

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

 Today, the central part of every organization is data (Goyal et al., 2016). Owing to numerous

database choices obtainable, each organization uses varied databases, each database is specific to

the problem they are trying to resolve. With the innovations in the Information Technology (IT)

industry, the use of Big Data, cloud computing, Web Applications and the Internet of things, the

nature of demands for these databases are constantly changing. One of such demands is the need

not only to manage data which is high in velocity, volume, veracity and variety but also to grant

speed, scalability, reliability, continuous availability, and cost reduction and location

independence (distribution) at the same time. The existing popular relational databases and some

popular hybrid databases fell short of delivering these demands and so, most organizations are

migrating from relational to semi and unstructured databases (Goyal et al., 2016). According to

Lawrence (2014) ―although most NoSQL systems do not support SQL, there is no fundamental

reason why they could not. The ―NoSQL‖ label is a misnomer. The value of these systems has

nothing to do with SQL support, but rather on their different architectural design decisions in

order to achieve scalability and performance‖. Lawrence (2014) further noted that NoSQL

systems have been propositioned to deal with applications and problem field inadequately served

by relational database management systems. These domains are mainly Big data domains

involving web data such as supporting millions of interactive users or performing analytics on

terabytes of data such as weblogs and click streams. The data domiciled in this field of analytics

is semi-structured, variable and massive.

The NoSQL systems which are open source, due to their scalable nature and design model are

built to handle larger data volumes at better performance than relational systems. Another

advantage of the NoSQL system is that it offers better support for programmers. Systems like

MongoDB permits a Javascript Object Notation (JSON) object to be stored which can be readily

converted into Javascript objects in code (BSON; binary encoded JSON). This singular

advantage makes the knowledge of SQL (Structured Query Language) unnecessary for many

programmers as a result of the simplicity and flexibility offered by NoSQL management systems

(Lawrence, 2014).

2

Increasing output of data (structured, semi-structured and unstructured) have caused an upheaval

in the database community. This disruption in data management stems from lack of uniformity

both in syntaxes and the query language which are used to access the various database systems.

Researches both in the academia and the industry have been underway to find a lasting solution

for the integration/interoperability between SQL and NoSQL systems. This is as a result of the

overhead which is accrued from running single APIs (Application Programming Interface) on

different NoSQL systems. Also there is need for skill in the area of handling this single APIs and

has called for a search into the possibility of handling different systems efficiently. Data storage

has become of increasing need which has resulted in major industries, institutions and

establishments seeking out their own solutions for handling big data efficiently. The available

solutions so far have only addressed this issue partly and left serious gaps. Some of the gaps

identified are security issues as a result of third party involvement in cloud computing, near

inconsistency of the database, heterogeneous data structure and also different APIs as a result of

varying query model used in the NoSQL systems which lack uniformity. These gaps, when

filled, will be a major breakthrough in the field of NoSQL Database Management System.

This need for big data management has called for systems which are persistent and can handle

data concurrency. According to Lombardo et al., (2012), the scalability of NoSQL systems in the

cloud computing field have made them an interesting dimension in IT which holds prospects for

improvement as regards query optimization and execution. Though there are draw backs

attending the cloud/NoSQL technology, the systems are of optimum performance individually

but with proper implementation of algorithms, could be improved. This could be in form of a

merge of similar systems to ascertain functionality. Furthermore, the NoSQL systems are

heterogeneous in their functionality which is as a result of different query languages, different

consistency models and also the difference in the CAP theorem adopted by the various systems

used (Dharmasiri and Goonetillake, 2013). These various features of the systems leave a lack of

proper cohesion between the systems involved which is mainly due to lack of a standard query

language.

According to Gadkari et al., (2014), the increasing amount of data and database accesses has

rendered the traditional database systems inefficient for the purpose of big data management due

to space requirements. This need for systems that can handle large volumes of data which are

3

both non-structured/semi-structured has driven researchers and the industry into a viable option

which is the NoSQL Database Management System. NoSQL in its lay term stands for ‗Not Only

SQL‘. Ramanathan et al., (2011), described the recent migration for production purposes by

some leading brands like Amazon and Google from relational to NoSQL databases to be as a

result of its ability to handle unstructured data such as word-processing files, e-mail, multimedia,

and social media efficiently. Various NoSQL systems have been developed to handle data of

different formats and the four most widely known are; Key-value pair, Document-store, Column-

share and Graph databases. These NoSQL systems handle data of different structures but though

they have been able to meet different database needs, there are still issues attributable to the use

of these various systems.

According to Cure et al., (2012), ―NoSQL covers a wide range of technologies and data

architectures for managing web-scale data and having the following common features: persistent

data, non-relational data, avoid join operations, distribution, massive horizontal scaling, no fixed

and flexible schemata, replication support, individual usually procedural query systems rather

than using a standard declarative query language, consistent within a node of the cluster and

eventually consistent across the cluster and simple transactions‖.

The SQL systems are highly structured in their functionality using rows and columns which are

arranged in well-defined tables. Join operations are noted as one of the main features of the

RDBMS (Relational Database Management System) which outputs data that have functional

dependency on the key and which is well normalized to eliminate data redundancy and guarantee

integrity of data (Gadkari et al., 2014). As stated by Hecht and Jablonski (2011), the normalized

data model and full ACID support of the relational/SQL DBMS are not suitable for dealing with

the web 2.0 technology. This is because web 2.0 technology requires or deals with very high

volumes of data which come in peta- tera, yota, zettabytes and demands massive/concurrent

read-write access which should be responded to within low latency. The joins and lock of the

relational database model while ensuring data integrity is not suitable for distributed systems

where data are replicated and spread across multiple nodes as a result of need for high

availability of data.

Though these management systems are not very closely related and are specialized to perform

specific tasks, there are some similarities in their build up. The column-share NoSQL systems

4

display data in columns which is similar to the SQL Database Management System (DBMS).

According to Lombardo et al., (2012) the column-share NoSQL database model is the most

closely related to the SQL management system as it confines data into columns in different

tables and also supports the vertical partitioning storage model.

A common ground (between SQL and column-share) could be reached in terms of data and

query model. An integration of these two management systems; SQL and NoSQL which have

various high points and limitations could give a system which is both highly consistent and with

high throughput/availability.

Big Data Analysis

Big data as defined by Qi et al., (2014) is a term which encompasses various techniques which

are used to capture, process, analyze, and visualize potentially large sets of data within a

judicious time frame which are not available to regular IT technologies. Big data management

requires combination of different techniques which when properly managed allows for effective

data management. There are three basic features of Big data which are Volume (the amount of

data involved), Velocity (the rate at which data is generated) and Variety (the heterogeneous

nature of data involved). As shown in Figure 1.1, there are different sources of Big data which

spring from different bases or context like social media, multimedia and also cloud technology.

Some works have been carried out on integration of SQL and NoSQL systems. Individual

NoSQL systems like graph, document-store and column-family have been made interoperable

with the SQL platform.

Different works have been conducted in this field of integration of SQL and NoSQL systems.

These already existing works have not performed integration of all the various NoSQL models

which are; key-value pair, column-share, document-store and graph systems with the traditional

relational model which is SQL (Structured Query Language). Doshi et al.,(2013) classified data

growth into vertical, chronological and horizontal. A solution which blends SQL with NoSQL by

use of data integrator which first sifts updates in RDBMS and channels it into NoSQL was used.

A framework named Hibernate-OGM used to reduce the programming complexity of the NoSQL

was used to aid the relational model. This framework has the problem of handling data at good

speed.

5

Figure 1.1 Big data source (Source: Zafar et al., 2016).

Liu and Vitolo (2013) explained that the concept of ‗Graph Cube‘ is proposed as a design which

integrates graphs with tables. This concept serves as a prototype which is the basis of a graph

data warehouse. Some DML (select, insert, update and delete) and DDL (create, drop and

update) in SQL is synchronized with the graph data model to give GDML (Graph Data

Manipulation Language) and GDDL (Graph Data Definition Language). This model allows for

views in the graph data warehouse.

As stated by Kaur and Rani (2013) graph databases represent data in their natural format using

graphical forms which shows better representation rather than tabular forms. This eliminates

impedance mismatch (incompatibility of database with programming language) which is the

problem mostly associated with the object-relational systems which store data in tabular form.

The graph DBMS as explained by Indrawan-Santiago (2012) faces the most challenge amongst

the NoSQL systems as it does not support horizontal partitioning which is a drawback to this

model. As described by Gudivada et al., (2014) graph database is highly scalable and has

persistent in-built memory which can be used for clustered systems for both single and

distributed data centers. The interoperability of both the Graph system and NoSQL system has

caused an improvement in data management technology.

6

Lawrence (2014) worked on SQL and NoSQL integration using MongoDB and MySQL. The

architecture of the system is based on the construction of a JDBC driver which accepts SQL

queries through the use of SQL parser which produces a parse and relational operator tree. This

process is made possible through a virtualization Execution Engine which serves as the middle-

layer accepting and translating information across the two management systems.

This research seeks to serve as furtherance of the work carried out by Lawrence (2014) at the

University of British Columbia Canada where he stated that ―Future work involves

benchmarking the performance of other supported NoSQL systems such as Cassandra. We are

also working on parallelizing the virtualization engine for a cluster environment.‖ Also, Doshi et

al (2013) proposed further work using mixed approaches in blending SQL IMDBs with

distributed, fault-tolerant NoSQL systems which demand a combination of in-memory and

massively parallel computing.

1.2 Statement of the Problem

Presently, there has been so many demands by users for improvement in terms of efficiency of

databases to handle large data effectively. The existing databases fell short of delivering these

demands in the area of effective database management. These problems are inefficiencies in the

area of speed, scalability, reliability, continuous availability, cost reduction and location

independency.

Some problems have been identified by this research and they include;

i) An enhanced hybrid system capable of accommodating structured, semi-structured and

unstructured datasets.

Scherzinger et al., (2013) explained that ―what is missing in today‘s frameworks is a means to

systematically manage the schema of stored data, while at the same time maintaining the

flexibility that a schema-less data store provides‖. Big data management poses a serious obstacle

in the IT research and industry domain in terms of the size (volume of data), variety (semi-

structured/unstructured) and velocity (speed at which data changes) of the data involved.

Increasing amount of data produced has rendered the traditional (SQL) systems incapable of

handling these volumes of data both in speed and structure. As a result of this incapability of

7

SQL systems to handle different structures of data, vast volumes of data cannot be

accommodated.

ii) A unified interface (integrated system) that has speed and allows seamless movement of

large datasets or Big data with automatic load balancing capability.

According to Srivastava & Shekokar (2016) Big Data has lots of issues and challenges such as

storage, efficient access, and data analytics and data security. Research in Big data domain which

has been broadly segregated into 3 main categories; 1) infrastructure domain, 2) data processing

and 3) analytics, is based predominantly on the huge volume of data which has created difficulty

in providing good infrastructure with 100% uptime. Lots of cloud service providers and

distributed frameworks are claiming to provide good elasticity and reliability but lots of

challenges still prevail in terms of efficient load balancing and security issues.

iii) An effective system optimized for analytics and offer of good infrastructure.

Zafar et al., (2016) opined that the performance of NoSQL can be quantified by numerous

features such as the architecture, data model, query languages, consumer API, ease of use and

scalability; data in NoSQL is typically collected from different foundations and need to be

handled in real time. As such, NoSQL systems do not support ACID (atomicity, consistency,

isolation and durability) principle, but have a shared and fault tolerance design. As stated by Li

and Gu (2019) new systems have been developed to combat this major data issue but the

problem still persists. This problem is in terms of movement of data across different systems

which are as a result of the different APIs employed by the different NoSQL developers.

Availability of data is at the forefront of the NoSQL management system which leaves

consistency of data a secondary consideration to this architecture. SQL stands for consistency

and integrity of data but yet lacks the ability of horizontal partitioning/scalability as it partitions

vertically. These various systems; the SQL and different NoSQL systems have their strong

attributes and a proper integration has been carried out by this research and avails the research

and industry with a system reliable for parsing data across the different systems involved and

also provides high consistency and throughput.

8

1.3 Aim and Objectives of the Study

The aim of this work is to design and implement a Cross-platform Database system for SQL and

NoSQL interoperability.

The specific objectives of the work are to:

1. develop an interoperable system that will increase the speed and movement of data.

2. design an integrated system capable of accommodating vast volumes of data.

3. design a novel methodology for exploiting strengths of query languages.

4. test for consistency, availability and improvement using test–case scenarios of various

systems to ensure uniform communication and operation.

1.4 Significance of the Study

 ―In practice, there are situations in which storing data in the form of a table is inconvenient, or

there are other kinds of relationship between records, or there is the necessity to quickly access

the data. A NoSQL database provides a mechanism for storage and retrieval of data that is

different from the typical relational model‖ (Stanescu et al., 2016).

This work is important to organizations and big corporations as it offers an interoperable system

which is both fast and reliable. Data can be moved around and understood across board for the

relational, NoSQL/NewSQL platforms. This new hybrid system offers full scalability, cost

effectiveness, compatibility and also a consistent and available repository/storage facility.

As posited by Cure et al., (2012), solutions in the NoSQL ecosystem are emerging in various

domains such as social, scientific and even financial applications. Nevertheless, many actors

consider that in order to increase the adoption rate of the NoSQL database, NoSQL systems need

to integrate some new features and these desired features correspond to the ones found in

RDBMS (Relational Database Management Systems). These features were identified as the ones

which are concerned with more schema, more declarative query languages and business

intelligence (BI) processing. The researchers further argued that the integration of these features

needs to consider the semantics of the elements of the application domain which could be a

major breakthrough for both NoSQL stores and the semantic community since RDBMS is not

really reactive in integrating semantics.

9

Lawrence (2014) put forward three primary reasons for supporting SQL querying of NoSQL

systems 1) SQL is a declarative language that allows descriptive queries while hiding

implementation and query execution details. 2) SQL is a standardized language allowing

portability between systems and leveraging a massive existing knowledge base of database

developers. 3) Supporting SQL allows a NoSQL system to seamlessly interact with other

enterprise systems that use SQL and JDBC/ODBC without requiring changes. A cross-platform

system which allows for interoperability between different NoSQL systems and SQL system has

not been fully implemented which is the purpose of research. Though there have been various

works produced by different researchers linking different SQL systems to their NoSQL

counterparts, a concise interoperable system between these two school of thoughts is yet to be

realized. This is the basis of this project; to design and implement a functional system which

allows parsing of data across board for both the SQL and NoSQL database management systems.

According to Lawrence (2014) the key advantage of supporting SQL is to allow for system

portability.

This research came up with novel methodology which is a hybrid methodology for database

management called ‗Holistic Iterative and Incremental Approach for cross-platform modeling.

This is an improvement on the already existing Iterative and Incremental model. This idea is as a

result of the need to iteratively evaluate the data for both consistency and availability within a

distributed data network. In the words of Kepner et al., (2016), ―it is now recognized that

special-purpose databases (such as the system proposed by this study) can be 100 times faster for

a particular application than a general-purpose database‖.

1.5 Scope of the Study

This research covered a broad aspect of SQL and NoSQL database systems. The work looked at

the various conventions/drivers which the different systems run on. SQL runs on relational

algebra (using intersections and unions to perform joins) which is how the relations are put

together. Polyglot persistence has been known to form a major part of how NoSQL systems run

which is the combination of various techniques and technologies in managing and outputting

data/information. The research was used to find a common ground between these two unique

systems and how they efficiently parse/exchange and accommodate data within a unified

10

interface. The study integrated an enhanced, functional and interoperable cross-platform database

with both SQL and NoSQL peculiarities which is unambiguous.

1.6 Limitations of the Study

There are various limitations attending this study; at the foremost are time and tools to be used.

The work is time-constrained as the research is required to be started and completed within a

given time frame.

The researcher does not have direct access to some of the tools which will be used for the work

and will depend on the limited access edition of the open source. Various techniques which will

be employed for example the SQL server and client-side RoboMongo for MongoDB cannot be

accessed through the University and will be sourced through external means. There are also

limited existing research works on this area.

1.7 Definition of Terms

According to Darwen (2010), a Database is an organized, machine-readable collection of

symbols, to be interpreted as a true account of some enterprise. A database is machine-updatable

too, and so must also be a collection of variables. A database is typically available to a

community of users, with possibly varying requirements.

Relational Database: - a database whose symbols are organized into a collection of relations

(Darwen, 2010).

RDBMS: - Relational Database Management Systems are based on the relational model defined

by a schema. This model uses two concepts: table and relationship. A relational table represents

a well defined collection of rows and columns and the relationship is established between the

rows of the tables. Relational data can be queried and manipulated using SQL query language

and the RDBMS is mostly used for financial records, manufacturing information, staff and salary

data and so on (Stanescu et al., 2016).

Relation: - a formal term in mathematics –in particular, in the logical foundation of mathematics

which appeals to the notion of relationships between things or any number of things (Darwen,

2010). ―A mathematical definition of database tables sufficient for their representation without

constraining their implementation‖ (Kepner et al., 2016).

11

Relational Algebra: - an algebra with the primary purpose of providing a collection of

operations on relations of all degrees (not necessarily binary) suitable for selecting data from a

relational database. The relations to be operated upon are assumed to be normalized; that is, the

domains on which they are defined are simple (Codd, 1972).

Relational algebra: - a set of mathematical operators that operate on relations and yield relations

as results (Darwen, 2010).

Relational Table: - According to Stanescu et al., (2016) the relational table represents a well

defined collection of rows and columns which has relationship established between the rows of

the tables. The data in the relational table can be queried and manipulated using SQL (Structured

Query Language).

NoSQL: - systems developed to support application not well served by relational systems, often

involving Big Data processing (Lawrence, 2014). ―Typical applications of NoSQL databases

involve many important areas, such as the Internet, mobile computation, telecommunications,

Bioinformatics, education, and energy‖ (Li and Gu, 2019). Cure et al., (2012) explained that

NoSQL covers a wide range of technologies and data architecture for managing web-scale data

and having the following common features; persistent data, non-relational data, avoid join

operations, distribution, massive horizontal scaling, no fixed and flexible schemata, replication

support, individual usually procedural query systems rather than using a standard declarative

query language, consistent within a node of the cluster and eventually consistent across the

cluster and simple transactions. Zafar et al., (2016) also defined NoSQL as systems that do not

support ACID (atomicity, consistency, isolation and durability) principle, but have a shared and

fault tolerant design.

NewSQL: - an inclusive term to refer to a clustered, non-RDBMS system where the distinction

between NoSQL and NewSQL is not important (Doshi et al., 2013).

 Polyglot Persistence: - is a multi-database approach of introducing different database

approaches in an application. Polyglot persistence allows one database to process one part of

application and use same data which is used by different database for processing another part of

same application (Scott Leberknight, 2008). Srivastava and Shekokar (2016) defined polyglot

persistence as where different modules can have their own different data processing mechanism,

12

can solve the problem of scalability and processing unstructured data as well as maintaining

legacy processing.

Big Data: - Zafar et al., (2016) defined Big data as data which have unlimited quantity of

datasets and is very complex to collect and store. Srivastava and Shekokar (2016) also defined

Big data as numerous sources which are creating large volumes of data such as E Commerce,

search engines, IoT (Internet of Things), mobile phones, satellites etc. Big Data is not only large

volume; it also includes Velocity; data changing at a very high speed, and Variety; inclusion of

structured, semi-structured and unstructured data.

IoT (Internet of Things):- network of physical devices, vehicles, home appliances and other

items embedded with electronics, software, sensors, actuators, and connectivity which enables

these objects to connect and exchange data (Srivastava and Shekokar, 2016).

DBMS (Database Management System):- a piece of software for managing databases and

providing access to them. A DBMS responds to commands given by application programs,

custom-written or general purpose, executing on behalf of users. Commands are written in the

database language of the DBMS, for example; SQL (Darwen, 2010).

ACID: - Atomicity, Consistency, Isolation and Durability properties is used by the RDBMS

(Relational Database Management System) for its operations on data. The ACID ensures a

reliable performance whereby transactions are correctly changed in the database. When a

transaction modifies a value in the database, other database consumers are able to see the same

value that was updated (Zafar et al., 2016).

Normalization: - is a logical approach of decomposing tables to eliminate data redundancy

(repetition) and undesirable characteristics like insertion, update and deletion anomalies. It is a

multi-step procedure that places data into tabular form, thereby eliminating replica data from the

relational tables. Normalization is employed for two main purposes; 1) to eliminate redundant

(useless) data. 2) To ensure accurate data dependencies (Kanade et al., 2014).

BASE: - Basic Availability, Soft State, and Eventual consistency properties are used by the

NoSQL database for the operations. Basic Availability means apparent availability of data. When

a single node fails, the data is partially inaccessible but other data layer remains functional. Soft

13

State event implies that the data can be changed over time despite the lack of input because such

ability may ensure consistency (Zafar et al., 2016).

PACELC:- Partition, Availability and Consistency, Else, Latency and Consistency theorem

inculcates all the characteristics of the NoSQL management system, due to the replication of data

in NoSQL, a failure goes unnoticed as replica servers generate the exact information on the

failed node. The NoSQL system considers when there is partition, availability and consistency of

the database and when the system performs normally without partition, it considers latency and

consistency (Indrawan-Santiago, 2012).

CAP theorem: - stands for Consistency, Availability and Partition tolerance. Professor Eric

Brewer in 2000 proposed CAP theorem. According to Benefico et al., (2012), shared data

systems have properties such as, consistency, availability and partition (CAP). This theorem

states that distributed databases cannot have both consistency and availability. The CAP model

grants that in a joint-data scheme, only two out of the three features can be satisfied at a

particular point in time within the database. There are three possible configurations which are;

consistency and partition tolerance, availability and partition tolerance and the last consistency

and availability which is very difficult to combine (Bonnet et al., 2011).

Query: - an expression that, when evaluated, yields some result derived from the database.

Queries make databases useful. A query is not of itself a command. The DBMS might support

some kind of command to evaluate a given query and make the result available for access, also

using DBMS commands, by the application program. The application program might execute

such commands in order to display result (usually in tabular form) in a window (Darwen, 2010).

Virtualization Technology: - is an efficient method of scheduling hardware, software, data, and

network, storage of the application system from each other, which breaks the physical device

obstacles in the data centers, servers, storage, networks, data and applications and implements

the dynamic architecture. It also provides the centralized management and dynamic use of

physical resources and virtual resources, and improves the elasticity and flexibility. It can also

promote the service and manage the risk (Jiang et al., 2013).

Sharding: - the introduction of new node (s) to the current system which will not affect the

system performance or shutdown the system but increase the capability of the system whereby

14

data is distributed over the node and is arranged in a non-overlapped form. These nodes can be

operated on different systems and as such, each node can independently eliminate source dispute

(Zafar et al., (2016).

JSON: - JavaScript Object Notation (JSON) is a text based open source application to transfer

information between server and client. JSON is derived from JAVASCRIPT. On the other hand,

a binary-coded serialization (BSON) is a flavor of JSON. However, BSON is more flexible than

Protocol buffer (Google‘s language neutral, platform-neutral, extensible mechanism for

serializing structured data; useful in developing programs to communicate with each other over a

wire or for storing data) but commonly employed as effective space management method (Zafar

et al., 2016).

15

CHAPTER TWO

LITERATURE REVIEW

2.1 Overview of SQL and NoSQL Systems

―NoSQL and relational systems will likely co-exist for some time, and it is valuable to query

them simultaneously‖ (Lawrence, 2014). According to Cure et al., (2012), ―NoSQL stores are

emerging as an efficient alternative to relational database management systems in the context of

big data‖. As opined by Zhao et al., (2014), conventionally, relational database is one of the most

accepted ways to manage data in practical scene; however, faced with a substantial increase in

the amount of data, relational database is suffering severe stress. Relational databases are still

very much efficient and in use by companies with basic management needs that can be handled

by the relational model but when big data are factored in, they are considered inadequate both in

size, speed, structure and throughput. This is in part due to the schemas which confound data into

columns and rows, referential integrity and constraints (primary and foreign key).

 Tudorica and Bucur (2011), defined NoSQL(Not only Structured Query Language) as a

distributed database system which does not require SQL (structured Query Language), does not

have fixed table schemas, with no joins and can be horizontally scaled. This might be open-

source. NoSQL database has been developed to cover the shortage of relational database (Hetch

and Jablonski, 2011 & Han et al., 2011). NoSQL database offers a method for storage and

retrieval of data that is modeled as unstructured other than the tabular relation used in relational

databases (Zhao et al., 2014).

As further explained by Zhao et al., (2014), NoSQL database is suitable for read-heavy OLAP

(Online Analytical Processing) systems where data inconsistency is tolerable such as big data

scenarios and web applications; but there is a problem that the data to analyze is derived from

relational database, so there is great demand for efficient and reliable solution to migrate data

from relational database to NoSQL database. Many companies who have previously adopted

SQL (Structured Query Language) as their primary database management system turn to NoSQL

database and use it for storing and managing data, and relational database of existing

applications must be transformed to NoSQL database. Data in relational database model is

organized by tables and relations between tables are represented by foreign keys. NoSQL

16

database unlike the SQL system organizes data by number of dataset and they are independent

from each other. As opined by Stanescu et al., (2016) an additional problem that NoSQL solves

is the issue of Impedance mismatch (the mismatch between relational databases and object-

oriented programming). It is known that SQL queries are not suitable for object oriented data

structures that are used in most applications now. Figure 2.1shows the different data models of

the NoSQL systems and example of databases developed for the the purpose of handling data to

conform to the model.

Figure 2.1 NoSQL Database Types (Source: Zafar et al., 2016).

According to Ejiofor and Okeke (2016), NoSQL systems were introduced as feasible alternatives

to the RDBMS in mitigating the difficulty experienced as a result of large data sets. These data

sets come in structured, semi-structured and unstructured forms thereby rendering the well-

defined data type formation of the SQL systems impracticable for the storage of large sets of

data. The necessity for fast storage and high availability of data with ensuing quicker recovery of

the stored information also supported the concept of NoSQL and big data systems development.

Table 2.1 shows a listing of the different NoSQL systems rnaging from key-value pairs to

document-store, with the column-share and graph-oriented data models. The table 2.1 depicts the

various configurations and classifications of already functional NoSQL systems and their use-

case similarities.

17

Table 2.1Classification by data model of different NoSQL databases (Source: Zafar et al., 2016).

Data Model Example Databases

Key-Value Berkeley DB

LevelDB

Memcached

Project Voldermort

Redis

Riak

Document Store CouchDB

MongoDB

OrientDB

RavenDB

Terrastore

Column Family Amazon SimpleDB

Cassandra

HBase

Hypertable

Graph FlockDB

HyperGraphDB

Infinite Graph

Neo4J

OrientDB

The traditional database management systems also known as the relational database management

systems (RDBMS) which make use of SQL (Structured Query Language) for its IO

(Input/Output) operations have been around since the 1970s. It was developed by Jeff Codd and

has been known to offer highly consistent data. This format of data management confines data

into rows and columns (tables) which are known as schemas. This data is highly structured and

dependent on the primary key which is used to extract the data. Various vendors have their own

type of query language which are peculiar to them and differ slightly in executed features but

they all have one thing in common: the syntaxes are similar and are made to coordinate

structured data. Also, the relational database systems are relatively interchangeable due to their

mutual recognition of standards (Lawrence, 2014). Gyorodi et al., (2015), explained that

relational models are extensively used in most of the applications and they have good

performance when they handle a restricted volume of data. In handling huge amount of data like

internet, multimedia and social media, the use of traditional relational databases is ineffective. A

comparison of the different hierarchies of MySQL and Mongo DB database and their

equivalence when juxstaposed with each other is highlighted in Table 2.2.

18

Table 2.2 Tabular representation of MySQL and MongoDB systems. (Source Gyorodi et al.,

2015).

MySQL MongoDB

Database Database

Table Collection

Index Index

Row BSON Document

Column BSON Field

Join Embedded documents and linking

Primary key Primary key

Group by Aggregation

According to Stanescu et al., (2016) the main concepts in MongoDB are collection and

document. Database is a physical container for collections. Each database obtains its own set of

files on the file system. A single MongoDB server typically manages multiple databases just like

the MySQL server would do. The collection is a set of MongoDB documents which is the

equivalent of a relational table in the MySQL RDBMS. The collection exists only within a single

database. A MongoDB document is a set of key-value pairs which could be compared to rows in

the relational model. The documents do not necessarily have to be schema compliant.

Due to recent surge in data output which was brought about by the advent of web 2.0 technology,

it has become pertinent on data managers to inculcate into their management, all kinds of data

which ranges from multimedia to voice and these data are not all structured. Some of the recent

data are semi-structured in nature while others are unstructured. The problem does not end at

this; these recent data are coming in large quantities and speed and the users of the data in

question demand real time answers to data processing; their availability has been placed in the

front-burner of data management. This is the reason why researchers both in the industry have

gone in search for means to handle this huge task and they have come up with NoSQL (Not Only

SQL). The NoSQL database management system as posited by Lawrence (2014), ―are growing

in popularity for Big Data applications in web analytics and supporting large web sites due to

their high availability and scalability‖. As posited by Ramanathan et al., (2011), the recent

migration for production purposes by principal brands like Amazon and Google from relational

model to NoSQL databases is as a result of its capability to handle unstructured data such as

multimedia, word-processing files, e-mail, and social media proficiently. Increasing necessity of

19

companies and database users for other options which could aid data storage needs compelled

developers to conceive the idea of NoSQL databases. Developers of NoSQL databases use

diverse approaches which is geared towards the same end purpose which is that they are not

relational (structured). NoSQL databases leverage high performance both in terms of speed, size

and high availability at the expense of losing the ACID (Atomicity, Consistency, Isolation and

Durability) features which are the key characteristics of the RDBMS. The NoSQL systems are

modeled to chiefly conform to features of key-value, column-orientation, document-store and

graph databases. Different NoSQL databases make use of these properties according to the need

of the developer and in line with the purpose the system was built to serve (Tudorica and Bucur,

2011).

According to Lombardo et al., (2012) NoSQL DB is principally organized in uncorrelated tables.

This allows for a multi-layered, fundamentally relational data model which is flattened and

subdivided into various NoSQL tables. Two different partitioning strategies are probable;

vertical partitioning where each column of a high level relational table is stored into a separate

NoSQL table and horizontal partitioning (sharding) where different sets of values are stored in

different NoSQL tables. The NoSQL database allows both forms of partitioning.

