explicit knowledge from the Define phase after the action review session, were documented to the knowledge repository system for easy retrieval and cross-referencing.

3.4 The Measure Phase

The objective of the measure phase was to understand and establish the baseline performance of the process in terms of process capability and also to quantify the measurement error on the total variation of a unit operation. The Measurement System Analysis (MSA) was conducted in the measure phase of a Six Sigma-DMAIC project (attribute and gage repeatability and reproducibility (Gage R & R) study) to validate the measurement system. The critical-to-quality (CTQ) measurements considered in the case organization are the cable insulation smoothness, and uniformity of cable diameter, excluding cable concentricity due to measurement difficulties. The critical to quality characteristics considered in the MSA are shown in Table 3.1.

S/N	Critical	to	Quality	Data type	Instrument for Inspection
	Characteristic	S			
1	Insulation Sur	face Flaws	3	Attribute data	Visual Inspection
2	Core Cable di	ameter		Variable data	Profile enlarger

Table 3.1: Critical to Quality Characteristics Considered in the MSA

3.4.1 Materials and Equipment for Measuring the Cable Diameter and Thickness

- 1. Insulating outer wall thickness projector cable tester (Profile Enlarger): This equipment enlarges the sample test and projects it in x, y, z plane. It gives the insulation thickness measurements starting from the inner to outer thickness of a core sample.
- Digital Caliper: This instrument is used for a wide range of measurements. It can be used to measure outside dimension, inside dimension, and depths. Digital calipers are much easier to read than the dial calipers.
- 3. Micrometer screw gauge: Micrometer screw gauge is a handheld gauge used in the study to measure the diameter of the copper conductor used for extrusion.
- 4. Insulation Cutter: This is a handheld cutting tool used to cut the cable so that the conductor can easily be detached from the cable.
- 5. Paper Tape: This is used to label the collected sample, as numerical inscription is inscribed on the entire sample collected for easy identification.
- 6. Cellophane Bag: This is used to house the samples obtained for easy identification and reuse.
- 7. Marker: This is used to mark numbers on the paper tape for ease of identification.

8. Razor Blade: This is used to cut the insulation materials into sample slice to be measured.

3.4.2. Attribute Gage Measurements Study and Collection of Data

Attribute MSA was set up as an experiment to assess the agreement of nominal or ordinary ratings by multiple appraisers. An experiment was designed to determine the number of samples, operators and trials to be used for the study. Ordinarily, larger numbers of parts and repeat readings give results with a higher confidence level, but the numbers has to be balanced against the time, and cost. From the study design, ten (10) samples were used with three (3) operators for two (2) replicates. The cable samples that were used for the attribute testing was gotten from different extrusion lines, since they only had to undergo visual inspection, and they were also not size-bound. The samples were of ratio 50:50 mix of good/bad (defective) parts. Each of the three operators randomly inspects each of the ten samples twice and records of the results were taken by a member of the team. With the same sample set, similar test was conducted with the most experienced quality personnel and outcome of her assessment was used as a reference value in the attribute measurement. In this attribute measurement, intra-inspector agreement measures repeatability (within inspector) while inter inspector agreement measures the combination of repeatability and reproducibility (between inspectors). The non-chance agreement between the three inspectors, denoted by Kappa was computed, using the formula:

$$\mathbf{K} = \frac{Po - Pe}{1 - Pe} \tag{3.1}$$

Po =
$$\frac{1}{Nn(n-1)} \left(\sum_{i=1}^{N} \sum_{j=1}^{k} n_{ij}^2 - Nn \right)$$
 (3.2)

$$Pe = \sum_{j=1}^{k} p_j^2$$
(3.3)

where, Po = number of observed agreements, Pe = number of expected agreements, 1 = total number of observations, $P_{j}^{2} =$ the expected proportion agreement for each category, N = the number of subjects, n = the number of raters, K = the number of categories of the scale, $X_{ij} =$ the number of raters who assigned the ith subject to the jth category.

3.4.3. Gage Repeatability and Reproducibility (R & R)

Crossed gage R & R study compares measurement system variation to total process variation or tolerance. With crossed gage R & R study, one can ascertain how much of the variability in the measured diameter of a cable is caused by the equipment/measurement device or how much of the variability in the measured diameter of a cable is caused by the operator. In other words, Gage R & R study (**Crossed**) are used to assess how well the measuring system can distinguish between parts, and also assess whether the operators measured consistently.

Measurement system variation consists of;

- 1. Repeatability: This is variation due to the measuring device or the variation observed when the same operator measures the same part repeatedly with the same device.
- Reproducibility: Basically, this variation is as a result of measurement system errors, and are noticed when a particular part is being measured by different operators using same equipment.

3.4.4. Sample Selection in Gage Repeatability and Reproducibility (R & R) Study

The number of operator/appraisers used in the study is three and the number of samples used is five (5) while the number of replicates is three. This design selection is according to Automotive Industry Action Group (AIAG) recommendations as described in the 4^{th} edition manual. The cable samples used for variable studies were gotten from the extrusion lines while the sample sizes were all 1.0mm single core cables. These samples were all randomly gotten at the coiling section during cable coiling process. Mathematically, the total variance in a quality characteristic of a process is described by Eqns. (3.4) & (3.5), while the percentage contribution of the measurement system to the total variance is calculated using Eqn. (3.7) and other useful Gage R & R metrics used in the study are also represented mathematically.

$$\boldsymbol{\sigma}^{2}_{\text{total}} = \boldsymbol{\sigma}^{2}_{\text{product}} + \boldsymbol{\sigma}^{2}_{\text{measurement}}$$
(3.4)

$$\boldsymbol{\sigma}^{2}_{\text{measurement}} = \boldsymbol{\sigma}^{2}_{\text{Repeatability}} + \boldsymbol{\sigma}^{2}_{\text{Reproducibility}}$$
(3.5)

where; σ_{total}^2 total variance; $\sigma_{\text{product}}^2$ = variance due to product; $\sigma_{\text{measurement}}^2$ = variance due to measurement system; $\sigma^{2}_{\text{Repeatability}}$ = variance within operator/device; $\sigma^{2}_{\text{Reproducibility}}$ = variance between operators.

~

$$\boldsymbol{\sigma}^{2}_{\text{Reproducibility}} = \boldsymbol{\sigma}^{2}_{\text{Operator}} + \boldsymbol{\sigma}^{2}_{\text{Part*Operator}}$$
(3.6)

% contribution =
$$\frac{\sigma^2 \operatorname{Re} peatability + \sigma^2 \operatorname{Re} producibility}{\sigma^2 Total} \ge 100$$
 (3.7)

% Study variation =
$$\frac{\sigma \text{ measurement}}{\sigma \text{ total}} X 100$$
 (3.8)

$$\boldsymbol{\sigma}t = \sqrt{\boldsymbol{\sigma}^2}_m + \boldsymbol{\sigma}^2_P \tag{3.9}$$

$$\sigma p = \frac{R_p}{d_2 *} \tag{3.10}$$

Two-sided Spec % P/T =
$$\frac{6\sigma \text{ measurement}}{USL-LSL} \times 100$$
 (3.11)

NDC =
$$1.41 \left[\frac{PV}{\sigma^2 \operatorname{Re } peatability + \sigma^2 \operatorname{Re } producibility} \right]$$
(3.12)

where; σt = total process standard deviation; σ_P = part-to-part standard deviation; PV = partto-part variation; NDC = the number of distinct data categories that can be created with this measurement.

$$UCL = D_4 \overline{R} \tag{3.13}$$

$$LCL = \overline{X} - A_2 \overline{R}$$
(3.14)

$$UCL = \qquad \bar{\bar{X}} + A_2 \bar{R} \tag{3.15}$$

where A_2 , D_3 , and D_4 are factors obtained from tables of constants used in constructing control charts.

S/N	Sample * Operator	Trials
1	S*O≥15	3
2	$8 \le S * O < 15$	4
3	$5 \leq S*O < 8$	5
4	S*O < 5	6

Table 3.2: Measurement System Analysis Design

3.4.5 Process Capability Studies

Process capability refers to the evaluation of how well a process meets specifications or the ability of the process to produce parts that conform to engineering specifications. The basic capability indices commonly used in manufacturing industries are Cp, Cpk, Cpm, CR, ZU, and ZL. These indices help to change the focus from only meeting requirements to a continuous improvement of the process. However, before evaluating the process capability of any process according to Wooluru, *et al*, (2014), the process must be under statistical control. Average charts (X-bar) and range charts (R- chart) are commonly used to investigate when a process is under statistical control. These aforementioned indices were evaluated in the present study before the improvement process and after the improvement processes. The flow chart of Process capability studies is shown in Fig. 3.8.

3.4.6. Sample Size Selection

Choosing an appropriate sample size is crucial to have a study that will provide statistical results significantly. The stability of estimates of the standard deviation increases with sample size (\mathbf{n}), and sample size of five ($\mathbf{5}$) provides a very stable estimate of process capability (Bangphan, Bangphan, & Bookang, 2014).

Figure 3.10. Flow chart of Process Capability Analysis (Source: Pyzdek, 2003)

An appropriate sample size estimate was applied in this study, and the samples were all gotten from the various batch of 1.0mm single core cable produced from TEKO-50 extrusion line. The data were classified into 20 subgroups of five observations and were randomly collected at the coiling section. The collections of the samples were spaced out within each subgroup over time, in recognition of the fact that the number of sources of variation increases as the time interval between samples within a subgroup increases. Spreading out the samples within a subgroup over time increase \overline{R} , widening the control limits, and thus makes achieving statistical control more likely (Kane 1989). The samples were accordingly labeled in order of collection. The samples were taken to Quality Assurance Department (QAD) laboratories where the samples were cut in slices for measurements. With the aid of the Cable cutter, the samples insulation surfaces were cut-open to detach the insulation from the conductor. With the use of sharp razor blade, a slice concentric dimension of the insulator was made from each of the insulation sample lengths. Each of these slice parts was marked at

opposing sides with the use of marker pen for ease identification of measurement points. Each of the sliced samples is placed on the glass plate of the Insulating outer wall thickness projector cable tester commonly referred in the case organization as "Profile Enlarger". With this equipment, insulation thickness measurement of four points was taken on the sliced samples. The readings for the cable diameter measurements and insulation thickness measurements were concurrently taken. The readings were all in "mm" and were recorded accordingly. With the measured data, process capability studies were conducted based on the values gotten from the sample measurements. Mathematical computations of common indices used in the process capability studies are as follows:

3.4.6.1. Process Standard Deviation ($\hat{\sigma}$)

$$\widehat{\boldsymbol{\sigma}} = \frac{\overline{R}}{d2}$$
(3.16)

where d2 is the factor obtained from tables of constant used in constructing control charts.

3.4.6.2. Process Capability (Cp)

This index is also called potential index or process capability ratio, and is two-sided PCI for two-sided specifications having both lower and upper specification limits. Cp is frequently used in an industrial environment in order to express process capability in a simple quantitative way. When the parameters are known, i.e. when the process standard deviation is known, Cp is computed as follows:

$$Cp = \frac{USL - LSL}{6\sigma}$$
(3.17)
$$LSL \qquad USL \qquad US$$

Figure 3.11. Relationship of Cp parameters

Where LSL and USL are lower and upper specification limits, NT = natural tolerance. In practice, it is often impossible to know parameters, therefore it is suitable to use sample standard deviation 's' to estimate process standard deviation σ . Thus, when the parameters are unknown, i.e. when process standard deviation σ is unknown, by replacing sample standard deviations to estimate process standard deviation σ , the formula used for estimating Cp is given below as:

$$\widehat{Cp} = \frac{USL - LSL}{6s}$$
(3.18)

3.4.6.3 Process Capability Index (Cpk)

This index is defined as the position of the total process variation (σ) in relation to the specification mean. The Cpk associated with a process or a group of items is either the value for Cpu or Cpl. Cpu is the position of the total process variation (σ) in relation to the upper specification limit, while Cpl is the position of the total process variation in relation to the lower specification limit. When the parameters are known, that is when process mean μ and the process standard deviation σ are known, Cpk is computed as follows:

$$Cpk = \frac{1}{3\sigma} min[USL - \mu, \mu - LSL] = min[Cpu, Cpl]$$
(3.19)

In practice, it is often impossible to know parameters, generally it is suitable to use sample mean s to estimate process mean μ and sample standard deviation S to estimate process standard deviation σ . When the process mean μ and process standard deviation σ are unknown, by replacing sample mean x and sample standard deviation s to estimate process mean μ and process standard deviation σ , the formula for estimating Cpk is computed as follows:

$$\widehat{Cpk} = \frac{1}{3s} \min[USL - \mu, \ \mu - LSL] = \min[Cpu, Cpl]$$
(3.20)

Figure 3.12. Relationship of Cpk parameters, (Adapted from Kane, 1989)

Where k = is an index that explains the amount the process mean is off-center (bias factor) and computed as follows:

$$\mathbf{K} = \frac{\frac{|m - \mu|}{USL - LSL}}{2} \tag{3.22}$$

$$C_{pk} = \frac{ZMIN}{3}$$
(3.23)

Montgomery (2009) examined several cases, which can explain the relationship between Cp and Cpk, as follow:

1. When Cp = Cpk, the process is centered at the midpoint of the specification limits. The process capability related to use of target values is shown in Fig. 3.11.

Figure 3.13. Process capability related to use of target values

 When Cpk<Cp, then the process is off-centered. The off- centered process is shown in Fig. 3. 12.

Figure 3.14. Off-centered process

- 3. When Cp<0, then the process mean lies outside the specification limits.
- When Cpk = 0, then the process mean is exactly equal to one of the specification limits.

3.4.6.4 Process Capability Index (Cpm)

This index is referred to as Taguchi Index, and is defined as the ability of the process to be clustered around the target or nominal value. Cpm index is useful in process centering, and when the parameters are known, Cpm index is computed as follows:

$$Cpm = \frac{USL - LSL}{6t}$$
(3.24)

The target value T, is known to be the midpoint of the specification interval

$$T = \frac{1}{2} \left[LSL + USL \right] \tag{3.25}$$

The formula for process variation around desired process target is given below:

$$\Phi^2 = \mathbf{E}[X - T] E[X - \mu]^2 + [\mu - T]^2 = \mathbf{\sigma}^2 + [\mu - T]^2$$
(3.26)

Computation of Cpm can also be done the following way:

$$Cpm = \frac{USL - LSL}{\sqrt[6]{\sigma^2 + [\mu - T]}} = \frac{Cp}{\sqrt{1 + \left[\frac{\mu - T}{\sigma}\right]^2}}$$
(3.27)

3.4.6.5 Capability Ratio (CR) Index

This index simply makes a direct comparison of the process to the engineering requirement, and is computed with the formula

$$CR = 100 X \frac{6\hat{\sigma}}{Engineering \ tolerance}$$
(3.28)

3.4.6.6 The ZU Index

This index measures the process location (central) relative to its standard deviation and the upper requirement. If the distribution is normal, the value of ZU can be used to determine the percentage above the upper requirement by using standard table for area under the standard normal curve. ZU is computed with the formula

$$ZU = \frac{Upper specification - \bar{X}}{\hat{\sigma}}$$
(3.29)

3.4.6.7 The ZL Index

This index, measures the process location (central) relative to its standard deviation and the upper requirement. For a normal distribution, the value of ZL will as well be used to determine the percentage above the lower requirement by using standard table for area under the standard normal curve. ZL is computed with the formula

$$ZL = \frac{\bar{X} - Lower specification}{\hat{\sigma}}$$
(3.30)

In this phase, like the **Define phase**, after completing the "After Action Review" session, the extracted explicit knowledge from the "Measure Phase" are launched to the knowledge base system.

3.4.6.8 Precautions

The following precautions were observed:

- We ensured that the personnel used for the measurement system analysis (MSA) do not compare notes.
- 2. The digital calipers used were always set at zero reading before taking measurements.
- 3. The caliper jaws were placed in a parallel position to the length of the cable during experimental measurements.
- 4. Only well-sliced samples were used during measurement of Insulation thickness.

- 5. The battery conditions of the digital calipers used were regularly checked before measurements were taken.
- 6. The measurement accuracy of the digital calipers used for the study was always checked at the start of the experiment to ensure they give accurate readings.

3.5. The Analyze Phase

At the analyze Phase, a brainstorming session was conducted with the CoP to identify and analyze the potential causes of these defects. The brainstorming results was arranged in rational categories and, Fish Bone or Cause and Effect Diagram that accurately displays the relationships of all the data in each category was prepared at the course of the session. To analyze the decision of eliminating defects in extrusion of primary cable, a judgmental model, known as the Analytical Hierarchy Process (AHP) was applied to prioritize the criticality of the different causes of these defects in the extrusion process. Based on the CoP's interaction, a cause validation plan was prepared detailing the type of data to be collected and the type of analysis possible for each of these causes. An overview on the improvement approach, tools and order of deployment at this phase is described as follows, starting with:

3.5.1 Brainstorming and Creation of Fish Bone (Cause-and-Effect) Diagram

Brainstorming is a method for generating ideas to solve a design problem. It usually involves a group under the direction of a facilitator. It involves harnessing synergy through collective thinking towards a variety of potential solutions. Brainstorming offers the advantage of the full experience and creativity of all the team members. Since the Community of Practice (CoP) was of heterogeneous-mix, their cross-section of experience would make the session more creative. Through brain writing, many ideas were generated in a very short amount of time. In this brainstorming approach, CoP members were empowered to suggest solutions that they, otherwise, might have thought were too unusual or would not be well received. Thus, the brainstorming approach created more freedom among the participants to be truly creative. After the brainstorming session, a fishbone diagram which is a visualization tool was used to categorize the potential causes. This fishbone diagram is particularly useful in a brainstorming session and for situations in which little quantitative data was available for analysis. After the fishbone diagram, a cause validation template was created to aid gather possible data on defect causes.

Figure. 3.15: Fishbone Diagram (https://www.wallstreetmojo.com/fishbone-diagram/)

3.5.2 Cause Validation Matrix

This template is in a tabular format, consisting of three sections, causes; error description/ associated quality implications, and then the confirmation section. At the cause(\mathbf{s}) section, all the defect causes were all listed and were described in detail based on the group understanding and experiences.

3.5.3 The Analytic Hierarchy Process (AHP)

The Analytical Hierarchy Process (AHP) is one of well-known techniques in Multiple Criteria Decision Making (MCDM). In this approach, a model was built to represent hierarchy of levels with respect to objectives, criteria, defect categories, defect details, etc. The Analytic Hierarchy Process (AHP), introduced by Saaty (1980), is an effective tool for dealing with complex decision making and aids the decision maker to set priorities and make the best decision. AHP considers a set of evaluation criteria and a set of alternative options among which the best decision is made. The AHP generates a weight for each evaluation criterion according to the decision maker's pairwise comparisons of the criteria. The higher the weight, the more important is the corresponding criterion. The procedures for using the AHP are summarized in Appendix F.

3.6 The Improve Phase

The first responsibility at this phase is to explore solutions for all of the identified defect causes. Solution exploration mechanism that was followed is based on qualitative method of investigation, which allowed unlimited expression from the respondents. An open-ended question format was designed and administered to the member group and some of the experienced workers in the organization were interviewed to elicit wider information based on practical knowledge of the processes considering the history of the chosen projects. After the solution harvesting session, the next act which goes as a sub process to prior action of solution hunts was to remove non-value added activities through "Method Study".

3.6.1 Method Study

Method study was conducted to eliminate non-value added activities and examine human work, basically extrusion process in all its contexts. Its systematic approach of investigation has led to the identification of key factors that affects the efficiency and the economy of the extrusion activities. The mnemonic SREDIM which is a common-sense heuristic that followed a six stage procedure was employed in the method study and are as follow:

- 1. SELECT work to be studied and define its boundaries.
- 2. RECORD the relevant facts about the job by direct observation and collect additional data as may be needed from appropriate sources.
- 3. EXAMINE the way the job is being performed and challenge its purpose, place sequence and method of performance.

- 4. DEVELOP the most practical, economic and effective method, drawing on the contributions of those concerned.
- 5. INSTALL the new method as a standard practice and train the persons involved in applying it.
- 6. MAINTAIN the new method and introduce control procedures to prevent a drifting back to the previous method of work.

Right after the method study, when all the non-value added activities are eliminated and improved method has been established. The next research action is to design experimentally for optimal control settings.

3.6.1. Design of Experiment (DOE)

Taguchi method was first deployed in this study to create a fractional design of the experiment considering time, cost, and mathematical simplicity over a full factorial design that will require a large number of extrusion experiments to be performed and analyzed which will be very costly in terms of time and materials. The assumption for design of experiment is that there is no interaction between any two factors for orthogonal array and this is due to the reduced number of experiments. The guidelines for designing experiments are as follows:

- 1. Recognition and statement of the problem
- 2. Choice of factors and levels
- 3. Selection of the response variable
- 4. Choice of experimental design
- 5. Performing the experiment
- 6. Data analysis
- 7. Conclusion and recommendations

Figure 3.16. General model of the process (Adapted from D.C Montgomery, 1991)

Generally, the process to be optimized should have several control factors which directly decide the target or desired value of the output. The optimization then involves determining the best levels of the control factors so that the output is at the target value, and such is referred to as "static problem". The primary aim of the Taguchi experiments is to minimize the variations in output even though noise is present in the process. From figure 3.15, the process parameters c1, and c2, are controllable, whereas n1 and n2 are uncontrollable and commonly known as the noise factor. The term W refers to the output variable. The objectives of the experiment are stated as

- Ascertaining and establishing the controllable factors that affect the output response,
 w.
- 2. Determining where to set the dominant control factors so that the output is at or close to the nominal value.
- 3. Determining where to set the influential c's so that variability in w is small.
- Determining where to set the influential c's so that the effects of the noise factors n1 and n2 are minimized.

3.6.2. Counting Degree of Freedom (df)

The number of factors to study is two, each at four different levels. The degree of freedom (df) rule would be followed in other to determine the number of experimental runs required. The Degree of Freedom (df) rules are as follows:

1. The overall mean always uses 1 degree of freedom.

- 2. For each factor, C, D...., if the number of levels is n_c , n_d ... for each factor, the degree of freedom equals the number of levels minus 1.Degree of freedom for factor C = n_c -1, and for factor D, degree of freedom = n_d -1.
- For two factor interaction, for example CD interaction, the degree of freedom = (n_c-1) (n_d-1).
- 4. Sum all the degrees of freedom to determine the required number of experimental runs.

Taguchi Orthogonal array design was selected for the study after counting the degree of freedom. The signal-to- noise (S/N) considered in this study is nominal-is-best, and is calculated for each factor level combination. This S/N ratio assumes that the given target is best and is appropriate when there is a target value with both upper and lower tolerance limits. The goal of an experiment for nominal-value-is-best situations is to reduce variability around a specific target. It is worthy to note also that when the variability of the response is reduced relative to the average response, S/N_N will increase. According to Kong (1996), there are three steps in the Taguchi analysis:

- Find the factors that affect the signal-to-noise ratio and set the levels of these factors to satisfy our objective.
- 2. find the factors that affect the average response and set the levels of these factors toward to the target value, and
- 3. Find the factors and set their levels to best satisfy both step1 and step 2 and other practical issues.

In other words, collected data was actually analyzed twice; first to analyze the effect of standard signal-to-noise ratio, and next was to ascertain the effect of average response. The formula for nominal is-best signal-to- noise ratio using base 10log is computed as follows:

$$S/N_N = 10^* \log ((Y^2) / s^2)$$
 (3.31)

Loss = k [s² + (
$$\bar{x}$$
 -n)²] (3.32)

Mean response
$$\bar{(x)} = \frac{1}{n} \sum_{i=1}^{n} xi$$
 (3.33)

Standard deviation (s) =
$$\sqrt{\sum_{i=1}^{n} \frac{(x-\bar{x})^2}{n-1}}$$
 (3.34)

Where; k is a constant, \bar{x} and s² are the mean and variance of the measurements of quality characteristics respectively, and n is the nominal value of the process.

3.6.3 Collection of Data

The digital calipers were used to take cable diameter measurements during the experiment. For each of the parameter settings, the extruding machine was allowed to run a maximum of two-three minute, after which the machine is halted and measurements were taken at different points in the cable lengths, and the average of the readings was taken. These procedures were repeated severally for all the parameter settings for the number of experimental runs. All the readings were recorded. Although the Taguchi method can be used to determine an optimum from the preset factor level, such values are not necessarily the global optimum (Su and Chou, 2008). For this reason, a parameter optimization study such as Response Surface Design technique was employed to determine the global optimum.

3.6.4 Response Surface Methodology (RSM)

In most RSM problems, the form of the relationship between the response and the independent variables is unknown. Thus, the first step in RSM is to find a suitable approximation for the true relationship between y and the independent variables. Usually, a low-order polynomial in some region of the independent variables is employed. If the response is well modeled by a linear function of the independent variables, then the approximating function is the first-order model. In other words, RSM tends to focus on the

relationships between multiple factors $(x_1, x_2, x_3, x_4 \dots x_k)$ and the response (quality) y. consequently, the functional relationship between the responses and the independent variables should first be determined to produce a proper approximating function, and then the factor setting levels (x_i) needed to obtain the optimal response is identified. The relationship between the response variables and the independent variables (factors) can be represented as;

$$Y = f(\chi_1, \chi_2, \chi_3, \chi_4 \cdots \chi_n)$$
(3.35)

where f is a multivariate function, the items represent the factors (independent variables), and the relationship describes a curved surface $y = f(\chi_1, \chi_2, \chi_3, \chi_4...\chi_n)$ that is known as a response surface.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon \tag{3.36}$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$
(3.37)

Equation (3.51) and (3.52) are first-Order and Second-Order Response Surfaces respectively. Generally, Response Surface Methodology utilizes First-Order and Second-Order models. The second-Order model is used in cases when the First-Order model is not suitable (Montgomery, 2009). When selecting fitting experiments requiring Second-Order RSM, Central Composite Design (CCD) experiments are normally performed, because Second-Order fitting with CCD provides favorable predictions, and the fitting model shows consistent and stable variance for the prediction of any input point (Yung-Tsan et al, 2014). In the beginning of the solving procedure, a starting point is selected as the experimental center for the CCD factorial fitting experiments. Regression Analysis was applied to the experimental results to find a suitable model. A desirability function is further applied to acquire the optimal processing parameter composition and operating window. In this study, design expert (version 11) was used as optimization software. The steps that was followed for the Central Composite Design (CCD) are presented in Fig. 3.17

Figure 3.17. Central Composite Design flow diagram (adapted from Asghar, et al., 2014)

Next step after the experimental design was to conduct a capability studies to ascertain the level of improvement attained at the end of the experimental design. In cases where the Sigma level cannot be gotten, a new engineering tolerance would be designed around the nominal settings identified by parameter design to clearly capture a Six Sigma process.

3.7 Tolerance Interval Design

Tolerance design is a method for determining tolerances that minimise the sum of product manufacturing and lifetime costs. It is still a common practice in industry to assign tolerances by convention rather than scientifically. Tolerances that are too wide increase performance variation and the lifetime cost of the product, and tolerances that are narrow increase manufacturing costs. In Six Sigma, the tolerance intervals according to Pyzdek (2003) are typically of the form:

$$\overline{X} \pm \mathrm{Ks} \tag{3.38}$$

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{N - 1}} \tag{3.39}$$

where K is a constant, and is determined so that the interval will cover a proportion P of the population with confidence Y, s is the sample standard deviation, x = each value in the sample, \bar{x} = the mean of the values and N = the sample size. After the tolerance design interval then the time study in order to determine the standard time of operation at the determined optimal parameter settings.

3.8 **Time Study**

The time study involves a direct, continuous observation of a task using a time measurement instrument to record the time taken to complete the task (Groover, 2007). The collection of data sample is an iterative process in which data were collected and out-of-range data were discarded, and the existing data sample were augmented through additional data collection until the desired sample size is achieved. The extrusion "Start–up" tasks were studied, and the data collection process is shown in Fig. 3.18.

3.8.1 Data Collection Steps:

- 1. Collect the first data sample
- 2. Discard any out-of-range data
- 3. Based on the resulting sample size, determine the achievable confidence and degree of precision.
- 4. Decide whether a larger data sample is needed to achieve desired confidence level and degree of precision.

5. If a larger data sample is needed, collect additional data, and repeat the entire process. Mathematical computations for sample size selections, and other time study variables are as follows:

$$Sx = \left[\sum \left[((t1-t) 2) \right] / n \right] 0.5$$
(3.40)

Lower limit = t- 2Sx
$$(3.41)$$

Upper limit =
$$t + 2Sx$$
 (3.42)

$$n = [(k * Sx) / (r * t)] 2$$
(3.43)

Where; t = Average time for performing the element, Sx = Sample variance for the element; n = number of data points in the data sample; k = number of standard deviations at the confidence level; r = measure of error precision; and t_i = individual observed time.

Basic Time (B_T) =
$$\frac{Observed \ Performance \ rating}{Normal \ Rating}$$
 (3.44)

Standard Time (
$$S_T$$
) = $B_T + R_{TA} + C_{TA}$ (3.45)

Where R_{TA} = Relaxation Time Allowance; C_{TA} = Contingency Time Allowance (contingency time allowance are allowances due to unanticipated official disturbance to one at work).

T.(n.d.)<u>http://www.werc.org/assets/1/workflow_staging/Publications/660.PDF.</u>).

3.9 The Control Phase

Control phase is concerned with establishing procedures to sustain improvements made. Since a process is referred to as the combination of machines, tools, methods, and personnel engaged in adding value by providing either product or services, a control plan template would be drafted, and emphasize should be on the voice of the customer. In addition, as part of the control plan, there should be stratification of within and between subgroup variations. The improvement should be verified and control charts would be presented with control limit, which are statistically calculated and located 3σ from the center line. The control charts are very useful when finding unusual sources of variation. Samples that are found outside the control limits are indications for unusual sources of variations, and require an investigation to find the cause(s) behind it.

3.10 Assessing the Economic Implication of the Improvement Solution

Economic impact assessment of the improvement solution was achieved following quality loss function procedures. The derivation of Taguchi's loss function equations expressed in this study is given in parts in Fowlkes and Creveling, (1995), and explicitly in Taguchi et al.,1989; Venkateswaren, (2003). From the experimental design, the quality characteristic is of the type Nominal-the best, and the quality loss function is derived as:

$$L(y) = L(T) + \frac{L'(T)}{1!} (y-T) + \frac{L''(T)}{2!} (y-T)^2 + \dots \frac{Ln}{n!} (y-T)^n$$
(3.46)

Assuming the cost incurred by the company when the product does not meet the target value is A, and the Loss function denoted by L(y) is expanded in Taylor's series about the target value T. Since L(y) = 0, when y = T, its first and second derivative with respect to m is zero. Neglecting terms with powers higher than 2, the equation now reduces to;

$$L(y) = k (y-T) 2$$
 (3.47)

$$k = \frac{A}{\Delta^2}$$
(At specification) (3.48)

Let y be the measured value of the characteristics, and note that the adjustment of the process is not needed when y = T; However, if $y \neq T$, then an amount of adjustment needed equal to y-

T. The quantity (y-T) is usually estimated based on available data, and the usual estimate of mean square deviation (MSD) is denoted as follows:

MSD =
$$\frac{1}{n} [(y_1 - T)^2 + (y_2 - T)^2 + ... + (y_n - T)^2]$$
 (3.49)

where n is the number of measurements available, and yi is the value of the ith measurements. Equation (4.9) & (4.11) are used to determine the quality level of the quality core diameter characteristics.

Figure 3.19. Graphical representation for quality loss function for nominal is the best. (Adapted from Sharma et al., 2007).

L(y) is the loss associated with producing a part at "y" value, K = Cost coefficient which depends on the cost at the specification limits and the width of the specification; y is the measured value of the characteristics; T is the target of the characteristics; A = cost incurred by the manufacturer when the product does not meet the target value, Δ = tolerance limit; (y-T) = mean squared deviation of the produced value (y's) from the target value (T).

3.11 Development of the Generic Graphical User Interface Tool

To accomplish the demands of the fourth objective, a generic user interface support system was developed for easy replication of the improvement studies in cable manufacturing. Figure 3.20 is the architecture of the software development.

Figure 3.20: Flowchart for the Generic Graphical User Interface Support System Development.

3.12 Ethical Consideration

The following considerations were upheld during the study:

- 1. The participating manufacturing firm was informed of the purpose and expected benefits of this research study.
- 2. The participating manufacturing firm was offered the choice to indicate whether they would like to receive a report about this research study upon conclusion. A contact detail was provided.

CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Introduction

The analysis on the validation results followed the same Six Sigma DMAIC's five-phase sequential order. Each of the phases in the methodology was analyzed in detail and the outcomes of every one of the phases were highlighted in an ordered manner since each of the phases is characterized with a unique responsibility.

4.1.1 **The Define Phase**

In this phase, real life problems which deal with the variations that occurred during the production of single core house wiring cables in the extrusion process were clarified. The selection criterion for the eventual projects was based on the rejection percentage on cable products, associated financial cost, and material waste. Historical data were provided from Manufacturing Department (MD) and Quality Assurance Department (QAD). Table 4.1 contains the records of 1.0 (mm) single core house wiring cables produced from 2013 to February 2017 and Table 4.2 contains quantity of cable products rejected from 2013-Feb.2017. Seven different types of defects were identified to be related with the product, as shown in Table 4.2. The asterisks found in Table 4.1 and Table4.2 connote periods when there is no production, and when there is absence of particular defect type/ no rejections of defect type(s) in the subject year.

	Quantity	Quantity	Quantity	Quantity	Quantity
Monthly	produced	produced	produced	produced	produced
production	<i>(m)</i>	<i>(m)</i>	<i>(m)</i>	<i>(m)</i>	<i>(m)</i>
	(2013)	(2014)	(2015)	(2016)	(2017)
Jan	459,245	579,927	722,558	410,631	1,174,004
Feb.	572,724	115,666	465,009	600,637	*
March	573,393	*	895,685	749,572	*
April	547,612	*	838,339	1,026,326	*
May	550,454	*	334,866	841,004	*
June	656,202	*	878,437	732,712	*
July	225,191	*	893,041	589,568	*
Aug.	649,335	689,840	818,403	*	*
Sept.	451,158	605,923	406,139	*	*
Oct.	706,199	564,649	900,909	*	*
Nov.	615,612	689,882	369,894	*	*
Dec	466,573	481,130	771,873	*	*
\sum	6,473,678	3,727,017	8,295,153	4,950,450	1,174,004

Table 4.1: Records on 1.0mm Single Core House Wiring Cables Produced from 2013-Feb.2017Source: Cutix Cable PLC Umuannuka PCP1 Plant

Table 4.2: Quantity of 1.0mm Single House Wiring Cables Rejected from 2013-Feb.2017

S / N	Defects (m)	2013	2014	2015	2016	2017	Total
1	ITF	5,672.44	3,995.092	9,025.110	8,743.098	1,125.231	28,560.971
2	ISF	4,697.44	4,877.495	5,460.999	10,710.054	1,209.009	26,954.997
3	LCD	*	*	1,680.111	*	*	1,680.111
4	WL	*	*	*	*	105.000	105.000
5	NL	*	*	945.000	*	525.000	1,470.000
6	TPs	420.000	*	*	210.000	735.000	1,365.000
7	ICD	*	882.403	*	*	420.000	1,302.403
	Total (m)	10,789.88	9,754.99	17,111.22	19,663.35	4,119.240	61,438.482

Source: Cutix Cable PLC Anuka Cable Plant

The identified defects are, Insulation Surface flaws (ISF), Insulation Thickness Failures (ITF), Low Conductor Diameter (LCD, Wrong Label (WL), No Label (NL), Torn Poly-Sheet (TPs), Inconsistent Cable Dimension (ICD).

<i>S / N</i>	Defects	2013	2014	2015	2016	2017	Total
1	ITF	115,150.532	81,100.318	183,209.773	177,484.889	22,573.6	579,519.072
2	ISF	*	99,013.149	110,858.280	217,414.096	24,545.449	547,186.44
3	LCD	*	*	34,106.253	*	*	34,106.253
4	WL	*	*	*	*	2,131.5	2,131.5
5	NL	*	*	19,183.50	*	6,394.5	25,578
6	TPs	8,526	*	*	4,263	14,920.5	27,709.5
7	ICD	*	17,912.781	*	*	8,526	26,438.781
	Total	219,034.564	198,026	347,357	399,161.666	79,088.98	1,242,669.546

Table 4.3: *Financial Cost* (₦) *of 1.0mm Single Wires Rejected as a Result of Defects from* (2013-Feb.2017) *at Anuka Cable Plant*

Source: Cutix Cable PLC Anuka Cable Plant

The associated financial costs of these defects were also tabulated in Table 4.3. The gross financial loss incurred by the company due to these defects amount to \aleph 1, 242, 669.546. In a descending order from Table 4.3, the defect types with the highest accrued financial loss are defects due to Insulation thickness failures, followed by Insulation Surface Flaws, Low conductor diameter (**LCD**), to inconsistent cable dimension (**ICD**). Pareto chart were used to streamline the selected project among the seven most common defects as shown in figure 4.1, and 4.2.

Figure 4.1. Pareto chart of defects (Cutix Cable Plc, Anuka CablePlant)

The most prevalent and most cost daring quality defects in the case organization are failures in the required cable Insulation thickness and Insulation smoothness. These quality defects cascade further to webs of trivial problems that require further attention and resources. Poor cable concentricity and cable surface flaws have become a very big challenge to the organization, and these quality defects have a big toll on the financial report as shown in fig. 4.2.

Figure 4.2. Pareto chart of defects (Cutix Cable Plc, Anuka Cable Plant)

The quantity of 1.0s (mm) cables rejected due to Insulation thickness failures (Poor concentricity) in the extrusion process from Jan. 2013 to Feb. 2017 was as high as 46.5%, with an associated cost of 46.5% of the total cost of poor quality (COPQ) in the observed production period. More so, the percentage of cable rejected in the same period due to Insulation Surface flaws was as high as 43.9%, with an accrued cost of 44% of the total cost. Both defects cumulatively contributed to 90.7% of Cost of Poor Quality (COPQ) and have always occurred in every one of the quarters. The goal statement was to improve the extrusion process capability of 1.0mm single cable and increase its existing sigma level by at least one more level, which should result in large cost saving for the company in terms of reduction in rework and scrap cost. The main objective of our Six Sigma projects was to

reduce variations in cable concentricity, reduce the rate at which insulation surface flaws occurs, and minimize waste of Insulation materials as well. A project charter was drafted as shown in Table 4.4, containing necessary information pertaining to the projects selected.

Table 4.4: Project Charter

Project Title:

Project I: Reduce the rate at which cables with poor cable concentricity are extruded.

Project II: Reduce the rate of extruding cables with insulation surface flaws.

Project III: Reduce rate of extruding inconsistent dimensioned cables.

Background and reasons for selecting the projects

The length of 1.0s (mm) cables rejected due to poor concentricity in the extrusion process from Jan. 2013 to Feb. 2017 was as high as 46.5%, with an associated cost of 46.5% of the total cost of poor quality (COPQ) in the observed production period. More so, the percentage of cable rejection in the same period due to rough insulation surface was as high as 43.9, with an accrued cost of 44% of the total cost. Both defects cumulatively contributed to 90.7% of COPQ, and has always occurred in every of the quarters. In addition to this, inconsistency in the cable dimensioned requires a design attention to cut the anomalies of having over dimensioned and under dimensioned cables. Over dimensioned cable is an indication that the process is using more polyvinylchloride (**PVC**) material than required for production, while low dimensioned cables often fail the insulation thickness test.

Aim of the Project

The aim of this research is to enhance process performance in cable manufacturing through incorporation of Knowledge Management and Six Sigma DMAIC's improvement concepts

Voice of the Customer (VOC)

Product quality

 Table 4.4: Project Charter

Critical to Quality Characteristics	1. Insulation thickness of the cable
	2. Surface smoothness of the cable
	3. Uniform cable diameter
Project scope	Extrusion Process of 1.0mm single house wire.
Project Boundary	Focusing solely on the extrusion process of
	1.0mm single house wire from TEKO-50
	extrusion line.
Community of practice (CoP)	The researcher, two Personnel from QAD, and
	two personnel from Manufacturing department
	(MD).
Expected Financial benefits	A considerable cost saving due to the defect
	reduction.
Expected Customer benefit	Receiving the product with the expected quality
	according to requirements.

The end of the Define Phase was concluded with after action review, during which an opportunity and technical guidance was given on the use of specific tools and exchange of information about the selected problems.

4.2 The Measure Phase

4.2.1 Measurement System Analysis (MSA)

The objective of the measure phase is to understand and establish the baseline performance of the process in terms of process capability. Before assessing the capability of the process, measurement system analysis (**MSA**) was first conducted to validate that the measurement system is good enough to be used in the study. The purpose of MSA is to statistically verify that the current measurement system provides representative values of the characteristics being measured, with minimal variability. For the attribute data, there was no instrument involved in the inspection process and only visual inspection was performed. Master samples were provided for identifying each of these defects and the selected team members did the inspection. Table 4.5 and Fig.4.3 depicts the outcome of the attribute measurements.

 Table 4.5: Measurement System Analysis- Attribute Data (Cable Insulation smoothness)

Sample	Reference	Operator 1		Operator 2		Operator 3	
		Trial 1	Trial 2	Trial1	Trial 2	Trial 1	Trial 2
1	В	В	В	В	В	В	В
2	G	G	G	G	G	G	G
3	G	G	G	G	G	G	G
4	G	G	G	G	G	G	G
5	G	G	G	G	G	G	G
6	В	В	В	В	G	В	В
7	В	В	В	В	В	В	В
8	G	G	G	G	G	G	G
9	В	В	G	В	В	G	В
10	В	В	В	В	В	В	В

Figure 4.3. Measurement System Analysis results for the attribute data

From the graphical results, we can see that the operators were in agreement with each other 90% of the time and were in agreement with the expected (**Standard**) result 90% of the time. The analytical output of the window session as shown in Appendix A, we can see that the agreement between appraisers was 80% and the overall agreement versus the standard values was 80%. Looking at Fig. 4.3 also the Kappa Value for all appraisers versus the standard values was 0.90, indicative of excellent agreement between the appraised values and reference values.

Table: 4.6: The Benchmark Interpretation for kappa Value

Kappa	0.0	0.01-0.20	0.21-0.40	0.41-0.60	0.61-0.80	0.81-0.99	1.0
Agreeme	Poor	Slight	Fair	Moderate	Substantia	Almost	Perfect
nt	agreemen	agreemen	agreemen	agreemen	1	perfect	agreeme
	t	t	t	t	agreement	agreemen	nt
						t	

(Source: Viera, et al., (2005).

Table 4	Tuble In Theusen entent System Theurysis Variable Data (Core authority)								
Sample	Operator 1			Operator 2			Operator 3		
	Trial 1	Trial	Trial	Trial 1	Trial	Trial	Trial 1	Trial	Trial
		2	3		2	3		2	3
1	2.900	2.900	2.900	2.900	2.900	2.900	2.907	2.906	2.906
2	2.840	2.842	2.842	2.840	2.842	2.842	2.843	2.842	2.842
3	2.778	2.778	2.778	2.779	2.779	2.778	2.778	2.779	2.778
4	2.691	2.690	2.692	2.693	2.693	2.692	2.692	2.692	2.692
5	2.787	2.787	2.788	2.786	2.786	2.787	2.786	2.787	2.878

4.2.1.1 Gage Repeatability and Reproducibility Analysis on the Cable Core Diameter

A slice cut of the cable insulation for the test was gotten from the sample lengths with the aid of cable cutter and sharp razor blade. The assigned first sample was placed on the glass plate of the Profile enlarger, and the entire operators for the MSA took their first trial

 Table 4.7: Measurement System Analysis- Variable Data (Core diameter)

measurements and recorded their average readings. The order of taking the measurements by the operator was not in sequence, but in random formation. Without altering the position of the sample on the plate, second and third trial measurements of the sample were taken by these operators in a random order, and readings were recorded accordingly. The same measurement procedure was followed for the remaining samples.

Figure 4.4. Measurement Analysis results for the variable data

Analytic output of the session window is captured in Figure 4.4. From Fig. 4.4, the bars for repeatability and reproducibility are very small relative to part-to-part variation, which is a good indication that the measurement system has a small margin of variation. The percent contribution (99.95%) from part-to-part is larger than that of total gage R & R (0.05%) indicating that most of the variation is due to differences between parts and little is due to the measurement system. For the parts, there are large differences between parts as shown by the non-level line. The range chart is in control, while the X-bar SPC chart is out of control, and

according to MSA 4th edition manual, is an indication that the variability present is due to part to part differences rather than operator to operator differences. On the other hand, most of the points in the \bar{X} chart will be within the control limits when the observed variation is mainly due to the measurement system. Also in the figure 4.4 is a box plot of the cable diameter measurement by operator, and the nearly level line showed that the differences between operators are small. Last diagram in figure 4.4 is an individual value plot used to check for operator–sample interactions. From Appendix B, the result of the analysis on the four most important gage R & R metrics depict that the percentage contribution of Var comp = 0.05%, percentage study Var = 2.30%, percentage tolerance = 2.92%, while the number of distinct categories NDC = 61.Comparing these with the benchmark values in Table 4.8, it denotes that the measurement system was good enough.

 Table 4.8: Gage R & R Metrics Guidelines

Gage R & R Metric	Unacceptable	Acceptable	Recommended
% Contribution	>9%	1% to 9%	<1%
% Study Variation	>30%	10-30%	<10%
% P/T ratio	>30%	10-30%	<10%
Number of Distinct	<5	5-10	>10
category			

(Source: AIAG: Measurement System Analysis Manual, 4th Edition, 2010)

4.2.2 **Process Capability Analysis (PCA)**

4.2.2.1 **Process Capability Assumptions**

It is a prerequisite step and mandatory procedure in any process capability studies to lay cognizance of some critical assumptions, so that one do not misrepresent the true capability of a process. According to Bower, (2000) there are two critical assumptions to consider when performing process capability analysis:

- 1. The process is in statistical control.
- 2. The distribution of the process considered is normal.

~ .	Sample	Sample	Sample	Sample	Sample		
Subgroup	(1)	(2)	(3)	(4)	(5)	X	R
1	2.719	2.896	2.769	2.773	2.693	2.770	0.203
2	2.732	2.894	2.725	2.716	2.782	2.769	0.178
3	2.864	2.887	2.824	2.826	2.796	2.839	0.091
4	2.907	2.846	2.878	2.755	2.787	2.835	0.152
5	2.792	2.778	2.823	2.798	2.801	2.798	0.045
6	2.864	2.756	2.785	2.840	2.871	2.823	0.115
7	2.734	2.747	2.726	2.770	2.709	2.737	0.061
8	2.761	2.746	2.713	2.786	2.792	2.760	0.079
9	2.691	2.743	2.821	2.790	2.705	2.750	0.130
10	2.899	2.787	2.747	2.864	2.822	2.824	0.152
11	2.761	2.697	2.826	2.765	2.790	2.768	0.129
12	2.820	2.699	2.745	2.789	2.788	2.768	0.121
13	2.891	2.800	2.721	2.795	2.700	2.781	0.191
14	2.866	2.784	2.756	2.718	2.758	2.776	0.148
15	2.857	2.844	2.767	2.884	2.810	2.832	0.117
16	2.708	2.772	2.770	2.795	2.758	2.761	0.087
17	2.854	2.792	2.812	2.855	2.775	2.818	0.080
18	2.769	2.725	2.730	2.740	2.725	2.738	0.044
19	2.771	2.696	2.661	2.708	2.849	2.737	0.188
20	2.857	2.844	2.767	2.884	2.810	2.832	0.117

 Table 4.10: The Baseline Measurements for the Cable Core Diameter

4.2.2.2 Test validation of first Assumption for the Baseline Cable diameter Measurement

Construction of \overline{X} and R- chart to assess the statistical stability of the extrusion operation

Control limits for \overline{X} –chart:

 $UCL = \overline{X} + A_2\overline{R} = 2.7858 + 0.577(0.1214) = 2.7859 + 0.07005 = 2.8559$

LCL =
$$\overline{X}$$
 - A₂ \overline{R} = 2.7858 - 0.577(0.1214) = 2.7859-0.07005 = 2.71585

Control limits for R-chart:

UCL = $D_4 \overline{R} = 2.114(0.1214) = 0.2566$

$LCL = D_3 \overline{R} = 0.00(0.12145) = 0.000$

From Table of Control chart constants in Appendix C, n=5, $A_2 = 0.577$, $d_2 = 2.326$, $D_3 = 0$, $D_4 = 2.114$

Figure 4.5. X-Bar-R chart of the Cable diameter data

From figure 4.5, the center line on the \overline{X} chart is at 2.7859, implying that the process falls within the specification limits, and is a stable process. The center line on the R chart is 0.1214, is also within the maximum allowable variation of ± 0.185 .

4.2.2.3 Test Validation of the Second Assumption for the Baseline Cable diameter Measurement

Graphical methods including the histogram and normal probability plot are used to check the normality of the data used for the case study. Figure 4.6 displays the histogram and the sample data appears to be normal.

Figure 4.6. Histogram of the cable diameter baseline measurements

Figure 4.7. Normal Probability plot of the cable diameter baseline measurements

The test results for normal probability plot are as follows; Mean: 2.786, Standard deviation: 0.05826, Anderson Darling test statistic value: 0.673 and P-value: 0.076 which is greater than the significance level (q = 0.05), and this implies that the data is distributed normally.

4.2.2.4 Process Capability Index Estimations for the Baseline Process Conditions

Figure 4.8. Graphical illustration of the cable diameter baseline measurements

From figure 4.8, both the tails of the distribution fall outside the specification limits, an indication that some of the thickness points are less than the lower specification of 2.53, while some are greater than the upper specification of 2.90. CP is equal to 1.181, and since the minimum acceptable value for this index is 1, the 1.181 result indicates that this process can meet the requirements. The CR is 84.67%. With this value, it means that the "natural tolerance" of the process uses 84.67% of the engineering requirement, which is, of course, unacceptable. The Cpk = 0.73, the value of Cpk is smaller than that of Cp by 0.451, and with this difference, much improvement can still be gained through centering the process. The calculated Z_U for the process is 2.18, and checking from the table in Appendix D we have ZU

= 1-0.9854 which is 1.46%. By this estimation, approximately 1.46% of the production will exceed the upper specification. The calculated Z_L for the process is 4.98, and since Z_L value of at least +3, so 4.98 is acceptable.

4.2.3 Baseline Process Capability Analysis for the Cable Insulation Thickness

Table 4.11: Product Description for cable Insu	ulation Thickness measurement specifications
Cable Size : 1.0 (mm) single core	CTQ : Insulation thickness
Operation: Extrusion	Specifications: USL = 0.89 ; LSL = 0.53
Instrument used : Profile enlarger	All dimensions are in millimeter

The existing company's insulation thickness evaluation technique was based on one sided specification, thus the lower specification limit (LSL). By this evaluation technique, it means that the quality check is only to ensure that the insulation thickness of extruded cables do not go beyond the specified 0.53mm. However, without creating an upper specification limit (USL) for the process, it will be difficult to conduct the process capability studies for the insulation thickness measurements. The upper specification limit was derived as follows; For 1.0s (mm) cable; USL = 2.90 LSL = 2.53, and the input conductor diameter = 1.13(mm). Derivations:

 $USL = \frac{USL - Input \ conductor}{2} = \frac{2.90 - 1.13}{2} = 0.885$

ruere mr		te medistil ente	ins joi cuote	institution in	rentress	
Sample	Point (1)	Point (2)	Point (3)	Point (4)	\overline{X}	R
1	0.7490	0.9055	0.8315	0.6920	0.7945	0.2135
2	0.8775	0.8710	0.8485	0.9355	0.8831	0.0870
3	0.7535	0.9295	0.7400	0.8615	0.8211	0.1895
4	0.7070	0.7900	0.8335	0.7155	0.7615	0.1265
5	0.7230	0.8700	0.7090	0.8305	0.7831	0.1610
6	0.6935	0.8890	0.7460	0.8810	0.8024	0.1955
7	0.6835	1.0120	0.8565	0.9810	0.8832	0.3285
8	0.7680	0.8340	0.6970	0.8960	0.7987	0.1990
9	0.8085	0.7900	0.9130	0.6595	0.7927	0.2535
10	0.6990	0.9500	0.7510	0.9045	0.8261	0.2510
11	0.8985	0.8770	0.9725	0.7250	0.8683	0.2475
12	1.0035	0.7390	0.7885	0.9885	0.8799	0.2645
13	0.9965	0.7085	0.9050	0.7825	0.8481	0.2880
14	0.9475	0.7550	0.7205	0.9750	0.8495	0.2545
15	0.8565	0.8485	0.9655	0.6680	0.8346	0.2075
16	0.8470	0.9750	0.9045	0.8325	0.8898	0.1425
17	0.7235	0.8265	0.8515	1.0360	0.8594	0.3125
18	0.7725	0.8665	1.0510	0.8100	0.8750	0.2785
19	0.8530	0.7475	0.9260	0.7215	0.8120	0.2045
20	0.9850	0.6395	0.8445	0.8345	0.8259	0.3455
21	0.7625	0.9615	0.8860	0.7135	0.8309	0.2480
22	0.7560	0.8160	0.8505	0.8630	0.8214	0.1070
23	0.9595	0.8250	0.7955	0.7950	0.8438	0.1645
24	0.7710	0.8905	0.8945	0.7800	0.8340	0.1235
25	0.7970	0.8215	0.8320	0.8905	0.8352	0.0935
26	0.7655	0.9365	0.9315	0.8280	0.8654	0.1710
27	0.8665	0.7560	0.8480	0.7745	0.8113	0.1105
28	0.8865	0.7645	0.7455	0.9075	0.8260	0.1620
29	0.7790	0.7300	0.7200	0.8365	0.7664	0.1165
30	0.7935	0.8935	0.7915	0.7585	0.8093	0.1350
31	0.9350	0.6755	0.8315	0.7645	0.8016	0.2595
32	0.6920	0.9170	0.8085	0.8150	0.8081	0.2250
33	0.8875	0.6670	0.8560	0.7805	0.7977	0.2205
34	0.7380	0.9560	0.8010	0.7850	0.8200	0.2180
35	0.6600	0.8795	0.8050	0.8115	0.7890	0.2195
36	0.7615	0.8260	0.8765	0.7975	0.8154	0.1150
37	0.8145	0.8090	0.8380	0.7700	0.8079	0.0680
38	0.8055	0.7830	0.8150	0.7615	0.7913	0.0535
39	0.8240	0.78555	0.8575	0.8440	0.8277	0.0720
40	0.7860	0.8570	0.8570	0.8230	0.8307	0.0710

Table 4.12: The Baseline Measurements for Cable Insulation Thickness

			J			
Sample	Point (1)	Point (2)	Point (3)	Point (4)	\overline{X}	\overline{R}
41	0.5115	0.9935	0.7645	0.8525	0.7805	0.4820
42	0.7410	0.8745	0.8845	0.7350	0.8087	0.1495
43	0.8280	0.9580	0.7660	0.7710	0.8307	0.1920
44	0.7955	0.7955	0.8545	0.8700	0.8289	0.0745
45	0.7565	0.8405	0.8150	0.7370	0.7873	0.1035
46	0.9385	0.8360	1.0050	0.7575	0.8842	0.2475
47	0.7015	0.9460	0.7120	0.9540	0.8284	0.2525
48	0.8925	0.8400	0.9865	0.7140	0.8582	0.2725
49	1.1065	0.6940	0.9050	0.7610	0.8666	0.4125
50	0.7910	0.8495	1.0560	0.7170	0.8459	0.3390
51	0.7955	0.8250	0.7055	0.9355	0.8154	0.2300
52	0.6415	0.9345	0.7140	0.8425	0.7831	0.2930
53	0.6780	0.9385	0.7450	1.0294	0.8477	0.3514
54	0.8600	0.6855	0.8855	0.8370	0.8270	0.2000
55	0.9455	0.7340	0.9280	0.7115	0.8297	0.2340
56	0.6335	1.0590	0.7470	0.9465	0.8465	0.4255
57	0.8225	0.7085	0.8375	0.8375	0.7861	0.1290
58	0.5875	1.0005	0.8955	0.7525	0.8090	0.4130
59	0.7195	0.8035	0.7245	1.0700	0.8294	0.3505
60	0.6550	0.9100	0.9935	0.7575	0.8290	0.3385
61	0.6995	0.9800	0.8635	0.9800	0.8808	0.2805
62	0.6775	0.9325	0.8565	0.8740	0.8351	0.2550
63	0.6460	0.8600	0.7740	0.9020	0.7955	0.2560
64	0.8235	0.8620	0.7105	0.9330	0.8322	0.2225
65	0.7949	0.7674	0.9325	0.6455	0.7851	0.2870
66	0.9300	0.8250	0.8140	0.8590	0.8269	0.1160
67	0.8155	0.7980	0.8745	0.8195	0.8570	0.0765
68	0.8385	0.8060	0.7870	0.8490	0.8269	0.0620
69	0.7930	0.8055	0.7570	0.8185	0.8201	0.0615
70	0.8095	0.8730	0.7550	0.8175	0.7935	0.1180
71	0.7880	0.9495	0.9270	0.7885	0.8137	0.1615
72	1.0730	0.6965	0.7260	0.9310	0.8633	0.3765
73	0.9235	0.7355	0.6740	0.9405	0.8566	0.2665
74	1.0515	0.7455	0.7380	0.9715	0.8184	0.3135
75	0.7945	0.8615	0.9510	0.7522	0.8398	0.1988
76	0.8410	0.7470	0.7200	0.8480	0.7890	0.128
77	0.9490	0.5045	0.8785	0.8720	0.8010	0.4445
78	0.7110	0.8935	0.8720	0.8040	0.8201	0.1825
79	0.8723	0.6715	0.8971	0.8896	0.8326	0.2256
80	0.6474	0.8799	0.8499	0.8784	0.8139	0.2325

Table 4.12: The Baseline Measurements for Cable Insulation Thickness

Sample	Point (1)	Point (2)	Point (3)	Point (4)	X	R
81	0.7130	1.0710	0.7980	0.8645	0.8616	0.3580
82	0.8490	0.7625	0.7600	0.9515	0.8308	0.1915
83	0.7450	1.0100	0.7785	0.8290	0.8406	0.2650
84	0.6865	1.0095	0.9090	0.8447	0.8624	0.3230
85	0.6865	0.9310	0.8975	0.7745	0.8224	0.2445
86	0.8460	0.8125	0.8200	0.8000	0.8196	0.0460
87	0.8320	0.7615	0.7760	0.7895	0.7897	0.0705
88	0.8280	0.7775	0.8555	0.7395	0.7996	0.1160
89	0.8225	0.8370	0.7800	0.7700	0.8024	0.0670
90	0.7570	0.8085	0.8445	0.7780	0.7970	0.0875
91	0.7990	0.8000	0.8220	0.8605	0.8204	0.0615
92	0.7460	0.7935	0.7705	0.8205	0.7826	0.0745
93	0.6435	0.8325	0.7645	0.8215	0.7655	0.1890
94	0.7785	0.8045	0.7775	0.7940	0.7886	0.0270
95	0.8965	0.7985	0.8675	0.8745	0.8593	0.0980
96	1.0065	0.7771	0.5210	0.6889	0.7484	0.4855
97	0.4479	0.7992	0.7816	0.7313	0.6900	0.3513
98	0.8916	0.5110	0.9290	0.7317	0.7658	0.4180
99	0.8912	0.8714	0.6347	0.8880	0.8213	0.2565
100	0.9211	0.7480	0.5910	0.7116	0.7429	0.3301

Table 4.12: The Baseline Measurements for Cable Insulation Thickness

4.2.3.1 Test validation of the first Assumption for Insulation Thickness Measurements

Construction of \overline{X} and R-chart to assess the statistical stability of the Insulation Thickness measurements.

Control limits for \overline{X} –chart:

UCL =
$$\overline{X}$$
 + A₂ \overline{R} = 0.8210 + 0.729(0.2141) = 0.8210 + 0.1561 = 0.9771

LCL =
$$\overline{X}$$
 - A₂ \overline{R} = 0.8210 - 0.729(0.2141) = 0.8210-0.1561 = 0.6649

Control limits for R-chart:

UCL =
$$D_4\bar{R}$$
 = 2.282(0.2141) = 0.4886

$$LCL = D_3 \overline{R} = 0.00(0.2141) = 0.000$$

From Table of Control chart constants in Appendix C, for n = 4, $A_2 = 0.729$, $d_2 = 2.059$, $D_3 =$

 $0, D_4 = 2.282$

Figure 4.9. X-Bar-R chart of the Cable Insulation thickness data

From figure 4.9, the center line on the \overline{X} chart is at 0.8210, implying that the process falls within the specification limits, implying a stable process. The center line on the R chart is 0.2141, and is also quite large considering the maximum allowable variation of \pm 0.18. This implies that there is excess variability in the process.

4.2.3.2 Test Validation of the Second Assumption for Insulation Thickness Measurements

Graphical methods including the histogram and normal probability plot are used to check the normality of the data used for the case study. Figure 4.10 display the histogram, and the sample data appears to be normal.

Figure 4.10. Histogram of the cable Insulation thickness baseline data

Figure 4.11. Normal Probability plot on the cable Insulation thickness baseline data.

The test results for normal probability plot are as follows: Mean: 0.8210, standard deviation: 0.09988, Anderson Darling test statistic value: 0.590 and P-value: 0.123 is greater than the significance level (q = 0.05), and this implies that the data is distributed normally.

Figure 4.12. Graphical illustration of the cable insulation thickness baseline data From figure 4.12 illustrations, both the tails of the distribution fall outside the specification limits. This is an indication that some of the cables have lesser diameter than the lower specification of 0.53, while some have diameter greater than the upper specification of 0.89. The CP = 0.577 since the minimum acceptable value for this index is 1, the 0.577 result indicates that this process cannot meet the requirements most of the time. The CR is 173.3%, and with this value, it means that the "natural tolerance" of the process uses 173.3% of the engineering requirement, which is, of course, unacceptable. The Cpk is 0.21, and this value is smaller than that of Cp by 0.37, which is an indication that much can still be gained through centering the process. The calculated ZU for the process is 0.66, and checking from Appendix D, we have ZU = 1-0.7454 which is 25.46%. By this estimation, approximately 25.46% of the production will exceed the upper specification. The calculated ZL for the process is 2.79, we have ZL = 1-0.9974 which is 0.26%. By this estimation, approximately 0.26% of the extruded cable will have insulation thickness that is less than the lower specification. Total reject rate now becomes 25.72% (i.e 25.46% + 0.26%) and projected yield = 74.28%, checking from the abridged Six Sigma conversion table in Appendix E, the Sigma level is at 2.1.

4.3 The Analyze Phase

The first task on this phase was to map the process, followed by a brainstorming session with the CoP to identify and analyze the possible causes of these selected defects in the process line.

Figure 4.13. Process flow diagram (TEKO-50 extrusion process line)

Figure 4.14. Brainstorming diagram of Insulation thickness & Insulation surface defect and causatives.

The brainstorming session was initiated among the selected community to stimulate and unlocks group's tacit knowledge of the process. This technique was potent in creating many solutions that were used to tackle the extrusion poor performance. The brainstorming results were arranged in rational categories and used to construct a cause and effect diagram. The cause and effect diagram accurately displayed the relationships of all the data in each category and these two activities were pictorially represented in fig.4.15 & fig 4.16..

Figure 4.15. Cause and Effect diagram on the Cable Insulation Thickness Failures

Figure 4.16. Cause and Effect diagram on the Cable Insulation Surface Flaws

Further inquest was undertaken to identify the root causes of these quality defects; and this prompted the team to engage in a detailed discussion with the process personnel (machine operators & process engineers) in identifying the possible data that could be collected on the potential causes. Based on the CoP's, interaction, a cause validation plan was prepared that detailed the type of data to be collected and the type of analysis that is possible for each of these potential causes. Potential causes are shown in Table 4.13 such as unaligned embossing wheel, worn-out centering bolts, faulty heating system, poor monitoring system, unsteady wire guide, poorly annealed copper conductor, faulty tensioning system, operator's fatigue, and unsteady wire guide. The unsteady wire guide could not be validated using measuring devices, but by direct observation (**GEMBA**). In GEMBA, process was closely observed for few days, after which the differences were recorded. Factors like over dimensioned tip, inspector to inspector variation, improper speed setting; faulty measuring tools were validated using measuring devices and design of experiment.

S/N	Causes	Error Description / Quality Consequences	Confirmation
			Plan
1	Un-aligned	\succ When the embosser presses hard on the	GEMBA
	embossing wheel	cable, it affects the cable diameter.	
2	Worn-out	\succ When a bolt or two bolts are worn-out,	Online cut test
	centering bolts	the molten PVC now exerts uneven	
		pressure to the die cup, thereby pushing	
		it to one end, thus leading to off-	
		centeredness.	
3	Poorly annealed	> Due to sinusoidal movement of poorly	GEMBA /
	copper conductor	annealed copper conductor, off centering	touch
		becomes imminent, and this lead to	
		insulation thickness failures.	

Table 4.13: Cause Validation Matrix for Insulation Thickness Failures

S/N	Causes	Error Description / Quality Consequences	Confirmatio
			n Plan
4	Faulty heating	When the heating system is not heating well,	GEMBA /
	system	(i.e. either any of the heater bands are not	water spray
		heating well or not heating at all) there is	
		always PVC leakage at the crosshead, and	
		this leakages leads to a drop in the dimension	
		of the cable. This drop in dimension of the	
		able insulation invariably affects the	
		thickness of the insulation.	
5	Over	> When the tip is over dimensioned, there is	GEMBA /
	dimensioned	always a flow back, whereby the molten	Caliper
	tip	PVC often moves back into the tip in	
		backward direction. This backward	
		movement of molten PVC through the tip	
		opening pushes the wire to one direction	
		thereby, leading to uneven insulation	
		thickness.	
6	Inspector to	\blacktriangleright This is the variation that occurs when the	Gage R & R
	inspector	same part is measured by different operators.	
	variation		
7	Faulty	> Poorly handled calipers and micrometer	Measurement
	Measuring	screw gauge.	validation
	tools		
8	Inadequate	➢ When an operator lacks the proper	GEMBA, and
	skill and	knowledge of centering.	Process yield
	operators	\succ Poor tightening of the tip to the core tube,	
	recklessness	resulting to flow back of the molten PVC.	
		Wrong use of tip and die.	

Table 4.13: Cause Validation Matrix for Insulation Thickness Failures

S/N	Causes	Error Description / Quality Consequences	Confirma
			tion Plan
9	Faulty	> When the braking system fails to regulate the movement	GEMBA /
	tensioning /	of the input reel, the input conductor wire dangles as it	Touch
	braking	move through the core tube. it leads to poor centering	
	system	and subsequent poor insulation thickness	
10	Operator's	\succ When an operator becomes uneasy with common tasks	GEMBA/
	fatigue	and finds it difficult to concentrate. As a result of this	survey
		uneasiness, the operator often, take longer time to start	
		up extrusion operation.	
11	Improper	> When the speed of the capstan is higher than the speed of	DOE
	Speed	the extruder, the insulation thickness is greatly affected.	
	setting	On the other hand.	
		\succ When the speed of the extruder is also higher than the	
		speed of the Capstan there is also a witnessed increase in	
		the cable dimension.	
12	Poor	\succ When the process is not properly monitored. For	GEMBA
	Monitoring	example; when process errors are always detected late,	
	System	when the insulation thickness checks are not done as it	
		should, when the operators use non-preheated PVC	
		instead of preheated PVC for production, when water	
		trough cotton guides slips-off and the extruded wire is in	
		contact with the trough surface, use of bunched PVC	
		pellets without separating it by bits, when there is	
		volume reduction in the water level in the trough needed	
		to cool off extruding cable and lots more.	
13	Unsteady	> When the two opposing metals guide that direct the	GEMBA
	wire guard	movement of the wire to the core tube is not steady.	
14	Poor fitting	\succ If the tip is not properly fitted to the core tube,	Opening
	of the tip to	Molten PVC from the tip base now penetrate the	of the
	the core	tube, pushing the conductor to off center position	crosshead
	tube		

Table 4.13: Cause Validation Matrix for Insulation Thickness Failures

S/N	Causes	Error Description / Quality Consequences	
			ation
			Plan
1	Faulty	\succ When the heating system is faulty and the	e GEMBA/
	heating	heating temperature gets too high, it can lead to	water
	system	pores and rough surface on the cable. On th	e spray
		other hand, when the heating temperature is to)
		low, it can as well lead to coarse and dull cable	e
		coloration.	
2	Faulty water	➢ If the water pump is erratic in passing water a	t GEMBA
	Pump	the extruding chamber's cooling canal, th	3
		temperature of the extruder becomes unregulated	1
		leading to burnt PVC.	
3	Presence of	\succ When there is water on the input conductor, i	t GEMBA/
	water on the	results in poor coating of the conductor, and also) Touch
	input	leads to bumps on the PVC during extrusion.	
	conductor		
4	Pores in the	\blacktriangleright When there are pores in PVC's, the density i	s Visual
	PVC	usually low, and these leads to presence of	a inspection
		balloon-like spots on the body of the cable when	1
		used for production.	
5	Poor		GEMBA
	Monitoring		
	System		
6	Presence of	> PVC's produced after 24hrs that were no	t GEMBA
	moisture on	preheated before use likely absorbs moisture and	1
	the PVC	leads to Cable surface defects.	
7	Improper	\succ When the speed of the Capstan and the Extrude	r (DOE)
	setting of	are not properly set, it could either lead to coars	e
	speed	or presence of burnt particles on the insulation	1
		surface	

Table 4.14: Cause Validation Matrix for Insulation Surface Flaws

S/N	Causes	Error Description/ Quality Consequences	Confirmation
			Plan
8	Poor flushing of the	\succ When the extruding barrel is not	GEMBA
	extrusion barrel	properly flushed, it could lead to	
		coloration, insulation surface pores	
		due to presence of burnt PVC, leading	
		to subsequent High voltage test	
		failures.	
9	Water trough	> Unsteady cable guide on the water	GEMBA
	design not ok.	trough causes the extruding cables to	
		scratch on the wall of trough outlet.	
10			
10	Poor alignment of	When the embossing wheel is	GEMBA
	the embossing	pressing too tight on the extruding	
	wheel or shifting	cable.	
	embosser.	\succ When the embosser is dangling at its	
		position, thereby scratching the	
		insulation surface.	
		\succ when the embosser is in loose contact	
		with extruding cable, there are always	
		faint imprints, because the embosser	
		groove is too deep	
11	Bunched PVC	\triangleright PVC blocking the hopper base.	GEMBA
	(PVC pellets	thereby minimizing the inflow of the	
	stringing together)	molten PVC to the Crosshead	
	see inging together)		

Table 4.14: Cause Validation Matrix for Insulation Surface Flaws
S/N	Causes	Error Description / Quality Consequences	Confirmation Plan
12	Poor tip tolerance	When the tip tolerance is too small and the conductor is a bit bigger than the tip dimension, there is often restriction on the movement of the conductor through the tip, and when this occurs, insulation surface bumps becomes a common occurrence.	Measurement
13	Faulty braking system / Low tension	If the input is supplying more input wire than what the capstan can draws. So when capstan draws and releases the wire, there are always bumps on the cable insulation surface.	GEMBA
14	Inadequate skill/ negligence	 Not allowing the heating system to get to the designed temperature setting. Result of this negligence often lead to production of cables with coarse surface. Reuse of wire mesh after a particular product color has been changed result in colour variation. 	GEMBA
15	Impurities on the PVC	When there are sands or dirt's on the PVC material.	GEMBA
16	Poorly welded Joints.	When the wire are not properly welded, it often obstruct free movement of the wire across the tip, and when this happens, there is always bumps at the surface of the insulation.	Measurement

Table 4.14: Cause Validation Matrix for Insulation Surface Flaws

S/N	Causes	Error Description / Quality Consequences	Confirmation Plan
17	Management	Management interference during	GEMBA Survey
	Interferences/	production activities in terms of abrupt	
	Poor material	decisions on product color change.	
	Logistic /	➢ Complacency to provide necessary	
	lack of	replacement materials when minor	
	motivation	production defects are noticed.	
		Management inability to document	
		operator's intuitive knowledge of the	
		process.	
		> No incentives program for operators that	
		meet the production target.	

Table 4.14: Cause Validation Matrix for Insulation Surface Flaws

To analyze the decision of eliminating defects in extrusion of primary cable, a judgmental model, known as the Analytical Hierarchy Process (AHP) was developed.

4.3.1 Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) was applied to prioritize the criticality of these defect causes. Starting with the Insulation Thickness Failures, the first step was to model the decision by building a hierarchy for the decision. The developed model for the decision was decomposed into a hierarchy of goal, and criteria as seen in figure (4.17).

Figure 4.17. Modeled decision hierarchy for producing cable with improved Insulation Thickness.

In figure 4.17, the first level of the hierarchy is our goal i.e. improving the Insulation thickness of extruded cable), while the second level in the hierarchy is constituted with the criteria used to achieve the goal. The pairwise comparison of the Insulation thickness criteria were made and are shown in Table (4.15). Thereafter, a comparison matrix of the criteria in the decision was created also (see Table 1 of Appendix F) to reflect the relative intensity judgment in each of the compared pair.

Na	ame	Criteria	J 1	More	Intensity
				Important	
Ι	j	А	В	A or B	(1-9)
1	2	Measurement	Material	В	3
1	3		Machine	В	3
1	4		Man	В	3
1	5		Method	В	3
2	3	Material	Machine	А	3
2	4		Man	А	3
2	5		Method	В	2
3	4	Machine	Man	А	3
3	5		Method	A	2
4	5	Man	Method	В	3

Table 4.15: Main Criteria Comparison Table for the Improved Cable Insulation Thickness

The comparison matrix was normalized using approximate method to obtain the final priorities or the principal priority vector as shown in Table (4.16). The Cop and few other experienced personnel from the manufacturing department contributed to this stage of AHP, which is the pairwise comparison between every two sub-causes. The influence of one cause compared to the influence of the other causes on generation of defects associated with Insulation thickness failures was judged.

Criteria	Material	Machine	Man	Method	Measureme	Principal
					nt	Priority
						vector
Measureme						
nt	0.076923	0.083271	0.049955	0.032227	0.124906	0.073456
Material	0.230769	0.250063	0.450045	0.290332	0.187547	0.281751
Machine	0.230769	0.083271	0.150015	0.290332	0.187547	0.188387
Man	0.230769	0.083271	0.049955	0.096777	0.124906	0.117136
Method	0.230769	0.500125	0.30003	0.290332	0.375094	0.33927

Table 4.16: Normalized Matrix for the Principal Eigen Vector for the Main Criteria

For the consistency check at the criteria level 1: Lambda (λ) = 5.382073, C.I = 0.095518, C.R = 0.088 < 0.1 for n= 5; R.I = 1.1086 (acceptable)

In the measurement subgroup, there is only one pair of sub criteria, so they were compared to how important they are with respect to the measurement criterion. In the material subgroup, each pair of sub criteria was compared regarding their importance with respect to the material criterion, and so on for the other criteria. Judgments consistencies were tabulated in Table (4.17). The consistency ratio as you can see from the table are all less than 0.10.

Table 4.17: Consistency Indices for the Improved Insulation Thickness Sub criteria

AHP	К _{max}	C.1	N	R.I	C.R	Decision
indices						
Material	3.038166	0.019083	3	0.5245	0.036	Acceptable
Machine	6.525585	0.105116	6	1.2476	0.084	Acceptable
Man	3.03814	0.01907	3	0.5245	0.036	Acceptable
Method	3.03814	0.01907	3	0.5245	0.036	Acceptable

Figure 4.19. Modeled decision hierarchy with the prioritized judgments for the Cable Insulation thickness

At this point, using the Analytic Hierarchy Process (AHP), all the comparisons for the criteria and sub criteria have been made and the local priorities for each group at each level as shown in figure 4.19. The priority of each criterion contributes to the priority of the goal (G = 1) and the priority of each sub criteria contributes to the priority of its parent therefore the global priority throughout the hierarchy is equal to one. Based on the judgments entered by the Cop, with the use of AHP, we have derived priorities for the factors and are shown from highest to lowest in Table (4.18) as well as in figure (4.19).

S/N	Factors	Global	Factors	S/N	Global
		Priority			Priority
1	Poor monitoring	0.215	Work target	9	0.036
2	Un-annealed conductor	0.178	Inadequate centering skill	10	0.03
3			Poorly annealed	11	
	Improper control setting	0.089	conductor		0.03
4			Un-aligned embossing	12	
	Operator's fatigue	0.074	wheel		0.029
5	Over dimensioned tip	0.073	Faulty braking system	13	0.021
6	Measurement	0.073	Faulty heating system	14	0.016
7	Poor alignment of tip &			15	
	die	0.068	Improper fitting of the tip		0.012
8	Worn-out centering bolt	0.044	Unsteady wire guard	16	0.008

Table 4.18: Derived Factor Priorities for the Improved Cable Insulation Thickness

Figure 4.20. Ranking of the sub criteria/ sub causes for improving Insulation thickness in cable.

Figure (4.20) shows the ranking of the fourteen sub causes, the aggregations of the decisionmaking group pairwise comparisons are illustrated with the normalized weights. The bar chart in figure 4.20 shows a descending order of the sub-causes organized by their normalized weight. From this chart, we see that poor monitoring had the highest effect, and then the use of un-annealed conductor to improper control setting and so on till reaching the factor that had the lowest effect on the generation of Insulation thickness defect cables, which is the unsteady wire guard. The 80-20 rule was used to recognized sub-causes/ sub criteria that have most influences on the generation of cables with failed Insulation thickness. The rule showed that there are eight sub causes that account for 80% of the defects, and they are as follows: poor monitoring, un-annealed conductor, improper control setting, and operator's fatigue, over dimensioned tip, measurement, poor alignment of tip & die, and worn-out centering bolt.

Figure 4.21. Pareto Chart of sub causes of Insulation Thickness Failures

However, all the identified sub causes were considered in the Improve phase of the DMAIC process for possible improvement according to the available company resources. Sequel to prioritization approach applied for different causatives for Insulation thickness failure, similar model was also developed for the decision of eliminating Insulation Surface Flaws in the

extrusion of primary cable. The developed model was also decomposed into a hierarchy of goal, and criteria as shown in figure 4.22. The pairwise comparisons of the Insulation Surface Flaws criteria were made and are as shown in Table 1 of Appendix G. After which, a comparison matrix of the criteria in the decision was created also (see Table 2 of Appendix G) to reflect the relative intensity judgment in each of the compared pair.

Figure. 4.22. Modeled decision hierarchy to improve cable Insulation Surface

The comparison matrix was normalized using approximate method to obtain the final priorities or the principal priority vector as shown in Table (4.19). The influence of one cause compared to the influence of the other causes on generation of defects associated with cable Insulation Surface Failures was judged also as were previously done for the cable Insulation thickness Failure.

Criteria	Material	Machine	Man	Method	Measureme	Principal
					nt	Priority
						vector
Measureme						
nt	0.058824	0.076128	0.068434	0.034451	0.023233	0.052214
Material	0.411765	0.533106	0.616523	0.517277	0.348845	0.485503
Machine	0.176471	0.177524	0.205508	0.310366	0.348845	0.243743
Man	0.176471	0.106621	0.068434	0.103455	0.209307	0.132858
Method	0.176471	0.106621	0.041102	0.034451	0.069769	0.085683

Table 4.19: Normalized Matrix for the Principal Eigen Vector for the Main Criteria

For the consistency check at the criteria level: Lambda (λ) = 5.39735, C.I = 0.0993, C.R =

0.089 < 0.1 for n= 5; R.I = 1.1086 (acceptable).

Figure.4.23. Graphical representation of criteria and their prioritized judgments for Insulation Surface Flaws.

From figure 4.23 starting with the measurement subgroup, there is only one pair of sub criteria, so they were compared to how important they are with respect to the measurement criterion. The material subgroup has six pairs, bunched PVC, pores on the PVC, poorly welded joint, impurities on the PVC, water on the conductor. Each pair of the material subgroup was compared regarding their importance with respect to the material criterion and

the same approach was used on the other defect criteria. Judgments consistencies are shown in Table (4) of Appendix G

Figure.4.24. Modeled decision hierarchy with the prioritized judgments for the Cable Insulation Surface.

All the comparisons for the criteria and sub criteria have been made and the local priorities for each group at each level as shown in figure 4.24. The priority of each criterion contributes to the priority of the goal (G = 1) and the priority of each sub criteria contributes to the priority of its parent therefore the global priority throughout the hierarchy is equal to one.

Based on the judgments entered by the Cop, with the use of the AHP, factor priorities have been derived and are shown from highest to lowest in Table (4.20) as well as in figure (4.27).

 Table 4.20: Derived Factor Priorities for the Improved Cable Insulation Surface

S/N	Factors	Global Priority	S/N	Factors	Global Priority
1	Poorly welded	0.208	12		
	joint	0.208		Bunched PVC	0.029
2	Impurities on	0.114	13		
	PVC	0.114		Poor tip tolerance	0.025
3	Shifting	0.089	14	Poor monitoring	
	embosser	0.007		system	0.021
4	Poor flushing of		15		
	the extruder	0.085			
	barrel			Pores on the PVC	0.021
5	Water on input	0.0651	16		
	conductor	0.0051		Faulty braking system	0.0165
6	Improper speed	0.0643	17		
	setting	0.0043		Faulty water pump	0.0133
7	Water trough	0.056	18	Poorly cleaned	
	designed not ok.	0.050		breaker plate	0.0098
8	Measurement	0.052	19	Unsteady wire guard	0.007
9	Moisture on	0.047			
	PVC	0.047			
10	Poor alignment				
	of the embossing	0.0376			
	wheel				
11	Faulty heating	0.0375			
	system	0.0373			

Figure.4.25. Ranking of the sub criteria/ sub causes for Cable Insulation Surface flaws

Figure (4.25) has shown the ranking of the nineteen sub causes, the aggregations of the decision-making group, pairwise comparisons are illustrated with the normalized weights.

Figure. 4.26. Pareto Chart of sub-causes for Insulation Surface Flaws

Figure (4.26) shows a descending order of the sub-causes organized by their normalized weight. From this chart, we see that poorly welded joint had the highest effect, and then the shifting embosser to water on the input conductor and so on till reaching the factor that had the lowest effect on the generation of Insulation Surface Flaws, which is the unsteady wire guard. The 80-20 rule was used to recognize sub-causes/ sub criteria that have most influences on Insulation Surface Flaws. The rule showed that there are nine sub causes that account for 80% of the cable Insulation Surface Flaws and they are as follows: poorly welded joint, impurities on PVC, shifting embosser, poor flushing of the extruder barrel, water on the input conductor, improper speed setting, water trough design not ok, measurement, moisture on PVC. However, all the identified sub causes were considered in the Improve phase, of the DMAIC process for possible improvement according to the available company resources.

4.3.2 After Action Review

Having identified earlier the opportunities to be targeted for investigation in the Improve phase, the team members also deliberated on other common reoccurring challenges in the extrusion process line that affect productivity such as wire entanglement, incessant tip break, tensioning problem, colour variations and material wastes.

4.3.3 **The Improve Phase**

After the root causes have been determined at the analyze phase, the DMAIC "Improve" phase was aimed at identifying solutions to reduce and tackle the causes. The cause validation plan that was drawn in the analyze phase has beneficially aided in the identification of the root causes of these defects. Solutions to the identified defect causes were highlighted and documented as shown in Table 4.21 & 4.22. Through a qualitative assessment, by the use of an open-ended questionnaire, solutions to the identified defect causes were proffered based on the experiences members have previously on extrusion processes.

S/N	Causes for Cable Insulation	Soluti	ons for reducing the rate of cable failure due
	thickness failures.	to poo	r concentricity of cables.
1	Un-aligned embossing wheel	\succ	Careful check by the operator on the position
			of the embossing wheel to the cable, and
			confirmed by the process engineer on the line
			immediately after secondary centering has
			taken place. The process engineer should from
			time to time check the movement of the
			embosser in relation to the extruding cable,
			and also feel the extruding cables to check the
			quality of the embossment.
2	Worn-out centering bolts	~	Improvement on centering techniques and use
			of high temperature yielding bolts and nut,
			basically medium carbon steel composition of
			8.8MPa and above.
3	Faulty measuring tools	\checkmark	Digital calipers should not be placed on
			vibrating machines. Secondly, before
			measurement, operators must first measure a
			reference dimension with the caliper before
			taking any online measurements.
4	Faulty heating system	\succ	The condition of the heating system should be
			checked properly by both the operator and the
			process engineer and validated at the start of
			every production shift. The functionality of the
			heater bands should always be checked at least
			every 20 minutes using water sprays. Always
			use candle stick heater bands at the crosshead
			section for easy replacement and correction.
5	Inadequate skill	~	Training on "centering" techniques and
			Standard Operating Procedures (SOP).

Table: 4.21: Solutions for Reducing Insulation Thickness Failures

S/N	Causes for cable Insulation	Solutions for reducing the rate of cable failure due
	thickness failures.	to poor concentricity of cables.
6	Faulty heating system	\succ The condition of the heating system should be
		checked properly by both the operator and the
		process engineer and validated at the start of
		every production shift. The functionality of the
		heater bands should always be checked at least
		every 20 minutes using water sprays. Always
		use candle stick heater bands at the crosshead
		section for easy replacement and correction.
7	Poorly annealed copper	\succ If it will be used at all, then extremely care
	conductor	must be taken by assigning the job to the most
		experienced operator. Secondly, the extrusion
		parameter settings must be varied in such a
		way to increase the cable dimension, thus
		eliminating the possibility of producing off-
		centered cables.
8	Over dimensioned tip	➢ Not to be used at all.
9	Poor monitoring system	> Improve monitoring system by ensuring that
		during extrusion that both process-based
		monitoring and product-based monitoring are
		used to achieve product improvement.
		[Process-based monitoring watches production
		process conditions such as melt temperature
		and pressure. While Product-based monitoring
		follows properties of the product, such as
		clarity and thickness].

Table: 4.21: Solutions for Reducing Insulation Thickness Failures

S/N	Causes for cable	Solutions for reducing the rate of cable failure due to
	Insulation thickness	poor concentricity.
	failures.	
9	Faulty tensioning	Total overhaul on the braking system.
	system	
10	Operator's fatigue	 Work appraisal
11	Improper speed setting	> Optimal setting of the extrusion parameters
12	Poor tip fitting	\succ The fitted tip should be sighted by the process
		engineer before in use

Table: 4.21: Solutions for Reducing Insulation Thickness Failures

Table: 4.22: Solutions for Reducing Insulation Surface Flaws in Cable Extrusion Process

S/N	Causes of cable Insulation	Solutions for reducing the rate of cable failures
	Surface flaws.	due to Insulation surface flaws.
1	Faulty heating system	Use of high quality heater bands.
		> Temperature settings have to be reduced
		while the machine operators are on break.
2	Presence of water on the	Use of oxyacetylene gas flame on every input
	input conductor	conductor before extrusion and at intervals
		while extruding.
3	Pores in the PVC	Compromised quality must not be used
4	Poor monitoring system	Review monitoring strategy by ensuring that
		during extrusion that both process-based
		monitoring and product-based monitoring are
		used to achieve product improvement.
		[Process-based monitoring watches
		production process conditions such as melt
		temperature and pressure while Product-
		based monitoring follows properties of the
		product, such as clarity and thickness].

S/N	Causes of cable	Solutions for reducing the rate of cable failures due to
	Insulation Surface	Insulation surface flaws.
	flaws.	
5	Improper setting	> Optimal parameter settings through experimental
	of speed	designs.
6	Poor flushing of	> Proper flushing and adequate monitoring. The process
	the extrusion	engineer has to certify it ready before the next activities
	barrel	
7	Water trough	Redesigning of the water trough guide, interval check on
	design not ok.	the cable guide.
8	Poor alignment of	Interval check and proper tightening of the wheel.
	the embossing	
	wheel or shifting	
	embosser.	
9	Poor tip tolerance	➢ Not to be used.
10	Faulty braking	Maintenance/ Overhaul of the braking system.
	system	
11	Inadequate skill/	Adequate training, monitoring and to also make sure that
	negligence	the operators always adhere to standard operating
		procedure.
12	Poorly welded	Careful filling of the welded joint (measure the welded point
	wire.	after weld)
13	Management	Review the existing incentive programme, improvise adequate
	problems / lack of	resource planning system that will ensure needed parts and
	motivation	materials are readily available.

Table: 4.22: Solutions for Reducing Insulation Surface Flaws in Cable Extrusion Process

Further attempts to solutions on the identified root causes of these defects were made by the team through work study so that most of the production anomalies that often lead to production defects are eliminated. The team engaged in a systematic analysis of all the elements, factors, resources and relationships affecting the efficiency and effectiveness of the extrusion process of 1.0mm single house wiring cable in TEKO-50 Production line. This

investigation on work situations was conducted to identify production weaknesses and reasons for poor performance. The existing operating methods were evaluated, which encompass the nature of the extrusion machine, layout of operations, material supply and handling, the effectiveness of planning procedures, possible idle times.

4.3.4 Method Study

The mnemonic SREDIM which is a common-sense heuristic that followed a six-stage approach was employed in the Method Study. A task was selected such that with the proposed method there will be an improvement in quality with lesser scrap and elimination of unnecessary operations and movements.

Step	Time	Distance	\bigcirc	$\stackrel{\frown}{\rightarrow}$			∇	Step Description	
		(meter)							
1		17		Х		X		Conveying of the reels (input/output). Most times operators have to wait for the conveying forklift	
2					Х	Х		Inspection of the input diameter by the QA staff	
3			Х					Load the input reel at the take-off end	
4			X					Pass the input wire through the core tube, tip and the die	
5			X					Open the crosshead	
6			X					Clean the breaker plate and change the wire mesh	

Table 4.23: Flow Process Chart (AS -IS)

The task that was selected for the method study was considered across these aspects, economic, technical and human. Extrusion of the primary coil is one of the key business processes of the company, and the extrusion task that was chosen for investigation was the "Start-up Operation" which is the bottleneck operations. Based on the above highlights, "Start-up Operation" is the most important part of the extrusion activities due to its production relevance, and it requires more care and adequate attention to execute. The selected task was broken down into elements for easy examination as shown in Table 4.23.

Table 4.23: Flow Process Chart (AS -IS)

Step #	Time	Distance (meter)	$oldsymbol{\circ}$	\Rightarrow			∇	Step Description
		(,						
7			X					Flush the barrel and couple back the crosshead
8			Х					Tie the input wire with the existing wire
9			Х					Load the output reel and tie with the wire at the pay-off section.
10			X					Start the line at low speed and do centering
11		-			Х	Х		Inspect Centricity with QA staff
12		-	Х					Extrusion
13		-	X					Unloading the output reel
14		3		X				Transport to corner

In Table 4.23, the "**Start-up**" task was split into fourteen (14) elements for an in-depth examination. It was observed that some activities need to be eliminated from the operation in order to save time and improve product quality. Table 4.24 summarized the "**AS-IS**" process

sequence, and from the table, the number of operational steps are ten (10), transportation = 2, inspection = 2. It was found from the existing process that most of the idle times were as a result of time wasted in conveying the input copper conductor from the wire drawing section to the extrusion line, and this takes about 5-to-10 minutes to get the input reel. This is because, most times the input reel are not readily available at the extrusion line, and requires the use of forklift to convey the reels to the process line by the machine operator.

	Operation	Transport	Inspection	Delay	Store Store
Number of steps	10	2	2	2	0
Time (min)	-	5-10+5	(5+5)	10	0
Distance (meters)	-	20	-	-	-

Table 4.24: Summary of the Process Sequence (AS -IS).

Apart from productive hours that are being wasted in getting the input material for a normal operation, the workers are also stressed unnecessarily and this leads to operator's fatigue, and to some other quality consequences in the production line.

Figure.4.27. Process Flow Chart (AS-IS Method)

In addition, time is also wasted unnecessarily during inspection of the diameter of the input wire. Since all the drawn wires at the drawing section were certified by the Quality Assurance staff after drawing ,and were designated with tags, so waiting for further inspection of the input material before starting up an operation amounts to idle time and waste of productive hours.

Step	Time	Distance	\bigcirc			57	Step Description
		(meters)	Ŭ			V	
1		-	Х				Load the input reel at the take-off end
2		-	Х				Pass the input wire through the core tube, tip and the die
3		-	Х				Open the crosshead
4		-	Х				Clean the breaker plate and change the wire mesh
5		-	X				Flush the barrel and couple back the crosshead
6		-	X				Load the output reel at the pay- off & tie
7		-	Х				Continue to flush the barrel while the line is still and start your centering.
8		-	X				Start the line at low speed and continue centering
9		-		Х	Х		Inspect Centricity with QA staff

 Table: 4.25. Flow Process Chart (Improved method)

Step	Time	Distance	\bigcirc			\sim	Step Description
		(meters)					
10		-	Х				Extrusion
11		-	Х				Unload the output reel
12		3		X			Transport to corner

 Table: 4.25. Flow Process Chart (Improved method)

After studying the existing process, an improved method was proposed as shown in Table 4.25. Although an in-depth study on the basic functions of the organizations MRP system like inventory control, bill of material processing and elementary scheduling were not deeply treated. The company's Master schedule was followed all through in the improved method in ensuring that materials and components were available for production and final products were readily made available for dispatch. The machine Operators were exempted from the task of transporting especially the input reels. The input materials were conveyed before the start of every production shifts, and the number of input reels are always made higher in number than other input materials during conveyance, due to possibilities of having entangled wires in a reel. Minimum of two machine operators were proposed to work in a single extrusion line such that when there is a material shortage during operation, one of the operators can fill in the position of procuring the needed material without necessarily halting the production sequence.

	Operation	Transport	Inspection	Delay	Store Store
Number of steps	10	1	1	1	0
Time (min)		5	5	5	0
Distance (meters)		3	-	-	-

 Table 4.26: Summary of the Process Sequence (Improved Method)

Figure. 4.28. Extrusion Start-up Operation (Improved Method)

The summary of the process sequence on the new method has shown that with the new method that some wasteful production activities can save considerable amount of time. It was also found that the workers have varying methods of "Centering". A centering operation is majorly positioning the conductor during extrusion in a central position to the middle of the die opening such that when rounding with the molten PVC from the extruder, the Insulation thickness will not be compromised.

4.3.4.1 Conductor Positioning in Cable Extrusion Process

Figure 4.29. Diagrammatic representation of Extrusion Machine's Tips and Die

From the drawing in Fig. 4.29, the conductor is being passed through the tip and the die openings. The tip guides the conductor to alignment, while the die guides the tip in position during extrusion. These two extrusion machine components have a great impact on the positioning of the conductor in cable extrusion; as well as with other quality characteristics. Figure 4.30 is the Cross head section of the extrusion machine, which is the only domain where cable concentricity is controlled through a process called "Centering".

Figure 4.30. Cross sectional view of Cross head and the centering bolts

Better centering method was suggested after observing the centering processes a good number of times. The team resolved that it will be best to first start centering operation even while the line is stationary than the lone practice of taking centering while the line is at low speed. This new improved method of centering was carefully followed in the subsequent productions. On the other hand, poor adjustment of bolts during centering was also identified as part of the human causatives to poor concentricity. Because of most operators' poor centering skills, they enforce more pressure on the bolt while trying to force a die cup movement which often leads to the breaking of the bolts, and subsequently die cup wobbling.

Appropriate bolt adjustment technique was suggested to the operators (for instance: if the flow of the PVC is one-sided, let's say towards the right and needs to be adjusted a bit to the right side), the operator should loosen the opposite side bolt, and if one intends to move the bolt for one revolution, it is advised that the opposite end is loosened by two so that the die cup will give room for adjustment. Secondly, it was observed that the bolt and the nut

guiding the die cup are of different material compositions. While the bolt is made of medium carbon steel, the nut is made of mild steel. The medium carbon steel bolt is of 8.8MPa tensile strength, while the nut is of mild steel of 4.8Mpa tensile strength. However, because the tensile strength of the bolt and the nuts are different, the mild steel tends to yield more easily than the medium carbon steel. As the mild steel yield due to the high temperature of the crosshead, there is an inevitable shift in the bolt grip, thereby resulting in off-centering of the cable. It is best advised to always clean the centering bolts with iron brush before starting up a line to ensure the bolt threads are not patched with the worn-out deposits from the nut.

4.3.5 Analysis on the Experimental Design

Common knowledge of the extrusion process drawn from the CoP interaction has linked the existence of a correlation between capstan and extruder speed with variations in the dimension of cable. An experiment was further designed to investigate whether the assumed correlation was statistically significant. In particular, an experiment was designed to investigate whether these parameters Capstan and Extruder speed has a negative effect on the process, thus leading to failure in the minimum prescribed insulation thickness and material wastes. In order to analyze the experiment's results, two-way analysis of variance (ANOVA) was used. According to Pyzdek, (2003), two-way analysis of variance is best suited for investigating two factors which might interact with one another, and where you can obtain more than one result for each combination of experimental parameters (treatment).

Extruder	Caps tan	Caps tan	Caps tan	Caps tan
(rpm)	(rpm)	(rpm)	(rpm)	(rpm)
875	375	400	425	450
	2.710	2.591	2.670	2.600
	2.760	2.680	2.590	2.530
	2.760	2.620	2.603	2.504
	2.700	2.532	2.501	2.510
	2.740	2.570	2.530	2.490
900	2.810	2.820	2.700	2.660
	2.640	2.770	2.691	2.620
	2.790	2.710	2.691	2.690
	2.770	2.740	2.720	2.606
	2.700	2.700	2.680	2.590
925	2.901	2.800	2.741	2.680
	2.844	2.730	2.782	2.790
	2.920	2.770	2.790	2.700
	2.840	2.800	2.706	2.600
	2.800	2.740	2.732	2.690
950	2.910	2.870	2.860	2.710
	2.890	2.791	2.790	2.800
	2.923	2.911	2.890	2.710
	2.802	2.890	2.760	2.770
	2.850	2.760	2.710	2.770

 Table 4.27: Cable Diameter Experimental Data

In this study, the team was interested in improving the extrusion process for 1.0mm single cable. Two factors are to be evaluated, the capstan and extruder speed at four different speed levels. The feasible space for extrusion parameter was defined by ranging the capstan speed in the range 375-450 rpm, and the extruder speed in the range 875-950 rpm. Each experimental combination of the parameters was repeated five times and was analyzed using Microsoft Excel 2010. In the two-way ANOVA experiment with replicates, any P-value less than 0.05 would indicate a significant effect. The ANOVA table P-value of less than 0.05 indicates there is significant difference between the different columns (Capstan speed). The

P-value of 1.08E-18 indicate there is a significant difference between the rows (Extruder speed), while the interaction of capstan speed and extruder speed is not significant by the level of 0.202625.

 Table 4.28.
 ANOVA Table for the Cable Diameter Experiment (Output from Microsoft Excel)

 ANOVA

Source of	SS	Df	MS	F	P-value	F crit
Variation						
Sample	0.485774	3	0.161925	60.67432	1.08E-18	2.748191
Columns	0.242544	3	0.080848	30.2943	2.61E-12	2.748191
Interaction	0.03871	9	0.003763	1.4102	0.202625	2.029792
Within	0.1708	64	0.002669			
Total	0.932989	79				

The result from the Table 4.28 indicated there was a correlation between the capstan speed and extruder speed at a 5% (0.05) significance level. Detailed analysis on the two-way ANOVA with replicate is found in Appendix J. The next step was to determine the optimum parameter settings that would result in the lowest amount of defects by using Taguchi method and Response Surface Method of experiment to create a fractional design of the experiment. The method is related to finding the best values of the controllable factors to make the problem less sensitive to the variation in uncontrollable factors. In the Taguchi method,

 Table 4.29: Determining the Degree of Freedom (DOF)
 Image: Comparison of Compariso

Factors	Degree of Freedom (DOF)
Overall mean	1
Capstan speed	(4-1) = 3
Extruder speed	(4-1) = 3
Total DOF	$\sum 1+3+3=7$

the degree of freedom (DOF) rules was used to determine the number of experimental runs. In the present study, the interaction between the two extruding parameters is neglected, and the Taguchi orthogonal array design of L16 (4^2) was selected for the study as described in Table 4.30. In order words, the experiment was designed to undergo 16 runs at different parameter settings.

Experimental run	Extrusion parameter level	
	А	В
	Capstan speed	Extruder speed
1	1	1
2	1	2
3	1	3
4	1	4
5	2	1
6	2	2
7	2	3
8	2	4
9	3	1
10	3	2
11	3	3
12	3	4
13	4	1
14	4	2
15	4	3
16	4	4

 Table 4.30: Experimental Layout using an L16 Orthogonal Array

In this experimental study, cable dimension is the quality characteristics under investigation, thus a nominal-is-best quality characteristic was chosen. This **S/N ratio** assumes that the given target is best and is appropriate when there is a target value with both upper and lower tolerance limits. Taguchi method uses a statistical measure of performance S/N ratio borrowed from electrical control theory to choose control levels that best cope with noise (Phadke 1989). The S/N ratio takes both the mean and the variability into account, thus did not consider the mean response variable and its standard deviations as performance measures (Unal & Dean 1991).

The Capstan speed and Extruder speed are the two input parameters affecting the cable dimension. A parameter level corresponding to the maximum average S/N ration is called optimum level for that parameter (Gill et al 2012). According to figure 4.31, the Capstan speed's greatest S/N ratio value is found to be at 425(rpm) which is the peak point on the Capstan segment of the display, and the Extruder speed's greatest S/N ratio point is also at 900 (rpm). According to Yang and Tarng (1998), a greater S/N ratio corresponds to a better quality characteristic, thus the optimal level of the process parameter is the level with the greatest S/N ratio which is found at the Capstan speed of 425(rpm) and Extruder speed of 900(rpm).

Figure 4.32. Main effect plot for means (nominal is best) for the Cable diameter

In Fig. 4.32, the target mean is 2.715, and the control factors setting that bring the mean close to the target were identified at 425rpm for Capstan and 900rpm for the Extruder. Further details on the design are found in Appendix K.

S/N	Capstan	Extruder	Preheated	Non Preheated	SNRA1	MEAN1
	speed	speed	PVC (mm)	PVC (mm)		
1	375	875	2.71	2.76	37.7700	2.735
2	375	900	2.81	2.64	27.1087	2.725
3	375	925	2.90	2.84	36.6049	2.870
4	375	950	2.91	2.89	46.2377	2.900
5	400	875	2.59	2.68	32.3411	2.635
6	400	900	2.76	2.77	51.8442	2.765
7	400	925	2.80	2.73	34.9422	2.765
8	400	950	2.87	2.79	33.9842	2.830
9	425	875	2.67	2.59	33.3476	2.630
10	425	900	2.70	2.69	51.6215*	2.695*
11	425	925	2.74	2.78	39.7873	2.760
12	425	950	2.86	2.79	35.1287	2.825
13	450	875	2.60	2.53	34.2901	2.565
14	450	900	2.61	2.62	51.3597	2.615
15	450	925	2.68	2.79	30.9216	2.735
16	450	950	2.71	2.80	32.7279	2.755

Table 4.31: Results / Outcome of the Experimental Design using Taguchi Method

In other to achieve global optimum for the control setting, statistical Software, Design Expert (Version 11, State-Ease Inc, USA) was used to create the Response Surface Design, specifically the Central Composite Design (CCD). The results of the optimization engineering are as shown in Table 4.32, 4.33, 4.34, 4.35, 4.36 and 4.37 respectively.

		Factor 1	Factor 2	Response 1	Response
					2
Std	Run	A: Capstan speed	B: Extruder speed	R1	R2
		Rpm	Rpm	Mm	Mm
5	1	359.467	912.5	2.75	2.74
6	2	465.533	912.5	2.66	2.68
4	3	450	950	2.77	2.77
13	4	412.5	912.5	2.72	2.72
1	5	375	875	2.73	2.74
11	б	412.5	912.5	2.73	2.71
9	7	412.5	912.5	2.70	2.69
8	8	412.5	965.533	2.77	2.78
3	9	375	950	2.92	2.88
1	10	450	875	2.60	2.58
10	11	412.5	912.5	2.68	2.73
7	12	412.5	859.467	2.65	2.63
12	13	412.5	912.5	2.74	2.72

 Table 4.32. Experimental design using Central Composite Design and response value

 Table 4.33: Fit summary Response 1: Preheated PVC

Source	Sequential p-	Lack of Fit p-	Adjusted	Predicted	
	value	value	R ²	R ²	
Linear	0.0005	0.1115	0.7416	0.5666	Suggested
2FI	0.8133	0.0867	0.7148	0.2174	
Quadratic	0.7998	0.0468	0.6559	-0.2462	
Cubic	0.1585	0.0493	0.7694	-3.1115	Aliased

 Table 4.34: Response 2: Non preheated PVC
 PVC

Source	Sequential p-	Lack of Fit p-	Adjusted	Predicted	
	value	value	R ²	R ²	
Linear	0.0002	0.1172	0.7792	0.6327	Suggested
2FI	0.7728	0.0918	0.7571	0.3515	
Quadratic	0.7402	0.0519	0.7134	-0.0299	
Cubic	0.0643	0.1237	0.8661	-0.7796	Aliased

Fit summary in Table (4.33) & Table (4.34) has shown that both the quadratic model and the cubic model are ruled out, because their Prob > F falls below 0.05. Therefore, linear model is the identified model, as it does not show significant lack of fit.

Source	Source Sum of		Mean	F-	р-	
	Squares		Square	value	value	
Model	0.0558	2	0.0279	18.22	0.0005	Significant
A-Capstan	0.0207	1	0.0207	13.54	0.0042	
speed						
B-Extruder	0.0351	1	0.0351	22.90	0.0007	
speed						
Residual	0.0153	10	0.0015			
Lack of Fit	0.0130	6	0.0022	3.73	0.1115	not significant
Pure Error	0.0023	4	0.0006			
Cor Total	0.0711	12				

Table 4.35: ANOVA table for cable dimension using Preheated PVC

Table 4.36: ANOVA table for cable dimension using Non-preheated PVC

Source	Sum of	df	Mean	F-	p-value	
	Squares		Square	value		
Model	0.0455	2	0.0228	22.17	0.0002	Significant
A-Capstan	0.0180	1	0.0180	17.49	0.0019	
speed						
B-Extruder	0.0276	1	0.0276	26.86	0.0004	
speed						
Residual	0.0103	10	0.0010			
Lack of Fit	0.0087	6	0.0014	3.61	0.1172	not significant
Pure Error	0.0016	4	0.0004			
Cor Total	0.0558	12				

The ANOVA in this study confirms the adequacy of the linear model, i.e. Model Prob > F is less than 0.005. The probability values for each individual term in the model can be seen from the ANOVA tables. **The** Model F-value **of** 18.22 and 22.17 respectively from Table

(4.35) & (4.36) implies that the models are significant. The p-values for A & B for both responses are less than 0.0500, an indication that A and B are significant model terms. Lack of fit f-value of 3.73 and 3.61 are not significant relative to the pure error. Fit statistics for R1 response as shown in Table 6 of Appendix L, the predicted R^2 of 0.5666 is in reasonable agreement with the adjusted R^2 of 0.7416; adequate precision ratio is 12.460, an indication of adequate signal. For the response (R2) as shown in Appendix L, the predicted R^2 of 0.6327 is in reasonable agreement with the adjusted R^2 of 0.7792; with adequate precision ratio of 13.7840, an indication of adequate signal. The factors are orthogonal as shown by the VIF value of 1 in the Table 9 of appendix L. The models for the quality of extruded cable dimensions were developed to evaluate the relationship of extruding parameters to the cable dimension. Through these models, experimental results of cable dimension by any combination of extruding parameters can be estimated. The developed mathematical models are listed below in terms of actual factors. Equation 4.1 & 4.2 is for the prediction of cable dimension.

Cable dimension =
$$1.81243 + -0.00126332 * A + 0.00156569 * B$$
 (4.1)

Cable dimension =
$$1.67344 + -0.0013576 * A + 0.00176569 * B$$
 (4.2)

Fig.4.33 (a) Normal probability plot of the residual (R1) *Fig.4.33 (a)* Normal probability plot of the residual (R2).

The diagnosed statistical properties of the model as displayed in figs. 4.33 (a) & (b) have shown that the data points are approximately linear since most of the points lie close to a straight line. From the results, it can therefore be seen that the model is suitable for use and can be used to identify the optimal extrusion speed settings.

From figs. 4.34(a) & 4.34 (b) it can be inferred that the residuals are randomly scattered indicating that they are independent.

Fig. 4.35(a). 2D Contour plot

Fig. 4.35(b). 2D Contour plot

Fig. 4.36(a) 3D Contour Plot

Figures 4.35 (a), 4.35 (b), and 4.36 (a), 4.36 (b), shows the 2D contour plots and threedimensional (3D) of cable diameter measurement values for the preheated and non-preheated PVC's, varying Extruder and Capstan speed. It shows that when the Extruder speed increases, the cable dimension / diameter value tends to increase noticeably. Again, decrease in the cable diameter values were also noticed when there is an increase in the Capstan speed. The point estimation method was conducted in order to optimize the level of each variable for nominal response. The combination of different optimized variables to yield the expected response was determined to verify the validity of the model. This study involves two responses R1 for preheated PVC and R2 for non-preheated PVC.

	1 *	0	~			
Number	Capstan	Extruder	Preheated	Non	Desirability	
	speed(rpm)	speed	PVC (mm)	Preheated		
		(rpm)		PVC (mm)		
1	416.992	906.790	2.715	2.710	1.000	Selected

Table 4.37: Optimization using desirability criterion

From Table 4.37, the designed output has shown that the optimal control settings that would lead to the attainment of the objective (nominal cable dimension) are A (Capstan speed) equal to 416.992 rpm and B (Extruder speed) equal to 906.790 rpm; these settings will yield a cable
with a nominal dimension of 2,715mm. Therefore, it is recommended that the RSM (CCD) be used to obtain an accurate optimization condition, and it can be concluded that the nominal cable diameter measurement values can be achieved through experimental design. This will improve the dimensional accuracy of the extruding system and also help to curtail the production anomalies of often extruding over-dimensioned and under-dimensioned cable products.

4.3.5.1 Confirmation Test

The confirmation test was performed, and conclusions drawn from the analysis was validated. In practice, the Capstan speed and Extruder speed could only be set at 417rpm and 907rpm respectively. An experiment was conducted using the new combination, and with the designed parameters, it now becomes possible for the organization to avoid the trial-and-error methods that are traditionally used for improvement. The results have shown that the optimization engineering of RSM makes it possible to obtain a nominal cable dimension at the near range of 2.715. The extruding machine was operated at the new parameter settings and further readings were also taken. A capability study was conducted on the new sample to ascertain the level of improvement attained after the experimental design.

Subaroun	Sample	Sample	Sample	Sample	Sample	$\overline{\mathbf{v}}$	
Subgroup	(1)	(2)	(3)	(4)	(5)	Λ	Λ
1	2.720	2.707	2.689	2.708	2.710	2.7068	0.031
2	2.693	2.705	2.708	2.711	2.716	2.7066	0.023
3	2.718	2.718	2.700	2.714	2.699	2.7098	0.019
4	2.700	2.708	2.712	2.719	2.700	2.7078	0.019
5	2.712	2.713	2.711	2.720	2.713	2.7138	0.009
6	2.701	2.711	2.709	2.719	2.698	2.7076	0.021
7	2.704	2.700	2.702	2.709	2.707	2.7044	0.009
8	2.711	2.709	2.699	2.725	2.701	2.7090	0.026
9	2.699	2.719	2.706	2.720	2.719	2.7126	0.021
10	2.720	2.713	2.709	2.719	2.711	2.7144	0.011
11	2.703	2.711	2.709	2.701	2.719	2.7086	0.018
12	2.711	2.709	2.713	2.717	2.710	2.7120	0.008
13	2.697	2.719	2.716	2.707	2.723	2.7124	0.026
14	2.703	2.710	2.714	2.711	2.712	2.7100	0.011
15	2.710	2.700	2.719	2.713	2.696	2.7076	0.023
16	2.703	2.710	2.719	2.730	2.703	2.7130	0.027
17	2.700	2.719	2.702	2.711	2.720	2.7104	0.020
18	2.711	2.716	2.705	2.701	2.699	2.7064	0.017
19	2.721	2.701	2.700	2.715	2.709	2.7092	0.021
20	2.709	2.720	2.720	2.712	2.713	2.7148	0.011

 Table 4.38: Cable Diameter Measurements after the Process Improvement

4.3.6.1 Test Validation of First Assumption for Normality of Data

Figure 4.37. X-Bar-R Chart for core Cable diameter after process improvement

Control limits for \overline{X} –Chart:

UCL =
$$\overline{X}$$
 + A₂ \overline{R} = 2.70986 + 0.577(0.01855) = 2.70986 + 0.01070 = 2.72056
LCL = \overline{X} - A₂ \overline{R} = 2.70986 - 0.577(0.01855) = 2.70986 - 0.01070 = 2.69916

Control limits for R-Chart:

UCL =D₄ \bar{R} = 2.114(0.01855) = 0.03921 LCL = D₃ \bar{R} = 0.00(0.01855) = 0.000

From Control chart constants in Appendix C, for n = 5, $A_2 = 0.577$, $d_2 = 2.326$, $D_3 = 0$, $D_4 = 2.114$. From figure 4.37, the center line on the \overline{X} chart is at 2.70986, implying that the process falls within the specification limits and is a stable process. The center line on the R chart is 0.01855, is also quite small considering the maximum allowable variation of \pm 0.032. It implies that variability has been reduced in the process.

Figure 4.38. Histogram for the Cable diameter data after the process improvement

Graphical methods including the histogram and normal probability plot were used to check the normality of the data used for the study. From the display on figure 4.38, a visual inspection reveals that the fitted normal distribution is not a perfect fit. Anderson-Darling statistics on probability plots were used to quantitatively test how well the data follow a particular distribution.

Figure 4.39. Normal Probability plot for the Cable diameter data after the process improvement.

From figure 4.39, the test results for the normal probability plot for the data have shown that the Mean is 2.710, standard deviation: 0.007879, Anderson Darling test statistic value: 1.032 and P-value is 0.010, which is less than the significance level ($\alpha = 0.05$), and this implies that the data is not distributed normally and need to be transformed. In transforming the data, a lambda (λ) value of 0.5 was used in the Box-Cox transformation and this is as shown in equation (4.0).

$$Y' = \sqrt{Y}$$
(4.0)

where Y' is the transform of the data Y.