2.2 Comparison of SQL and NoSQL Databases

According to Zafar et al., (2016), Netflix converted its data management system from Oracle

(RDBMS) to Cassandra (NoSQL system) as a result of the Cassandra‘s ability to provide

reliability, readiness and fault tolerance in handling big data. After the migration to Cassandra by

Netflix, the company achieves 10,000 writes per second per node and the average latency rate is

less than 0.015. The total cost of Cassandra set for running on the Amazon EC2 is $60 per hour

for a cluster of 48 nodes which shows that NoSQL system are built to support read and write

operations effectively.

 As stated by Cure et al., (2012), NoSQL covers a wide range of technologies and data

architectures for managing web-scale data and having the following common features; persistent

data, non-relational data, avoid join operations, distribution, massive horizontal scaling, no fixed

and flexible schemata, replication support, individual usually procedural query systems rather

than using standard declarative query language, consistent within a node of the cluster and

eventually consistent across the cluster and simple transactions.

20

SQL systems offer superior consistency/isolation as opposed to the NoSQL system which trades

consistency for availability. This is due to real-time needs of day-to-day users who require

response to answer for transactions being performed (Indrawan-Santiago, 2012). As stated by

Lawrence (2014), the relational systems have been the dominant form of data storage and

manipulation for the last 30 years; this is because the RDBMS is both theoretically grounded and

efficient to implement. Relational databases are good for their provision of data integrity and

offer of big feature set; which are not attributes of the NoSQL databases. These features of the

traditional database systems have overhead cost and complexity which are attached to them

(Pettersen et al., 2014). Data integrity and the offer of big feature set, key attributes of relational

databases, are a handicap of NoSQL databases. As argued by Hecht and Jablonski (2011), the

provision of the large feature set by the relational model can amount to needless overhead when

the query is being performed for simple tasks such as logging. The traditional databases also

known as relational databases have some qualities attributed to them like atomicity, consistency,

isolation and durability. Bonnet et al., (2011), explained that the ACID model of the RDBMS

ensures the database is very consistent and can perform optimally with the transactions fully

committing or none at all. Hecht and Jablonski (2011) argued that the data model in the

relational databases which are normalized and its full support for the ACID properties can affect

the performance of the database negatively when used for recent web activities like Facebook as

joins and locks cannot perform well in a distributed environment. Joins also consume

considerable resources to implement and are costly to write, debug and maintain (Gudivada et

al., 2014).

According to Lawrence (2014), NoSQL systems are frequently open-source and are aimed to

handle larger data capacities at improved performance than the relational systems; another key

benefit of the NoSQL systems like MongoDB is that they leverage better support for

programmers. MongoDB permits a JSON object to be stored which can be simply transformed

into JavaScript objects in code. This ease and flexibility makes using MongoDB easier for many

programmers thereby eliminating the need to understand SQL.

According to Han et al., (2011), other advantages of the NoSQL database is its ability to read

and write data quickly and support for mass storage, ease of expansion and low cost. In spite of

these benefits, there are some inadequacies linked to NoSQL databases which are;

21

1. Lack of support for SQL (Structured Query Language): the SQL is the industry standard

for querying and updating a database and the NoSQL systems do not make use of it.

2. Lack of transactions: transactions are the basic unit of work of a database. In the NoSQL

model, there are no transactions which could be used to assess the functioning of a

database.

Another setback of the traditional database is its inability to perform large amounts of read and

write concurrently (Tudorica and Bucur, 2011). Being a very consistency conscious database, the

relational database performs its read/write operations slowly to ensure there is no loss of

information (Xiang et al., 2010).

The employee_records table as shown in Table 2.3 is fully normalised which means it is in third

normal form and there is no existence of transitive dependencies within this relation. Data is held

in rows in this table and there are different constraints applied to ensure integrity of this table.

For example there is a primary key constraint (number (10)) on the employee_id row which

means number cannot exceed 10. Also because the employee_id is the primary key, the values of

all the other attributes: first_name, last_name, position and salary are functionally dependent on

it.

Table 2.3 Example of a structured database table for Employees records in Relational database

(Source: Ejiofor and Okeke, 2016).

Employee_id First_Name Last_Name Position Salary in USD

1 David Okaro Systems Analyst 25,000

2 Jerry Orakwe Manager 30,000

3 Musa Ahmed Accountant 23,000

Example of Table creation and query in ORACLE SQL

Drop table employee_records;

Create table employee_records

(employee_id number (10) not null primary key,

22

First_name varchar2(15) not null,

Last_name varchar2(15) not null,

Position varchar2(25) not null,

Salary varchar2(10) not null);

Commit;

Insert into employee_records values (1, ‗David‘, ‗Okaro‘, ‗Systems Analyst‘, ‘25,000‘);

SELECT employee_id, first_name, last_name, Position, Salary

From Employee_records

Where Office_no = ‗RM501‘;

Data for employee records as depicted in table 2.4 is unstructured. There is no defined schema

holding the values together. For example in key:1 there is ID: zx and First Name: Yinka while

key:2 holds values for Email, location and Age. Values can be generated using the keys. The

contrast between the structured and unstructured model is that the different entities like ID, First

Name, location and Age would be created for both key 1 and 2 in the structured table to ensure

integrity of the keys.

Table 2.4 Example of unstructured data for Employee records (Source: Ejiofor and Okeke,

2016).

Key: 1 ID: zx First Name: Yinka

Key: 2 Email: yinka_afolabi@sec.org Location: Lagos Age: 35

Key:3 Facebook ID: Adisa James Password: infosectm Name: Afam

mailto:yinka_afolabi@sec.org

23

Syntaxes in MongoDB NoSQL

db.employee_records.insert({ 'employee_id': 1, 'first_name': Yinka', 'last_name': 'Williams',

'Job_title': 'Software Engineer', 'Office_no': 'RM501' });//used to insert and save data//

db.employee_records.find(); //This is the select function in MongoDB database and can be used

 for data retrieval//

db.users.find()sort({―Job_title‖: Software Engineer}); //This is an equivalent of the 'where'

clause in SQL//

db.employee_records.drop(); //This is used to drop a table in MongoDB//

2.3 Polyglot Persistence

Scott Leberknight (2008) defined polyglot persistence as ―a multi-database approach of

introducing different database approaches in an application‖. The concept of polyglot persistence

is to let one database to process one part of application and use same data which is used by

different database for handling another part of same application. Polyglot Persistence as posited

by Srivastava and Shekokar (2016) is where different modules can have their own different data

processing mechanism (using diverse data storage technologies to handle varying data storage

needs). Polyglot persistence can also be used to solve the problem of scalability and processing

unstructured data as well as sustaining legacy processing.

The whole idea is basically that of interoperability of the different database management systems

which is aimed towards improved performance and optimal throughput. Polyglot Persistence can

be applied across an enterprise or within a single application. The technology encapsulates data

access into services thereby reducing the impact of data storage choices on other parts of a

system. Big data analytics which handles real life applications has proven single database

management structure insufficient whether it is a cloud based structure or any other distributed

framework (Srivastava & Shekokar, 2016).

According to Ejiofor and Okeke (2016), NoSQL allows enhanced and upgraded performance

which is very essential for applications with large volumes of data. Big companies like Amazon

and Google have industrialized their own NoSQL database versions to embrace their increasing

data and infrastructure needs. Amazon developed the Dynamo distributed NoSQL system which

24

has SimpleDB as the web interface whereas Google has the Big Table NoSQL database.

Cassandra (column-oriented NoSQL system) was developed by Facebook to support its website

while Apache generated the CouchDB; a very scalable and open-source system which could be

accessed from any browser. These numerous databases were fashioned to solve various needs by

the developers which are as a result of the development of the web2.0 technology. The relational

databases cannot be used to accomplish multi-table join queries where enormous data is involved

(Wei-ping et al., 2011).

As posited by Srivastava and Shekokar (2016), E-commerce is one of the fastest growing

business models in this era of Big data and this is aided by advancements in infrastructure

technologies and data processing techniques which inculcates the idea of polyglot persistence.

The relational database model still maintains wide usability as a result of ease of implementation

and also due to its evolved state but the need for scalability and data processing for unstructured

data which is not handled properly by the RDBMS has proven the relational model insufficient

for present day business transactions models. ―Scalability is the ability of a system to handle

growing amounts of data. Vertical scalability (a.k.a) scaling up is easier to achieve as compared

to horizontal scalability (a.k.a) scaling-out. As the name suggests, scaling-up means adding up

resources to a single node and scaling-out means adding more nodes to a system. Horizontal

scaling provides more flexibility as commodity servers or cloud instances can be utilized.

Traditional databases relies on vertical scaling whereas recently evolved non-relational databases

use horizontal scaling for achieving scalability‖ (Kaur and Rani, 2013).

On the other hand, applying one NoSQL for all the modules of E-Commerce is impractical as

there are different requirements for the various modules; some modules require consistency

while others require availability (Srivistava & Shekokar, (2016). This is because different

NoSQL systems employ different partitioning techniques, two different partitioning strategies

are probable; vertical partitioning where each column of a high level relational table is stored

into a separate NoSQL table and horizontal partitioning where different sets of values are stored

in different NoSQL tables.

According to Neal Ford (2006), application of the theory of polyglot persistence where different

modules can imbibe their own different data processing apparatus can alleviate the difficulty

posed as a result of scalability and processing unstructured data as well as maintaining source

25

processing. Zhao et al., (2014) noted that relational databases have been faced with substantial

increase in the amount of data and are undergoing severe stress as a result of the explosive

growth in the size of dataset and this has attracted increasing attention to big data processing.

These storage needs pushed researchers of denormalization into looking for methods to design

relational database schemas that can enhance read performance and also guarantee consistency of

the database when modifying data at the same time. SQL databases have been underscored for

their lack of provision for techniques to effectively store and manage different types and

structures of data and also for their inability to provide scalability and reliability for these types

of data which the NoSQL systems have been developed to cover for. Also, the NoSQL systems

offer a mechanism for storing and retrieving data which are unstructured other than the tabular

relation used in RDBMS.The NoSQL systems are notable for their suitability for OLAP (Online

Analytical Processing) systems which are read-intensive where short data inconsistency can be

endured which plays out in web applications and big data scenarios. Zhao et al., (2014)

explained that these data to be analyzed always arise or are derived from relational databases and

for this reason; there is great demand for efficient reliable solution to transfer data seamlessly

from relational to NoSQL database.

2.3.1 Issues of Polyglot Persistence

As stated by Srivastava and Shekokar (2016), there are three major issues which attend the

successful implementation and maintenance of a polyglot approach in E-Commerce and they are:

Integration, Access Control and Authentication.

Integration

The various NoSQL management systems have differing commands and instructions which are

employed in their processing i.e. API (Application Programming Interface). The concept of

integration is paramount to the successful implementation of E-Commerce as the various systems

involved needs to communicate flawlessly with each other.

Access Control

The insistent problem with NoSQL database is the nonexistence of data governance. This is as a

result of demand for high availability of data which needs to travel speedily once there is a

demand for it. Handling E-Commerce transactions encompasses a model where data flows

26

through customers to merchants, banks and also courier service, certifying right access to all

these entities which is a demanding task for all the NoSQL systems used.

Authentication

NoSQL systems are deficient in their security buildup as they do not have their own security

mechanism. The security measures employed are simplistic in approach and sometimes use

external methods such as LDAP or Kerberos which are not very sustainable security systems for

access enforcement. This lack of strong authentication mechanism for polyglot persistence

makes finding a fool proof authentication system a good topic for research.

2.4 Different SQL Implementations

Table 2.5 shows the different versions /implementations of Structured Query Language and their

developers.

Table 2.5 Different SQL Systems Implementation

Standard The latest official version of SQL is SQL:2008.

PostgreSQL PostgreSQL 8.4.1 on CentOS Linux.

DB2 DB2 Express-C v. 9.1 on Fedora Linux.

MS

SQLServer

MS SQL Server 2005 on Windows XP. Microsoft's SQL implementation is

sometimes named Transact-SQL, or TSQL.

MySQL MySQL Database Server 5.0.18 on Fedora Linux

Oracle Oracle Database 11g Release 2 on Red Hat Enterprise Linux.

Informix Informix Dynamic Server Workgroup Edition v. 11.50 on Red Hat Enterprise

Linux

2.4.1 Advantages of SQL

 There are various features which are attributable to the RDBMS which makes it unique both in

structure and in performance. These various characteristics of the relational database systems

have made them stand out over the years. Some of these features are;

Query Optimization

According to Srivastava and Shekokar (2016), the SQL systems have query optimization engines

which help them maximize query processing. Query optimization is a function of many relational

http://www.postgresql.org/
http://www.ibm.com/software/data/db2/udb/
http://www.microsoft.com/sql/
http://www.microsoft.com/sql/
http://www.mysql.com/products/mysql/
http://www.oracle.com/database/
http://www.ibm.com/software/data/informix/

27

database management systems. The query optimizer attempts to determine the most efficient way

to execute a given query by considering the possible query plans. The query optimizer cannot be

accessed by users: once queries are submitted to database server, and parsed by the parser, they

are then passed to the query optimizer where optimization occurs.

The query optimization engine is not obtainable in the NoSQL database and this is as a result of

the different query processing and different APIs (Application Processing Interface) of the

NoSQL systems (Srivastava and Shekokar, 2016).

ACID Property

Atomicity: In a transaction involving two or more discrete pieces of information, either all of the

pieces are committed or none are.

Consistency: A transaction either creates a new and valid state of data, or, if any failure occurs,

returns all data to its state before the transaction was started.

Isolation: A transaction in process and not yet committed must remain isolated from any other

transaction.

Durability: Committed data is saved by the system such that, even in the event of failure and

system restart, the data is available in its correct state.

Lawrence (2014), explained that there are some major aims for supporting SQL querying over

NoSQL systems:

i. SQL model is a declarative language that tolerates descriptive queries whereas hiding

implementation and query execution details.

ii. SQL is a consistent language allowing transferability between systems and leveraging an

enormous prevailing knowledge base of database developers.

iii. Supporting SQL permits a NoSQL system to effortlessly co-operate with additional

enterprise systems that use SQL and JDBC/ODBC without requiring changes.

As further expounded by Lawrence (2014), the crucial advantage of supporting SQL is to allow

for system portability, this is in contrast to NoSQL systems which must use a custom API and

query language in accessing a database. Lawrence (2014) explained that there are benefits

accruing from implementation of a virtualization system that has a relational query processor that

can execute portions of SQL queries that cannot be executed by a NoSQL system and they are:

28

iv. Allows support for operations that cannot be executed by the system such as joins

operations and enhanced filtering.

v. Detaches users and programmers from writing convoluted data manipulation code to

implement operators that are not supported by the system.

vi. Permits data movement and querying between NoSQL and relational systems.

2.4.2 Limitations of SQL

Static Schema

Zafar et al., (2016) stated that ―relational database works on the basis of static schema and the

schema matures with the time. If the schema has to be changed, the whole application has to go

through the stress of software testing‖. Alternatively, in the NoSQL system, the schema develops

with the passage of time. The NoSQL offers a flexible schema for the data stored in row

including the NULL value complications that insistently occur in the relational model.

According to Stanescu et al., (2016), any relational database has a certain design schema that

shows the tables and the relationships between them. The schema shields the data within it and

when queries are run, it throws up error when the information required is not contained within

the tables. It also returns error for the wrong use of query language. As Zafar et al., (2016)

opined, conservatively, the database in RDBMS is created based on the relational data model.

The RDBMS conforms to the description of data structures, storage and retrieval and reliability.

In relational databases, data is stored in tables, which consist of rows and columns. To lessen

data recovery issue, data in the table is not repeated. For that purpose, RDBMS is reliant on

primary keys, where each row is assigned with a distinctive row number.

Lack of support for semi-structured and unstructured data

The SQL databases do not handle data beyond the structured data. Unstructured/semi-structured

data are considered ambiguous both in theory and application for the SQL management systems.

This is because of the coordination and retrieval process of the database. As opined by Zafar et

al., (2016), the relational database model includes consolidation of tables which makes the

querying mechanism very complex. As a consequence, the RDBMS consumes high resources to

maintain and the system is expensive.

29

Complex Join Operations

Zafar et al., (2016) explained that RDBMS offer convoluted join operations like the inner join,

outer joins etc. which are compound in their functionality. This complex joins slows down the

performance and speed of the database management system as a result of the overhead cost

incurred by running such operations.

CRUD Operations

According to Zafar et al., (2016), the intricate tasks in relational database management system

are the Create/Insert, Read, Update and Delete (CRUD) processes. Contrary to the CRUD

operations, the NoSQL databases are characteristically designed to accommodate a large volume

of read and write operations. Despite functioning on a substantial amount of data, the

fundamental attribute of NoSQL databases is its capability to offer such services (read/write

operations) efficiently while maintaining the data integrity. The processes in NoSQL have been

shown to function proficiently as against the update and delete operations in RDBMS.

Scale-up processing/NULL value problem

SQL databases offer only vertical scaling of data while NoSQL offers scale-up/scale-out

(horizontal scaling or sharding). This means that data in the relational model can only be stored

in a stringent format according to laid down specifications which conform to the table schema

(Doshi et al., 2013).

Zafar et al., (2016), explained a null value to be basically an undefined value. The use of null

values is to ensure that rows in the table are not left empty which is satisfactory at first but

redundant in the long run which incurs overhead for the relational database model (Stanescu et

al., 2016).

Figure 2.2 shows a schematic description of the Relational Database Management System

(RDBMS). The entities and relationship which make up the SQL management are depicted in

Figure 2.2 for easy understandability.

30

Figure 2.2 RDBMS scheme (Source: Zafar et al., 2016).

2.5 Types of NoSQL Databases

The NoSQL databases are generally divided across four major categories and they are the key-

value store, the column family, document store and the graph databases (Jayathilake et al.,

2012). These databases and their various attributes will be discussed in detail below.

Key-value Store

According to Srivastava and Shekokar (2016), ―a key-value store is a NoSQL database that is

presented by a Key (an id, a name), which returns an arbitrary large data (the value)‖. The

concept of key-value store is based on storage of data as a pair; the key and the value (Bonnet et

al., 2011). Key-value has no language like relational databases. As explained by Gyorodi et al.,

(2015), ―key-value databases such as Riak, are conceptual distributed dictionaries and do not

have predefined schema; they are schema less. The key can be synthetic or self-generated, and

the value can be anything: string, JSON, BLOB and others‖. The key/value is made up of two

columns; one column contains the key which represents the element while the other is made up

31

of the value which is the different parts of the element and they are data stored by a primary key

(Jayathilake et al., 2012). It can be considered as a dictionary which has a lot of words with

many definitions. As posited by Srivastava and Shekokar (2016), Amazon is the best example of

a key-value online shopping system as the shopping portal provides scalable, reliable and always

available services. The key-value store database is more efficient when it makes use of the

virtualization technology which grants it unlimited software licenses and provides lot of ease for

the developers. Srivastava and Shekokar (2016) argued that although key value stores provide

lots of advantages in database management, it cannot be used efficiently if 1) there are many

different relationships of data, 2) multi-key transactions, 3) operations by sets and 4) queries are

based on values. They further stated that the key value stores can work very well for use cases

such as 1) shopping cart application, 2) user profile information and 3) session information.

 As noted by Li and Manoharan (2013), NoSQL databases are modeled for improved key-value

stores. The structure of the key/value pair contains one or more attributes which makes it similar

to the data dictionary model of the relational database. Access to the value is gained through the

association of the key and the value. And the key is always uniquely identifiable in a collection

(Indrawan-Santiago, 2012). This means that there is only one key. Han et al., (2011), identified

the key-value model as the correspondence or mapping of a value to a key. This structure is

simplified and allows faster query operations and modifications through the primary key.

Read/write operations are performed faster in the key/value pair model as it allows for

concurrency. Nyati et al., (2013) noted that access to the key/value pair is purely through the

primary key using methods such as PUT/GET/DELETE.

Example of Key-value store (Redis)

Redis is an example of the key-value store type of NoSQL database. Gudivada et al., (2014)

defined Redis as a key-value store NoSQL system which has in-built memory, offers high

availability, can carry out backup and recovery and also supports ACID (atomicity, consistency,

isolation and durability) transactions due to its use of primary key. Han et al., (2011) identified

some features of Redis as; periodic asynchronous caching to hard disk after the data has been

committed to memory which is in-built in the Redis system and support for various operations

like List and set which help in maintaining accuracy within the model. Han et al., (2011) further

noted that Redis can only hold a maximum value of up to 1GB and the main shortfall is its use of

32

physical memory which has low capacity and therefore cannot be used for storage of big data.

This lack of capacity for storage of big data reduces performance due to poor scalability of the

system (Ejiofor & Okeke, 2016).

Table 2.6 has all the values held in the key and the value columns. The key is used to insert,

generate and delete the information in the value column.

Table 2.6 Example of a Key-Value Store (Source: Srivastava and Shekokar, 2016)

Column-family

As explained by Srivastava and Shekokar (2016), the column-share NoSQL system stores data

with a unique column. This type of NoSQL database adopts the vertical partitioning type of

storage model where data are modeled to fit into columns of different NoSQL tables which make

it similar to relational database model (Lombardo et al., 2012). The unique column data will

have different fields connected; some of the column data may have 4 fields filled while others

may have 3 fields filled. This is because the column family does not depend on join operations

like in the relational model so they are not compelled to fill up all the fields because they can

scale well. This technique allows data to be accessed through columns or column-groups. The

difference between the column-store and the relational model is that tables are stored in rows for

the relational database while column-oriented NoSQL databases store data in detached NoSQL

tables. The column based databases are ideal for joint data storage mostly for the versioned data

as it offers time stamping utility, also, the column NoSQL system is efficient and can sustain big

scale data operations such as categorization, transformations, analyzing and algorithmic

33

operations (Zafar et al., 2016). Lombardo et al., (2012), stated that the dissimilarity between

these two models of data segregating is based on their physical infrastructural layout where data

is stored in rows in the horizontally partitioned model and the column family databases where

data is stored in columns. Column family stores are best suited for use cases such as event

logging and expiring usage (a website which is live for a duration of time, for example a website

for an event) but should not be used where schema keeps changing or processing requires Sum,

Average like functions (Srivastava and Shekokar, 2016).

As shown in Table 2.7, data is stored in columns in this model. The information in these columns

would have been normalized and stored differently in a relational database as all the information

would be saved in rows.

Table 2.7 Example of Column Family store (Source: Srivastava and Shekokar, 2016)

Example of Column-family (Cassandra)

According to Cure et al., (2012), ―Cassandra is a column family database having a data model

that is dynamic and column-oriented‖. Cassandra is an open source database that adopts the

BASE (basically available, soft state and eventually consistent) model as it favours availability

of data over its consistency and follows the key-value store arrangement while providing high

scalability across a distributed system (Wang and Tang, 2012). Cassandra implements more

write operations than it does read operations. This write operation is executed without checking

the consistency state of the database and uses system versioning process of data to guarantee

consistency when carrying out read operation. This leads to a reduced consistency level in the

database (Bonnet et al, 2011). As explained by Cure et al., (2012), Cassandra allows fast

lookups, and provides support for ordered range queries. Cassandra is acknowledged to be really

fast for writes in a write-intensive environment but the read operations are slower than the writes.

Cassandra supports secondary indexes, i.e. index on column values (Cure et al., 2012).

34

Graph-oriented Databases

Srivastava and Shekokar (2016) stated that graph store has three properties; nodes, edges as

relationships and properties and can be used for solving business problem that has complex

relationships between objects such as social networking and rule-based data. The graph-oriented

NoSQL system can be queried to ask questions like; what is the shortest path between two nodes

in a graph? What nodes have neighboring nodes that have specific properties? Given any two

nodes in a graph, how similar are their neighboring nodes? What is the average connectedness of

various points on a graph with each other? Castelltort and Laurent (2013) defined graph-oriented

NoSQL database as the interconnection between vertices (nodes) which are linked by lines from

edges. This is the joining of nodes to edges to produce an element. The nodes form the graph

when they are linked with relationships. This relationship between different nodes is what

produces the graph and two different nodes; the start node and end node are joined together by a

relationship.

As stated by Zafar et al., (2016), the graph-oriented databases are useful when persons are

involved in the data relations rather than the original data; for example, a user is interested to see

the correlation of data in multiple social networks, getting references or to conduct some medical

analysis. As posited by Kaur and Rani (2013) graph databases represent data in their natural

format using graphical forms which shows better representation rather than tabular forms. This

eliminates impedance mismatch (incompatibility of database with programming language) which

is the problem mostly associated with the object-relational systems which stores data in tabular

form.

According to Indrawan-Santiago (2012), the graph database faces the most challenge amongst

the NoSQL databases due to its lack of support for horizontal partitioning. The horizontal

partitioning which is one of the major attributes of the NoSQL databases cannot be performed in

graph databases. This has been identified as a drawback in the graph-oriented NoSQL systems.

The graph systems as shown in figure 2.3 are composed of relationships which are either static or

dynamic. These relationships show connections between objects which is known as connected

data for example Google and Facebook are connected data. Gudivada et al., (2014) further stated

that graph systems have built-in access control systems used for authorization on subsystems for

35

applications designed for large number of end-users for example airlines and healthcare

industries.

Figure 2.3 Graph-based database (Source: Zafar et al., 2016).

Example of Graph Database: Neo4j

Kaur and Rani (2013) described the Neo4j as NoSQL model which is written in Java and

complies with ACID properties which means it is transaction compliant. The nodes and edges

which connect to the node form the network structure and are equivalent to the entities and

relationships of the relational database model. Neo4j as described by Gudivada et al., (2014) is

highly scalable and has persistent in-built memory which can be used for clustered systems for

both single and distributed data centers.

Document-store Databases

According to Cure et al., (2012), document databases emphasize on storage and access enhanced

for documents as opposed to rows or records. The data model is basically the collections of

36

documents which are comprised of key-value collections. Document-store databases are

predominantly developed for large data storage. It is a schema-free type of NoSQL database

which provides support for storage of unstructured and semi-structured data and these documents

are stored in JSON (JavaScript Object Notation) format. The document-store NoSQL databases

allow creation of convoluted data structure like arrays as an individual database entry which can

be retrieved within one read procedure (Nyati et al., 2013). As explained by Cure et al., (2012),

―in a ―document‖ the values can be nested documents or lists as well as scalar values; names are

not predefined in a global schema but dynamically defined for each document at runtime‖.

The document-oriented model makes every document identifiable by a unique or special key

which is identified as ―ID‖. This helps in managing its compound data structures as if they are

objects linked together. The document-oriented database handles high concurrency read/write

operations with ease and can access big data while simultaneously providing high availability

and scalability of data. Another feature of this NoSQL system is the use of nested documents in

arranging data and increasing the accuracy of stored data. According to Jiang et al., (2013)

nested document views a document to be the value of another document. This makes a

connection between data and is arranged in hierarchy with record as the root of a document-tree

which branches out to form a schema-free database and this relationship between the record and

the document-tree forms the nested document. This arrangement in a defined structure helps

improve and maintain accuracy within the database.

As noted by Okman et al., (2011), there are security issues attached to the document-store

database system and this is as a result of the broad range of applications which it handles.

NoSQL systems have been identified by Grolinger et al., (2014) as the database which is most

suitable for Big data management because it can hold huge amounts of data in any format.

Figure 2.4 shows a hierarchical conception of the document-store NoSQL sytem.

37

 Database

 Collection

 Document

 Field

Figure 2.4 Layout of the Document-store Model (Source: Cure et al., 2012).

According to Srivastava and Shekokar (2016) document store databases are suitable for 1) stock

market 2) finding user logged to your website (finding real time analytics and 3) content

management (blogging). Srivastava & Shekokar (2016) argued that document store management

systems are not suitable if application has complex transactions that support ACID (atomicity,

consistency, isolation and durability) transactions or queries keep changing very frequently. In

the Document-store NoSQL Management System, the database holds data in a collection which

is similar to tables in the RDBMS. The collection stores a list of related documents which is the

equivalent of rows in the NoSQL database and the document has limitless fields which can be

added to document. The field takes semblance of the column in the SQL model (Bonnet et al.,

2011). The difference between the relational and non-relational model is that the collection is

schema-less thus eliminating the rigidity of the SQL schemas (Boicea et al., 2012).

Example of the Document-oriented database: MongoDB

―MongoDB is a cross-platform, document oriented database that provides high performance,

high availability and easy scalabilty‖ (Stanescu et al., 2016). Cure et al., (2012) defined

MongoDB as ―an open-source, schema-free, document-oriented database using a collection

oriented storage‖. The collections in MongoDB are equivalent to tables in a relational database.

Each collection contains documents that can be nested in complex hierarchies and still be easy to

query and index. A document is a set of fields, each one being a key-value pair. According to

Boicea et al., (2012), MongoDB is the most widely used document-store database and this is due

38

to the open source nature of the system and also it is written in C++ programming language.

MongoDB has been identified to be read-intensive which means it performs more read

operations than it performs write operation. As stated by Cure et al., (2012), MongoDB provides

efficient storage of binary data including large objects (e.g. photos and videos). MongoDB also

provides support for indexes and object queries for fetching data. MongoDB applies scaling of

reads by the use of replica sets and it scales write operations by application of sharding.

MongoDB tolerates incomplete data but is not very flexible with querying as it does not offer

join operations between collections (Cure et al., 2012).

2.5.1 Features of NoSQL Systems

―Despite operating on a significant amount of data, the core attribute of NoSQL databases is that

it is able to offer such services effectively while keeping the data integrity intact‖ (Zafar et al.,

2016).

Map-reduction

Zafar et al., (2016) defined map reduce as ―a method which can process large amount of data

with concurrent datasets‖. The NoSQL database allows Mapreduce to be used in querying the

database directly as a form of command. According to Zafar et al., (2016), in RDBMS, the map

reduce functionality requires transferring data from one database to other database but the

NoSQL database can relieve this migration issue as the map reduce operation is embedded in the

NoSQL system which helps in avoiding data migration from one database to another. As

described by Nyati et al., (2013), the NoSQL databases perform the map-reduce function by first

using the map function to process a key/value pair which splits the key/value pair into different

sets of values, and then the reduce function is used to integrate the different sets of values which

are related with the divided key.

As stated by Zafar et al., (2016), the data typically lies within the pattern characterized by three

steps: Mapper, Shard and Reducer. This map-reduce is performed using algorithm which is

suitable to the type of database involved. The Mapper part comprises the map process, which

concurrently processes multiple parts of data and yields a couple, (key-value). The shard process

guarantees that the mapper process is concluded. Once the mapping is accomplished, the shard

sorts out the key-value pair and the reducer produces outcomes by combining the values and

39

increasing the count after obtaining the separate (key-value) pairs (Zafar et al., 2016). As opined

by Grolinger et al., (2014) map-reduce has been a good option in processing large volumes of

data as it offers symmetric execution on a sizeable number of computing connections with the

reduce function performing aggregation of the information which was delivered from the map

function. This offers increased scalability and independence from the database and the

programming language. Figure 2.5 shows an example of the mapreduce function and how

aggregation is performed within a mapreduce-compliant system.