Table 7.57.	Cubie	Diumeier	Duiu u	gier impi	ovemeni	(ujier Irui	isjornation
Subaroup	Sample	Sample	Sample	Sample	Sample	- <i>r</i>	R
Subgroup	(1)	(2)	(3)	(4)	(5)	л — Л	Λ
1	1.64924	1.64530	1.63982	1.64560	1.64621	1.645233	0.00943
2	1.64104	1.64469	1.64560	1.64651	1.64803	1.645173	0.00699
3	1.64864	1.64864	1.64317	1.64742	1.64286	1.646145	0.00577
4	1.64317	1.64560	1.64682	1.64894	1.64317	1.645538	0.00577
5	1.64682	1.64712	1.64651	1.64924	1.64712	1.647361	0.00273
6	1.64347	1.64651	1.64590	1.64894	1.64256	1.645477	0.00638
7	1.64438	1.64317	1.64378	1.64590	1.64530	1.644506	0.00273
8	1.64651	1.64590	1.64286	1.65076	1.64347	1.645902	0.00789
9	1.64286	1.64894	1.64499	1.64924	1.64894	1.64995	0.00638
10	1.64924	1.64712	1.64590	1.64894	1.64651	1.647543	0.00334
11	1.64408	1.64651	1.64590	1.64347	1.64894	1.6455781	0.00547
12	1.64651	1.64590	1.64712	1.64833	1.64621	1.646815	0.00243
13	1.64225	1.64894	1.64803	1,64530	1.65015	1.646934	0.00790
14	1.64408	1.64621	1.64742	1.64651	1.64682	1.646207	0.00334
15	1.64621	1.64317	1.64894	1.64712	1.64195	1.645477	0.00699
16	1.64408	1.64621	1.64894	1.65227	1.64408	1.647116	0.00819
17	1.64317	1.64894	1.64378	1.64651	1.64924	1.646327	0.00607
18	1.64651	1.64803	1.64469	1.64347	1.64286	1.645113	0.00517
19	1.64955	1.64347	1.64317	1.64773	1.64590	1.645963	0.00638
20	1.64590	1.64924	1.64924	1.64682	1.64712	1.647664	0.00334

 Table
 4.39:
 Cable
 Diameter
 Data
 after
 Improvement
 (after
 Transformation)

Figure 4.40. X-Bar-R chart for the transformed data after the process improvement

Control limits for \overline{X} –Chart after transformation:

UCL = \overline{X} + A₂ \overline{R} = 1.646164 + 0.577(0.00563) = 1.646164 + 0.00324851= 1.64941251

LCL =
$$\overline{X}$$
 - A₂ \overline{R} = 1.646164 - 0.577(0.00563) = 1.646164 - 0.00324851 = 1.64291549

Control limits for R-Chart after transformation:

UCL =D₄ \bar{R} = 2.114(0.00563) = 0.011901 LCL = D₃ \bar{R} = 0.00(0.00563) = 0.000

From Control chart constants in Appendix C, for n = 5, $A_2 = 0.577$, $d_2 = 2.326$, $D_3 = 0$, $D_4 = 0.577$

2.114. Using the lambda (λ) transformation equation (4.0) on the UCL, \bar{x} , and LCL values for

the sample mean on figure 4.37, $Y' = \sqrt{Y}$; then:

UCL = $(1.649414)^2$ = Y; Y = 2.72056 = $x = (1.646164)^2$ = Y; Y = 2.70985, and LCL = $(1.642914)^2$ = Y; Y = 2.69916 UCL=D4 \overline{R} = $(0.011901)^2$ = Y; Y = 0.00014165

In comparison with the X-Bar chart values for UCL, LCL and \bar{x} from figure 4.40, it was observed that after the transformation that the mean of the process mean does not change except the mean of the sample range. This is an indication that transformation has taken place; thereby reducing variability between individual points from initial value of 0.01855 to 0.00563 such that the data will be close to each other to observe a normal distribution.

Figure 4.41. Capability analysis for the Cable diameter measurements after the process improvement

Table 4.40: Process Capability Index Estimations Values for the Cable Diameter (After the Process Improvement)

Process data before transformation	Process data after transformation
Lower specification limit (LSL) = 2.53	Lower specification limit (LSL)= 1.5906
Upper specification limit (USL) = 2.90	Upper specification limit (USL) = 1.70294
Target = 2.715	Target = 1.64773
Sample mean = 2.70986	Sample mean = 1.64616
StDev (Within) = 0.00816858	StDev(within) = 0.00248131

Cp = 7.55, CR = 13.25%, ZU = 22.88, ZL = 22.39, CPK = 7.46, CPM = 6.4. From figure 4.43 and some of the calculations that followed, it was made clear that the index values are all on the high side, an indication that the existing engineering tolerance is far apart from each other with a large standard deviation. The next step taken was to derive an appropriate tolerance intervals that can clearly depict Six Sigma Process.

4.3.6.3 Tolerance Design

In Table 4.41, 20 samples were randomly selected from a stable process population, and their

standard deviation was found using equation (3.53) and (3.54). S = $\sqrt{\frac{0.0014706}{19}}$ =

0.0087977

Tolerance intervals now becomes;2.7114 \pm K(0.0087977). finding K value for two sided limits in Appendix M, for n = 20, P = 0.99 and Y = 0.95, K= 3.615. 2.7114 \pm 3.615(0.0087977) = 2.7114 \pm 0.032. in the new estimation, from 2.67 to 2.74 will contain 99% of the population with 95% confidence.Using 2.67 as the lower specification limit and 2.74 as the upper specification limit, we conducted further capability analysis on the core cable diameter samples gotten after the process improvement.

S/N	x	$\frac{1}{x}$	$(x-\overline{x})$	$(x-\overline{x})^2$
1	2.697	2.7114	-0.0144	2.074E - 04
2	2.699	2.7114	-0.0124	1.538E - 04
3	2.700	2.7114	-0.0114	1.3E - 04
4	2.702	2.7114	-0.0094	8.836E - 05
5	2.703	2.7114	-0.0084	7.056E - 05
6	2.705	2.7114	-0.0064	4.096E - 05
7	2.708	2.7114	-0.0034	1.156E - 05
8	2.709	2.7114	-0.0024	5.76E - 06
9	2.710	2.7114	-0.0014	1.96E - 06
10	2.711	2.7114	-0.0004	1.6E - 07
11	2.712	2.7114	0.0006	3.6E - 07
12	2.713	2.7114	0.0016	2.56E - 06
13	2.714	2.7114	0.0026	6.76E - 06
14	2.715	2.7114	0.0036	1.296E - 05
15	2.717	2.7114	0.0056	3.136E - 05
16	2.718	2.7114	0.0066	4.356E - 05
17	2.719	2.7114	0.0076	5.776E - 05
18	2.720	2.7114	0.0086	7.396E - 05
19	2.725	2.7114	0.0136	1.85E - 04
20	2.730	2.7114	0.0186	3.46E - 04
	$\sum = 54.227$	$\sum = 2.71139$		$\sum = 0.0014706$

Table 4.41: Population Standard Deviation Derivations

Figure 4.42. Capability analysis for the Cable diameter after the process improvement

CP = 1.43 since the minimum acceptable value for this index is 1, the 1.43 result indicates that this process can meet the requirements. CR = 69.96%. With this value, it means that the "natural tolerance" of the process uses 69.96% of the engineering requirement, which is, about 14.71% reduction from initial value of 84.67%. Cpk = 1.23, the value of Cpk is smaller than that of Cp by 0.2, thus an indication that much can still be gained through centering the process. The calculated Z_U for the process is 3.68, and checking from Appendix D, we have ZU = 1-0.9999 which is 0.01%. By this estimation, approximately 0.01% of the production will exceed the upper specification, the calculated Z_L for the process is 4.89, and since Z_L value of at least +3, so 4.98 is acceptable. Total reject rate is 0.01%, thus the estimated yield is 99.99%.

4.3.6.4 Process Capability Estimation for Cable Insulation Thickness after the Process Improvement

Sample	Point (1)	Point (2)	Point (3)	Point (4)	\overline{X}	R
1	0.7829	0.8072	0.8415	0.8083	0.8100	0.0586
2	0.7798	0.7743	0.7616	0.8374	0.7883	0.0758
3	0.7235	0.8545	0.7390	0.7910	0.7770	0.1310
4	0.7835	0.8835	0.7460	0.7515	0.7911	0.1375
5	0.6860	0.8605	0.7975	0.7936	0.7844	0.1745
6	0.8065	0.7740	0.7660	0.7710	0.7803	0.0370
7	0.7665	0.8539	0.7980	0.7737	0.7900	0.0879
8	0.6921	0.8341	0.7985	0.8073	0.7829	0.1420
9	0.6815	0.8707	0.8390	0.8101	0.7902	0.1892
10	0.8470	0.6775	0.8390	0.8090	0.7931	0.1695
11	0.8170	0.7895	0.7670	0.8000	0.7934	0.0500
12	0.8006	0.7246	0.8066	0.8441	0.7940	0.1195
13	0.7401	0.8190	0.7810	0.7605	0.7752	0.0789
14	0.6735	0.8817	0.7844	0.7330	0.7682	0.2082
15	0.7495	0.7980	0.7011	0.7431	0.7479	0.0690
16	0.7203	0.8380	0.7798	0.7918	0.7825	0.1177
17	0.8678	0.7055	0.7789	0.7984	0.7877	0.1623
18	0.8871	0.6806	0.8128	0.7784	0.7987	0.2065
19	0.8194	0.7472	0.7794	0.8111	0.7893	0.0722
20	0.7885	0.8315	0.7439	0.7931	0.7893	0.0876
21	0.8140	0.6855	0.8390	0.8420	0.7951	0.1565

Table 4.42: Cable Insulation Thickness Data after the Process Improvement

			is ⊇ the egree i		Protentent	
Sample	Point (1)	Point (2)	Point (3)	Point (4)	\overline{X}	R
22	0.7712	0.8851	0.7860	0.7850	0.8068	0.1139
23	0.8199	0.7813	0.7674	0.8443	0.8032	0.0769
24	0.8435	0.6676	0.8290	0.8230	0.7908	0.1759
25	0.7975	0.8108	0.8177	0.7530	0.7947	0.0647
26	0.8297	0.6690	0.8511	0.8081	0.7895	0.1821
27	0.7850	0.7619	0.8149	0.8031	0.7912	0.0530
28	0.7807	0.8270	0.7673	0.7868	0.7904	0.0597
29	0.8068	0.8106	0.7834	0.7716	0.7931	0.0390
30	0.8421	0.6477	0.7606	0.7905	0.7602	0.1944
31	0.8276	0.6799	0.8088	0.8717	0.7970	0.1918
32	0.7460	0.8117	0.7945	0.7894	0.7854	0.0657
33	0.8254	0.7138	0.8138	0.8100	0.7908	0.1116
34	0.8015	0.7816	0.7958	0.7690	0.7870	0.0325
35	0.7688	0.8610	0.7650	0.7590	0.7884	0.1020
36	0.7740	0.7835	0.8185	0.7965	0.7931	0.0445
37	0.7413	0.7900	0.7757	0.7673	0.7686	0.0487
38	0.7851	0.7395	0.7951	0.7485	0.7671	0.0556
39	0.8650	0.7847	0.8760	0.8905	0.8540	0.1058
40	0.8099	0.7255	0.8058	0.8048	0.7865	0.0844
41	0.7550	0.8940	0.7155	0.7250	0.7724	0.1785
42	0.8229	0.7487	0.7862	0.8442	0.8005	0.0955
43	0.8022	0.8780	0.7137	0.7954	0.7973	0.1643
44	0.7938	0.7754	0.8209	0.8058	0.7990	0.0455
45	0.8002	0.8356	0.7944	0.6686	0.7747	0.1670
46	0.7390	0.8255	0.8235	0.7835	0.7929	0.0865
47	0.8353	0.6510	0.7775	0.9023	0.7915	0.2513
48	0.8253	0.8311	0.8171	0.7442	0.8044	0.0869
49	0.7833	0.8717	0.7933	0.7697	0.8045	0.1020
50	0.7741	0.8861	0.7441	0.7676	0.7930	0.1420
51	0.7780	0.8190	0.8781	0.6090	0.7915	0.1872
52	0.7752	0.7972	0.7912	0.8187	0.7956	0.0435
53	0.7825	0.8100	0.8110	0.7755	0.7948	0.0355
54	0.8265	0.7815	0.6755	0.8790	0.7906	0.2035
55	0.8025	0.7999	0.8010	0.7965	0.8000	0.0060
56	0.8600	0.7570	0.6915	0.8635	0.7930	0.1720
57	0.7806	0.7915	0.7745	0.8225	0.7923	0.0480
58	0.7778	0.8920	0.7410	0.7665	0.7943	0.1510
59	0.7916	0.8115	0.8020	0.7805	0.7964	0.0310
60	0.8601	0.7125	0.8200	0.7790	0.7929	0.1476
61	0.7846	0.7670	0.7968	0.7854	0.7834	0.0298

 Table 4.42: Cable Insulation Thickness Data after the Process Improvement

					<i>p</i> : <i>o i oiioiioiioiioiioiioiioi<i>oi<i>oioioi<i>oi<i>ooi<i>oioioiooiooio<i>ioioioioioioioioioiioioi</i></i></i></i></i></i></i>	
Sample	Point (1)	Point (2)	Point (3)	Point (4)	\overline{X}	R
62	0.7984	0.8380	0.7885	0.7525	0.7944	0.0855
63	0.8356	0.6843	0.7983	0.8538	0.7930	0.1695
64	0.7714	0.8920	0.7085	0.7860	0.7895	0.1835
65	0.7987	0.7862	0.7780	0.7893	0.7880	0.0207
66	0.7690	0.7250	0.7775	0.8295	0.7752	0.1045
67	0.7906	0.7180	0.7785	0.7955	0.7706	0.0775
68	0.7865	0.7000	0.8065	0.8705	0.7909	0.1705
69	0.8320	0.8250	0.7169	0.7975	0.7928	0.1151
70	0.7660	0.8935	0.7715	0.7755	0.8016	0.1275
71	0.7855	0.8645	0.7385	0.7920	0.7951	0.1260
72	0.7955	0.7560	0.7980	0.8235	0.7933	0.0675
73	0.7936	0.7881	0.8001	0.8101	0.7980	0.0200
74	0.8539	0.7590	0.7743	0.7798	0.7917	0.0949
75	0.7740	0.7690	0.8072	0.7829	0.7833	0.0382
76	0.8941	0.7412	0.7992	0.7235	0.7895	0.1706
77	0.8042	0.7673	0.8170	0.7835	0.7930	0.0497
78	0.7318	0.8028	0.9000	0.7553	0.7975	0.1682
79	0.7895	0.8663	0.7740	0.7823	0.8030	0.0923
80	0.7246	0.8048	0.8539	0.7665	0.7874	0.1293
81	0.8190	0.7689	0.8941	0.6760	0.7895	0.2181
82	0.8406	0.8236	0.8502	0.6815	0.7990	0.1687
83	0.8090	0.8064	0.6995	0.8470	0.7905	0.1475
84	0.8380	0.7690	0.7895	0.8170	0.8034	0.0690
85	0.7055	0.7590	0.7246	0.8006	0.7474	0.0951
86	0.7171	0.8329	0.8190	0.8130	0.7955	0.1158
87	0.7782	0.7983	0.8817	0.7355	0.7984	0.1462
88	0.8315	0.7697	0.7980	0.7707	0.7925	0.0618
89	0.6855	0.8905	0.8518	0.7341	0.7905	0.2050
90	0.8325	0.8048	0.6792	0.8415	0.7895	0.1623
91	0.8083	0.7790	0.7076	0.8871	0.7955	0.1795
92	0.7633	0.8121	0.7472	0.8194	0.7855	0.0722
93	0.8216	0.7630	0.7992	0.7562	0.7850	0.0654
94	0.8941	0.7690	0.6855	0.8140	0.7907	0.2086
95	0.8067	0.7590	0.8211	0.7712	0.7895	0.0621
96	0.6982	0.8172	0.8020	0.8406	0.7895	0.1424
97	0.7895	0.7978	0.7286	0.8435	0.7899	0.1149
98	0.7689	0.7928	0.8108	0.7975	0.7925	0.0419
99	0.8190	0.8734	0.6690	0.8212	0.7956	0.2044
100	0.8386	0.7904	0.7619	0.7850	0.7940	0.0767

 Table 4.42: Cable Insulation Thickness Data after the Process Improvement

Figure 4.43. X-bar-R chart on Cable Insulation thickness after the process improvement

From figure 4.43, the center line on the \overline{X} chart is at 0.7902, implying that the process falls within the specification limits and is stable. The center line on the R chart is 0.1131, and is also quite small considering the maximum allowable variation of \pm 0.14. It implies that variability has been reduced in the process.

4.3.6.5. Test validation of first Assumption for Cable Insulation Thickness

Control limits for \overline{X} –Chart:

UCL =
$$\overline{X}$$
 + A₂ \overline{R} = 0.7902 + 0.729(0.1131) = 0.87264
LCL = \overline{X} - A₂ \overline{R} = 0.7902 - 0.729(0.1131) = 0.70775

Control limits for R-Chart:

UCL =
$$D_4 \bar{R} = 2.282(0.1131) = 0.2580$$

LCL = $D_3 \bar{R} = 0.00(0.1131) = 0.000$

From Table of Control chart constants in Appendix C, for n = 4: $A_2 = 0.729$, $d_2 = 2.059$, $D_3 = 0$, $D_4 = 2.282$

4.3.6.6 Test Validation of the Second Assumption for Cable Insulation Thickness

Figure 4.44. Histogram for the Cable insulation thickness after the process improvement

Figure 4.45. Normal Probability plot on the Cable insulation thickness data after the process improvement.

A test result for the normal probability plot for the data has shown that the Mean is 0.7902, standard deviation: 0.04971, Anderson Darling test statistic value: 2.760 and P-value is also less than the significance level ($\alpha = 0.05$), and this implies that the data is not distributed normally. However, to make the data more normal, we transformed the data, by first finding the optimal lambda value for the transformation.

Figure 4.46. Box-Cox plot of Cable insulation thickness after the process improvement

From the Box-Cox Plot in figure 4.46 above, the optimal lambda value for the transformation is 2.71. However, to have an understandable transformation, the transformation was carried out using lambda (λ) value of 0.5.

Figure: 4.47. X-Bar-R chart on Cable insulation thickness on transformed data

After the transformation, the value for the range mean now reduced from 0.1131 to 0.0639 thereby making the data to be normally distributed. To conduct PCA, for the Cable Insulation thickness requires USL derivation from the newly designed engineering limit of 2.74 (USL) and 2.67 (LSL), thus;

Derivations:

$$USL = \frac{USL - Input \ conductor}{2} = \frac{2.74 - 1.13}{2} = 0.805$$

Table 4.43: Engineering Specification for Cable Insulation Thickness after Improvement							
Process data before transformation	Process data after transformation						
Lower Specification Limit (LSL) = 0.53	Lower Specification Limit (LSL) = 0.728011						
Upper Specification Limit (USL) =	Upper Specification Limit (USL) = 0.897218						
0.805							
Target (T) = 0.67, Sample mean =	Target (T) = 0.818535 , Sample mean =						
0.790239	0.888509						

	5			5	1	
Sample	Point (1)	Point (2)	Point (3)	Point (4)	X	\overline{R}
1	0.884816	0.898443	0.917333	0.899055	0.8999	0.0325
2	0.883063	0.879943	0.872697	0.915096	0.8877	0.0424
3	0.850588	0.924392	0.859651	0.889382	0.8810	0.0738
4	0.885155	0.939947	0.863713	0.866891	0.8889	0.0762
5	0.828251	0.927631	0.892973	0.890842	0.8849	0.0994
6	0.898053	0.879773	0.877211	0.878066	0.8833	0.0208
7	0.875500	0.924067	0.875214	0.879602	0.8886	0.0489
8	0.831925	0.913291	0.893308	0.898499	0.8843	0.0814
9	0.825530	0.933113	0.893588	0.900056	0.8881	0.1076
10	0.920326	0.823104	0.915969	0.899444	0.8897	0.0972
11	0.903881	0.888538	0.875785	0.894427	0.8907	0.0281
12	0.894763	0.851234	0.898109	0.918749	0.8907	0.0675
13	0.860291	0.904986	0.883742	0.872067	0.8803	0.0447
14	0.820670	0.938989	0.885664	0.856154	0.8754	0.1183
15	0.865737	0.893308	0.837317	0.862032	0.8646	0.0560
16	0.848705	0.915423	0.883063	0.889831	0.8843	0.0667
17	0.931558	0.839940	0.882553	0.893532	0.8869	0.0916
18	0.941860	0.824985	0.901554	0.882270	0.8877	0.1169
19	0.905207	0.864407	0.882836	0.900611	0.8883	0.0408
20	0.887975	0.911866	0.862496	0.890562	0.8882	0.0494
21	0.902219	0.827949	0.915969	0.917606	0.8909	0.0897
22	0.878180	0.940798	0.886566	0.886002	0.8779	0.0626
23	0.905483	0.883912	0.876014	0.918858	0.8961	0.0428
24	0.918423	0.817068	0.910449	0.907193	0.8883	0.1014
25	0.893029	0.900444	0.904268	0.867756	0.8914	0.0365
26	0.910879	0.817924	0.922551	0.898944	0.8876	0.1046
27	0.886002	0.872869	0.902718	0.896158	0.8894	0.0298
28	0.883572	0.909395	0.875957	0.887017	0.8890	0.0334
29	0.898220	0.900333	0.885099	0.878408	0.8905	0.0219
30	0.917660	0.804798	0.872124	0.889101	0.8709	0.1129
31	0.909725	0.824560	0.899333	0.933649	0.8918	0.1091
32	0.863713	0.900944	0.891347	0.888482	0.8861	0.0372
33	0.908515	0.844867	0.902109	0.900000	0.8889	0.0636
34	0.895265	0.884081	0.892076	0.876926	0.8871	0.0183
35	0.876812	0.927901	0.874643	0.871206	0.8876	0.0567
36	0.879773	0.885155	0.904710	0.892468	0.8905	0.0249
37	0.860988	0.888819	0.880738	0.875957	0.8766	0.0278
38	0.886059	0.859942	0.891684	0.865159	0.8757	0.0317
39	0.930054	0.885833	0.935949	0.943663	0.9239	0.0578

Table 4.44: Transformed Insulation Thickness Data after Process Improvement

	· · · · · · · · · · · · · · · · · · ·	111500000000000000000000000000000000000		<i>ujte:</i> 1700000	Improventent	
Sample	Point (1)	Point (2)	Point (3)	Point (4)	\overline{X}	R
40	0.899944	0.851763	0.897664	0.897106	0.8866	0.0482
41	0.868907	0.945516	0.845872	0.851469	0.8779	0.0996
42	0.907138	0.865275	0.886679	0.918804	0.8945	0.0535
43	0.895656	0.937017	0.844808	0.891852	0.8923	0.0922
44	0.890955	0.880568	0.906035	0.897664	0.8938	0.0255
45	0.894539	0.914112	0.891291	0.817680	0.8794	0.0964
46	0.859651	0.908570	0.907469	0.885155	0.8902	0.0489
47	0.913947	0.806846	0.881760	0.949895	0.8881	0.1430
48	0.908460	0.911647	0.903936	0.862670	0.8967	0.0490
49	0.885042	0.933649	0.890674	0.877325	0.8967	0.0563
50	0.879830	0.941329	0.862612	0.876128	0.8900	0.0787
51	0.882043	0.904986	0.937070	0.831204	0.8888	0.1059
52	0.880454	0.892861	0.889494	0.904820	0.8919	0.0244
53	0.884590	0.900000	0.900555	0.880625	0.8914	0.0199
54	0.909120	0.884025	0.821888	0.937550	0.8881	0.1157
55	0.895824	0.894371	0.894986	0.892468	0.8944	0.0034
56	0.927362	0.870057	0.831565	0.920247	0.8896	0.0977
57	0.883516	0.889663	0.880057	0.906918	0.8900	0.0269
58	0.881930	0.944458	0.860814	0.875500	0.8907	0.0836
59	0.889719	0.900833	0.895545	0.883459	0.8924	0.0174
60	0.927416	0.844097	0.905539	0.882610	0.8899	0.0833
61	0.885776	0.875785	0.892637	0.886228	0.8851	0.0169
62	0.893532	0.915423	0.887975	0.867468	0.8911	0.0480
63	0.914112	0.827224	0.893476	0.924013	0.8897	0.0833
64	0.878294	0.944458	0.841724	0.886566	0.8878	0.0968
65	0.893700	0.886679	0.882043	0.888426	0.8877	0.1027
66	0.876926	0.851469	0.881760	0.910769	0.8802	0.0968
67	0.889157	0.847349	0.882326	0.891908	0.8777	0.0117
68	0.886848	0.836660	0.898053	0.933006	0.8886	0.0593
69	0.912140	0.908295	0.846699	0.893029	0.8900	0.00654
70	0.875214	0.945251	0.878351	0.880625	0.8949	0.0700
71	0.886284	0.929785	0.859360	0.889944	0.8905	0.0704
72	0.891908	0.869483	0.893308	0.907469	0.8905	0.0380
73	0.890842	0.887750	0.894483	0.900056	0.8933	0.0123
74	0.924067	0.871206	0.879943	0.883063	0.8896	0.0529
75	0.879773	0.876926	0.898443	0.884816	0.8850	0.0215
76	0.945569	0.860930	0.893980	0.850588	0.8878	0.0950
77	0.896772	0.875957	0.903881	0.885155	0.8904	0.0279
78	0.855453	0.895991	0.948683	0.869080	0.8923	0.0932
79	0.888538	0.930752	0.879773	0.884477	0.8959	0.0510

Table 4.44: Transformed Insulation Thickness Data after Process Improvement

Sample	Point (1)	Point (2)	Point (3)	Point (4)	\overline{X}	\overline{R}
80	0.851234	0.897106	0.924067	0.875500	0.8870	0.0728
81	0.904986	0.876869	0.945569	0.822192	0.8874	0.1234
82	0.916842	0.907524	0.922063	0.825530	0.8930	0.0965
83	0.899444	0.897998	0.836361	0.920326	0.8885	0.0840
84	0.915423	0.876926	0.888538	0.903881	0.8643	0.0385
85	0.839940	0.871206	0.851234	0.894763	0.8643	0.0548
86	0.846818	0.912634	0.904986	0.901665	0.8915	0.0658
87	0.882156	0.893476	0.938989	0.857613	0.8931	0.0814
88	0.911866	0.877325	0.893308	0.877895	0.8901	0.0345
89	0.827949	0.943663	0.922930	0.856796	0.8878	0.1157
90	0.912414	0.897106	0.824136	0.917333	0.8877	0.0932
91	0.899055	0.882610	0.841190	0.941860	0.8912	0.1007
92	0.873670	0.901166	0.864407	0.905207	0.8861	0.0408
93	0.906422	0.873499	0.893980	0.869598	0.8859	0.0368
94	0.945569	0.876926	0.827949	0.902219	0.8882	0.1176
95	0.898165	0.871206	0.906146	0.878180	0.8884	0.0349
96	0.835584	0.903991	0.895545	0.918423	0.8880	0.0813
97	0.888538	0.893197	0.853581	0.918423	0.8884	0.0648
98	0.876869	0.890393	0.900444	0.915751	0.8902	0.0236
99	0.904986	0.934559	0.817924	0.906201	0.8909	0.1166
100	0.915751	0.889044	0.872869	0.886002	0.8909	0.0429
					$\mathbf{x} = \frac{1}{n} \sum \bar{x}$	$\overline{R} = \frac{1}{n} \sum R =$
					= 0.8885	0.0639

Table 4.44: Transformed Insulation Thickness Data after Process Improvement

Figure 4.48.Process capability report on cable Insulation thickness after the process improvement.

CP = 0.9 since the minimum acceptable value for this index is 1, the 0.9 result indicates that this process will not meet the requirements most times. The CR = 110%. The number itself means that the "natural tolerance" of the process uses 110% of the engineering requirement, which is not acceptable, and indication that the process mean are still not clustered around the target mean. Cpk = 0.09, the value of Cpk is smaller than that of Cp, an indication that much can be gained through centering the process. The calculated Z_U for the process is 0.28; Zu =1-0.6103, which is 38.97%, by this estimation, approximately 38.97% of the production will exceed the upper specification limit, projected yield = 61.03, the calculated $Z_L = 5.17$ checking from the 6-sigma conversion table in Appendix E the Sigma level is at 1.7.

4.3.6.7. Assessing the Capability of the Baseline Data for the Cable Diameter, using the newly designed engineering tolerance

Figure 4.49. Process Capability analysis on the baseline data using the newly- derived engineering tolerance.

Referring to Table 4.10 and figure 4.49, capability index of the baseline process was assessed with the new designed engineering tolerance (2.705 ± 0.032) to further ascertain the height of improvement. The capability index values are as follows: CP = 0.223, CR = 447.43%, ZU =-0.88, ZL 2.22, CPK = -0.3, CPM = 0.12, the calculated Z_U for the process is -0.88 and checking from Appendix D, ZU = 1-0.1894 which is 81.1%. By this estimation, approximately 81.1% of the produced cable is over dimensioned. The calculated Z_L for the process is 2.22, and checking from the Appendix D, ZL = 1-0.9868 which is 1.32%. By this estimation, approximately 1.32% of the produced cable is below the lower specification, and the total reject rate = 81.1% + 1.32% = 82.42%. Thus the estimated yield = 100%-Total Reject = 100%-82.42% = 17.58%.

S/N	Index	Index before	Index values after	Index values after
		process	process	process improvement.
		improvement.	improvement.	(2.705±0.032)
		(2.715±0.185)	(2.715±0.185)	
1	Ср	1.19	7.55	1.43
2	Cpk	0.73	7.46	1.23
3	Сри	0.73	7.63	1.23
4	Cpl	1.65	7.46	1.63
5	Срт	0.67	6.43	1.26
6	CR	84.67%	13.25%	69.96%
7	Zu	2.18	22.88	3.68
8	ZL	4.98	22.39	4.89
9	σOverall	0.0582638	0.0281477	0.0023934
10	σWithin	0.0518257	0.0314975	0.00248131
11	DPMO	17,800	****	10
12	Total reject	1.46%	****	0.01%
	rate			
13	Estimated	98.54%	****	99.99%
	yield			
14	Sigma level	3.6	****	5.2

 Table 4.45: Capability Index Results for the Core Cable Diameter Measurements

Old Tolerance (2.715±0.185) New Tolerance (2.705±0.032) Index S/N Ср 1.19 0.22 1 2 0.73 0.3 Cpk 0.73 0.75 3 Cpu 4 Cpl 1.65 -0.30 5 0.67 0.12 Cpm 6 CR 84.67% 447.43% 7 Zu 2.18 -0.88 8 ZL 4.98 2.22 9 0.0582638 0.0582638 σoverall 10 0.0518257 0.0518257 $\sigma_{
m Within}$ 11 DPMO 13,900 810,000 12 Total 1.46% 82.42% reject rate 13 98.54% 17.58% Estimated yield 3.7 14 Sigma 0.6 level

Table 4.46: Comparing Index Results on the Baseline Data for the Cable Diameter using theOld and New Engineering Tolerance

Table 4.47: Comparing Index Results on the Cable Diameter Measurements before and afterthe Process Improvement

S/N	Index	Newly-designed Tolerance	Newly-designed Tolerance
		(2.705±0.032)	(2.705±0.032)
1	Ср	0.22	1.43
2	Cpk	0.3	1.23
3	Сри	0.75	1.23
4	Cpl	-0.30	1.63
5	Срт	0.12	1.26
6	CR	447.43%	69.96%
7	Zu	-0.88	3.68
8	ZL	2.22	4.89
9	σoverall	0.0582638	0.0023934
10	σwithin	0.0518257	0.00248131
11	DPMO	810,000	10
12	Total reject	82.42%	0.01%
	rate		
13	Estimated	17.58%	99.99%
	yield		
14	Sigma level	0.6	5.2

Table 4.48:	Capability	Index Results	for the	Cable	Insulation	Thickness
-------------	------------	---------------	---------	-------	------------	-----------

S/N	Index	Index values for the	Index values for the cable insulation				
		insulation thickness before	thickness after process				
		process improvement.	improvement.				
		(0.71±0.18)	(0.67±0.14)				
1	Ср	0.55	0.90				
2	Cpk	0.21	0.09				
3	Сри	0.21	0.09				
4	Cpl	0.90	1.70				
5	Срт	0.40	0.35				
6	CR	173.3%	110%				
7	Zu	0.66	0.28				
8	ZL	2.79	5.17				
9	σOverall	0.0998797	0.00281477				
10	σWithin	0.108241	0.0314975				
11	DPMO	274,000	420,000				
12	Total reject	25.46%	38.97%				
	rate						
13	Estimated	74.54%	61.03%				
	yield						
14	Sigma Level	2.1	1.7				

4.3.6.8 Assessing the capability of the baseline data for the cable Insulation thickness, using newly derived engineering tolerance.

Figure 4.50. Process Capability analysis on the baseline data for the Cable Insulation thickness using the newly- derived engineering tolerance.

With the newly-derived engineering tolerance, $\sigma = 0.10398$, CP = 0.45, CR = 223%, ZU = -0.106, ZL = 2.79, CPK = -0.03, CPM = 0.26, the calculated Z_U for the process is -0.11, and checking from Appendix D, ZU = 1-0.4562 which is 54.38%. By this estimation, approximately 54.38.1% of the produced cable will have Insulation thickness exceeding the upper specification. The calculated Z_L for the process is 2.79, and checking from the Appendix D, ZL = 1-0.9974 which is 0.26%. By this estimation, approximately 0.26% of the produced cable will have their Insulation thickness below the lower specification. Total Reject rate = 54.38% + 0.26% = 54.64%., thus the estimated yield = 100%-Total Reject = 100%-54.64% = 45.36%

S/N	Index	Derived (0.71±0.18)	Newly-derived (0.67±0.14)
1	Ср	0.55	0.45
2	Cpk	0.21	-0.035
3	Сри	0.21	-0.03
4	Cpl	0.90	0.90
5	Срт	0.40	0.26
6	CR	173.3%	223%
7	Zu	0.66	-0.11
8	ZL	2.79	2.79
9	σOverall	0.0998797	0.0998797
10	σWithin	0.108241	0.108241
11	DPMO	274,000	570,000
12	Total reject	25.46%	54.64%
	rate		
13	Estimated yield	74.54%	45.36%
14	Sigma level	2.1	1.3

 Table 4.49: Comparing Index Results on the Baseline Data for the Cable Insulation

 Thickness using the Derived Tolerance before and after the Process Improvement

S/N	Index	Before (0.67±0.14)	After (0.67±0.14)
1	Ср	0.45	0.90
2	Срк	-0.035	0.09
3	Сри	-0.03	0.09
4	Cpl	0.90	1.70
5	Срт	0.26	0.35
6	CR	223%	110%
7	Zu	-0.11	0.28
8	ZL	2.79	5.17
9	G Overall	0.0998797	0.00281477
10	σWithin	0.108241	0.0314975
11	DPMO	570,000	420,000
12	Total reject rate	54.64%	38.97%
13	Estimated yield	45.36%	61.03%
14	Sigma level	1.3	1.7

 Table 4.50: Comparing Index Results on the Cable Insulation Thickness Measurements

 before and after the Process Improvement

4.4 **Derivation of Standard Time and Work Target Estimation**

The first preliminary effort to sample time elements is to study the work environment to determine all elements of the operation to study. The extrusion start–up task was divided into work elements, and timed. Using Equations (4.2), (4.3), (4.4) and (4.5), the average time for each element was calculated, and the result of the calculations were tabulated in Table 4.51, while the procedural workout are shown in Appendix N.

S/N	Elements	Average time (t) Sec	Standard deviation (Sx)
1	Element 1	45.19	9.235
2	Element 2	398.70	*47.94
3	Element 3	185.1	3.35
4	Element 4	134.80	5.93
5	Element 5	484.82	7.16
6	Element 6	274.14	8.71
7	Element 7	305.16	5.35
8	Element 8	602.49	*20.06
9	Element 9	506.83	9.97
	Total	2937.23	

Table 4.51: Observed Time for Start-up Operation

From Table 4.49, the observed time (t) for the start-up operation = 49.53 min.

Basic Time (B_T) = 49 x
$$\frac{105}{100}$$
 = 52 minutes

Taking into account rests, possible breakdowns and personal fatigue. Considering time allowances (See Appendix O: Tediousness-very tedious, noise level, close attention-very exacting, atmospheric condition, standing allowance, constant allowance, awkward bending, lifting(20kg), monotony-medium, and mental strain) to a maximum of 30%

$$ST = 52 + 52 x \frac{30}{100} = 68 minutes$$

Since Standard time is a common denominator for measuring productivity, the value gotten was implied to ascertain the expected productivity rate for this operation.

4.4.1 Study Assumptions

- 1. Start-up operation was conducted once (i.e. at the beginning of the shift).
- 2. Time to load and unload an output reel are the same.

To estimate the expected production yield for an 8hour shift, under the new designed extrusion parameter settings, given that the prescribed time for routine clean-up and minor quality checks (the heating system, spark tester, water trough, oil gauge, embossing wheel, and braking system) at the beginning of every shift is 30minutes; Start-up time = 67minutes;

useful time for work = 480-30minutes = 450minutes, observed time to get an output reel at the optimun designed parameter setting = 1.40hrs (100minutes);time to unload an output reel= 5.086. The expected number of reel that can be produced within an 8hour shift is tabulated in Table 4.52.

Tab	le ·	4.52:	Prod	luction /	Work	x Ta	rget	Estim	ation	Anal	lysis
-----	------	-------	------	-----------	------	------	------	-------	-------	------	-------

S/N	Available	Processing time	New available time	Output	Output
	time	(Minutes)	(minutes)	reel	coil
	(Minutes)				
1	450	100+68+5.086	450-[173.086] = 276.914	1	90
2	276.914	100+5.086+5.086	276.914-[110.172]=	1	90
			166.742		
3	166.742	100+5.086+5.086	166.742-[110.172] = 56.57	1	90
4	56.57	*****	*****	****	
Total		393.43		3	270

From Table 4.52, the expected number of 1.0mm coil to be produced within an 8hour working shift is 270. With this observed estimation, the organisation can use this to structure their performance and estimate their production throughput. This estimation approach will go a long way in reducing the high rate of producing defective cables due to unrealistic work targets. Basically, there are about four inferences drawn from the study that will help the management enormously. They are as follow:

- This study will enable efficient manpower requirement planning and proper knowledge of the process in terms of start and end time of a particular extrusion activity.
- 2. This study introduces the basis for an incentive, as estimated data will be used to prepare for standards that needs to be achieved by a worker.

- 3. This study would increase the management's knowledge of the process and therefore offer them control over workers.
- 4. This will enable the management to determine the expected production rate of an extrusion operation.

4.5 The Control Phase

Control phase is concerned with establishing procedures to sustain improvements made, and emphasize on the operators, materials, machine, and method of operation. Control charts were used to monitor the process, and the main reason of using control charts is to perceive the special causes of course variation so that examination and counteractive action will be carried out to eliminate them before having an excessive number of non-conforming cables produced. A detailed control plan was drafted, listing necessary measures, the target for each measure, how the measure will be checked, how often the measure will be checked and who will check the measure, as well as actions that will be taken for an out-of-control event, etc. Part of the process control is to identify causes of process variation, and categorize them into special and common causes. It is believed that by eliminating the special causes of variation that the process will stabilize into a state of control. Obvious characteristics of special and common causes of variation are contained in Table 4.53, and Table 4.54 categorized special causes and common causes of variation as were identified in the projects.

http://www.sixsigma-institute.org/Six

S/N	Common Cause of Variation	Special Cause of Variation
1	Present all the time.	Not always present
2	Have a small effect	Have a large negative impact on product quality.
	individually	
3	Result in random variation	Result in between variations across subgroups.
4	Its effect can be tolerated	Its effect cannot be tolerated.

Table 4.53: Characteristics of Common Causes and Special Causes of Variation

As part of monitoring regimen for the improved process, I-MR-R/S (Between/within) chart consisting of an individual chart, a moving range chart and R/S chart was used to assess the stability of the process location, the between-sample component of variation, and the within-sample component of variation. During the assessment period, the process engineer measures randomly five parts from the extruding cable at 30 minutes intervals using the digital calipers. The assessment lasted for three days, during which nine consecutive operational shifts were assessed. The stability of the process as represented in figure 4.52-4.61 clearly signifies a stable process, one devoid of any special cause.

 Table 4.54: Categorization of Special and Common Causes Variation in Cable Extrusion

 Process

S/N	Special Cause Variation	Common Cause Variation
1	Over-dimensioned tips	Unsteady wire guard
2	Over dimensioned dies	Bunched PVC pellet stringing together
3	Use of un-annealed copper conductor	Faulty water Pumps
4	Use of low temperature yielding tips	Operator to Operator variation
5	Worn-out Centering Bolts/Nuts	Impurities on the PVC
6	Improper Parameter settings	Use of non-preheated PVC
7	Poor Monitoring System	Poor tip Tolerance
8	Presence of water on the Input conductor	Poor water trough design
9	Unaligned- embosser	Use of poorly-annealed Conductor
10	Faulty measuring tools	
11	Faulty Heating system	

S/N	Special Cause Variation	Common Cause Variation
12	Faulty braking system	
13	Poorly welded joints	
14	Management Interference	
15	Poor flushing of the extrusion barrel	
16	Inadequate operators skills	
17	Poor fitting of the tip to the core tube	

Table 4.54: Categorization of Special and Common Causes Variation in Cable ExtrusionProcess

Shift 3 2.711 2.706 2.702 2.702	Shift 4 2.706 2.706 2.700 2.700	Shift 5 2.705 2.702 2.700	Shift 6 2.702 2.689	Shift 7 2.685 2.688	Shift 8 2.705 2.702	Shift 9 2.690 2.701
3 2.711 2.706 2.702 2.702	4 2.706 2.706 2.700	5 2.705 2.702 2.700	6 2.702 2.689	7 2.685 2.688	8 2.705 2.702	9 2.690 2.701
2.711 2.706 2.702 2.702	2.706 2.706 2.700	2.705 2.702 2.700	2.702 2.689	2.685 2.688	2.705 2.702	2.690 2.701
2.706 2.702 2.702	2.706 2.700	2.702 2.700	2.689	2.688	2.702	2.701
2.702 2.702	2.700	2.700	2 (00			
2.702	0 700		2.689	2.701	2.700	2.704
	2.700	2.702	2.699	2.700	2.702	2.709
2.703	2.701	2.700	2.703	2.705	2.709	2.707
2.708	2.690	2.705	2.709	2.702	2.709	2.700
2.708	2.701	2.703	2.707	2.703	2.705	2.705
2.706	2.704	2.709	2.707	2.702	2.704	2.700
2.706	2.709	2.706	2.700	2.702	2.698	2.702
2.709	2.709	2.688	2.701	2.707	2.700	2.713
2.700	2.709	2.689	2.687	2.701	2.687	2.690
2.699	2.705	2.704	2.688	2.698	2.690	2.708
2.709	2.705	2.701	2.702	2.699	2.700	2.708
2.689	2.705	2.709	2.701	2.700	2.703	2.708
2.705	2.704	2.705	2.700	2.702	2.702	2.714
2.701	2.689	2.700	2.700	2.713	2.700	2.702
2.706	2.690	2.702	2.699	2.710	2.706	2.690
2.704	2.688	2.702	2.699	2.702	2.708	2.699
2.702	2.703	2.702	2.704	2.702	2.701	2.704
2.700	2.709	2.711	2.701	2.711	2.700	2.701
2.711	2.707	2.708	2.710	2.710	2.701	2.700
2.709	2.700	2.708	2.708	2.706	2.708	2.688
2.706	2.702	2.704	2.708	2.702	2.690	2.701
2.700	2.706	2.700	2.705	2.702	2.699	2.704
2.700	2.703	2.699	2.705	2.704	2.698	2.700
	2.702 2.703 2.708 2.708 2.706 2.706 2.709 2.709 2.699 2.709 2.689 2.705 2.701 2.705 2.701 2.705 2.701 2.704 2.704 2.702 2.704 2.700 2.700 2.711 2.709 2.700 2.700 2.700 2.700 2.700	2.7022.7002.7032.7012.7082.6902.7082.7012.7082.7012.7062.7092.7092.7092.7092.7092.7092.7052.6992.7052.6892.7052.7052.7042.7052.7042.7042.6892.7052.7042.7042.6892.7052.7032.7042.6882.7052.7032.7042.6882.7052.7032.7062.7092.7072.7062.7082.7022.7092.7062.7002.7062.7002.7062.7002.703	2.7022.7002.7002.7022.7002.7022.7032.7012.7002.7082.7012.7032.7082.7012.7032.7062.7042.7092.7062.7092.7062.7092.7092.6882.7002.7092.6892.7092.7052.7042.6992.7052.7042.6892.7052.7042.6892.7052.7042.6892.7052.7012.6892.7052.7012.7052.7042.7052.7042.6892.7022.7042.6892.7022.7042.6882.7022.7042.6882.7022.7042.6882.7022.7052.7032.7032.7062.7092.7042.7012.7072.7082.7022.7022.7042.7042.7022.7042.7052.7022.7042.7062.7022.7042.7002.7032.7042.7002.7042.7002.7002.7052.7042.7002.7062.7002.7002.7032.699	2.7022.7002.7002.6892.7022.7002.7022.6992.7032.7012.7002.7032.7082.6902.7052.7092.7082.7012.7032.7072.7062.7042.7092.7072.7062.7092.7062.7072.7062.7092.6882.7012.7092.7092.6882.7012.7002.7092.6892.6872.6992.7052.7042.6882.7092.7052.7012.7022.6892.7052.7012.7022.6892.7052.7012.7012.7012.6892.7052.7002.7022.7042.7052.7002.7042.6892.7022.6992.7042.6882.7022.6992.7042.6882.7022.6992.7052.7032.7022.7042.7002.7092.7112.7012.7002.7002.7082.7082.7002.7002.7042.7082.7002.7052.7042.7082.7002.7052.7042.7052.7002.7052.7042.705	2.7022.7002.7002.6892.7012.7022.7032.7012.7022.6992.7032.7032.7012.7002.7032.7052.7032.7082.7012.7032.7072.7032.7022.7082.7012.7032.7072.7032.7022.7062.7042.7092.7072.7022.7022.7062.7092.7062.7002.7072.7022.7092.7092.6882.7012.7072.7002.7092.6892.6872.7012.7092.7052.7042.6882.6982.7092.7052.7042.6882.6992.6892.7052.7012.7022.6992.7052.7012.7022.7012.6892.7022.7012.7022.7042.7022.6992.7042.6992.7022.7042.7032.7022.7042.7032.7042.7052.7042.7022.7002.7052.7042.7002.7002.7082.7002.7022.7042.7002.7032.7042.7002.7042.7052.7002.7052.7042.7002.7062.7042.7002.7062.7052.7002.7062.7042.7002.7052.7052.7002.7062.7052.7002.7052.7052	2.7022.7002.7002.6892.7012.7002.7022.7002.7022.6992.7002.7022.7032.7012.7002.7032.7022.7092.7082.6902.7052.7092.7022.7092.7082.7012.7032.7072.7022.7042.7062.7042.7092.7072.7022.7042.7062.7092.7062.7092.7072.7022.6982.7092.7092.6882.7012.7072.7002.7002.7092.6892.6872.7012.6872.6992.7052.7042.6882.6902.7022.7092.7052.7042.6882.6992.7032.6992.7052.7012.7022.7032.7022.7052.7042.7092.7002.7022.7032.7052.7042.7092.7002.7022.7032.7042.6892.7002.7022.7042.7032.7052.7042.7022.7012.7012.7012.7042.6882.7022.6992.7022.7012.7052.7092.7012.7012.7012.7012.7002.7092.7082.7042.7022.7012.7002.7092.7082.7042.7022.7012.7002.7002.7082.7032.7032.7032.7002.7002.7042.7082.702 </td

n: М th .1 Chrrt TT 11 1 5 5 1 1 **T** 7 1 ſ C . .+

Figure 4.53. I-MR-R/S chart for cable diameter for the first production shift

Figure 4.54. I-MR-R/S chart for cable diameter for the second production shift

Figure 4.55. I-MR-R/S chart for the cable diameter for the third production shift

Figure 4.56. I-MR-R/S chart for the cable diameter for the fourth production shift

Figure 4.57. I-MR-R/S chart for cable diameter for the fifth production shift

Figure 4.58. I-MR-R/S chart for cable diameter for the sixth production shift

Figure 4.59. I-MR-R/S chart for Cable diameter for the seventh production shift

Figure 4.60. I-MR-R/S chart for cable diameter for the eight production shift

Figure 4.61. I-MR-R/S chart for cable diameter for the ninth production shift

		Specifications				Performa							
						nce Index							
Opera	СТQ	US	LS	Tar	Unit of	Ср	С	Data	Measure	Sampl	Frequen	Who	Correc
tion	Character	L	L	get	Measure	k	R	Descrip	ment	e size	cy of	Measu	tive
	istics				ment			tion	Method		Measure	res	Action
											ment		s
Cable	Cable	0.8	0.5	0.71	mm	≥1.	≤	Variabl	Profile	10	End of	Proces	Ref.
Extrus	Concentri	9	3			33	75	e	enlarger	parts/	every	s	update
ion	city						%			reel	shift	Engin	d SOP
												eers	
	Cable	2.7	2.6	2.70	mm	2	≤	Variabl	Profile	10	End of	Proces	Ref.
	Dimensio	4	7	5		1.3	75	e	enlarger	parts/	every	S	update
	n					3	%			reel	shift	Engin	d SOP
												eers	
	Cable	N/	N/	100	m	N/	N/	Attribu	Visual	All	Each	Shift	Ref.
	Smoothne	А	А	%		А	А	te	Inspectio	the	extruded	Opera	update
	SS								n /	extrus	length	tor/	d SOP
									Touchin	ion		Proces	
									g	length		s	
												Engin	
												eers	

 Table 4.56: Control Plan Template for Monitoring the Improved Process

4.6 Entire Process Review

Here, recommendations were made based on the findings from the entire study to overcome the problems that lead to defects and inefficiencies in the cable production process. The recommendations and the proposed improvement program are as follows:

Crosshead and Extrusion Cavity Design: In order to achieve continuous improvement of the process, the company should always attempt to redefine the voice of the process (Control chart) to match the expectation of the customers. The company's specification limits should be redefined to be properly centered in order to meet customer's requirements. It is shown in the study that much will not be gained by centering the process but by total overhauling the entire extrusion cavity.

Technically, this is so since the values of Cpk's were slightly smaller than that of Cp's from the performance assessments.

- Job Rotation and Transfers: When the experienced workers were transferred to other shifts, problems emanated due to the inexperience of the newly engaged operators. A proposed approach is to pair the experienced with the newly trained personnel together in all the shifts. The effects of using the newly trained personnel on a shift has always proven catastrophic, leading to lower production yield and the production of sub-standard quality of PVC (mostly bunched PVC and one's having pores).
- Training System: Proper training of the new operators on machine principles, alongside specific work procedures is advised. An operator should only be certified fit to manage an extrusion line only when he/she has become accustomed to the ways and strategies of tackling all the likely production challenges such that:
- 1. The operator should know by name, the peculiar machine problems.
- 2. The operator should have been trained on the basic maintenance skills of a particular machine of interest before handling an extrusion line.
- 3. The operator should have proven to be knowledgeable enough to conduct minor repairs on his machines, and when to seek for an external assistance.
- 4. In other to train the workforce with a versatile knowledge of the various machines, it is advisable to rotationally pair the operators with operators manned in different machines for cross learning.
- 5. Cleaning of the embosser with diesel to help peel off the stuck PVC should be strictly adhered to at the start of every production shift.
- Worn-out Centering Bolts/Nuts: Since changing and mounting a centering bolt is time consuming, it will be better to use high material composition of bolts, so that incessant breaks will be reduced. Bolts and nuts should be made of medium carbon
steel (8.8MPa tensile strength), instead of using ones that is made of mild steel of 4.8MPa tensile strength.

- Design of Experiment: During experimental designs, make a complete record of the machine settings before making any change. Adjust only one setting at a time, choosing the easiest one first. If this change does not eliminate the defect, go back to the original settings after making notes of what was done and taking marked samples of what was produced. Allow sufficient time for the machine to respond to the changes and to come to equilibrium with each change before samples are taken.
- Poor Logistics and Material Resource Planning: The store section should always retain a staff member to assist in parts delivery during machine breakdowns. The store section is usually found closed after the second production shift. As a result of this, it is either the operators continue to manage the already damaged parts, or they wait at the start of the next shift for the store section to re-open. Secondly, it is considered a time waste for an operator to leave his working post just to bring an input material (mostly reel) needed for the extrusion process.
- 1. There should always be a routine review on material planning. There should be a good number of personnel assigned for the sole function of delivering production materials to every extrusion units even before any production shift. Review the production order for color and quantity and check that all necessary tools and equipment are in position. Unavailability of empty reels constitutes most of the idle times during the extrusion process.
- 2. One may want to change from one color of material to another and this causes both material and production time waste. To minimize such losses, the production should be carefully planned so that work flows in a logical sequence. In this way, light-

colored materials should be processed first so that when changing color, much time and material won't be wasted in purging the line.

- 3. The purged material should be dropped into a bucket of cold water to minimize the formation of fumes and to protect anyone from touching this hot, sticky, dangerous material.
- Machine Maintenance: At the Teko-50 section, remove the air pressure and install a spring in the loading section to stabilize the tension. This erratic tension on the payoff section often leads to wire cut, especially with the bunched wires. It also affects wire concentricity most especially when the conductor inputs are not properly annealed.
- Installing the in-built preheating system to all the extrusion systems is paramount. The detached preheating systems, according to the operators are not friendly health wise. An operator, being afraid of inhaling gases from the preheating PVC's, tends to absconds from the SOP of using preheated PVC and tends toward using available non-preheated PVC for extrusion.
- 2. Unresponsive nature of the maintenance unit to take-on on minor repairs as reported by operators is a big co-factor to time wasting in the extrusion process. Total Productive Maintenance is recommended whereby the operators take up the autonomy of their machines by acquiring some maintenance skills and training from the maintenance department. This skill will help them to tackle minor maintenance activities and will also give the maintenance section more time to handle major repairs.
- 3. Faulty spooler at the **D14** contributes to a good number of lost hours and poor work output.
- Input Material Quality: There is also need to ascertain the composition of the PVC, their constituents and mixture ratios. This will aid to validate the reliability of the

compounding section in producing PVC materials that are within the specification. The operators often complain that the PVC used often exhibit different quality features such that some PVC's will give a good output after 24hours of production even without preheating, while some others produced within the stipulated 24hour of direct use without preheating still fails to produce as required. There is the need for the quality Assurance section to always conduct material composition test on every batch of PVC to be used for extrusion.

- 1. A complaint should be tendered to the tip manufacturer/supplier, on the incessant tip break for him/her to check the heat treatment and improve on the material compositions used for the tip.
- Uneven reel opening can cause low conductor diameter due to the pressure exerted on the conductor.
- 3. Breaker plates also cause PVC leakages when they bend or are not in the right circumference with the extruder outlet. It is recommended that the local manufacturer improve on the material composition and buffer its temperature yielding strength.
- Re-Assignment of Role: It was observed during the course of the study that it was not the responsibility of the operators to measure tip. The input conductor diameter test being conducted by the QA need to be redressed to avoid idling time of the operator to start-up line.
- 1. In situations where the actual tip dimension for production is not available, it is advised that the assignment is given to the most experienced operator. For instance, when there is tip shortage for a particular cable tip size resulting to the use of a higher tip dimension for a particular size. (The most experienced, not just a normal operator should do the replacement so as to make good with the known dimensional discrepancies).

- Wire entanglement: Wire entanglement should not be corrected at the time of extrusion. Alternate provision should be made to tackle this production anomaly in order to avoid the increased time of production and the associated costs.
- Abrupt Management Decisions / Interference: Erratic management decision on the product type (size & colour) to be produced has deep financial cost implications. This also gives the operators un-called relaxation cause, at best daily target cannot be accounted for and excessive time is wasted in preparing for another product type. Incessant change of production order results in frequent loosening and tightening of the crosshead. During this loosening and tightening process, a lot of pressures are impacted on the nut of the centering bolt resulting to worn out of the nuts.
- Process Control Tools: Visual Management (VM) tools should also be incorporated as part of the tools to be used in the control phase. VM will enable quick detection of performance concern and subsequent quick response delivery. The recommended VM tools are as follows:
- 1. Whiteboards showing daily progress against the target.
- 2. Team weekly scorecards displayed in the team's common area, which should be made the subject of discussion during the team's tollgate reviews.
- 3. Job aids posted in each work post.

4.7 Economic Impact Analysis Before and After the Improvement

To determine the quality levels of the production process for the cable diameter attributes before and after process improvement, we now express the quality level of the cable diameter in financial terms using the newly designed tolerance intervals of 2.74 for USL, and 2.67 for

LSL, tolerance interval rangees from T- Δ to T + Δ ; $\Delta = 0.035$, T = $\frac{(USL \oplus LSL)}{2}$ =

$$\frac{(2.74 \oplus 2.67)}{2} = 2.705 \pm 0.035.$$

Assuming an estimated warranty cost of \aleph 30 for any 1.0mm single coil produced that do not meet with the target value, also considering that customers will complain if the diameter is a bit less, and the organization stands also to lose materials if the prescribed diameter value is above by a bit.

urgei	value (Belole the http:	ovement).	
S/N	у	(y-T)	$(y-T)^2$
1	2.719	0.004	0.000016
2	2.896	0.181	0.032761
3	2.769	0.054	0.002916
4	2.773	0.058	0.003364
5	2.693	-0.022	0.000484
6	2.732	0.017	0.000289
7	2.894	0.179	0.032041
8	2.725	0.010	0.000100
9	2.716	0.003	0.000009
10	2.782	0.067	0.004489
11	2.864	0.149	0.022201
12	2.887	0.172	0.029584
13	2.824	0.109	0.011881
14	2.826	0.111	0.012321
15	2.796	0.081	0.006561
16	2.907	0.192	0.036864
17	2.846	0.131	0.017161
18	2.878	0.163	0.026569
19	2.755	0.040	0.001600
20	2.787	0.072	0.005184
21	2.792	0.077	0.005929
22	2.778	0.063	0.003969
23	2.823	0.108	0.011664
24	2.798	0.083	0.006889
25	2.801	0.086	0.007396
26	2.864	0.149	0.022201
27	2.756	0.041	0.001681
28	2.785	0.041	0.004900
29	2.840	0.070	0.015625
30	2.871	0.125	0.024336
31	2.734	0.156	0.000361
32	2.747	0.019	0.001024
33	2.726	0.032	0.000121
34	2.770	0.011	0.003025
35	2.709	0.055	0.000036
36	2.761	-0.006	0.002116
37	2.746	0.046	0.000961
38	2.713	0.031	0.000004

Table 4.57: *Quality Loss Attributes to Deviations of the Cable Diameter from its Specified Target Value* (Before the Improvement).

	and (Berore the hiproven		
S/N	У	(y-T)	$(y-T)^2$
39	2.786	-0.002	0.005041
40	2.792	0.071	0.005929
41	2.691	-0.024	0.000576
42	2.743	0.028	0.000784
43	2.821	0.106	0.011236
44	2.790	0.075	0.005625
45	2.705	-0.010	0.000100
46	2.899	0.184	0.033856
47	2.787	0.072	0.005184
48	2.747	0.032	0.001024
49	2.864	0.149	0.022201
50	2.822	0.107	0.011449
51	2.761	0.046	0.002116
52	2.697	-0.018	0.000324
53	2.826	0.111	0.012321
54	2.765	0.050	0.002500
55	2.790	0.075	0.005625
56	2.820	0.105	0.011025
57	2.699	-0.016	0.002560
58	2.745	0.030	0.000900
59	2.789	0.074	0.005476
60	2.788	0.073	0.005329
61	2.891	0.176	0.030976
62	2.800	0.085	0.007225
63	2.721	0.006	0.000036
64	2.795	0.080	0.00640
65	2.700	-0.015	0.000225
66	2.866	0.151	0.022801
67	2.784	0.069	0.004761
68	2.756	0.041	0.001681
69	2.718	0.003	0.000009
70	2.758	0.043	0.001849
71	2.857	0.142	0.020164
72	2.810	0.095	0.009025
73	2.884	0.169	0.028561
74	2.767	0.052	0.002704
75	2.844	0.129	0.016641
76	2.708	-0.007	0.000049
77	2.772	0.057	0.003249
78	2.770	0.055	0.003025
79	2.795	0.080	0.006400
80	2.758	0.043	0.001849
81	2.854	0.139	0.019321
82	2.792	0.077	0.005929
83	2.812	0.097	0.009409

Table 4.57: *Quality Loss Attributes to Deviations of the Cable Diameter from its Specified Target Value* (Before the Improvement).

S/N	у	(y-T)	$(y-T)^2$
84	2.855	0.140	0.019600
85	2.775	0.060	0.003600
86	2.769	0.054	0.002916
87	2.725	0.010	0.000100
88	2.730	0.015	0.000225
89	2.740	0.025	0.000625
90	2.725	0.010	0.000100
91	2.771	0.056	0.003136
92	2.696	-0.019	0.000361
93	2.661	-0.054	0.002916
94	2.708	-0.007	0.000049
95	2.849	0.134	0.017956
96	2.844	0.129	0.016641
97	2.857	0.142	0.020164
98	2.767	0.052	0.002704
99	2.884	0.169	0.028561
100	2.810	0.095	0.009025

Table 4.57: *Quality Loss Attributes to Deviations of the Cable Diameter from its Specified Target Value* (Before the Improvement).

Substituting values in Table 4.57 in Equation (4.11)

T (Original) = $\frac{(USL + LSL)}{2} = \frac{(2.90 + 2.53)}{2} = 2.715.$

Original $\Delta = (2.90-2.715) = 0.185$,

T (New) =
$$\frac{(USL + LSL)}{2} = \frac{(2.74 + 2.67)}{2} = 2.705 \pm 0.035.$$

New $\Delta = (2.74 - 2.705) = 0.035$

$$MCW \Delta = (2.74-2.703) = 0.033,$$

Substituting the cable diameter values before the Improvement in Equation (4.11)

$$MSD = MSD = \frac{1}{n} \sum (yi - T)^2 = MSD = \frac{1}{100}[0.838478] = 0.00838478$$
$$L (2.715) = [30] [0.00838478]/(0.185)^2 = \$7.34 \text{ per coil}$$

Total yearly loss before the experimental design = 7.34*300*810 = №1,783,620

4.7.1 Economic Impact Estimation After Improvement

specific	a ranger value (after	improvement)	
S/N	У	(y-T)	$(y-T)^2$
1	2.720	0.015	0.000225
2	2.693	-0.012	0.000144
3	2.718	0.013	0.000169
4	2.700	-0.005	0.000025
5	2.712	0.007	0.000049
6	2.701	-0.004	0.000016
7	2.704	-0.001	0.000001
8	2.711	0.006	0.000036
9	2.699	-0.006	0.000225
10	2.720	0.015	0.000004
11	2.703	-0.002	0.000036
12	2.711	0.006	0.000036
13	2.697	-0.008	0.000064
14	2.703	-0.002	0.000004
15	2.710	0.005	0.000025
16	2.703	-0.002	0.000004
17	2.700	0.005	0.000025
18	2.711	0.006	0.000036
19	2.721	0.016	0.000256
20	2.709	0.004	0.000016
21	2.707	0.002	0.000004
22	2.705	0	0
23	2.718	0.013	0.000169
24	2.708	0.003	0.000009
25	2.713	0.008	0.000064
26	2.711	0.006	0.000036
27	2.700	-0.005	0.000025
28	2.709	0.004	0.000016
29	2.719	0.014	0.000196
30	2.713	0.008	0.000064
31	2.711	0.006	0.000036
32	2.709	0.004	0.000016
33	2.719	0.014	0.000196
34	2.710	0.005	0.000025
35	2.700	-0.005	0.000025
36	2.710	0.005	0.000025
37	2.719	0.014	0.000025
38	2.716	0.011	0.000121
39	2.701	-0.004	0.000016
40	2.720	0.015	0.000225
41	2.689	-0.016	0.000256
42	2.708	0.003	0.000009
43	2.700	-0.005	0.000025

Table 4.58: Quality Loss Attributes to Deviations of the Core Cable Diameter from its Specified Target Value (after Improvement)

specifie	u Iurgei vuine (uji		
S/N	y	(y-T)	$(y-T)^2$
44	2.712	0.007	0.000049
45	2.711	0.006	0.000036
46	2.709	0.004	0.000016
47	2.702	-0.003	0.000009
48	2.699	-0.006	0.000036
49	2.706	0.001	0.000001
50	2.709	0.004	0.000016
51	2.708	0.003	0.000009
52	2.711	0.006	0.000036
53	2.714	0.009	0.000081
54	2.719	0.014	0.000196
55	2.720	0.015	0.000225
56	2.719	0.014	0.000196
57	2.709	0.004	0.000016
58	2.725	0.020	0.000400
59	2.720	0.015	0.000225
60	2.719	0.014	0.000196
61	2.701	-0.004	0.000016
62	2.717	0.012	0.000144
63	2.707	0.002	0.000004
64	2.711	0.006	0.000036
65	2.713	0.008	0.000064
66	2.730	0.025	0.000625
67	2.711	0.006	0.000036
68	2.701	-0.004	0.000016
69	2.715	0.010	0.000100
70	2.712	0.007	0.000049
71	2.709	0.004	0.000016
72	2.713	0.008	0.000064
73	2.716	0.011	0.000121
74	2.714	0.009	0.000081
75	2.719	0.014	0.000196
76	2.719	0.014	0.000196
77	2.702	-0.003	0.000009
78	2.705	0	0
79	2.700	-0.005	0.000025
80	2.720	0.015	0.000025
81	2.710	0.005	0.000025
82	2.716	0.011	0.000121
83	2.699	-0.006	0.000036
84	2.700	-0.005	0.000025
85	2.713	0.008	0.000064
86	2.698	-0.007	0.000049
87	2.707	0.002	0.000004
88	2.701	-0.004	0.000016

Table 4.58: Quality Loss Attributes to Deviations of the Core Cable Diameter from its Specified Target Value (after Improvement)

S/N	y	(y-T)	$(y-T)^2$	
89	2.719	0.014	0.000196	
90	2.711	0.006	0.000036	
91	2.719	0.014	0.000196	
92	2.710	0.005	0.000025	
93	2.723	0.018	0.000324	
94	2.712	0.007	0.000049	
95	2.696	-0.009	0.000081	
96	2.703	-0.002	0.000004	
97	2.720	0.015	0.000225	
98	2.699	-0.006	0.000036	
99	2.709	0.004	0.000016	
100	2.713	0.008	0.000064	

Table 4.58: Quality Loss Attributes to Deviations of the Core Cable Diameter from its Specified Target Value (after Improvement)

Substituting values in Table 4.58 in Equation (4.11)

Substituting the cable diameter values after the Improvement in Equation (4.11)

Actually, this quality level (\mathbb{N}) is the loss attributable to deviations of the cable diameter from its specified target value. Considering yearly production, assuming the organization worked for 300 days in a year and the daily production capacity is maintained on the average of 810 coils per day (see Table 4.52), then the estimated annual loss amounts to 2.08 x 300 x 810 = $\mathbb{N}505,440$. \mathbb{N} 505,440 now becomes the projected overall loss and also an opportunity for improvement attributable to the deviations on the cable from its target diameter value per annum after the experimental design. However, the economic impact analysis was also applied to the initial diameter measurements, but now with the tightened tolerance limit to estimate the amount of loss incurred due to deviations from the target. The comparative results of the analysis depict a remarkable improvement. Drawing comparison from column three and seven of Table 4.57 and same columns in Table 4.58, we notice a whole lot of positive deviations in Table 4.57 than in Table 4.58, which is an indication there was more

usage of insulation material input in the production process before the improvement process. Net yearly improvement due to redesigning the tolerance after the experimental design becomes = [7.34-2.08]*243,000 = \$1,278,180. The percentage decrease on the annual loss estimation after improvement is computed with the formular:

$$\text{\%Decrease in annual loss estimation} = \frac{Decrease}{Cost} * 100$$

$$Cost$$

$$(4.13)$$

Decrease = 1,783,620-505,440 = 1,278,180

$$\text{\%Decrease} = \frac{1,278,180}{1,783,620} * 100 = 72\%$$

 Table 4.59: Quality Improvement by Tightening Tolerance

	Tolerance	MSD	K Expected		Expected	Net annual
				quality loss	annual loss	Improveme
				per unit	(₦)	nt due to
				(₦)		new design
						(₩)
Original	T±0.185	8.38478E-	876.55	7.34	1,783,620	******
		03				
Tightened	$T\pm 0.032$	8.5088E-05	24489.8	2.08	505,440	1,278,180

Table 4.59, contains the value of the existing and the newly designed engineering tolerance interval for the extrusion process. The noticeable decrement between the two is seen as $T\pm0.185$ to $T\pm0.032$, which is about 82.7% reduction from the initial tolerance limit. The second row of the fifth column in Table 4.59, the expected quality loss per unit coil for 1.0(mm) single core cable is \$7.34, and in the third row of the same fifth column with the tightened tolerance the expected quality loss per coil reduced to \$2.08. Judging the level of improvement attained using the original engineering tolerance as shown in column six of

Table 4.53 is at \$1,783,620, and with the tightened tolerance is a reduced cost of \$505,440. Lastly, the estimated net improvement due to the new design per annum, considering the earlier estimated production throughput from the process is \$1,278,180 as depicted in the third row of the last column of Table 4.59. At the end of the improvement projects, the height of the improvement attained was assessed using the annual production data and defect history records from the case organisation. Records on 1.0s cables produced from 2013 to Dec. 2017 are as shown in the Table 4.60.

	Quantity	Quantity	Quantity	Quantity	Quantity
Monthly	produced	produced	produced	produced	produced
production	<i>(m)</i>	(<i>m</i>)	(<i>m</i>)	<i>(m)</i>	<i>(m)</i>
	(2013)	(2014)	(2015)	(2016)	(2017)
Jan	459,245	579,927	722,558	410,631	1,174,004
Feb.	572,724	115,666	465,009	600,637	677,368
March	573,393	*	895,685	749,572	862,593
April	547,612	*	838,339	1,026,326	712,619
May	550,454	*	334,866	841,004	592,185
June	656,202	*	878,437	732,712	667,204
July	225,191	*	893,041	589,568	619,697
Aug.	649,335	689,840	818,403	*	701,229
Sept.	451,158	605,923	406,139	*	472,119
Oct.	706,199	564,649	900,909	*	514,811
Nov.	615,612	689,882	369,894	*	653,524
Dec	466,573	481,130	771,873	*	446,178
\sum	6,473,678	3,727,017	7,523,280	4,950,450	8,093,531

Table 4.60: Records on 1.0s (mm) Cables Produced from 2013- Dec.2017Source: Cutix Cable PLC Anuka Production Plant

From the tabulated report on Table 4.60 2017 production year has the largest number of produced quantity of cables 8,093,531metres, followed by 2015, 2013, 2016 and 2014 with the least production quantity. Records on the number of 1.0s (mm) cables rejected due to the categorised defect features in the organisation is as shown in Table 4.61.

S / N	Defects (m)	2013	2014	2015	2016	2017	
1	ITF	5,672.44	3,995.092	9,025.110	8,743.098	4508.019	
2	ISF	4,697.44	4,877.495	5,460.999	10,710.054	3,577.102	
3	LCD	*	*	1,680.111	*	*	
4	WL	*	*	*	*	105.000	
5	NL	*	*	945.000	*	840.00	
6	TPs	420.000	*	*	210.000	735.000	
7	ICD	*	882.403	*	*	420.000	
	Total (m)	10,789.88	9,754.99	17,111.22	19,663.35	10,185.120	

Table 4.61: Quantity of 1.0s (mm) Cables Rejected from 2013- Dec.2017

Source: Cutix Cable PLC Anuka Production Plant

At the project termination stage as shown in Table 4.61, the quantity of non-conformed cables rejected due to Insulation Surface Flaws was reduced by 23.85% from the entitlement value of 4697.44 of 2013 period.

4.8 Development of a Generic Graphical User Interface Support System

A graphical user interface was developed to take the burden of numerous and complex mathematical calculations away from manufacturers. The developed graphical user interface was based on MATLAB toolbox which is a programming language of a higher level with interactive development environment. The design environment of this program is based on the Simulink of MATLAB that provides the drawing function and the graphical user interface development environment (GUIDE). The developed graphical user interface (GUI) was tested through real case study and satisfactorily results were obtained. The results showed that developed graphical user interface was functional, effective, flexible and beneficial in solving some of the real life problems that characterize cable manufacturing organizations.

4.8.1 General Consideration in Generic User Interface Support Systems

Designing a good user interface is critical to the success of a system. The developed GUI system was designed to be accessible to people of all levels of knowledge, and with instant feedback mechanism. In the development of the tool, a MATLAB code that defines all component properties and behaviors was created and used in building the tool. This application framework was used to construct elegant and powerful applications displaying interactive reports and data visualizations. The tool interface was simply created in such a way that the user's objectives could be achieved easily. In designing the software, some considerations were made paramount and was adopted; the end user's experience, simplicity, software usability, flexibility and responsive. These considerations were adopted to ensure that the developed tool contains the following features:

- It is user friendly and can be used by anyone that doesn't have a comprehensive knowledge of the technical details behind it.
- It is simple with no ambiguity over the way the interface operates both in terms of visual hierarchy and content.
- The User Interface has the capacity for updates thus changes can be made without causing a conflict of interest.
- > The interface was designed to move swiftly in pace with the user,

Figure 4.62. General Graphical Overview of the Generic User Support System

4.8.2 Data presentation

In order to standardize the procedures of the user interface support system, the required input data have to be prepared in a specific format before the user interface support system can be utilized. The system requires many user-friendly input files, containing financial cost of defect, cable diameter measurements, and Insulation thickness measurements. An example of the exact required input data required is shown in figure 4.63, 4.64 and 4.65.

😰 🖬 🖤 • 🖤 🗅 🖃														- 0	>	<				
	File Ho	me Insert Pa	ge Layout 🛛 Fo	rmulas Dat	a Review	View												_	- 6	23
▲ Cut Calibri ▼ 11 A ▲ Paste ✓ Format Painter Clipboard Font			× A* A* → A ×		🐨 Wrap	Text e & Center +	General \$ + %	, .0 .0	Condi Forma	tional Form tting + as Tab Styles	at Cell Ide + Styles +	insert E	Delete Format	Σ AutoS Fill ▼ Clear •	um * Zr Sort a Filter Editing	Find & Select +	å ct.≁			
	G15	- (=	fx	-						-			1						_	^
														-						
	A	В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R		
1	_	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5														
2	DEFECT A	115,150.532	81,100.318	183,209.733	177,484.889	22,573.600														
3	DEFECT B	17,912.781			8,526.000															
4	DEFECT C	-	-	34,106.252	-															
5	DEFECT D	-				2,131.300														
6	DEFECT E	-	-	19,183.500	-	6,394.500														
7	DEFECT F	8,526.000	-	-	4,263.000	14,920.500														
8	DEFECT G	95,358.032	99,013.149	110,858.280	217,414.096	24,545.449														
9	_	-	-	-	-															
10)																			
11																				-
12	2																			_
13	3																			
14																				-
15	-																			-
16																				-
1/																				
10																				
20	,																			
20																				-
21	L																			-
22	•																			-
24																				
												-								
												÷								
		8 6		? 🛸		X								\$ ▲	🤊 🛆 🛸	▶ ((8 20 2	6:29 7/26	9 PM //2019	

Figure 4.63 Required Input Format for the Historical data

	- 9 - (*	(v 🗋 v				(able Di	ameter - N	licrosoft	Excel (Prod	luct Activa	ation Faile	d)					-	□ ×
Fil	e Hon	ne Insert	Page Layo	ut Form	nulas Da	ta Reviev	/ View	1										(2 ھ	- 🗗 🛙
Past	Cut	at Painter	Calibri B Z <u>U</u> →	• 11	· A A ·	≡ <mark>≡</mark> ≡ ≣ ≣ ∃	≫. • •	Wrap Tex Merge &	t Center *	General \$ • % 9	▼ 0. • 0.	Condition Formatting	al Format	Cell Styles *	Insert Delet	e Format	Σ AutoSun Fill ▼ Clear ▼	Sort &	Find & Select *
	Clipboard	Gi -	F	ont	G.		Alignme	ent	Gi	Numb	er G		Styles		Cell	5		Editing	
	H3	• (f _x																^
	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S 🛓
1	2.719	2.896	2.769	2.773	2.693														
2	2.732	2.894	2.725	2.716	2.782														
3	2.864	2.887	2.824	2.826	2.796														
4	2.907	2.846	2.878	2.755	2.787														
5	2.792	2.778	2.823	2.798	2.801														
6	2.864	2.756	2.785	2.84	2.871														
7	2.734	2.747	2.726	2.77	2.709														
8	2.761	2.746	2.713	2.786	2.792														
9	2.691	2.743	2.821	2.79	2.705														
10	2.899	2.787	2.747	2.864	2.822														
11	2.761	2.697	2.826	2.765	2.79														
12	2.82	2.699	2.745	2.789	2.788														
13	2.891	2.8	2.721	2.795	2.7														
14	2.866	2.784	2.756	2.718	2.758														
15	2.857	2.844	2.767	2.884	2.81														
16	2.708	2.772	2.77	2.795	2.758														
17	2.854	2.792	2.812	2.855	2.775														
18	2.769	2.725	2.73	2.74	2.725														
19	2.771	2.696	2.661	2.708	2.849														
20	2.857	2.844	2.767	2.884	2.81														
21																			
22																			
23	L NL CL											4							▼
\mathbf{F}_{i}	sne sne		Dogu	irad	Innut	Form	not f	for the			iomo	tor N	1000	1200	aanta				P

Figure 4.64 Required Input Format for the Cable Diameter Measurements

	🚽 🤊 - I	(× 🗋 I∓					Insula	tion Thick	mess meas	urements	s - Micro	soft Exce	l (Product A	ctivation Fa	ailed)					-	-	×
Fi	ile Ho	me Inse	rt Page	Layout	Formulas	Data	Review	View												~ () - 6	₽ 83
Pas	Let	oy ▼ mat Painter	Calibri B I	- -	11 - A A	^` ≡	= ×	> == = == ==	Wrap Text Merge & Cen	Ger ter * \$	neral ∗%,	▼ 00. 0.∳ 0.€ 00.	Conditional	Format Ce	ell Inser	Delete I	Format	E AutoSum 🔻 Fill 👻 Clear 🕶	Sort & Find &			
	Clipboar	d G		Font		G.	1	Alignment	nment G Number G Styles Cells Editing								iting					
	К11	-	6	fx																		~
				-																		4
	А	В	С	D	E	F	G	н	1	J	К	L	M	N	0	Р	Q	R	S	т	U	-
1	0.749	0.9055	0.8315	0.692																		1
2	0.8775	0.871	0.8485	0.9355																		
3	0.7535	0.9295	0.74	0.0816																		
4	0.707	0.79	0.8335	0.7155																		=
5	0.723	0.87	0.709	0.8305																		
6	0.6935	0.889	0.746	0.881																		
7	0.6835	1.012	0.8565	0.981																		
8	0.768	0.834	0.697	0.896																		
9	0.8085	0.79	0.913	0.6595																		
10	0.699	0.95	0.751	0.9045																		
11	0.8985	0.877	0.9725	0.725																		
12	1.0035	0.739	0.7885	0.9885																		
13	0.9965	0.7085	0.905	0.7825																		
14	0.9475	0.755	0.7205	0.975																		
15	0.8565	0.8485	0.9655	0.668																		
16	0.847	0.975	0.9045	0.8325																		
17	0.7235	0.8265	0.8515	1.036																		
18	0.7725	0.8665	1.051	0.81																		
19	0.853	0.7475	0.926	0.7215																		
20	0.985	0.6395	0.8445	0.8345																		
21	0.7625	0.9615	0.886	0.7135																		
22	0.756	0.816	0.8505	0.863																		
23	0.9595	0.825	0.7955	0.795																		
24	0.771	0.8905	0.8945	0.78																		-
14 4	► H Sh	eet2 🧷	/		1								14								Þ	E I
Rea	dy																		100% (-		J	+
	W	2	6		(9	RA 🔊	🔺 🧇 🏲	(8 20 5	2 70	6:23 PM 7/26/201	9

Figure 4.65 Required Input Format for Cable Insulation Thickness Measurements

4.8.3 System Walk Through

After having prepared the required input data in the specified format as described in the previous section, the user interface support system can be utilized to recommend appropriate projects to embark on. Once the user interface support system is initialized, the user is presented with the "Home screen" shown in Figure 4.66.

			Knowled	ge Based	d Design w	ith Six Sign	na			
Settings	Problem Definitio	on Data Colle	ection Da	ta Analysis	Improvem	ent				
Period a	f Historical Data A	naylsis								
	Start Date:	2013		~						
	End Date:	2017		~						
Defect C	ost Bench Mark f	or Improvem	ent							
E	Bench Mark Amount:	500000		NGN						
Load His	storical Data									
C: Users	EMEKA U. DOMINICI	Desktop/KBS D	esian\Defec	tData xisx		Load				
						LOGIG				
			-			Load				
						Load				
						Loud				
						Load				
						Loud				
						Loud				
E	dit Settings							Save	Settings	
E	dit Settings		-					Save	Settings	
E	dit Settings		-					Save	Settings	
E	dit Settings		-					Save	Settings	
E	dit Settings		-					Save	Settings	

Figure 4.66: Home screen of the Graphical User Interface

The user can navigate on the app by clicking on any of the Icons on the toolbar. The icons at the home screen are characterized with unique responsibilities. The settings icon is for setting the software according to user's specification. From figure 4.66 the icons at the top rank of the home screen consists of the problem definition Icon, data collection icon, data analysis icon and I the Improvement icon. At the bottom of the home screen, we have the help icon, the restart icon and the close icon. The help icon contains all the necessary instructions needed to run the application. One can restart the programme by clicking on the restart button, and the application can as well be closed by just hitting the close button. To use the tool, the user's first click on settings having read the instructions as contained in the help to adjust some of the setting like the period of investigation and benchmark settings. The already prepared historical data is loaded and saved.

Settings Problem Definition [ta Collection Data Analysis Improvement	
Click buttons below to view pl	8	
PLOTS	Historical Data Analysis Summary	^
Defects 3D Bar Chart	Defects Summary	
Defect Cost 3D Bar Chart	ITF -Insulation thickness failures:28561.853	
	RIS - Rough Insulation Surface:26954.997	
X-Bar and R-Bar Chart	WiW - Wrong Input Wire:0	
Defects Pareto Chart	SIF - Short Cut Supplied in place of full coil:0	
Defects Cost Pareto Char	WL - Wrong Label:105	
Problem-Defined Summary	TPs - Torn Poly-Sheet:1365	
Finance Data Hist Fit	ISI - Inconsistency in the Shape Of Insulation:1302.403 BC - Bridging Cable:0	
	Bench Mark for Selection:N500000	
	ITF -Insulation thickness failures:N579519.072	
	RIS - Rough Insulation Surface:N547189.006	
	LCD - Low Conductor Diameter:N34106.252	
	IC - Incomplete Core:ND	
	SIF - Short Cut Supplied in place of full coil:ND	~
	Analyze Loaded Data	

Figure 4.67 An Overview of the Problem definition and Defect Stratification.

Different plots such as the Pareto, 3D bar chart etc. are displayed on this page. Here defects are stratified based on the input benchmark.

Settings Probler	n Definition	Data Collectio	Data Ana	alysis Improv	/ement			
Data Collected (o to Data Ar	abreje Dario fo	r Anabeie of	Collected Dat	-			
		luiyala ruge ru		concerca ba	•			
	Data 1 C:	Users\EMEKA U	. DOMINIC\Desk	top\KBS Desig	NVC Data.xlsx		Load	
	Data 2 C:	Users\EMEKA U		top\KBS Desig	NTF Data.xlsx		Load	
	Data 3						Load	
Eposifie-4	Control							
Doto 1					Torget:			
Data 2	LSL:	2.716	USL:	2.856	Target:	2.7		
Data 3	LSL:	0.665	USL:	0.977	Target:	0.8	_	
Extruder and Ca	otan Data:							
	Input Data	Users\EMEKA U		top\KBS Desig	Nnput Data.xisx		Load	
Reload Da	ta						Collect E	Data

Figure 4.68 An Overview of the Specified System Specification and Data upload.

Click buttons below to view plots	
PLOTS	Capability Summary - Data 1
View Experimental Data	Sample Mean(mu) - 2.7876
X-Bar and R-Bar Chart 1	Sample Standard Deviation(sigma) - 0.031761 Estimated probability of being within limits(P) - 0.97228
X-Bar and R-Bar Chart 2	Estimated probability of being below L (lower spec)(PI) - 0.012128 Estimated probability of being above U (upper spec)(Pu) - 0.015588
X-Bar and R-Bar Chart 3	Cp, (U-L)/(6*sigma) - 0.73465 CpI ,(mu-L)./(3.*sigma) - 0.75102
Histogram Fit 1	Cpu ,(U-mu)./(3.*sigma) - 0.71828 Cpk ,min(Cpl, Cpu) - 0.71828
Histogram Fit 2	
Histogram Fit 3	
Probability Plot 1	Capability Summary - Data 2
Probability Plot 2	Sample Mean(mu) - 0.81926 Sample Standard Deviation(sigma) - 0.039577
Probability Plot 3	Estimated probability of being within limits(P) = 0.99992
Capability Plot 1	Estimated probability of being below E (lower spec)(Pi) - 4.0346-005 Estimated probability of being above U (upper spec)(Pu) - 3.3655e-005
Capability Plot 2	Cpl (mu-L)./(3.*sigma) = 1.2993
Capability Plot 3	Cpk ,min(Cpl, Cpu) - 1.2993
,	· · · · · · · · · · · · · · · · · · ·
	Analyze Loaded Data
	Analyze Loaded Data

Figure 4.69 An Overview on the Data analysis and Capability Summary.

Capability summary and necessary plots are displayed at this interface as shown in the uploaded screen shot of figure 4.69. The capability index formulations that was used to run the analysis that are displayed as outputs in the software are found in the processs capability

section of the chapter three, and figure 4,70 describes how capability analysis are being run in the software.

Figure 4.70: Design flowchart of the capability index studies

	Knowledge Based Design with Six Sigma	_ 🗆 🗙
Settings Problem Definition Data Co	Illection Data Analysis Improvement	
PLOTS	Improvment Summary	^
View Coefficient Test 1	Model Summary - Data 1	
View Coefficient Test 2	MSE - 0.0024008	
View Coefficient Test 3	RMSE - 0.048998	
Optimize Data 1		
Optimize Data 2		
Optimize Data 3	Model Summary - Data 2	
View Simulation Data 1	MSE - 0.002744 Rsquare - 0.12616	
View Simulation Data 2	RMSE - 0.052384	
View Simulation Data 3		
Export Sim Data		
		~
	Improve Loade	ed Data
Help	Restart Clos	e

Figure 4.71. Screen Shot View of the Improvement Page/Summary.

Improvement test results in terms of model evaluation metrics, prediction plots and simulation data are displayed on the improvement interface as shown in figure 4.71. The simulated data can be viewed, and exported to Microsoft word or powerpoint file by clicking on the designated dialogue box. The software simulation was developed using multiple regression equation in order to develop a generic model for predicting uniform cable dimension in any typical cable manufacturing organization. The simulation program made use of first and second order models as shown in equation (4.1) & (4.2).

$$C_{\rm D} = \beta_0 + \beta_{\rm IC} + \beta_{\rm 2} x_E + \varepsilon \tag{4.1}$$

$$C_{D} = \beta_{0} + \beta_{1} x_{C} + \beta_{2} x_{E} + \beta_{12CE} + \beta_{11} x_{C}^{2} + \beta_{22} x_{E}^{2} + \varepsilon$$
4.2

where C_D = cable dimension, E = extruder speed, C = Capstan speed, $\beta_0 \dots \beta_n$ = constants, e = statistical error.

The second-order model is used in cases when the first order model is not suitable. The simulation program runs in a generic fashion in such a way that models are determined with respect to the input variables. Figure 4.72 illustrates the simulation procedure of the software.

Figure 4.72: Flowchart of the Simulation and optimization operation of the Software

CHAPTER FIVE

CONCLUSION, RECOMMENDATION AND CONTRIBUTION TO KNOWLEDGE 5.1 Summary of Findings

This research explored the innate potentials within these two powerful disciplines, knowledge management (KM) and Six Sigma approach, to monitor the changing distribution of process capabilities in a cable manufacturing organization. The proposed Six Sigma-DMAIC-KM integrated approach has been validated in a cable manufacturing company in order to enhance the organizational performance. The improvements of project performance and application impacts of the new methodology have been investigated by comparing the initial and final capability of the process of the executed projects, by comparing the initial and final Sigma level of the executed projects, by comparing initial and final economic impact assessment of the executed project. The root causes of variation in cable manufacturing were identified, mainly as designs, parameter settings, materials, operation techniques, and measurement system errors. A tremendous improvement was achieved at the end of the projects in terms of the increased Sigma level (for both the cable diameter and Insulation thickness).

The organizational measurement system was assessed as well as the baseline performance of the system with the solution. Non-value added activities were eliminated from the process and a Standard Time (ST), which is a common denominator for measuring productivity, was derived and implied in the study to ascertain the expected productivity rate for the extrusion start-up operation. A hierarchy of decision model for producing cable with improved Insulation thickness and Improved Insulation Surface flaws was mapped and used in prioritizing defect judgments. An extrusion model of the form:

CDpreheated PVC = 1.81243+ -0.00126332*A + 0.00156569*B,

 $CD_{non-preheated PVC} = 1.67344 + -0.0013576*A + 0.00176569*B$

was developed for predicting the cable dimension. Appropriate engineering specification was designed and tightened for the process from $(T\pm0.185)$ to $(T\pm0.032)$ such that a Six sigma process can easily be captured. The completion of the study resulted to peak improvement in the capability performance, for the cable diameter, using the newly-designed engineering tolerance, Cp increased from 0.22 to 1.43, Cpk increased from 0.3 to 1.23, CR decreased from 447.43% to 69.96%, ZU improved from -0.88 to 3.68, and ZL now moved from 2.22 to 4.89. DPMO reduced from 810,000 to 10, thus improving the Sigma level from the value of 0.6 to 5.2. On the insulation thickness using the newly-derived engineering tolerance, Cp, value increased from 0.45 to 0.90, Cpk increased from -0.035 to 0.09, ZU increased from -0.11 to 0.28, and ZL from 2.79 to 5.17. CR reduced from 223% to 110%, and total rejection rate was reduced from 54.64% to 38.97%. A significant reduction in DPMO from 570,000 to 420,000 was achieved, thus improving the Sigma level from 1.3 to 1.7.

The economic impact assessment for the cable diameter project, using quality loss function approach, has shown that the quality loss attributed to every single 1.0s (mm) coil produced has reduced from the initial cost of \aleph 7.34 to \aleph 2.08. The percentage decrease in annual loss is estimated at about 72%, an indication that annual loss before the improvement was reduced from \aleph 1,783,620 to \aleph 505,440 after the process improvement. On the other hand, the net annual improvement due to redesigning the tolerance now becomes \aleph 1,278,180. The quantity of non-conformed 1.0s (mm) cable rejected due to Insulation Surface flaws was reduced by 38.22% from the acceptable defect quantity, and about 5.6% reduction when compared with the entitlement value in the previous years. A Generic knowledge based Management tool was developed from the project that will support replication of new projects in cable manufacturing without necessarily involving an external consultant. An appropriate recommendation arising from the result of this study has been contemplated. In conclusion, Process performance can be improved and well sustained, using the synergetic support of Six Sigma-DMAIC and Knowledge Management strategies.

5.2 Achievement of Research Aim

The purpose of this research was to incorporate Knowledge Management strategy within a Six Sigma-DMAIC's framework to enhance process performance in cable manufacturing. The aim has been achieved. In chapter 4, the developed synergetic solution of Six Sigma and Knowledge Management was used to enhance process performance in cable manufacturing. A generic knowledge-based tool has been developed to aid easy replication of improvement study in cable manufacturing.

5.3 Contributions to Knowledge

A unique form of Knowledge Management (KM) and Six Sigma-DMAIC integration tactics has been introduced into the body of Six Sigma and Knowledge Management literature, and how it can be deployed to solve organization specific problems. Secondly, a Generic User Interface Support System tool, with ease of replication to enhance cable manufacturing, using Knowledge Management and Six-Sigma-DMAIC has been introduced, and successfully applied to the Anuka Cable Plant of the Cutix Cable Plc.

5.4 **Recommendation for Further Research**

In this study, the proposed solution was used to improve process performance in cable manufacturing. Relevant recommendations from the study has been highlighted at the Entire Process Review section at the control phase. However, it will be useful to apply this solution in service sector organizations and also in other manufacturing sector that are keen to improve their process performance and retain knowledge garnered from their improvement studies.

REFERENCES

- Abdulkareem, A., Akinbulire, T.O., & Agbetuyi, A.F. (2014). Improving the thermoplastic extrusion process in cable manufacturing. *International Journal of Research in Applied Natural and Social Sciences*, Vol. 2, Issue 4, pp.2347-4580.
- Aboelmaged, M. (2010). Six Sigma quality: a structured review and implications for future research. *International Journal of Quality & Reliability ..., 27*(3), 268–317. https://doi.org/10.1108/02656711011023294
- Aghili, S. (2009).A Six Sigma approach to internal audits. *Strategic Finance, February* (February), 38–43. Retrieved from <u>http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Six+Sigma+Appro</u> <u>ach+to+Internal+Audits#1</u>
- Akeem, A.O, Salami, A.I, & Anthonia, A.I. (2013). Process Capability Analysis as a means of decision making in manufacturing company. *International Journal of Advanced Research in Computer Science & Technology*, 1(1).
- Alavi, M. & Leidner, D.E (2001). Knowledge Management and Knowledge Management Systems: Conceptual foundation and research issues: *MIS Quarterly*, 25(1).
- AlEnzy, M. (2014). Cable factory Balanced Scorecards system, *International Journal of scientific & Engineering*, volume 5, issue 4
- Allen, T. T., Tseng, S.-H., Swanson, K., & McClay, M. A. (2009).Improving the Hospital Discharge Process with Six Sigma Methods.*Quality Engineering*, 22(1), 13–20. <u>https://doi.org/10.1080/08982110903344812</u>
- Alonso, J.A & Lamata, M.T. (2006). Consistency in the analytic hierarchy process: A new approach. *International Journal of Uncertainty, fuzziness and Knowledge-Based Systems*, 14, (4), pp. 445-459.
- AlSagheer, A. (2011). Applying Six Sigma To Achieve Enterprise Sustainability: Preparations And Aftermath Of Six Sigma Projects. *Journal of Business & Economics Research*, 9(4), 51–58. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=60581688&lang=pt-br&site=ehost-live
- Amar, K., & Davis, D. (2008).A review of Six Sigma implementation frameworks and related literature.*Imecs 2008: International Multiconference of Engineers and Computer Scientists, Vols I and Ii, II*, 1559–1564. Retrieved from <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.5148&rep=rep1&type=pd</u> <u>f</u>
- Andersen, A (1998).Knowledge management. [Online] Available: <u>Http://www.arthurandersen.com</u>.
- Andersson, R., Eriksson, H., & Torstensson, H. (2006).Similarities and differences between TQM, six sigma and lean.*The TQM Magazine*, *18*(3), 282–296. https://doi.org/10.1108/09544780610660004

- Antony J. (2004). Some pros and cons of six sigma: an academic perspective. *The TQM Magazine*. pp.303-306.
- Antony, J. (2006). Six sigma for service processes. Business Process Management Journal, 12(2), 234–248. <u>https://doi.org/10.1108/14637150610657558</u>
- Antony, J., & Banuelas Coronado, R. (2002). Design for Six Sigma. *Manufacturing Engineer*, 81(1), 24–26.<u>https://doi.org/10.1049/me:20020102</u>
- Antony, J., Jiju Antony, F., Kumar, M., & Rae Cho, B. (2007).Six sigma in service organisations. *International Journal of Quality & Reliability Management*, 24(3), 294– 311. <u>https://doi.org/10.1108/02656710710730889</u>
- Antony, J., Kumar, M., & Madu, C. N. (2005).Six sigma in small- and medium-sized UK manufacturing enterprises.*International Journal of Quality & Reliability Management*, 22(8), 860–874. <u>https://doi.org/10.1108/02656710510617265</u>
- Antony, J., Kumar, M., & Tiwari, M.K., (2005). An application of Six Sigma methodology to reduce the engine overheating problem in an automotive company: IMechE-Part B, Vol. 219, No. B8, pp. 633-646.
- Appleyard, M.M. (1996). How does knowledge flow: interfirm patterns in the semiconductor industry, *Strategic Management Journal 17 (Winter Special Issue)*, 137-154.
- Arendt M. (2008) Six Sigma and Knowledge Management. Institute of Organization and Management in Industry "ORGMASZ". Vol 2 (2): p. 14- 20
- Argote, L. (2013). Organizational learning: Creating, retaining and transferring knowledge. Organizational Learning: Creating, Retaining and Transferring Knowledge. <u>https://doi.org/10.1007/978-1-4614-5251-5</u>
- Argyris, C. (1993). Knowledge for Action: A Guide to Overcoming Barriers to Organizational Change. Human Resource Development Quarterly (Vol. 6). Retrieved from <u>http://eric.ed.gov/ERICWebPortal/search/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED357268&ERICExtSearch_SearchType_0=no&accno=ED357268</u>
- Arnheiter, E. D., & Maleyeff, J. (2005). The integration of lean management and Six Sigma. *The TQM Magazine*, 17(1), 5–18. <u>https://doi.org/10.1108/09544780510573020</u>
- Ashengroph, M, Nahvi. I, Amini. J. (2013). Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4. *Irnian Journal of Pharmaceutical Research*, 12(3), pp. 411-421.
- Asoh, D., Belardo, S., & Neilson, R. (2002). Knowledge Management : Issues , Challenges and Opportunities for Governments in the New Economy, Proceeding of the 35^{th} Hawaii International Conference on system sciences, $\theta(c)$, 1–10.
- Azad, P.S, & Mokhlesi, R. (2009). Statistical Quality Control in cable Industry: Copper Consumption Reduction in Nexan. IKO Sweden. Master's degree Thesis: School of Engineering: University College Boras.

Bair, J. (1997). Knowledge management: The era of shared ideas. Forbes, 28.

- Bangphan, S., Bangphan, P., & Boonkang, T. (2014). Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engeneering, 8(12), 1997–2003
- Bangphan, S., Bangphan, P., & Boonkang, T. (2014). Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engeneering, 8(12), 1997–2003.
- Baral, L. M., Kifor, C. V, Bondrea, I., & Oprean, C. (2012). Introducing problem based learning (PBL) in textile engineering education and assessing its influence on six sigma project implementation. *International Journal of Quality Assurance in Engineering and Technology Education*, 2(4), 38–48. <u>https://doi.org/10.4018/ijqaete.2012100104</u>
- Bassi, L. J. (1997).Harnessing the Power of Intellectual Capital.*Training and Development*, 51(12), 25–30. Retrieved from http://search.proquest.com/professional/docview/62539978?accountid=26636%5Cnhttp://yh8zs7tr6m.search.serialssolutions.com/directLink?&atitle=Harnessing+the+Power+of +Intellectual+Capital.&author=Bassi,+Laurie+J.&issn=10559760&title=Training+and+ Development
- Beijerse, R. P. (1997). Questions on knowledge management: defining and conceptualizing a phenomenon. *Journal of Knowledge Management*. 3(2): 94-110.
- Bendell, T. (2006). A review and comparison of six sigma and the lean organisations. *The TQM Magazine*, 18(3), 255–262. <u>https://doi.org/10.1108/09544780610659989</u>
- Benedetto, A.R., (2003). Adapting Manufacturing-Based Six Sigma Methodology to the Service Environment of Radiology Film Library. *Journal of Healthcare Management*, 48(4), 263-280.
- Benner, M. J., & Tushman, M. L. (2003). Exploitation, exploration, and process management: The productivity dilemma revisited. Academy of Management Review, 28(2), 238–256. <u>https://doi.org/10.5465/AMR.2003.9416096</u>
- Bhat, S., Jnanesh, N. A., & Jose, M. (2016). Process and Productivity Improvement through Six Sigma: A Case Study at Production Industry, *6*, 32–39. <u>https://doi.org/10.5923/c.jmea.201601.07</u>
- Bhojaraju, G. (2005). Knowledge Management: why do we need it for corporates. *Malaysian Journal of Library Information Science*, 10(2), 37-50.
- Black, K., & Revere, L. (2006).Six Sigma arises from the ashes of TQM with a twist. International Journal of Health Care Quality Assurance, 19(3), 259–266. https://doi.org/10.1108/09526860610661473
- Bolt, C., Keim, E., Kim, S., Plser, L., (2000). Service Quality Six Sigma Case Studies A SQ's 54th Annual Quality Congress Proceeding, 2000 pp. 225-231. (Reported in Kwak, Y.H., and Anbari, F.T., 2004).

- Bosua, R., & Venkitachalam, K. (2015). Fostering knowledge transfer and learning in shift work environments. *Knowledge and Process Management*, 22(1), 22–33. <u>https://doi.org/10.1002/kpm.1456</u>
- Bothe, D. R. (2002).Statistical reason for the 1.5σ shift.*Quality Engineering*, 14(3), 479–487. https://doi.org/10.1081/QEN-120001884
- Boudreau, J., Boudreau, J., Hopp, W., Hopp, W., McClain, J. O., McClain, J. O., ... Thomas, L. J. (2003). Commissioned Paper: On the Interface Between Operations and Human Resources Management. *Manufacturing & Service Operations Management*, 5(3), 179– 202. <u>https://doi.org/10.1287/msom.5.3.179.16032</u>
- Bower, B. K. M. (1996). Process Capability Analysis Using MINITAB (II), 9(Ii), 1-8.
- Brady, J. E., & Allen, T. T. (2006). Six Sigma literature: A review and agenda for future research. *Quality and Reliability Engineering International*, 22(3), 335–367. https://doi.org/10.1002/qre.769
- Briskey, J.I. (2014). Wire and cable extrusion processes: United State Patent Application Publication. No. US2014/0072728 A1
- Cagnazzo, L, & Taticchi, P., (2010). Six sigma : a literature review analysis. Retrieved from <u>http://www.wseas.us</u>. <u>https://www.google.com.ng/?gws_rd=ssl#q=cagnazzo%2C+L+%26+Taticchi%2C+p:+s</u> <u>ix+sigma+literature</u>
- Camgoz-Aldag, H., (2004). The Impact of TQM Application to the Competitiveness of Companies. Ph.D Thesis, Brunel University, London. In Omar, R. and Almsafin, M.K., (2012)
- Carneiro, A. (2001). The role of intelligent resources in knowledge management. *Journal of Knowledge Management*. 5(4): 358-367.
- Catherwood, P. (2002). What's different about six sigma? *Manufacturing Engineer*, 81(4), 186–189. https://doi.org/10.1049/me:20020410
- Chakrabarty, A., & Chuan Tan, K. (2007). The current state of six sigma application in services. *Managing Service Quality: An International Journal*, 17(2), 194–208. https://doi.org/10.1108/09604520710735191
- Chakrabarty, A., and Tan, K.C., (2012). Qualitative and Quantitative Analysis of six sigma in service organisations. <u>http://dx.doi.org/10.5772/46104</u>.
- Chakravorty, S. S. (2009). Six Sigma programs: An implementation model. *International Journal of Production Economics*, 119(1), 1–16. https://doi.org/10.1016/j.ijpe.2009.01.003
- Chanarungruengkij, V., Saenthon, A., & Kaitwanidvilai, S. (2017). *Preoceedings of the International MultiConference of Engineers and Computer Scientists*. Vol.11, March 15-17, 2017, Hong Kong.

- Chen, K. S., Yu, K. T., & Sheu, S. H. (2006). Process capability monitoring chart with an application in the silicon-filler manufacturing process. *International Journal of Production Economics*, *103*(2), 565–571. <u>https://doi.org/10.1016/j.ijpe.2005.11.004</u>
- Chen, S. K., Mangiameli, P., & Roethlein, C. J. (2005). Predicting the output of a tubebending process: A case study. *International Journal of Production Economics*, 95(3), 307–316. <u>https://doi.org/10.1016/j.ijpe.2003.12.005</u>
- Choo, A. S., Linderman, K. W., & Schroeder, R. G. (2007a).Method and Psychological Effects on Learning Behaviors and Knowledge Creation in Quality Improvement Projects.*Management Science*, 53(3), 437–450. <u>https://doi.org/10.1287/mnsc.1060.0635</u>
- Choo, A. S., Linderman, K. W., & Schroeder, R. G. (2007b).Method and context perspectives on learning and knowledge creation in quality management. *Journal of Operations Management*, 25(4), 918–931. <u>https://doi.org/10.1016/j.jom.2006.08.002</u>
- Chowdhury, M. R., Chart, C., & Capability, P. (2013). Process Capability Analysis in Pharmaceutical Production, 2(2), 85–89.
- Chowdhury, M.R (2013) 'Process Capability Analysis in Pharmaceutical Production', *International Journal of Pharmaceutical and Life Sciences*, 2 (2).
- Conway, S. and Sligar, C. (2002). Unlocking Knowledge Assets. Upper Saddle River, New Jersey: Prentice-Hall.
- Cook, S. D. N., & Yanow, D. (1993). Culture and Organizational Learning. *Journal of Management Inquiry*, 2(4), 373–390. <u>https://doi.org/10.1177/105649269324010</u>
- Cortada, J. W., & Woods, J. A. (1999). The Knowledge Management Yearbook 1999-2000. *Educational Technology & Society*.
- Dahlgaard, J. J., & MiDahlgaard-Park, S. (2006). Lean production, six sigma quality, TQM and company culture. *The TQM Magazine*, *18*(3), 263–281. https://doi.org/10.1108/09544780610659998
- Dalgleish, S. (2005). ISO 9001 proves ineffective. *Quality*, 44(4), 16. Retrieved from <u>http://www.scopus.com/inward/record.url?eid=2-s2.0-</u> <u>17444388847&partnerID=40&md5=91c20221bc5d88f6f880c241995c46ab</u>
- Dalkir, K. (2005). *Knowledge management in theory and practice.Butterworth-Heinemann.*<u>https://doi.org/10.1002/asi.21613</u>
- Dasgupta, T. (2003). Using the six-sigma metric to measure and improve the performance of a supply chain. *Total Quality Management and Business Excellence*, *14*(3), 355–366. https://doi.org/10.1080/1478336032000046652
- Davenport, B. T. H., Prusak, L., & Webber, A. (2003). Working knowledge: how organizations manage what they know [Book Review]. *IEEE Engineering Management Review*, *31*(4), 137–137. <u>https://doi.org/10.1109/EMR.2003.1267012</u>
- Davenport, T. H., & Klahr, P. (1998). Managing customer support knowledge. *CALIFORNIA MANAGEMENT REVIEW*, 40(3), 195+.

- Davenport, T. H., & Prusak, L. (2000). Working knowledge how organisations manage what they know. *Harvard Business School Press, Boston Massachusetts*, 21(8), 395–403.
- Davenport, T. H., De Long, D. W., & Beers, M. C. (1998).Successful Knowledge Management Projects.*Sloan Management Review*, 39(2), 43–57. https://doi.org/10.1016/j.ygeno.2009.01.004
- De Brun, (2005). ABC of Knowledge Management. NHS Library for Health. Knowledge management specialist Library. Retrieved from https://www.google.com.ng/search?ei=ALI3W4OdHeXVgAbwpYKIDg&q=De+Brun% 2C+%282005%29.+ABC+of+Knowledge+Management.+NHS+Library+for+Health.+K nowledge+management+specialist+Library.+http%3A%2F%2Fwww.library.nhs.uk%2F knowledge+management&oq=De+Brun%2C+%282005%29.+ABC+of+Knowledge+M anagement.+NHS+Library+for+Health.+Knowledge+management+specialist+Library.+ http%3A%2F%2Fwww.library.nhs.uk%2Fknowledge+management&gs_l=psyab.3...81370.84720.0.86453.2.2.0.0.0.0.0.0...0...1.1.64.psyab..2.0.0....0.NBRS6I8NY0A
- De Koning, H., & de Mast, J. (2006). A rational reconstruction of Six-Sigma's breakthrough cookbook.*International Journal of Quality & Reliability Management*, 23(7), 766–787. https://doi.org/10.1108/02656710610701044
- de Koning, H., Verver, J. P. S., van den Heuvel, J., Bisgaard, S., & Does, R. J. M. M. (2006). Lean six sigma in healthcare. Journal for Healthcare Quality: Official Publication of the National Association for Healthcare Quality, 28(2), 4–11. https://doi.org/10.1111/j.1945-1474.2006.tb00596.x
- De Mast, J. (2006). Six Sigma and competitive advantage. *Total Quality Management and Business Excellence*, 17(4), 455–464. <u>https://doi.org/10.1080/14783360500528221</u>
- Desai, T. N., & Shrivastava, R. L. (2008).Six Sigma A New Direction to Quality and Productivity Management.*Wcecs 2008: World Congress on Engineering and Computer Science*, (2004), 1047–1052\r1208. https://doi.org/10.1016/j.ijproman.2010.01.006
- Desouza, K. C. (2011). Securing intellectual assets: integrating the knowledge and innovation dimensions. *International Journal of Technology Management*, 54(2/3), 167. https://doi.org/10.1504/IJTM.2011.039311
- Despres, C. & Chauvel, D. (2001). In Knowledge horizons: The present and the promise of knowledge management, 2nd Ed., Butterworth-Heinemann, Boston, 106-07.
- Dinakar, D. (2016). Knowledge Management Models. People, 2(7), 15.
- Does, R., van den Heuvel, E., de Mast, J., & Bisgaard, S. (2002). Quality quandaries: Comparing nonmanufacturing with traditional applications of six sigma. *Quality Engineering*.https://doi.org/10.1081/QEN-120006720
- Doran, C., 2003. Using Six Sigma in the Credit Department. Credit Management December, 32-34 (Reported in Kwak, Y.H., and Anbari, F.T., 2004).

- Doz, Y. & Santos, J. F. P. (1997). On the management of knowledge: from the transparency of co-location and co-setting to the quandary of dispersion and differentiation. Working Paper, INSEAD.
- Drucker, P. F. (1994). The Post-Capitalist Society.Post-Capitalist Society.https://doi.org/10.1016/B978-0-7506-0921-0.50001-X
- Duguid, P. (2005). The art of knowing": Social and tacit dimensions of knowledge and the limits of the community of practice. *Information Society*, 21(2), 109–118. https://doi.org/10.1080/01972240590925311
- Dul, J., Ceylan, C., & Jaspers, F. (2011).Knowledge workers' creativity and the role of the physical work environment.*Human Resource Management*, 50(6), 715–734. https://doi.org/10.1002/hrm.20454
- Earl, M. (2001). Knowledge Management Strategies: Toward a Taxonomy. Journal of Management Information Systems, 18(1), 215–233. https://doi.org/10.1080/07421222.2001.11045670
- Easterby-Smith, M., & Prieto, I. M. (2008). Dynamic capabilities and knowledge management: An integrative role for learning? *British Journal of Management*.<u>https://doi.org/10.1111/j.1467-8551.2007.00543.x</u>
- Eckes, G. (2003). Six Sigma team dynamics: the elusive key to project success. *Managing*, 1–13. <u>https://doi.org/10.1080/0267257X.1995.9964328</u>
- Eckhouse, 2003. In Pursuit of Perfection. Bechtel Briefs, August. Available online via <<u>http://www.bechtel.com/sixsigma.htm</u>
- Economic Intelligence Unit (2007). Knowledge management in manufacturing: A report from the Economist Intelligence Unit. Sponsored by Siemen UGS
- Ehie, I., & Sheu, C. (2005).Integrating six sigma and theory of constraints for continuous improvement: a case study.*Journal of Manufacturing Technology Management*, 16(5), 542–553. <u>https://doi.org/10.1108/17410380510600518</u>
- Elsberry, B.B., (2000). Six Sigma: Applying a Corporate Model to Radiology, Decisions in Imaging Economics 13(7), 56-66.
- Emerson, R. W., & Cavazzuti, M. (2013). *Design of Experiments*. https://doi.org/10.1007/978-3-642-31187-1
- Ermine, J. L. (2010).Introduction to Knowledge Management.*Trends in Enterprise Knowledge Management*, 21–43. <u>https://doi.org/10.1002/9780470612132.ch1</u>
- Evans, J. R., & Lindsay, W. M. (2008). The Management and Control of Quality. *The Management and Control of Quality*, 768.
- Feng, Q. (May), & Manuel, C. M. (2008). Under the knife: a national survey of six sigma programs in US healthcare organizations. *International Journal of Health Care Quality Assurance*, 21(6), 535–547. <u>https://doi.org/10.1108/09526860810900691</u>

- Feng, Q., & Antony, J. (2010).Integrating DEA into six sigma methodology for measuring health service efficiency.*Journal of the Operational Research Society*, 61(7), 1112– 1121. <u>https://doi.org/10.1057/jors.2009.61</u>
- Fowlkes W.Y., & Creveling C.M. (1995). Engineering methods for robust product design; Addison-Wesley.
- Fursule, N. V, Bansod, S. V, & Fursule, S. N. (2012). Understanding the Benefits and Limitations of Six Sigma Methodology. *International Journal of Scientific and Research Publications*, 2(1), 2250–3153. Retrieved from www.ijsrp.org
- GamalAboelmaged, M. (2010). Six Sigma quality: a structured review and implications for future research. *International Journal of Quality & Reliability Management*, 27(3), 268– 317. <u>https://doi.org/10.1108/02656711011023294</u>
- Ganti, A, Ganti, AG. (2004). Six sigma in healthcare. Available from: <u>http://www.iienet.org/uploaded</u> files/SHS/Resource_library/detail,/02_gantipdf.
- Garvin, D. a. (1998).The Process of Organization and Management.*Sloan Management Review*, 39(4), 33–50. Retrieved from <u>http://lumen.cgsccarl.com/login?url=http://search.ebscohost.com/login.aspx?direct=true</u> <u>&db=bth&AN=887815&site=ehost-live</u>
- Ghani, S.R (2009). Knowledge Management: Tools and Techniques. *Journal of Library & Information Technology*, 29(6), 33-38.
- Ghoshal, S., & Bartlett, C.A. (1994). Linking organizational context and managerial action: dimensions of quality of management, *Strategic Management Journal 15 (Summer Special Issue)*, 91-112.
- Gijo, E. V., Bhat, S., & Jnanesh, N. A. (2014). Application of Six Sigma methodology in a small-scale foundry industry.*International Journal of Lean Six Sigma*, 5(2), 193–211. https://doi.org/10.1108/IJLSS-09-2013-0052
- Gill A. S., Thakur. A., & Kumar. S. (2012). Effect of Deep Cryogenic Treatment on the surface roughness of OHNS Die Steel after WEDM. *International Journal of Applied Engineering Research*, 7(11), 1508-1512.
- Gitlow, H. S., & Gitlow, A. L. (2013). Deming-based lean six sigma management as an answer to escalating hospital costs. *Quality Management Journal*, 20(3), 6–9. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84888362666&partnerID=tZOtx3y1
- Go Lean Six Sigma. (2012). DMAIC : The 5 Phases of Lean Six Sigma, 16. Retrieved from <u>https://www.goleansixsigma.com/wp-content/uploads/2012/02/DMAIC-The-5-Phases-of-Lean-Six-Sigma-www.GoLeanSixSigma.com_.pdf</u>
- Goepel, K.D. (2018). Judgment scales of the analytical process: the balanced scale. *Proceedings of the International Symposium on the Analytic Hierarchy Process*, Hong Kong, July 2019.