Map(k1,v1) = list(k2,v2) 2.1

Reduce (k2,list(v2)) = list(v3) 2.2

List : (a;2)(a;4)(b;4)(c;5)(b;2)(a;1) 2.3

After mapping : (a;[2,4,1]),(b;[4,2]),(c[5]) 2.4

After reducing : (a;7), (b;6), (c;5) 2.5

Equation for map reduction

Figure 2.5 Mapreduce function (Source: Bonnet et al., 2011).

High Availability and Scalability: According to Benefico et al., (2012), availability is the

capacity of the system to keep operating even when failure has been experienced. As a result of

the distributed nature of the NoSQL database across many nodes, when there is failure in one

node, due to data replication across these nodes, the system keeps functioning. NoSQL databases

40

are unique for their provision of availability. It prioritizes availability of data over the

consistency of the database.

Scalability has been identified as one of the major advantages of NoSQL systems over the

relational model as data could be easily spread across many servers using high-end systems and

this is due to the schema-less nature of the NoSQL systems which makes the use of joins

needless (Leavitt, 2010). Join operations which are synonymous with the relational databases are

very costly to perform and as Leavitt (2010) further noted, there is difficulty in performing joins

on tables which are spread across a distributed system in a relational model.

Flexibility and Performance: NoSQL systems offer very high performance as the database can

perform read/write operations very fast (Bonnet et al., 2011). Bonnet et al., (2011) further noted

that NoSQL databases perform better in processing data across a distributed layout and can

easily aggregate and update data. As argued by Li and Manoharan (2013), not all NoSQL

systems execute faster than the SQL databases in terms of read/write operations but due to their

ability to give maximum output while holding huge volumes of data and their flexible schema

nature makes NoSQL systems unique.

Sharding: Sharding is the introduction of new node (s) to the current system which will not

affect the system performance or shutdown the system but increases the capability of the system

whereby data is distributed over the node and is arranged in a non-overlapped form. These nodes

can be operated on different systems and as such, each node can independently eliminate source

dispute (Zafar et al., 2016). Sharding increases the performance of the database as it helps

balance out load when there is a rapid increase in calls of querying to be performed by the

database which depends in part on configuration and to a large extent on horizontal partitioning

of the system (Gudivada et al., 2014).

As shown in Figure 2.6 the shard operation introduces new nodes and data is distributed across

these different nodes. Sharding offers a more robust system as the system is built to handle

distribution of growing amount of data.

41

Figure 2.6 Sharding function (source: Bonnet et al., 2011).

Replication: Hecht and Jablonski (2011) acknowledged that NoSQL databases offer automatic

data replication which means that in case of any temporary failure across a node in the database,

the entire system will maintain availability and effective load balancing with replacement of that

node by replica servers while the database performs recovery of the failed node. As described by

Bonnet et al., (2011), some NoSQL systems like Cassandra use a duplication system known as

Multi-Version Concurrency Control (MVCC) which stores replicated versions of the same data

and matches the various versions before merging them. The MVCC is most useful when applied

to a distributed system as it avoids locks and handles concurrent write operations efficiently by

providing eventual consistency. Bonnet et al., (2011) further noted that there is an inconvenience

attributable to MVCC model of replication as it has to delete old entries from time to time which

lead to loss of time in the overall database throughput. Another form of replication is the

Master/Slave where one server which is considered the master performs read/write operations

and another server (slave) replicates data and handles read and backup operations. This form of

replication is used mainly for NoSQL systems like Mongo DB which uses locks on the database

(Bonnet et al., 2011).As some document-store NoSQL databases like MongoDB perform more

read operations, Wei-Ping et al., (2011) stated that they make use of replica sets which allows for

a greater number of slaves while only one server which is write intensive carries out write

operations for the management system.

Low Latency: Boicea et al., (2012) noted that the NoSQL model is designed to conform to low

latency rate within the management system. According to Indrawan-Santiago, (2012), due to the

replication of data in NoSQL, a failure goes unnoticed as replica servers generate the exact

information on the failed node. In contrast ―SQL (relational database) maintains consistency

through high latency (reduced response time) within the DBMS‖ (Wu et al., 2017).

42

 As posited by Sundhara et al., (2017) ―NoSQL databases can be used with applications that

have; large transaction volumes, have the need for low-latency access to massive datasets, and

have the need for nearly perfect service availability while operating in an unreliable

environment‖. As depicted in Figure 2.7, the NoSQL system considers when there is partition,

availability and consistency of the database and when the system performs normally without

partition, it considers latency and consistency.

Figure 2.7 PACELC model

As inferred by Indrawan-Santiago, (2012), the PACELC (Partition, Availability and Consistency,

Else, Latency and Consistency) theorem inculcates all the characteristics of the NoSQL

management system. These features are interwoven in their functionality and are meant to arrive

finally at a highly available database. Mapreduce produces scalability for the database,

scalability allows for improved performance as data is processed with ease and speed. Sharding

allows for replication where data is reproduced and spread across many servers which is based

mainly on the schema-free (flexible) nature of the NoSQL systems and all these measures are put

in place to ensure provision of a database that is considered to be reasonably consistent and

maximally available.

2.6 Limitations of NoSQL Systems

Heterogeneous data structure

 ―NoSQL data stores are commonly schema-less, providing no means for globally defining the

schema. While this offers great flexibility in early stages of application development, developers

soon can experience the heavy burden of dealing with increasingly heterogeneous data‖

Consistency

Availability

Partition

Latency

Consistency

43

(Scherzinger et al., 2014). Unrelated data such as emails, multimedia and blogs are stored in a

schema-less table which can come from different sources for example the social media and this

means varied structures of data are held together in one table. As the table grows or expands, it

becomes an issue for the database to fully provide a uniform application interface which can

encompass these diverse data combination (Jayathilake et al., 2012).

The heterogeneity is as a result of different data models which are used by different NoSQL

data-stores. Even when the data model is the same, there are variations due to different

implementations. There is also the issue of the differences in query language used and the type of

consistency model used by a particular NoSQL Database Management System. Different NoSQL

models apply different CAP formation and the combination by one NoSQL management system

might not be supported by another model (Dharmasiri and Goonetillake, 2013).

Near inconsistency of the database

 As noted by Han et al., (2011), Professor Eric Brewer in 2000 proposed the CAP theorem which

stands for (Consistency, Availability and Partition tolerance). According to Bonnet et al., 2011),

the CAP model grants that in a joint-data scheme, only two out of the three features can be

satisfied at a particular point in time within the database. As they further explained, there are

three possible configurations which are; consistency and partition tolerance, availability and

partition tolerance and the last consistency and availability which is very difficult to combine.

In NoSQL system, availability and partition tolerance are ranked higher and valued over

consistency. The system is satisfied with eventual consistency (Wang and Tang, 2012).

Also the BASE (Basically Available, Soft state, eventually consistent) pattern of the NoSQL

databases proves that NoSQL systems are more disposed towards availability of data than they

are towards consistency of the data involved (Gudivada et al, 2014).

Varying Query model: Unlike the relational model which uses the SQL (Structured Query

Language) as its unified language for querying RDBMS (Relational Database Management

Systems), different NoSQL vendors have different languages which they use to access their

database, there is no standard query interface for the NoSQL database management systems

(Dharmasiri and Goonetilake, 2013). According to Lomotey and Deters (2014), this variability in

44

data format leaves an overhead as a result of different API which would be used in analysis of

data.

2.7 Security Issues in Design Model of NoSQL Systems

According to Zahid et al., (2014), NoSQL systems with their inherent auto-sharding for reliable

high performance and good load balancing were not ab initio designed with security as one of the

key features. Sharding as they further noted pose security risks as unencrypted data is replicated

and distributed across many servers in different locations allowing for vulnerability of data as

unauthorized users can gain access to information. This breach could also be as a result of

communications within a network that is not very secure.

Okman et al., (2011) stated that amongst the features of the NoSQL systems is the lack of

referential integrity which is maintaining integrity constraints for the foreign key and also very

little support for security at the database level. This lack of support for security within the

management system means there could be breaches to data which has been stored in the

database.

Amongst the incumbent problems of the NoSQL databases is the prevalence of Denial of service

problem (Okman et al., 2011). Attackers gain access to IP addresses of users by sniffing the

network and divert resources to pseudo connections thereby denying legitimate users the service

allotted to them.

Security enhancement for NoSQL database: AS proposed by Zahid et al., (2014), some

techniques also identified as loopholes such as authentication, access controls, secure

configuration, data encryption and auditing can be improved upon for a secure NoSQL database

system.

Authentication: Authentication is the verification of identity of users to ensure that the rightful

users are granted access to database resources. Authentication can be for a single user or group

access or verification between servers. To secure the sharded NoSQL database using

authentication, Zahid et al., (2014) recommended some authentication methods like use of

protocols such as SSL (Secure Socket Layer) and SSH (Secure Shell) which are efficient

cryptographic models. Also, certificate based authentication where every certificate is verified

and Password based authentication methods could be used.

45

Access Controls: This is a process for ensuring that only authorized users gain access to

database resources. Some proposed access control techniques by Zahid et al., (2014) are RBAC

(Role Based Access Control), DAC (Discretionary Access Control) and also MAC (Mandatory

Access Control). These various models listed can be applied based on system configurations to

ensure restricted access only for functions specified for a particular user.

Secure Configuration: Faulty configurations at the Operating System, in the database or the

application layer can lead to breach of security through the entire database. The suggested

configuration runs from backup to updates and services. Proper configuration of ports, files and

directories and protocols was also recommended.

Encryption of data: Encryption of data is used to provide secrecy of information within the

database (data-at-rest) and across the network (data-in-transit) using mathematical algorithms.

Some cryptographic standards proposed are DES (Data Encryption Standard), AES (Advanced

Encryption Standard) and could be used to protect data within the database. Some techniques for

securing data which is sent across the network are IPSec, SSL, TLS and SSH.

Auditing: Audit trails which can be used to monitor activities performed in the database can be

used to enhance security of data in the database. Auditing stands for monitoring and noting

activities carried out by database users. It can be used to detect infiltration attempts by attackers.

This is periodic check on connections and activities.

Summary of the various characteristics of the different NoSQL databases which have been

considered for use by the developer is placed in Table 2.8. For querying in the NoSQL systems

outlined, various APIs are used to achieve this purpose as there is no unified query language for

NoSQL systems. The relational model has a unified query Language which is SQL and also

allows for query optimization.

46

Features Redis Cassandra MongoDB CouchDB RavenDB Neo4j

Language

Written in:

 C Java C++ Earlang C# Java

Storage

Capacity

Physical storage in

Disk (small storage

capacity)

Memory

(large

capacity)

Memory

(large

capacity)

Memory

(large

capacity)

Memory (large

capacity)

Memory (large

capacity)

Data model Key-value Column Document Document Document Graph

Sharding

(horizontal

Partitioning)

Not supported Performs

sharding

Performs

sharding

Not

supported

Performs sharding Not supported

License type

(source)

BSD

Open source

Apache

Open

source

AGPL

Open

source

Apache

Open

source

AGPL

Open source

Commercial

AGPL

GPL

Open source

Fast

Concurrent

read/write

Fast concurrent

read/write

Read-intensive

Fast

concurrent

read/write

Write-

intensive

Fast

concurrent

read/write

Read-

intensive

Fast

concurrent

read/write

Read-

intensive

Fast concurrent

read/write

Read-intensive

Read/write

intensive

CAP

Theorem

(Transaction)

Availability, Partition-

Tolerance

Availability

, Partition-

Tolerance

Availability

, Partition-

Tolerance

Availability

, Partition-

Tolerance

ACID Consistency,

Availability

Consistency

Model

Strong consistency Eventual

consistency

Strong

Consistency

Eventual

consistency

Strong Consistency Strong

Consistency

Table 2.8 Summary of the features of Prevalent NoSQL Databases

47

Features Redis Cassandra MongoDB CouchDB RavenDB Neo4j

Indexes

(secondary

indexes)

Global primary

indexes(no secondary

indexes)

No indexes Has indexes Has indexes Has indexes No indexes

Ad-hoc Query None HIVE, PIG BSON

based

format

(MongoSQ

L)

Lucene,

Cloudant

Limited, built-in

(JSON format)

Cypher

48

2.8 Review of Related Works

Some researchers have carried out extensive but not exhaustive research both academic and

business on the interoperability/integration of SQL and NoSQL databases. These works are

outlined in this section and analyzed according to their similarities to the proposed work.

2.8.1 Middleware Design for Integrating Relational Database and NoSQL Based on Data

Dictionary

Zhang et al., (2011) proposed integration of relational model and NoSQL system with the help of

data dictionary. This experiment is based on integration of relational databases and NoSQL

approach by affixing middleware, which affords a unified interface processing across various

databases. The design integrating relational and NoSQL architecture comprises three functional

phases: middleware client, middleware server and SQL engine. The middleware client serves as

the communication path between the middleware server and the application. The middleware

client also offers user/password encryption.

The middleware server provides a distributed data transmission service, protecting dispersed and

heterogeneous data sources which bring disturbance to the application cluster thereby presenting

transparency in data access. The middleware server receives requests from the application,

analyzes it then transmits the request to the principal database.

As shown in Figure 2.8, the SQL engine translates standard SQL requests into different types of

access to the NoSQL database as the NoSQL products do not offer a standard SQL interface but

uses the help of the internal API (Application Programming Interface) to access their data. The

SQL engine serves as a wrapper integrated into NoSQL cluster‘s individual nodes (Zhang et al.,

2011).

49

Figure 2.8 Database integration architecture (Zhang et al., 2011).

Zhang et al., (2011), designed two key technologies for the experiment for the integration of

column-oriented NoSQL system (Cassandra) and relational model (Oracle Database) which are

the data dictionary design and the SQL processor and Result Set Handler Design. The Data

dictionary holds the routing information as well as node information which describe each

database source and this enables communication with various types of databases. The SQL

processor and Result Set Handler perform certain steps of the traditional SQL Engine for

example Input: SQL requests such as update, delete, insert, select and call procedure are inputted

by the SQL processor. Parse SQL: the SQL Processor converts the part of the SQL statement

into internal data structure while the Result Set Handler integrates the results returned from

numerous data sources.

The researchers noted that more work is required in terms of database integration which is as a

result of the heterogeneity and distribution of data. This is because NoSQL which supports

horizontal scaling cannot handle complex SQL requests.

50

2.8.2 Graph Data Warehouse: Steps to Integrating Graph Databases into the Traditional

Conceptual Structure of a Data Warehouse

As has been highlighted in the background study of the first chapter of this work, Liu and Vitolo

(2013) worked on graph data warehousing with emphasis on eliciting the steps to integrating

graph databases into the traditional conceptual structure. This research explained that the concept

of ‗Graph Cube‘ is proposed as a design which incorporates graphs with tables. This model

functions as a prototype which is the basis of a graph data warehouse. Some DML (select, insert,

update and delete) and DDL (create, drop and update) in SQL is synchronized with the graph

data model to give GDML (Graph Data Manipulation Language) and GDDL (Graph Data

Definition Language). This model considered and executed the use of views in the graph data

warehouse using the concept ―graph view‖ (GVIEW) which is a logical replica of graph data,

residing in local libraries. The GVIEW was implemented to meet two main purposes which are;

1. To deliver a local copy of data. With GVIEW, operations on the database are safer and

faster as the GVIEW permits synchronized multiple usage of the graph on individualized

perspectives of the database.

2. To provide a depiction of a graph or graph segment. GVIEW is an appearance of the

graph data on the server. Added information such as, the locations of each node from the

last alteration is saved in GVIEW. High-end users whose work depend heavily on direct

observation will find this feature attractive, as it avails a convenient way to ―save‖ or

―remember‖ last visualized graphs.

The experiment started with the development of a Java-based application programming Interface

(API) accessing a Neo4j graph database. Some functionalities of the relational database were

initiated with the GDML and GDDL such as: SELECT, INSERT, UPDATE, DELETE,

CREATE, DROP etc. which uses a graphical user interface (GUI) to provide a more direct and

responsive visualization of the data in the graph.

The graph and relational models as explained by Liu and Vitolo (2013) are fundamentally

different in their methodology; while the GDBMS (graph database management system)

employs physical adjacency, the RDBMS (relational database management system) employs

synthetic adjacency inferring a relationship due to the key-field for instance.

51

The GCUBE concept is basically the incorporation of graphs as part of fact tables which will

when finally implemented have a ―join‖ function which leverages two characteristics; inclusion

of graph data into the mature data warehouse technologies and enhancement of the capabilities of

data warehouse with practical abilities of graph data. The researchers suggested that future work

be carried out on projects which incorporate join-operations between relational model and graph

model. The core objective will be to connect relational data to graph data and provide an

aggregation/connectedness for multiple discrete data.

2.8.3 Blending SQL and NewSQL Approaches

Doshi et al., (2013) focused on combining SQL and NewSQL approaches. Their methodology

was based on handling data growth which have been previously mentioned in the work and

classified into three categories; chronological (accumulation of data over days, months or years),

horizontal (growth in data as a result of new services or progressions introduced in an

organization to solve new business needs) and vertical (rise in business scale and intricacy). This

architecture looked at the various storage needs and blended the appropriate relational and

NewSQL/NoSQL system to achieve an optimal storage system that leverages prolific data

management. Various approaches were employed: reference architectures describing the various

data handling techniques. The research used two software utilities; Instant Data Integrator (IDI)

and Hibernate OGM-HBase Driver.

The instant data integrator as explained by Doshi et al., (2013), is also known as SQL-to-

NewSQL sync. The integrator provides a streaming ―Extract-Transform-Load (ETL)‖

proficiency for reproducing changed data from a SQL database into a NewSQL cluster almost

rapidly. This is achieved by parsing the redo log to pull out changes that get committed on the

SQL side of the architecture. The changes which have been committed are then converted into a

target-appropriate schema and then loaded into the NewSQL cluster. The Instant Data Integrator

is made up of three layers; Extractor Layer, Transformer Layer and Loader Layer.

The extractor layer implemented extractor plug-ins for IBM DB2 and Oracle Databases which

are modules for each prominent SQL database. The plug-ins is used to observe redo logs and

ascertain the data changes based on the log design specification.

52

The redo log on the SQL side aids the instant data integrator to eliminate the need for a

developer to write difficult or bulky queries against large datasets in order to find the fairly small

changes over a given time interval.

The transformer layer handles extracted data which are transformed again in the transformer

layer using a set of plug-ins which are reposed in the transformer layer. This plug-ins is known

as ―Direct-Map plug-in‖ which is adequate when transformed data does not have to go through a

format transformation.

The final phase of the IDI is the loading process. This is achieved through provisioning of a

NewSQL interface whereby the instant data integrator provides a modular load function in its

loader layer. The loading process identifies incremental changes on one side and reflects them in

the other side.

The whole process of the IDI which spans the extraction, transformation and loading plug-ins is

geared towards achieving accommodating varying requirements and constraints and to approach

almost real-time reflection of SQL sides updates into the NewSQL cluster‖ (Doshi et al., 2013).

Hibernate OGM-HBase Driver & ORM-Hive (Object Relational Mapping -Hive) Dialect

The second tool used by the Unity architecture is the Hibernate OGM (Object Grid Mapping)

which consists of two packages that combine to allow for ease of use of common data access

logic for SQL and NewSQL repositories. One of the packages is the Hibernate OGM family

which includes HBase and this is known as the Hibernate OGM HBase driver; the second

package is a utility that adds Hive dialect to Hibernate which uses JPA-QL (Java Persistence API

– Query Language) to translate naturally to Hive-QL.

The basic function of the Hibernate framework and utilities is to provide mapping of data

operations from Java‘s object-oriented domain to the logical row-column model of a relational

database domain. The Hibernate libraries handle transformations required for persisting/inherent

objects and their associations/dependencies with one another and for searching and retrieving

them automatically into/out of a relational model. The Hibernate libraries also take care of many

commercial and open source databases through necessary SQL dialects.

53

The Hibernate framework frees application developers from the burden of semantic mismatch

(incompatibility between the database and the programming language) between the two domains

which enables the business logic to remain orderly and manageable.

The Hibernate framework uses an application for carrying out querying known as Hibernate

Search for retrieval and searching the backend store. Hibernate OGM inculcates the Hibernate

concept through to the case where a data grid delivers a cluster caching capability in front of a

data store thereby enabling a natural extension to NewSQL repositories.

In conclusion, Doshi et al., (2013) proposed future work to be done in the aspect of ―blending

SQL IMDBs (Internet Movie Database) with distributed, fault-tolerant, memory-centric

NewSQL stores including such systems as the Shark-Spark framework‖. The other work

proposed is as a result of challenge arising in very high volume data processing need which

requires very highly scalable but lower cost object storage systems which demands a

combination of in-memory and massively parallel computing.

2.8.4 Integration and Virtualization of Relational SQL and NoSQL systems including

MySQL and MongoDB

Lawrence (2014) proposed an integration and virtualization model for relational and NoSQL

systems using MySQL and MongoDB as use cases. The research was based on a ―generalizable

SQL query interface for both relational and NoSQL systems called Unity‖. Unity model permits

SQL queries to be automatically converted and implemented using the core API of the data

sources (NoSQL or relational). Unity is basically integration and virtualization system which

agrees to SQL queries that extend to numerous sources and uses its interior query engine to

implement joins across sources. The key features of Unity are outlined below:

1) A SQL query processor and optimizer including support for push down filters and cross-

source hash joins.

2) A customizable SQL dialect translator that uses mappings to compensate for different

SQL variants in relational systems.

The Unity architecture according to Lawrence (2014) is an integration and virtualization system

that allows SQL queries across relational and NoSQL systems. The virtualization/execution layer

allows converting SQL queries to NoSQL APIs and automatically performs operations not

54

supported by NoSQL systems. Unity allows NoSQL systems to effortlessly interact with

relational databases and enterprise reporting applications but the downside to the experimental

results from Unity architecture is the minimal overhead in the SQL translation process. Future

work was proposed by Lawrence (2014) in terms of increasing the performance of other

supported NoSQL systems such as Cassandra and also in terms of ―parallelizing the

virtualization/execution engine for a cluster environment‖.

2.8.5 Schema Conversion Model of SQL Database to NoSQL

Zhao et al., (2014) developed a method for converting SQL schema to NoSQL. The researchers

proposed a general schema conversion model for converting relational database to NoSQL

database which help migrating to NoSQL and improves reading efficiency. The schema

conversion scheme technique applied the idea of table nesting to improve the performance of

cross table query. The idea of table nesting certified that there must be a one-to-one mapping

between tables in relational database and dataset in NoSQL. An example is the MongoDB; if

there is n number of tables in relational database, there must be corresponding n number of

collections in MongoDB. This procedure ensured that when storing structured data with

references in NoSQL database, the references are considered as relationship between parent layer

and children layer of semi-structured data in NoSQL database. The idea of nesting is that storing

referred (referential) tables as children tags in data item of the referring (primary) table. This

process enables semi-structured data with multiple layers to define structured data with multiple

references between tables, which covers all situations of table references.

This approach relies on the following orientations: denormalization, migrating data to NoSQL

database, and converting schema to NoSQL database.

For data migration, the researchers employed two key technologies, Apache Sqoop and DataX.

The Apache Sqoop serves to transfer bulk data between Apache Hadoop and the structured data

storage such as relational database. These tools can import data from the relational model into

HDFS (Hadoop Distributed File System), convert the data in Hadoop MapReduce, then pass on

the data back into a relational model. According to Zhao et al., (2014) the limitation of the

Apache Sqoop is that it is not able to import the dependencies of tables in relational database,

even though it can complete data importation in HBase, Hive and Hadoop. Due to this downside,

there is a lot of overhead cost in terms of time spent during data migration from relational to any

55

big data management system such as Hadoop, Hive or HBase as the technology requires more

than one table to be accessed and queried.

DataX is a technology designed to leverage very rapid data communication/exchange between

heterogeneous data sources for example; MYSQL, Oracle and HDFS. DataX uses its DataX

engine to deliver a framework to schedule, process and exchange data. The activities of data

extraction and loading are handled by DataX plugins which are plugged into DataX engine. The

DataX technology also has the limitation of inability for importing relationship of tables in

relational database to NoSQL database just like Apache Sqoop.

For the schema conversion, Zhao et al., (2014) used JackHare, a framework which translates data

from SQL to NoSQL using MapReduce by generating nested schema mappings which

transforms relational data into HBase representation automatically. The JackHare delivers a

concrete conversion model which caches all tables in a relational database in a single HBase

table. In the conversion process, the data contained in an SQL table are transferred into a column

family and column schema of the relational table is remapped into qualifier of that column

family. In addition to the conversion process, a special column family is adopted for foreign keys

of relational database. The limitation of this foreign key introduction is that query involving

many foreign keys will not have optimum throughput which is as a result of the join operations

to be processed.

In conclusion, the research achieved a schema conversion which used nested idea to increase

query speed of NoSQL database. The research proposed a broad migration program and

associated algorithms based on the nested method. The experiment accomplished a MySQL-

MongoDB relocation system, and employed real-world data to ascertain the correctness of

migration and query performance which were compared. Also, conversion algorithms were

tested for accuracy. The weakness of this model is the overhead cost of a certain amount of space

which is needed in exchange for query efficiency. For the reason of the downside, the

researchers proposed future work which explores ways for minimization of spatial redundancy.

56

2.8.6 Cross Platform (RDBMS to NoSQL) Database Validation Tool using Bloom Filter

Goyal et al., (2016) worked on creating a cross-platform relational model to NoSQL model using

bloom filter. The researchers explained that the concept of data migration from relational

database to NoSQL are divided into two general approaches: 1) Direct mapping: whereby data

from the source is transformed into the data structures of the target database, without

considerable alteration to the schema 2) Intermediate Mapping: that is, data is translated into

transitional structure and then from this into the final setup. The intermediate mapping approach

is typically a denormalized schema which comprises of joins and skipping some columns in

relational database model.

Goyal et al.,(2016) compared some existing tools which have been used for data

integration/migration for example: Pentaho Data Integration (a client ETL application which

supports NoSQL platforms such as MongoDB and HBase). The Pentaho Data Integration allows

execution of ETL jobs and grants access and retrieval of data in big data environment such as

Hadoop and also allows the use of user-defined validation rules such as tolerating null values,

decimal symbols, and maximum string to validate data in the course of the transformation

process from the source to the target database. Talend Open Studio was also compared. Talend

Open Studio as described by Goyal et al., (2016) is an ETL tool which supports different NoSQL

databases such as MongoDB, CouchDB, CouchBase, Cassandra and HBase and offers the

functionality to link and integrate them. Jaspersoft ETL, a tool circulated by TIBCO which

supports NoSQL platforms such as Cassandra and MongoDB which in partnership with Talend

allows the use of Talend Open Studio in its environment was also compared by the researchers.

Figure 2.9 explains the flow of algorithm used in the experiment for migration/integration of the

RDBMS and NoSQL by (Goyal et al., 2016). The research projected a comprehensive, fast and

space proficient algorithm to authenticate RDBMS to NoSQL migration. The experiment

accomplished desirable values when tested with different sizes of test data.

57

Figure 2.9 Validation flow diagram (Source: Goyal et al., 2016)

58

Goyal et al., (2016) used Bloom filter to checkmate this weakness in implementation of

migration and integration of data from relational database to NoSQL database. Bloom filters

helped correct the drawbacks by revealing the exact corrupted records for massive datasets and

also achieving constant space and linear time complexity. The researchers proposed an approach

which validates data conversion from relational(MySQL) to NoSQL(MongoDB and Apache

Cassandra) databases and this is outlined in four phases; i) Metadata mapping from RDBMS to

NoSQL database ii) Transformation into a common structure iii) Bloom filter iv) Cell validation

engine.

The three methods; Pentaho Data Integration, Talend Open Studio and Jaspersoft which were

examined by Goyal et al., (2016) have some major weaknesses like they do not provide row and

column comparisons over the entire data set thereby causing loss of data. The main limitation of

this research is the small probability of false positives which can be removed by several

optimizations made to the bloom filter. The authors of the paper proposed further research to

their work which will be in terms of exploring ―ways to parallelize the entire process and

dynamically obtain bucket sizes for quicker evaluation‖.

This research having been examined for further research, falls short of integrating other complex

databases like the key-value pair NoSQL DBMS which provides optimization for insert

operations and is ACID compliant was not incorporated intop the architecture and system

development. Also, the graph-oriented NoSQL model which provides specialized feature for

handling graphical operations linking relationships involving images was not addressed in the

existing research. The proposed research took into account these drawbacks and a persistent

system offering interoperability across board for the entire NoSQL system and the SQL model

was built.

2.8.7 Automatic Mapping of MySQL Databases to NoSQL MongoDB

Stanescu et al., (2016) worked on MySQL and NoSQL integration by performing automatic

mapping of the MySQL relations/tables to the equivalent NoSQL documents by the help of a

middle layer. The research presented a framework that implements a novel algorithm that

automatically maps a relational database to a MongoDB NoSQL database. The algorithm makes

use of the metadata (data about data; for example the name of a database or table, the data type

of a column, or access privileges) deposited in the MySQL system tables which considers mainly

59

the idea of the ER (Entity-Relationship) model which is a concept chiefly associated with the

relational model. The mapping uses the 1:1 (one to one) and 1:M (one to many) relationship type

corresponding to the Foreign Keys in the relational model and N:M (many to many) relationship

type represented in the relational model with a join table that contains the Primary Keys (PK)

from the original tables (MySQL tables) and the join table using the MySQL

INORMATION_SCHEMA (the information database; a repository where all the information

about all the other databases that MySQL server maintains are stored) that provides access to

database metadata. Within the INFORMATION_SCHEMA, there are several read-only tables

which in essence are views (virtual representation of the data in a table), not base tables.