- Goh T, Xie, M. (2004).Improving on the six sigma paradigm. *The TQM Magazine*. Pp.235-40.
- Goh, S. C. (2002). Managing effective knowledge transfer: an integrative framework and some practice implications. *Journal of Knowledge Management*, 6(1), 23–30. https://doi.org/10.1108/13673270210417664
- Goh, T. N. (2006). A Strategic Assessment of Six Sigma. In Six Sigma: Advanced Tools for Black Belts and Master Black Belts (pp. 19–30). https://doi.org/10.1002/0470062002.ch2
- Gold, A.H., Malhotra, A., & Segars, A.H. (2001). Knowledge management: An organizational capabilities perspective. *Journal of Management Information Systems*, 185.
- Gowen, C. R., Stock, G. N., & McFadden, K. L. (2008).Simultaneous implementation of Six Sigma and knowledge management in hospitals.*International Journal of Production Research*, 46(23), 6781–6795. <u>https://doi.org/10.1080/00207540802496162</u>
- Grant, R. M. (1996a). Prospering in Dynamically-Competitive Environments: Organizational Capability as Knowledge Integration. *Organization Science*, 7(4), 375–387. <u>https://doi.org/10.1287/orsc.7.4.375</u>
- Grant, R. M. (1996b). Toward knowledge based theory of the firm. *Strategic Management Journal*, *17*(17), 109–122. <u>https://doi.org/10.2307/2486994</u>
- Gray, P. (2002). Knowledge management. *Information Systems Management*, 19(1), 89–93. https://doi.org/10.1201/1078/43199.19.1.20020101/31481.12
- Gupta, N. (2013). Analysis on the Defects in Yarn Manufacturing Process & amp; its Prevention in Textile Industry. *International Journal of Engineering Inventions*, 2(7), 2278–7461. Retrieved from www.ijeijournal.com
- Hahn, G. J., Hill, W. J., Hoerl, R. W., Zinkgraf, S. A., Hahn, G. J., Hill, W. J., ... Zinkgraf, S. A. (2017). The Impact of Six Sigma Improvement-A Glimpse into the Future of Statistics Stable URL: http://www.jstor.org/stable/2686099 The Impact of Six Sigma Improvement-A Glimpse Into the Future of Statistics, *53*(3), 208–215.
- Hammer, M. (2002). Process Management and the Future of Six Sigma. *MIT Sloan Management Review*, 43(2), 26–32. Retrieved from <u>http://quijote.biblio.iteso.mx/wardjan/proxy.aspx?url=http://search.ebscohost.com/login.</u> <u>aspx?direct=true&db=bth&AN=5982676&lang=es&site=eds-</u> <u>live%5Cnhttp://content.ebscohost.com/ContentServer.asp?T=P&P=AN&K=5982676&S</u> <u>=R&D=bth&EbscoContent=dGJyMNLr40Sepq84v</u>+

Hammer, M. (2017). ISO 9001 vs. Six Sigma: How they compare and how they are different. Retrieved from https://advisera.com/9001academy/knowledgebase/iso-9001-vs-six-sigmahow-they-compare-and-how-they-are-different/

Han C, & Young-Hak, L. (2002). Intelligent Integrated Plant Operation System for Six Sigma. Annual Reviews in Control, 26, 27-43.

Harry M. (1997). The Vision of Six Sigma. 5th edition ed. Phoenix: Tri Star Publishing.

- Harry, M. J. (1998). Six Sigma: a breakthrough strategy for profitability. *Quality, Progress*, 31(5), 60.
- Harry, M.J. (2000). A New Definition Aims to Connect Quality with Financial Performance
- He, Z., & Goh, T. N. (2015).Enhancing the future impact of Six Sigma management.*Quality Technology* and *Quantitative Management*, *12*(1), 83–92. <u>https://doi.org/10.1080/16843703.2015.11673368</u>
- Hekmatpanah, M., Sadroddin, M., Shahbaz, S., Mokhtari, F., &Fadavinia, F. (2008).Six Sigma process and its impact on the organizational productivity.*World Academy of* ..., 2(7), 323–327. Retrieved from http://xa.yimg.com/kq/groups/24709041/1832424703/name/six+sigma.pdf
- Henderson, K. M., & Evans, J. R. (2000). Successful implementation of Six Sigma: benchmarking General Electric Company. *Benchmarking: An International Journal*, 7(4), 260–282.<u>https://doi.org/10.1108/14635770010378909</u>
- Heuvel, J. Van Den, Does, R. J. M. M., & Koning, H. De. (2006). Lean Six Sigma in a hospital.*International Journal of Six Sigma and Competitive Advantage*, 2(4), 377.https://doi.org/10.1504/IJSSCA.2006.011566
- Heuvel, J. Van Den, Does, R. J. M. M., & Verver, J. P. S. (2005). Six Sigma in healthcare: lessons learned from a hospital. *International Journal of Six Sigma and Competitive Advantage*, 1(4), 380.https://doi.org/10.1504/IJSSCA.2005.008504
- Hibbard, J., & Carrillo, K. (1998). Knowledge Revolution. *Information Week*, (January 5), 49–50,54.
- Hindo, B. (2007). At 3M, A Struggle Between Efficiency And Creativity. *BusinessWeek*, 1–7.
- Hislop, D. (2005). Knowledge management in organizations: A critical introduction. Management Learning (Vol. 36).
- Hislop, D. (2013). Knowledge management in organizations: A critical introduction. Management Learning (Vol. 36).
- Hislop, D., Newell, S., Scarbrough, H., & Swan, J. (2000). Networks, Knowledge and Power: Decision Making, Politics and the Process of Innovation. *Technology Analysis & Strategic Management*, 12(3), 399–411. <u>https://doi.org/10.1080/713698478</u>

http://apexgloballearning.com/blog/iso-9000-and-six-sigma-visual-guide/.

- Huber, G. (1991). Organizational learning: the contributing processes and the literatures, *Organization Science*, 2(1), 88-115.
- Hung, H. C., & Sung, M. H. (2011). Applying six sigma to manufacturing processes in the food industry to reduce quality cost. *Scientific Research and Essays*, 6(3), 580–591. <u>https://doi.org/10.5897/SRE10.823</u>
- IIT.(n.d.).Module 5 Design for Reliability and Quality.Lecture.

- Jasimuddin, S. M. (2008). A holistic view of knowledge management strategy. *Journal of Knowledge Management*, 12(2), 57–66. <u>https://doi.org/10.1108/13673270810859514</u>
- Jirasukprasert, P., Garza-reyes, J. A., Soriano-meier, H., & Rocha-Iona, L. (2012). A Case Study of Defects Reduction in a Rubber Gloves Manufacturing Process by Applying Six Sigma Principles and DMAIC Problem Solving Methodology. 2012 International Conference on Industrial Engineering and Operations Management, 472–481.
- Kane, V. E. (1986). Process Capability Indices. Journal of Quality Technology, 2097(7), 41– 52. <u>https://doi.org/http://asq.org/pub/jqt/</u>
- Kankanhalli, A & Tan, B.C.Y. (2005). Knowledge Management Metrics: A Review and Directions for future Research. Retrieved from https://www.google.com.ng/search?ei=pK43W8amDOeEgAbMiKvQAw&q=knowledge +management+metrics+a+review+and+directions+for+future+research&oq=+knowledg e+management+metrics%3A+A+Review&gs_l=psyab.1.0.0i22i30k1.149072.182372.0.187292.69.44.4.0.0.0.679.7726.2-16j5j3j1.25.0...0...1.1.64.psyab..43.14.4512...0j0i67k1j33i22i29i30k1.0.iWhcLRyAUv8#
- Kathikeyan, S (2016). ISO 9000 vs. Six Sigma: A Visual Guide. Retrieved from
- King, W. R. (2007). A research agenda for the relationships between culture and knowledge management. *Knowledge & Process Management*, 14(3), 226–236. <u>https://doi.org/10.1002/kpm.281</u>
- Klefsjo, B., Wiklund, H. and Edgeman, R.L, (2001). Six Sigma Seen as a Methodology for Total Quality Managemen, *Measuring Business Excellence*, Vol.5, No.1, pp. 31-5.
- Knowles, G., Whicker, L., Femat, J., & Canales, F. (2005). A Conceptual Model for the Application of Six Sigma Methodology to Supply Chain Improvement. *International Journal of Logistics Research and Application*,8(1), 51-65
- Kogut, B., & Zander, U. (1993). Knowledge of the firm and the evolutionary theory of the multinational corporation, *Journal of International Business Studies*, 24(4), 625-645.
- Kong, T., & Group, T. A. (1996). Taguchi Methods in Experimental Design, 139–148. Retrieved from <u>http://www.lexjansen.com/mwsug/1996/MWSUG96021.pdf</u>
- Kreisler Buch, K., & Tolentino, A. (2006).Employee expectancies for six sigma success.*Leadership & Organization Development Journal*, 27(1), 28–37. https://doi.org/10.1108/01437730610641340
- Kucza, T (2001). Knowledge Management Process Model. *Technical Research Centre of Finland*, VTT Publication 455. 101p + app.3p.
- Kumar U, & Saranga, H.(2007). Six Sigma Project Selection using Data Envelopment Analysis. *The TQM Magazine*, 19(5):419-41.
- Kumar, M., Antony, J., & Tiwari, M. K. (2011). Six Sigma implementation framework for SMEs-a roadmap to manage and sustain the change. *International Journal of Production Research*, 49(18), 5449–5467. <u>https://doi.org/10.1080/00207543.2011.563836</u>

- Kumar, M., Antony, J., Madu, C. N., Montgomery, D. C., & Park, S. H. (2008). Common myths of Six Sigma demystified. *International Journal of Quality & Reliability Management*, 25(8), 878–895. <u>https://doi.org/10.1108/02656710810898658</u>
- Kwak Y-H, & Anbari, Frank T.(2006). Benefits, obstacles, and future of six sigma approach. Technovation. 26, 708-715.
- Kwak, Y. H., & Anbari, F. T. (2006). Benefits, obstacles, and future of six sigma approach. *Technovation*, 26(5–6), 708–715. <u>https://doi.org/10.1016/j.technovation.2004.10.003</u>
- Lam, A. (1997). Embedded firms, embedded knowledge: problems of collaboration and knowledge transfer in global cooperative ventures, *Organization Studies*, 18(6), 973-997.
- Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. *Learning in Doing*, 95, 138. https://doi.org/10.2307/2804509
- Lazarus, I.R., Butter, K., (2001). The Promise of Six Sigma Managed Healthcare Executive 11(9), 22-26
- Leask, M.,Lee, C., Milner, T., Norton, M, & Rathod, D (2008). Knowledge Management tools and techniques: helping you access the right knowledge at the right time. Retrieved from <u>https://www.google.com.ng/search?source=hp&ei=37Q3W9DfNsr0kgXdjoWwDA&q=i dea-knowledge+management+tools&oq=ideaknowledge+management+tools&gs_l=psyab.3...47424.58408.0.59724.31.20.0.0.0.0.0.0.0.0...0..1..64.psyab..31.0.0....0.trNeewEOUqY</u>
- Leonard, D., & Senisper, S. (1998). The role of tacit knowledge in group innovation. *California Management Reviews*, 40, 3, 112-132.
- Leonard-Barton, D. (1990). The intra-organizational environment: point-to-point versus diffusion, in: Williams, F., & Gibson, D.V. (Eds), Technology Transfer: A communication perspective, Sage, Newbury Park, CA, 43-62.
- Levinthal, D., & March, J. G. (1981). A model of adaptive organizational search. *Journal of Economic Behavior and Organization*, 2(4), 307–333. <u>https://doi.org/10.1016/0167-2681(81)90012-3</u>
- Library, N. H. S. N., Creator, S., Library, N. H. S. N., Management, K., Library, S., Br, C. De, & Date, P. (2005). ABC of Knowledge Management, (July).
- Liebowitz, J. (1999). Key ingredients to the success of an organization's knowledge management strategy. *Knowledge and Process Management*, 6(1), 37–40. https://doi.org/10.1002/(SICI)1099-1441(199903)6:1<37::AID-KPM40>3.0.CO;2-M
- Liebowitz, J. (1999). Knowledge Management Handbook.International handbooks on information systems.<u>https://doi.org/10.1201/b12285</u>
- Linderman, K., Schroeder, R. G., & Choo, A. S. (2006).Six Sigma: The role of goals in improvement teams.*Journal of Operations Management*, 24(6), 779–790. https://doi.org/10.1016/j.jom.2005.08.005
- Linderman, K., Schroeder, R. G., Zaheer, S., & Choo, A. S. (2003). Six Sigma: A goaltheoretic perspective. *Journal of Operations Management*. <u>https://doi.org/10.1016/S0272-6963(02)00087-6</u>
- Linderman, K., Schroeder, R. G., Zaheer, S., Liedtke, C., & Choo, A. S. (2004). Integrating quality management practices with knowledge creation processes. *Journal of Operations Management*, 22(6), 589–607. <u>https://doi.org/10.1016/j.jom.2004.07.001</u>
- Lloréns-Montes, F. J., & Molina, L. M. (2006). Six Sigma and management theory: Processes, content and effectiveness. *Total Quality Management and Business Excellence*, 17(4), 485–506. <u>https://doi.org/10.1080/14783360500528270</u>
- MacDuffie, J. P. (1997). The Road to "Root Cause": Shop-Floor Problem-Solving at Three Auto Assembly Plants. *Management Science*, 43(4), 479–502. <u>https://doi.org/10.1287/mnsc.43.4.479</u>
- Mahdi, O. R., & Almsafir, M. K. (2012). Diagnosing of Sustainable Competitive Advantage Using Six Sigma Methodology. *International Journal of Business & Management*, 7(7), 94–109. Retrieved from <u>http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=74421679&site=ehos</u> <u>t-live&scope=site</u>
- Malone, D. (2002). Knowledge management.A model for organizational learning.*International Journal of Accounting Information Systems*, 3(2), 111–123. https://doi.org/10.1016/S1467-0895(02)00039-8
- March, J. G. (1991). Exploration and Exploitation in Organizational Learning. *Organization Science*, 2(1), 71–87. <u>https://doi.org/Doi 10.1287/Orsc.2.1.71</u>
- Martinez, J. (2018). Design of a Theoretical Model for Knowledge Management and Organizational Learning Practices for business schools, (April). https://doi.org/10.13140/RG.2.2.18668.26243
- McAdam, R., & Donegan, S. (2003). A comparative analysis of trilateral and concurrent business improvement methodologies in the high technology sector.*International Journal of Manufacturing Technology and Management*, 5(3), 210.<u>https://doi.org/10.1504/IJMTM.2003.003413</u>
- McEvily, S. K., & Chakravarthy, B. (2002). The persistence of knowledge-based advantage: An empirical test for product performance and technological knowledge. *Strategic Management Journal*, 23(4), 285–305. <u>https://doi.org/10.1002/smj.223</u>
- McManus, K. (1999). Is quality dead? *IIE Solutions*, *31*(7), 32. Retrieved from <u>http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=2136243&site=ehost-live</u>

- Measurement System Analysis Working Group, Antomotive Industry Action Group (AIAG); Down Michael, Czubak Frederick; Gruska, Gregory; Stahley, Steve; Benham, D. (2010).*Measurement System Analysis*.<u>https://doi.org/10.1002/9780470997482.ch11</u>
- Michael, A. (2008). Six Sigma and Knowledge Management. *Economic and Organization of Enterprise*, 2(2), pp. 14-20.
- Midas+ Statit Solutions Group 2018.Estimating standard deviation.http://www.statit.com/support/quality_practice_tips/estimating_std_dev.shtml
- Milton, N (2009). Metrics in Knowledge Management. Retrieved from https://www.google.com.ng/search?ei=820xW9byPMbUgQbVo4DQBQ&q=Knowledge +management+metrics+pdf&oq=Knowledge+management+metrics+pdf&gs_l=psyab.3..0i22i30k1.55890.73092.0.74396.88.41.0.0.0.0.554.6446.2-9j10j0j1.20.0...0...1.1.64.psy-ab..71.17.5621...0j33i160k1j0i67k1j0i131k1.0.Ob0kB-O5GBk
- Minitab.(2016). Getting Started with Minitab 17.*Minitab Inc.*, 88. Retrieved from <u>https://www.minitab.com/uploadedFiles/Documents/getting-</u> <u>started/Minitab17_GettingStarted-en.pdf</u>
- MIT. (1998). Constructing Orthogonal Arrays, 31. Retrieved from http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-881-robust-system-designsummer-1998/lecture-notes/18 orth arrays.pdf
- Mondal, P.K., Hasan, M.F., & Islam, M.Z. (2015). An approach to enhance the sigma level in cable industry bu using QC Tools and DMAIC Methodology: A Case Study. *International Conference on Mechanical, Industrial and Materials Engineering*, 11-13 December, 2015, RUET, Rajshahi, Bangladesh.
- Montgomery, D. C., & Woodall, W. H. (2008). International Statistical Review. *An Overview* of Six Sigma, 76(3), 329–346.
- Montgomery, D.C. (2009). Design and Analysis of Experiments, 7th ed., John Wiley & Sons, New York.
- Moosa, K., & Sajid, A. (2010).Critical analysis of Six Sigma implementation. *Total Quality Management* and *Business* Excellence, 21(7), 745–759. <u>https://doi.org/10.1080/14783363.2010.483100</u>
- Moreton, M., (2003). Featured Company: Bechtel. ASQ Six Sigma Forum Magazine 3(1), 44.
- Mottonen, M., Belt, P., Harkonen, J., Haapasalo, H., & Kess, P. (2008). Manufacturing Process Capability and Specification Limits. *The Open Industrial & Manufacturing Engineering Journal*, *1*, 29–36. <u>https://doi.org/10.2174/1874152500801010029</u>
- Murugappan, M., & Keeni, G. (2003). Blending CMM and Six Sigma to meet business goals. *IEEE Software*, 20(2), 42–48. <u>https://doi.org/10.1109/MS.2003.1184165</u>
- Nakhai, B, Neves, J.S (2009). The challenges of six sigma in improving service quality. International journal of Quality & Relaibility management Vol. 25 No.7. pp-663-684.

- Nave, D. (2002). How To Compare Six Sigma, Lean and the Theory of Constraints: a framework for choosing what's best for your organization. *Quality Progress*, *35*(3), 73–78. Retrieved from http://www.google.co.uk/url?sa=t&rct=j&q=how to compare six sigma, lean and the theory of constraints&source=web&cd=1&ved=0CEMQFjAA&url=http://www.lean.org/Admin/KM%5Cdocuments/76dc2bfb-33cd-4ef2-bcc8-792c5b4ef6a6-ASQStoryonQualitySigmaAndLean.pdf&ei=If5B
- Nicolini, B. (1995).social construction organizational D., & Meznar, M. of learning:Conceptual and Practical Issues in the Field. Human Relations.https://doi.org/10.1177/001872679504800701
- Nicolini, D., Gherardi, S., &Yanow, D. (2003). Introduction: Toward a Practice-Based View of Knowing and Learning in Organizations. In *Knowing in Organizations: A Practice-Based Approach* (pp. 3–31).<u>https://doi.org/10.1080/01425690701737481</u>
- Nold Iii, H. A. (2012). Linking knowledge processes with firm performance: Organizational culture. *Journal of Intellectual Capital*, 13(1), 16–38. https://doi.org/10.1108/14691931211196196
- Nonaka, I. (1991). The knowledge-creating company. Harvard Business Review. Harvard Business Review, 69(6), 96–104.
- Nonaka, I. (1994). A dynamic theory of organizational knowledge creation, *Organization Science*, *5*(1), 14-37.
- Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating: How Japanese companies create the dynamics of innovation. *Oxford University Press*, 3(4–5), 25–27. https://doi.org/10.1016/S0048-7333(97)80234-X
- Nonthaleerak, P., & Hendry, L. C. (2006). Six Sigma: literature review and key future research areas. *International Journal of Six Sigma and Competitive Advantage*, 2(2), 105.<u>https://doi.org/10.1504/IJSSCA.2006.010111</u>
- Norris, D., Mason, J., and Lefrere, P. (2003). Transforming e-Knowledge: A Revolution in the Sharing of Knowledge. Ann Arbor, Michigan: Society for College and University Planning.
- Nur, F, Hossain, N.U.I & Ullah (2014). Determining Critical Success Index for TQM Implementation. A case study of cable Industry. *International Conference on Mechanical, Industrial and Energy Engineering* 2014, 26-27 December, Khulna Bangladesh.
- Nutek Inc Bloomfield Hills. (2004). Design of Experiments (DOE) Using the Taguchi Approach: 16 Steps to Product and Process Improvement. Order A Journal On The Theory Of Ordered Sets And Its Applications.
- O'Dell, C., Wiig, K., & Odem, P. (1999). Benchmarking unveils emerging knowledge management strategies. *Benchmarking: An International Journal*, 6(3), 202–211.<u>https://doi.org/10.1108/14635779910288550</u>

- Omar, R.M.A., Almsafin, M.R. (2012). Sustainable Competitive Advantage of Using Six Sigma Methodology: Review, Journal of Modern Marketing Research 1(2012)10-26, ISSN:2231-9131.
- Omotayo, F. O. (2015). Knowledge management as an important tool in organisational management: A review of literature. *Library Philosophy and Practice*, *1238*, 1–23. Retrieved from http://digitalcommons.unl.edu/libphilprac/1238
- OzlemSenvar and Hakan Tozan (2010). Process Capability and Six Sigma Methodology Including Fuzzy and Lean Approaches, Products and Services; from R&D to Final Solutions, Igor Fuerstner (Ed.), InTech, DOI: 10.5772/10389. Available from: <u>https://www.intechopen.com/books/products-and-services--from-r-d-to-final-</u> <u>solutions/process-capability-and-six-sigma-methodology-including-fuzzy-and-lean-</u> <u>approaches</u>
- Pan, J. (2014). Minitab Tutorials for Design and Analysis of Experiments, 1–32. Retrieved from http://www.calpoly.edu/~pan/teaching/Minitab DOE Tutorial.pdf
- Pan, S. L., &Scarbrough, H. (1999). Knowledge management in practice: An exploratory case study. *Technology Analysis and Strategic Management*, 11(3), 359–374. <u>https://doi.org/10.1080/095373299107401</u>
- Pande, P. S., Neuman, R. P., & Cavanagh, R. R. (2000). The Six Sigma Way: How GE, Motorola, and Other Top Companies are Honing Their Performance. Quality Progress (Vol. 34). <u>https://doi.org/10.1036/0071376674</u>
- Pannirselvam, G. P., Ferguson, L. A., Ash, R. C., &Siferd, S. P. (1999). Operations management research: An update for the 1990s. *Journal of Operations Management*, 18(1), 95–112. <u>https://doi.org/10.1016/S0272-6963(99)00009-1</u>
- Paramesh, S.M.B. (2013). Lean six sigma implementation in cable harness manufacturing. *International Journal of Mechanical and Production Engineering*, vol. 1, issue 1, pp.2320-2092.
- Parast, M. M. (2011). The effect of Six Sigma projects on innovation and firm performance. *International Journal of Project Management*, 29(1), 45–55. <u>https://doi.org/10.1016/j.ijproman.2010.01.006</u>
- Park, H.S., (2003). Six Sigma for quality and Productivity Promotion: *Productivity series 32*, APO 207 pp. April ISBN 92-833-1722.
- Pascale, R.T. (1999). Surfing the edge of chaos, *Sloan Management Review*, 40(3), 83-94.
- Pearn, W. L., & Road, H. (1997). Research note capability indices for n o non- normal distributions with an application in electrolytic capacitor manufacturing. *Elsevier Science*, 37(12), 1853–1858. <u>https://doi.org/10.1016/S0026-2714(97)00023-1</u>
- Pemberton, J. D., & Stonehouse, G. H. (2000). Organizational learning and knowledge assets an essential partnership. *The Learning Organization*, 7(4), 184–194. https://doi.org/10.1108/09696470010342351

- Phadke, S.M. (1989). Quality Engineering Analysts using Robust design .Prentice Hall, Englewood Cliffs, N.J.
- Pickrell, G., Lyons, H. J., & Shaver, J. (2005). Lean Six Sigma implementation case studies. *International Journal of Six Sigma and Competitive Advantage*, 1(4), 369–379. Retrieved from <u>https://www.scopus.com/inward/record.uri?eid=2-s2.0-</u> 77949319704&partnerID=40&md5=d29fedb1977f204a266118e044b3bb25

Podolak, I. T. (2007).Loss function and ..., 1–113.

- Pojasek, R. B. (2003). Lean, six sigma, and the systems approach: Management initiatives for process improvement. *Environmental Quality Management*, 13(2), 85–92. <u>https://doi.org/10.1002/tqem.10113</u>
- Prajapati, N. J., & Desai, D. A. (2014). A Review of Six Sigma Implementation at Exporting Industries, *4*(3).
- Pyzdek, T., & Keller, P. (2010). *The Six Sigma handbook. McGraw Hill*.https://doi.org/10.1036/0071415963
- Quinn, D.L., (2003). what is six sigma?, In Bertels (Ed). Roth & Strong's six sigma leadership handbook (pp-1-14), Hoboken NJ: John Wiley & Sons. https://www.google.com.ng/?gws_rd=ssl#q=Quinn%2C+L+and+six+sigma
- Quintas, P., Lefrere, P., & Jones, G. (1997). Knowledge management: A strategic agenda. *LONG RANGE PLANNING*, 30(3), 385–391. <u>https://doi.org/10.1016/S0024-6301(97)90252-1</u>
- Raisinghani, M. S., Ette, H., Pierce, R., Cannon, G., &Daripaly, P. (2005).Six Sigma: concepts, tools, and applications. *Industrial Management & Data Systems*, 105(4), 491– 505. <u>https://doi.org/10.1108/02635570510592389</u>
- Ranjit, B. (2004). Knowledge management metrics, *Industrial Management & Data Systems*, 104 (6), 457-468. <u>https://doi.org/10.1108/02635570410543771</u>
- Rao, M. (2005). KM tools and techniques: practitioners and experts evaluate KM solutions. Butterworth-Heinemann, Burlington, USA. retrieved from <u>https://www.google.com.ng/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&</u> <u>uact=8&ved=0ahUKEwjJ7oXc7O_bAhVkCcAKHbCtDgMQFgglMAA&url=http%3A</u> <u>%2F%2Ffreeit.free.fr%2FProject%2520Management%2FButterworth.Heinemann.Kno</u> <u>wledge.Management.Tools.and.Techniques.Practitioners.and.Experts.Evaluate.KM.So.p</u> <u>df&usg=A0vVaw2YCu5-DgvMVgNFD4YIfBCs</u>
- Reuter Hanney, 2017. Retrieved online from <u>https://reuterhanney.com/main-reasons-insulation-failure</u>
- Roberts, C.M., (2004). Six Sigma Signals. Credit Union Magazine 70(1) 40-43. (Reported in Kwak, Y.H., and Anbari, F.T., 2004).
- Rouse, M (2019) Fishbone diagram. Retrieved from https://whatis.techtarget.com/definition/fishbone-diagram

- Rulker, R., (2000). Citibank Increases Customer Loyalty with Defects- Free Process. The Journal of for Quality and Participation 23 ()4, 32-36
- Saaty, T.L. (2008). Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World. Pittsburgh, Pennsylvania: RWS Publications.
- Sager, R, & Ling, E. (2007). Leveraging Six Sigma to improve hospital Bed availability. Retrieved from: <u>http://www.isisixsigma.com/new-to-six-sigma/dmaic/leveraging-six-sigma-improve-hospital-bed-availability</u>
- Schroeder, R. G., Linderman, K., Liedtke, C., &Choo, A. S. (2008).Six Sigma: Definition and underlying theory. *Journal of Operations Management*, 26(4), 536–554. https://doi.org/10.1016/j.jom.2007.06.007
- Sharma, N. K., Cudney, E. A., Ragsdell, K. M., & Paryani, K. (2007). Quality Loss Function – A Common Methodology for Three Cases, *Journal of Industrial and Systems Engineering*, 1(3), 218–234.
- Shin, M. (2004). A framework for evaluating economics of knowledge management systems. *Information & Management*, 42, 179-196.
- Sila I, & Ebrahimpour, M. (2002). An investigation of the total quality management survey based research published between 1989 and 2000: A literature review. *International Journal of Quality & Reliability Management*, 19(7):902-70.
- Silver, E. A. (2004). Process Management Instead of Operations Management. *Manufacturing & Service Operations Management*, 6(4), 273–279. <u>https://doi.org/10.1287/msom.1040.0055</u>
- Simon, K (2018) the cause and effect (a.k.a. fishbone) diagram. Retrieved from https://www.isixsigma.com/tools-templates/cause-effect/cause-and-effect-aka-fishbone-diagram/
- Sinha, K. K., & Van de Ven, A. H. (2005).Designing Work Within and Between Organizations. *Organization Science*, 16(4), 389–408. https://doi.org/10.1287/orsc.1050.0130
- Skyrme, D., & Amidon, D. (1997). The Knowledge Agenda. *Journal of Knowledge Management*, 1(1), 27–37. <u>https://doi.org/10.1108/13673279710800709</u>
- Snee R. (1999). Why should statisticians pay attention to six sigma? *Quality Progress*, 100-3.
- Snee, R. D. (2010). Lean Six Sigma getting better all the time. *International Journal of Lean Six Sigma*, 1(1), 9–29. <u>https://doi.org/10.1108/20401461011033130</u>
- Snee, R. D., & Hoerl, R. W. (2007). Integrating Lean and Six Sigma a Holistic Approach. *Six Sigma Forum Magazines*, 6(3), 15–21.
- Snee, R.D., Hoerl, R.w. (2005). Six Sigma Beyond the Factory Floor Pearson Prentice Hall, New Jersey. In DeMast & Lobberkell, 2012.

- Soliman, F., & Spooner, K. (2000). Strategies for implementing knowledge management: role of human resources management. *Journal of Knowledge Management*, 4(4), 337– 345. <u>https://doi.org/10.1108/13673270010379894</u>
- Squirer, M.M. (2006). The Principles and Practice of Knowledge Management. M.Is (Information Science) Thesis submitted in the department of Information Science, Faculty of engineering, Built Environment and Information, University of Pretoria.
- Steiner, S., Abraham, B., & Mackay, J. (2014). Understanding Process Capability Indices.StatisticalOutsourcingServices.Retrievedfromhttp://statisticaloutsourcingservices.com/Capability.pdf
- Stonehouse, G. H., & Pemberton, J. D. (1999).Learning and knowledge management in the intelligent organisation. *Participation & Empowerment: An International Journal*, 7(5).
- Su, C.T, & Chou, C.J, (2008). A systematic methodology for the creation of Six Sigma projects: A case study of semiconductor foundry, *Expert Systems with Applications*, 34, 2693-2703
- Su, C.-T., Chiang, T.-L., & Chang, C.-M. (2006). Improving service quality by capitalising on an integrated Lean Six Sigma methodology. *International Journal of Six Sigma and Competitive Advantage*, 2(1), 5.<u>https://doi.org/10.1504/IJSSCA.2006.009367</u>
- Swan, J., Scarbrough, H., & Preston, J. (1999). Knowledge management-the next fad to forget people? In *Proceedings of the 7th European Conference on Information Systems* (pp. 668–678). Retrieved from <u>http://is2.lse.ac.uk/asp/aspecis/19990007.pdf</u>
- Szeto, A. Y. T., Tsang, A. H. C., Szeto, A. Y. T., & Tsang, A. H. C. (2005). Antecedents to successful implementation of Six Sigma. *Int. J. Six Sigma and Competitive Advantage*, 1(3), 307–322. <u>https://doi.org/10.1504/IJSSCA.2005.008094</u>
- Taghizadegan, S. (2006). Essentials of Lean Six Sigma. Essentials of Lean Six Sigma.https://doi.org/10.1016/B978-0-12-370502-0.X5000-0
- Taguchi G., Elsayed A., Hsiang T. (1989). Quality engineering in production systems; McGraw-Hill Publishing Company.
- Tal Wigdor. (2001). Implementing Time Studies And The Development of Standard Time.
- Tannock J, Balogun, O, & Hawisa, H. (2007). A variation management system supporting six sigma. *Journal of Manufacturing Technology Management*, 18(5):561-75.
- Teng, J. T. C., & Song, S. (2011). An exploratory examination of knowledge-sharing behaviors: Solicited and voluntary. *Journal of Knowledge Management*, 15(1), 104–117. <u>https://doi.org/10.1108/13673271111108729</u>
- Tennant, G. (2002). Design for six sigma: launching new products and services without failure form. Gover Pub. Co. England.
- Thanhdat, N., Claudiu, K. V., Zobia, R., &Lobont, L. (2016). Knowledge portal for Six Sigma DMAIC process. *IOP Conference Series: Materials Science and Engineering*, 145(6). <u>https://doi.org/10.1088/1757-899X/145/6/062011</u>

- Tiwana, A. (2002). The Knowledge Management Toolkit: Orchestrating IT, Strategy and Knowledge Platforms. Upper Saddle River, New Jersey: Prentice-Hall.
- Tjahjono, B., Ball, P., Vitanov, V. I., Scorzafave, C., Nogueira, J., Calleja, J., ...Yadav, A. (2010). Six Sigma: a literature review. *International Journal of Lean Six Sigma*, 1(3), 216–233. <u>https://doi.org/10.1108/20401461011075017</u>
- Unal, R., & Dean, E. B. (1991). Taguchi Approach to design optimization for quality and cost overview. Presented at the 1991 Annual Conference of the International Society of Parametric Analysts., 1–10. Retrieved online from <u>http://citerseerx.ist.psu.edu</u>.
- UNDP, (2007). Knowledge Management Toolkit for the Crisis Prevention and Recovery Practice Area. <u>http://practices.undp.org/cpr/</u>
- Uriarte, F. A. (2008). Introduction to knowledge management in the NHS.*Asean Foundation*, 179. Retrieved from http://www.aseanfoundation.org/documents/knowledge_management_book.pdf
- Venkateswaren, .S. (2003). Warranty cost prediction using Mahalanobis Distance, MS Thesis, University of Missouri-Rolla.
- Von Krogh, G. (1998). Care in Knowledge Creation. *California Management Review*, 40(3), 133–153. <u>https://doi.org/10.2307/41165947</u>
- Wang Y-M, Elhag, & Taha Ms. (2006) An Approach To Avoiding Rank Reversal In Ahp. Decision Support Systems. 2006; 42(3):1474-80.
- Wang Y-M, Elhag, & Taha Ms. (2006). Evidential Reasoning Approach For Bridge Condition Assessment. Expert Systems With Applications. An International Journal, 34(1):689-99.
- Wang, F. D., T and Li, E. (2004). applying Six Sigma to Supplier Development, *Total Quality Management and Business Excellence*, Vol.15, Nos. 9/10, pp. 1217-29.
- Wang, H. (2008). A review of Six Sigma approach: Methodology, implementation and future research. In 2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008.<u>https://doi.org/10.1109/WiCom.2008.1887</u>
- Wenger, E., McDermott, R., & Snyder, W. (2002). Cultivating communities of practice: A guide to managing knowledge. Harvard Business School Press Books (Vol. 5). <u>https://doi.org/10.1007/s13398-014-0173-7.2</u>
- Wiig, K. (1997). Knowledge management: an introduction and perspective. *Journal of Knowledge Management*, 1(1), 6–14. <u>https://doi.org/10.1108/13673279710800682</u>
- Winter, R. (1998). Managing Organizational Learning: From Rhetoric to Reality. *Management Learning*.<u>https://doi.org/10.1177/1350507698293007</u>
- Woods, J. A., & Cortada, J. (2013). *The Knowledge Management Yearbook 2000-2001. The Knowledge Management Yearbook 2000-2001.*

- Wu, I. L., & Lin, H. C. (2009). A strategy-based process for implementing knowledge management: An integrative view and empirical study. *Journal of the American Society* for Information Science and Technology, 60(4), 789–802. https://doi.org/10.1002/asi.20999
- Wurtzel, M., (2008). Reasons for Six Sigma Deployment Failures. BPM Institute. June/wtpp.
- Wyper, B., & Harrison, A. (2000). Deployment of Six Sigma methodology in Human Resource function: A case study. *Total Quality Management*, 11(4–6), 720–727. https://doi.org/10.1080/09544120050008129
- Yang, W. H., & Tarng, Y. S. (1997). Design optimization of cutting parameters for tuning operations based on Taguchi method. *Journal of Materials Processing Technology*.
- Yew Wong, K. (2005). Critical success factors for implementing knowledge management in small and medium enterprises. *Industrial Management & Data Systems*, 105(3), 261– 279. <u>https://doi.org/10.1108/02635570510590101</u>
- Young, R. (2010). Knowledge Management Tools and Techniques Manual.Asian Productivity Organization HirakawachoChiyodaku Tokyo Japan (Vol. 1). Retrieved from http://www.apo-tokyo.org/publications/files/ind-43-km_tt-2010.pdf
- Yung-Tsan, J, Wen-Tsann, L., Wei-Cheng, L., & Tsu-Ming, Y. (2014). Integrating the Taguchi and Response Surface Methodology for Process Parameter Optimisation of the Injection Molding. An International journal of Applied Mathematics & Information Sciences Vol. 8 No.3, pp. 1277-1285
- Zhang, W., Hill, A. V, Lindahl, N., & Gilbreath, G. H. (2009). Six Sigma : A Retrospective and Prospective Study Six Sigma : A Retrospective and Prospective Study.

Zimmerman, J.P., Weiss J. (2005). Six Sigma's Seven Deadly Sins. Quality, 44, 62-66.

Zu, X., Fredendall, L. D., & Douglas, T. J. (2008). The evolving theory of quality management: The role of Six Sigma. *Journal of Operations Management*, 26(5), 630– 650. <u>https://doi.org/10.1016/j.jom.2008.02.001</u>

APPENDIX A

0.0058

Attribute Agreement Analysis Worksheet

Samples: 10 Appraisers: 3 Replicates: 2 Total runs: 60 **Attribute Agreement Analysis for Response** Date of study: APRIL -2017 Reported by: CHUKWUEBUKA U-DOMINIC Name of product: CUTIX CABLE Misc: Within Appraisers Assessment Agreement Appraiser # Inspected # Matched Percent 95% CI 10 JERRY 9 90.00 (55.50, 99.75) 10 9 90.00 (55.50, 99.75) **WILLIAMS** CHISOM 10 9 90.00 (55.50, 99.75) # Matched: Appraiser agrees with him/herself across trials. Fleiss' Kappa Statistics Z P(vs > 0)Appraiser Response Kappa SE Kappa JERRY 0.797980 0.316228 2.52343 0.0058 BAD GOOD 0.797980 0.316228 2.52343 WILLIAMS BAD 0.797980 0.316228 2.52343 0.0058 0.797980 0.316228 2.52343 0.0058 GOOD CHISOM BAD 0.797980 0.316228 2.52343 0.0058 0.797980 0.316228 2.52343 0.0058 GOOD Each Appraiser vs Standard Assessment Agreement Appraiser # Inspected # Matched Percent 95% CI JERRY 10 9 90.00 (55.50, 99.75) 9 90.00 (55.50, 99.75) WILLIAMS 10

Matched: Appraiser's assessment across trials agrees with the known standard.

Assessment Disagreement

Appraiser # GOOD / BAD Percent # BAD / GOOD Percent # Mixed Percent

JERRY 0 0.00 0 0.00 1 10.00

WILLIAMS 0 0.00 0 0.00 1 10.00

CHISOM 0 0.00 0 0.00 1 10.00

GOOD / BAD: Assessments across trials = GOOD / standard = BAD.

BAD / GOOD: Assessments across trials = BAD / standard = GOOD.

Mixed: Assessments across trials are not identical.

Fleiss' Kappa Statistics

Appraiser Response Kappa SE Kappa Z P(vs > 0)

JERRY BAD 0.898990 0.223607 4.02041 0.0000

GOOD 0.898990 0.223607 4.02041 0.0000

WILLIAMS BAD 0.898990 0.223607 4.02041 0.0000

GOOD 0.898990 0.223607 4.02041 0.0000

CHISOM BAD 0.898990 0.223607 4.02041 0.0000

GOOD 0.898990 0.223607 4.02041 0.0000

Between Appraisers

Assessment Agreement

Inspected # Matched Percent 95% CI

10 8 80.00 (44.39, 97.48)

Matched: All appraisers' assessments agree with each other.

Fleiss' Kappa Statistics

Response Kappa SE Kappa Z P(vs > 0)

BAD 0.824916 0.0816497 10.1031 0.0000

GOOD 0.824916 0.0816497 10.1031 0.0000

All Appraisers vs Standard

Assessment Agreement

Inspected # Matched Percent 95% CI

Matched: All appraisers' assessments agree with the known standard.

Fleiss' Kappa Statistics

BAD 0.898990 0.129099 6.96355 0.0000

GOOD 0.898990 0.129099 6.96355 0.0000

APPENDIX B

Gage R&R Study - ANOVA Method

Gage R&R for Core diameter

Gage name: CORE DIAMETER GAGE R & R STUDY Date of study: APRIL 2017 Reported by: CHUKWUEBUKA U-DOMINIC Tolerance: Misc:

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	P
Parts	4	0.220455	0.0551136	6618.05	0.000
Operators	2	0.000022	0.0000110	1.32	0.319
Parts * Operators	8	0.000067	0.000083	19.72	0.000
Repeatability	30	0.000013	0.000004		
Total	44	0.220556			

 α to remove interaction term = 0.05

Gage R&R

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0.0000032	0.05
Repeatability	0.000004	0.01
Reproducibility	0.0000028	0.05
Operators	0.000002	0.00
Operators*Parts	0.0000026	0.04
Part-To-Part	0.0061228	99.95
Total Variation	0.0061260	100.00

Process tolerance = 0.37

		Study Var	%Study Var	%Tolerance
Source	StdDev (SD)	(6 × SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.0017992	0.010795	2.30	2.92
Repeatability	0.0006498	0.003899	0.83	1.05
Reproducibility	0.0016777	0.010066	2.14	2.72
Operators	0.0004238	0.002543	0.54	0.69
Operators*Parts	0.0016233	0.009740	2.07	2.63
Part-To-Part	0.0782484	0.469490	99.97	126.89
Total Variation	0.0782691	0.469615	100.00	126.92

Number of Distinct Categories = 61

APPENDIX C

R Chart Constants

Table of Control Chart Constants

for sigma

S Chart Constants

Constants estimate

Sample	A ₂	A ₃	d ₂	D3	D4	B ₃	B4
Size = m							
2	1.880	2.659	1.128	0	3.267	0	3.267
3	1.023	1.954	1.693	0	2.574	0	2.568
4	0.729	1.628	2.059	0	2.282	0	2.266
5	0.577	1.427	2.326	0	2.114	0	2.089
6	0.483	1.287	2.534	0	2.004	0.030	1.970
7	0.419	1.182	2.704	0.076	1.924	0.118	1.882
8	0.373	1.099	2.847	0.136	1.864	0.185	1.815
9	0.337	1.032	2.970	0.184	1.816	0.239	1.761
10	0.308	0.975	3.078	0.223	1.777	0.284	1.716
11	0.285	0.927	3.173	0.256	1.744	0.321	1.679
12	0.266	0.886	3.258	0.283	1.717	0.354	1.646
13	0.249	0.850	3.336	0.307	1.693	0.382	1.618
14	0.235	0.817	3.407	0.328	1.672	0.406	1.594
15	0.223	0.789	3.472	0.347	1.653	0.428	1.572
16	0.212	0.763	3.532	0.363	1.637	0.448	1.552
17	0.203	0.739	3.588	0.378	1.622	0.466	1.534
18	0.194	0.718	3.640	0.391	1.608	0.482	1.518
19	0.187	0.698	3.689	0.403	1.597	0.497	1.503
20	0.180	0.680	3.735	0.415	1.585	0.510	1.490
21	0.173	0.663	3.778	0.425	1.575	0.523	1.477
22	0.167	0.647	3.819	0.434	1.566	0.534	1.466
23	0.162	0.633	3.858	0.443	1.557	0.545	1.455
24	0.157	0.619	3.895	0.451	1.548	0.555	1.445
25	0.153	0.606	3.931	0.459	1.541	0.565	1.435

APPENDIX D

Areas under the Standard Normal Curve

STANDARD NORMAL	DISTRIBUTION: Table	Values Represent AREA	to the LEFT of the Z score.
		1	

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414

 $\label{eq:response} \begin{array}{l} \textbf{Retieved from $\underline{https://www.google.com/url?sa=i\&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwjd7tKQ2-flAhWKohQKHYzlCnUQjRx6BAgBEAQ&url=http%3A%2F%2Fupsocial.club%2Fnegative-normal-distribution-table-math%2Fnegative-normal-distribution-table-math-standard-z-score-table-mathematics-major%2F&psig=AOvVaw2zDMqydn6twYFsJaSJXLSf&ust=1573752518532923 \end{array}$

APPENDIX D2

Area under Standard Normal Curve

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
	1									

2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997

APPENDIX E

Abridged "6-sigma" Conversion Table Note: Yield refers to percent of output that is good

Yield	Sigma	Defects per	Defects per 100.000	Defects per 10.000	Defects per 1.000	Defects per 100
		1,000,000		,	p,	P
99.99966%	6.0	3.4	0.34	0.034	0.0034	0.00034
99.9995%	5.9	5	0.5	0.05	0.005	0.0005
99.9992%	5.8	8	0.8	0.08	0.008	0.0008
99.9990%	5.7	10	1	0.1	0.01	0.001
99.9980%	5.6	20	2	0.2	0.02	0.002
99.9970%	5.5	30	3	0.3	0.03	0.003
99.9960%	5.4	40	4	0.4	0.04	0.004
99.9930%	5.3	100	10	0.7	0.07	0.007
99.9900%	5.1	150	10	1.0	0.1	0.015
99.9030%	5.0	230	23	23	0.13	0.013
99.9670%	4.9	330	33	3.3	0.33	0.033
99.9520%	4.8	480	48	4.8	0.48	0.048
99.9320%	4.7	680	68	6.8	0.68	0.068
99.9040%	4.6	960	96	9.6	0.96	0.096
99.8650%	4.5	1,350	135	13.5	1.35	0.135
99.8140%	4.4	1,860	186	18.6	1.86	0.186
99.7450%	4.3	2,550	255	25.5	2.55	0.255
99.6540%	4.2	3,460	346	34.6	3.46	0.346
99.5340%	4.1	4,660	466	46.6	4.66	0.466
99.3790%	4.0	6,210	621	62.1	6.21	0.621
99.1810%	3.9	8,190	819	81.9	8.19	0.819
98.930%	3.8	10,700	1,070	107	10.7	1.07
98.610%	3.7	13,900	1,390	139	13.9	1.39
98.220%	3.6	17,800	1,780	178	17.8	1.78
97.730%	3.5	22,700	2,270	227	22.7	2.27
97.130%	3.4	28,700	2,870	287	28.7	2.87
96.410%	3.3	35,900	3,590	309	35.9	3.59
93.340 %	3.1	44,000 54,800	4,400 5,480	548	44.0 54.8	5.48
93.320%	3.0	66,800	6,680	668	66.8	6.68
91.920%	2.9	80.800	8.080	808	80.8	8.08
90.320%	2.8	96,800	9,680	968	96.8	9.68
88.50%	2.7	115,000	11,500	1,150	115	11.5
86.50%	2.6	135,000	13,500	1,350	135	13.5
84.20%	2.5	158,000	15,800	1,580	158	15.8
81.60%	2.4	184,000	18,400	1,840	184	18.4
78.80%	2.3	212,000	21,200	2,120	212	21.2
75.80%	2.2	242,000	24,200	2,420	242	24.2
72.60%	2.1	274,000	27,400	2,740	274	27.4
69.20%	2.0	308,000	30,800	3,080	308	30.8
65.60%	1.9	344,000	34,400	3,440	344	34.4
61.80%	1.8	382,000	38,200	3,820	382	38.2
54.00%	1.7	420,000	42,000	4,200	420	42
50%	1.0	500,000	50,000	4,000	400 500	40 50
46%	1.3	540,000	54,000	5,000	540	54
43%	1.4	570,000	57,000	5,400	570	57
39%	1.2	610.000	61.000	6,100	610	61
35%	1.1	650.000	65,000	6,500	650	65
31%	1.0	690,000	69,000	6,900	690	69
28%	0.9	720,000	72,000	7,200	720	72
25%	0.8	750,000	75,000	7,500	750	75
22%	0.7	780,000	78,000	7,800	780	78
19%	0.6	810,000	81,000	8,100	810	81
16%	0.5	840,000	84,000	8,400	840	84
14%	0.4	860,000	86,000	8,600	860	86
12%	0.3	880,000	88,000	8,800	880	88
10%	0.2	900,000	90,000	9,000	900	90
8%	0.1	920,000	92,000	9,200	920	92

Abridged Sigma Table:Retrieved online from <u>http://www.sixsigmacertificationcourse.com/abridged-sigma-table/</u>

APPENDIX F

Analytical Hierarchial Process (AHP)

- Model the problem as a hierarchy containing the decision goal, the alternatives for reaching it, and the criteria for evaluating the alternatives. In doing this, participants explore the aspects of the problem at levels from general to detailed, then express it in the multileveled way that the AHP requires. As they work to build the hierarchy, they increase their understanding of the problem, of its context, and of each other's thoughts and feelings about both.
- 2. Establish priorities among the elements of the hierarchy by making a series of judgments based on pairwise comparisons of the elements
- 3. Synthesize these judgments to yield a set of overall priorities for the hierarchy.
- 4. Check the consistency of the judgments.
- 5. Come to a final decision based on the results of this process.

The AHP is a very flexible and powerful tool because the scores and, therefore, the final ranking are obtained on the basis of the pairwise relative evaluations of both the criteria and options provided by the user. The equations and functions for the preference analysis, according to Cabala (2010), are as follows:

 $[a_{ij}]$, where I, j = 1, 2, ..., n. (1)

$$a_{ij} = 1 \text{ for } i = j,$$
 (2)

$$a_{ij} = \frac{1}{a_{ji}}$$
 for $i \neq j$. (3)

Using the scale in Table 3.3, a reciprocal matrix $[a_{ij}]$ is created, where a_{ij} is the expert's evaluation expressing the preference of the i-th element in relation to the j-th. The eigen vector W matching the maximum eigenvalue λ_{max} of the pairwise comparison matrix A is the

final expression of the preferences between the investigated elements. Determining the eigenvector now leads to solution to matrix A's characteristic functions as follows:

$$F(\lambda) = |A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n1} & a_{n1} & a_{nn} - \lambda \end{vmatrix}$$
(4)

and its respective characteristic equation $f(\lambda) = |A - \lambda I| = 0$ is presented in the form of the polynomial $c_0\lambda^n + c_1\lambda^{n-1} + \ldots + c_{n-1}\lambda + c_n = 0$

The eigenvectors of matrix \mathbf{A} are each column and non-zero vector Xi, for which the following equality occurs:

$$(\mathbf{A} - \lambda_i) \mathbf{X}_i = \mathbf{0} \tag{5}$$

Assume $X_i = \mathbf{w}$ for λ_{max} , eigenvector is in the solution to the following equation;

$$\mathbf{A}\mathbf{w} = \lambda_{\max}\mathbf{w}.$$
 (6)

$$b_{ij} = \frac{aij}{\sum_{i=1}^{n} aij} \quad .$$

Eigenvector $w = [w_i]$

$$w_i = \frac{\sum_{j=1}^n bij}{n}.$$
(8)

Then the maximum eigenvector;

$$\lambda_{\max} = \frac{1}{n} \sum_{i=1}^{n} \frac{(Aw)i}{wi} \,. \tag{9}$$

The equation for the components values of the eigenvector using the geometric averaging method looks as follows:

$$w_{i} = \frac{\left(\prod_{j=1}^{n} a_{ij}\right)^{\frac{1}{n}}}{\sum_{i=1}^{n} \left(\prod_{j=1}^{n} a_{ij}\right)^{\frac{1}{n}}}$$
(10)

Intensity of importance	Definition	Explanation
1	Equal importance	Two factors contribute equally to the objective
3	Somewhat more important	Experience and judgment slightly favour one over the other.
5	Much more important	Experience and judgment strongly favour one over the other.
7	Very much more important	Experience and judgment very strongly favour one over the other; its importance is demonstrated in practice.
9	Absolutely more important	The evidence favoring one over the other is of the highest possible validity
2, 4, 6, 8	Intermediate values	When compromise is needed

Table: 1. The Fundamental Scale for Pairwise Comparisons

Source: Adapted from Saaty (1980)

Consistency equations

$$C.I = \Lambda_{max} - n / n - 1 \tag{11}$$

Lambda (
$$\lambda$$
) = $\frac{\Sigma \frac{W}{P}}{n}$ (12)

where p = principal priority, w = weighted sum, C.I = 0 for a perfectly consistent decision,

but small values of inconsistency is tolerated if,

$$CR = \frac{CI}{RI} < 0.1 \tag{13}$$

where RI is the random index and is the average value of CI for random matrices. Appendix

(G) contains a table for R.I values for $m \le 15$

$$GP = S_{Cp} * C_P \tag{14}$$

where S_{Cp} = sub criteria priorities, and C_P = criteria priorities.

Insulation Thickness (AHP Computations)

Na	ame	Criteria		More	Intensity
				Important	
Ι	J	Α	В	A or B	(1-9)
1	2	Measurement	Material	В	3
1	3		Machine	В	3
1	4		Man	В	3
1	5		Method	В	3
2	3	Material	Machine	Α	3
2	4		Man	Α	3
2	5		Method	В	2
3	4	Machine	Man	Α	3
3	5		Method	А	2
4	5	Man	Method	В	3

 Table 1: Main Criteria comparison table for the Improved Cable Insulation Thickness

Table 1: Pairwise comparison matrix	with judgments for the main criteria
-------------------------------------	--------------------------------------

Criteria	Measurement	Material	Machine	Man	Method
Measurement	1	0.333	0.333	0.333	0.333
Material	3	1	3	3	0.5
Machine	3	0.333	1	3	0.5
Man	3	0.333	0.333	1	0.333
Method	3	2	2	3	1

Table 2: Normalized matrix for the principal Eigen vector for the main criteria

Criteria	Material	Machine	Man	Method	Measurement	Principal
						Priority vector
Measuremen						
t	0.076923	0.083271	0.049955	0.032227	0.124906	0.073456
Material	0.230769	0.250063	0.450045	0.290332	0.187547	0.281751
Machine	0.230769	0.083271	0.150015	0.290332	0.187547	0.188387
Man	0.230769	0.083271	0.049955	0.096777	0.124906	0.117136

Method	0.230769	0.500125	0.30003	0.290332	0.375094	0.33927

Table 3.	Criteria	weighing	
I auto J.	Cinena	weiginng	

Criteria	Measurement	Material	Machine	Man	Method	Weighted
						Sum
Measurement	0.073456	0.093823	0.062733	0.039006	0.112977	0.381995
Material	0.220368	0.281751	0.565161	0.351408	0.169635	1.588323
Machine	0.220368	0.093823	0.188387	0.351408	0.169635	1.023621
Man	0.220368	0.093823	0.062733	0.117136	0.112977	0.607037
Method	0.220368	0.563502	0.376774	0.351408	0.33927	1.851322

For the consistency check at the criteria level 1: Lambda (λ) = 5.382073, C.I = 0.095518, C.R = 0.088

< 0.1 for n= 5; R.I = 1.1086 (acceptable)

Fig 1: Graphical representation of criteria and their prioritized judgments.

Name Criteria		Criteria		More	Intensity
				Important	
Ι	j	А	В	A or B	(1-9)
1	2	Poorly annealed	Un-annealed conductor		
1	3	conductor	Over-dimensioned tip		
2	3	Un-annealed	Over dimensioned tip		
		conductor			

Material	Poorly annealed	Un-annealed	Over dimensioned tip
	conductor	conductor	PVC
Poorly annealed	1	0.2[1/5]	0.333[1/3]
conductor			
Un-annealed	5	1	3
conductor			
Over dimensioned	3	0.333[1/3]	1
tip PVC			

Table 5: Pairwise comparison matrix with judgments for the material- Sub criteria

Table 6: Normalized matrix for the principal Eigen vector for the material factors

Material	Poorly	Un-annealed	Over dimensioned tip	Principal
	annealed	conductor	PVC	Priority
	conductor			vector
Poorly annealed				
conductor	0.111111	0.130463	0.076852	0.106142
Un-annealed conductor	0.555556	0.652316	0.692361	0.633411
Over dimensioned tip				
PVC	0.333333	0.217221	0.230787	0.260447

Fig 2. Graphical representation of Material-subgroup prioritization vector for the improved insulation thickness

Material	Poorly	Un-	Over	Weighted	Global Priority vector
	annealed	annealed	dimensioned	sum	
	conductor	conductor	tip PVC		
Poorly annealed					
conductor	0.106142	0.126682	0.086729	0.319553	0.03
Un-annealed					
conductor	0.53071	0.633411	0.781341	1.945462	0.178
Over					
dimensioned tip					
PVC	0.318426	0.210926	0.260447	0.789799	0.073

Table 7: Calculated weighted sum for material-sub criteria and the global priorities

Table 8. Machine_	Sub	criteria	comnai	ricon t	ahle	for th	a Imi	nroved	Cable	Inculation	thickness
1 abic 6. Machine-	Sub	cincina	compai	15011	auto	ioi un	$\sim m_{\rm p}$	proveu	Cable	insulation	unekness

Na	me	Criteria		More	Intensity
				Important	
Ι	j	А	В	A or B	(1-9)
1	2	Poor alignment of tip	Worn-out centering bolt	А	2
1	3	& die	Un-aligned embossing wheel	А	3
1	4		Faulty heating system	А	3
1	5		Faulty braking system	А	5
1	6		Unsteady wire guard	А	7
2	3	Worn-out centering	Un-aligned embossing wheel	А	3
2	4	bolt	Faulty heating system	А	3
2	5		Faulty braking system	А	3
2	6		Unsteady wire guard	А	3
3	4	Un-aligned	Faulty heating system	А	3
3	5	embossing wheel	Faulty braking system	А	3
3	6		Unsteady wire guard	А	3
4	5	Faulty heating	Faulty braking system	В	2
4	6	system	Unsteady wire guard	А	3
5	6	Faulty braking system	Unsteady wire guard	A	5

Machine	Poor	Worn-out	Un-aligned	Faulty	Faulty	Unsteady
	alignment of	centering	embossing	heating	braking	wire guard
	tip & die	bolt	wheel	system	system	
Poor	1	2	3	3	5	7
alignment of						
tip & die						
Worn-out	0.5 [1/2]	1	3	3	3	3
centering bolt						
Un-aligned	0.333 [1/3]	0.333[1/3]	1	3	3	3
embossing						
wheel						
Faulty	0.333[1/3]	0.333[1/3]	0.333[1/3]	1	0.5[1/2]	3
heating						
system						
Faulty	0.2[1/5]	0.333[1/3]	0.333[1/3]	2	1	5
braking						
system						
Unsteady	0.1428[1/7]	0.333[1/3]	0.333[1/3]	0.333[1/3]	0.2[1/5]	1
wire guard						

Table 9: Pairwise comparison matrix with judgments for the Machine-Sub criteria

Machine	Poor	Worn-out	Un-aligned	Faulty	Faulty	Unsteady	Principal
	alignment	centering	embossing	heating	braking	wire	Priority
	of tip &	bolt	wheel	system	system	guard	vector
	die						
Poor							
alignment							
of tip & die	0.398597	0.461681	0.375047	0.24325	0.393701	0.318182	0.365076
Worn-out							
centering							
bolt	0.199298	0.23084	0.375047	0.24325	0.23622	0.136364	0.236837
Un-aligned							
embossing							
wheel	0.132733	0.07687	0.125016	0.24325	0.23622	0.136364	0.158409
Faulty							
heating							
system	0.132733	0.07687	0.04163	0.081083	0.03937	0.136364	0.084675
SFaulty							
braking							
system	0.079719	0.07687	0.04163	0.162167	0.07874	0.227273	0.111066
Unsteady							
wire guard	0.05692	0.07687	0.04163	0.027001	0.015748	0.045455	0.043937

Table 10: Normalized matrix for the principal Eigen vector for the Machine-Sub criteria

Fig. 3. Graphical representation of Machine-subgroup prioritization vector for the improved insulation thickness

Machine	Poor	Worn-	Un-	Faulty	Faulty	Unstead	Weighte	Global
	alignmen	out	aligned	heating	braking	y wire	d sum	Priorit
	t of tip &	centerin	embossin	system	system	guard		у
	die	g bolt	g wheel					
Poor								
alignment								
of tip &	0.36507	0.47367		0.25402		0.30755	2.43089	
die	6	4	0.475227	5	0.55533	9	1	0.068
Worn-out								
centering	0.18253	0.23683		0.25402	0.33319	0.13181	1.61363	
bolt	8	7	0.475227	5	8	1	6	0.044
Un-								
aligned								
embossin		0.07886		0.25402	0.33319	0.13181		
g wheel	0.12157	7	0.158409	5	8	1	1.07788	0.029
Faulty								
heating		0.07886		0.08467	0.05553	0.13181	0.52520	
system	0.12157	7	0.05275	5	3	1	6	0.016
Faulty								
braking	0.07301	0.07886			0.11106	0.21968	0.70473	
system	5	7	0.05275	0.16935	6	5	3	0.021
Unsteady								
wire	0.05213	0.07886		0.02819	0.02221	0.04393	0.27809	
guard	3	7	0.05275	7	3	7	7	0.008

Table 11: Calculated weighted sum for Machine-Sub criteria and the global priorities

Table 12: Man-Sub criteria comparison table for the improved cable Insulation thickness

Nar	Name Criteria			More	Intensity
				Important	
Ι	j	A	В	A or B	(1-9)
1	2	Inadequate centering skill	Improper fitting of the tip	Α	3
1	3		Operator's fatigue	В	3
2	3	Improper fitting of the tip	Operator's fatigue	В	5

Man	Inadequate centering		Improper fitting of the	Operator's fatigue
	skill		tip	
Inadequate centering skill	1	3		0.333
Improper fitting of the tip	0.333	1		0.2
Operator's fatigue	3	5		1

Table 13: Pairwise comparison matrix with judgments for the Man- Sub criteria

T-1.1. 12. M			f 11	\mathbf{M}_{-}
Lable 13. Normalized	matrix for the	nrincinal Elgen	vector for the	Man-Nin criteria
ruble 15. romanzea	mann for the	principal Ligen		man buo cincina

Man	Inadequate	Improper fitting of	Operator's fatigue	Principal
	centering	the tip		Priority vector
	skill			
Inadequate centering				
skill	0.230787	0.333333	0.217221	0.260447
Improper fitting of				
the tip	0.076852	0.111111	0.130463	0.106142
Operator's fatigue	0.692361	0.555556	0.652316	0.633411

Figure 4. graphical representation of Man-subgroup prioritization vector for the improved insulation thickness.

Table 14: Calculated weighted sum for Man-Sub criteria and the global priorities

Man	Inadequate	Improper fitting	Operator's	Weighted	Global
	centering	of the tip	fatigue	Sum	Priority
	skill				vector
Inadequate					
centering skill	0.26044	0.318426	0.210926	0.789792	0.03
Improper fitting					
of the tip	0.086727	0.106142	0.126682	0.319551	0.012
Operator's fatigue	0.78132	0.53071	0.633411	1.945441	0.074

Nar	Name Criteria			More	Intensity
				Important	
Ι	j	А	В	A or B	(1-9)
1	2	Improper control setting	Work target	А	5
1	3		Poor monitoring	А	2
2	3	Work Target	Poor monitoring	В	5

Table 15: Method-Sub criteria comparison table for the improved cable Insulation thickness

Table 16: Pairwise comparison matrix with judgments for the Method- Sub criteria

Method	Improper control setting	Work Target	Poor monitoring
Improper control setting	1	5	2
Work Target	0.2	1	0.2
Poor monitoring	0.5	5	1

Table 17: Normalized matrix for the principal Eigen vector for the Method-Sub criteria

Method	Improper control	Work Target	Poor monitoring	Principal
	setting			Priority
				vector
Improper control				
setting	0.230787	0.333333	0.217221	0.260447
Work Target	0.076852	0.111111	0.130463	0.106142
Poor monitoring	0.692361	0.555556	0.652316	0.633411

Figure 5: Graphical representation of Method-subgroup prioritization vector for the improved insulation thickness

Table: 18: Calculated weighted sum for Method-Sub criteria and the global priorities

Method	Improper control	Work Target	Poor	Weighted	Global
	setting		monitoring	Sum	Priority
					vector
Improper control					
setting	0.26044	0.318426	0.210926	0.789792	0.089
Work Target	0.086727	0.106142	0.126682	0.319551	0.036
Poor monitoring	0.78132	0.53071	0.633411	1.945441	0.215

APPENDIX G

Insulation Surface Flaws

Na	ame	Criteria		More	Intensity
				Important	
i	j	А	В	A or B	(1-9)
1	2	Measurement	Material	В	7
1	3		Machine	В	3
1	4		Man	В	3
1	5		Method	В	3
2	3	Material	Machine	А	3
2	4		Man	А	5
2	5		Method	А	5
3	4	Machine	Man	А	3
3	5		Method	А	5
4	5	Man	Method	А	3

Table 1: Main Criteria Comparison Table for the Cable Insulation Surface Flaws

Table 2: Pairwise comparison matrix with judgments for the main criteria

Criteria	Measurement	Material	Machine	Man	Method
Measurement	1	0.1428 [1/7]	0.333 [1/3]	0.333 [1/3]	0.333 [1/3
Material	7	1	3	5	5
Machine	3	0.333 [1/3]	1	3	5
Man	3	0.2 [1/5]	0.333 [1/3]1	3
Method	3	0.2 [1/5]	0.2 [1/5]	0.333 [1/3]	1

Table 3: Normalized matrix for the	principal Eigen	vector for the m	nain criteria
Tuble 5. Normalized matrix for the	principal Digen	vector for the h	ium emeriu

Criteria	Material	Machine	Man	Method	Measurement	Principal
						Priority
						vector
Measuremen						
t	0.058824	0.076128	0.068434	0.034451	0.023233	0.052214
Material	0.411765	0.533106	0.616523	0.517277	0.348845	0.485503
Machine	0.176471	0.177524	0.205508	0.310366	0.348845	0.243743
Man	0.176471	0.106621	0.068434	0.103455	0.209307	0.132858
Method	0.176471	0.106621	0.041102	0.034451	0.069769	0.085683

AHP	Λ _{max}	C.1	N	R.I	C.R	Decision
indices						
Material	6.5356	0.10712	6	1.2479	0.085	Acceptable
Machine	7.75068	0.12511	7	1.3417	0.093	Acceptable
Man	3.06508	0.032543	3	0.5245	0.062	Acceptable
Method	2.000	0	2	0	0	Acceptable

Table 4: Consistency Indices for the Improved Cable Insulation Smoothness Sub criteria.

Table 5: Criteria weighing

Criteria	Measurement	Material	Machine	Man	Method	Weighted
						Sum
Measurement	0.052214	0.06933	0.081166	0.044242	0.028532	0.275484
Material	0.365498	0.485503	0.731229	0.66429	0.428415	2.674935
Machine	0.156642	0.161672	0.243743	0.398574	0.428415	1.389046
Man	0.156642	0.097101	0.081166	0.132858	0.257049	0.724816
Method	0.156642	0.097101	0.048749	0.044242	0.085683	0.432416

 Table 6: Material comparison table for the Cable Insulation Surface Flaws

Na	Name Criteria			More	Intensity
				Important	
i	j	A	В	A or B	(1-9)
1	2	Bunched PVC	Pores on the PVC	А	3
1	3		Presence of moisture	В	3
1	4		Poorly welded joint	В	7
1	5		Impurities on PVC	В	5
1	6	-	water on the input conductor	В	3
2	3	Pores on the PVC	Presence of moisture	В	3
2	4		Poorly welded joint	В	5
2	5		Impurities on PVC	В	5
2	6		water on the input conductor	В	3
3	4	Presence of moisture	Poorly welded joint	В	5
3	5		Impurities on PVC	В	3
3	6		water on the input conductor	В	3
4	5	Poorly welded joint	Impurities on PVC	А	3
4	6		water on the input conductor	А	5
5	6	Impurities on PVC	water on the input conductor	А	3

٦	Table	7:	Pairwise	comparison	matrix	with	iudgments	for the	Material-	Sub	criteria
	uoie	<i>'</i> •	I un wibe	comparison	mann	** 1 111	Judgineines	ior the	material	Duo	ernerna

Material	Bunched	Pores on	Moisture on	Poorly	Impurities on	Water on
	PVC	the PVC	PVC	welded	PVC	input
				joint		conductor
Bunched	1	3	0.333 [1/3]	0.1428	0.2 [1/5]	0.333
PVC				[1/7]		[1/3]
Pores on the	0.333 [1/3]	1	0.333 [1/3]	0.2 [1/5]	0.2 [1/5]	0.333
PVC						[1/3]
Moisture on	3	3	1	0.2	0.333 [1/3]	0.333
PVC						[1/3]
Poorly	7	5	5	1	3	5
welded joint						
Impurities	5	5	3	0.333 [1/3]	1	3
on PVC						
Water on	3	3	3	0.2 [1/5]	0.333 [1/3]	1
input						
conductor						

Table 8: Normalized matrix for the principal Eigen vector for the Material-Sub criteria

Material	Bunched	Pores	Moisture on	Poorly	Impurities	Water on	Principal
	PVC	on the	PVC	welded	on PVC	input	Priority
		PVC		joint		conductor	vector
Bunched							
PVC	0.051725	0.15	0.026290857	0.068793	0.039479	0.033303	0.061598
Pores on							
the PVC	0.017224	0.05	0.026290857	0.096348	0.039479	0.033303	0.043774
Moisture							
on PVC	0.155175	0.15	0.078951524	0.096348	0.065732	0.033303	0.096585
Poorly							
welded							
joint	0.362075	0.25	0.394757619	0.481742	0.592183	0.50005	0.430135
Impurities							
on PVC	0.258625	0.25	0.236854571	0.16042	0.197394	0.30003	0.233887
Water on							
input							
conductor	0.155175	0.15	0.236854571	0.096348	0.065732	0.10001	0.13402

Figure 1: Graphical representation of Material-subgroup prioritization vector for the improved cable Insulation Surface Flaws

Material	Bunche	Pores	Moisture	Poorly	Impuriti	Water on	Weighted	Global
	d PVC	on the	on PVC	welded	es on	input	sum	Eigen
		PVC		joint	PVC	conductor		vector
Bunched	0.0615	0.1313	0.032162	0.0614	0.04677		0.377912	0.02990
PVC	98	22	805	23	7	0.044629	143	6014
Pores on	0.0205	0.0437	0.032162	0.0860	0.04677		0.273881	0.02125
the PVC	12	74	805	27	7	0.044629	999	2408
Moisture	0.1847	0.1313		0.0860	0.07788		0.621241	0.04689
on PVC	94	22	0.096585	27	4	0.044629	031	2307
Poorly								
welded	0.4311	0.2188		0.4301	0.70166			0.20883
joint	86	7	0.482925	35	1	0.6701	2.934877	1833
Impurities	0.3079	0.2188		0.1432	0.23388		1.595796	0.11355
on PVC	9	7	0.289755	35	7	0.40206	955	284
Water on								
input	0.1847	0.1313		0.0860	0.07788		0.903802	0.06506
conductor	94	22	0.289755	27	4	0.13402	371	7112

 Table 9: Calculated weighted sum for Material-Sub criteria and the Global Eigen vectors

Name		Criteria		More	Intensity
				Important	
Ι	j	А	В	A or B	(1-9)
1	2	Poor tip tolerance	Faulty water pump	А	3
1	3		Unsteady wire guard	А	5
1	4		Faulty heating system	В	3
1	5		Faulty braking system	А	3
1	6		Shifting embosser	В	5
1	7		Water trough design not ok.	В	3
2	3	Faulty water pump	Unsteady wire guard	А	5
2	4		Faulty heating system	В	3
2	5		Faulty braking system	В	3
2	6		Shifting embosser	В	7
2	7		Water trough design not ok.	В	5
3	4	Unsteady wire guard	Faulty heating system	В	7
3	5		Faulty braking system	В	3
3	6		Shifting embosser	В	7
3	7		Water trough design not ok.	В	5
4	5	Faulty heating	Faulty braking system	А	3
4	6	system	Shifting embosser	В	3
4	7		Water trough design not ok.	В	3
5	6	Shifting embosser	Shifting embosser	В	5
5	7		Water trough design not ok.	В	5
6	7	Shifting embosser	Water trough design not ok	A	3

Table 10: Machine comparison table for the Cable Insulation Surface Flaws
Table 11: Pairwise comparison matrix with judgments for the machine criteria

Machine	Poor tip	Faulty	Unsteady	Faulty	Faulty	Shifting	Water
	tolerance	water	wire	heating	braking	embosser	trough
		pump	guard	system	system		designed
							not ok.
Poor tip	1	3	5	0.333[1/3]	3	0.2[1/5]	0.333[1/3]
tolerance							
Faulty	0.333[1/3]	1	5	0.333[1/3]	0.333[1/3]	0.1428[1/7]	0.2[1/5]
water							
pump							
Unsteady	0.2[1/5]	0.2[1/5]	1	0.1428[1/7]	0.333[1/3]	0.1428[1/7]	0.2[1/5]
wire							
guard							
Faulty	3	3	7	1	3	0.333[1/3]	0.333[1/3]
heating							
system							
Faulty	0.333[1/3]	3	3	0.333[1/3]	1	0.2[1/5]	0.2[1/5]
braking							
system							
Shifting	5	7	7	3	5	1	3
embosser							
Water	3	5	5	3	5	0.333[1/3]	1
trough							
designed							
not ok.							

Table 12: Normalized matrix for the principal Eigen vector for the machine factors

Machine	Poor tip	Faulty	Unsteady	Faulty	Faulty	Shifting	Water	Principa
	toleranc	water	wire	heating	braking	embosse	trough	1 Priority
	e	pump	guard	system	system	r	designe	vector
							d not	
							ok.	
Poor tip	0.07772	0.13513			0.16981	0.08504	0.06323	
tolerance	4	5	0.151515	0.0409	8	8	6	0.10334
Faulty								
water	0.02588	0.04504				0.06072	0.03797	0.05441
pump	2	5	0.151515	0.0409	0.01885	5	9	4
Unsteady								
wire	0.01554	0.00900		0.01753		0.06072	0.03797	0.02713
guard	5	9	0.030303	9	0.01885	5	9	6
Faulty								
heating	0.23317	0.13513		0.12282	0.16981	0.14160	0.06323	0.15398
system	3	5	0.212121	3	8	6	6	7
Faulty								
braking	0.02588	0.13513			0.05660	0.08504	0.03797	0.06749
system	2	5	0.090909	0.0409	6	8	9	4
Shifting	0.38862	0.31531		0.36846		0.42524	0.56969	
embosser	1	5	0.212121	9	0.28303	2	2	0.36607
Water								
trough								
designed	0.23317	0.22522		0.36846		0.14160	0.18989	0.22755
not ok.	3	5	0.151515	9	0.28303	6	7	9

Chart Title							
Shifting em	bosser 🔲 0	0.05	0.1 0.	15 0.2	0.25	0.3 (0.35 0.4
	Shifting embosser	Water trough designed not ok.	Faulty heating system	Poor tip tolerance	Faulty braking system	Faulty water pump	Unsteady wire guard
Series1	0.36607	0.227559	0.153987	0.10334	0.067494	0.054414	0.027136

Figure 2: graphical representation of Machine-subgroup prioritization vector for the improved cable Insulation Surface Flaws

Table 13: Calculated weighted sum for the Machine criteria and the global priorities

Mach	Poor tip	Faulty	Unstead	Faulty	Faulty	Shifting	Water	Weighte	Global
ine	tolerance	water	y wire	heating	braking	embosser	trough	d sum	Eigen
		pump	guard	system	system		designed		vector
							not ok.		
Poor									
tip									
tolera									0.02518
nce	0.1033	0.1632	0.1357	0.0513	0.2025	0.0732	0.0758	0.80501	84
Fault									
у									
water									0.01326
pump	0.0344	0.0544	0.1357	0.0513	0.0225	0.0523	0.0455	0.39605	303
Unste									
ady									
wire									0.00661
guard	0.0207	0.0109	0.0271	0.0219	0.0225	0.0523	0.0455	0.20094	421
Fault									
у									
heatin									
g									
syste									0.03753
m	0.3100	0.1632	0.1899	0.1539	0.2025	0.1219	0.0758	1.21736	325
Fault									
у									
braki									
ng									
syste									0.01645
m	0.0344	0.1632	0.0814	0.0513	0.0675	0.0732	0.0455	0.51656	119
Shifti									
ng									
embo									0.08922
sser	0.5167	0.3809	0.18995	0.4619	0.3375	0.36607	0.6827	2.93573	7
Water									
troug									
h									
desig									
ned									
not									0.05546
ok.	0.3100	0.2721	0.1357	0.46196	0.3375	0.12190	0.22756	1.86666	591

Na	Name Criteria		Criteria		Intensity
				Important	
i	j	А	В	A or B	(1-9)
i	j	Poor flushing of the	Poorly cleaned breaker plate		
i	j	extruder barrel	Poor alignment of the embossing		
			wheel		
i	j	Poorly cleaned	Poor alignment of the embossing		
		breaker plate	wheel.		

Table 14: Man- sub criteria comparison table for the Cable Insulation surface flaws

Table 15: Pairwise comparison matrix with judgments for the man-Sub criteria

Man	Poor flushing of the	Poorly cleaned breaker	Poor alignment of the
	extruder barrel	plate	embossing wheel
Poor flushing of the	1	7	3
extruder barrel			
Poorly cleaned breaker	0.1428[1/7]	1	0.2[1/5]
plate			
Poor alignment of the	0.333[1/3]	5	1
embossing wheel			

Table 16: Normalized matrix for the principal Eigen vector for the man-Sub criteria

Man	Poor flushing of	Poorly cleaned	Poor alignment of	Principal
	the extruder	breaker plate	the embossing	Priority
	barrel		wheel	vector
Poor flushing of the				
extruder barrel	0.677599	0.538462	0.714286	0.643449
Poorly cleaned breaker				
plate	0.096761	0.076923	0.047619	0.073768
Poor alignment of the				
embossing wheel	0.22564	0.384615	0.238095	0.282784

Figure 3: graphical representation of Man-subgroup prioritization vector for the improved cable Insulation Surface Flaw.

Table 17: Calculated weighted sum for the man-Sub criteria and the global priorities

Man	Poor flushing of	Poorly cleaned	Poor alignment of	Weighted	Global
	the extruder	breaker plate	the embossing	sum	Eigen
	barrel		wheel		vector
Poor flushing					
of the					
extruder					
barrel	0.643449	0.516376	0.848352	2.008177	0.085487
Poor flushing					
of the					
extruder					
barrel	0.091885	0.073768	0.056557	0.222209	0.009801
Poorly					
cleaned					
breaker plate	0.214269	0.36884	0.282784	0.865893	0.03757

Table 18: Method- sub criteria comparison table for the cable Insulation surface flaws

	Nan	ne	Criteria		More	Intensity
					Important	
	i	j	А	В	A or B	(1-9)
Ī	i	j	Poor monitoring	Improper speed setting	В	3
			system			

Table 19: Pairwise comparison matrix with judgments for the method- Sub criteria on Insulation Surface flaws.

Method	Poor monitoring system	Improper speed setting	
Poor monitoring system	1	0.333[1/3]	
Improper speed setting	3	1	
Prioritization			
Method	Poor monitoring system	Improper speed setting	Principal
			Priority
			vector
Poor monitoring system	0.25	0.249812	0.249906
Improper speed setting	0.75	0.750188	0.750094

Figure 4: graphical representation of Method-subgroup prioritization vector for the improved cable Insulation Surface Flaws.

Table 20: Normalized matrix for the principal Eigen vector for the Method-Sub criteria for Insulation Surface flaws.

Method	Poor monitoring	Improper speed	Weighted sum	Global
	system	setting		Eigen vector
Poor monitoring				
system	0.249906	0.249781	0.499687	0.0214127
Improper speed				
setting	0.749718	0.750094	1.499812	0.0642703

APPENDIX H

S/N	М	RI
1	2	0
2	3	0.5245
3	4	0.8815
4	5	1.1086
5	6	1.2479
6	7	1.3417
7	8	1.4056
8	9	1.4499
9	10	1.4854
10	11	1.5141
11	12	1.5365
12	13	1.5551
13	14	1.5713
14	15	1.5838

Table 1 RI ((n) various fr	om Alonso & I	Lamata, 2006

APPENDIX I

Questionnaire on Defect solutions

What are the potential solutions to removing the following identified defects that are found in the cable extrusion line such as:

- 1. Un-aligned embossing wheel
- 2. Worn-out centering bolts
- 3. Faulty heating system
- 4. Poorly annealed copper conductor
- 5. Over-dimensioned tip
- 6. Faulty measuring tools
- 7. Inadequate centering skills
- 8. Faulty tensioning system
- 9. Operator's fatigue
- **10.** Poor monitoring system
- 11. Presence of water on the input
- 12. Pores on the PVC
- 13. Improper speed setting
- 14. Poor flushing of the extrusion barrel
- 15. Water trough design not ok.
- 16. Poor tip tolerance
- **17.** Poorly welded joint
- 18. Management problems/ lack of motivation

APPENDIX J

Table of Two-way ANOVA with replication

Anova: Two-Factor	With Replica	ation				
SUMMARY	375	400	425	450	Total	
Count					20	
Count	5	5	5	5	20	
Sum	13.67	12.99	12.89	12.63	52.18	
Average	2.734	2.598	2.578	2.526	2.609	
Variance	0.00078	0.00317	0.00437	0.00193	0.008367	
900						
Count	5	5	5	5	20	
Sum	13.71	13.74	13.48	13.16	54.09	
Average	2.742	2.748	2.696	2.632	2.7045	
Variance	0.00497	0.00237	0.00023	0.00177	0.004237	
925						
Count	5	5	5	5	20	
Sum	14.3	13.84	13.74	13.46	55.34	
Average	2.86	2.768	2.748	2.692	2.767	
Variance	0.0024	0.00107	0.00137	0.00457	0.005833	
950						
Count					20	
Count	5	5	5	5	20	
Sum	14.37	14.22	14.01	13.76	56.36	
Average	2.874	2.844	2.802	2.752	2.818	
Variance	0.00243	0.00428	0.00537	0.00162	0.005101	

APPENDIX K

Taguchi Design

Taguchi Analysis: Preheated PVC, Non-Preheated PV versus Capstan Speed (r, Extruder Speed (

Linear Model Analysis: SN ratios versus Capstan Speed (rpm), Extruder Speed (rpm)

Estimated Model Coefficients for SN ratios

TermCoef SE CoefTPConstant38.12612.04518.6460.000Capstan375-1.19583.542-0.3380.743Capstan4000.15183.5420.0430.967Capstan4251.84523.5420.5210.615Extruder875-3.68893.542-1.0420.325Extruder9007.35743.5422.0770.068Extruder925-2.56213.542-0.7230.488

S = 8.179 R-Sq = 35.0% R-Sq(adj) = 0.0%

Analysis of Variance for SN ratios

 Source
 DF Seq SS Adj SS Adj MS F
 P

 Capstan Speed (rpm)
 3
 22.00
 22.00
 7.333
 0.11
 0.952

 Extruder Speed (rpm)
 3
 302.11
 302.11
 100.704
 1.51
 0.278

 Residual Error
 9
 602.05
 602.05
 66.894
 Total
 15
 926.16

Unusual Observations for SN ratios

Observation SN ratios Fit SE Fit Residual St Resid 2 27.109 44.288 5.410 -17.179 -2.80 R

R denotes an observation with a large standardized residual.

Linear Model Analysis: Means versus Capstan Speed (rpm), Extruder Speed (rpm)

Estimated Model Coefficients for Means

TermCoefSECoefTPConstant2.737810.007460366.9940.000Capstan3750.069690.0129215.3930.000Capstan4000.010940.0129210.8460.419Capstan425-0.010310.012921-0.7980.445Extruder875-0.096560.012921-7.4730.000Extruder900-0.037810.012921-2.9260.017Extruder9250.044690.0129213.4580.007

S = 0.02984 R-Sq = 93.9% R-Sq(adj) = 89.8%

Analysis of Variance for Means

Source DF Seq SS Adj SS Adj MS F P

Capstan Speed (rpm)30.0401050.0401050.01336815.010.001Extruder Speed (rpm)30.0831800.0831800.02772731.140.000Residual Error90.0080140.0080140.000890Total150.131298

Unusual Observations for Means

Observation Means Fit SE Fit Residual St Resid 6 2.765 2.711 0.020 0.054 2.42 R

Response Table for Signal to Noise Ratios Nominal is best (10×Log10(Ybar^2/s^2))

Capstan Extruder Speed Speed Level (rpm) (rpm) 34.44 1 36.93 2 38.28 45.48 39.97 3 35.56 4 37.32 37.02 3.04 Delta 11.05 Rank 2 1

Response Table for Means

Capstan Extruder Speed Speed Level (rpm) (rpm) 1 2.808 2.641 2 2.749 2.700 3 2.728 2.782 4 2.668 2.827 Delta 0.140 0.186 Rank 2 1

Predicted values

S/N Ratio Mean 35.7159 2.79344

Factor levels for predictions

Capstan Extruder Speed Speed (rpm) (rpm) 400 925

APPENDIX L

Optimization

RESPONSE 1

Table 1: 1Two-sidedConfidence = 95%

Respon se	Predict ed Mean	Predict ed Median	Observ ed	Std Dev	n	SE Pred	95% PI low	Dat a Mea	95% PI bigb
	wican	wiculan					10 W	n	mgn
Preheat	2.72462	2.72462		0.03913	1	0.04061	2.634		2.815
ed PVC				44		17	13		1
Non	2.72	2.72		0.03204	1	0.03325	2.645		2.794
preheat				28		24	91		09
ed PVC									

Table 2: Build Information

File Version	11.1.1.0		
Study Type	Response Surface	Subtype	Randomized
Design Type	Central Composite	Runs	13
Design Model	Quadratic	Blocks	No Blocks
Build Time	85.00		
(ms)			

Table 3: Responses

Resp	Name	Un	Observa	Analys	Mini	Maxi	Me	Std.	Rat	Transf	Mo
onse		its	tions	is	mum	mum	an	Dev	io	orm	del
R1	Prehe	m	13	Polyno	2.6	2.92	2.7	0.07	1.1	None	Lin
	ated	m		mial			2	70	2		ear
	PVC										
R2	Non	m	13	Polyno	2.59	2.88	2.7	0.06	1.1	None	Lin
	prehe	m		mial			2	82	1		ear
	ated										
	PVC										

Table: 4: Factors

Facto	Name	Unit	Туре	Minimu	Maximu	Code	Code	Mean	Std.
r		S		m	m	d Low	d		Dev.
							High		
А	Capstan	rpm	Numeri	359.47	465.53	<i>-</i> 1 ↔	$+1 \leftrightarrow$	412.5	30.6
	speed		с			375.0	450.0	0	2
						0	0		
В	Extrude	rpm	Numeri	859.47	965.53	-1 ↔	$+1 \leftrightarrow$	912.5	30.6
	r speed		с			875.0	950.0	0	2
						0	0		

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Mean vs Total	96.51	1	96.51			
Linear vs Mean	0.0558	2	0.0279	18.22	0.0005	Suggested
2FI vs Linear	0.0001	1	0.0001	0.0592	0.8133	
Quadratic vs 2FI	0.0009	2	0.0005	0.2306	0.7998	
Cubic vs	0.0074	2	0.0037	2.72	0.1585	Aliased
Quadratic						
Residual	0.0068	5	0.0014			
Total	96.58	13	7.43			

 Table 5: Sequential Model Sum of Squares [Type I]

Table 6: Lack of Fit Tests

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Linear	0.0130	6	0.0022	3.73	0.1115	Suggested
2FI	0.0129	5	0.0026	4.45	0.0867	
Quadratic	0.0120	3	0.0040	6.87	0.0468	
Cubic	0.0045	1	0.0045	7.78	0.0493	Aliased
Pure	0.0023	4	0.0006			
Error						

Table 7: Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	
Linear	0.0391	0.7847	0.7416	0.5666	0.0308	Suggested
2FI	0.0411	0.7861	0.7148	0.2174	0.0557	
Quadratic	0.0452	0.7993	0.6559	-0.2462	0.0886	
Cubic	0.0370	0.9039	0.7694	-3.1115	0.2924	Aliased

Focus on the model maximizing the $\mathbf{Adjusted}\ \mathbf{R}^2$ and the $\mathbf{Predicted}\ \mathbf{R}^2.$

Table 8: Fit Statistics

Std.	0.0391	ŀ	R ²	0.7847
Dev.				
Mean	2.72	A	Adjusted R ²	0.7416
C.V. %	1.44	F	Predicted R ²	0.5666
		A	Adeq Precision	12.4602

Table: 9 Coefficients in Terms of Coded Factors

Factor	Coefficient	df	Standard	95% CI	95% CI	VIF
	Estimate		Error	Low	High	
Intercept	2.72	1	0.0109	2.70	2.75	
A-Capstan	-0.0509	1	0.0138	-0.0817	-0.0201	1.0000
speed						
B-Extrruder	0.0662	1	0.0138	0.0354	0.0970	1.0000
speed						

RESPONSE 2

Table 10. Sequence	a mouel built of b	quai	cs [I ypc I]			
Source	Sum of Squares	df	Mean Square	F-value	p-value	
Mean vs Total	96.18	1	96.18			
Linear vs Mean	0.0455	2	0.0228	22.17	0.0002	Suggested
2FI vs Linear	0.0001	1	0.0001	0.0885	0.7728	
Quadratic vs 2FI	0.0008	2	0.0004	0.3142	0.7402	
Cubic vs	0.0062	2	0.0031	4.99	0.0643	Aliased
Quadratic						
Residual	0.0031	5	0.0006			
Total	96.24	13	7.40			

Table 10: Sequential Model Sum of Squares [Type I]

Table 11: Lack of Fit Tests

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Linear	0.0087	6	0.0014	3.61	0.1172	Suggested
2FI	0.0086	5	0.0017	4.28	0.0918	
Quadratic	0.0077	3	0.0026	6.44	0.0519	
Cubic	0.0015	1	0.0015	3.78	0.1237	Aliased
Pure	0.0016	4	0.0004			
Error						

Table 12: Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	
Linear	0.0320	0.8160	0.7792	0.6327	0.0205	Suggested
2FI	0.0336	0.8178	0.7571	0.3515	0.0362	
Quadratic	0.0365	0.8328	0.7134	-0.0299	0.0575	
Cubic	0.0249	0.9442	0.8661	-0.7796	0.0993	Aliased

Focus on the model maximizing the Adjusted R^2 and the Predicted R^2 .

Table 13: Fit Statistics

Std.	0.0320	R ²	0.8160
Dev.			
Mean	2.72	Adjusted R ²	0.7792
C.V.	1.18	Predicted R ²	0.6327
%			
		Adeq Precision	13.7840

Table 14: Coefficients in Terms of Coded Factors

Factor	Coefficient	df	Standard	95% CI	95% CI	VIF
	Estimate		Error	Low	High	
Intercept	2.72	1	0.0089	2.70	2.74	
A-Capstan	-0.0474	1	0.0113	-0.0726	-0.0221	1.0000
speed						
B-Extrruder	0.0587	1	0.0113	0.0335	0.0840	1.0000
speed						

Table 15: Final Equation in Terms of Coded Factors

Non	preheated	=
PVC	•	
+2.72		
-0.0474		А
+0.0587		В

Table 16: Final Equation in Terms of Actual Factors

Non preheated	=
PVC	
+1.81243	
-0.001263	Capstan speed
+0.001566	Extruder speed

Table 17:

Run Orde r	Actu al Valu e	Predicte d Value	Residu al	Levera ge	Internally Studentiz ed Residuals	Externall y Studentiz ed	Cook's Distanc e	Influen ce on Fitted Value	Standar d Order
						Residuals		S	
1	2.72	2.72	-0.0046	0.077	-0.123	-0.117	0.000	-0.034	12
2	2.73	2.72	0.0054	0.077	0.143	0.136	0.001	0.039	10
3	2.60	2.61	-0.0075	0.327	-0.233	-0.222	0.009	-0.155	2
4	2.77	2.74	0.0301	0.327	0.937	0.931	0.142	0.649	4
5	2.70	2.72	-0.0246	0.077	-0.655	-0.635	0.012	-0.183	13
6	2.68	2.72	-0.0446	0.077	-1.187	-1.214	0.039	-0.351	11
7	2.65	2.63	0.0190	0.327	0.593	0.572	0.057	0.399	7
8	2.74	2.72	0.0154	0.077	0.409	0.391	0.005	0.113	9
9	2.73	2.71	0.0207	0.327	0.644	0.624	0.067	0.435	1
10	2.66	2.65	0.0074	0.327	0.230	0.219	0.009	0.152	6
11	2.77	2.82	-0.0483	0.327	-1.503	-1.621	0.366	-1.129	8
12	2.92	2.84	0.0783	0.327	2.438	3.630	$0.962^{(1)}$	2.530 ⁽¹⁾	3
13	2.75	2.80	-0.0466	0.327	-1.452	-1.550	0.341	-1.081	5

Table 18:

Run Orde	Actu al	Predicte d Value	Residu al	Levera ge	Internally Studentiz	Externall y	Cook's Distanc	Influen ce on	Standar d Order
r	Valu				ed	Studentiz	e	Fitted	
	e				Residuals	ed		Value	
						Residuals		DFFIT	
								S	
1	2.73	2.72	0.0100	0.077	0.325	0.310	0.003	0.089	12
2	2.72	2.72	0.0000	0.077	0.000	0.000	0.000	0.000	10
3	2.59	2.61	-0.0239	0.327	-0.910	-0.901	0.134	-0.628	2
4	2.75	2.73	0.0187	0.327	0.710	0.691	0.082	0.482	4
5	2.68	2.72	-0.0400	0.077	-1.299	-1.352	0.047	-0.390	13
6	2.70	2.72	-0.0200	0.077	-0.650	-0.630	0.012	-0.182	11
7	2.65	2.64	0.0130	0.327	0.496	0.476	0.040	0.332	7
8	2.72	2.72	0.0000	0.077	0.000	0.000	0.000	0.000	9
9	2.74	2.71	0.0313	0.327	1.192	1.221	0.230	0.851	1
10	2.68	2.65	0.0270	0.327	1.027	1.030	0.171	0.718	6
11	2.77	2.80	-0.0330	0.327	-1.257	-1.299	0.256	-0.905	8
12	2.88	2.83	0.0539	0.327	2.051	2.556	0.681	1.781 ⁽¹⁾	3
13	2.75	2.79	-0.0370	0.327	-1.407	-1.491	0.321	-1.039	5

APPENDIX: M

Factors for Tolerance Intervals

Values of k for Two-Sided Intervals									
Confidenc e	: 	0.90			0.95			0.99	
Percent Coverage	0.90	0.95	0.99	0.90	0.95	0.99	0.90	0.95	0.99
2	15.978	18.800	24.1	32.019	37.674	48.4	160.19	188.49	242.30
3	5.847	6.919	8.97	8.380	9.916	12.8	18.930	22.401	29.05
4	4.166	4.943	6.44	5.369	6.370	8.29	9.398	11.150	14.52
5	3.949	4.152	5.42	4.275	5.079	6.63	6.612	7.855	10.26
6	3.131	3.723	4.87	3.712	4.414	5.77	5.337	6.345	8.30
7	2.902	3.452	4.52	3.369	4.007	5.24	4.613	5.488	7.18
8	2.743	3.264	4.27	3.136	3.732	4.89	4.147	4.936	6.46
9	2.626	3.125	4.09	2.967	3.532	4.63	3.822	4.550	5.96
10	2.535	3.018	3.95	2.839	3.379	4.43	3.582	4.265	5.59
11	2.463	2.933	3.84	2.737	3.259	4.27	3.397	4.045	5.30
12	2.404	2.863	3.75	2.655	3.162	4.15	3.250	3.870	5.07
13	2.355	2.805	3.68	2.587	3.081	4.04	3.130	3.727	4.89
14	2.314	2.756	3.61	2.529	3.012	3.95	3.029	3.608	4.73
15	2.278	2.713	3.56	2.480	2.954	3.87	2.945	3.507	4.60
16	2.246	2.676	3.51	2.437	2.903	3.81	2.872	3.421	4.49
17	2.219	2.643	3.47	2.400	2.858	3.75	2.808	3.345	4.39
18	2.194	2.614	3.43	2.366	2.819	3.70	2.753	3.279	4.30
19	2.172	2.588	3.39	2.337	2.784	3.65	2.703	3.221	4.23
20	2.152	2.564	3.36	2.310	2.752	3.61	2.659	3.168	4.16
21	2.135	2.543	3.34	2.286	2.723	3.57	2.620	3.121	4.10
22	2.118	2.524	3.31	2.264	2.697	3.54	2.584	3.078	4.04
23	2.103	2.506	3.29	2.244	2.673	3.51	2.551	3.040	3.99
24	2.089	2.489	3.27	2.225	2.651	3.48	2.522	3.004	3.94
25	2.077	2.474	3.25	2.208	2.631	3.45	2.494	2.972	3.90
30	2.025	2.413	3.17	2.140	2.529	3.35	2.385	2.841	3.73
40	1.959	2.334	3.06	2.052	2.445	3.21	2.247	2.677	3.51
50	1.916	2.284	3.00	1.996	2.379	3.12	2.162	2.576	3.38
60	1.887	2.248	2.95	1.958	2.333	3.06	2.103	2.506	3.29
70	1.865	2.222	2.92	1.929	2.299	3.02	2.060	2.454	3.22
80	1.848	2.202	2.89	1.907	2.272	2.98	2.026	2.414	3.17
90	1.834	2.185	2.87	1.889	2.251	2.95	1.999	2.382	3.13
10	1.822	2.172	2.85	1.874	2.233	2.93	1.977	2.355	3.09
Factor	for	Toleran	ce	Interval.	R	etrieved	onli	ne	from:

http://www.bessegato.com.br/UFJF/resources/tolerance_table.pdf

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
1	50	3.53	12.461
2	60	13.53	183.061
3	39	-7.47	55.801
4	50	3.53	12.461
5	70	23.53	553.661
6	30	-16.47	271.261
7	31	-15.47	239.321
8	49	2.53	6.401
9	36	-10.47	109.621
10	50	3.53	12.461
11	40	-6.47	41.861
12	41	-5.47	29.921
13	40	-6.47	41.861
14	39	-7.47	55.801
15	60	13.53	183.061
16	45	-1.47	2.161
17	50	3.53	12.461
18	33	-13.47	181.441
19	70	23.53	553.661
20	49	2.53	6.401
21	49	2.53	6.401
22	48	1.53	2.341
23	45	-1.47	2.161
24	31	-15.47	239.321
25	60	13.53	183.061
26	51	4.53	20.521

Table 1: Average time = 3532/76 = 46.47 sec

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
27	49	2.53	6.401
28	52	5.53	30.581
29	50	3.53	12.461
30	30	-16.47	271.261
31	41	-5.47	29.921
32	40	-6.47	41.861
33	30	-16.47	271.261
34	60	13.53	183.0609
35	55	8.53	72.761
36	70	23.53	553.661
37	63	16.53	273.241
38	58	11.53	132.941
39	45	-1.47	2.161
40	40	-6.47	41.861
41	40	-6.47	41.861
42	33	-13.47	181.441
43	33	-13.47	181.441
44	45	-1.47	2.161
45	30	-16.47	271.261
46	30	-16.47	271.261
47	32	-14.47	209.381
48	46	-0.47	0.2209
49	40	-6.47	41.861
50	50	3.53	12.461
51	48	1.53	2.341
52	51	4.53	20.521
53	50	3.53	12.461
54	50	3.53	12.461

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
55	50	3.53	12.461
56	39	-7.47	55.801
57	62	15.53	241.181
58	68	21.53	463.541
59	45	-1.47	2.161
60	43	-3.47	12.041
61	54	7.53	56.701
62	45	-1.47	2.161
63	39	-7.47	55.801
64	40	-6.47	41.861
65	49	2.53	6.401
66	30	-16.47	271.261
67	44	-2.47	6.101
68	60	13.53	183.061
69	52	5.53	30.581
70	50	3.53	12.461
71	48	1.53	2.341
72	55	8.53	72.761
73	58	11.53	132.941
74	55	8.53	72.761
75	39	-7.47	55.801
76	30	-16.47	271.261

 $\sum t = 2176$

Average time = 2278/50 = 45.56 sec

$$S_x = \left[\sum \left[\left(((t_i - t)^2)\right]/n\right]^{0.5} = \left[\frac{6114.601}{50}\right]^{0.5} = 11.058$$

Lower limit = t - 2Sx = 45.56 - 2(11.058) = 23.444

Upper limit = t + 2Sx = 45.56 + 2(11.058) = 67.676

Any data points not in the range $23.444 \le t_i \le 67.676$ will be discarded. This includes data points 5, 19 & 36. We now recalculate the average and sample variance, as follows

t = (2278-70-70-70) / 47 = 44 and Sx = S_x =
$$\left[\sum \left[\left((t_i - t)^2\right)\right]/n\right]^{0.5} = \left[\frac{4322.659}{47}\right]^{0.5} = 9.590$$

The new upper and lower limit:

Lower limit = 44 - 2(9.590) = 24.82

Upper limit = 44 + 2(9.590) = 63.18

Any data points not in the range $24.82 \le t_i \le 63.18$ will be discarded. At this point, there is no longer any out-ofrange data. However, we still need to determine the required number of data points in the sample

$$N = \left[\frac{2 x 9.590}{0.05 x 44}\right]^2 = 76$$

 $\sum t = 3532$

Average time = 3532/76 = 46.47 sec

Table 2 : Element 2

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
1	322	-71.92	5172.48	
2	305	-88.92	7906.76	
3	374	-19.92	396.80	
4	540	146.08	21339.36	
5	491	97.08	9424.52	
6	525	131.08	17181.96	
7	442	48.08	2311.68	
8	311	-82.92	6875.72	
9	322	-71.92	5172.48	
10	365	-28.92	836.36	
11	442	48.08	2311.68	
11	442	48.08	2311.68	

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
12	312	-81.92	6710.88
13	547	153.08	23433.48
14	345	-48.92	2393.16
15	381	-12.92	166.92
16	317	-76.92	5916.68
17	417	23.08	532.68
18	405	11.08	122.76
19	400	6.08	36.96
20	373	-20.92	437.64
21	422	28.08	788.48
22	480	86.08	7409.76
23	343	-50.92	2592.84
24	308	-85.92	7382.24
25	401	7.08	50.12
26	379	-14.92	222.60
27	380	-13.92	193.76
28	375	-18.92	357.96
29	483	89.08	7935.24
30	429	35.08	1230.60
31	369	-24.92	621.00
32	414	20.08	403.20
33	541	147.08	21632.52
34	393	-0.92	0.84
35	381	-12.92	166.92
36	369	-24.92	621.00
37	421	27.08	733.32
38	333	-60.92	3711.24
39	300	-93.92	8820.96

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
40	303	-90.92	8266.44	
41	420	26.08	680.16	
42	364	-26.92	724.68	
No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
43	363	-30.92	956.04	
44	411	17.08	291.72	
45	424	30.08	904.80	
46	424	30.08	904.80	
47	353	-40.92	1674.44	
48	341	-52.92	2800.52	
49	427	33.08	1094.28	
50	409	15.08	227.40	

Table 3: Element 3 (Passing the wire through the die and tying with the existing line).

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
1	190	-6.12	37.454	
2	187	0.88	0.774	
3	182	-4.12	16.974	
4	189	2.88	8.294	
5	180	-6.12	37.454	
6	187	0.88	0.774	
7	182	-4.12	16.974	
8	176	-10.12	102.414	
9	181	-5.12	26.214	
10	182	-4.12	16.974	
11	182	-4.12	16.974	
12	189	2.88	8.294	
13	185	-1.12	1.254	
14	189	2.88	8.294	

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
15	189	2.88	8.294
16	186	-0.12	0.014
17	186	-0.12	0.014
18	186	-0.12	0.014
19	186	-0.12	0.014
20	188	1.88	3.534
21	188	1.88	3.534
22	180	-6.12	37.454
23	179	-7.12	50.694
24	184	-2.12	4.494
25	188	1.88	3.534
26	189	2.88	8.294
27	192	5.88	34.574
28	181	-5.12	26.214
29	202	15.88	252.17
30	189	2.88	8.294
31	187	0.88	0.774
32	183	-3.12	9.734
33	183	-3.12	9.734
34	212	25.88	669.774
35	176	-10.12	102.414
36	187	0.88	0.774
37	190	3.88	15.054
38	179	-7.12	50.694
39	189	2.88	8.294
40	185	-1.12	1.254

Time (t)	(t _i -t)	$(t_i-t)^2$	
122	-3.15	9.922	
139	13.85	191.822	
136	10.85	117.722	
140	14.85	220.522	
136	10.85	117.722	
129	3.85	14.822	
125	-0.15	0.022	
129	3.85	14.822	
149	23.85	568.822	
118	-7.15	51.122	
114	-11.15	124.322	
132	6.85	46.922	
118	-7.15	51.122	
127	1.5	2.25	
132	6.85	46.922	
129	3.85	14.822	
131	5.85	34.222	
122	-3.15	9.922	
116	-9.15	83.722	
119	-6.15	37.822	
129	3.85	14.822	
115	-10.15	103.022	
120	-5.15	26.522	
121	-4.15	17.222	
125	-0.15	0.022	
132	6.85	46.922	
131	5.85	34.222	
	Time (t) 122 139 136 140 136 129 125 129 129 140 136 129 121 132 131 129 131 127 132 118 127 132 132 131 129 131 129 131 129 131 129 131 129 131 129 131 129 131 129 131 120 121 125 132 131	Time (t) (t_i-t) 122-3.1513913.8513610.8514014.8513610.851293.85125-0.151293.8514923.85118-7.15114-11.151326.851315.851293.85118-7.15118-7.151271.51326.85118-7.151271.51315.851293.851315.851293.85116-9.151293.85115-10.15120-5.15121-4.15122-3.151326.851335.851345.851351351361311375.851315.851315.85	Time (t) (t-t) (t-t) ² 122 -3.15 9.922 139 13.85 191.822 136 10.85 117.722 140 14.85 220.522 136 10.85 117.722 129 3.85 14.822 129 3.85 14.822 129 3.85 14.822 149 23.85 568.822 118 -7.15 51.122 114 -11.15 124.322 132 6.85 46.922 118 -7.15 51.122 132 6.85 46.922 132 6.85 46.922 131 5.85 34.222 131 5.85 34.222 115 -10.15 103.022 129 3.85 14.822 131 5.15 26.522 129 3.85 14.822 119 -6.15 37.822 120 <

Table 4: Element 4 (Opening of the Crosshead)

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
28	122	-3.15	9.922	
29	127	1.85	3.422	
30	117	-8.15	66.422	
31	110	-15.15	229.522	
32	121	-4.15	17.222	
33	119	-6.15	37.822	
34	114	-11.15	124.322	
35	124	-1.15	1.322	
36	120	-5.15	26.522	
37	122	-3.15	9.922	
38	125	-0.15	0.022	
39	130	4.85	23.522	
40	119	-6.15	37.822	

Table 5: Element 6 124.88

r			2	
No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
1	122	-2.88	8.294	
2	139	14.12	199.374	
3	136	11.12	123.654	
4	140	15.12	228.614	
5	136	11.12	123.654	
6	129	4.12	16.974	
7	125	0.12	0.014	
8	129	4.12	16.974	
9	149	24.12	581.774	
10	118	-6.88	47.334	
11	114	-10.88	118.374	
12	132	7.12	50.694	
13	118	-6.88	47.334	
1				

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
14	127	2.12	4.494
15	132	7.12	50.694
16	129	4.12	16.974
17	131	6.12	37.454
18	122	-2.88	8.294
19	116	-8.88	78.854
20	119	-5.88	34.574
21	129	4.12	16.974
22	115	-9.88	97.614
23	120	-4.88	23.814
24	121	-3.88	15.054
25	125	0.12	0.014
26	132	7.12	50.694
27	131	6.12	37.454
28	122	-2.88	8.294
29	127	2.12	4.494
30	117	-7.88	62.094
31	110	-14.88	221.414
32	121	-3.88	15.054
33	119	-5.88	34.574
34	114	-10.88	118.374
35	124	-0.88	0.774
36	120	-4.88	23.814
37	122	-2.88	8.294
38	125	0.12	0.014
39	130	5.12	26.214
40	119	-5.88	34.574
41	129	4.12	16.974

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
42	119	-5.88	34.574
43	122	-2.88	8.294
44	129	4.12	16.974
45	128	3.12	9.734
46	116	-8.88	78.854
47	124	-0.88	0.774
48	127	2.12	4.494
49	123	-1.88	3.534
50	121	-3.88	15.054

Table 7: Element 7

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
1	461	-20.32	412.902
2	477	-4.32	18.662
3	484	2.68	7.182
4	489	7.68	58.982
5	467	-14.32	205.062
6	491	9.68	93.702
7	490	8.68	75.342
8	494	12.68	160.782
9	484	2.68	7.182
10	488	6.68	44.622
11	481	-0.32	0.102
12	489	7.68	58.982
13	502	20.68	427.662
14	497	15.68	245.862
15	464	-17.32	299.982
16	471	-10.32	106.502
17	484	2.68	7.182

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
18	482	0.68	0.462
19	487	5.68	32.262
20	486	4.68	21.902
21	488	6.68	44.622
22	492	10.68	114.062
23	466	-15.32	234.702
24	481	-0.32	0.102
25	481	-0.32	0.102
26	479	-2.32	5.382
27	481	-0.32	0.102
28	472	-9.32	86.862
29	478	-3.32	11.022
30	461	-20.32	412.902
31	507	25.68	659.462
32	477	-4.32	18.662
33	512	30.68	941.262
34	491	9.68	93.702
35	489	7.68	58.982
36	490	8.68	75.342
37	484	2.68	7.182
38	482	0.68	0.462
39	485	3.68	13.542
40	486	4.68	21.902
41	474	-7.32	53.582
42	486	4.68	21.902
43	472	-9.32	86.862
44	481	-0.32	0.102
45	488	6.68	44.622

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
46	424	-57.32	3285.582
47	490	8.68	75.342
48	436	-45.32	2053.902
49	488	6.68	44.622
50	485	3.68	13.542

Table 8: Element 8 (481.22)

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
1	461	-20.22	408.84
2	477	-4.22	17.808
3	484	2.78	7.728
4	489	7.78	60.528
5	467	-14.22	202.208
6	491	9.78	95.648
7	490	8.78	77.088
8	494	12.78	163.328
9	484	2.78	7.728
10	488	6.78	45.968
11	481	-0.22	0.048
12	489	7.78	60.528
13	502	20.78	431.808
14	497	15.78	249.008
15	464	-17.22	296.528
16	471	-10.22	104.448
17	484	2.78	7.728
18	482	0.78	0.608
19	487	5.78	33.408
20	486	4.78	22.848
21	488	6.78	45.968

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
22	492	10.78	116.208
23	466	-15.22	231.648
24	481	-0.22	0.048
25	481	-0.22	0.048
26	479	-2.22	4.928
27	481	-0.22	0.048
28	472	-9.22	85.008
29	478	-3.22	10.368
30	461	-20.22	408.848
31	507	25.78	664.608
32	477	-4.22	17.808
33	512	30.78	947.408
34	491	9.78	95.648
35	489	7.78	60.528
36	490	8.78	77.088
37	484	2.78	7.728
38	482	0.78	0.608
39	485	3.78	14.288
40	486	4.78	22.848
41	474	-7.22	52.128
42	486	4.78	22.848
43	472	-9.22	85.008
44	481	-0.22	0.048
45	488	6.78	45.968
46	424	-57.22	3274.128
47	490	8.78	77.088
48	436	-45.22	2044.848
49	488	6.78	45.968

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
50	485	3.78	14.288
51	469	-12.22	149.328
52	479	-2.22	4.928
53	488	6.78	45.968
54	481	-0.22	0.048
55	452	-29.22	853.808
56	499	17.78	316.128
57	492	10.78	116.208
58	487	5.78	33.408
59	479	-2.22	4.928
60	468	-13.22	174.768
61	464	-17.22	296.528
62	481	-0.22	0.048
63	488	6.78	45.968
64	495	13.78	189.888

Table 9 Element 6

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
1	276	-0.38	0.144	
2	260	-16.38	268.304	
3	259	-17.38	302.064	
4	321	44.62	1990.944	
5	268	-8.38	70.224	
6	267	-9.38	87.984	
7	269	-7.38	54.464	
8	277	0.62	0.384	
9	288	11.62	135.024	
10	268	-8.38	70.224	
11	299	22.62	511.664	

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
12	273	-3.38	11.424
13	271	-5.38	28.944
14	265	-11.38	129.504
15	267	-9.38	87.984
16	277	0.62	0.384
17	279	2.62	6.864
18	272	-4.38	19.184
19	284	7.62	58.064
20	285	8.62	74.304
21	269	-7.38	54.464
22	271	-5.38	28.944
23	280	3.62	13.104
24	283	6.62	43.824
25	278	1.62	2.624
26	266	-10.38	107.744
27	281	4.62	21.344
28	282	5.62	31.584
29	275	-1.38	1.904
30	262	-14.38	206.784
31	275	-1.38	1.904
32	268	-8.38	70.224
33	266	-10.38	107.744
34	261	-15.38	236.544
35	268	-8.38	70.224
36	271	-5.38	28.944
37	276	-0.38	0.144
38	279	2.62	6.864
39	300	23.62	557.904

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
40	266	-10.38	107.734	
41	276	-0.38	0.144	
42	278	1.62	2.624	
43	260	-16.38	268.304	
44	279	2.62	6.864	
45	266	-10.38	107.744	
46	289	12.62	159.264	
47	309	32.62	1064.064	
48	301	24.62	606.144	
49	290	13.62	185.504	
50	269	-7.38	54.464	

Table 10: 277.21

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
1	276	-1.21	1.464	
2	260	-17.21	296.184	
3	259	-18.21	331.604	
4	321	43.79	1917.564	
5	268	-9.21	84.824	
6	267	-10.21	104.244	
7	269	-8.21	67.404	
8	277	-0.21	0.044	
9	288	10.79	116.424	
10	268	-9.21	84.824	
11	299	21.79	474.804	
12	273	-4.21	17.724	
13	271	-6.21	38.564	
14	265	-12.21	149.084	
15	267	-10.21	104.244	

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
16	277	-0.21	0.044
17	279	1.79	3.204
18	272	-5.21	27.144
19	284	6.79	46.104
20	285	7.79	60.684
21	269	-8.21	67.404
22	271	-6.21	38.564
23	280	2.79	7.784
24	283	5.79	33.524
25	278	0.79	0.624
26	266	-11.21	125.664
27	281	3.79	14.364
28	282	4.79	22.944
29	275	-2.21	4.884
30	262	-15.21	231.344
31	275	-2.21	4.884
32	268	-9.21	84.824
33	266	-11.21	125.664
34	261	-16.21	262.764
35	268	-9.21	84.824
36	271	-6.21	38.564
37	276	-1.21	1.464
38	279	1.79	3.204
39	300	22.79	519.384
40	266	-11.21	125.664
41	276	-1.21	1.464
42	278	0.79	0.624
43	260	-17.21	296.184