The 1:1 relationship depicts a relationship between two entities. For example a student has a

single Address relationship which basically means that a student lives a single Address and an

Address only contains a single Student. The 1:1 relationship in the automatic mapping

framework deduced by this research offers two modeling techniques using MongoDB; the first is

to embed the relationship as a document and the second is to link to a document in a separate

collection. The embedding technique which is a core attribute of the MongoDB is the chosen

method for modeling the relationship because it is more efficient in retrieving the document. The

1:M (one to many) relationship illustrates a relationship where side has a single relationship and

the reverse side can bear more than one relationship. The 1:M relationship can be represented in

numerous ways using MongoDB just like that of the 1:1 relationship and these modeling

formulations include embedding, linking and bucketing strategy which does not apply in the case

of 1:1 relationship. Bucketing strategy is chiefly employed in the case of time series analysis (a

statistical technique that deals with trends or time series data within a particular time periods or

intervals). The N:M (many to many) relationship in the ER (Entity-Relationship) model is a

pattern of relationship between two entity types where both entities might possess many

relationships between them. For example a book might be written by many authors, also an

author might have written many books. The N:M (many to many) relationships are modeled in

the RDBMS by using a join table containing the primary keys from the original tables, each

representing a foreign key, and two 1:M (one to many) relationships. This N:M relationship of

the relational database can be represented in MongoDB in two different forms which are; One

Way Embedding Strategy and Two Way Embedding Strategy. In the One Way Embedding

strategy of the automatic mapping of MySQL tables to MongoDB, the strategy opts to optimize

60

the read performance of a N:M relationship by embedding the references in one side of the

relationship. For example a N:M relationship between books and categories, several books

belong to a few categories but a couple of categories can have many books. The Two Way

Embedding offers double embedding in both sides of the relationship for the author of book and

also the book by including the foreign keys for book under the book field in the author‘s

document. This is made possible by mirroring the author document for each book and including

the author‘s foreign keys under the author field in the book document. An example with the

categories represented into a separate document is shown below;

An example of Category documents: {id=1,

Cname=‖Multimedia‖}

{id=2,

Cname=‖Databases‖}

An example of a Book document with foreign keys for Categories:

{id:1,

title‖Multimedia Databases‖,

categories:[1, 2],

authors:[1]}

id:2,

title‖Multimedia‖,

categories:[1],

authors:[1,2]}

The stepwise process of the algorithm implemented in the framework by Stanescu et al., (2016)

are;

1) MongoDB database creation.

The process involves specification of the MySQL database that will be represented in MongoDB.

The database is created using the following MongDB command

use DATABASE_NAME

>use db1

61

Switched to db db1

2) The second step involves creation of tables in the new MongoDB database

The algorithm performs verification for each table to ascertain the type of relationship involved

whether there are foreign keys involved or if the table is referred by other tables.

2.1 If the table created in MongoDB is not referred by other tables in the MySQL, it will be

represented by a new MongoDB collection.

2.2 If the new table has not foreign keys, or has been referred by another table, it will be

represented by a new MongoDB collection.

2.3 If the table has one foreign key and is referred by another table, it will be represented by a

new MongoDB collection. In the automatic mapping framework, for this type of table, the

linking method (an embedded document is linked to a separate collection) is employed, using the

same concept of foreign key.

 2.4 If the table has one foreign key but is not referred by another table, the proposed algorithm

makes use of the one way embedding model. The table is embedded in the collection that

represents the table from the part 1 of the relationship.

2.5 If the table has two foreign keys and is not referred by another table, it will be represented

using the two way embedding model.

2.6 If the table has 3 or more foreign keys, so it is the result of a N:M ternary, quaternary

relationships, the algorithm uses the linking model, with foreign keys that refer all the tables

initially implied in that relationship and already represented as MongoDB collections. The

solution is good even if the table is referred or not by other tables.

To find the name of the tables stored in MySQL database this Select command is used:

Select table_name From information_schema.tables

Where table_schema=‘db1‘ Order By table_name;

Relational tables become collections in MongoDB. The collections are created using

createCollection() method. Basic syntax of createCollection() command is as follows:

Db.createCollection(name, options)

62

Where name represents the collection name and options specify options about memory size and

indexing.

Stanescu et al., (2016) explained that the proposed algorithm of automatic mapping a MySQL

relational database to a MongoDB NoSQL database has limitations which are in terms of not

being able to experiment on complex databases using many tables with large number of

databases. Future work in this area will involve the afore mentioned limitation and also take into

consideration the number of records in the tables and performing operations on the database

which will cover the CRUD (Create, Read, Update and Delete) function in order to implement

more suitable model of mapping to MongoDB. Future work will also involve modeling tree

structures with parent references and extending the framework to execute mapping to MongoDB

of other relational databases for example Oracle, MS SQL Server and so on.

2.8.8 SQL Support over MongoDB using Metadata

Sanobar and Vanita (2013) worked on supporting SQL system; MySQL over a NoSQL system;

MongoDB with the help of Metadata. The research based majorly on integration of MySQL and

MongoDB databases by addition of a middleware (Metadata) between the front-end (application

layer) and the back-end system (database layer). The paper first carried out detailed analysis of

the two systems (MySQL and MongoDB) in order to ascertain the gains accruable by the

integration of these systems which can operate in parallel achieving the tasks which they have

been built to perform. The middleware between these two consists of Metadata which consist of

different types of packages. The system implemented a package which serves as an interface

between java application layer and NoSQL database (MongoDB).

The researchers reviewed the architectural underlining by analyzing the different systems;

MySQL and MongoDB database management systems. Sanobar and Vanita (2013) explained

that relational database is extensively used in most of the application to store and retrieve data.

The RDBMS work best when they handle a restricted amount of data. Handling a huge volume

of data like internet was inefficient in RDBMS. In order to surmount this quandary ―No SQL‖

came into existence. The term NoSQL is short for ―Not Only SQL‖ and was introduced in 2009,

when it was chosen a title of a conference ―for folks interested in distributed structured data

storage‖. The NoSQL name tried to mark the emergence of a growing number of non-relational,

63

distributed data stores that often did not attempt to provide ACID (Atomicity, Consistency,

Isolation and Durability).

Sanobar and Vanita (2013) further explained that NoSQL, is not a tool, but a methodology

composed of several balancing and competing tools which handle unstructured data such as

documents, e-mail, multimedia and social media efficiently. Most of the common features of

NoSQL database can be summarized as schema is not fixed, does not support join operations,

high scalability and reliability, very simple data model, very simple query language, high

availability at the price of losing the ACID trait of the traditional database

in exchange for keeping a weaker BASE (Basic Availability, Soft State, Eventual Consistency)

feature, uses cheap commodity server to manage exploding data and thus leads to low cost,

efficient use of distributed indexes and RAM for data storage, ability to dynamically add new

attributes to data records, ability to replicate and to distribute data over many servers.

According to Sanobar and Vanita (2013) MongoDB supports indexing over embedded objects

and arrays which avails it of a special feature for arrays called ―multikeys‖. The multikey feature

allows the use of an array as index, which can be used for searching documents by their

associated tags.

The database structure in Figure 2.10 shows the layout of MongoDB database where the data

model is a collection of documents which are comprised of key-value collections.

Figure 2.11 depicts the architectural framework of the MongoDB NoSQL system where sharding

(horizontal partitioning) is used in segmenting the data and allowing for interaction between the

application layer which is the client side and the database server.

64

Figure 2.10 Structure of MongoDB Source: (Sanobar and Vanita, 2013).

Figure 2.11 MongoDB Architecture (Source: Sanobar and Vanita, 2013).

65

In the implementation phase of the research carried out by Sanobar and Vanita (2013) the

middleware between the MySQL and MongoDB system comprised of Metadata which consists

of different packages; the package which acts as an interface between java application layer and

NoSQL database (MongoDB). The system is principally designed for embedded java based

application which requires database access. The database command issued from the java-based

application is set as input to the interface performing as a middleware. The interface performs the

parsing of the input data and reformats the code in the format which is requisite by the back-end

database which is the MongoDB. The reprocessed code is made up of functions that direct back-

end databases to execute and sustain the database. This process of employing a middleware helps

for java response in case of an exception (error) or system failure. The Metadata (middleware)

stores information about the format conversion rules and the data structure format in order to be

able to perform conversion from one form to the other for both systems (MySQL and

MongoDB). The drawback of this research is the lack of trial of other NoSQL systems apart

from MongoDB to leverage support over other NoSQL systems to discover their performance

strengths.

2.8.9 An Effective Scalable SQL Engine for NoSQL Databases

Vilaca et al., (2013) conducted a research which sought to offer an efficient SQL system which

could be scaled to accommodate NoSQL databases. The research was carried out in order to

tackle the inadequacy of existing NoSQL databases with an effectual approach for executing

SQL queries while retaininging their scalability and schema flexibility. The research displayed

how a full-fledged SQL engine can be integrated atop of HBase leading to an ANSI SQL

compliant database. Under a standard TPC-C workload the prototype system scales linearly with

the number of nodes in the system and outperforms a NoSQL TPC-C implementation optimized

for HBase.

As posited by Vilaca et al., (2013) cloud-based databases for example; Cassandra, HBase,

Google‘s BigTable, Amazon‘s DynamoDB and Yahoo‘s PNUTS offer Paas (Platform-as-a-

service) feature and for this reason, they have become open for wider usability and adoption for

superior and more diverse set of applications. The researchers further noted that their lack of

support for SQL stands as a key obstacle for a wider adoption. This hurdle arises at different

levels due to the dominance of SQL as the standard, widely mastered and efficient query

66

language for databases. Most web scale applications are purposely kept SQL-based for their core

data management. Any application at least two, three years old is directly or indirectly (e.g. on

top of an object-relational mapping) based on an SQL interface and its migration is usually not

straightforward. A huge number of tools and middleware coupled to SQL have been developed

and matured over the years and are currently at the basis of most application development

frameworks. For this reason, Google App Engine has requested for SQL-compliant additions to

its platform which is made possible by the employment of a middleware that exposes higher-

level query interfaces on top of the barebones key-value primitives of NoSQL databases.

Vilaca et al., (2013) presented DQE (Distributed Query Engine) for running SQL queries on top

of a NoSQL database, while maintaining its scalability and schema flexibility. The DQE permits

combination of the expressiveness and performance of an RDBMS with the scalability and

flexible schema nature of a NoSQL database. The DQE (Distributed Query Engine) was

implemented using Apache Derby‘s query engine with full SQL support and HBase as the

NoSQL database. The proposed architecture by the researchers reuses some components from

the SQL query processor which are: the JDBC (Java Database Connectivity) driver; the

application programming interface for the programming language Java, which defines how a

client may access a database, it also uses client connection handler; the compiler and the

optimizer, and a set of generic relational operator implementations.

The components of the DQE architecture to be implemented include; 1) mapping from the

relational model to the data model of a NoSQL database which will include: atomic data types

and their representation, representation of rows and tables, and representation of indexes. 2)

Mapping from the relational schema to that of the NoSQL database, which allows data to be

interpreted as relational tables 3) Implementation of sequential and index scan operators which

will include: matching the interface and data representation of the database and leveraging the

indexing and filtering capabilities in the NoSQL database to minimize data network traffic. As

stated by Vilaca et al., (2013) the DQE architecture has the key advantage of remaining stateless

regarding application data. DML (Data manipulation Language) statements such as; SELECT,

INSERT, UPDATE and DELETE can be executed without any coordination among different

DQE instances. As a consequence, the system should retain the scale-out capabilities of the

supporting NoSQL database. Additionally, this architecture also leverages the possibility to take

67

advantage of the flexible schema exposed by the underlying NoSQL database, which implies that

each application applies its own view of the schema over the NoSQL database.

 Vilaca et al., (2013) reviewed the systems (Apache Derby and HBase) for use in the DQE

architecture. The researchers defined HBase as a key-value based distributed data storage system

based on Bigtable. HBase stores data in the form of HBase tables (HTable) that are multi-

dimensional sorted maps. Data is maintained in dictionary ordered by row key which possesses

column name and timestamp. The columns are grouped into column families which must be

created before data can be stored under any column key in that family. The column can posses

multiple versions of the same data indexed by their timestamp. Read/write operation is carried

out on a row by the help of the row key and one or more column-keys. HBase performs the

scale-out attribute of the NoSQL database management system. As explained by Vilaca et al.,

(2013) Apache Derby holds a store layer which is divide into two main areas; access and raw.

The access layer presents a combination of table or index/ row based interface to the SQL layer.

The access layer handles table scans, index scans, index lookups, indexing, sorting, and locking

policies and transactions. The access layer is directly placed on top of the raw store which is the

repository for rows in pages in files, transaction logging and also transaction management. For

the purpose of this research, the researchers removed the raw store layer in the prototype of the

DQE and also, some components of the access layer were replaced.In the prototype system,

some components were employed which include; query engine, storage and file system.

Applications issue SQL requests to any query engine node which in return communicates with

storage nodes and executes queries which returns the results to applications. The components

resident in Derby were used to implement the query engine. The query processing sub-system

(the compiler and optimizer) components were re-used to help in performing join and

aggregations which are not supported by the HBase. The DQE leverages indexing and filtering

capabilities of the HBase to minimize the amount of data that needs to be obtained. The HBase

also helps to reduce network traffic between query engine and HBase. The Apache Derby helps

maintain consistency across the DQE as it must store information about the in-memory

representation of tables and index in a persistent manner.

As shown in Figure 2.12, the evaluation of the DQE addressed two performance aspects which

are; the overhead incurred by the prototype system in terms of added latency (reduction in

68

response time), and throughput. The system is capable of transferring more data when more

nodes are added to the system which is as a result of its ability to scale-out (increment in the

number of nodes).

Figure 2.12 Throughput and Latency graphs for DQE (Source: Vilaca et al., 2013).

69

Vilaca et al., (2013) used an existing SQL implementation, without modification s to drive the

DQE and an existing NoSQL implementation where columns are grouped into column families

which are named differently for optimization and data storage which has been optimized for

HBase. The results of the researchers‘ system showed that the DQE presents linear scalability

which is as a result of the scale independence of the query processing layer and the scalability of

the NoSQL database layer. The downside to this architecture is that the DQE has a slightly

reduced throughput than the HBase but offers better scalability than the HBase NoSQL system.

Additionally, the DQE architecture incurs greater overhead operationally as a result of the

manual optimization and denormalization which is caused by the Apache Derby‘s relational

operators, filtering and secondary indexes.

2.8.10 Uniform data access platform for SQL and NoSQL database systems

Vathy-Fogarassy and Hugyák (2017) worked on implementing a uniform data access interface

for MySQL relational database system and MongoDB NoSQL system. The authors designed a

web-based application named HybridDB; a novel data integration methodology to query data

individually from different relational and NoSQL database systems. The study employed the use

of metamodel-based merging approach which allows querying of data from heterogeneous

database systems simultaneously by converting the metadata (data about data) information of

source database systems into general schemas which are represented in JSON (JavaScript Object

Notation) objects. The research aimed to support data integration by concealing the specific

details and heterogeneities of the various source systems (MySQL and MongoDB) by using a

metamodel approach whereby the distinctive interfaces and schemas of the source database

systems are combined into a single interface.

The proposed method by Vathy-Fogarassy and Hugyák (2017) incorporated the JSON

(JavaScript Object Notation) principle which was used in mapping different data models into a

common one.

As highlighted in Figure 2.13, the HybridDB model comprises of the server side and the client

side architectural design. The server side was developed in Node.js JavaScript runtime

environment for the reason that this platform makes use of an event-driven, non-blocking

asynchronous I/O (Input/Output) model. On the server side, Vathy-Fogarassy and Hugyák (2017)

applied the model-view-controller (MVC) architectural pattern. JavaScript codes on the client

70

side were written in AngularJS framework, which is conceivably the most popular client-side

JavaScript framework.

Figure 2.13 Architecture of HybridDB (Source: Vathy-Fogarassy and Hugyák, 2017).

71

The major advantage of this proposed model is that a user can readily describe the semantical

association between the source database systems without the need to know the internal structure

of the source databases before being competent to recover data from them.

The drawback of the research is that the recommended solution by this merger approach does not

support joins and aggregates across data sources; it only collects data from different separated

database management systems according to the filtering options and migrates them.

According to Vathy-Fogarassy & Hugyák (2017) in the existing edition of the HybridDB, data

cached in MySQL and MongoDB databases can be integrated, but further research is required in

terms of development of a more concise and robust model which requires integration of any

other relational or NoSQL database management systems into the existing architecture.

2.8.11 An integration approach of hybrid databases based on SQL in cloud computing

environment

Li and Gu (2019) worked on integrating multidatabases architecture which involved MySQL

relational database, MongoDB and Redis NoSQL systems. The technique used by the researchers

provided mechanisms for semantic transformation between SQL and MongoDB‘s Java Language

API which helps in adding the SQL features on top these NoSQL databases and constructing the

Redis NoSQL indexes to suit the transformation which leverages an effective reduced

development complexity and also improves development efficiency of the software systems with

multidatabases in cloud computing environment. The key algorithms were presented in the form

of pseudo program code and the sytem was validated based on qualitative comparison with

existing works and quantitative evaluation of the developed model.

The qualitative comparison involved the juxtaposition of the Unity architecture by Lawrence

(2014) and the MSI architecture by the researchers; Li and Gu (2019). The features of the Unity

architecture were compared with that of the MSI technique and the results obtained from the

analysis of the two systems showed that MSI architecture has comparative advantage in terms of

the incorporated data sources, the volume or size of data adopted in the research and query

optimization. The quantitative evaluation of the performance of the MSI model involved; testing

of the response time of the single data sources and that of the MSI model and testing the delay

time using the APIs (Application Program Interface) of the prototype system. The results

obtained by time analysis of accessing MongoDB and Redis showed that the individual systems

72

were faster than MSI and Li and Gu (2019) suggested that data cache mechanism be improved

which will help increase optimization and advancement to the field of database research.

As shown in Figure 2.14, thhe MSI architecture principally includes eight components; API

dispatcher component, SQL parser component, SQL optimizer component, SQL router

component, SQL executor component, DBMS (database management system) adapter

component, result merger component, and meta-data management component.

Figure 2.14 MSI (Multiple Sources Integration) Architecture (Source: Li and Gu, 2019).

73

According to Li and Gu (2019), ―modern software development for services computing and

cloud computing software systems is no longer based on a single database but on existing

multidatabases and this convergence needs new software architecture and framework design‖.

The incorporation technique of SQL and NoSQL data-stores proposed by Li and Gu (2019)

entitled MSI (Multiple Sources Integration), is based on the core layers of the operating system

and the various hybrid database management systems. The SQL statements are the MSI's input

and the result of the SQL process is the MSI's output.

Application patterns

As stated by Li and Gu (2019) the MSI can be applied in three main patterns and they include;

OLTP (Online Transaction Processing), Big data analysis and Hybrid pattern.

OLTP pattern

As depicted in Figure 2.15, MSI is chiefly used as a support tool for OLTP (on-line transaction

processing) application. For instance, its application is relevant in development of applications

for e-commerce, e-government, internet of things etc. In these scenarios, several database

systems are frequently drawn in, including relational databases and NoSQL database

management systems.

Figure 2.15 OLTP Application (Source: Li and Gu, 2019).

74

Big data analysis pattern

As shown in Figure 2.16, the MSI can be used as a support tool for big data analysis application,

accessing data warehouse system, such as HBase NoSQL database, by SQL. Interchangeably, it

can be applied in data synchronizer, which transfers data from the OLTP database system to data

warehouse system.

Figure 2.16 Big Data Analysis Application (Source: Li and Gu, 2019).

Hybrid pattern

Hybrid pattern is a co-existence way of the OLTP pattern and the big data analysis pattern,

which is also the most familiar style in handy applications. Alternatively, as highlighted in

Figure 2.17, the MSI functions as a link connecting application layer involving OLTP

application and big data analysis application) and data storage layer (including OLTP database

systems and data warehouse system).

Figure 2.17 Hybrid Pattern (Source: Li and Gu, 2019).

75

The MSI model proposed by Li and Gu (2019) provides access to multiple data sources

simultaneously and has access to MySQL relational database, MongoDB and Redis NoSQL

systems and also runs on a considerably large amount of data. For the purpose of further

research, the authors recommended the addition of more NoSQL systems into their prototype

system as the MongoDB and Redis sytems only represent the key-value and document NoSQL

systems. The research did not include the graph-oriented and column-share NoSQL systems.

Redis: a key-value pair NoSQL system is good for insertions but has low disk space as it stores

to physical memory and is not effective for large transactions. It does not perform read-write

operations as quickly as document and column-oriented systems. As pointed out by Li and Gu

(2019) the MSI model has the downside of of reduced speed or delay in response time which is

caused by parsing, optimization and routing of SQL. According to Li and Gu (2019) ― it is not

valuable but alsofeasible to add the SQL feature to these NoSQL database systems at the expense

of some performance so as to improve the development efficiency of software systems‖.

Table 2.9 shows summary of the different works which were investigated by this researcher

which helped in providing better insight on how to carry out this research.

Table 2.9 Summary of Related works

S/N Year Authors Technique Results Limitations

1 2011 Zhang et

al.

Integration by use of data

dictionary of column-

oriented NoSQL system

(Cassandra) and relational

model (oracle database)

Affixing middleware

which affords a unified

interface

Poor scalability leading to

slow system

Cassandra + Oracle

2 2013 Liu and

Vitolo

Graph data warehouse by

use of ‗Graph Cube‘ which

incorporates graphs with

tables

GDML & GDDL in

order to deliver a local

copy of data and to

provide a graph or

graph segment.

incorporation of graphs as

part of fact tables without

leveraging the core aspect

of SQL which is join

operation

Graph + SQL

3 2013 Doshi et

al.

Use of Instant Data

Integrator (SQL to

NewSQL sync) and

Hibernate OGM (Object

Grid Mapping) H-Base

Driver

Blending the two types

of data processing

(scale-up and scale-out)

using HBase and Hive

Slow system; has the

problem of handling data at

good speed

HBase + Hive

76

S/N Year Authors Technique Results Limitations

4 2014 Lawrence Integration of SQL and

NoSQL system ((MySQL

+ MongoDB) by use of

virtualization technology

Unity architecture

provides an interface

for converting SQL

queries to NoSQL APIs

Overhead in SQL transaction

process which leads to reduced

performance

MongoDB + MySQL

5 2014 Zhao et al. Schema conversion by

means of table nesting and

using denormalization

method

Migration of data from

SQL to NoSQL

(MySQL to MongoDB)

overhead cost in terms of time

spent during data migration

from relational to any Big data

management system

MySQL + MongoDB

6 2016 Goyal et al. Cross-platform relational

model to NoSQL model

using bloom filter mapping

metadata from RDBMS to

NoSQL DB.

RDBMS to NoSQL

integration

Data loss as the model does

not provide row and column

comparisons over the entire

data set.

MySQL + MongoDB +

Cassandra

7 2016 Stanescu et

al.

Automatic mapping of

MySQL tables to the

equivalent NoSQL

documents by means of

middle layer using the

INFORMATION_SCHEM

A of MySQL (views)

Integration of MySQL

and MongoDB by

exploiting the 1:1 (one

to one) 1:M (one to

many) and N:M (many

to many) relationship

of RDBMS

Inability to experiment on

complex databases using many

tables with large number of

databases.

Lack of CRUD function

MySQL + MongoDB

8 2013 Sanobar

and Vanita

SQL support over NoSQL

with the help of metadata

by using an interface (Java

application layer and

NoSQL database

MongoDB)

MySQL + MongoDB

integration by

embedding a java-

based application

within NoSQL

database (MongoDB)

with the help of

middleware

Lack of trial of other NoSQL

systems apart from MongoDB

MySQL + MongoDB

9 2013 Vilaca et

al.

DQE (Distributed Query

Engine) for running SQL

queries on top a NoSQL

database while maintaining

its scalability and schema

flexibility

Integration of Apache

Derby‘s query engine

with full SQL support

and HBase NoSQL

database

The DQE has a slightly

reduced throughput than

HBase. DQE incurs greater

overhead operationally due to

manual optimization and

denormalization caused by the

Apache Derby‘s relational

operator, filtering and

secondary indexes

Apache Derby+HBase

77

S/N Year Authors Technique Results Limitations

10 2017 Vathy-

Fogarassy &

Hugyák

Implementation of a

uniform data access

interface for MySQL and

MongoDB systems by

applying the MVC (Model-

View-Controller) using

Node.js for the server-side

framework and AngularJS

for the client-side

JavaScript framework.

HybridDB architectural

design was modeled by

incorporating JSON

JavaScript Object

Notation) principle in

mapping different data

models into a common

one.

Inability to perform operations

like aggregations and joins

across data sources. The

system does not perform

CRUD operations but only

migrates data.

MongoDB + MySQL

11 2019 Li & Gu Integration of

multidatabases architecture

involving MySQL,

MongoDB and Redis

systems by semantic

transformation of MySQL

and MongoDB‘s Java

Language API and

reconstruction of Redis

indexes to comply with the

transformation.

MSI architecture

provides access to

multiple data sources

simultaneously

Reduced speed or delay in

response time caused by

parsing, optimization and

routing of SQL.

The Model requires additional

NoSQL systems to increase

performance and development

efficiency.

MySQL + MongoDB + Redis

2.9 Summary of Literature Review/ Research Gap

The investigation carried out shows that NoSQL systems are not replacements for the relational

database systems as each could be used to perform specific purposes with optimum output. For

some companies with need for a very consistent system which can hold well-structured data sets,

the relational databases are still the best option for them. The NoSQL systems with their speed,

78

availability and fail-over options serve the purpose of delivering run-time purposes of good

throughput.The reviewed works did not perform interoperability among the different NoSQL

systems and SQL system; this has been identified as a gap in knowledge as benefits accruing

from exploration into a cohesive interoperable system has not been addressed.

79

CHAPTER THREE

 METHODOLOGY AND SYSTEM ANALYSIS

3.1 Methodology Adopted

According to Bu et al., (2010), numerous data analysis techniques require iterative computations,

including PageRank, HITS (Hypertext-Induced Topic Search), recursive relational queries,

clustering, neural-network analysis, and social network analysis, and network traffic analysis.

These techniques have a common trait: data are processed iteratively until the computation

satisfies a convergence or stopping condition.

Relational algebra which is already in use in the SQL system is the basis for operations in the

RDBMS. Statistical laws for example commutativity, distributivity and associativity make for

operations in the NoSQL systems aided for interoperability of the systems. These

mathematical/statistical concepts will be simplified to suit the SQL and NoSQL systems which

could be used to create a middle-layer which in effect is the integration of the systems. The

system will be based on combining some of the common rules like union, intersection and other

common functions and indices which are similar or applicable to both systems.SQL systems run

on relational algebra which is how the constraints are made to work both the referential and

integrity constraints. This is based primarily on set theorem which identifies a relation between

different variables and links them up. The join operations are made possible through this method.

As shown in Figure 3.1, this research developed a novel methodology from the existing Iterative

and Incremental Development (IID) method which is termed ‗Holistic Iterative and Incremental

Approach for cross-platform modeling‘. However, the Iterative and Incremental Model alone

does not entirely capture the architectural process involving drivers of the NoSQL systems

evaluated and used in the implementation aspect of this study. Therefore, this research

conceptualized additional processes that make the new methodology holistic and appropriate for

the cross-platform development. Figure 3.1 captures the Iterative and Incremental approach as

well as the researcher‘s additions which is titled Holistic Iterative and Incremental Approach for

Crosss-platform Modeling.

80

 No

 Yes

Figure 3.1 Holistic Iterative and Incremental Approach for Cross-platform Modeling

Requirement

Gathering and Analysis

Model formulation

Schematic description

of the Architecture

Verification and

validation

Accurate

formulation

?

81

On the methodology for software development, this research adopted an Iterative and

incremental approach. As the study demands accurate throughput, this approach offers a more

reliable outcome as any error can be revisited and sorted while still carrying out other aspects of

the work. The Iterative and Incremental model offers a continuous loop of development and

testing; then the repeat of the process in order to allow for changes to be made to the system.

The research included comparison of different tools which were used to analyze for performance

NoSQL systems. The relational algebra which is the interface to where data is stored in the SQL

database was used as a tool in providing solutions to data sets for both the relational and non-

relational data models using DDL (Data Definition Language) like insert, update and delete.

Mathematical algorithms which combine set theorems for both SQL and NoSQL were used.

3.2 Analysis of Existing System

Sanobar & Vanita (2013) integrated MySQL RDBMS (Relational Database Management

System) and MongoDB (Document store NoSQL) systems by means of application of a

middleware layer across the two systems. The systems employed the use of middleware between

the front-end (application layer) and the back-end system (database layer). The existing system

leveraged on the gains of the SQL system which include; maintenance of data integrity and

scalability and provision of unparalleled feature set and also the benefits of MongoDB

whichserves majorly for read-intensive operations, and ability to store large amount of semi-

structured and unstructured data. The MongoDB has an architectural design which supports

BSON (Binary encoded JSON) data structures to store complex datatypes, supports powerful and

complex query language and has high speed access to mass data, stores and distributes large

binary files like images and videos. MongoDB supports indexing over embedded objects and

arrays which provides a special feature for arrays called multikeys.

The Database Integration Architecture in Figure 3.2 implemented a package which serves as an

interface between java application layer; which is the API (Application Prrogramming Interface)

and NoSQL database (MongoDB).

82

Figure 3.2 Database Integration Architecture (Source: Sanobar and Vanita, 2013).

Sanobar and Vanita (2013) did a comparison of MySQL and MongoDB systems based on three

parameters; 1) Terms/Concept 2) Schema Statements and 3) performance.

Table 3.1 which is based on Terms/Concept of the systems explained the concept of the two

systems as they relate to each other (based on their equivalence). The table in MySQL system is

the equivalent of collection in MongoDB. Row, Column is the BSON document in MongoDB

while indexes are on the same level for both systems.

Table 3.1: Terms/Concept of RDBMS and MongoDB Implementation (Source: Sanobar and

Vanita, 2013).

Table 3.2 outlined commands used for different operations by MySQL and MongoDB

management systems. API (Application Programming Interface) MongoDB posseses its own

query language named Mongo Query Language. In order to recover certain documents from a

database collection, a query document is added containing the fields that the preferred documents

should match. For example,

83

Insert Command

db.users.insert ({ user id:‖abc123‖, age: 55, status:‖A‖})

Drop Command

db.users.drop ()

Select Command

db.users.find ({ status:‖A‖, age: 55})

Delete Command

db.users.remove ({ status:‖A‖})

MongoDB uses a RESTful (RepresentationalState Transfer) API. RESTful is an architecture

style for designing networked applications which relies on a stateless, client-server, cacheable

communications protocol (e.g., the HTTPprotocol). RESTful applications use HTTP requests to

post, read data and delete data.

Table 3.2: Example of Schema Statements for RDBMS and MongoDB (Source: Sanobar and

Vanita, 2013).

84

The system analysis was based on performance where testing based on insertion speed as shown

in figure 3.3 were carried out. The tests used 100 to 50,000 records to ascertain speed of the two

systems under comparison which are MySQL and MongoDB.

Figure 3.3 Insertion Speed Comparisons for MySQL and MongoDB (Sanobar and Vanita, 2013).

Other performance metrics were used as shown in Figure 3.4 where completion of the different

Insertion times for MySQL and MongoDB were tested. Also, Figure 3.5 outlined the query speed

comparisons conducted for MySQL and NoSQL systems.

85

Figure 3.4 Insertion Time for MySQL and MongoDB (Sanobar and Vanita, 2013)

Figure 3.5 Query Speed Comparisons (Sanobar and Vanita, 2013)

The system is primarily designed for embedded java based application which requires database

access. As shown in Figure 3.6, basic and complex query times were tested for MySQL and

MongoDB. The database command fired from java based application is given as input to the

interface acting as a middleware (Metadata). The interface parses the input and reformats the

code in the format that is being required by the back-end database (MongoDB). The reformatted

code consists of functions that directs back-end database to implement and maintain the

database.

86

Figure 3.6 Basic and Complex Queries Time for MySQL and MongoDB (Sanobar and Vanita,

2013)

3.2.1 Advantages of the Existing System

1) The system offers an integrated architecture for SQL and NoSQL systems.

2) Embedded applications for example Java could be used for query parsing and interoperability

between RDBMS model and NoSQL model.

3) The existing system showed the strength and weakness of MySQL and MongoDB and how

the knowledge of this could be leveraged upon for improvement.

3.2.2 Disadvantages of the Existing System

1) The existing system proposed integration only for two systems (MySQL and MongoDB).

2) The existing system showed performance analysis for MySQL and MongoDB but did not test

for the integrated system.

3) The basic query operations which comprise of; insert, read, update and delete were not

conducted.

87

4) Actual test results which could have been used as benchmark for comparison with the new

system were not included.

3.3 Analysis of the New System

The new system combined the various desirable attributes of the two systems; SQL and NoSQL

systems using a novel approach which is obtained from the already existing iterative and

incremental model called ‗Holistic Iterative and Incremental Approach for Cross-platform

Modeling‘.

Some systems have been developed to handle the growing amounts and complexity of data

example is the Unity system by Lawrence (2014) and DQE (Distributed Query Engine) by

Vilaca et al., (2013) and also the MSI model by Li and Gu (2019).

NoSQL
2
; the new hybrid system developed by this research titled ‗Design and Implementation of

a cross-platform Database system for SQL and NoSQL Interoperability‘ encompasses the

features of both relational and all the different types of NoSQL systems. The new hybrid system

serves the purpose of handling transactions, consistency and availability. The system offers

automatic load balancing which handles the velocity (speed), volume (amount) and variety

(different structures of data). The system performs analytics and search and has been tested for

Usability.

The new system leverages an enhanced hybrid storage mechanism which is flexible, reliable with

easy manageability. The new system offers portability as it enables SQL which is the primary

repository of data to be incorporated into the NoSQL database. This interoperability of the

systems offer a distributed, fault-tolerant system with failover option made possible by the

scalabilty of the system. As a result of extra nodes made available to the system whereby data

can be spread across different systems optimized for the purpose of handling data according to

strength, need and requirement of the dataset, the problem of bottlenexk is made redundant and

performance is increased. Throughput which is the amount of data transferred within a given

period of time is increased.

The new system having been built exclusively for enhanced data dissemination and storage with

optimal low latency performs automatic aggregation which makes for responsiveness and quick

delivery of data. The hrbrid system allows CRUD (Create, Read, Update and Delete) operations

88

and sharding (horizontal partitioning) whereby different sets of values are stored in different

tables according to use case or suitability and conformation to the storage engines to be carried

out. Denormalization; a process that allows for increased response time for data recovery while

sustaining good system throughput for row insertions, updates and deletions works for the new

system. The new system provides good elasticity and is also reliable, consistent and maximally

available as the platform is built for persistence.

3.3.1 Justification of the New System

The CRUD function allows for table creation and update and also allows for insertions to be

deleted by the admin. This function is one of the major characterizes of the SQL system and will

be fused into the hybrid system to be developed.

The optimization function allows the SQL system to automatically fast track query processes

within the management system and the ACID property makes for compactness of the

management system. All these attributes will allow for an efficient cross-platform system of SQL

and NoSQL management systems. The BASE function of the NoSQL system leverages a system

which is both available and secondarily consistent. The PACELC function favours a system

which allows for partitioning of the database systems, Else a system that has low latency and at

the same time consistent. The CAP (Consistency, Availability, Partition tolerance) function of

the NoSQL system allows for two out of the three functionalities of the system, it favours either

consistency and partition tolerance or availability and partition tolerance but never allows for

consistency and availability at the same time. The new system will allow for consistency,

availability and partition tolerance to function at the same time. Sharding which is horizontal

partitioning will over rule the vertical partitioning of the NoSQL system and will offer both

speed and space and will also be flexible while also being secure.

89

3.4 High Level Model of the New System

Figure 3.7 depicts the high level model of the proposed system. The model incorporates the

various characteristics of the relational database management system with that of the NoSQL

systems which makes the new high level model. The inherent characteristics of the SQL system

are; ACID (Atomicity, Consistency, Isolation and Durability), CRUD (Create, Read, Update and

Delete) and also Optimization wherby the query optimizer tries to determine the most efficient

way to execute a given query considering the possible query plans. The NoSQL systems have

their own unique and identifiable properties which are BASE (Basically Available, Soft State

and Eventual Consistency), SHARD (horizontal partitioning of the database) where different sets

of values are stored in different NoSQL tables, PACELC (Partition, Availability, Consistency,

Else; Latency and Consistency), MAPREDUCE (aggregation) and CAP (Consistency,

Availability and Partition Tolerance).

Figure 3.7 High Level Model of the Proposed System

90

3.5 Objectives of the New Model Design

The objectives of the new model design are as follows:

i) To provide an improved system capable of translating information across the various

databases using a common syntax.

ii) The new model among other things will offer an integrated system which can reliably

parse data/information (interoperable system) within the system

iii) To discover the drivers and similarity of the various NoSQL systems which have been

brought together and how well they can share/co-exist with the RDBMS in a user-

friendly environment.

iv) An upgrade from the normal/known method of data storage and retrieval and also

implementation of security within the developed system which is not obtainable in the

different individual systems which have been combined/ integrated to arrive at the new

model design.

3.6 Decomposition and Cohesion of the High Level Model

The high level model of Figure 3.7 contains a holistic overview of the conceptualization of the

new high level model which is being designed and implemented. The several types/features of

the NoSQL systems were duly highlighted and they are: Key Value, Document, Column and

Graph NoSQL database systems. Their key characteristics/attributes are BASE (Basically

Available, Soft State, and Eventual consistency), SHARD (Horizontal Partitioning of the

database), PACELC (Partition, Availability, and Consistency, Else Latency and Consistency),

Mapreduce (aggregation using algorithm suitable to type of database involved) and CAP

(Consistency, Availability and Partition tolerance). These features are the decomposition of the

various NoSQL systems involved which when synchronized, gives a proper representation of the

High Level Model concerning the NoSQL part of the implementation process.

The SQL/RDBMS (Relational Database Management System) has features like; ACID

(atomicity, consistency, isolation and durability), also transactions (the basic unit of work) of a

database are the major considerations of the RDBMS as a process is considered to have been

fully committed when the transaction is completed. Also, CRUD (create, read, update and delete)

are major querying formulations of the SQL (structured query language) management system.

91

This is because this procedure allows for insertions/write to the database and allows for deletion

to be made to the RDBMS. The CRUD makes it possible for the database to be modeled and also

periodic inputs known as updates are made to the management system. OPTMIN (optimization)

allows for the database to manage itself efficiently. Optimization reduces overhead which could

accrue as a result of querying the database. Join operations which could get complicated at a

certain point in the database as a result of the structural dependencies or normalization are

reduced as a result of the optimization process. OPTMIN offers a form of aggregation as it

exhibits the ACID property of the database which is making the management system a

wholesome system which performs optimally when the tables and the variables have been fully

declared and defined.

These various attributes outlined were made to function together when the systems have been

looked into. A proper cohesion of these distinctiveness leverages a unified system. The algorithm

shows that the uniqueness of these systems running individually as a functional system offered

when put together, a viable system capable of combating the weaknesses of all the individual

database management systems.

3.7 Specifications

3.7.1 Database Development Tools

The High Level Model followed a Polyglot Persistence flow of software development. This is

the combination of various applications coming together and serving different purposes with the

sole aim of developing a functional and integrated application for data management. Various

implementation models were considered but were not used for implementation as a result of

compatibility issue. The tools that have been chosen are: PHP, XAMPP, Apache, Cassandra,

MongoDB, Redis, MYSQL and Neo4j.

3.7.2 Database Systems and Structure

Figure 3.8 outlines the various database systems (back-end) and the API (Application

Programming Interface) which is the PHP (front-end). The various systems were made

interoperable with the help of the PHP scripting language which leverages communication

amongst the different database engines. The Neo4j system is a graph-oriented NoSQL DBMS

employed for special purpose of manaing graphical associations like multimedia and also social

92

media. Graph-oriented databases are built to manage associations or relationships not to query

data (Zafar et al., 2016).

Figure 3.8 Database Systems and Structure

As shown in figure 3.9, the graph database management system are special purpose databases

which characteristically handles complex relationship. Jayathilake et al., (2012) defined graph

database as an arrangement of nodes, edges and properties to represent and hold data. This

feature enables graph database to hold complex relationships which are difficult to absorb in

other databases like the many-to-many relationships. According to Srivastava and Shekokar

(2016) graph stores work well only with relationships requirements such as processing on social

network.

Figure 3.9 Layout of Graph Database (Source: Ejiofor and Okeke, 2016).

APPLICATION LAYER

PHP SCRIPTING ENGINE

CONTROLLER API

 Neo4j

 NoSQL

 Redis

 NoSQL

Cassandra

 NoSQL

 MongoDB

 NoSQL

 MySQL

 SQL

93

3.7.3 Mathematical Specifications

Mathematics is one of the most important differences among SQL, NoSQL, and NewSQL

databases. On the other hand, one should note that, ―too much mathematical rigor burdens a

database implementation with unnecessary mathematics‖ (Kepner, et al., 2016). SQL is based

upon basic binary operations such as union and intersection of special sets known as relations,

which brings about the concept relational algebra.

A relation from a set to a set is a set of

ordered pairs is related to and . Operations on relations obey

the usual laws of set operations. These laws include the commutative laws which states that

 and

, whenever and are given relations on a set ;

associative laws which states that

= and

= whenever and are given relations on a set ; and

distributive laws which states that intersection is distributive over union, that is,

 and union is distributive over intersection, thus

 whenever , and are given relations in .

To represent a relation in (that is from to) in a matrix or a graph which is the basis upon

which the NoSQL operates, the matrix was defined in the following way thus:

This usually gives a sparse matrix with ones as the nonzero entries. Sparse matrices optimize

storage and computing time in data processing.

94

Given sparse matrices and as in that corresponds to the relation and respectively,

we define matrix addition as

It says thus, the result is 1 whenever there is 1 in any of the matrices and 0 whenever both of the

matrices have 0 in them. The matrix obtained will be equal to the matrix gotten when is

represented in matrix form.

Also, the element-wise multiplication of the sparse matrices and was defined:

The result is 1 whenever 1 is in both matrices and 0 if 0 is in either of the matrix. The matrix

obtained in this operation is equivalent to the matrix obtained when is represented in

matrix form.

Clearly, these operations satisfy the commutative law, associative law and distributive law since

given the sparse matrices , and as defined in (3.1):

i.

 and

Indicating that the operations and are commutative.

95

ii.

and

iii.

Indicating that the sparse matrices is associative under the operations and .

Addition is distributive over element-wise multiplication

 =

=

96

 =

Element-wise multiplication is distributive over addition

 =

 =

 =

This set of sparse matrices has its identity with respect to , denoted as , where is defined

as a matrix of all 0 and its identity with respect to , denoted as , where is defined as a matrix

of all 1 since for any sparse matrix as defined in (1):

and

Furthermore, these sparse matrices have a multiplicative annihilator such that

97

Table 3.3 shows the focus areas of SQL, NoSQL/NewSQL, some existing systems reviewed in

this study and the new hybrid model developed by this research which included data model,

usability tests and the type of applications the various systems are able to handle.

Table 3.3 Focus areas of SQL, NoSQL, Existing Systems and New Hybrid System

 SQL NoSQL Existing Systems New Hybrid

System

Example MySQL MongoDB Unity System NoSQL
2

Application Transactions Search Analysis All

Data model Relational tables

Key-value

pairs/Graph

Sparse Matrices Associative Arrays

Consistency Yes No No Yes

Volume No Yes Yes Yes

Velocity No Yes Yes Yes

Variety No Yes No Yes

Analytics No No Yes Yes

Usability Yes No No Yes

3.7.4 Input/Output Format

Data is received and sent to the back-end system through the input forms on the screen provided

by the Application Interface. Input is collected through the following forms updates by clicks;

Add New Records modules has sub modules;

Full Name

Gender

Phone Number

Email Address

These information are then forwarded to the back-end by clicking on;

Save Changes button or discarding the form by clicking on Close button

The form submits the Add New Records information and continues to other modules which are;

98

Add New store/Branch

Add New Sale

Add New Product

The system outputs information by clicking on View modules for example,;

View Purchase (displays purchase records and other information)

View Sales

3.7.5 Algorithm

Start the program

Run PHP Application

Perform SQL/NoSQL Commands

PHP Parses/ translates command

If error, return to PHP Application and correct then continue the process

If no error, proceed to the load balancer/ optimizer engine

Run file

Display result

End

Start Xampp application server for Apache and MySQL

Start MongoDB server

Start Cassandra server

Start Redis server

Start Neo4j server

End

3.8 Flowchart

Figure 3.10 is the program flowchart; a set of accepted standard graphics symbols representing

the order of coded guidelines provided for the computer, facilitating it to conduct stipulated

logical and arithmetic processes.

99

 YES

NO

Figure 3.10 Program Flowchart

START

RUN PHP

APPLICATION

ERROR

 ?
DISPLAY

ERROR

PRINT RESULT

SQL/NOSQL

COMMAND

INPUT

RUN FILE

ERROR

 ?

 STOP

DISPLAY

ERROR

100

CHAPTER FOUR

SYSTEM DESIGN AND IMPLEMENTATION

4.1 Results

The test results in Figure 4.1 show CRUD operations performed using 500, 5,000 and 10,000

records for each database system involved (MySQL, MongoDB, Cassandra and Redis.

Figure 4.1 Query completion times for 500 records

The test results show CRUD operations performed using 500 records for each database system

involved (MySQL, MongoDB, Cassandra and Redis.

The insert query operation in Figure 4.1 showed that MySQL system completed insertion in

21.33679 seconds which makes it the slowest system amongst the four systems tested.

MongoDB completed the operation in 0.08013 seconds which makes it the fastest, followed by

Redis and Cassandra which completed their operations in 0.13782 and 1.42245 seconds

respectively. MongoDB and Redis are good choices for insert operations.

The read query in Figure 4.1 shows that MongoDB performed fastest with completion time of

0.01545 seconds followed by MySQL 0.02148 seconds and Cassandra 0.07014 and Redis

0.07755 seconds. MySQL and MongoDB are good choices for read query operations.

The update query in Figure 4.1 shows MongoDB to be the fastest with finish time of 0.34984

seconds, followed by Cassandra 1.61405 and MySQL 22.90267 seconds. The completion times

for MongoDB and Cassandra makes them a good choice for performing updates.

101

Delete query in Figure 4.1 has Cassandra as the slowest with 1.5040, followed by MySQL

0.18519 and Redis 0.04501. MongoDB performed fastest with 0.02115 seconds completion time.

Figure 4.2 Query completion times for 5,000 records

The insert query operation in Figure 4.2 showed that MySQL system completed insertion in

212.86839 seconds which makes it the slowest system amongst the four systems tested. Redis

completed the insert operation in 0.03928 seconds which makes it the fastest, followed by

MongoDB and Cassandra which completed their operations in 0.67069 and 14.52485 seconds

respectively. Redis and MongoDB are good choices for insert operations.

The read query in Figure 4.2 shows that MongoDB performed fastest with completion time of

0.14793 seconds followed by MySQL 0.18324 seconds and Cassandra 0.20562 and Redis

0.63152 seconds. MySQL and MongoDB are good choices for read query operations.

The update query in Figure 4.2 shows Cassandra to be the fastest with finish time of 14.41327

seconds, followed by MongoDB 15.25472 seconds and MySQL performed slowest with

completion time of 242.29598 seconds. The completion times for MongoDB and Cassandra

makes them a good choice for performing updates. Redis does not have an update feature; add

and update feature are the same.

Delete query in Figure 4.2 has MongoDB as the fastest with completion time of 0.12341,

followed by MySQL 0.28454 and Cassandra 0.33558 and Cassandra which completed in

14.13187 seconds.

102

Figure 4.3 Query completion times for 10,000 records

The insert query operation in Figure 4.3 showed that MySQL system completed insertion in

411.81891 seconds which makes it the slowest system amongst the four systems tested. Redis

completed the insert operation in 0.78274 seconds which makes it the fastest, followed by

MongoDB and Cassandra which completed their operations in 1.27148 and 29.3038 seconds

respectively. Redis and MongoDB are good choices for insert operations.

The read query in Figure 4.3 shows that Cassandra performed fastest with completion time of

0.17534 seconds followed by MongoDB 0.26376 and MySQL 0.35157. Redis performed slowest

with 1.236 completion time.

The update query in Figure 4.3 shows Cassandra to be the fastest with finish time of 12.91777

seconds, followed by MongoDB 58.62748 seconds and MySQL performed slowest with

539.89491. Redis does not have an update feature but was not tested for update.

Delete query in Figure 4.3 has MySQL as the fastest with completion time of 0.16751, followed

by MongoDB with 0.18535 and Redis 0.65028. The slowest was Cassandra which completed in

12.55131 seconds.

4.2 Discussion

The findings of the research outlined performance comparisons conducted on the SQL and

NoSQL systems. For insert operations, the test showed that Redis is faster for all the other

systems followed by MongoDB. Redis System which is a key-value pair NoSQL system does

not have update function in its build up and so performs update and insert uniformly. For this

reason, the insertion operation is optimized for fast insertions. The Redis system only performs

Add (create/insert), read and delete operations.For read query operations, MoongoDB and

103

MySQL performed faster than the other systems while Cassandra which was noted in the review

chapter as being write-intensive outperformed all the other systems. The purpose of these tests

was to ascertain the strengths and weaknesses of these systems to help proffer a distributed and

interoperable database. The emphasis is not entirely on speed but on achieving a load balancing

and fault-tolerant system based on the individual performances of the systems involved. Neo4j

was tested alongside the other systems but showed heavy overhead in terms of completion time

for very few records which indicates that Neo4j is not a good fit for query purposes. The Neo4j

system does not have a functional update and delete operation at the application interface so

deletion of records (nodes) is done at the database level. According to Zafar et al., (2016) Neo4j

which is a graph-based NoSQL database system are designed for association management but

not for query operations. The chief purpose of graph NoSQL is for interconnected. If a user

requires the ability to query data as well as build association of data, then the search base

database is a better choice. This implies that Neo4j and other graph NoSQL systems are required

for special purposes such as social media, internet and construction where graphical

representation (images) might be involved.

The research performed tests on individual systems and also integration for different systems

which include; MySQL_Cassandra, MySQL _MongoDB, MySQL_Redis, MySQL_Neo4j,

MySQL_Cassandra_MongoDB, MySQL_Cassandra_Redis_MongoDB and lastly MySQL_

Cassandra_Redis_Neo4j_MongoDB. The result in Table 4.2 showed that the proposed system;

MySQL_Cassandra_Redis_MongoDB outperformed the other systems in terms distribution of

data and throughput.

4.2.1 New System Requirements

The new system as outlined in Table 4.1 requires a robust system that is both capable in size and

speed to accommodate vast volumes of data.

Hardware Requirements

The minimum hardware requirements for the new hybrid system named ‗NoSQL
2
‘ are stipulated

in Table 4.1:

104

Table 4.1 New system requirements

Component Specification

Processor: AMD FX™ Eight-Core Processor 4 GHz

Memory (RAM): 8.00 GB

System Type: 64-bit Operating System, x64-based

Processor

Hard Drive: 1TB HDD

Wireless Connectivity: 802.11b/g/n WLAN

Keyboard & Mouse: External full-size keyboard & Mouse

Display: 14 inch VGA Monitor

Software Requirements

The software development and testing will require;

1) XAMPP Control panel v3.2.2 (Apache distribution containing MySQL, PHP and Perl).

2) MongoDB 3.6.2 2008R2plus SSL (64 bit)

3) Datastax Community Edition (64 bit) 2.1.8

4) Redis – x64 -2.8.2104

5) Neo4j Desktop -1.1.1

4.2.2 Program Development

Choice of Programming Environment

PHP is the Application Layer Controller incorporating MongoDB, Cassandra, Redis and Neo4j

drivers. PHP is a server-sided scripting language; it‘s an abbreviation for Hypertext

Preprocessor. It is a very popular programming language used by companies like Facebook,

Wikipedia, and Yahoo, to mention a few. PHP powers roughly 75% of the entire web. The

reason for choosing this is simply because of its versatility and robustness. The system

architecture is shown below.

105

System Architecture

The system architecture in Figure 4.4 outlines the system framework for both SQL and NoSQL

systems. The MySQL system is embedded within the PHP software and as such does not require

the driver at the system optimizer level. The various NoSQL systems and their various drivers

were analyzes for optimization and load balancing purposes which is the crux of this research.

Figure 4.4 System Architecture

106

Language Justification

 The chosen language is PHP which is very fast and has support for multiple database

engines.PHP is a server-side scripting language designed for web development but also used as a

general-purpose programming language. Apache HTTP server is a cross platform which runs the

PHP scripting and several other software application. MYSQL database engine is an open source

Relational database System, used by many software application because of it stability and

relative ease of use. MySQL and PHP are both embedded with the XAMPP control panel which

is the Apache distribution for MySQL, PHP and Perl. Due to the open-source nature of

MongoDB, Redis, Cassandra and Neo4j, the packages were downloaded online. MongoDB is a

free and open-source cross-platform document-oriented database program. Classified as a

NoSQL database program, MongoDB uses JSON-like documents with schemas. DataStax is the

parent company that owns Cassandra NoSQL database.

As the NoSQL system does not entertain a structured model of data representation, ER diagram

rwhich is not only semi-structured but also unstructured. This is because NoSQL does not

leverage Entity-Relationship diagram which is obtainable when normalization of data has taken

place using foreign keys and join operations to form static schema which are related to one

another and run/queried using SQL (Structured Query Language).

4.2.3 System Testing

Test Plan

The black-box testing is a method of software testing that examines the functionality of an

application without looking into its internal structures or workings. It is also know as

specification-based testing (Khan & Sadiq, 2011).

Test data

The test data was amassed from Phixsoft Global Enterprises Ltd (www.phixsoft.com.ng).

Phixsoft is an importation company managing payment systems; how much has been paid before

delivery and the amount left or paid at the collection of good.

http://www.phixsoft.com.ng/

107

Performance Evaluation

Usability tests were carried out on the product by members of staff of Phixsoft Global

Enterprises and a client feedback was used as basis for evaluation of success of this product.

Implementation of this system is being considered by the company as the tests carried out

showed improvement from their current means of onlie trading.

Performance evaluation as shown in Table 4.2 was performed based on integration of seven

different systems and evaluation of their capabilities. The systems used for evaluation are;

MySQL and Cassandra, MySQL and MongoDB, MySQL and Redis, MySQL and Neo4j,

MySQL, Cassandra and MongoDB, MySQL, Cassandra, Redis and MongoDB and lastly

MySQL, Cassandra, Redis, Neo4j and MongoDB. Their individual performances based on input

and output are tabulated below and figures from the performance of the systems are attached the

Sample Outputs in Appendix B.

Table 4.2 Tabular Presentation of Integrated Systems

Systems Input of 10

Records/completion time

in Seconds

Output of 200

Records in seconds

MySQL_Cassandra 6.49026 1.02049

MySQL_MongoDB 1.6133 1.01145

MySQL_Redis 0.79379 1.0441

MySQL_Neo4j (5 records added) 53.06331 1.19218

MySQL_Cassandra_MongoDB 0.73379 1.0154

MySQL_Cassandra_Redis_MongoDB 0.7159 0.01437

MySQL_Cassandra_Redis_Neo4j_MongoDB 11.37879 0.01517

108

System Validation

The different integrations comprising seven different systems were carried out to check for

latency and throughput of the different systems. These tests were carried out for integration of

the traditional database system which is MySQL and one of the different NoSQL systems; Redis

(Key-value), Cassandra (column-oriented) MongoDB (document store) and Neo4j (graph).

The diagram below is the validation flow diagram (Figure 2.9) by Goyal et al., (2016) has the

following shortfalls;

i) The algorithm takes a decision before comparing the data and this leads to loss of data,

incorrect records and the probability of false positives.

ii) The Processes should have been completed before a decision is made as to the

authenticity of the data in the database.

iii) Non-inclusion of key-value pair NoSQL system by Goyal et al., (2016) into the

framework.

iv) Incorrect data flow diagram.

v) Lack of provision of row and column comparisons over the entire data set.

109

The proposed work by Zhang et al., (2011) incorporated the data dictionary of Cassandra; a

column-share NoSQL system which implements more write operations than it does read

operations and Oracle database; a relational model by affixing a middleware to the architecture.

The system by Zhang et al., (2011) has the downside of poor scalability which culminates to a

slow system. The existing work by Sanobar and Vanta (2013) performed integration for MySQL

and MongoDB.

According to the tests conducted by this research, MySQL and MongoDB are optimal for read-

intensive operations and deletion of data. For operations requiring insertions and write-heavy use

cases, the MySQL_MongoDB combination will not suffice. The system performed verifications

for MySQL and Redis. Redis is a key-value NoSQL system which is superlative for insertions or

create operations but is not optimal for other operations inovling intensive read-write functions.

The integration of MySQL_Neo4j showed the slowest time as a result of the overhead incurred

by the Neo4j. The systems tested showed MySQL_Cassandra_Redis_MongoDB systems to be

very viable for different types of operations as the system distributes data based on the strength

of the different systems involved. The inclusion of Neo4j; a gragh database NoSQL system to the

architecture has a slight overhead as Neo4j is a special purpose system designed for linked or

connected datasets which involve complex relationships.

The diagram below is the conceptual (logical) framework involving a new high level model of

the system developed (Figure 3.7). As a result of the shortfall of the research by Goyal et al.,

(2016), the researcher conceived and developed this new high level model to mitigate the

inefficiencies observed in the reviewed work. This new high level model ensures accurate

integration as row and column insertions were checked to ensure lack of data loss.

110

Limitations of the system

i) The system developed shows there is an overhead cost when Neo4j graph NoSQL system was

integrated alongside Redis, MongoDB and Cassandra. The system throughput is significantly

reduced when Noe4j performs query operation and is only needed for special purpose use cases

like video or multimedia applications where interconnectedness is highly required.

ii) Research on improving the systems is unavoidable because the systems only communicate by

means of the Application Layer which is the PHP. A unified query language that could run on all

the attending systems is of great need.

4.2.4 System Conversion

System Changeover involves the smooth migration from one method of operation to another

method without disrupting business operation. There are three main methods of system

changeover/ conversion and they are; 1) phased implementation whereby a part of the system

which requires change is changed and once the transition is fully operational in one area, the

lessons learned are used as benchmark to transition the entire system. 2) Another changeover

111

method is the parallel method where the old and new systems run side-by-side, using live

examples so that project managers can compare efficieny and reliability of the new system and

one the new system is satisfies development requirements, the old system is decommissioned. 3)

The last procedure is the direct changeover where system conversion is abrupt because the old

system is discarded for an entirely new one.

For the purpose of this research, the Parallel changeover is most suitable as most data is

domiciled in the SQL system and integration has been performed for SQL and NoSQL systems.

The Original system is MySQL RDBMS which stores only structured data. Read/Write

operations are slow as a result of the amount of transactions being run by users which has caused

output/access to the information to be slow. As a result of this logjam, a hybrid system

comprising of extra three NoSQL systems namely; Redis, MongoDB and Cassandra were

employed. The integration also includes MySQL relational system was incorporated into one

uniform distributed system in order to spread the data across different distributed systems.

4.2.5 System Security

For the security, the researcher applied:

1. Making sure that only trusted machines can access the database‘s TCP ports for real life

deployment, when the system is run on actual server.

2. Authentication at each database layer (i.e. every single data sent to the database was

properly sterilized and escaped). Escaped means avoiding any malicious strings or data

being run as part of the original data.

3. Encryption of sensitive database fields. Passwords, server details are all encrypted to

avoid revealing them as they are.

4. Keeping unencrypted values in a sandboxed environment (a protected ground where tests

can be run freely without incursion/harm to the system).

5. Using sufficient input validation (a two-layer validation was implemented for both the front-

end and back-end).

112

6. Strong user authentication policies for instance commodo positive authentication system.

Commodo positive serves as a third-party system that prevents third party from stealing data

on the internet. It works as an intrusion-detection system.

4.2.6 Documentation

This research devised a hybrid multifaceted database system for data management. The results

showed improvement in performance as a result of seamless sharing/ distribution based on

individual system‘s capabilities. The system derived is majorly for big businesses and

corporations where data management is at the fore of their enterprise. The research employed

various tools for the designing this novel database management system and guidelines to

installation and running of the systems have been attached to Sample Output in Appendix B of

this dissertation.

113

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary

The research was primarily embarked on with the aim of providing a data distributed system

base on the strengths of the various systems involved. This was achieved by improving on the

already existing Iterative and Incremental model. A conceptual framework which consists of the

high level model and an architectural layout for exploiting strengths of database management

systems were included. Database systems drivers and structures of the management system

involving protocol language and parsers were employed for uniform interaction across the

database engines and the application layer. A comparative analysis of seven different systems

was done and their performance evaluations measured based on qualitative and quantitative

analyses.

5.2 Conclusion

A novel methodology ‗Holistic Iterative and Incremental Approach for cross-platform modeling‘

was developed for the design of a cross-platform database system for SQL and NoSQL

interoperability. This system showed a better result for managing voluminous data in terms of

speed, scalability, continuous availability, and cost effectiveness and location independence.