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
44	279	1.79	3.204	
45	266	-11.21	125.664	
46	289	11.79	139.004	
47	309	31.79	1010.604	
48	301	23.79	565.964	
49	290	12.79	163.584	
50	269	-8.21	67.404	
51	274	-3.21	10.304	
52	271	-6.21	38.564	
53	290	12.79	163.584	
54	271	-6.21	38.564	
55	274	-3.21	10.304	
56	288	10.79	116.424	
57	281	3.79	14.364	
58	299	21.79	474.804	
59	279	1.79	3.204	
60	287	9.79	95.844	

Table 11: Element 7 (loading the reel at the payoff section and tying with the existing wire) (303.84)

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
1	302	-1.84	3.3856	
2	298	-5.84	34.1056	
3	295	-8.84	78.1456	
4	304	0.16	0.0256	
5	309	5.16	26.6256	
6	311	7.16	51.2656	
7	297	-6.84	46.7856	
8	308	4.16	17.3056	
9	312	8.16	66.5856	

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
10	301	-2.84	8.0656	
11	325	21.16	447.7456	
12	312	8.16	66.5856	
13	301	-2.84	8.0656	
14	280	-23.84	568.3456	
15	305	1.16	1.3456	
16	315	11.16	124.5456	
17	291	-12.84	164.8656	
18	309	5.16	26.6256	
19	303	-0.84	0.7056	
20	301	-2.84	8.0656	
21	310	6.16	37.9456	
22	301	-2.84	8.0656	
23	301	-2.84	8.0656	
24	311	7.16	51.2656	
25	309	5.16	26.6256	
26	310	6.16	37.9456	
27	307	3.16	9.9856	
28	306	2.16	4.6656	
29	305	1.16	1.3456	
30	297	-6.84	46.7856	
31	309	5.16	26.6256	
32	293	-10.84	117.5056	
33	280	-23.84	568.3456	
34	299	-4.84	23.4256	
35	317	13.16	173.1856	
36	306	2.16	4.6656	
37	301	-2.84	8.0656	
No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
-----	----------	---------------------	-------------	--
38	301	-2.84	8.0656	
39	309	5.16	26.6256	
40	308	4.16	17.3056	
41	299	-4.84	23.4256	
42	311	7.16	51.2656	
43	308	4.16	17.3056	
44	306	2.16	4.6656	
45	306	2.16	4.6656	
46	307	3.16	9.9856	
47	287	-16.84	283.5856	
48	290	-13.84	191.5456	
49	313	9.16	83.9056	
50	306	2.16	4.6656	

Table 12: Element 8: (Primary centering while flushing the barrel)

r			
No.	Time (t)	(t _i -t)	$(t_i-t)^2$
1	587	-3.82	14.5924
2	613	22.18	491.9524
3	609	18.18	330.5124
4	611	20.18	407.2324
5	591	0.18	0.0324
6	582	-8.82	77.7924
7	621	30.18	910.8324
8	589	-1.82	3.3124
9	612	21.18	448.5924
10	582	-8.82	77.7924
11	601	10.18	103.6324
12	597	6.18	38.1924
13	617	26.18	685.3924

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
14	578	-12.82	164.3524
15	510	-80.82	6531.872
16	607	16.18	261.7924
17	602	11.18	124.9924
18	618	27.18	738.7524
19	589	-1.82	3.3124
20	599	8.18	66.9124
21	594	3.18	10.1124
22	592	1.18	1.3924
23	588	-2.82	7.9524
24	606	15.18	230.4324
25	459	-131.82	17376.51
26	594	3.18	10.1124
27	603	12.18	148.3524
28	621	30.18	910.8324
29	597	6.18	38.1924
30	586	-4.82	23.2324
31	602	11.18	124.9924
32	612	21.18	448.5924
33	595	4.18	17.4724
34	499	-91.82	8430.912
35	605	14.18	201.0724
36	612	21.18	448.5924
37	607	16.18	261.7924
38	613	22.18	491.9524
39	489	-101.82	10367.31
40	618	27.18	738.7524
41	590	-0.82	0.6724

No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
42	593	2.18	4.7524	
43	631	40.18	1614.432	
44	498	-92.82	8615.552	
45	604	13.18	173.7124	
46	609	18.18	330.5124	
47	570	-20.82	433.4724	
48	611	20.18	407.2324	
49	607	16.18	261.7924	
50	621	30.18	910.8324	

Table 13: Element

r				
No.	Time (t)	(t _i -t)	$(t_i-t)^2$	
1	587	-7.43	55.2049	
2	613	18.57	344.8449	
3	609	14.57	212.2849	
4	611	16.57	274.5649	
5	591	-3.43	11.7649	
6	582	-12.43	154.5049	
7	621	26.57	705.9649	
8	589	-5.43	29.4849	
9	612	17.57	308.7049	
10	582	-12.43	154.5049	
11	601	6.57	43.1649	
12	597	2.57	6.6049	
13	617	22.57	509.4049	
14	578	-16.43	269.9449	
15	510	-84.43	7128.425	
16	607	12.57	158.0049	
17	602	7.57	57.3049	

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
18	618	23.57	555.5449
19	589	-5.43	29.4849
20	599	4.57	20.8849
21	594	-0.43	0.1849
22	592	-2.43	5.9049
23	588	-6.43	41.3449
24	606	11.57	133.8649
25	459	-135.43	18341.28
26	594	-0.43	0.1849
27	603	8.57	73.4449
28	621	26.57	705.9649
29	597	2.57	6.6049
30	586	-8.43	71.0649
31	602	7.57	57.3049
32	612	17.57	308.7049
33	595	0.57	0.3249
34	499	-95.43	9106.885
35	605	10.57	111.7249
36	612	17.57	308.7049
37	607	12.57	158.0049
38	613	18.57	344.8449
39	489	-105.43	11115.48
40	618	23.57	555.5449
41	590	-4.43	19.6249
42	593	-1.43	2.0449
43	631	36.57	1337.365
44	498	-96.43	9298.745
45	604	9.57	91.5849

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
46	609	14.57	212.2849
47	570	-24.43	596.8249
48	611	16.57	274.5649
49	607	12.57	158.0049
50	621	26.57	705.9649
51	617	22.57	509.4049
52	604	9.57	91.5849
53	591	-3.43	11.7649
54	578	-16.43	269.9449
55	610	15.57	242.4249
56	619	24.57	603.6849
57	488	-106.43	11327.34
58	608	13.57	184.1449
59	606	11.57	133.8649
60	601	6.57	43.1649
61	614	19.57	382.9849
62	631	36.57	1337.365
63	607	12.57	158.0049
64	616	21.57	465.2649
65	498	-96.43	9298.745
66	594	-0.43	0.1849
67	612	17.57	308.7049
68	611	16.57	274.5649
69	591	-3.43	11.7649
70	627	32.57	1060.805
71	630	35.57	1265.225
72	662	67.57	4565.705
73	609	14.57	212.2849

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
74	599	4.57	20.8849
75	592	-2.43	5.9049
76	621	26.57	705.9649

Table 14: Element 9 (Start line at low speeds and continues with centering)

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
1	515	10.06	101.2036
2	410	-94.94	9013.604
3	488	-16.94	286.9636
4	610	105.06	11037.6
5	500	-4.94	24.4036
6	509	4.06	16.4836
7	519	14.06	197.6836
8	511	6.06	36.7236
9	389	-115.94	13442.08
10	513	8.06	64.9636
11	519	14.06	197.6836
12	370	-134.94	18208.8
13	502	-2.94	8.6436
14	522	17.06	291.0436
15	500	-4.94	24.4036
16	489	-15.94	254.0836
17	541	36.06	1300.324
18	519	14.06	197.6836
19	521	16.06	257.9236
20	501	-3.94	15.5236
21	530	25.06	628.0036
22	482	-22.94	526.2436
23	503	-1.94	3.7636

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
24	509	4.06	16.4836
25	522	17.06	291.0436
26	508	3.06	9.3636
27	473	-31.94	1020.164
28	511	6.06	36.7236
29	502	-2.94	8.6436
30	514	9.06	82.0836
31	512	7.06	49.8436
32	501	-3.94	15.5236
33	511	6.06	36.7236
34	542	37.06	1373.444
35	520	15.06	226.8036
36	513	8.06	64.9636
37	515	10.06	101.2036
38	509	4.06	16.4836
39	503	-1.94	3.7636
40	492	-12.94	167.4436
41	499	-5.94	35.2836
42	510	5.06	25.6036
43	509	4.06	16.4836
44	491	-13.94	194.3236
45	577	72.06	5192.644
46	524	19.06	363.2836
47	504	-0.94	0.8836
48	497	-7.94	63.0436
49	499	-5.94	35.2836
50	517	12.06	145.4436

Table 15: Element

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
1	515	1.68	2.8224
2	410	-103.32	10675.02
3	488	-25.32	641.1024
4	610	96.68	9347.022
5	500	-13.32	177.4224
6	509	-4.32	18.6624
7	519	5.68	32.2624
8	511	-2.32	5.3824
9	389	-124.32	15455.46
10	513	-0.32	0.1024
11	519	5.68	32.2624
12	370	-143.32	20540.62
13	502	-11.32	128.1424
14	522	8.68	75.3424
15	500	-13.32	177.4224
16	489	-24.32	591.4624
17	541	27.68	766.1824
18	519	5.68	32.2624
19	521	7.68	58.9824
20	501	-12.32	151.7824
21	530	16.68	278.2224
22	482	-31.32	980.9424
23	503	-10.32	106.5024
24	509	-4.32	18.6624
25	522	8.68	75.3424
26	508	-5.32	28.3024
27	473	-40.32	1625.702

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
28	511	-2.32	5.3824
29	502	-11.32	128.1424
30	514	0.68	0.4624
31	512	-1.32	1.7424
32	501	-12.32	151.7824
33	511	-2.32	5.3824
34	542	28.68	822.5424
35	520	6.68	44.6224
36	513	-0.32	0.1024
37	515	1.68	2.8224
38	509	-4.32	18.6624
39	503	-10.32	106.5024
40	492	-21.32	454.5424
41	499	-14.32	205.0624
42	510	-3.32	11.0224
43	509	-4.32	18.6624
44	491	-22.32	498.1824
45	577	63.68	4055.142
46	524	10.68	114.0624
47	504	-9.32	86.8624
48	497	-16.32	266.3424
49	499	-14.32	205.0624
50	517	3.68	13.5424
51	514	0.68	0.4624
52	495	-18.32	335.6224
53	554	40.68	1654.862
54	499	-14.32	205.0624
55	601	87.68	7687.782

No.	Time (t)	(t _i -t)	$(t_i-t)^2$
56	392	-121.32	14718.54
57	532	18.68	348.9424
58	489	-24.32	591.4624
59	602	88.68	7864.142
60	479	-34.32	1177.862
61	589	75.68	5727.462
62	492	-21.32	454.5424
63	533	19.68	387.3024
64	511	-2.32	5.3824
65	517	3.68	13.5424
66	521	7.68	58.9824
67	620	106.68	11380.62
68	503	-10.32	106.5024
69	548	34.68	1202.702
70	601	87.68	7687.782
71	519	5.68	32.2624
72	497	-16.32	266.3424
73	526	12.68	160.7824
74	612	98.68	9737.742
75	521	7.68	58.9824
76	499	-14.32	205.0624

APPENDIX O

Table: ILO Recommendation of Relaxation Allowances

(as the percent of Basic Time)

	A.	Constant al 1. Personal	lowances: allowance			5 4	
		2. Basic fat	tigue allow	ance			
	B.	Variable all	lowances:				
		1. Standing	g allowance			2	
		2. Abnorm	al position	allowance:			
		a. Slight	lv awkwar	d		0	
		b. Awkw	vard (bendi	ng)		2	
		c. Verv	awkward (1	ving. stretchi	ng)	7	
		Use of f	orce. or mu	scular energy	v (lifting, pulling,	·	
		3. or pushi	ng):	B.	/ (8, r8,		
		Weight	lifted, pour	ds:			
		5	, F			0	
		10				1	
		15				2	
		20				3	
		25				4	
		30				5	
		35				7	
		40				9	
		45				11	
		50				13	
		60				17	
		70				22	
		4. Bad ligh	it:				
		a. Slight	ly below re	commended		0	
		b. Well l	below			2	
		c. Quite	inadequate	:		5	
		- Atmospheric conditions (heat and humidity)-		0-			
		⁵ . variable			•	100	
		6. Close at	5. Close attention:				
		a. Fairly	fine work			0	
		b. Fine or exacting		2			
	c. Very fine or very exacting7. Noise level:				5		
		a. Contin	nuous			0	
		b. Intern	nittent - lou	d		2	
		c. Intern	nittent - ver	y loud		5	
Industrial	Eng	ineering	lab	(UTM):	Retrieve	online	from

http://industrialengineeringlabutm.blogspot.com/2011/02/table-of-allowance.html

APPENDIX P

Test Results for I Chart of Subgroup Means of Cable Dimension

I-MR-R/S (Between/Within) Chart of Shift 1

I-MR-R/S Standard Deviations of Shift 1

Standard Deviations

 Between
 0.0000000

 Within
 0.0036113

 Between/Within
 0.0036113

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 2

I-MR-R/S Standard Deviations of Shift 2

Standard Deviations

Between 0.0045014 Within 0.0068788 Between/Within 0.0082207

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 3

I-MR-R/S Standard Deviations of Shift 3

Standard Deviations

 Between
 0.0025759

 Within
 0.0042132

 Between/Within
 0.0049383

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 4

I-MR-R/S Standard Deviations of Shift 4

Standard Deviations

Between 0.0039838 Within 0.0049871 Between/Within 0.0063829 * WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 5

I-MR-R/S Standard Deviations of Shift 5

Standard Deviations

 Between
 0.0000000

 Within
 0.0056750

 Between/Within
 0.0056750

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 6

I-MR-R/S Standard Deviations of Shift 6

Standard Deviations

Between 0.0062028 Within 0.0041273 Between/Within 0.0074505

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 7

I-MR-R/S Standard Deviations of Shift 7

Standard Deviations

Between 0.0042726 Within 0.0041273 Between/Within 0.0059405

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 8

I-MR-R/S Standard Deviations of Shift 8

Standard Deviations

 Between
 0.0030873

 Within
 0.0053310

 Between/Within
 0.0061605

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

I-MR-R/S (Between/Within) Chart of Shift 9

I-MR-R/S Standard Deviations of Shift 9

Standard Deviations

 Between
 0.0000000

 Within
 0.0073947

 Between/Within
 0.0073947

* WARNING * If graph is updated with new data, the results above may no * longer be correct.

APPENDIX Q

Generic Graphical User Interface Computational Analysis

%% Improving a Cable Design for Six Sigma Techniques % % The application is used to improve the Cable production % using Design for Six Sigma Techniques. The popular Define, Measure, % Analyze, Improve, and Control (DMAIC) Six Sigma approach is followed. % %1. Setting Tab: % - Click Load % - Select Defects excel file from your PC % - Click Save Settings % - To make changes - Click Edit Settings, Make Changes, Click Save Settings % %2. Problem Definition Tab: % - Click Analyze Loaded Data % - Wait for the analysis to be completed % - Click plot buttons to view plots % - Check the panel to see the summary % %3. Data Collection Tab: % - Load Data by clicking load button as enabled % - Type data name % - Edit LSL, USL and Target % - Load Input Data % - Click on Collect Data button % - To make changes - Click on Reload data button, Make changes, Click on Collect Data button % %4. Data Analysis Tab: % - Click Analyze Loaded Data % - Wait for the analysis to be completed % - Click plot buttons to view plots % - Check the panel to see the summary % %5. Improvement Tab: % - Click on Improve Loaded Data % - Wait for the improvement to be completed % - Click plot buttons to view plots % - Check the panel to see the summary % % 6. Others % - Help - Click Help button for guide % - Restart - Click Restart button to start from beginning % - Close - Click Close button to exit %Initializing check=findobj('Name','Knowledge Based Design with Six Sigma'); close(check); clear; %Figure f = figure('Name','Knowledge Based Design with Six Sigma',... 'NumberTitle', 'off',... 'Position',[200 80 800 650],... 'Resize', 'off',... 'MenuBar', 'none');

tabgp = uitabgroup(f, 'Position', [.05 0.15 0.9 0.8]);

tab1 = uitab(tabgp,'Title','Settings','Tag','tab1');

tab2 = uitab(tabgp,'Title','Problem Definition','Tag','tab2');

tab3 = uitab(tabgp,'Title','Data Collection ','Tag','tab3');

tab4 = uitab(tabgp,'Title','Data Analysis ','Tag','tab4');

tab5 = uitab(tabgp,'Title','Improvement ','Tag','tab5');

%Control

- helpbtn = uicontrol(f,'Style','pushbutton','Position',[50 30 140 22],'String',... 'Help', 'HorizontalAlignment','center','Callback',@help_callback,'Tag','helpbtn'); closebtn = uicontrol(f,'Style','pushbutton','Position',[600 30 140 22],'String',...
- 'Close', 'HorizontalAlignment','center','Callback',@close_callback,... 'Tag','closebtn');
- restartbtn = uicontrol(f, 'Style', 'pushbutton', 'Position', [330 30 140 22], 'String',... 'Restart', 'HorizontalAlignment', 'center', 'Callback', @restart_callback,... 'Tag', 'restartbtn');

%% Setting Tab

%Historical Period

- yrtxt = uicontrol(tab1,'Style','text','Position',[11 450 240 22],'String',... 'Period of Historical Data Anaylsis', 'HorizontalAlignment','left',... 'FontWeight','bold');
- sdtxt = uicontrol(tab1,'Style','text','Position',[11 425 140 22],'String','Start Date:',... 'HorizontalAlignment','right');
- startdate = uicontrol(tab1,'Style','popupmenu','Position',[154 425 140 22],'String',... {'2010','2011','2012','2013','2014','2015','2016','2017','2018'},'Value',4,... 'Backgroundcolor', 'white', 'Enable', 'off', 'Tag', 'startdate');
- edtxt = uicontrol(tab1,'Style','text','Position',[11 400 140 22],'String','End Date:',... 'HorizontalAlignment','right');
- enddate = uicontrol(tab1,'Style','popupmenu','Position',[154 400 140 22],'String',... {'2010','2011','2012','2013','2014','2015','2016','2017','2018','2019'},'Value',8,... 'Backgroundcolor','white','Enable','off','Tag','enddate');

%Bench Mark

- bmtxt = uicontrol(tab1,'Style','text','Position',[11 350 240 22],'String',... 'Defect Cost Bench Mark for Improvement', 'HorizontalAlignment','left',... 'FontWeight','bold');
- cbmtxt = uicontrol(tab1,'Style','text','Position',[11 325 140 22],'String',... 'Bench Mark Amount:', 'HorizontalAlignment','right');
- cbm = uicontrol(tab1,'Style','edit','Position',[154 325 140 22],'String','500000',... 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','cbm');
- ngntxt = uicontrol(tab1,'Style','text','Position',[300 325 50 22],'String',... 'NGN', 'HorizontalAlignment','left');

%Load Historical Data

- bmtxt = uicontrol(tab1,'Style','text','Position',[11 275 240 22],'String',... 'Load Historical Data', 'HorizontalAlignment','left',... 'FontWeight','bold');
- histedit = uicontrol(tab1,'Style','edit','Position',[11 250 400 22],'String',... 'Load data', 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off',... 'Tag','histedit');
- histbtn = uicontrol(tab1,'Style','pushbutton','Position',[425 250 50 22],'String',... 'Load', 'HorizontalAlignment','center','Callback',@hist_callback,'Tag','histbtn');

%Setting Control

- editsetbtn = uicontrol(tab1,'Style','pushbutton','Position',[11 25 140 22],'String',...
- 'Edit Settings', 'HorizontalAlignment', 'center', 'Callback', @editset_callback, 'Tag', 'editsetbtn'); savesetbtn = uicontrol(tab1, 'Style', 'pushbutton', 'Position', [550 25 140 22], 'String',...
- 'Save Settings', 'HorizontalAlignment', 'center', 'Callback', @saveset_callback,...

'Enable', 'off', 'Tag', 'savesetbtn');

%% Define Problem Tab

- defntxt = uicontrol(tab2,'Style','text','Position',[11 450 600 22],'String',... 'No Historical Data Load, Click on Setting tab to Load',... 'HorizontalAlignment','left','FontWeight','bold','Tag','defntxt','ForegroundColor','red');
- defnlistbox = uicontrol(tab2, 'Style', 'listbox', 'Position', [250 75 435 350], 'Enable', 'off',... 'HorizontalAlignment', 'left', 'Backgroundcolor', 'white', 'String', 'Defined Problem',... 'Tag', 'defnlistbox');

analyzebtn = uicontrol(tab2, 'Style', 'pushbutton', 'Position', [550 25 140 22], 'String',... 'Analyze Loaded Data', 'HorizontalAlignment', 'center', 'Callback', @analyze_callback,... 'Tag', 'analyzebtn', 'Enable', 'off');

plottxt = uicontrol(tab2,'Style','text','Position',[11 400 220 22],'String',... 'PLOTS ', 'HorizontalAlignment','center','Tag','plottxt','FontWeight','bold'); plotdbtn = uicontrol(tab2,'Style','pushbutton','Position',[11 375 220 22],'String',... 'Defects 3D Bar Chart ', 'HorizontalAlignment','center','Callback',@plotdbtn_callback,... 'Tag','plotdbtn','Enable','off');

plotfbtn = uicontrol(tab2,'Style','pushbutton','Position',[11 350 220 22],'String',... 'Defect Cost 3D Bar Chart ', 'HorizontalAlignment','center','Callback',@plotfbtn_callback,... 'Enable','off','Tag','plotfbtn');

plotxbtn = uicontrol(tab2,'Style','pushbutton','Position',[11 325 220 22],'String',... 'X-Bar and R-Bar Chart ', 'HorizontalAlignment','center','Callback',@plotxbtn_callback,... 'Enable','off','Tag','plotxbtn');

- plotdpbtn = uicontrol(tab2,'Style','pushbutton','Position',[11 300 220 22],'String',... 'Defects Pareto Chart ', 'HorizontalAlignment','center','Callback',@plotdpbtn_callback,... 'Enable','off','Tag','plotdpbtn');
- plotfpbtn = uicontrol(tab2, 'Style', 'pushbutton', 'Position',[11 275 220 22], 'String',... 'Defects Cost Pareto Chart ', 'HorizontalAlignment', 'center', 'Callback', @plotfpbtn_callback,... 'Enable', 'off', 'Tag', 'plotfpbtn');

defnresultbtn = uicontrol(tab2,'Style','pushbutton','Position',[11 250 220 22],'String',... 'Problem-Defined Summary ', 'HorizontalAlignment','center','Callback',@defnresult_callback,... 'Enable','off','Tag','defnresultbtn');

histfitbtn = uicontrol(tab2,'Style','pushbutton','Position',[11 225 220 22],'String',... 'Finance Data Hist Fit ', 'HorizontalAlignment','center','Callback',@histfitbtn_callback,... 'Tag','histfitbtn','Enable','off');

%% Data Collection Tab

datatxt = uicontrol(tab3,'Style','text','Position',[11 450 600 22],'String',... 'Load Problem Defined Data for Improvement -Maximum Data is Three',... 'HorizontalAlignment','left','FontWeight','bold','Tag','datatxt','ForegroundColor','red');

% Load Data 1

datatxt1 = uicontrol(tab3,'Style','edit','Position',[11 400 140 22],'String',... 'Data 1', 'HorizontalAlignment','right','Tag','datatxt1','Callback',... @datatxt1_callback,'Enable','off');

dataedit1 = uicontrol(tab3,'Style','edit','Position',[151 400 400 22],'String',... ", 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off',... 'Tag','dataedit1');

databtn1 = uicontrol(tab3,'Style','pushbutton','Position',[560 400 50 22],'String',... 'Load','Enable','off', 'HorizontalAlignment','center','Callback',@databtn1_callback,'Tag','databtn1');

% Load Data 2

- datatxt2 = uicontrol(tab3,'Style','edit','Position',[11 375 140 22],'String',...
- 'Data 2', 'HorizontalAlignment', 'right', 'Tag', 'datatxt2', 'Callback',... @datatxt2_callback, 'Enable', 'off');

dataedit2 = uicontrol(tab3,'Style','edit','Position',[151 375 400 22],'String',...

", 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off',... 'Tag','dataedit2'); databtn2 = uicontrol(tab3, 'Style', 'pushbutton', 'Position', [560 375 50 22], 'String',... 'Load', 'Enable', 'off', 'HorizontalAlignment', 'center', 'Callback', @databtn2_callback, 'Tag', 'databtn2');

% Load Data 3

- datatxt3 = uicontrol(tab3,'Style','edit','Position',[11 350 140 22],'String',... 'Data 3', 'HorizontalAlignment','right','Tag','datatxt3','Callback',... @datatxt3 callback,'Enable','off');
- dataedit3 = uicontrol(tab3,'Style','edit','Position',[151 350 400 22],'String',...
 ", 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off',...
 'Tag','dataedit3');
- databtn3 = uicontrol(tab3, 'Style', 'pushbutton', 'Position', [560 350 50 22], 'String',...
- Load', 'Enable', 'off', 'HorizontalAlignment', 'center', 'Callback', @databtn3_callback, 'Tag', 'databtn3'); inputtxt = uicontrol(tab3, 'Style', 'text', 'Position', [11 175 140 22], 'String',...
- 'Extruder and Captan Data:', 'FontWeight', 'bold', 'HorizontalAlignment', 'right');
- datatxt4 = uicontrol(tab3,'Style','text','Position',[11 150 140 22],'String',...
- 'Input Data', 'HorizontalAlignment', 'right', 'Tag', 'datatxt4');
- dataedit4 = uicontrol(tab3,'Style','edit','Position',[151 150 400 22],'String',...
- 'Load Extruder and Captans Data', 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off',... 'Tag','dataedit4');
- databtn4 = uicontrol(tab3, 'Style', 'pushbutton', 'Position', [560 150 50 22], 'String',... 'Load', 'Enable', 'off', 'HorizontalAlignment', 'center', 'Callback', @databtn4_callback, 'Tag', 'databtn4');

%Specification

%data1 control

- spectxt = uicontrol(tab3, 'Style', 'text', 'Position', [11 300 140 22], 'String',...
- 'Specification Control:', 'FontWeight','bold','HorizontalAlignment','right'); spectxt1 = uicontrol(tab3,'Style','text','Position',[11 275 70 22],'String',...
- 'Data 1', 'HorizontalAlignment', 'right', 'Tag', 'spectxt1');
- uptxt1 = uicontrol(tab3,'Style','text','Position',[90 275 70 22],'String',... 'LSL:', 'HorizontalAlignment','right');
- lwtedit1 = uicontrol(tab3,'Style','edit','Position',[170 275 70 22],'String','',... 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','lwtedit1');
- uptxt2 = uicontrol(tab3,'Style','text','Position',[240 275 70 22],'String',...

'USL:', 'HorizontalAlignment', 'right');

- upedit2 = uicontrol(tab3,'Style','edit','Position',[320 275 70 22],'String',",...
- 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','upedit2');
- ttxt1 = uicontrol(tab3,'Style','text','Position',[400 275 70 22],'String',... 'Target:', 'HorizontalAlignment','right');
- tedit1 = uicontrol(tab3,'Style','edit','Position',[480 275 70 22],'String',",... 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','tedit1');

%data2 control

- spectxt2 = uicontrol(tab3,'Style','text','Position',[11 250 70 22],'String',... 'Data 2', 'HorizontalAlignment','right','Tag','spectxt2');
- uptxt12 = uicontrol(tab3,'Style','text','Position',[90 250 70 22],'String',...
- 'LSL:', 'HorizontalAlignment', 'right');
- lwtedit12 = uicontrol(tab3,'Style','edit','Position',[170 250 70 22],'String','',...
- 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','lwtedit12');
- uptxt22 = uicontrol(tab3,'Style','text','Position',[240 250 70 22],'String',... 'USL:', 'HorizontalAlignment','right');
- upedit22 = uicontrol(tab3, 'Style', 'edit', 'Position', [320 250 70 22], 'String', ",... 'HorizontalAlignment', 'left', 'Backgroundcolor', 'white', 'Enable', 'off', 'Tag', 'upedit22');
- ttxt2 = uicontrol(tab3,'Style','text','Position',[400 250 70 22],'String',...

'Target:', 'HorizontalAlignment', 'right');

tedit2 = uicontrol(tab3,'Style','edit','Position',[480 250 70 22],'String',",... 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','tedit2');

%data3 control

- spectxt3 = uicontrol(tab3,'Style','text','Position',[11 225 70 22],'String',...
 'Data 3', 'HorizontalAlignment','right', 'Tag','spectxt3');
 uptxt13 = uicontrol(tab3,'Style','text','Position',[90 225 70 22],'String',...
 'LSL:', 'HorizontalAlignment','right');
 lwtedit13 = uicontrol(tab3,'Style','edit','Position',[170 225 70 22],'String',",...
- 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','lwtedit13'); uptxt23 = uicontrol(tab3,'Style','text','Position',[240 225 70 22],'String',...
- 'USL:', 'HorizontalAlignment', 'right');
- upedit23 = uicontrol(tab3, 'Style', 'edit', 'Position', [320 225 70 22], 'String', ",... 'HorizontalAlignment', 'left', 'Backgroundcolor', 'white', 'Enable', 'off', 'Tag', 'upedit23');
- ttxt3 = uicontrol(tab3,'Style','text','Position',[400 225 70 22],'String',...
 - 'Target:', 'HorizontalAlignment', 'right');
- tedit3 = uicontrol(tab3,'Style','edit','Position',[480 225 70 22],'String',",... 'HorizontalAlignment','left','Backgroundcolor','white','Enable','off','Tag','tedit3');
- % Data Collection Control
- reloaddatabtn = uicontrol(tab3,'Style','pushbutton','Position',[11 25 140 22],'String',... 'Reload
- Data', 'Enable', 'off', 'HorizontalAlignment', 'center', 'Callback', @reloaddata_callback, 'Tag', 'reloaddatabtn'); collectdatabtn = uicontrol(tab3, 'Style', 'pushbutton', 'Position', [550 25 140 22], 'String',...
- 'Collect Data', 'HorizontalAlignment', 'center', 'Callback', @collectdata_callback,... 'Enable', 'off', 'Tag', 'collectdatabtn');

%% Data Analysis Tab

- anatxt = uicontrol(tab4,'Style','text','Position',[11 450 600 22],'String',... 'No Data Loaded for Analysis, Click on Data Collection tab to Load',... 'HorizontalAlignment','left','FontWeight','bold','Tag','anatxt','ForegroundColor','red');
- analistbox = uicontrol(tab4,'Style','listbox','Position',[250 75 435 350],'Enable','off',... 'HorizontalAlignment','left','Backgroundcolor','white','String','Data Analysis',... 'Tag','analistbox');
- analyzebtn2 = uicontrol(tab4,'Style','pushbutton','Position',[550 25 140 22],'String',... 'Analyze Loaded Data', 'HorizontalAlignment','center','Callback',@analyze2_callback,... 'Tag','analyzebtn2','Enable','off');
- plottxt2 = uicontrol(tab4,'Style','text','Position',[11 400 220 22],'String',... 'PLOTS ', 'HorizontalAlignment','center','Tag','plottxt2','FontWeight','bold');
- expbtn = uicontrol(tab4,'Style','pushbutton','Position',[11 375 220 22],'String',... 'View Experimental Data ', 'HorizontalAlignment','center','Callback',@expbtn_callback,... 'Tag','expbtn','Enable','off');
- plotxbtn2 = uicontrol(tab4,'Style','pushbutton','Position',[11 350 220 22],'String',... 'X-Bar and R-Bar Chart 1 ', 'HorizontalAlignment','center','Callback',@plotxbtn2_callback,... 'Enable','off','Tag','plotxbtn2');
- plotxbtn21 = uicontrol(tab4,'Style','pushbutton','Position',[11 325 220 22],'String',... 'X-Bar and R-Bar Chart 2 ', 'HorizontalAlignment','center','Callback',@plotxbtn21_callback,... 'Enable','off','Tag','plotxbtn21');
- plotxbtn22 = uicontrol(tab4,'Style','pushbutton','Position',[11 300 220 22],'String',... 'X-Bar and R-Bar Chart 3 ', 'HorizontalAlignment','center','Callback',@plotxbtn22_callback,... 'Enable','off','Tag','plotxbtn22');
- histfitbtn1 = uicontrol(tab4, 'Style', 'pushbutton', 'Position', [11 275 220 22], 'String',... 'Histogram Fit 1 ', 'HorizontalAlignment', 'center', 'Callback', @histfitbtn1_callback,... 'Enable', 'off', 'Tag', 'histfitbtn1');

- histfitbtn2 = uicontrol(tab4,'Style','pushbutton','Position',[11 250 220 22],'String',... 'Histogram Fit 2 ', 'HorizontalAlignment','center','Callback',@histfitbtn2_callback,... 'Enable','off','Tag', 'histfitbtn2');
- histfitbtn3 = uicontrol(tab4,'Style','pushbutton','Position',[11 225 220 22],'String',... 'Histogram Fit 3 ', 'HorizontalAlignment','center','Callback',@histfitbtn3_callback,... 'Enable','off','Tag','histfitbtn3');
- probplotbtn1 = uicontrol(tab4,'Style','pushbutton','Position',[11 200 220 22],'String',... 'Probability Plot 1 ', 'HorizontalAlignment','center','Callback',@probplotbtn1_callback,... 'Enable','off','Tag','probplotbtn1');
- probplotbtn2 = uicontrol(tab4,'Style','pushbutton','Position',[11 175 220 22],'String',... 'Probability Plot 2 ', 'HorizontalAlignment','center','Callback',@probplotbtn2_callback,... 'Enable','off','Tag','probplotbtn2');
- probplotbtn3 = uicontrol(tab4,'Style','pushbutton','Position',[11 150 220 22],'String',... 'Probability Plot 3 ', 'HorizontalAlignment','center','Callback',@probplotbtn3_callback,... 'Enable','off','Tag','probplotbtn3');
- capaplotbtn1 = uicontrol(tab4,'Style','pushbutton','Position',[11 125 220 22],'String',... 'Capability Plot 1 ', 'HorizontalAlignment','center','Callback',@capaplotbtn1_callback,... 'Enable','off','Tag','capaplotbtn1');
- capaplotbtn2 = uicontrol(tab4,'Style','pushbutton','Position',[11 100 220 22],'String',... 'Capability Plot 2 ', 'HorizontalAlignment','center','Callback',@capaplotbtn2_callback,... 'Enable','off','Tag','capaplotbtn2');
- capaplotbtn3 = uicontrol(tab4,'Style','pushbutton','Position',[11 75 220 22],'String',... 'Capability Plot 3 ', 'HorizontalAlignment','center','Callback',@capaplotbtn3_callback,... 'Enable','off','Tag','capaplotbtn3');
- %% Improvement Tab
- improvtxt = uicontrol(tab5,'Style','text','Position',[11 450 600 22],'String',... 'No Data Loaded for Analysis, Click on Data Collection tab to Load',... 'HorizontalAlignment','left','FontWeight','bold','Tag','improvtxt','ForegroundColor','red');
- improvlistbox = uicontrol(tab5,'Style','listbox','Position',[250 75 435 350],'Enable','off',... 'HorizontalAlignment','left','Backgroundcolor','white','String','Data Analysis',... 'Tag','improvlistbox');
- improvbtn = uicontrol(tab5,'Style','pushbutton','Position',[550 25 140 22],'String',... 'Improve Loaded Data', 'HorizontalAlignment','center','Callback',@improvbtn_callback,... 'Tag','improvbtn','Enable','off');
- plottxt2 = uicontrol(tab5,'Style','text','Position',[11 400 220 22],'String',... 'PLOTS ', 'HorizontalAlignment','center','Tag','plottxt2','FontWeight','bold');
- coeftestbtn = uicontrol(tab5,'Style','pushbutton','Position',[11 375 220 22],'String',... 'View Coefficient Test 1 ', 'HorizontalAlignment','center','Callback',@coeftestbtn_callback,... 'Tag','coeftestbtn','Enable','off');
- coeftestbtn2 = uicontrol(tab5,'Style','pushbutton','Position',[11 350 220 22],'String',... 'View Coefficient Test 2 ', 'HorizontalAlignment','center','Callback',@coeftestbtn2_callback,... 'Enable','off','Tag','coeftestbtn2');
- coeftestbtn3 = uicontrol(tab5,'Style','pushbutton','Position',[11 325 220 22],'String',... 'View Coefficient Test 3 ', 'HorizontalAlignment','center','Callback',@coeftestbtn3_callback,... 'Enable','off','Tag','coeftestbtn3');
- predictbtn = uicontrol(tab5,'Style','pushbutton','Position',[11 300 220 22],'String',... 'Optimize Data 1 ', 'HorizontalAlignment','center','Callback',@predictbtn_callback,... 'Enable','off','Tag','predictbtn');
- predictbtn2 = uicontrol(tab5,'Style','pushbutton','Position',[11 275 220 22],'String',... 'Optimize Data 2 ', 'HorizontalAlignment','center','Callback',@predictbtn2_callback,... 'Enable','off','Tag','predictbtn2');
- predictbtn3 = uicontrol(tab5, 'Style', 'pushbutton', 'Position', [11 250 220 22], 'String',... 'Optimize Data 3 ', 'HorizontalAlignment', 'center', 'Callback', @predictbtn3_callback,... 'Enable', 'off', 'Tag', 'predictbtn3');

simdata1 = uicontrol(tab5,'Style','pushbutton','Position',[11 225 220 22],'String',... 'View Simulation Data 1 ', 'HorizontalAlignment','center','Callback',@simdatabtn1_callback,... 'Enable','off','Tag','simdatabtn1');

simdata2 = uicontrol(tab5,'Style','pushbutton','Position',[11 200 220 22],'String',... 'View Simulation Data 2 ', 'HorizontalAlignment','center','Callback',@simdatabtn2_callback,... 'Enable','off','Tag','simdatabtn2');

simdata3 = uicontrol(tab5,'Style','pushbutton','Position',[11 175 220 22],'String',... 'View Simulation Data 3 ', 'HorizontalAlignment','center','Callback',@simdatabtn3_callback,... 'Enable','off','Tag','simdatabtn3');

exportsimdata = uicontrol(tab5,'Style','pushbutton','Position',[11 150 220 22],'String',... 'Export Sim Data ', 'HorizontalAlignment','center','Callback',@exportsimdata_callback,... 'Enable','off','Tag','exportsimdata');

function help_callback(src,event)
htxt=help('cablekbsdesign');
f16=figure('Name','Knowledge Based Design with Six Sigma - Help',...
'NumberTitle','off',...
'Position',[200 50 600 700],...
'Resize','off',...
'MenuBar','none');
helptxt = uicontrol(f16,'Style','text','Position',[50 50 500 620],'String',",...
'HorizontalAlignment','left','Backgroundcolor','white','Enable','on','Tag','helptxt');
12. final bit (f16, f10, bit) (f10, bit)

h2=findobj(f16,'Tag','helptxt');

set(h2,'String',htxt);

function restart_callback(src,event)
cablekbsdesign;

function close_callback(src,event)
fig=findobj('Type','figure');
close(fig);

%Edit Settings Button function editset_callback(src,event)

b1=findobj('Tag','startdate'); b2=findobj('Tag','enddate'); b3=findobj('Tag','cbm'); b4=findobj('Tag','savesetbtn'); b5=findobj('Tag','editsetbtn'); set(b1,'Enable','on') set(b2,'Enable','on') set(b3,'Enable','on') set(b4,'Enable','on') set(b5,'Enable','off')

%Save Settings Button function saveset_callback(src,event) b1=findobj('Tag','startdate'); b2=findobj('Tag','enddate'); b3=findobj('Tag','cbm'); b4=findobj('Tag','savesetbtn'); b5=findobj('Tag','ditsetbtn'); b6=findobj('Tag','defintxt'); set(b1,'Enable','off') set(b2,'Enable','off') set(b3,'Enable','off')
set(b4,'Enable','off')
set(b5,'Enable','on')
set(b6,'Enable','on')
set(b7,'String',...
'Click Analyze loaded Data button for historical data analysis and recommendation for improvement')

function reloaddata_callback(src,event)

b1=findobj('Tag','databtn1'); b2=findobj('Tag','databtn2'); b3=findobj('Tag','databtn3'); b4=findobj('Tag','collectdatabtn'); b5=findobj('Tag','datatxt'); b6=findobj('Tag','lwtedit1'); b7=findobj('Tag','lwtedit12'); b8=findobj('Tag','lwtedit13'); b9=findobj('Tag','upedit2'); b10=findobj('Tag','upedit22'); b11=findobj('Tag','upedit23'); b12=findobj('Tag','databtn4'); b13=findobj('Tag','tedit1'); b14=findobj('Tag','tedit2'); b15=findobj('Tag','tedit3'); b16=findobj('Tag','datatxt1'); b17=findobj('Tag','datatxt2'); b18=findobj('Tag','datatxt3'); set(b1,'Enable','on') set(b2,'Enable','on') set(b3,'Enable','on') set(b4,'Enable','on') set(b6,'Enable','on') set(b7,'Enable','on') set(b8,'Enable','on') set(b9,'Enable','on') set(b10,'Enable','on') set(b11,'Enable','on') set(b12,'Enable','on') set(b13,'Enable','on') set(b14,'Enable','on') set(b15,'Enable','on') set(b16,'Enable','on') set(b17,'Enable','on') set(b18,'Enable','on') set(b5,'String','Load Problem Defined Data for Improvement -Maximum Data is Three')

%Collect Data Button function collectdata_callback(src,event)

global bound1 bound2 bound3 defnprobs data1 data2 data3 data4 file1 ...
file2 file3 file4 t1 t2 t3 dataname1 dataname2 dataname3
b1=findobj('Tag','databtn1');
b2=findobj('Tag','databtn2');
b3=findobj('Tag','collectdatabtn');
b5=findobj('Tag','reloaddatabtn');
b6=findobj('Tag','datatxt');
b7=findobj('Tag','lwtedit1');
b8=findobj('Tag','lwtedit12');

b9=findobj('Tag','lwtedit13'); b10=findobj('Tag','upedit2'); b11=findobj('Tag','upedit22'); b12=findobj('Tag','upedit23'); b13=findobj('Tag','databtn4'); b14=findobj('Tag','tedit1'); b15=findobj('Tag','tedit2'); b16=findobj('Tag','tedit3'); b17=findobj('Tag','analyzebtn2'); b18=findobj('Tag','datatxt1'); b19=findobj('Tag','datatxt2'); b20=findobj('Tag','datatxt3'); set(b1,'Enable','off'); set(b2,'Enable','off'); set(b3,'Enable','off'); set(b4,'Enable','off'); set(b5,'Enable','on'); set(b7,'Enable','off'); set(b8,'Enable','off'); set(b9,'Enable','off'); set(b10,'Enable','off'); set(b11,'Enable','off'); set(b12,'Enable','off'); set(b13,'Enable','off'); set(b14,'Enable','off'); set(b15,'Enable','off'); set(b16,'Enable','off'); set(b17,'Enable','on'); set(b18,'Enable','off'); set(b19,'Enable','off'); set(b20,'Enable','off'); m=length(defnprobs); **if** m==1 data1=xlsread(file1,'Sheet1')

```
data1=xlsread(file1,'Sheet1')
usl1=str2num(get(b7,'String'));
t1=str2num(get(b14,'String'));
lsl1=str2num(get(b10,'String'));
bound1=[usl1 lsl1];
dataname1=get(b18,'String');
elseif m==2
```

```
data1=xlsread(file1,'Sheet1');
data2=xlsread(file2,'Sheet1');
usl1=str2num(get(b7,'String'));
t1=str2num(get(b14,'String'));
lsl1=str2num(get(b10,'String'));
usl2=str2num(get(b15,'String'));
t2=str2num(get(b11,'String'));
lsl2=str2num(get(b11,'String'));
bound1=[usl1 lsl1];
bound2=[usl2 lsl2];
dataname1=get(b18,'String');
dataname2=get(b19,'String');
elseif m==3
```

data1=xlsread(file1,'Sheet1'); data2=xlsread(file2,'Sheet1'); data3=xlsread(file3,'Sheet1'); us11=str2num(get(b7,'String'));

```
t1=str2num(get(b14, 'String'));
  lsl1=str2num(get(b10, 'String'));
  usl2=str2num(get(b8,'String'));
   t2=str2num(get(b15,'String'));
   lsl2=str2num(get(b11,'String'));
   usl3=str2num(get(b9,'String'));
   t3=str2num(get(b16,'String'));
   lsl3=str2num(get(b12,'String'));
   bound1=[usl1 lsl1];
   bound2=[usl2 lsl2];
   bound3=[usl3 lsl3];
   dataname1=get(b18,'String');
    dataname2=get(b19,'String');
    dataname3=get(b20,'String');
elseif m>3
  data1=xlsread(file1,'Sheet1');
  data2=xlsread(file2,'Sheet1');
   data3=xlsread(file3,'Sheet1');
```

```
data3=xlsread(file2, bleft1);
usl1=str2num(get(b14,'String'));
t1=str2num(get(b14,'String'));
lsl1=str2num(get(b10,'String'));
usl2=str2num(get(b15,'String'));
t2=str2num(get(b15,'String'));
usl3=str2num(get(b16,'String'));
lsl3=str2num(get(b16,'String'));
lsl3=str2num(get(b12,'String'));
bound1=[usl1 lsl1];
bound2=[usl2 lsl2];
bound3=[usl3 lsl3];
dataname1=get(b18,'String');
dataname3=get(b20,'String');
```

```
else
```

set(b6,'String','No Problem Defined so no data Collection')
end
data4=xlsread(file4,'InputData');

```
set(b6,'String',...
```

'Data Collected. Go to Data Analysis Page for Analysis of Collected Data');

function hist_callback(src,event)
global file;
b1=findobj('Tag','histedit');
b2=findobj('Tag','savesetbtn');
%Load Defects Data
[FileName,PathName] = uigetfile('*.xls;*.xlsx','Load Historical Data');
file=[PathName,FileName];
set(b1,'String',file)
set(b2,'Enable','on')

function databtn1_callback(src,event)
global file1;
b1=findobj('Tag','dataedit1');
b2=findobj('Tag','collectdatabtn');

b3=findobj('Tag','upedit2'); b4=findobj('Tag','lwtedit1'); b5=findobj('Tag','tedit1'); %Load Defects Data 1 [FileName,PathName] = uigetfile('*.xls;*.xlsx','Data Collection'); file1=[PathName,FileName]; set(b1,'String',file1) set(b2,'Enable','on') set(b3,'Enable','on','String','2.856') set(b4,'Enable','on','String','2.716') set(b5,'Enable','on','String','2.7')

function databtn2_callback(src,event)
global file2;
b1=findobj('Tag','dataedit2');
b2=findobj('Tag','upedit22');
b3=findobj('Tag','lwtedit12');
b5=findobj('Tag','tedit2');
%Load Defects Data 2
[FileName,PathName] = uigetfile('*.xls;*.xlsx','Data Collection');
file2=[PathName,FileName];
set(b1,'String',file2)
set(b2,'Enable','on')
set(b3,'Enable','on','String','0.977')
set(b4,'Enable','on','String','0.665')
set(b5,'Enable','on','String','0.8')

function databtn3_callback(src,event)
global file3;
b1=findobj('Tag','dataedit3');
b2=findobj('Tag','collectdatabtn');
b3=findobj('Tag','upedit23');
b4=findobj('Tag','lwtedit13');
b5=findobj('Tag','tedit3');
%Load Defects Data 3
[FileName,PathName] = uigetfile('*.xls;*.xlsx','Data Collection');
file3=[PathName,FileName];
set(b1,'String',file3)
set(b2,'Enable','on')

function databtn4_callback(src,event)
global file4 PathName;
b1=findobj('Tag','dataedit4');
b2=findobj('Tag','collectdatabtn');
%Load Defects Data 3
[FileName,PathName] = uigetfile('*.xls;*.xlsx','Data Collection');
file4=[PathName,FileName];
set(b1,'String',file4)
set(b2,'Enable','on')

function datatxt1_callback(src,event) b1=findobj('Tag','spectxt1'); b2=findobj('Tag','datatxt1'); set(b1,'String',get(b2,'String'));

function datatxt2_callback(src,event) b1=findobj('Tag','spectxt2'); b2=findobj('Tag','datatxt2'); set(b1,'String',get(b2,'String'));

function datatxt3_callback(src,event) b1=findobj('Tag','spectxt3'); b2=findobj('Tag','datatxt3'); set(b1,'String',get(b2,'String'));

function analyze_callback(src,event)

% Defining the Problem
% We have data for 1.0mm cable produced between 2013 to 2017 with so
% defects which led to rejects of cables produced. We also tried to
% identify the factors affecting defects in the cable production. We need to evaluate
% the current design and develop an alternative design that can achieve our
% target production with little or no defects.

global file costbm year defectdata financedata defects ... financedatatotal defectdatatotal defnprobs;

b3=findobj('Tag','defntxt'); set(b3,'String','Anaylzing Historical Data') b1=findobj('Tag','cbm'); b2=findobj('Tag','histedit'); b4=findobj('Tag','startdate'); b5=findobj('Tag','enddate'); b6=findobj('Tag','defnlistbox'); b7=findobj('Tag','plotdbtn'); b8=findobj('Tag','plotfbtn'); b9=findobj('Tag','plotxbtn'); b10=findobj('Tag','plotdpbtn'); b11=findobj('Tag','plotfpbtn'); b12=findobj('Tag','defnresultbtn'); b13=findobj('Tag','databtn1'); b14=findobj('Tag','databtn2'); b15=findobj('Tag','databtn3'); b16=findobj('Tag','datatxt'); b17=findobj('Tag','datatxt1'); b18=findobj('Tag','datatxt2'); b19=findobj('Tag','datatxt3'); b20=findobj('Tag','reloaddatabtn'); b21=findobj('Tag','histfitbtn'); b22=findobj('Tag','spectxt1'); b23=findobj('Tag','spectxt2'); b24=findobj('Tag','spectxt3'); b25=findobj('Tag','databtn4');

set(b3,'Enable','on')
set(b25,'Enable','on')
defectdata=xlsread(file,'defects');
%Get finace data
financedata=xlsread(file,'finance');
financedatatotal=(sum(financedata'))';
defectdatatotal=(sum(defectdata'))';
defects={'ITF', 'RIS','LCD','WTW','IC','SIF','WL','NL','TPs','ISI','BC'};

projectdefects=defects';

```
%Bench Mark
costbm=str2num(get(b1,'String'));
%period
yr1=(get(b4,'value'));
yr2=(get(b5,'value'));
% yr1=sdv{1,1};
% yr2=edv{1,1};
if yr2-yr1==4
yearn=(yr1+2009):(yr2+2009);
  for i=1:length(yearn)
  year{i}=num2str(yearn(i));
  end
n=length(defects);
  for i=1:n
  data(i,1)={projectdefects(i)};
  data(i,2)={num2str(defectdatatotal(i))};
  data(i,3)={num2str(financedatatotal(i))};
  if financedatatotal(i)>=costbm
     data(i,4)={'High Cost Defects: Selected for Improvement'};
     recom{i,1}=('High Cost Defects: Selected for Improvement');
  elseif financedatatotal(i)==0;
     data(i,4)={'No Defects'};
     recom{i,1}=('No Defects');
  else
     data(i,4)={'Cost of Defects is Insignificant'};
     recom{i,1}=('Cost of Defects is Insignificant');
  end
end
 defnpi=find(financedatatotal>costbm);
 defnprobs=projectdefects(defnpi);
 m=length(defnprobs);
if m==1
   set(b17,'Enable','on')
   set(b13,'Enable','on')
  elseif m==2
   set(b17,'Enable','on')
   set(b18,'Enable','on')
   set(b13,'Enable','on')
   set(b14,'Enable','on')
  elseif m==3
   set(b17,'Enable','on')
   set(b18,'Enable','on')
   set(b19,'Enable','on')
   set(b13,'Enable','on')
   set(b14,'Enable','on')
   set(b15,'Enable','on')
 elseif m>3
   set(b17,'Enable','on')
   set(b18,'Enable','on')
   set(b19,'Enable','on')
   set(b13,'Enable','on')
   set(b14,'Enable','on')
   set(b15,'Enable','on')
```

else set(b17,'Enable','off') set(b18,'Enable','off') set(b19,'Enable','off') set(b13,'Enable','off') set(b14,'Enable','off') set(b15,'Enable','off') set(b16,'String','No Problem Defined so no data Collection') end

probs={'ITF -Insulation thickness failures',...
'RIS - Rough Insulation Surface',...
'LCD - Low Conductor Diameter',...
'WIW - Wrong Input Wire',...
'IC - Incomplete Core',...
'SIF - Short Cut Supplied in place of full coil',...
'WL - Wrong Label',...
'NL - No Label',...
'TPs - Torn Poly-Sheet',...
'ISI - Inconsistency in the Shape Of Insulation',...
'BC - Bridging Cable'};

str1={'Historical Data Analysis Summary',...

'Defects Summary',...

'------',...

['ITF -Insulation thickness failures:',",num2str(defectdatatotal(1))],...

['RIS - Rough Insulation Surface:',",num2str(defectdatatotal(2))],...

['LCD - Low Conductor Diameter:',",num2str(defectdatatotal(3))],...

['WIW - Wrong Input Wire:',",num2str(defectdatatotal(4))],...

['IC - Incomplete Core:',",num2str(defectdatatotal(5))],...

['SIF - Short Cut Supplied in place of full coil:',",num2str(defectdatatotal(6))],...

['WL - Wrong Label:',",num2str(defectdatatotal(7))],...

['NL - No Label:',",num2str(defectdatatotal(8))],...

['TPs - Torn Poly-Sheet:',",num2str(defectdatatotal(9))]...

['ISI - Inconsistency in the Shape Of Insulation:',",num2str(defectdatatotal(10))],...

['BC - Bridging Cable:',num2str(defectdatatotal(11))]};

str2={",...

'=======;,... 'Defects Finance Cost Summary',...

'=================;,...

['Bench Mark for Selection:','','N',num2str(costbm)],...

['ITF -Insulation thickness failures:',",'N',num2str(financedatatotal(1))],...

['RIS - Rough Insulation Surface:',",'N',num2str(financedatatotal(2))],...

['LCD - Low Conductor Diameter:',",'N',num2str(financedatatotal(3))],...

['WIW - Wrong Input Wire:',",'N',num2str(financedatatotal(4))],...

['IC - Incomplete Core:',",'N',num2str(financedatatotal(5))],...

['SIF - Short Cut Supplied in place of full coil:',",'N',num2str(financedatatotal(6))],...

['WL - Wrong Label:',",'N',num2str(financedatatotal(7))],...

['NL - No Label:',",'N',num2str(financedatatotal(8))],...

['TPs - Torn Poly-Sheet:',",'N',num2str(financedatatotal(9))],...

['ISI - Inconsistency in the Shape Of Insulation:',",'N',num2str(financedatatotal(10))],...

['BC - Bridging Cable:',",'N',num2str(financedatatotal(11))]};

str3={",...

'Selection for Improvement Summary',	,
['ITF -', ".recom{1}]	
['RIS -',",recom{2}],	
['LCD -',",recom{3}],	
['WIW -','',recom{4}],	
['IC - ','',recom{5}],	
['SIF -',",recom{6}],	
['WL - ',",recom{7}],	
['NL - ','',recom{8}],	
['TPs - ','',recom{9}]	
['ISI - ',",recom{10}],	
['BC - ',",recom{11}],	
····	
	:====' ,
'Defects Selected for Improvement',	

'=========================='};

str4=probs(defnpi); str=[str1,str2,str3,str4];

set(b6,'Enable','on'); set(b7,'Enable','on'); set(b8,'Enable','on'); set(b9,'Enable','on'); set(b10,'Enable','on'); set(b11,'Enable','on'); set(b12,'Enable','on'); set(b20,'Enable','on'); set(b21,'Enable','on'); set(b21,'Enable','on'); set(b3,'String','Click buttons below to view plots') % set(b6,'String', {'Project Charter','Critical to Quality Characteristics:',data{1,1}}) set(b6,'String',str)

else

set(b3,'String','Start Year to End Year must be five years. Go to settings and adjust ') end

function plotdbtn_callback(src,event)

global year defectdata defects ; %3d Bar Plot of Defects and Associated Costs

f1=figure('Name','Knowledge Based Design with Six Sigma - 3D Defects Plot',...
'NumberTitle','off',...
'MenuBar','none');
bar3(defectdata')

xlabel('Defect Type') ylabel('Year') title('Historical Defect Data') set(gca,'XTickLabel',defects) set(gca,'YTickLabel',year) zlabel('Number of Defects')

function plotfbtn_callback(src,event) global year financedata defects ; f2=figure('Name','Knowledge Based Design with Six Sigma - 3D Finance Cost Plot',...