5.3 Recommendation

Due to the fact that the system eliminates the weaknesses in both database management systems,

effectively reduces the development complexity and improves development efficiency of the

software systems with multidatabases, it is recommended for storage and management of Big

Data in large organizations.

Data management has become a major concern to different facets of people‘s running of their

daily affairs, both in business and the academia and as a result needs to be addressed. The social

sciences and arts are not left out in this quest for a robust management system. The researcher

recommends that for a start, the institution should create a forum to educate students from their

first year in the institution in the field of Data Science and Database management as it will help

solve some of their day-to-day need of data management.

114

This new hybrid system is recommended for use in the Sciences, Social Sciences, Engineering,

Medicine, Health Management and Arts.

5.3.1 Application Areas

This research cuts across arts, social science, philosophy, health and also pure and applied

sciences. There is growing interest in the field of database management. The areas which this

system can be applied are governmental and big non-governmental establishments, hospitals,

industries and universities.

5.3.2 Suggestion for Further Research

The research carried out was not exhaustive and requires more work in terms of implementation

of the system as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS) as the system is still being run on localhost and requires cloud service

deployment for commercial purposes.

5.4 Contribution to Knowledge

i) This research contributes an adaptive and deep learning cross-platform system for

efficient/effective data management.

ii) The system developed leverages on the benefits/advantages of a data distributed system.

iii) The system also offers better load balancing mechanism (more from the database

engines).

115

REFERENCES

Benefico, S., Gjeci, E., Gomarasca, R.G., Lever, E., Lombardo, S., Ardagna, D. and Di Nitto, E.

(2012). Evaluation of the CAP Properties on Amazon SimpleDB and Windows Azure

 Table Storage. IEEE 14
th

 International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC). pp. 430-435.

Boicea, A., Radulescu, F. and Agapin, L. (2012). MongoDB vs Oracle - database comparison.

IEEE 3
rd

 International Conference on Emerging Intelligent Data and Web Technologies.

pp.330—335.

Bonnet, L., Laurent, A., Sala, M., Laurent, B. and Sicard, N. (2011). Reduce, you say: What

nosql can do for data aggregation and bi in large repositories. IEEE 22
nd

 International

Workshop on Database and Expert Systems Applications (DEXA). pp.483-488.

Bu, Y., Howe, H., Balazinska, M., and Ernst, M.D. (2010) HaLoop: Efficient Iterative Data

Processing on Large Clusters. Proceedings of the VLDB Endowment, Vol. 3. No. 1.

Castelltort, A. and Laurent, A. (2013). Representing history in graph-oriented NoSQL databases:

A versioning system. IEEE 8
th

 International Conference on Digital Information

Management (ICDIM). pp.228-234.

Codd. E.F. (1972). Relational Completeness of Data base Sub Languages. IBM Research

Laboratory, California.

Cure, O., Kerdjoudj, F., Le Duc., C and Lamolle, M. (2012). On The Potential Integration of an

Ontology-Based Data Access Approach in NoSQL Stores. Third International Conference

on Emerging Intelligent Data and Web Technologies. pp.166-173.

Darwen, H. (2010) An Introduction to Relational Database Theory. Hugh Darwen & Ventus

Publishing ApS. ISBN 978-87-7681-500-4

Dharmasiri, H.M.L. and Goonetillake, M.D.J.S. (2013). A federated approach on heterogeneous

NoSQL data stores. IEEE International Conference on Advances in ICT for Emerging

Regions (ICTer). pp. 234-239.

116

Doshi, K. A., Zhong, T., Lu, Z., Tang, X., Lou, T. and Deng, G. (2013). Blending SQL and

NewSQL Approaches: Reference Architectures for Enterprise Big Data Challenges.

International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery

(CyberC). Pp.163-170.

Ejiofor, V.E., and Okeke, K.K. (2016) Overview of NoSQL and Comparison with SQL Database

Management Systems. The Journal of Computer Science and Its Applications. Vol.

23,No.11. pp.75-86.

Gadkari, A., Nikam, V.B. and Meshram, B.B. (2014). Implementing Joins over HBASE on

Cloud Platform. IEEE International Conference on Computer and Information (CIT). pp.

547-554.

Goyal, A., Swaminathan, A., Pande, R., and Attar, V. (2016). Cross Platform (RDBMS to

NoSQL) Database Validation Tool Using Bloom Filter. Fifth International Conference on recent

Trends in Information Technology.

Grolinger, K., Hayes, M., Higashino, W.A., L'Heureux,., Allison, D.S., Capretz, M.A.M. (2014).

Challenges for MapReduce in Big Data. IEEE World Congress on Services (SERVICES).

pp.182-189.

Gudivada, V.N., Rao, D. and Raghavan, V.V. (2014). NoSQL Systems for Big Data

Management. IEEE World Congress on Services (SERVICES). pp. 190-197.

Gyorodi, C., Gyorodi, R., Pecherle, G., Olah, A. (2015). AComparative Study: MongoDB vs.

MySQL. 13
th

 International Conference on Engineering of Modern Electri System

(EMES).pp.1-3.

Han, J., Haihong, E., Le, G. and Du, J. (2011). Survey on NoSQL database. IEEE 6
th

International Conference on Pervasive Computing and Applications (ICPCA). pp.363-366.

Hecht, R. and Jablonski, S. (2011). NoSQL Evaluation: A use case oriented survey. Proceedings

of International Conference on Cloud and Service Computing (CSC). pp.336-341.

Indrawan-Santiago, M. (2012). Database research: Are we at a crossroad? reflection on NoSQL.

IEEE 15
th

 International Conference on Network-Based Information Systems, pp.45-51.

117

Jayathilake, D., Sooriaarachchi, C., Gunawardena, T., Kulasuriya, B. and Dayaratne, T. (2012) A

Study Into Capabilities of NoSQL Databases in Handling a Highly Heterogeneous Tree.

IEEE 6
th

 International Conference on Information and Automation for Sustainability (ICIAfS).

pp. 106-111.

Jiang, Z., Zheng, Y. and Shi, Y. (2013). Document-Oriented Database-Based Privacy Data

Protection Architecture. IEEE 10
th

 InternationalConference on Web Information System

and Application (WISA). pp. 19-22.

Kanade, A., Gopal, A., Kanade S. (2014). A study of normalization and embedding in MongoDB

[C] IEEE International Conference on Advanced Computing Conference (IACC).pp.416-

421.

Kaur, K. and Rani, R. (2013). Modeling and querying Data in NoSQL Databases. IEEE

International Conference on Big Data. pp.1-7.

Kepner, J., Gadepally, V., Hutchinson, D., Jananthan, H., Mattson, T., Samsi, S., and Reuther, A.

(2016). Associative Array Model of SQL, NoSQL, and NewSQL Databases. IEEE 2016.

Khan, M.A. and Sadiq, M. (2011). Analysis of black box software testing techniques: A case

study. IEEE International Conference and Workshop on Current Trends in Information

Technology (CTIT). Pp. 1-5.

Lawrence, R. (2014). Integration and Virtualization of Relational SQL and NoSQL Systems

Including MySQL and MongoDB. International Conference on Computational Science and

Computational Intelligence (CSCI). Pp.433-434

Leavitt, N. (2010). Will NoSQL Databases Live Up to Their Promise?. IEEEComputing, 43(2),

pp.12-14.

Li C and Gu J. (2019) An integration approach of hybrid databases based on SQL in cloud

computing environment. Softw: Pract Exper. 2019;49:401–422. https://doi.org/10.1002/spe.2666

Li, Y. and Manoharan, S. (2013). A performance comparison of SQL and NoSQL databases.

IEEE Pacific Rim Conference on Communications, Computers and Signal Processing

(PACRIM). pp.15-19.

118

Liu, Y. and Vitolo, T.M. (2013). Graph Data Warehouse: Steps to Integrating Graph Databases

Into the Traditional Conceptual Structure of a Data Warehouse. IEEE International

Congress on Big Data (BigData Congress). Pp.433-434.

Lombardo, S., Di Nitto, E, Ardagna, D. (2012). Issues in Handling Complex Data Structures

with NoSQL databases. IEEE 14
th

 International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing. pp. 443-448.

Lomotey, R.K and Deters, R. (2014). Towards Knowledge Discovery in Big data. IEEE 8
th

International Symposium on Service Oriented System Engineering (SOSE). pp. 181-191.

Neal Ford, 2006, Available:

http://nealford.com/memeagora/2006/12/05/Polyglotprogramming.html

Nyati, S.S., Pawar, S. and Ingle, R. (2013). Performance evaluation of unstructured NoSQL data

over distributed framework. IEEE International Conference on Advances in Computing,

Communications and Informatics (ICACCI). pp. 1623-1627.

Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E. and Abramov, J. (2011). Security issues in nosql

databases. IEEE 10
th

 International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom). pp.541-547.

Pettersen, R., Valvag, S., Kvalnes, A. and Johansen, D. (2014). Jovaku: Globally Distributed

Caching for Cloud Database Services Using DNS. IEEE 2
nd

 International Conference on

Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 pp.127--135.

Qi, M., Liu, Y., Lu, L., Liu, J. and Li, M. (2014). Big Data Management in Digital Forensics.

IEEE 17
th

 International Conference on Computational Science and Engineering (CSE).

Pp.238-243.

Ramanathan, S., Goel, S. and Alagumalai, S. (2011). Comparison of Cloud database: Amazon's

SimpleDB and Google's Bigtable. International Conference on Recent Trends in

Information Systems (ReTIS) 2011 pp.165--168.

Sanobar, K. and Vanita, M.(2013). SQL Support over MongoDB using Metadata. International

Journal of Scientific and Research Publications, Volume 3, Issue 10.

http://nealford.com/memeagora/2006/12/05/Polyglot

119

Scherzinger, S., Klettke, M., and Storl, U. (2013). Managing Schema Evolution in NoSQL Data

Stores. arXiV preprint arXiv:1308.0515.

Scott Leberknight, 2008, Available:

http://www.sleberknight.com/blog/sleberkn/entry/polyglot persistence

Srivastava, K. and Shekokar, N. (2016). A Polyglot Persistence Approach for E-Commerce

Business Model. IEEE International Conference on Information Science (ICIS)pp.7-11.

Stanescu, L., Brezonan, M., and Burdescu, D.D. (2016). Automatic Mapping of MySQL

Databases to NoSQL MongoDB. Proceedings of the Ferated Conference on Computer

Science and Information Systems.pp.837-840.

Sundhara, K., Srividya, and Mohanavalli, S. (2017). A Performance Comparison of Document

Oriented NoSQL Databases. IEEE International Conference on Computer, Communication,

and Signal Processing (ICCCSP).

Tudorica, B. and Bucur, C. (2011). A comparison between several NoSQL databases with

comments and notes. RoeduNet International Conference (RoEduNet) 2011 10
th

, pp.1-5.

Vathy-Fogarassy, A. and Hugyák, T. (2017). Uniform data access platform for SQL and NoSQL

database systems. ELSEVIER Information Systems 69. Pp 93 -105.

Vilaca, R., Cruz, F., Pereira, J., and Oliveira, R. (2013). An Effective Scalable SQL Engine for

NoSQL Databases. International Federation for Information Processing IFIP.

Wang, G. and Tang, J. (2012). The NoSQL Principles and Basic Application of Cassandra

Model. IEEE International Conference on Computer Science & Service System (CSSS). pp.1332-

1335.

Wei-ping, Z., Ming-Xin, L. and Huan, C. (2011). Using MongoDB to implement textbook

management system instead of MySQL. IEEE 3
rd

 International Conference on

Communication Software and Networks (ICCSN), 2011. pp.303--305.

Wu, C., Zhu, Q., Zhang, Y., Du, Z., Ye, X., Qin, H., Zhou, Y., (2017). A NoSQL-SQL Hybrid

Organization and Management Approach for Real-Time Geospatial Data: A Case Study of

Public Security Video Surveillance. International Journal of Geo-Information.

http://www.sleberknight.com/blog/sleberkn/entry/polyglot

120

Xiang, P., Hou, R. and Zhou, Z. (2010). Cache and consistency in nosql. IEEE International

 Conference on Computer Science and Information Technology (ICCSIT). 6, pp.117-120.

Zafar, R., Yafi, E., Zuhairi, M.F., and Dao, H., (2016). Big Data: The NoSQL and RDBMS

review. International Conference on Information and Communication Technology

(ICICTM).pp120-126.

Zahid, A., Masood, R. and Shibli, M.A. (2014). Security of sharded NoSQL databases: A

 comparative analysis. IEEE Conference on Information Assurance and Cyber Security

 (CIACS). pp. 1-8.

Zhang, H., Wang, Y. and Han, J. (2011). Middleware design for integrating relational database

 and NoSQL based on data dictionary. IEEE International Conference on Transportation,

 Mechanical and Electrical Engineering (TMEE). pp. 1469-1472.

Zhao, G., Lin, Q., Li, L. and Li, Z. (2014). Schema Conversion Model of SQL Database to

NoSQL Database. IEEE 9
th

 International Conference on P2P, Parallel, Grid, Cloud and Internet

Computing (3PGCIC). Pp.355-362.

121

APPENDIX A

PROGRAM LISTINGS

INDEX.PHP

<?php

require_once("functions.php");

require_once("pagelayout.php");

getAppHeader("User Records");

getCloseHeader();

getHeaderTag();

getSideBar();

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 Multiple Database Systems Interpolation

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <div class="box-tools">

 <div class="input-group input-group-sm" style="width: 150px;">

 <!--

 <input type="text" name="table_search" class="form-control pull-right"

placeholder="Search">

 <div class="input-group-btn">

 <button type="submit" class="btn btn-default"><i class="fa fa-search"></i></button>

 </div>

 -->

 </div>

122

 </div>

 </div>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL System</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MongoDB System</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>Cassandra System</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

123

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>Redis System</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>Neo4J System</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL & MongoDB</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL & Cassandra</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

124

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL & Redis</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL & Neo4J</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL, Cassandra
& MongoDB</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL, Cassandra
Redis &

MongoDB</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

 <!--

125

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL, Neo4J
& MongoDB</h3>

 <small>Click to run test</small>

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL, Cassandra,
Redis &

MongoDB</h3>

 <small>Click to run test</small>

 </div>

 </div>

 </div>

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL, Cassandra,
Neo4J &

MongoDB</h3>

 <small>Click to run test</small>

 </div>

 </div>

 </div>

 -->

 <div class="col-md-3 col-sm-6 col-xs-12">

 <div class="info-box">

 <i class="ion ion-ios-gear-outline"></i>

 <div class="info-box-content">

 <h3>MySQL, Cassandra,
Redis, Neo4J &

MongoDB</h3>

 <!--<small>Click to run test</small>-->

 </div>

 </div>

 </div>

126

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

<? getPageFooter()?>

MONGODB.PHP

<?php

require_once("functions.php");

require_once("pagelayout.php");

getAppHeader("MongoDB System");

getCloseHeader();

getHeaderTag();

getSideBar();

include("set_limit.php");

$limit = PAGE_LIMIT;

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MongoDB System

 <small style="float:right"><< Go Back</small>

 </h1>

127

 <!--

 <ol class="breadcrumb">

 <i class="fa fa-dashboard"></i> Home

 Tables

 <li class="active">Simple

 -->

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

<?=$limit?> Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=edit"?>" class="btn btn-

warning">Update <?=$limit?> Records

 Delete Records

 </div>

 </div>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <?php

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

128

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 $starttime = microtime(true);

 //connectAppDB();

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 try {

 $mng = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 $stats = new MongoDB\Driver\Command(["dbstats" => 1]);

 $res = $mng->executeCommand("products", $stats);

 $stats = current($res->toArray());

 for($i=0;$i<$limit;$i++){

 $bulk = new MongoDB\Driver\BulkWrite;

 $document = [

 'id' => new MongoDB\BSON\ObjectId,

 'customers' => $customers[rand(0,10)],

 'store' => $stores[rand(0,10)],

 'product' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'updatefield' => 1,

 'createdon' => date("Y-m-d H:i:s")

];

 $bulk->insert($document);

 $mng->executeBulkWrite('products.records', $bulk);

 }

 } catch (MongoDB\Driver\Exception\Exception $e) {

 $filename = basename(__FILE__);

 echo "The $filename script has experienced an error.\n";

 echo "It failed with the following exception:\n";

 echo "Exception:", $e->getMessage(), "\n";

 echo "In file:", $e->getFile(), "\n";

 echo "On line:", $e->getLine(), "\n";

 exit;

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

129

 $manager = new MongoDB\Driver\Manager('mongodb://localhost:27017');

 for($i=0;$i<$limit;$i++){

 $bulk = new MongoDB\Driver\BulkWrite;

 $bulk->update(

 ['updatefield' => 1],

 ['$set' => ['updatefield' => 3]],

 ['multi' => false, 'upsert' => false]

);

 $result = $manager->executeBulkWrite('products.records', $bulk);

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 for($i=0;$i<$limit;$i++){

 $bulk = new MongoDB\Driver\BulkWrite;

 $bulk->update(

 ['updatefield' => 3],

 ['$set' => ['updatefield' => 1]],

 ['multi' => false, 'upsert' => false]

);

 $result = $manager->executeBulkWrite('products.records', $bulk);

 }

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 $bulk = new MongoDB\Driver\BulkWrite;

 $bulk->delete([], []);

 $manager = new MongoDB\Driver\Manager('mongodb://localhost:27017');

 $result = $manager->executeBulkWrite('products.records', $bulk);

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Customer</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 <?php

130

 //$customerid = $_REQUEST['customerid'];

 $mongo = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 //$filter = ['customerid' => $customerid];

 $filter = [];

 $options = [];

 $query = new \MongoDB\Driver\Query($filter, $options);

 $rows = $mongo->executeQuery('products.records', $query);

 $total_rows=0;

 if(count($rows)>0){

 $n=1;

 foreach ($rows as $document) {

 $total_rows++;

 echo "

 <tr>

 <td>".$n."</td>

 <td>".@$document->customers."</td>

 <td>".@$document->store."</td>

 <td>".@$document->product."</td>

 <td>".@format_number($document->amount)."</td>

 <td>".@$document->addedby."</td>

 <td>".@system_date($document->createdon)."</td>

 </tr>

 ";

 $n++;

 }

 }else{

 echo "<div class='callout callout-info'>Sorry no records has been added yet.</div>";

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 //echo $starttime."
";

 //echo $endtime."
";

 //echo $timediff;//exit;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

131

<? getPageFooter()?>

<script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

</script>

MYSQL.PHP

<?php

require_once("functions.php");

require_once("pagelayout.php");

getAppHeader("MySQL System");

getCloseHeader();

getHeaderTag();

getSideBar();

include("set_limit.php");

$limit = PAGE_LIMIT;

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

132

 <section class="content-header">

 <h1>

 MySQL System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

<?=$limit?> Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=edit"?>" class="btn btn-

warning">Update <?=$limit?> Records

 Delete Records

 </div>

 </div>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <?php

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

133

 // start script execution timer here

 $starttime = microtime(true);

 connectAppDB();

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 for($i=0;$i<$limit;$i++){

 $insertcat = mysql_query("INSERT INTO sales (customers, storeid, productid, amount,

addedby, addedon)

 VALUES

 ('".$customers[rand(0,10)]."','".rand(0,10)."','".rand(0,10)."','".rand(500,10000)."',

'".rand(1,3)."', '".date("Y-m-d H:i:s")."')");

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Customer</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 <?php

 $query = "SELECT a.*, b.caption as 'store', c.caption as 'product', d.usernames,

134

 (SELECT SUM(e.amount) FROM sales e WHERE e.addedby = d.id) AS 'paidnaira'

 FROM sales a, stores b, products c , users d

 WHERE a.storeid = b.id AND a.productid = c.id AND a.addedby = d.id

 ORDER BY id DESC";

 $records = mysql_query($query);

 $total_rows=mysql_num_rows($records);

 if($total_rows>0){

 $n=1;

 while(@$record = mysql_fetch_array($records)){

 echo "

 <tr>

 <td>".$n."</td>

 <td>".$record['customers']."</td>

 <td>".$record['store']."</td>

 <td>".$record['product']."</td>

 <td>".format_number($record['amount'])."</td>

 <td>".$record['usernames']."</td>

 <td>".system_date($record['addedon'],2)."</td>

 </tr>

 ";

 $n++;

 }

 }else{

 echo "<div class='callout callout-info'>Sorry no records has been added yet.</div>";

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 //echo $starttime."
";

 //echo $endtime."
";

 //echo $timediff;//exit;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

http://d.id/
http://b.id/
http://c.id/
http://d.id/

135

<? getPageFooter()?>

<script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

</script>

NEO4J.PHP

<?php

require_once("functions.php");

require_once("pagelayout.php");

require_once 'neo4j/graphaware/vendor/autoload.php';

use GraphAware\Neo4j\Client\ClientBuilder,

 GraphAware\Neo4j\OGM\EntityManager;

$client = ClientBuilder::create()

 ->addConnection('default', 'http://neo4j:userpass@localhost:7474') // Example for HTTP connection

configuration (port is optional)

 ->addConnection('bolt', 'bolt://neo4j:userpass@localhost:7687') // Example for BOLT connection

configuration (port is optional)

 ->build();

/*

require('neo4j/vendor/autoload.php');

use Everyman\Neo4j\Client,

 Everyman\Neo4j\Transport,

 Everyman\Neo4j\Node,

 Everyman\Neo4j\Relationship;

136

$client = new Everyman\Neo4j\Client(

 (new Everyman\Neo4j\Transport\Curl('localhost',7474))

 ->setAuth('neo4j','userpass')

);

//$keanu = new Node($client);

//$keanu->setProperty('name', 'Keanu Reeves')->save();

$laurence = new Node($client);

//$laurence->setProperty('name', 'Laurence Fishburne')->save();

echo $laurence->getProperty('name') . " was in:\n";

*/

/*

$client = ClientBuilder::create()

 ->addConnection('default', 'http://neo4j:userpass@localhost:7474') // Example for HTTP connection

configuration (port is optional)

 ->addConnection('bolt', 'bolt://neo4j:userpass@localhost:7687') // Example for BOLT connection

configuration (port is optional)

 ->build();

//$client->run('CREATE (n:Person) SET n += {infos}', ['infos' => ['name' => 'Ales', 'age' => 34]]);

$result = $client->run('MATCH (n:Person) RETURN n');

// a result always contains a collection (array) of Record objects

// get all records

//$records = $result->getRecords();

//$query = 'MATCH (n:Person) n, n.name as name, n.age as age';

///$query = $client->run('MATCH (n:Person) RETURN n');

//$result = $client->run($query);

foreach ($result->getRecords() as $record) {

 ?>

 <!--<pre><?//=print_r($record->get('GraphAware\Neo4j\Client\Formatter\Type\Node

Object'))?></pre>-->

 <?

http://n.name/

137

 //print_r($record->get('n')->value('name')); // nodes returned are automatically hydrated to Node

objects

 //echo "

";

 ///echo $record->value('name');

 echo $record->get('n')->value('age');

 //echo $record->value('age') . PHP_EOL;

 //echo sprintf('Person name is : %s and has %d number of friends', $record->value('name'),

count($record->value('friends')));

}

?>

<!--<pre><?//=print_r($result->getRecords())?></pre>-->

<?

exit;

*/

getAppHeader("Neo4J System");

getCloseHeader();

getHeaderTag();

getSideBar();

//include("set_limit.php");

//$limit = PAGE_LIMIT;

$limit = 50;

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 Neo4J System

138

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

<?=$limit?> Records

 <!--

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=edit"?>" class="btn btn-

warning">Update <?=$limit?> Records

 Delete Records

 -->

 </div>

 </div>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <?php

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 $starttime = microtime(true);

139

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 for($i=0;$i<$limit;$i++){

 $client->run('CREATE (n:Sales) SET n += {infos}',

 ['infos' =>

 [

 'customers' => $customers[rand(0,10)],

 'stores' => $stores[rand(0,10)],

 'products' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'addedon' => date("Y-m-d H:i:s"),

 'updatefield' => 0

]

]

);

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 $cluster = Cassandra::cluster()->build();

 $keyspace = 'store';//database name

 $session = $cluster->connect($keyspace);

 $rowz = $session->execute(new Cassandra\SimpleStatement("SELECT * FROM sales

LIMIT ".$limit));

 foreach ($rowz as $rcd) {

 $update = $session->execute(new Cassandra\SimpleStatement

 ("UPDATE sales SET updatefield = '0' WHERE id = ".$rcd['id'].""));

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 foreach ($rowz as $rcd) {

 $update = $session->execute(new Cassandra\SimpleStatement

 ("UPDATE sales SET updatefield = '1' WHERE id = ".$rcd['id'].""));

 }

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

140

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Customer</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 <?php

 $result = $client->run('MATCH (n:Sales) RETURN n');

// a result always contains a collection (array) of Record objects

// get all records

//$records = $result->getRecords();

//$query = 'MATCH (n:Person) n, n.name as name, n.age as age';

///$query = $client->run('MATCH (n:Person) RETURN n');

//$result = $client->run($query);

 // if(count($result)>0){

 $n=1;

 $total_rows=0;

 foreach ($result->getRecords() as $record) {

 $total_rows++;

 echo "

 <tr>

 <td>".$n."</td>

 <td>".$record->get('n')->value('customers')."</td>

 <td>".$record->get('n')->value('stores')."</td>

 <td>".$record->get('n')->value('products')."</td>

 <td>".format_number($record->get('n')->value('amount'))."</td>

 <td>".$record->get('n')->value('addedby')."</td>

 <td>".system_date($record->get('n')->value('addedon'),2)."</td>

 </tr>

 ";

 $n++;

 }

 /*

 }else{

 echo "<div class='callout callout-info'>Sorry no records has been added yet.</div>";

 }

 */

http://n.name/

141

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 //echo $starttime."
";

 //echo $endtime."
";

 //echo $timediff;//exit;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

<? getPageFooter()?>

<script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

</script>

REDIS.PHP

<?php

require_once("functions.php");

require_once("pagelayout.php");

include("set_limit.php");

142

require "predis/autoload.php";

Predis\Autoloader::register();

getAppHeader("Redis System");

getCloseHeader();

getHeaderTag();

getSideBar();

include("set_limit.php");

$limit = PAGE_LIMIT;

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 Redis System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add /

Update <?=$limit?> Records

143

 <!--

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=edit"?>" class="btn btn-

warning">Update <?=$limit?> Records

 -->

 Delete Records

 </div>

 </div>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <?php

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store

7","Store 8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 $starttime = microtime(true);

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 try {

 $redis = new Predis\Client();

 for($i=0;$i<$limit;$i++){

 $recrd = array(

 'customers' => $customers[rand(0,10)],

 'stores' => $stores[rand(0,10)],

 'products' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'addedon' => date("Y-m-d H:i:s"),

 'updatefield' => 0

);

 $redis->hmset('record'.$i, $recrd);

 }

 }catch (Exception $e) {

 die($e->getMessage());

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

144

 $endtime= microtime(true);

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 $redis = new Predis\Client();

 for($i=0;$i<$limit;$i++){

 @$redis->hdel("record".$i,

array("customers","stores","products","amount","addedby","addedon","updatefield"));

 }

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Customer</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 <?php

 $redis = new Predis\Client();

 $n=1;

 $total_rows=0;

 for($i=0;$i<$limit;$i++){

 //foreach ($result as $record) {

 $record = $redis->hgetall('record'.$i);

 $total_rows++;

 if(isset($record['customers'])){

 echo "

 <tr>

 <td>".$n."</td>

 <td>".$record['customers']."</td>

 <td>".$record['stores']."</td>

 <td>".$record['products']."</td>

 <td>".format_number($record['amount'])."</td>

 <td>".$record['addedby']."</td>

 <td>".system_date($record['addedon'],2)."</td>

 </tr>

 ";

 $n++;

 }

 }

145

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 //echo $starttime."
";

 //echo $endtime."
";

 //echo $timediff;//exit;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

<? getPageFooter()?>

<script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

</script>

PAGELAYOUT.PHP

<? function getAppHeader($title){?>

<!DOCTYPE html>

<html>

<head>

146

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <title><?=$title?></title>

 <!-- Tell the browser to be responsive to screen width -->

 <meta content="width=device-width, initial-scale=1, maximum-scale=1, user-scalable=no"

name="viewport">

 <!-- Bootstrap 3.3.7 -->

 <link rel="stylesheet" href="bootstrap/dist/css/bootstrap.min.css">

 <!-- Font Awesome -->

 <link rel="stylesheet" href="font-awesome/css/font-awesome.min.css">

 <!-- Ionicons -->

 <link rel="stylesheet" href="Ionicons/css/ionicons.min.css">

 <!-- Theme style -->

 <link rel="stylesheet" href="dist/css/AdminLTE.min.css">

 <!-- AdminLTE Skins. Choose a skin from the css/skins

 folder instead of downloading all of them to reduce the load. -->

 <link rel="stylesheet" href="dist/css/skins/_all-skins.min.css">

 <!-- jQuery 3 -->

 <script src="jquery/dist/jquery.min.js"></script>

 <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->

 <!-- WARNING: Respond.js doesn't work if you view the page via file:// -->

 <!--[if lt IE 9]>

 <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>

 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>

 <![endif]-->

 <!-- Google Font -->

 <link rel="stylesheet"

href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,600,700,300italic,400italic,600

italic">

<? }?>

<? function getCloseHeader(){?>

</head>

<body class="hold-transition skin-blue sidebar-mini">

<div class="wrapper">

<? }?>

<? function getHeaderTag(){?>

 <header class="main-header">

 <!-- Logo -->

 <!-- mini logo for sidebar mini 50x50 pixels -->

 SQL

 <!-- logo for regular state and mobile devices -->

 SQL, NOSQL

 <!-- Header Navbar: style can be found in header.less -->

https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js
https://oss.maxcdn.com/respond/1.4.2/respond.min.js
https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,600,700,300italic,400italic,600italic
https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,600,700,300italic,400italic,600italic

147

 <nav class="navbar navbar-static-top">

 <!-- Sidebar toggle button-->

 Toggle navigation

 <div class="navbar-custom-menu">

 <ul class="nav navbar-nav">

 <!-- Messages: style can be found in dropdown.less-->

 <!-- Notifications: style can be found in dropdown.less -->

 <!-- Tasks: style can be found in dropdown.less -->

 <!-- User Account: style can be found in dropdown.less -->

 <li class="dropdown user user-menu">

 Ekene Okeke

 <!-- Control Sidebar Toggle Button -->

 </div>

 </nav>

 </header>

<? }?>

<? function getSideBar(){?>

<!-- Left side column. contains the logo and sidebar -->

 <aside class="main-sidebar">

 <!-- sidebar: style can be found in sidebar.less -->

 <section class="sidebar">

 <!-- Sidebar user panel -->

 <div class="user-panel">

 <div class="pull-left image">

 </div>

 <div class="pull-left info">

 <p>CROSS PLATFORM</p>

 <i class="fa fa-circle text-success"></i> Online

 </div>

 </div>

 <!-- search form

148

 <form action="#" method="get" class="sidebar-form">

 <div class="input-group">

 <input type="text" name="q" class="form-control" placeholder="Search...">

 <button type="submit" name="search" id="search-btn" class="btn btn-flat"><i class="fa fa-

search"></i>

 </button>

 </div>

 </form>

 -->

 <!-- /.search form -->

 <!-- sidebar menu: : style can be found in sidebar.less -->

 <ul class="sidebar-menu" data-widget="tree">

 <li class="header">MAIN NAVIGATION

 <i class="fa fa-table"></i> Dashboard

 <i class="fa fa-book"></i> MySQL

 <i class="fa fa-book"></i> MongoDB

 <i class="fa fa-book"></i> Cassandra

 <i class="fa fa-book"></i> Redis

 <i class="fa fa-book"></i> Neo4J

 <i class="fa fa-book"></i>

MySQL_MongoDB

 <i class="fa fa-book"></i>

MySQL_Cassandra

 <i class="fa fa-book"></i> MySQL_Redis

 <i class="fa fa-book"></i>

MySQL_Neo4j

 <i class="fa fa-book"></i>

MySQL_Cassandra_MongoDB

 <i class="fa fa-book"></i>

MySQL_Cassandra_Redis_
MongoDB

 <i class="fa fa-book"></i>

MySQL_Cassandra_Redis_
Neo4j_MongoDB

 </section>

 <!-- /.sidebar -->

 </aside>

<? }?>

<? function getPageFooter(){?>

<!-- /.content-wrapper -->

 <footer class="main-footer">

 <div class="pull-right hidden-xs">

 Version 2.4.0

 </div>

149

 Final Project: SQL, NoSQL Cross Platform © <?=date("Y")?> . All rights

 reserved.

 </footer>

 <!-- /.control-sidebar -->

 <!-- Add the sidebar's background. This div must be placed

 immediately after the control sidebar -->

 <div class="control-sidebar-bg"></div>

</div>

<!-- ./wrapper -->

<!-- Bootstrap 3.3.7 -->

<script src="bootstrap/dist/js/bootstrap.min.js"></script>

<!-- Slimscroll -->

<script src="jquery.slimscroll.min.js"></script>

<!-- FastClick -->

<script src="fastclick/lib/fastclick.js"></script>

<!-- AdminLTE App -->

<script src="dist/js/adminlte.min.js"></script>

<!-- AdminLTE for demo purposes -->

<script src="dist/js/demo.js"></script>

</body>

</html>

<? }?>

<? function callErrorMessage(){?>

 <? if(isset($_SESSION['error']) && !empty($_SESSION['error']) && is_array($_SESSION['error'])){

 //echo "isset";

 if(isset($_SESSION['divborder'])){//on success of query

 $class = "alert alert-success alert-dismissible";

 }elseif(isset($_SESSION['alertstyle'])){// warning caution style

 $class = "alert alert-info alert-dismissible";

 }elseif(isset($_SESSION['infostyle'])){// warning caution style

 $class = "alert alert-info alert-dismissible";

 }else{// regular error

 $class = "alert alert-info alert-dismissible";

 }

 ?>

 <div class="<?=$class?>">

 <?php foreach ($_SESSION['error'] as $errors) { ?>

 <?php echo ($errors) ?>

 <?php echo "
";?>

 <?php } ?>

 <?

 unset($_SESSION['error']);

 if(isset($_SESSION['divborder'])){unset($_SESSION['divborder']);}

150

 if(isset($_SESSION['alertstyle'])){unset($_SESSION['alertstyle']);}

 if(isset($_SESSION['infostyle'])){unset($_SESSION['infostyle']);}

 ?>

 </div>

 <? }?>

<? }?>

MYSQL_REDIS.PHP

<?php

require_once("functions.php");

require_once("pagelayout.php");

require "predis/autoload.php";

Predis\Autoloader::register();

getAppHeader("MySQL - Redis");

getCloseHeader();

getHeaderTag();

getSideBar();

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

 $limit = 50;

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MySQL - Redis System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

151

 <!-- /.row -->

 <? callErrorMessage();?>

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <h3 class="box-title">Customer Records Directly From MYSQL (RDBMS)</h3>

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

Records

 <!--Delete

Records-->

 </div>

 </div>

 <?php

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 //DATA FOR MYSQL, USER INFORMATION

 $gender = array("Male","Female");

 $phone =

array("08011221123","08011221122","08011221123","08011220022","08011341123","08010921122","

08011871123","08011551122");

 $email =

array("user12@gmail.com","user13@gmail.com","user14@gmail.com","user15@gmail.com","user16@g

mail.com","user17@gmail.com","user18@gmail.com","user19@gmail.com");

mailto:user12@gmail.com
mailto:user13@gmail.com
mailto:user14@gmail.com
mailto:user15@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user17@gmail.com
mailto:user18@gmail.com
mailto:user19@gmail.com

152

 // start script execution timer here

 $starttime = microtime(true);

 //CONNECT TO MYSQL

 connectAppDB();

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 //echo "exask";exit;

 for($i=0;$i<10;$i++){

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone,

salestype, createon)

 VALUES

('".$customers[rand(0,10)]."','".$gender[rand(0,1)]."','".$email[rand(0,7)]."','".$phone[rand(0,7)]."', 'redis',

'".date("Y-m-d H:i:s")."')");

 $cusid = (int) mysql_insert_id();

 if($insertcat){

 $redis = new Predis\Client();

 for($e=0;$e<200;$e++){

 $recrd = array(

 'customerid' => $cusid,

 'customers' => $customers[rand(0,10)],

 'stores' => $stores[rand(0,10)],

 'products' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'addedon' => date("Y-m-d H:i:s"),

 'updatefield' => 0

);

 $redis->hmset('record'.$cusid, $recrd);

 }

 }

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

153

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <table class="table table-hover">

 <tr>

 <th>#</th>

 <th>Customers</th>

 <th>Gender</th>

 <th>Phone</th>

 <th>Email</th>

 <th>Action</th>

 </tr>

 <?php

 connectAppDB();

 $myquery = "SELECT * FROM users WHERE salestype = 'redis' ORDER BY id DESC";

 $list = mysql_query($myquery);

 $total_rows = mysql_num_rows($list);

 //exit;

 if($total_rows > 0){

 $i=1;

 while($record = mysql_fetch_array($list)){

 ?>

 <tr>

 <td><?=$i?></td>

 <td id="customer<?=$record['id']?>"><?=$record['usernames']?></td>

 <td><?=$record['gender']?></td>

 <td><?=$record['phone']?></td>

 <td><?=$record['email']?></td>

 <span id="customerid<?=$record['id']?>"

style="display:none"><?=$record['id']?>

 <td>

 <a class="label label-info"

 onclick="callModalSales('<?=$record['id']?>')">View All Purchases

 </td>

 </tr>

 <?php

 $i++;

 }

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

154

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

 <!--MODAL FORM FOR ADDING RECORDS TO DATABASE -->

 <form name="new_record" action="controller.php" method="POST">

 <div class="modal fade" id="modal-default5">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×</button>

 <h4 class="modal-title">'s Sales Records From Redis NoSQl

Database</h4>

 </div>

 <div class="modal-body">

 <div class="box-body">

 <div class="uk-text-center" style="display:none" id="txtHint"><img

src="img/spinner.gif"></div>

 <div id="show_display"></div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default pull-left" data-dismiss="modal">Close</button>

 </div>

 </div>

 <!-- /.modal-content -->

 </div>

 <!-- /.modal-dialog -->

 </div>

 </form>

 <script type="text/javascript">

 $(document).ready(function() {

155

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

 function callModalSales(ith){

 $("#modal-default5").modal("show");

 $("#customerr").html($("#customer"+ith).html());

 $("#show_display").html("");

 $('#txtHint').show();

 var loadUrl = "controller.php?action=view_redis_sales&customerid="+ith;

 $.ajax({

 type: "POST",

 url: loadUrl,

 cache: false,

 success: function(output){

 $("#show_display").html(output);

 $('#txtHint').hide();

 },

 error: function(xhr, textStatus, errorThrown) {

 $('#txtHint').hide();

 }

 });

 }

 </script>

<? getPageFooter()?>

MYSQL_NEO4J

<?php

require_once("functions.php");

require_once("pagelayout.php");

require_once 'neo4j/graphaware/vendor/autoload.php';

use GraphAware\Neo4j\Client\ClientBuilder,

 GraphAware\Neo4j\OGM\EntityManager;

$client = ClientBuilder::create()

 ->addConnection('default', 'http://neo4j:userpass@localhost:7474') // Example for HTTP connection

configuration (port is optional)

 ->addConnection('bolt', 'bolt://neo4j:userpass@localhost:7687') // Example for BOLT connection

configuration (port is optional)

 ->build();

156

getAppHeader("MySQL - Neo4J");

getCloseHeader();

getHeaderTag();

getSideBar();

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

 $limit = 50;

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MySQL - Neo4J System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <? callErrorMessage();?>

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <h3 class="box-title">Customer Records Directly From MYSQL (RDBMS)</h3>

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

157

Records

 <!--Delete

Records-->

 </div>

 </div>

 <?php

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 //DATA FOR MYSQL, USER INFORMATION

 $gender = array("Male","Female");

 $phone =

array("08011221123","08011221122","08011221123","08011220022","08011341123","08010921122","

08011871123","08011551122");

 $email =

array("user12@gmail.com","user13@gmail.com","user14@gmail.com","user15@gmail.com","user16@g

mail.com","user17@gmail.com","user18@gmail.com","user19@gmail.com");

 // start script execution timer here

 $starttime = microtime(true);

 //CONNECT TO MYSQL

 connectAppDB();

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 //echo "exask";exit;

 for($i=0;$i<5;$i++){

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone,

salestype, createon)

 VALUES

('".$customers[rand(0,10)]."','".$gender[rand(0,1)]."','".$email[rand(0,7)]."','".$phone[rand(0,7)]."', 'neo4j',

'".date("Y-m-d H:i:s")."')");

 $cusid = (int) mysql_insert_id();

 if($insertcat){

 for($e=0;$e<10;$e++){

 $client->run('CREATE (n:Sales) SET n += {infos}',

mailto:user12@gmail.com
mailto:user13@gmail.com
mailto:user14@gmail.com
mailto:user15@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user17@gmail.com
mailto:user18@gmail.com
mailto:user19@gmail.com

158

 ['infos' =>

 [

 'customers' => $customers[rand(0,10)],

 'customerid' => $cusid,

 'stores' => $stores[rand(0,10)],

 'products' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'addedon' => date("Y-m-d H:i:s"),

 'updatefield' => 0

]

]

);

 }

 }

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <table class="table table-hover">

 <tr>

 <th>#</th>

 <th>Customers</th>

 <th>Gender</th>

 <th>Phone</th>

 <th>Email</th>

 <th>Action</th>

 </tr>

 <?php

 connectAppDB();

159

 $myquery = "SELECT * FROM users WHERE salestype = 'neo4j' ORDER BY id DESC";

 $list = mysql_query($myquery);

 $total_rows = mysql_num_rows($list);

 //exit;

 if($total_rows > 0){

 $i=1;

 while($record = mysql_fetch_array($list)){

 ?>

 <tr>

 <td><?=$i?></td>

 <td id="customer<?=$record['id']?>"><?=$record['usernames']?></td>

 <td><?=$record['gender']?></td>

 <td><?=$record['phone']?></td>

 <td><?=$record['email']?></td>

 <span id="customerid<?=$record['id']?>"

style="display:none"><?=$record['id']?>

 <td>

 <a class="label label-info"

 onclick="callModalSales('<?=$record['id']?>')">View All Purchases

 </td>

 </tr>

 <?php

 $i++;

 }

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

 <!--MODAL FORM FOR ADDING RECORDS TO DATABASE -->

 <form name="new_record" action="controller.php" method="POST">

 <div class="modal fade" id="modal-default5">

 <div class="modal-dialog">

160

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×</button>

 <h4 class="modal-title">'s Sales Records From Neo4J

Database</h4>

 </div>

 <div class="modal-body">

 <div class="box-body">

 <div class="uk-text-center" style="display:none" id="txtHint"><img

src="img/spinner.gif"></div>

 <div id="show_display"></div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default pull-left" data-dismiss="modal">Close</button>

 </div>

 </div>

 <!-- /.modal-content -->

 </div>

 <!-- /.modal-dialog -->

 </div>

 </form>

 <script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

 function callModalSales(ith){

 $("#modal-default5").modal("show");

 $("#customerr").html($("#customer"+ith).html());

 $("#show_display").html("");

 $('#txtHint').show();

 var loadUrl = "controller.php?action=view_neo4j_sales&customerid="+ith;

 $.ajax({

 type: "POST",

 url: loadUrl,

 cache: false,

 success: function(output){

161

 $("#show_display").html(output);

 $('#txtHint').hide();

 },

 error: function(xhr, textStatus, errorThrown) {

 $('#txtHint').hide();

 }

 });

 }

 </script>

<? getPageFooter()?>

MYSQL_MONGODB

<?php

require_once("functions.php");

require_once("pagelayout.php");

getAppHeader("MySQL - MongoDB");

getCloseHeader();

getHeaderTag();

getSideBar();

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

 $limit = 50;

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MySQL - MongoDB System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

162

 <!-- /.row -->

 <? callErrorMessage();?>

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <h3 class="box-title">Customer Records Directly From MYSQL (RDBMS)</h3>

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

Records

 <!--Delete

Records-->

 </div>

 </div>

 <?php

 //DATA FOR MONGODB, SALES INFORMATION

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 //DATA FOR MYSQL, USER INFORMATION

 $gender = array("Male","Female");

 $phone =

array("08011221123","08011221122","08011221123","08011220022","08011341123","08010921122","

08011871123","08011551122");

 $email =

array("user12@gmail.com","user13@gmail.com","user14@gmail.com","user15@gmail.com","user16@g

mail.com","user17@gmail.com","user18@gmail.com","user19@gmail.com");

 // start script execution timer here

 $starttime = microtime(true);

mailto:user12@gmail.com
mailto:user13@gmail.com
mailto:user14@gmail.com
mailto:user15@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user17@gmail.com
mailto:user18@gmail.com
mailto:user19@gmail.com

163

 //CONNECT TO MYSQL

 connectAppDB();

 //CONNECT TO MONGODB

 $mng = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 $stats = new MongoDB\Driver\Command(["dbstats" => 1]);

 $res = $mng->executeCommand("products", $stats);

 $stats = current($res->toArray());

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 //echo "exask";exit;

 for($i=0;$i<10;$i++){

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone,

salestype, createon)

 VALUES

('".$customers[rand(0,10)]."','".$gender[rand(0,1)]."','".$email[rand(0,7)]."','".$phone[rand(0,7)]."',

'mongodb', '".date("Y-m-d H:i:s")."')");

 $cusid = (int) mysql_insert_id();

 if($insertcat){

 for($e=0;$e<200;$e++){

 $bulk = new MongoDB\Driver\BulkWrite;

 $document = [

 'id' => new MongoDB\BSON\ObjectId,

 'customerid' => $cusid,

 'customers' => $customers[rand(0,10)],

 'store' => $stores[rand(0,10)],

 'product' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'updatefield' => 1,

 'createdon' => date("Y-m-d H:i:s")

];

 $bulk->insert($document);

 $mng->executeBulkWrite('products.records', $bulk);

 }

 }

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

164

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <table class="table table-hover">

 <tr>

 <th>#</th>

 <th>Customers</th>

 <th>Gender</th>

 <th>Phone</th>

 <th>Email</th>

 <th>Action</th>

 </tr>

 <?php

 connectAppDB();

 $myquery = "SELECT * FROM users WHERE salestype = 'mongodb' ORDER BY id

DESC";

 $list = mysql_query($myquery);

 $total_rows = mysql_num_rows($list);

 //exit;

 if($total_rows > 0){

 $i=1;

 while($record = mysql_fetch_array($list)){

 ?>

 <tr>

 <td><?=$i?></td>

 <td id="customer<?=$record['id']?>"><?=$record['usernames']?></td>

 <td><?=$record['gender']?></td>

 <td><?=$record['phone']?></td>

 <td><?=$record['email']?></td>

 <span id="customerid<?=$record['id']?>"

style="display:none"><?=$record['id']?>

 <td>

 <a class="label label-info"

 onclick="callModalSales('<?=$record['id']?>')">View All Purchases

165

 </td>

 </tr>

 <?php

 $i++;

 }

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

 <!--MODAL FORM FOR ADDING RECORDS TO MONGODB DATABASE -->

 <form name="new_record" action="controller.php" method="POST">

 <div class="modal fade" id="modal-default5">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×</button>

 <h4 class="modal-title">'s Sales Records From MongoDB

NoSQl Database</h4>

 </div>

 <div class="modal-body">

 <div class="box-body">

 <div class="uk-text-center" style="display:none" id="txtHint"><img

src="img/spinner.gif"></div>

 <div id="show_display"></div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default pull-left" data-dismiss="modal">Close</button>

 </div>

166

 </div>

 <!-- /.modal-content -->

 </div>

 <!-- /.modal-dialog -->

 </div>

 </form>

 <script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

 function callModalSales(ith){

 $("#modal-default5").modal("show");

 $("#customerr").html($("#customer"+ith).html());

 $("#show_display").html("");

 $('#txtHint').show();

 var loadUrl = "controller.php?action=view_mongo_sales&customerid="+ith;

 $.ajax({

 type: "POST",

 url: loadUrl,

 cache: false,

 success: function(output){

 $("#show_display").html(output);

 $('#txtHint').hide();

 },

 error: function(xhr, textStatus, errorThrown) {

 $('#txtHint').hide();

 }

 });

 }

 </script>

<? getPageFooter()?>

MYSQL_CASSANDRA

<?php

require_once("functions.php");

require_once("pagelayout.php");

getAppHeader("MySQL - Cassandra");

getCloseHeader();

167

getHeaderTag();

getSideBar();

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

 $limit = 50;

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MySQL - Cassandra System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <? callErrorMessage();?>

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <h3 class="box-title">Customer Records Directly From MYSQL (RDBMS)</h3>

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

Records

 <!--Delete

168

Records-->

 </div>

 </div>

 <?php

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 //DATA FOR MYSQL, USER INFORMATION

 $gender = array("Male","Female");

 $phone =

array("08011221123","08011221122","08011221123","08011220022","08011341123","08010921122","

08011871123","08011551122");

 $email =

array("user12@gmail.com","user13@gmail.com","user14@gmail.com","user15@gmail.com","user16@g

mail.com","user17@gmail.com","user18@gmail.com","user19@gmail.com");

 // start script execution timer here

 $starttime = microtime(true);

 //CONNECT TO MYSQL

 connectAppDB();

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 //echo "exask";exit;

 for($i=0;$i<10;$i++){

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone,

salestype, createon)

 VALUES

('".$customers[rand(0,10)]."','".$gender[rand(0,1)]."','".$email[rand(0,7)]."','".$phone[rand(0,7)]."',

'cassandra', '".date("Y-m-d H:i:s")."')");

 $cusid = (int) mysql_insert_id();

 if($insertcat){

 $cluster = Cassandra::cluster()->build();

 $keyspace = 'store';//database name

mailto:user12@gmail.com
mailto:user13@gmail.com
mailto:user14@gmail.com
mailto:user15@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user17@gmail.com
mailto:user18@gmail.com
mailto:user19@gmail.com

169

 $session = $cluster->connect($keyspace);

 for($e=0;$e<200;$e++){

 $statement = $session->execute(new Cassandra\SimpleStatement(

 "INSERT INTO sales (id, customerid, customers, stores, products, amount,

addedby, addedon, updatefield)

 VALUES

(now(),'".$cusid."','".$customers[rand(0,10)]."','".$stores[rand(0,10)]."','".$products[rand(0,10)]."','".rand(

500,10000)."', '".$admins[rand(0,2)]."', '".date("Y-m-d H:i:s")."','0')"

)

);

 }

 }

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <table class="table table-hover">

 <tr>

 <th>#</th>

 <th>Customers</th>

 <th>Gender</th>

 <th>Phone</th>

 <th>Email</th>

 <th>Action</th>

 </tr>

 <?php

 connectAppDB();

170

 $myquery = "SELECT * FROM users WHERE salestype = 'cassandra' ORDER BY id

DESC";

 $list = mysql_query($myquery);

 $total_rows = mysql_num_rows($list);

 //exit;

 if($total_rows > 0){

 $i=1;

 while($record = mysql_fetch_array($list)){

 ?>

 <tr>

 <td><?=$i?></td>

 <td id="customer<?=$record['id']?>"><?=$record['usernames']?></td>

 <td><?=$record['gender']?></td>

 <td><?=$record['phone']?></td>

 <td><?=$record['email']?></td>

 <span id="customerid<?=$record['id']?>"

style="display:none"><?=$record['id']?>

 <td>

 <a class="label label-info"

 onclick="callModalSales('<?=$record['id']?>')">View All Purchases

 </td>

 </tr>

 <?php

 $i++;

 }

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

 <!--MODAL FORM FOR ADDING RECORDS TO DATABASE -->

 <form name="new_record" action="controller.php" method="POST">

 <div class="modal fade" id="modal-default5">

171

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×</button>

 <h4 class="modal-title">'s Sales Records From Cassandra

NoSQl Database</h4>

 </div>

 <div class="modal-body">

 <div class="box-body">

 <div class="uk-text-center" style="display:none" id="txtHint"><img

src="img/spinner.gif"></div>

 <div id="show_display"></div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default pull-left" data-dismiss="modal">Close</button>

 </div>

 </div>

 <!-- /.modal-content -->

 </div>

 <!-- /.modal-dialog -->

 </div>

 </form>

 <script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

 function callModalSales(ith){

 $("#modal-default5").modal("show");

 $("#customerr").html($("#customer"+ith).html());

 $("#show_display").html("");

 $('#txtHint').show();

 var loadUrl = "controller.php?action=view_cassandra_sales&customerid="+ith;

 $.ajax({

 type: "POST",

 url: loadUrl,

 cache: false,

172

 success: function(output){

 $("#show_display").html(output);

 $('#txtHint').hide();

 },

 error: function(xhr, textStatus, errorThrown) {

 $('#txtHint').hide();

 }

 });

 }

 </script>

<? getPageFooter()?>

MYSQL_CASSANDRA_MONGO

<?php

require_once("functions.php");

require_once("pagelayout.php");

getAppHeader("MySQL - Cassandra - MongoDB");

getCloseHeader();

getHeaderTag();

getSideBar();

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

 $limit = 50;

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MySQL - Cassandra - MongoDB System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

173

 <section class="content">

 <!-- /.row -->

 <? callErrorMessage();?>

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <h3 class="box-title">Customer Records Directly From MYSQL (RDBMS)</h3>

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

Records

 <!--Delete

Records-->

 </div>

 </div>

 <?php

 //DATA FOR MONGODB, SALES INFORMATION

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 //DATA FOR MYSQL, USER INFORMATION

 $gender = array("Male","Female");

 $phone =

array("08011221123","08011221122","08011221123","08011220022","08011341123","08010921122","

08011871123","08011551122");

 $email =

array("user12@gmail.com","user13@gmail.com","user14@gmail.com","user15@gmail.com","user16@g

mail.com","user17@gmail.com","user18@gmail.com","user19@gmail.com");

 // start script execution timer here

mailto:user12@gmail.com
mailto:user13@gmail.com
mailto:user14@gmail.com
mailto:user15@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user17@gmail.com
mailto:user18@gmail.com
mailto:user19@gmail.com

174

 $starttime = microtime(true);

 //CONNECT TO MYSQL

 connectAppDB();

 //CONNECT TO MONGODB

 $mng = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 $stats = new MongoDB\Driver\Command(["dbstats" => 1]);

 $res = $mng->executeCommand("products", $stats);

 $stats = current($res->toArray());

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 //echo "exask";exit;

 for($i=0;$i<10;$i++){

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone,

salestype, createon)

 VALUES

('".$customers[rand(0,10)]."','".$gender[rand(0,1)]."','".$email[rand(0,7)]."','".$phone[rand(0,7)]."',

'mongodb_cassandra', '".date("Y-m-d H:i:s")."')");

 $cusid = (int) mysql_insert_id();

 //NEXT INSERT INTO Cassandra

 $cluster = Cassandra::cluster()->build();

 $keyspace = 'store';//database name

 $session = $cluster->connect($keyspace);

 $session->execute(new Cassandra\SimpleStatement(

 "INSERT INTO table_store (id, caption) VALUES

(now(),'".$stores[rand(0,10)]."')"

)

);

 //NEXT INSERT INTO MongoDB

 if($insertcat){

 for($e=0;$e<200;$e++){

 $bulk = new MongoDB\Driver\BulkWrite;

 $document = [

 'id' => new MongoDB\BSON\ObjectId,

 'customerid' => $cusid,

 'customers' => $customers[rand(0,10)],

 'store' => $stores[rand(0,10)],

 'product' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'updatefield' => 1,

 'createdon' => date("Y-m-d H:i:s")

175

];

 $bulk->insert($document);

 $mng->executeBulkWrite('products.records', $bulk);

 }

 }

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <table class="table table-hover">

 <tr>

 <th>#</th>

 <th>Customers</th>

 <th>Gender</th>

 <th>Phone</th>

 <th>Email</th>

 <th>Added On</th>

 <th>Action</th>

 </tr>

 <?php

 connectAppDB();

 $myquery = "SELECT * FROM users WHERE salestype = 'mongodb_cassandra' ORDER

BY id DESC";

 $list = mysql_query($myquery);

 $total_rows = mysql_num_rows($list);

 //exit;

 if($total_rows > 0){

 $i=1;

 while($record = mysql_fetch_array($list)){

 ?>

176

 <tr>

 <td><?=$i?></td>

 <td id="customer<?=$record['id']?>"><?=$record['usernames']?></td>

 <td><?=$record['gender']?></td>

 <td><?=$record['phone']?></td>

 <td><?=$record['email']?></td>

 <td><?=system_date($record['createon'],2)?></td>

 <span id="customerid<?=$record['id']?>"

style="display:none"><?=$record['id']?>

 <td>

 <a class="label label-info"

 onclick="callModalSales('<?=$record['id']?>')">View All Purchases

 </td>

 </tr>

 <?php

 $i++;

 }

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

 <!--MODAL FORM FOR ADDING RECORDS TO MONGODB DATABASE -->

 <form name="new_record" action="controller.php" method="POST">

 <div class="modal fade" id="modal-default5">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×</button>

 <h4 class="modal-title">'s Sales Records From

Cassandra/MongoDB NoSQl Database</h4>

 </div>

 <div class="modal-body">

177

 <div class="box-body">

 <div class="uk-text-center" style="display:none" id="txtHint"><img

src="img/spinner.gif"></div>

 <div id="show_display"></div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default pull-left" data-dismiss="modal">Close</button>

 </div>

 </div>

 <!-- /.modal-content -->

 </div>

 <!-- /.modal-dialog -->

 </div>

 </form>

 <script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

 function callModalSales(ith){

 $("#modal-default5").modal("show");

 $("#customerr").html($("#customer"+ith).html());

 $("#show_display").html("");

 $('#txtHint').show();

 var loadUrl = "controller.php?action=view_mongo_sales&customerid="+ith;

 $.ajax({

 type: "POST",

 url: loadUrl,

 cache: false,

 success: function(output){

 $("#show_display").html(output);

 $('#txtHint').hide();

 },

 error: function(xhr, textStatus, errorThrown) {

 $('#txtHint').hide();

 }

 });

178

 }

 </script>

<? getPageFooter()?>

MYSQL_CASSANDRA_REDIS_MONGO

<?php

require_once("functions.php");

require_once("pagelayout.php");

require "predis/autoload.php";

Predis\Autoloader::register();

getAppHeader("MySQL - Cassandra - Redis - MongoDB");

getCloseHeader();

getHeaderTag();

getSideBar();

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

}

 $limit = 50;

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MySQL - Cassandra - Redis - MongoDB System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

179

 <? callErrorMessage();?>

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <h3 class="box-title">Customer Records Directly From MYSQL (RDBMS)</h3>

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

Records

 <!--Delete

Records-->

 </div>

 </div>

 <?php

 //DATA FOR MONGODB, SALES INFORMATION

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store 7","Store

8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 // start script execution timer here

 //DATA FOR MYSQL, USER INFORMATION

 $gender = array("Male","Female");

 $phone =

array("08011221123","08011221122","08011221123","08011220022","08011341123","08010921122","

08011871123","08011551122");

 $email =

array("user12@gmail.com","user13@gmail.com","user14@gmail.com","user15@gmail.com","user16@g

mail.com","user17@gmail.com","user18@gmail.com","user19@gmail.com");

 // start script execution timer here

 $starttime = microtime(true);

 //CONNECT TO MYSQL

mailto:user12@gmail.com
mailto:user13@gmail.com
mailto:user14@gmail.com
mailto:user15@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user17@gmail.com
mailto:user18@gmail.com
mailto:user19@gmail.com

180

 connectAppDB();

 //CONNECT TO MONGODB

 $mng = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 $stats = new MongoDB\Driver\Command(["dbstats" => 1]);

 $res = $mng->executeCommand("products", $stats);

 $stats = current($res->toArray());

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 //echo "exask";exit;

 for($i=0;$i<10;$i++){

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone,

salestype, createon)

 VALUES

('".$customers[rand(0,10)]."','".$gender[rand(0,1)]."','".$email[rand(0,7)]."','".$phone[rand(0,7)]."',

'mongodb_cassandra_redis', '".date("Y-m-d H:i:s")."')");

 $cusid = (int) mysql_insert_id();

 //NEXT INSERT INTO Cassandra

 $cluster = Cassandra::cluster()->build();

 $keyspace = 'store';//database name

 $session = $cluster->connect($keyspace);

 $session->execute(new Cassandra\SimpleStatement(

 "INSERT INTO table_store (id, caption) VALUES

(now(),'".$stores[rand(0,10)]."')"