'NumberTitle','off',... 'MenuBar','none'); bar3(financedata') xlabel('Defect Type') ylabel('Year') title('Historical Defect Financial Cost Data') set(gca,'XTickLabel',defects) set(gca,'YTickLabel',year) zlabel('Financial Cost (NGN)')

function plotxbtn_callback(src,event)

global defectdata; f3=figure('Name','Knowledge Based Design with Six Sigma - X-Bar and S-Chart',... 'NumberTitle','off',... 'MenuBar','none'); subplot(2,1,1) xbarplot(defectdata) % yearly sets xlabel('Defect Types') ylabel('Yearly Average Defects') subplot(2,1,2) schart(defectdata) xlabel('Defect Types') ylabel('Yearly Standard Deviation')

function plotdpbtn_callback(src,event)
global defectdatatotal defects ;
%Pareto Chart of Historical Defect Data form 2013 to 2017
f4=figure('Name','Knowledge Based Design with Six Sigma - Pareto Defects Plot',...
'NumberTitle','off',...
'MenuBar','none');
pareto(defectdatatotal);
xlabel('Defect Type')
ylabel('Number of Defects')
set(gca,'XTickLabel',defects)
title('Paroto Chart of Historical Defect Data form 2013 to 2017')

function plotfpbtn_callback(src,event)

global costbm defects financedatatotal; %Financial Bench Mark for Project Charter

f5=figure('Name','Knowledge Based Design with Six Sigma - Pareto Finance Cost Plot',... 'NumberTitle','off',... 'MenuBar','none'); pareto(financedatatotal); xlabel('Defect Type') ylabel('Financial Cost (NGN)') set(gca,'XTickLabel',defects) title('Paroto Chart of Historical Financial Cost Data form 2013 to 2017')

hold; costbmB=costbm*(ones(1,length(financedatatotal))); plot(costbmB,'r');

%Hist Fit plot function histfitbtn_callback(src,event) global financedatatotal; f7=figure('Name','Knowledge Based Design with Six Sigma - Defects Finance Cost Histogram Fit',... 'NumberTitle','off',... 'MenuBar', 'none'); histfit(financedatatotal') h1 = findobj(gca, 'Type', 'patch'); % let's format the plot clr = [.9.91];set(h1,'FaceColor',clr,'EdgeColor','k') [historic_mean, historic_stdev] = normfit(financedatatotal') ylabel('Frequency (counts)') xlabel('Defect Finance Cost(Naira)') title('Defect Finance Cost Histogram') text(2e4,8,['Mean:',num2str(historic_mean)]) text(2e4,7.5,['Standard Deviation:',num2str(historic_stdev)]) %view problem defined result function defnresult_callback(src,event)

global costbm defects financedatatotal defectdatatotal; projectdefects = defects';

```
%Project Charter
n=length(defects);
data{n,4} = [];
```

for i=1:n
 data(i,1)={projectdefects(i)};

data(i,2)={num2str(defectdatatotal(i))}; data(i,3)={num2str(financedatatotal(i))};

```
if financedatatotal(i)>=costbm
    data(i,4)={'High Cost Defects: Selected for Improvement'};
elseif financedatatotal(i)==0;
    data(i,4)={'No Defects'};
else
    data(i,4)={'Cost of Defects is Insignificant'};
end
end
```

f6=figure('Name','Knowledge Based Design with Six Sigma - Problem Defined Results',...
'NumberTitle','off',...
'Position',[200 80 700 400],...
'Resize','off',...
'MenuBar','none');
columnname = {'Defects','Number Of Defects','Financial Cost of Defects','Selection for Improvement'};
columnformat = {'Char', 'char', 'char', 'char'};
defnTable = uitable(f6,'Position',[25 25 650 360],'Data',data,'ColumnWidth',80);

defnTable.ColumnName=columnname;

%% Data Analysis Page

function analyze2_callback(src,event)

global data1 data2 data3 bound1 bound2 bound3 defnprobs dataname1 ... dataname2 dataname3 d1 d2 d3 t1 t2 t3;

```
b1=findobj('Tag','anatxt');
b2=findobj('Tag','analistbox');
set(b1,'String','Anaylzing loaded experimental Data ......')
set(b2, 'String', 'Anaylzing loaded experimental Data ......', 'Enable', 'on')
b3=findobj('Tag','expbtn');
b4=findobj('Tag','plotxbtn2');
b5=findobj('Tag','plotxbtn21');
b6=findobj('Tag','plotxbtn22');
b7=findobj('Tag','histfitbtn1');
b8=findobj('Tag','histfitbtn2');
b9=findobj('Tag','histfitbtn3');
b10=findobj('Tag','probplotbtn1');
b11=findobj('Tag','probplotbtn2');
b12=findobj('Tag','probplotbtn3');
b13=findobj('Tag','capaplotbtn1');
b14=findobj('Tag','capaplotbtn2');
b15=findobj('Tag','capaplotbtn3');
b16=findobj('Tag','improvbtn');
```

str4={",...

'=====================================	===',
·	====',
'Data to be Collected in the Next Page',	'}.

l=length(defnprobs); if l==1 siz1=size(data1); if siz1(2)==1 d1=data1; else d1=mean(data1')'; end sd1 = capability(d1,bound1); Cpm= (bound1(2)-bound1(1))/(6*t1); CR= (100 * (6*sd1.sigma))/(bound1(2)-bound1(1)) ; Zu=(bound1(2)-sd1.mu)/sd1.sigma; Zl=(sd1.mu-bound1(1))/sd1.sigma;

%Remark

if sd1.Cp<1 Cprk='- Possible Defects Expected'; elseif sd1.Cp>2 Cprk='- Specification Tolerance is far Apart'; else

Cprk='-No Possible Defects Foreseen'; end

if CR<=75

CRrk='- Appropriate Parameter Settings';

else CRrk='- High Percentage of Engineering Requirement'; end

if sd1.Cpk<1

Cpkrk='- Continous Improvement is Required';

elseif sd1.Cpk>2

Cpkrk='- Design of New Engineering Tolerance is Required'; else

Cpkrk='-No Improvment Reqired'; end

if Zu<3

Zurk='- Higher Percentage of Production will Exceed Upper Limit'; elseif Zu>6 Zurk='- Inappropriate Engineering Specification'; else Zurk='- Production will be Within Upper Limit'; end

if Zl<3

Zlrk='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl>6 Zlrk='- Inappropriate Engineering Specification'; else Zlrk='- Production will be Within Lower Limit'; end str1={'Data Analysis Summary',...

['Capabilty Summary - ',dataname1],...

```
['Sample Mean(mu) - ',num2str(sd1.mu)],...
['Sample Standard Deviation(sigma) - ', num2str(sd1.sigma)],...
['Estimated probability of being within limits(P) - ', num2str(sd1.P)],...
 ['Estimated probability of being below L (lower spec)(Pl) - ', num2str(sd1.Pl)],...
  ['Estimated probability of being above U (upper spec)(Pu) - ', num2str(sd1.Pu)],...
  ['Cp, (U-L)/(6*sigma) - ', num2str(sd1.Cp)],...
   ['Cpl ,(mu-L)./(3.*sigma) - ', num2str(sd1.Cpl)],...
  ['Cpu ,(U-mu)./(3.*sigma) - ', num2str(sd1.Cpu)],...
   ['Cpk ,min(Cpl, Cpu) - ', num2str(sd1.Cpk)],...
   ['Cpm,(U-L)(6*t) -',num2str(Cpm)],...
   ['Capability Ratio,CR -',num2str(CR)],...
    ['Zu, (U-mu)/sigma -',num2str(Zu)],...
     ['Zl, (mu-L)/sigma -',num2str(Zl)],...
     'Remark:',Cprk,CRrk,Cpkrk,Zurk,Zlrk,...
                                              -----',...
<u>ا_</u>
```

·-----'....

","};

set(b3,'Enable','on'); set(b4,'Enable','on'); set(b5,'Enable','off'); set(b6,'Enable','off'); set(b7,'Enable','on'); set(b8,'Enable','off');

```
set(b9,'Enable','off');
  set(b10,'Enable','on');
  set(b11,'Enable','off');
  set(b12,'Enable','off');
  set(b13,'Enable','on');
  set(b14,'Enable','off');
   set(b15,'Enable','off');
  str2=";
  str3=";
    elseif 1==2
      siz1=size(data1);
if siz1(2) == 1
  d1=data1;
else
d1=mean(data1')';
end
sd1 = capability(d1,bound1);
Cpm= (bound1(2)-bound1(1))/(6*t1);
CR= (100 * (6*sd1.sigma))/(bound1(2)-bound1(1));
Zu=(bound1(2)-sd1.mu)/sd1.sigma;
Zl=(sd1.mu-bound1(1))/sd1.sigma;
%Remark
if sd1.Cp<1
  Cprk='- Possible Defects Expected';
elseif sd1.Cp>2
  Cprk='- Specification Tolerance is far Apart';
else
  Cprk='-No Possible Defects Foreseen';
end
if CR<=75
  CRrk='- Appropriate Parameter Settings';
else
  CRrk='- High Percentage of Engineering Requirement';
end
if sd1.Cpk<1
  Cpkrk='- Continous Improvement is Required';
elseif sd1.Cpk>2
  Cpkrk='- Design of New Engineering Tolerance is Required';
else
  Cpkrk='-No Improvment Reqired';
end
if Zu<3
  Zurk='- Higher Percentage of Production will Exceed Upper Limit';
elseif Zu>6
  Zurk='- Inappropriate Engineering Specification';
else
  Zurk='- Production will be Within Upper Limit';
end
if Zl<3
  Zlrk='- Higher Percentage of Production will be Below Lower Limit';
elseif Zl>6
  Zlrk='- Inappropriate Engineering Specification';
else
```

Zlrk='- Production will be Within Lower Limit'; end

siz2=size(data2); if siz2(2) == 1d2=data2; else d2=mean(data2')'; end sd2 = capability(d2, bound2);Cpm2 = (bound2(2)-bound2(1))/(6*t2);CR2 = (100 * (6*sd2.sigma))/(bound2(2)-bound2(1)); Zu2=(bound2(2)-sd2.mu)/sd2.sigma; Zl2=(sd2.mu-bound2(1))/sd2.sigma; %Remark if sd2.Cp<1 Cprk2='- Possible Defects Expected'; elseif sd2.Cp>2 Cprk2='- Specification Tolerance is far Apart'; else Cprk2='-No Possible Defects Foreseen'; end **if** CR2<=75 CRrk2='- Appropriate Parameter Settings'; else CRrk2='- High Percentage of Engineering Requirement'; end if sd2.Cpk<1 Cpkrk2='- Continous Improvement is Required'; elseif sd2.Cpk>2 Cpkrk2='- Design of New Engineering Tolerance is Required'; else Cpkrk2='-No Improvment Regired'; end if Zu2<3 Zurk2='- Higher Percentage of Production will Exceed Upper Limit'; elseif Zu2>6 Zurk2='- Inappropriate Engineering Specification'; else Zurk2='- Production will be Within Upper Limit'; end if Zl2<3 Zlrk2='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl2>6 Zlrk2='- Inappropriate Engineering Specification'; else Zlrk2='- Production will be Within Lower Limit'; end str1={'Data Analysis Summary',... =====',... ['Capabilty Summary - ',dataname1],... ===='....

['Sample Mean(mu) : ',num2str(sd1.mu)],... ['Sample Standard Deviation(sigma) : ', num2str(sd1.sigma)],...

```
","};
```

str2={'=======',...

['Capabilty Summary - ',dataname2],...

```
-----',....
 ['Sample Mean(mu) - ',num2str(sd2.mu)],...
 ['Sample Standard Deviation(sigma) - ', num2str(sd2.sigma)],...
  ['Estimated probability of being within limits(P) - ', num2str(sd2.P)],...
   ['Estimated probability of being below L (lower spec)(Pl) - ', num2str(sd2.Pl)],...
    ['Estimated probability of being above U (upper spec)(Pu) - ', num2str(sd2.Pu)],...
    ['Cp, (U-L)/(6*sigma) - ', num2str(sd2.Cp)],...
    ['Cpl ,(mu-L)./(3.*sigma) - ', num2str(sd2.Cpl)],...
    ['Cpu ,(U-mu)./(3.*sigma) - ', num2str(sd2.Cpu)],...
    ['Cpk ,min(Cpl, Cpu) - ', num2str(sd2.Cpk)],...
    ['Cpm,(U-L)(6*t):',num2str(Cpm2)],...
     ['Capability Ratio,CR :',num2str(CR2)],...
      ['Zu, (U-mu)/sigma :',num2str(Zu2)],...
      ['Zl, (mu-L)/sigma :',num2str(Zl2)],...
          'Remark:',Cprk2,CRrk2,Cpkrk2,Zurk2,Zlrk2,...
               -----',...
  ","};
str3=";
      set(b3,'Enable','on');
set(b4,'Enable','on');
 set(b5,'Enable','on');
 set(b6,'Enable','off');
 set(b7,'Enable','on');
 set(b8,'Enable','on');
 set(b9,'Enable','off');
 set(b10,'Enable','on');
 set(b11,'Enable','on');
```

set(b13,'Enable','on'); set(b14,'Enable','on'); set(b15,'Enable','off'); elseif l==3 siz1=size(data1); if siz1(2)==1 d1=data1; else d1=mean(data1')'; end sd1 = capability(d1,bound1); Cpm= (bound1(2)-bound1(1))/(6*t1);

CR = (100 * (6*sd1.sigma))/(bound1(2)-bound1(1));

Zu=(bound1(2)-sd1.mu)/sd1.sigma;

set(b12,'Enable','off');
Cprk='- Specification Tolerance is far Apart'; CRrk='- Appropriate Parameter Settings'; CRrk='- High Percentage of Engineering Requirement'; Cpkrk='- Continous Improvement is Required'; Cpkrk='- Design of New Engineering Tolerance is Required';

else Cpkrk='-No Improvment Reqired'; end

Zl=(sd1.mu-bound1(1))/sd1.sigma;

Cprk='- Possible Defects Expected';

Cprk='-No Possible Defects Foreseen';

%Remark if sd1.Cp<1

else

end

else

end

if CR<=75

if sd1.Cpk<1

elseif sd1.Cpk>2

elseif sd1.Cp>2

if Zu<3

Zurk='- Higher Percentage of Production will Exceed Upper Limit'; elseif Zu>6 Zurk='- Inappropriate Engineering Specification'; else Zurk='- Production will be Within Upper Limit';

end

if Zl<3

Zlrk='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl>6 Zlrk='- Inappropriate Engineering Specification'; else Zlrk='- Production will be Within Lower Limit'; end siz2=size(data2); if siz2(2) == 1d2=data2; else d2=mean(data2')'; end sd2 = capability(d2, bound2);Cpm2 = (bound2(2)-bound2(1))/(6*t2);CR2 = (100 * (6*sd2.sigma))/(bound2(2)-bound2(1)); Zu2=(bound2(2)-sd2.mu)/sd2.sigma; Zl2=(sd2.mu-bound2(1))/sd2.sigma;

%Remark

if sd2.Cp<1 Cprk2='- Possible Defects Expected'; elseif sd2.Cp>2 Cprk2='- Specification Tolerance is far Apart'; else Cprk2='-No Possible Defects Foreseen';

end

if CR2<=75 CRrk2='- Appropriate Parameter Settings'; else CRrk2='- High Percentage of Engineering Requirement'; end if sd2.Cpk<1 Cpkrk2='- Continous Improvement is Required'; elseif sd2.Cpk>2 Cpkrk2='- Design of New Engineering Tolerance is Required'; else Cpkrk2='-No Improvment Reqired'; end if Zu2<3 Zurk2='- Higher Percentage of Production will Exceed Upper Limit'; elseif Zu2>6 Zurk2='- Inappropriate Engineering Specification'; else Zurk2='- Production will be Within Upper Limit'; end if Zl2<3 Zlrk2='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl2>6 Zlrk2='- Inappropriate Engineering Specification'; else Zlrk2='- Production will be Within Lower Limit'; end siz3=size(data3); if siz3(2) = = 1d3=data3; else d3=mean(data3')'; end sd3 = capability(data3,bound3); Cpm3 = (bound3(2)-bound3(1))/(6*t3);CR3 = (100 * (6*sd3.sigma))/(bound3(2)-bound3(1)); Zu3=(bound3(2)-sd3.mu)/sd3.sigma; Zl3=(sd3.mu-bound3(1))/sd3.sigma; %Remark if sd3.Cp<1 Cprk3='- Possible Defects Expected'; elseif sd3.Cp>2 Cprk3='- Specification Tolerance is far Apart'; else Cprk2='-No Possible Defects Foreseen'; end **if** CR3<=75 CRrk3='- Appropriate Parameter Settings'; else CRrk3='- High Percentage of Engineering Requirement'; end

336

if sd3.Cpk<1 Cpkrk3='- Continous Improvement is Required'; elseif sd3.Cpk>2 Cpkrk3='- Design of New Engineering Tolerance is Required'; else Cpkrk3='-No Improvment Regired'; end if Zu3<3 Zurk3='- Higher Percentage of Production will Exceed Upper Limit'; elseif Zu3>6 Zurk3='- Inappropriate Engineering Specification'; else Zurk3='- Production will be Within Upper Limit'; end if Z13<3 Zlrk3='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl3>6 Zlrk3='- Inappropriate Engineering Specification'; else Zlrk3='- Production will be Within Lower Limit'; end str1={'Data Analysis Summary',... ['Capabilty Summary - ',dataname1],... -----'.... ['Sample Mean(mu) : ',num2str(sd1.mu)],... ['Sample Standard Deviation(sigma) : ', num2str(sd1.sigma)],... ['Estimated probability of being within limits(P) : ', num2str(sd1.P)],... ['Estimated probability of being below L (lower spec)(Pl) : ', num2str(sd1.Pl)],... ['Estimated probability of being above U (upper spec)(Pu) : ', num2str(sd1.Pu)],... ['Cp, (U-L)/(6*sigma) : ', num2str(sd1.Cp)],... ['Cpl ,(mu-L)./(3.*sigma) : ', num2str(sd1.Cpl)],... ['Cpu ,(U-mu)./(3.*sigma) : ', num2str(sd1.Cpu)],... ['Cpk ,min(Cpl, Cpu) : ', num2str(sd1.Cpk)],... ['Cpm,(U-L)(6*t) :',num2str(Cpm)],... ['Capability Ratio,CR :',num2str(CR)],... ['Zu, (U-mu)/sigma :',num2str(Zu)],... ['Zl, (mu-L)/sigma :',num2str(Zl)],... 'Remark:',Cprk,CRrk,Cpkrk,Zurk,Zlrk,... ","}; str2={'========',... ['Capabilty Summary - ',dataname2],...

['Sample Mean(mu) - ',num2str(sd2.mu)],...
['Sample Standard Deviation(sigma) - ', num2str(sd2.sigma)],...
['Estimated probability of being within limits(P) - ', num2str(sd2.P)],...
['Estimated probability of being below L (lower spec)(Pl) - ', num2str(sd2.Pl)],...
['Estimated probability of being above U (upper spec)(Pu) - ', num2str(sd2.Pu)],...
['Cp, (U-L)/(6*sigma) - ', num2str(sd2.Cp)],...
['Cpl ,(mu-L)./(3.*sigma) - ', num2str(sd2.Cpl)],...
['Cpu ,(U-mu)./(3.*sigma) - ', num2str(sd2.Cpl)],...
['Cpk ,min(Cpl, Cpu) - ', num2str(sd2.Cpk)],...
['Cpm,(U-L)(6*t) :',num2str(Cpm2)],...
['Capability Ratio,CR :',num2str(CR2)],...
['Zu, (U-mu)/sigma :',num2str(Zu2)],...
['Zl, (mu-L)/sigma :',num2str(Zl2)],...

_____',...

'Remark:',Cprk2,CRrk2,Cpkrk2,Zurk2,Zlrk2,...

","};

str3={'=======',... ['Capabilty Summary - ',dataname3],...

['Sample Mean(mu) - ',num2str(sd3.mu)],... ['Sample Standard Deviation(sigma) - ', num2str(sd3.sigma)],... ['Estimated probability of being within limits(P) - ', num2str(sd3.P)],... ['Estimated probability of being below L (lower spec)(Pl) - ', num2str(sd3.Pl)],... ['Estimated probability of being above U (upper spec)(Pu) - ', num2str(sd3.Pu)],... ['Cp, (U-L)/(6*sigma) - ', num2str(sd3.Cp)],... ['Cp1 ,(mu-L)./(3.*sigma) - ', num2str(sd3.Cpl)],... ['Cpu ,(U-mu)./(3.*sigma) - ', num2str(sd3.Cpu)],... ['Cpk ,min(Cpl, Cpu) - ', num2str(sd3.Cpk)],... ['Cpm,(U-L)(6*t) :',num2str(Cpm3)],... ['Capability Ratio,CR :',num2str(CR3)],... ['Zu, (U-mu)/sigma :',num2str(Zu3)],... ['Zl, (mu-L)/sigma :',num2str(Zl3)],... '"Remark:',Cprk3,CRrk3,Cpkrk3,Zurk3,Zlrk3,...

_____',...

=====',....

","};

set(b3,'Enable','on'); set(b4,'Enable','on'); set(b5,'Enable','on'); set(b6,'Enable','on'); set(b7,'Enable','on'); set(b8,'Enable','on'); set(b9,'Enable','on'); set(b10,'Enable','on'); set(b11,'Enable','on'); set(b12,'Enable','on'); set(b13,'Enable','on'); set(b14,'Enable','on'); set(b15,'Enable','on'); elseif 1>3 siz1=size(data1); if siz1(2) = = 1d1=data1: else d1=mean(data1')'; end sd1 = capability(d1,bound1); Cpm= (bound1(2)-bound1(1))/(6*t1); CR = (100 * (6*sd1.sigma))/(bound1(2)-bound1(1));Zu=(bound1(2)-sd1.mu)/sd1.sigma; Zl=(sd1.mu-bound1(1))/sd1.sigma; %Remark if sd1.Cp<1 Cprk='- Possible Defects Expected'; elseif sd1.Cp>2 Cprk='- Specification Tolerance is far Apart'; else Cprk='-No Possible Defects Foreseen'; end

if CR<=75 CRrk='- Appropriate Parameter Settings'; else CRrk='- High Percentage of Engineering Requirement'; end if sd1.Cpk<1 Cpkrk='- Continous Improvement is Required'; elseif sd1.Cpk>2 Cpkrk='- Design of New Engineering Tolerance is Required'; else Cpkrk='-No Improvment Reqired'; end if Zu<3 Zurk='- Higher Percentage of Production will Exceed Upper Limit'; elseif Zu>6 Zurk='- Inappropriate Engineering Specification'; else Zurk='- Production will be Within Upper Limit'; end if Zl<3 Zlrk='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl>6 Zlrk='- Inappropriate Engineering Specification'; else Zlrk='- Production will be Within Lower Limit'; end siz2=size(data2); if siz2(2) == 1d2=data2; else d2=mean(data2')'; end sd2 = capability(d2,bound2); Cpm2 = (bound2(2)-bound2(1))/(6*t2);CR2 = (100 * (6*sd2.sigma))/(bound2(2)-bound2(1)); Zu2=(bound2(2)-sd2.mu)/sd2.sigma; Zl2=(sd2.mu-bound2(1))/sd2.sigma; %Remark if sd2.Cp<1 Cprk2='- Possible Defects Expected'; elseif sd2.Cp>2 Cprk2='- Specification Tolerance is far Apart'; else Cprk2='-No Possible Defects Foreseen'; end if CR2<=75 CRrk2='- Appropriate Parameter Settings'; else CRrk2='- High Percentage of Engineering Requirement'; end if sd2.Cpk<1 Cpkrk2='- Continous Improvement is Required';

elseif sd2.Cpk>2 Cpkrk2='- Design of New Engineering Tolerance is Required'; else Cpkrk2='-No Improvment Reqired'; end if Zu2<3 Zurk2='- Higher Percentage of Production will Exceed Upper Limit'; elseif Zu2>6 Zurk2='- Inappropriate Engineering Specification'; else Zurk2='- Production will be Within Upper Limit'; end if Zl2<3 Zlrk2='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl2>6 Zlrk2='- Inappropriate Engineering Specification'; else Zlrk2='- Production will be Within Lower Limit'; end siz3=size(data3); if siz3(2)==1 d3=data3; else d3=mean(data3')'; end sd3 = capability(d3,bound3); Cpm3 = (bound3(2)-bound3(1))/(6*t3);CR3 = (100 * (6*sd3.sigma))/(bound3(2)-bound3(1)); Zu3=(bound3(2)-sd3.mu)/sd3.sigma; Zl3=(sd3.mu-bound3(1))/sd3.sigma; %Remark if sd3.Cp<1 Cprk3='- Possible Defects Expected'; elseif sd3.Cp>2 Cprk3='- Specification Tolerance is far Apart'; else Cprk2='-No Possible Defects Foreseen'; end if CR3<=75 CRrk3='- Appropriate Parameter Settings'; else CRrk3='- High Percentage of Engineering Requirement'; end if sd3.Cpk<1 Cpkrk3='- Continous Improvement is Required'; elseif sd3.Cpk>2 Cpkrk3='- Design of New Engineering Tolerance is Required'; else Cpkrk3='-No Improvment Reqired'; end

if Zu3<3

Zurk3='- Higher Percentage of Production will Exceed Upper Limit';

elseif Zu3>6

Zurk3='- Inappropriate Engineering Specification'; else Zurk3='- Production will be Within Upper Limit';

end

if Zl3<3

Zlrk3='- Higher Percentage of Production will be Below Lower Limit'; elseif Zl3>6 Zlrk3='- Inappropriate Engineering Specification'; else Zlrk3='- Production will be Within Lower Limit'; end

str1={'Data Analysis Summary',...

------',...

['Capabilty Summary - ',dataname1],...

['Sample Mean(mu) : ',num2str(sd1.mu)],... ['Sample Standard Deviation(sigma) : ', num2str(sd1.sigma)],... ['Estimated probability of being within limits(P) : ', num2str(sd1.P)],... ['Estimated probability of being below L (lower spec)(Pl) : ', num2str(sd1.Pl)],... ['Estimated probability of being above U (upper spec)(Pu) : ', num2str(sd1.Pu)],... ['Cp, (U-L)/(6*sigma) : ', num2str(sd1.Cp)],... ['Cp1 ,(mu-L)./(3.*sigma) : ', num2str(sd1.Cpl)],... ['Cpt ,(U-mu)./(3.*sigma) : ', num2str(sd1.Cpu)],... ['Cpk ,min(Cpl, Cpu) : ', num2str(sd1.Cpk)],... ['Cpm,(U-L)(6*t) :',num2str(Cpm)],... ['Capability Ratio,CR :',num2str(CR)],... ['Zu, (U-mu)/sigma :',num2str(Zu)],... ['Zl, (mu-L)/sigma :',num2str(Zl)],... ''Remark:',Cprk,CRrk,Cpkrk,Zurk,Zlrk,...

","};

str2={'=======',...

['Capabilty Summary - ',dataname2],...

","};

str3={'=======',...

['Capabilty Summary - ',dataname3],...

['Sample Mean(mu) - ',num2str(sd3.mu)],...

['Sample Standard Deviation(sigma) - ', num2str(sd3.sigma)],...
['Estimated probability of being within limits(P) - ', num2str(sd3.P]),...
['Estimated probability of being below L (lower spec)(Pl) - ', num2str(sd3.Pl)],...
['Estimated probability of being above U (upper spec)(Pu) - ', num2str(sd3.Pu)],...
['Cp, (U-L)/(6*sigma) - ', num2str(sd3.Cp)],...
['Cpl ,(mu-L)./(3.*sigma) - ', num2str(sd3.Cpl)],...
['Cpk ,min(Cpl, Cpu) - ', num2str(sd3.Cpk)],...
['Cpm,(U-L)(6*t) :',num2str(Cpm3)],...
['Capability Ratio,CR :',num2str(CR3)],...
['Zu, (U-mu)/sigma :',num2str(Zu3)],...
['Zl, (mu-L)/sigma :',num2str(Zl3)],...
['Zl, (mu-L)/sigma :',num2str(Zl3)],...

-----'....

```
","};
```

set(b3,'Enable','on'); set(b4,'Enable','on'); set(b5,'Enable','on'); set(b6,'Enable','on'); set(b7,'Enable','on'); set(b8,'Enable','on'); set(b10,'Enable','on'); set(b11,'Enable','on'); set(b12,'Enable','on'); set(b13,'Enable','on'); set(b14,'Enable','on'); set(b15,'Enable','on');

else

set(b1,'String','Experimental Data cannot be accessed') end

set(b1,'String','Click buttons below to view plots')
str=[str1,str2,str3];
set(b2,'String',str)
set(b16,'Enable','on')
function expbtn_callback(src,event)

global data1 data2 data3 data4 bound1 bound2 bound3... defnprobs capt extruder dataname1 dataname2 dataname3; b1=findobj('Tag','anatxt');

capt=data4(:,1); extruder=data4(:,2); ml=length(data4);

```
l=length(defnprobs);
if l==1
siz1=size(data1);
```

```
if siz1(2)==1
d1=data1;
else
d1=mean(data1')';
end
```

siz2=size(data2);

```
for m=2:ml+1;
Table{ml+1,3} = [];
Table(1,1:3) = {'Caps Tan(rpm)' 'Extruder(rpm)' dataname1};
Table(m,1)={num2str(capt(m-1,1))};
Table(m,2)={num2str(extruder(m-1,1))};
Table(m,3)={num2str(d1(m-1,1))};
end
footer='Design Experiment';
statdisptable(Table, 'Data Analysis', 'Experimental Result Table', footer,[-1 -1 0 -1 2 4]);
```

```
elseif l==2
siz1=size(data1);
```

```
if siz1(2)==1
d1=data1;
else
d1=mean(data1')';
end
```

siz2=size(data2);

```
if siz2(2)==1
d2=data2;
else
d2=mean(data2')';
end
```

for m=2:ml+1; Table{ml+1,4} = []; Table(1,1:4) = {'Caps Tan(rpm)' 'Extruder(rpm)' dataname1 dataname2}; Table(m,1)={num2str(capt(m-1,1))}; Table(m,2)={num2str(extruder(m-1,1))}; Table(m,3)={num2str(d1(m-1,1))}; Table(m,4)={num2str((d2(m-1,1)))};

end footer='Design Experiment';

statdisptable(Table, 'Data Analysis', 'Experimental Result Table', footer,[-1 -1 0 -1 2 4]);

```
elseif l==3
siz1=size(data1);
```

```
if siz1(2)==1
d1=data1;
else
d1=mean(data1')';
end
```

siz2=size(data2);

if siz2(2)==1

```
d2=data2;
else
d2=mean(data2')';
end
siz3=size(data3);
if siz3(2)==1
  d3=data3;
else
d3=mean(data3')';
end
for m=2:ml+1;
Table{ml+1,5} = [];
Table(1,1:5) = {'Caps Tan(rpm)' 'Extruder(rpm)' dataname1 dataname2 dataname3};
Table(m,1)={num2str(capt(m-1,1))};
Table(m,2)={num2str(extruder(m-1,1))};
Table(m,3)={num2str(d1(m-1,1))};
Table(m,4)={num2str((d2(m-1,1)))};
Table(m,5)={num2str((d3(m-1,1)))};
end
footer='Design Experiment';
statdisptable(Table, 'Data Analysis', 'Experimental Result Table', footer,[-1 -1 0 -1 2 4]);
 elseif 1>3
siz1=size(data1);
if siz1(2)==1
  d1=data1;
else
d1=mean(data1')';
end
siz2=size(data2);
if siz2(2) == 1
  d2=data2;
else
d2=mean(data2')';
end
siz3=size(data3);
if siz3(2)==1
  d3=data3;
else
d3=mean(data3')';
end
for m=2:ml+1;
Table{ml+1,5} = [];
Table(1,1:5) = {'Caps Tan(rpm)' 'Extruder(rpm)' dataname1 dataname2 dataname3};
Table(m,1)={num2str(capt(m-1,1))};
Table(m,2)={num2str(extruder(m-1,1))};
Table(m,3)={num2str(d1(m-1,1))};
Table(m,4) = \{num2str((d2(m-1,1)))\};
```

Table(m,5)={num2str((d3(m-1,1)))}; end footer='Design Experiment'; statdisptable(Table, 'Data Analysis', 'Experimental Result Table', footer,[-1 -1 0 -1 2 4]);

else set(b1,'String','Experimental Data cannot be accessed') end

function plotxbtn2_callback(src,event)

global data1 dataname1 bound1; f3=figure('Name','Knowledge Based Design with Six Sigma -Data 1 X-Bar and S-Chart',... 'NumberTitle','off',... 'MenuBar','none'); subplot(2,1,1)

xbarplot(data1,0.997,bound1) xlabel(dataname1) ylabel('Mean ') subplot(2,1,2) schart(data1) xlabel(dataname1) ylabel('Standard Deviation')

function plotxbtn21_callback(src,event)

global data2 bound2 dataname2; f3=figure('Name','Knowledge Based Design with Six Sigma - Data 2 X-Bar and S-Chart',... 'NumberTitle','off',... 'MenuBar','none'); subplot(2,1,1) xbarplot(data2,0.997,bound2) xlabel(dataname2) ylabel('Mean ') subplot(2,1,2) schart(data2) xlabel(dataname2) ylabel('Standard Deviation')

function plotxbtn22_callback(src,event)

global data3 bound3 dataname3; f3=figure('Name','Knowledge Based Design with Six Sigma - Data 3 X-Bar and S-Chart',... 'NumberTitle','off',... 'MenuBar','none'); subplot(2,1,1) xbarplot(data3,0.997,bound3) xlabel(dataname3) ylabel('Mean ') subplot(2,1,2) schart(data3) xlabel(dataname3) ylabel('Standard Deviation')

%Histogram Fit function histfitbtn1_callback(src,event)

```
global data1 dataname1;
f7=figure('Name','Knowledge Based Design with Six Sigma - Data 1 Histogram Fit',...
  'NumberTitle','off',...
  'MenuBar', 'none');
siz1=size(data1);
if siz1(2) = = 1
  d1=data1;
else
d1=mean(data1')';
end
histfit(d1)
h1 = findobj(gca, 'Type', 'patch'); % let's format the plot
clr = [.9.91];
set(h1,'FaceColor',clr,'EdgeColor','k')
[historic_mean, historic_stdev] = normfit(d1);
ylabel('Frequency (counts)')
xlabel(dataname1)
title(['Histogram Fit - ' dataname1])
z=length(d1);
text(d1(z),8,['Mean:',num2str(historic_mean)])
text(d1(z),7.5,['Stand Dev:',num2str(historic_stdev)])
function histfitbtn2_callback(src,event)
global data2 dataname2;
f7=figure('Name','Knowledge Based Design with Six Sigma - Data 2 Histogram Fit',...
  'NumberTitle','off',...
  'MenuBar', 'none');
siz2=size(data2);
if siz2(2) == 1
  d2=data2;
else
d2=mean(data2')';
end
histfit(d2)
h1 = findobj(gca,'Type','patch'); % let's format the plot
clr = [.9.91];
set(h1,'FaceColor',clr,'EdgeColor','k')
[historic_mean, historic_stdev] = normfit(d2);
ylabel('Frequency (counts)')
xlabel(dataname2)
title(['Histogram Fit - ' dataname2])
z=length(d2);
text(d2(z),35,['Mean:',num2str(historic_mean)])
text(d2(z),33,['Stand Dev:',num2str(historic_stdev)])
function histfitbtn3_callback(src,event)
global data3 dataname3;
f7=figure('Name','Knowledge Based Design with Six Sigma - Data 3 Histogram Fit',...
  'NumberTitle','off',...
  'MenuBar', 'none');
siz3=size(data3);
```

histfit(d3) h1 = findobj(gca, 'Type', 'patch'); % let's format the plot clr = [.9 .9 1]; set(h1, 'FaceColor', clr, 'EdgeColor', 'k') [historic_mean, historic_stdev] = normfit(d3); ylabel('Frequency (counts)') xlabel(dataname3) title(['Histogram Fit - ' dataname3]) text(0.7,35,['Mean:',num2str(historic_mean)]) text(0.7,33,['Stand Dev:',num2str(historic_stdev)])

%Probability Plot function probplotbtn1_callback(src,event)

global data1 dataname1; f3=figure('Name','Knowledge Based Design with Six Sigma - Probability Plot Data 1',... 'NumberTitle','off',... 'MenuBar','none'); probplot(data1) ylabel('Percent') xlabel(dataname1)

function probplotbtn2_callback(src,event)

global data2 dataname2; f3=figure('Name','Knowledge Based Design with Six Sigma - Probability Plot Data 2',... 'NumberTitle','off',... 'MenuBar','none'); probplot(data2) ylabel('Percent') xlabel(dataname2) function probplotbtn3_callback(src,event)

global data3 dataname3; f3=figure('Name','Knowledge Based Design with Six Sigma - Probability Plot Data 3',... 'NumberTitle','off',... 'MenuBar','none'); probplot(data3) ylabel('Percent') xlabel(dataname3)

%Capability Plot function capaplotbtn1_callback(src,event)

```
global data1 dataname1 bound1;
f3=figure('Name','Knowledge Based Design with Six Sigma - Capbability Plot Data 1',...
'NumberTitle','off',...
'MenuBar','none');
```

siz1=size(data1);

if siz1(2)==1

```
d1=data1;
else
d1=mean(data1')';
end
```

```
capaplot(d1,bound1)
ylabel('Percent')
xlabel(dataname1)
```

function capaplotbtn2_callback(src,event)

```
global data2 dataname2 bound2;
f3=figure('Name','Knowledge Based Design with Six Sigma - Capability Plot Data 2',...
'NumberTitle','off',...
'MenuBar','none');
siz2=size(data2);
if siz2(2)==1
  d2=data2;
else
d2=mean(data2')';
end
```

capaplot(d2,bound2) ylabel('Percent') xlabel(dataname2) function capaplotbtn3_callback(src,event)

```
global data3 dataname3 bound3;
```

capaplot(d3,bound3) ylabel('Percent') xlabel(dataname3) %% Improvement Page

```
function improvbtn_callback(src,event)
```

global bound1 bound2 bound3 defnprobs d1 d2 d3 data4 ... t1 t2 t3 dataname1 dataname2 dataname3 capt extruder... data1 data2 data3 str

```
b1=findobj('Tag','improvtxt');
set(b1,'String','Anaylzing loaded Data ......')
b2=findobj('Tag','improvlistbox');
b3=findobj('Tag','coeftestbtn');
b4=findobj('Tag','coeftestbtn2');
b5=findobj('Tag','coeftestbtn3');
b6=findobj('Tag','predictbtn');
b7=findobj('Tag','predictbtn2');
```

```
b8=findobj('Tag','predictbtn3');
b9=findobj('Tag','simdatabtn1');
b10=findobj('Tag','simdatabtn2');
b11=findobj('Tag','simdatabtn3');
b12=findobj('Tag','exportsimdata');
```

%

l=length(defnprobs); **if** l==1 siz1=size(data1); if siz1(2) == 1d1=data1; else d1=mean(data1')'; end for i=1:length(data4) dsim1(i,1)=d1(i);end sim1 = regstats(dsim1, data4, 'quadratic'); mse1=sim1.mse; Rsquare1 = sim1.rsquare; rmse1 = sqrt(sim1.mse); str1={'Improvment Summary',... -----',.... ['Model Summary - ',dataname1],... ____',... ['MSE - ',num2str(mse1)],... ['Rsquare - ', num2str(Rsquare1)],... ['RMSE - ', num2str(rmse1)],... ·____ ","}; set(b2,'Enable','on'); set(b3,'Enable','on'); set(b4,'Enable','off'); set(b5,'Enable','off'); set(b6,'Enable','on'); set(b7,'Enable','off'); set(b8,'Enable','off'); set(b9,'Enable','on'); set(b10,'Enable','off'); set(b11,'Enable','off'); set(b12,'Enable','on'); str2="; str3="; elseif 1==2 siz1=size(data1); if siz1(2)==1 d1=data1;

else d1=mean(data1')'; end for i=1:length(data4) dsim1(i,1)=d1(i);end siz2=size(data2); **if** siz2(2)==1 d2=data2; else d2=mean(data2')'; end for i=1:length(data4) dsim2(i,1)=d2(i);end sim1 = regstats(dsim1, data4, 'quadratic'); mse1=sim1.mse; Rsquare1 = sim1.rsquare; rmse1 = sqrt(sim1.mse); sim2 = regstats(dsim2, data4, 'quadratic'); mse2=sim2.mse; Rsquare2= sim2.rsquare; rmse2 = sqrt(sim2.mse);str1={'Improvment Summary',... ['Model Summary - ',dataname1],... ['MSE - ',num2str(mse1)],... ['Rsquare - ', num2str(Rsquare1)],... ['RMSE - ', num2str(rmse1)],... _____',... ","}; ______',... str2={'= ['Model Summary - ',dataname2],... '-----',... ['MSE - ',num2str(mse2)],... ['Rsquare - ', num2str(Rsquare2)],... ['RMSE - ', num2str(rmse2)],... _____',... ","}; str3="; set(b2,'Enable','on'); set(b3,'Enable','on'); set(b4,'Enable','on'); set(b5,'Enable','off'); set(b6,'Enable','on'); set(b7,'Enable','on'); set(b8,'Enable','off'); set(b9,'Enable','on'); set(b10,'Enable','on'); set(b11,'Enable','off'); set(b12,'Enable','on'); elseif 1==3 siz1=size(data1);

------',...

____'....

if siz1(2) == 1

```
end
siz2=size(data2);
if siz2(2)==1
  d2=data2;
else
d2=mean(data2')';
end
for i=1:length(data4)
  dsim2(i,1)=d2(i);
end
siz3=size(data3);
if siz3(2)==1
  d3=data3;
else
d3=mean(data3')';
end
for i=1:length(data4)
  dsim3(i,1)=d3(i);
end
sim1 = regstats(dsim1, data4, 'quadratic');
mse1=sim1.mse;
Rsquare1 = sim1.rsquare;
rmse1 = sqrt(sim1.mse);
```

d1=data1;

d1=mean(data1')';

for i=1:length(data4)
 dsim1(i,1)=d1(i);

else

end

```
sim2 = regstats(dsim2, data4, 'quadratic');
mse2=sim2.mse;
Rsquare2= sim2.rsquare;
rmse2 = sqrt(sim2.mse);
```

```
sim3 = regstats(dsim3, data4, 'quadratic');
mse3=sim3.mse;
Rsquare3= sim3.rsquare;
rmse3 = sqrt(sim3.mse);
```

```
str1={'Improvment Summary',...
```

['Model Summary - ',dataname1],	,
['MSE - ',num2str(mse1)],	=====',
['RMSE - ', num2str(Rsquare1)],	
'	======',.

```
","};
```

```
str2={'=======;,...
['Model Summary - ',dataname2],...
```

·,...

='....

```
['MSE - ',num2str(mse2)],...
['Rsquare - ', num2str(Rsquare2)],...
['RMSE - ', num2str(rmse2)],...
```

```
","};
```

```
str3={'======',...
```

['Model Summary - ',dataname3],...

```
'======',...
['MSE - ',num2str(mse3)],...
['Rsquare - ', num2str(Rsquare3)],...
['RMSE - ', num2str(rmse3)],...
```

=='....

","};

set(b2,'Enable','on'); set(b3,'Enable','on'); set(b4,'Enable','on'); set(b5,'Enable','on'); set(b6,'Enable','on'); set(b7,'Enable','on'); set(b9,'Enable','on'); set(b10,'Enable','on'); set(b11,'Enable','on'); set(b12,'Enable','on');

```
elseif l>3
              siz1=size(data1);
if siz1(2)==1
  d1=data1;
else
d1=mean(data1')';
end
for i=1:length(data4)
  dsim1(i,1)=d1(i);
end
siz2=size(data2);
if siz2(2)==1
  d2=data2;
else
d2=mean(data2')';
end
for i=1:length(data4)
  dsim2(i,1)=d2(i);
end
siz3=size(data3);
if siz3(2)==1
  d3=data3;
else
d3=mean(data3')';
end
for i=1:length(data4)
  dsim3(i,1)=d3(i);
end
 sim1 = regstats(dsim1, data4, 'quadratic');
mse1=sim1.mse;
Rsquare1 = sim1.rsquare;
rmse1 = sqrt(sim1.mse);
sim2 = regstats(dsim2, data4, 'quadratic');
mse2=sim2.mse;
```

```
mse2=sim2.mse;
Rsquare2= sim2.rsquare;
rmse2 = sqrt(sim2.mse);
```

```
sim3 = regstats(dsim3, data4, 'quadratic');
```

mse3=sim3.mse; Rsquare3= sim3.rsquare; rmse3 = sqrt(sim3.mse);

str1={'Improvment Summary',...

['Model Summary - ',dataname1],...

____'....

-----',....

-----'....

_____',...

_____',...

['MSE - ',num2str(mse1)],... ['Rsquare - ', num2str(Rsquare1)],... ['RMSE - ', num2str(rmse1)],...

","};

------',... str2={'= ['Model Summary - ',dataname2],...

------',...

['MSE - ',num2str(mse2)],... ['Rsquare - ', num2str(Rsquare2)],... ['RMSE - ', num2str(rmse2)],... '====

","};

_____',... str3={' ['Model Summary - ',dataname3],...

'==========',... ['MSE - ',num2str(mse3)],...

['Rsquare - ', num2str(Rsquare3)],... ['RMSE - ', num2str(rmse3)],...

","}:

set(b2,'Enable','on'); set(b3,'Enable','on'); set(b4,'Enable','on'); set(b5,'Enable','on'); set(b6,'Enable','on'); set(b7,'Enable','on'); set(b8,'Enable','on'); set(b9,'Enable','on'); set(b10,'Enable','on'); set(b11,'Enable','on'); set(b12,'Enable','on');

else

set(b1,'String','Experimental Data cannot be accessed') end

set(b1,'String','Click buttons below to view plots') str=[str1,str2,str3]; set(b2,'String',str)

function coeftestbtn_callback(src,event) global bound1 bound2 bound3 defnprobs d1 d2 d3 data4 ... t1 t2 t3 dataname1 dataname2 dataname3 capt extruder

for i=1:length(data4) dsim1(i,1)=d1(i);end

%

coeffname = {'Cap tans' 'Extruder'... 'C*E' 'C^2' 'E^2' ''}; sim1 = regstats(dsim1, data4, 'quadratic'); rmse1=sim1.mse

f5=figure('Name','Knowledge Based Design with Six Sigma - Coefficient Test Plot 1',... 'NumberTitle','off',... 'MenuBar','none'); h = bar(sim1.beta(2:6)); set(h,'facecolor',[.8 .8 .9]); legend('Coefficient'); set(gcf,'units','normalized','position',[.05 .4 .7 .4]) set(gca,'xticklabel',coeffname); ylabel(dataname1) xlabel('Normalized Coefficient') title(['Quadratic Model Coefficients - ' dataname1])

function coeftestbtn2_callback(src,event)

function coeftestbtn3_callback(src,event)

```
function predictbtn_callback(src,event)
global data4 dataname1 d1 V1x1 V1x2 sn1 t1 Vy1
for i=1:length(data4)
    dsim1(i,1)=d1(i);
end
xname = {'Cap Tans';'Extruder'};
yname = {dataname1};
rstool(data4,dsim1,'quadratic',.05,xname,yname)
```

b2=findobj('Tag','linfig'); b3=findobj(gcf,'Type','axes'); set(b3,'ButtonDownFcn',@getValue1)

clear V1x1 V1x2 Vy1 sn1;

mm=mean(data4); sn1=1; V1x1=mm(1); V1x2=mm(2); Vy1=t1;

function predictbtn2_callback(src,event)
global data4 dataname2 d2 V2x1 V2x2 sn2 t2 Vy2
for i=1:length(data4)
 dsim2(i,1)=d2(i);
end
xname = {'Cap Tans';'Extruder'};
yname = {dataname2};
rstool(data4,dsim2,'quadratic',.05,xname,yname)

b2=findobj('Tag','linfig'); b3=findobj(gcf,'Type','axes'); set(b3,'ButtonDownFcn',@getValue2) mm=mean(data4)

clear V2x1 V2x2 Vy2 sn2

sn2=1; V2x1=mm(1); V2x2=mm(2); Vy2=t2;

function predictbtn3_callback(src,event)
global data4 dataname3 d3 V3x1 V3x2 sn3 Vy3 t3
for i=1:length(data4)
 dsim3(i,1)=d3(i);
end
xname = {'Cap Tans';'Extruder'};
yname = {dataname3};
rstool(data4,dsim3,'quadratic',.05,xname,yname)

```
b2=findobj('Tag','linfig');
b3=findobj(gcf,'Type','axes');
set(b3,'ButtonDownFcn',@getValue3)
mm=mean(data4);
clear V3x1 V3x2 Vy3 sn3
sn3=1;
V3x1=mm(1);
V3x2=mm(2);
Vy3=t3;
```

```
function getValue1(src,event)
global V1x1 V1x2 Vy1 gvtxt1 dataname1 str sn1
```

```
b1=findobj('Tag','improvlistbox');
```

i=length(V1x1)+1
V1=get(gca,'CurrentPoint');

if V1(1,1)>500

```
V1x1(i)=V1x1(i-1);
V1x2(i)=V1(1,1);
Vy1(i)=V1(1,2);
else
V1x1(i)=V1(1,1);
V1x2(i)=V1x2(i-1);
Vy1(i)=V1x2(i-1);
end
sn1(i)=i;
```

```
gvtxt1={'========',...
'Predicted Value',...
'=========',...
```

```
['Prediction No.' ':' num2str(sn1(i))],...
['Cap tans(rpm)' ':' num2str(V1x1(i))],...
['Extruder(rpm)' ':' num2str(V1x2(i))],...
[dataname1 '(mm)' ':' num2str(Vy1(i))],...
","};
mstr1=[gvtxt1,str];
set(b1,'String',mstr1)
```

```
function getValue2(src,event)
global V2x1 V2x2 Vy2 gvtxt2 dataname2 sn2 str
```

```
b1=findobj('Tag','improvlistbox');
i=length(V2x1)+1;
V2=get(gca,'CurrentPoint');
if V2(1,1)>500
V2x1(i)=V2x1(i-1);
V2x2(i)=V2(1,1);
Vy2(i)=V2(1,2);
else
V2x1(i)=V2(1,1);
V2x2(i)=V2x2(i-1);
Vy2(i)=V2(1,2);
end
sn2(i)=i;
gvtxt2={'=======',...
  'Predicted Value',...
  '_____',...
  ['Prediction No.' ':' num2str(sn2(i))],...
['Cap tans(rpm)' ':' num2str(V2x1(i))],...
  ['Extruder(rpm)' ':' num2str(V2x2(i))],...
  [dataname2 '(mm)' ':' num2str(Vy2(i))],...
  ","}
mstr2=[gvtxt2,str];
set(b1,'String',mstr2)
function getValue3(src,event)
global V3x1 V3x2 Vy3 gvtxt3 dataname3 sn3 str
b1=findobj('Tag','improvlistbox');
i=length(V3x1)+1
V3=get(gca,'CurrentPoint');
if V3(1,1)>500
V3x1(i)=V3x1(i-1);
V3x2(i)=V3(1,1);
Vy3(i)=V3(1,2);
else
V3x1(i)=V3(1,1);
V3x2(i)=V3x2(i-1);
Vy3(i)=V3(1,2);
end
sn3(i)=i;
gvtxt3={'========
                                   _____',...
  'Predicted Value',...
                                       _____',...
  ['Prediction No.' ':' num2str(sn3(i))],...
['Cap tans(rpm)' ':' num2str(V3x1(i))],...
['Extruder(rpm)' ':' num2str(V3x2(i))],...
  [dataname3 '(mm)' ':' num2str(Vy3(i))],...
  ","}
mstr3=[gvtxt3,str];
```

set(b1,'String',mstr3)

function simdatabtn1_callback(src,event)

global V1x1 V1x2 Vy1 sn1 dataname1 Table1;

sn1=sn1'; V1x1=V1x1'; V1x2=V1x2'; Vy1=Vy1';

ml=length(sn1);

for m=2:ml+1; Table1{ml+1,4} = []; Table1(1,1:4) = {'Prediction No.' 'Caps Tan(rpm)' 'Extruder(rpm)' dataname1}; Table1(m,1)={num2str(sn1(m-1,1))}; Table1(m,2)={num2str(V1x1(m-1,1))}; Table1(m,3)={num2str(V1x2(m-1,1))}; Table1(m,4)={num2str(Vy1(m-1,1))}; end footer=['Simulation Data - ' dataname1]; statdisptable(Table1, ['Data Improvement -' dataname1], 'Simulation Result Table', footer,[-1 -1 0 -1 2 4]);

function simdatabtn2_callback(src,event)

global V2x1 V2x2 Vy2 sn2 dataname2 Table2;

sn2=sn2'; V2x1=V2x1'; V2x2=V2x2'; Vy2=Vy2';

ml=length(sn2);

for m=2:ml+1; Table2{ml+1,4} = []; Table2(1,1:4) = {'Prediction No.' 'Caps Tan(rpm)' 'Extruder(rpm)' dataname2}; Table2(m,1)={num2str(sn2(m-1,1))}; Table2(m,2)={num2str(V2x1(m-1,1))}; Table2(m,3)={num2str(V2x2(m-1,1))}; Table2(m,4)={num2str(Vy2(m-1,1))}; end footer=['Simulation Data - ' dataname2]; statdisptable(Table2, ['Data Improvement -' dataname2], 'Simulation Result Table ', footer,[-1 -1 0 -1 2 4]);

function simdatabtn3_callback(src,event)

global V3x1 V3x2 Vy3 sn3 dataname3 Table3;

sn3=sn3'; V3x1=V3x1'; V3x2=V3x2'; Vy3=Vy3';

ml=length(sn3);

for m=2:ml+1; Table3{ml+1,4} = []; Table3(1,1:4) = {'Prediction No.' 'Caps Tan(rpm)' 'Extruder(rpm)' dataname3}; Table3(m,1)={num2str(sn3(m-1,1))}; Table3(m,2)={num2str(V3x1(m-1,1))}; Table3(m,3)={num2str(V3x2(m-1,1))}; Table3(m,4)={num2str(Vy3(m-1,1))}; end footer=['Simulation Data - ' dataname3]; statdisptable(Table3, ['Data Improvement -' dataname3], 'Simulation Result Table ', footer,[-1 -1 0 -1 2 4]);

function exportsimdata_callback(src,event) global V1x1 V1x2 V2x1 V2x2 V3x1 V3x2 Vy1 Vy2 Vy3 ... PathName dataname1 dataname2 dataname3 str b1=findobj('Tag','improvlistbox'); b2=findobj('Tag','improvtxt');

set(b2,'String','Simulation Data Exporting')

sfile4a=[PathName,'Simdatainput1.xlsx']; simout1=[PathName,'Simdataoutput1.xlsx']; simdata1=[V1x1 V1x2]; exportsiminput1 = XLSWRITE(sfile4a,simdata1,'InputData'); exportsiminput1b = XLSWRITE(simout1,Vy1,'Sheet1');

```
sfile4b=[PathName,'Simdatainput2.xlsx'];
simout2=[PathName,'Simdataoutput2.xlsx'];
simdata2=[V2x1 V2x2];
exportsiminput2 = XLSWRITE(sfile4b,simdata2,'InputData');
exportsiminput2b = XLSWRITE(simout2,Vy2,'Sheet1');
```

sfile4c=[PathName,'Simdatainput3.xlsx']; simout3=[PathName,'Simdataoutput3.xlsx']; simdata3=[V3x1 V3x2]; exportsiminput3 = XLSWRITE(sfile4c,simdata3,'InputData'); exportsiminput3b = XLSWRITE(simout3,Vy3,'Sheet1');

exporttxt={'========',... 'Simulated Data Export Paths',...

['Simulation of Input Data for - ' dataname1 ':' sfile4a],... ['Simulation of Output Data for - ' dataname1 ':' simout1],... ['Simulation of Input Data for - ' dataname2 ':' sfile4b],... ['Simulation of Output Data for - ' dataname2 ':' simout2],... ['Simulation of Input Data for - ' dataname3 ':' sfile4c],... ['Simulation of Output Data for - ' dataname3 ':' simout3],... ","} mstr=[exporttxt,str]; set(b1,'String',mstr)

===='....

set(b2,'String','Simulation Data Exported to Current Folder Directory')

APPENDIX R

GUI VISUAL DISPLAYS

Fig R1: Pareto Chart Display

Fig R2: Defect Quantity Display

Fig R3: Defects and Associated Financial Cost GUI Display

Fig R4: X-Bar and S-Chart GUI Display

Fig R5: Histogram GUI Display

Fig R6: GUI Display of the Probability Plot

Fig R7: GUI Display of the Capability Plot

-		F	igure 5: D	ata Analysi	is	_ 🗆 🗖	\times			
File	Edit View Inse	ert Tools Desktop	Window H	Help			~			
Experimental Result Table										
Caps	Tan(rpm)	Extruder(rpm)	Cable D	iameter	Cable Insulation Th	hickness	^			
375		875	2	. 77	0.7945					
375		900	2.7	698	0.88312					
375		925	2.8	394	0.62615					
375		950	2.8	346	0.7615					
400		875	2.7	984	0.78313					
400		900	2.8	232	0.80238					
400		925	2.7	372	0.88325					
400		950	2.7	396	0.79875					
425		875	2 2	- /5	0.79275					
425		900	2.0	230	0.02013					
425		923	2.7	692	0.00020					
450		875	2 7	814	0.84813					
450		900	2 7	764	0 8495					
450		925	2.8	324	0.83463					
450		950	2.7	606	0.88975					
							~			
	Design Experiment									

Fig R8: Experimental Result of the GUI Display

-	Figure 3: Data	Improvement -C	able Diameter	_ □	×					
File Edit View Inse	ert Tools Desktop \	Window Help			¥د.					
Simulation Result Table										
Prediction No.	Caps Tan(rpm)	Extruder(rpm)	Cable Diameter		^					
0	389.8514	0	0							
2	389.8514	886.6777	2.7558							
3	389.8514	895.8198	2.7695							
4	420.423	895.8198	2.8284							
5	404.0968	895.8198	2.802							
6	399.6151	895.8198	2.8274							
7	399.6151	886.5173	2.8004							
8	399.6151	895.9801	2.7837							
9	381.2081	895.9801	2.7837							
10	378.9672	895.9801	2.7776							
11	427.4657	895.9801	2.7935							
12	427.4657	884.2719	2.7848							
13	427.4657	895.6594	2.7754							
					~					
	Simulation Data - Cable Diameter									

Fig R10: Display of the Simulation Results from GUI

APPENDIX S: Study Application Letter to Cutix Cable Plc

APPENDIX T: Acknowledgement Letter from Cutix Cable Plc

APPENDIX U

Publications from this Research So Far