)

);

 //NEXT INSERT INTO Redis

 $redis = new Predis\Client();

 $recrd = array(

 'customers' => $customers[rand(0,10)],

 'stores' => $stores[rand(0,10)],

 'products' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'addedon' => date("Y-m-d H:i:s"),

 'updatefield' => 0

);

 $redis->hmset('product'.$i, $recrd);

 //NEXT INSERT INTO MongoDB

 if($insertcat){

 for($e=0;$e<200;$e++){

 $bulk = new MongoDB\Driver\BulkWrite;

181

 $document = [

 'id' => new MongoDB\BSON\ObjectId,

 'customerid' => $cusid,

 'customers' => $customers[rand(0,10)],

 'store' => $stores[rand(0,10)],

 'product' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'updatefield' => 1,

 'createdon' => date("Y-m-d H:i:s")

];

 $bulk->insert($document);

 $mng->executeBulkWrite('products.records', $bulk);

 }

 }

 }

 $endtime= microtime(true);

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <table class="table table-hover">

 <tr>

 <th>#</th>

 <th>Customers</th>

 <th>Gender</th>

 <th>Phone</th>

 <th>Email</th>

 <th>Added On</th>

 <th>Action</th>

 </tr>

 <?php

182

 connectAppDB();

 $myquery = "SELECT * FROM users WHERE salestype = 'mongodb_cassandra_redis'

ORDER BY id DESC";

 $list = mysql_query($myquery);

 $total_rows = mysql_num_rows($list);

 //exit;

 if($total_rows > 0){

 $i=1;

 while($record = mysql_fetch_array($list)){

 ?>

 <tr>

 <td><?=$i?></td>

 <td id="customer<?=$record['id']?>"><?=$record['usernames']?></td>

 <td><?=$record['gender']?></td>

 <td><?=$record['phone']?></td>

 <td><?=$record['email']?></td>

 <td><?=system_date($record['createon'],2)?></td>

 <span id="customerid<?=$record['id']?>"

style="display:none"><?=$record['id']?>

 <td>

 <a class="label label-info"

 onclick="callModalSales('<?=$record['id']?>')">View All Purchases

 </td>

 </tr>

 <?php

 $i++;

 }

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

 <!--MODAL FORM FOR ADDING RECORDS TO MONGODB DATABASE -->

 <form name="new_record" action="controller.php" method="POST">

183

 <div class="modal fade" id="modal-default5">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×</button>

 <h4 class="modal-title">'s Sales Records From

Cassandra/MongoDB NoSQl Database</h4>

 </div>

 <div class="modal-body">

 <div class="box-body">

 <div class="uk-text-center" style="display:none" id="txtHint"><img

src="img/spinner.gif"></div>

 <div id="show_display"></div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default pull-left" data-dismiss="modal">Close</button>

 </div>

 </div>

 <!-- /.modal-content -->

 </div>

 <!-- /.modal-dialog -->

 </div>

 </form>

 <script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

 function callModalSales(ith){

 $("#modal-default5").modal("show");

 $("#customerr").html($("#customer"+ith).html());

 $("#show_display").html("");

 $('#txtHint').show();

 var loadUrl = "controller.php?action=view_mongo_sales&customerid="+ith;

 $.ajax({

 type: "POST",

 url: loadUrl,

184

 cache: false,

 success: function(output){

 $("#show_display").html(output);

 $('#txtHint').hide();

 },

 error: function(xhr, textStatus, errorThrown) {

 $('#txtHint').hide();

 }

 });

 }

 </script>

<? getPageFooter()?>

MYSQL_CASSANDRA_REDIS_NEO4J_MONGODB

<?php

require_once("functions.php");

require_once("pagelayout.php");

require "predis/autoload.php";

Predis\Autoloader::register();

require_once 'neo4j/graphaware/vendor/autoload.php';

use GraphAware\Neo4j\Client\ClientBuilder,

 GraphAware\Neo4j\OGM\EntityManager;

$client = ClientBuilder::create()

 ->addConnection('default', 'http://neo4j:userpass@localhost:7474') // Example for HTTP connection

configuration (port is optional)

 ->addConnection('bolt', 'bolt://neo4j:userpass@localhost:7687') // Example for BOLT connection

configuration (port is optional)

 ->build();

getAppHeader("MySQL - Cassandra - Redis -Neo4j - MongoDB");

getCloseHeader();

getHeaderTag();

getSideBar();

$time_elapsed = "0";

$opt = "";

$display_cap = "";

if(isset($_GET['opt'])){

 $opt = $_GET['opt'];

185

}

 $limit = 50;

?>

 <!-- Content Wrapper. Contains page content -->

 <div class="content-wrapper">

 <!-- Content Header (Page header) -->

 <section class="content-header">

 <h1>

 MySQL - Cassandra - Redis - Neo4j - MongoDB System

 <small style="float:right"><< Go Back</small>

 </h1>

 </section>

 <!-- Main content -->

 <section class="content">

 <!-- /.row -->

 <? callErrorMessage();?>

 <div class="row">

 <div class="col-xs-12">

 <div class="box">

 <div class="box-header">

 <h3 class="box-title">Customer Records Directly From MYSQL (RDBMS)</h3>

 <div class="box-tools">

 <a href="<?=$_SERVER['SCRIPT_NAME']?>" class="btn btn-info">Read All Records

 <a href="<?=$_SERVER['SCRIPT_NAME']."?opt=add"?>" class="btn btn-success">Add

Records

 <!--Delete

Records-->

 </div>

 </div>

 <?php

 //DATA FOR MONGODB, SALES INFORMATION

 $customers =

array("John","Adam","Ugonna","Bayo","Sheyi","Miracle","Emeka","Segun","Udoka","Chibuzo","Akani

186

mo");

 $stores = array("Store 1","Store 2","Store 3","Store 4","Store 5","Store 6","Store

7","Store 8","Store 9","Store 10","Store 11");

 $products = array("Product 1","Product 2","Product 3","Product 4","Product 5","Product

6","Product 7","Product 8","Product 9","Product 10","Product 11");

 $admins = array("Ofoefule Christian","Ekene Okeke","Ogundare Ayo");

 $category = array("Electronics","Bags","Shoes","Shirts","Beverages");

 // start script execution timer here

 //DATA FOR MYSQL, USER INFORMATION

 $gender = array("Male","Female");

 $phone =

array("08011221123","08011221122","08011221123","08011220022","08011341123","08010921122","

08011871123","08011551122");

 $email =

array("user12@gmail.com","user13@gmail.com","user14@gmail.com","user15@gmail.com","user16@g

mail.com","user17@gmail.com","user18@gmail.com","user19@gmail.com");

 // start script execution timer here

 $starttime = microtime(true);

 //CONNECT TO MYSQL

 connectAppDB();

 //CONNECT TO MONGODB

 $mng = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 $stats = new MongoDB\Driver\Command(["dbstats" => 1]);

 $res = $mng->executeCommand("products", $stats);

 $stats = current($res->toArray());

 if($opt=="add"){//add records

 $display_cap = "Add Query: ";

 //echo "exask";exit;

 for($i=0;$i<10;$i++){

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone,

salestype, createon)

 VALUES

('".$customers[rand(0,10)]."','".$gender[rand(0,1)]."','".$email[rand(0,7)]."','".$phone[rand(0,7)]."',

'mongodb_cassandra_redis_neo4j', '".date("Y-m-d H:i:s")."')");

 $cusid = (int) mysql_insert_id();

 //NEXT INSERT INTO Cassandra

 $cluster = Cassandra::cluster()->build();

 $keyspace = 'store';//database name

 $session = $cluster->connect($keyspace);

 $session->execute(new Cassandra\SimpleStatement(

 "INSERT INTO table_store (id, caption) VALUES

mailto:user12@gmail.com
mailto:user13@gmail.com
mailto:user14@gmail.com
mailto:user15@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user16@gmail.com
mailto:user17@gmail.com
mailto:user18@gmail.com
mailto:user19@gmail.com

187

(now(),'".$stores[rand(0,10)]."')"

)

);

 //NEXT INSERT INTO Redis

 $redis = new Predis\Client();

 $recrd = array(

 'customers' => $customers[rand(0,10)],

 'stores' => $stores[rand(0,10)],

 'products' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'addedon' => date("Y-m-d H:i:s"),

 'updatefield' => 0

);

 $redis->hmset('product'.$i, $recrd);

 //NEXT INSERT INTO Neo4j

 $client->run('CREATE (n:Product_Category) SET n += {infos}',

 ['infos' =>

 [

 'caption' => $category[rand(0,4)]

]

]

);

 //NEXT INSERT INTO MongoDB

 if($insertcat){

 for($e=0;$e<200;$e++){

 $bulk = new MongoDB\Driver\BulkWrite;

 $document = [

 'id' => new MongoDB\BSON\ObjectId,

 'customerid' => $cusid,

 'customers' => $customers[rand(0,10)],

 'store' => $stores[rand(0,10)],

 'product' => $products[rand(0,10)],

 'amount' => rand(500,10000),

 'addedby' => $admins[rand(0,2)],

 'updatefield' => 1,

 'createdon' => date("Y-m-d H:i:s")

];

 $bulk->insert($document);

 $mng->executeBulkWrite('products.records', $bulk);

 }

 }

 }

 $endtime= microtime(true);

188

 }elseif($opt=="edit"){

 $display_cap = "Update Query: ";

 for($i=0;$i<$limit;$i++){

 mysql_query("UPDATE sales SET updatefield = 1 WHERE updatefield = 0 LIMIT 1");

 }

 $endtime= microtime(true);

 //RESET EVERYTHING AGAIN,

 mysql_query("UPDATE sales SET updatefield = 0 WHERE updatefield = 1");

 }elseif($opt=="delete"){

 $display_cap = "Delete Query: ";

 mysql_query("DELETE FROM sales");

 $endtime= microtime(true);

 }else{//for read timer

 $display_cap = "Read Query: ";

 }

 ?>

 <!-- /.box-header -->

 <div class="box-body table-responsive no-padding">

 <table class="table table-hover">

 <tr>

 <th>#</th>

 <th>Customers</th>

 <th>Gender</th>

 <th>Phone</th>

 <th>Email</th>

 <th>Added On</th>

 <th>Action</th>

 </tr>

 <?php

 connectAppDB();

 $myquery = "SELECT * FROM users WHERE salestype =

'mongodb_cassandra_redis_neo4j' ORDER BY id DESC";

 $list = mysql_query($myquery);

 $total_rows = mysql_num_rows($list);

 //exit;

 if($total_rows > 0){

 $i=1;

 while($record = mysql_fetch_array($list)){

 ?>

 <tr>

 <td><?=$i?></td>

 <td id="customer<?=$record['id']?>"><?=$record['usernames']?></td>

 <td><?=$record['gender']?></td>

 <td><?=$record['phone']?></td>

 <td><?=$record['email']?></td>

 <td><?=system_date($record['createon'],2)?></td>

189

 <span id="customerid<?=$record['id']?>"

style="display:none"><?=$record['id']?>

 <td>

 <a class="label label-info"

 onclick="callModalSales('<?=$record['id']?>')">View All Purchases

 </td>

 </tr>

 <?php

 $i++;

 }

 }

 if($opt==""){//for read

 $endtime= microtime(true);

 }

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 ?>

 </table>

 </div>

 <!-- /.box-body -->

 </div>

 <!-- /.box -->

 </div>

 </div>

 </section>

 <!-- /.content -->

 </div>

 <!--MODAL FORM FOR ADDING RECORDS TO MONGODB DATABASE -->

 <form name="new_record" action="controller.php" method="POST">

 <div class="modal fade" id="modal-default5">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×</button>

 <h4 class="modal-title">'s Sales Records From

Cassandra/MongoDB NoSQl Database</h4>

 </div>

 <div class="modal-body">

 <div class="box-body">

 <div class="uk-text-center" style="display:none" id="txtHint"><img

src="img/spinner.gif"></div>

190

 <div id="show_display"></div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default pull-left" data-dismiss="modal">Close</button>

 </div>

 </div>

 <!-- /.modal-content -->

 </div>

 <!-- /.modal-dialog -->

 </div>

 </form>

 <script type="text/javascript">

 $(document).ready(function() {

 $('#display_results').html("[<?=$display_cap.$time_elapsed?>]");

 $('#record_rows').html("[Total Records: <?=$total_rows?>]");

 }); //end of document ready function

 function askDelete(){

 if(confirm("Delete All Records?")){

 parent.location="<?=$_SERVER['SCRIPT_NAME']."?opt=delete"?>";

 }

 }

 function callModalSales(ith){

 $("#modal-default5").modal("show");

 $("#customerr").html($("#customer"+ith).html());

 $("#show_display").html("");

 $('#txtHint').show();

 var loadUrl = "controller.php?action=view_mongo_sales&customerid="+ith;

 $.ajax({

 type: "POST",

 url: loadUrl,

 cache: false,

 success: function(output){

 $("#show_display").html(output);

 $('#txtHint').hide();

 },

 error: function(xhr, textStatus, errorThrown) {

 $('#txtHint').hide();

 }

 });

 }

 </script>

<? getPageFooter()?>

FUNCTIONS.PHP

191

<?php

session_start();

date_default_timezone_set('Africa/Lagos');

function connectAppDB() {

 $dbhost = 'localhost';

 $dbuser = 'root';//christhi_user01

 $dbpassword = 'server.cloud';//christ.hill.pass01

 $connect = @mysql_connect($dbhost, $dbuser, $dbpassword);//using @ to suppress any

possible error that may arise from using this function

 if(!$connect) {

 die('Connection failed: ' . mysql_error());

 return false;

 }

 //select a apecific DB/Schema

 $dbname = 'ekene';

 mysql_select_db($dbname,$connect);

 if(!mysql_select_db($dbname)) {

 die('Selected database unavailable: ' . mysql_error());

 return false;

 }

 return $connect;

}

function getCleanString($input){

 $clean = mysql_real_escape_string(trim($input));

 return $clean;

}

function getDateTime() {

 $format = "Y-m-d H:i:s";

 $today = date($format);

 return $today;

}

function secondsToTime2($s){

 $h = floor($s / 3600);

 $s -= $h * 3600;

 $m = floor($s / 60);

 $s -= $m * 60;

 return $h.':'.sprintf('%02d', $m).':'.sprintf('%02d', $s);

}

function secondsToTime($s){

 return round($s,5)." secs";

}

192

function system_date($date,$mode=1){

 if(trim($date)!=""){

 if($mode==1){

 return date("jS-M-Y", strtotime($date));

 }else{

 return date("jS-M-Y h:i:s A", strtotime($date));

 }

 }

}

function format_number($number,$default=2){

 if($default==2){

 return number_format($number,2);

 }else{

 return number_format($number);

 }

}

?>

CONTROLLER.PHP

<?php

require_once("functions.php");

//use commands can only be on top of page script

require_once 'neo4j/graphaware/vendor/autoload.php';

use GraphAware\Neo4j\Client\ClientBuilder,

 GraphAware\Neo4j\OGM\EntityManager;

if(isset($_REQUEST['action'])) {

 $user_action = $_REQUEST['action'];

 $myresponse = "login";

 $_SESSION['error'] = array();

 if($user_action == 'new_record')

 $myresponse = newRecord();

 else if($user_action == 'new_record_store')

 $myresponse = newRecordStore();

 else if($user_action == 'new_record_category')

 $myresponse = newRecordCategory();

 else if($user_action == 'new_record_sale')

 $myresponse = newRecordSale();

 else if($user_action == 'view_mongo_sales')

 $myresponse = mongoDBSales();

 else if($user_action == 'view_cassandra_sales')

 $myresponse = cassandraSales();

 else if($user_action == 'view_redis_sales')

 $myresponse = redisSales();

 else if($user_action == 'view_neo4j_sales'){

193

 $myresponse = neo4jSales();

 }

 header('Location: ' . $myresponse);//

 exit;

}

function newRecord(){

 try{

 $con = connectAppDB();// COnnect to Database

 $user = getCleanString($_REQUEST['usernames']);

 $gender = getCleanString($_REQUEST['gender']);

 $phone = getCleanString($_REQUEST['phone']);

 $email = getCleanString($_REQUEST['email']);

 //First of all, the 2 passwords must match

 $insertcat = mysql_query("INSERT INTO users (usernames, gender, email, phone, createon)

 VALUES

 ('".$user."','".$gender."','".$email."','".$phone."','".date("Y-m-d H:i:s")."')");

 if ($insertcat != ""){

 $id = (int) mysql_insert_id();

 $_SESSION['divborder'] = "success";

 $_SESSION['error'][] = 'New Customer Record Added to MySQL successfully';

 }else{

 $_SESSION['error'][] = 'Sorry, an error occurred. Please try again later.';

 }

 $nextURL = "index.php";

 }catch(Exception $ex){

 $_SESSION['error'][] = $ex->getMessage();

 }

 return $nextURL;

}

function newRecordStore(){

 $caption = $_REQUEST['caption'];

 $cluster = Cassandra::cluster()->build();

 $keyspace = 'store';//database name

 $session = $cluster->connect($keyspace); // create session, optionally scoped to a keyspace

 //QUERY TO CREATE A DATABASE

 //CREATE KEYSPACE store WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 2 };

 //QUERY TO SELEC A DATABASE

 //USE MyKeySpace;

 //QUERY TO CREATE A TABLE

 //CREATE COLUMNFAMILY table_store (id uuid, Caption text, PRIMARY KEY(id));

194

 //QUERY TO SELECT RECORDS FROM TABLE

 //SELECT * FROM table

 //QUERY TO DROP TABLE

 //DROP TABLE IF EXISTS store.table_store

 //QUERY TO ADD NEW RECORD TO STORE TABLE

 $statement = new Cassandra\SimpleStatement("INSERT INTO table_store (id, caption) VALUES

(now(),'".$caption."')");

 $future = $session->executeAsync($statement); // fully asynchronous and easy parallel execution

 $result = $future->get(); // wait for the result, with an optional timeout

 $_SESSION['divborder'] = "success";

 $_SESSION['error'][] = 'New Store Record Added to Cassandra Database Successfully';

 $nextURL = "index.php";

 return $nextURL;

 /*

 foreach ($result as $row) {

 printf("The keyspace %s has a table called %s\n", $row['keyspace_name'], $row['columnfamily_name']);

 echo "
";

 }

 */

}

function newRecordCategory(){

 require "../predis/autoload.php";

 Predis\Autoloader::register();

 //The number of Redis databases is fixed, and set in the configuration file. By default, you have 16 databases

 try {

 $caption = $_REQUEST['caption'];

 $redis = new Predis\Client();

 //$redis->set('message', 'Hello world');

 // gets the value of message

 //$value = $redis->get('message');

 // Hello world

 //print($value);

 //echo ($redis->exists('message')) ? "Oui" : "please populate the message key";

 $user_id = $redis->incr('table_category:id');

 $redis->hmset('table_category:' . $user_id, 'caption', $caption);

 $redis->set('table_category:caption:'.$caption, $user_id);

195

 $redis->zadd('table_category:created_at', time(), $user_id);

 $_SESSION['divborder'] = "success";

 $_SESSION['error'][] = 'New Store Record Added to Redis Database Successfully';

 }catch (Exception $e) {

 die($e->getMessage());

 }

 $nextURL = "index.php";

 return $nextURL;

}

function newRecordSale(){

 try {

 $mng = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 $stats = new MongoDB\Driver\Command(["dbstats" => 1]);

 $res = $mng->executeCommand("products", $stats);

 $stats = current($res->toArray());

 $bulk = new MongoDB\Driver\BulkWrite;

 $customerid = $_REQUEST['customerid'];

 $storeid = $_REQUEST['storeid'];

 $productid = $_REQUEST['productid'];

 $amount = $_REQUEST['amount'];

 $document = [

 'id' => new MongoDB\BSON\ObjectId,

 'customerid' => $customerid,

 'store' => $storeid,

 'product' => $productid,

 'amount' => $amount,

 'createdon' => date("Y-m-d H:i:s")

];

 $bulk->insert($document);

 $mng->executeBulkWrite('products.records', $bulk);

 $_SESSION['divborder'] = "success";

 $_SESSION['error'][] = 'New Sale Record Added to MongoDB Database Successfully';

 } catch (MongoDB\Driver\Exception\Exception $e) {

 $filename = basename(__FILE__);

 echo "The $filename script has experienced an error.\n";

 echo "It failed with the following exception:\n";

 echo "Exception:", $e->getMessage(), "\n";

 echo "In file:", $e->getFile(), "\n";

 echo "On line:", $e->getLine(), "\n";

 exit;

 }

 $nextURL = "index.php";

196

 return $nextURL;

}

function neo4jSales(){

 $customerid = $_REQUEST['customerid'];

 $starttime = microtime(true);

 $client = ClientBuilder::create()

 ->addConnection('default', 'http://neo4j:userpass@localhost:7474') // Example for HTTP connection

configuration (port is optional)

 ->addConnection('bolt', 'bolt://neo4j:userpass@localhost:7687') // Example for BOLT connection configuration

(port is optional)

 ->build();

 $result = $client->run('MATCH (n:Sales) WHERE n.customerid='.($customerid).' RETURN n');

 $total_rows=0;

 echo '

';

 echo "

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 ";

 $n=1;

 $total_rows=0;

 foreach ($result->getRecords() as $record) {

 $total_rows++;

 echo "

 <tr>

 <td>".$n."</td>

 <td>".$record->get('n')->value('stores')."</td>

 <td>".$record->get('n')->value('products')."</td>

 <td>".format_number($record->get('n')->value('amount'))."</td>

 <td>".$record->get('n')->value('addedby')."</td>

 <td>".system_date($record->get('n')->value('addedon'),2)."</td>

 </tr>

 ";

 $n++;

 }

 $endtime= microtime(true);

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 echo '

 <script type="text/javascript">

 $(document).ready(function() {

 //$("#display_results").html("[");

 $("#sales_rows").html("[Total Records: '.$total_rows.']; [Total Time: '.$time_elapsed.']");

 });

 </script>

197

 ';

 exit;

}

function redisSales(){

 require "predis/autoload.php";

 $customerid = $_REQUEST['customerid'];

 $starttime = microtime(true);

 Predis\Autoloader::register();

 $total_rows=0;

 echo '

';

 echo "

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 ";

 $redis = new Predis\Client();

 $n=1;

 $total_rows=0;

 for($i=0;$i<200;$i++){

 $record = $redis->hgetall('record'.$customerid);

 $total_rows++;

 if(isset($record['customers'])){

 echo "

 <tr>

 <td>".$n."</td>

 <td>".$record['stores']."</td>

 <td>".$record['products']."</td>

 <td>".format_number($record['amount'])."</td>

 <td>".$record['addedby']."</td>

 <td>".system_date($record['addedon'],2)."</td>

 </tr>

 ";

 $n++;

 }

 }

 $endtime= microtime(true);

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 echo '

 <script type="text/javascript">

 $(document).ready(function() {

 //$("#display_results").html("[");

 $("#sales_rows").html("[Total Records: '.$total_rows.']; [Total Time: '.$time_elapsed.']");

 });

 </script>

 ';

 exit;

198

}

function cassandraSales(){

 $customerid = $_REQUEST['customerid'];

 $starttime = microtime(true);

 $cluster = Cassandra::cluster()->build();

 $keyspace = 'store';//database name

 $session = $cluster->connect($keyspace);

 $total_rows=0;

 $result = $session->execute(new Cassandra\SimpleStatement(

 "SELECT * FROM sales WHERE customerid = '".$customerid."'"

));

 echo '

';

 echo "

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 ";

 $total_rows=0;

 $n=1;

 foreach ($result as $record) {

 $total_rows++;

 echo "

 <tr>

 <td>".$n."</td>

 <td>".$record['stores']."</td>

 <td>".$record['products']."</td>

 <td>".format_number($record['amount'])."</td>

 <td>".$record['addedby']."</td>

 <td>".system_date($record['addedon'],2)."</td>

 </tr>

 ";

 $n++;

 }

 $endtime= microtime(true);

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 echo '

 <script type="text/javascript">

 $(document).ready(function() {

 //$("#display_results").html("[");

 $("#sales_rows").html("[Total Records: '.$total_rows.']; [Total Time: '.$time_elapsed.']");

 });

 </script>

 ';

 exit;

}

function mongoDBSales(){

199

 $customerid = $_REQUEST['customerid'];

 $starttime = microtime(true);

 $mongo = new MongoDB\Driver\Manager("mongodb://localhost:27017");

 $filter = ['customerid' => (int)$customerid];

 $options = [];

 $query = new \MongoDB\Driver\Query($filter, $options);

 $rows = $mongo->executeQuery('products.records', $query);

 echo '

';

 echo "

 <table class='table table-hover'>

 <tr>

 <th>#</th>

 <th>Store/Branch</th>

 <th>Product</th>

 <th>Amount(₦)</th>

 <th>Added By</th>

 <th>Date</th>

 </tr>

 ";

 $d=1;

 $total_rows=0;

 foreach ($rows as $document) {

 $total_rows++;

 echo "

 <tr>

 <td>".$d."</td>

 <td>".$document->store."</td>

 <td>".$document->product."</td>

 <td>".format_number($document->amount)."</td>

 <td>".@$document->addedby."</td>

 <td>".system_date($document->createdon)."</td>

 </tr>

 ";

 $d++;

 }

 $endtime= microtime(true);

 $timediff = $endtime - $starttime;

 $time_elapsed = secondsToTime($timediff);

 echo '

 <script type="text/javascript">

 $(document).ready(function() {

 //$("#display_results").html("[");

 $("#sales_rows").html("[Total Records: '.$total_rows.']; [Total Time: '.$time_elapsed.']");

 });

 </script>

 ';

 exit;

}

?>

200

APPENDIX B

SAMPLE OUTPUTS

Form Interface to store customer information into MySQL database

Form Interface to store branch data into Cassandra NoSQL

201

Form Interface to store Product information to Redis

Form Interface to store New Sale Information to MongoDB

202

Sales Information displaying records from Mysql (RDB) holding customer records, Cassandra

Nosql holding branch records, MongoDB Nosql holding sales records, amount and date of sales

and Redis NoSQL holding product information

Customer data information from MySQL (RDBMS). Graphical User Interface showing Action

buttons

203

Limitations of the Initial Sample Outputs

The sample outputs displayed above did not have any means of testing for speed and

performance as the records were manually added to the different databases which is not a true

representation of the realtime depiction of the functionality of the systems involved and how they

operate.

For the purpose of this downside of inability to automatically check for speed and movement of

data and also for validation purposes, simulations needed to be conducted using massive records

in order to ascertain the strengths and weaknesses of the various systems involved.

The initial tests conducted does not meet the requirements of the research as validation could not

be carried out as manual input of data could not be used to test for latency and throughput which

requires large volume of data to be sent to the database at the same time.

The researcher discarded this sytem and developed a more responsive system which was used to

test for speed and performance of the various systems which also helped in deducing the

strengths and limitations of the various systems (MySQL, MongoDB, Redis, Cassandra and

Neo4j) involved.

Installation of XAMPP Application: This application will install Apache Server, MySQL

RDBM, and PHP software.

204

Security Alert Encountered when Installing XAMPP Software

XAMPP Dashboard Control Panel

205

Complete Installation of XAMPP application Showing the Localhost Admin Page

Steps to Installing MongoDB

1. run installation file

2. open cmd prompt and navigate to

C:\Program Files\MongoDB\Server\3.6\bin

3. type mongodb to open power shell

4. now go to C drive and create these folders structure data/db

5. from the bin directory, run these commands

mongod.exe --dbpath c:\data

6. finally start the db using the command

start mongo.exe

MongoDB and PHP

1. install driver from

https://pecl.php.net/package/mongodb/1.2.8/windows

206

i installed 5.6 Thread Safe (TS) x86

To Start a New Project after Installation

1. navigate to C:\Program Files\MongoDB\Server\3.6\bin

2. type mongod.

3. open a new cmd a

4. navigate to C:\Program Files\MongoDB\Server\3.6\bin

5. type mongo

Steps to Integration of PHP and MongoDB

1. Install and Configure XAMPP

First, you should install the XAMPP stack. Download and install the XAMPP stack from Apache

friends project. Also, keep in mind that you can also install XAMPP on Linux as we discussed

earlier. After the install, start your Apache server from XAMPP controls and creates a simple

PHP file to get the detailed info about the PHP running with your stack. Just copy paste the

below lines to a test.php file in the htdocs folder and execute it to see the output.

207

2. Download PHP Mongo Driver

From this PHP Mongo Driver download page, download the appropriate file that matches the

PHP version, Architecture, Compiler in use and Thread Safety from the XAMPP that is installed

on your system.

3. Copy PHP Mongo DDL to EXT Directory

After you unzip the php monngo driver zip file, copy and paste the ―.dll‖ file to the folder

―C:\xampp\php\ext‖(Assuming that xampp is installed on C drive).

This ext folder all the ―.dll‖ files of all the extensions that are installed. XAMPP loads the driver

files for the extensions from this folder. After copying the file over here, rename the ―.dll‖ file to

―php_mongo.dll‖ for simplicity.

4. Add Extension to php.ini

208

Next, open the ―php.ini‖ file from the path ―C:\xampp\php‖ (again, assuming that xampp is

installed on C drive), and edit this file to add the name of the ―.dll‖ file as an extension. Add the

following line to the php.ini file.

extension=php_mongo.dll

5. Modify the PATH Variable

Go to control panel, and open the system settings to add the ―Environment Variable‖. Add the

path of the xampp php installation (C:\xampp\php) to the path variable, if it is not present

already. This ensures that the newly added ―.dll‖ file is loaded when xampp is started.

6. Restart Apache and Verify

Finally, restart the Apache server from the XAMPP control panel.

209

If everything is configured properly, xampp should not throw any error messages while starting

apache. You can also check the loaded extension by going through the first step and looking into

the php information.

You will be able to see the loaded extension information on the page as shown below.

STEPS TO INSTALL CASSANDRA NO-SQL DATABASE

Apache Cassandra

Apache Cassandra is a free and open-source distributed NoSQL database management system

designed to handle large amounts of data across many commodity servers, providing high

availability with no single point of failure

210

Step 1) Run the Datastax community edition setup. After running the Setup, following page will

be displayed. Here in the screenshot 64 bit version is being installed. You can download 32 bit

version as well according to your requirements. But I recommend 64 bit version to use.

This page gives you information about the Cassandra version you are going to install. Press the

'next' button.

Step 2)After pressing the 'next' button, following page will be

displayed.

211

This page is about the license agreement. Mark the checkbox and press the next button.

Step 3) After pressing the 'next' button, the following page will be displayed.

This page asks about the installation location.

1. Default location is C:\Program Files. You can change installation location if you want to

change. It is recommended not to change installation location.

2. After setting installation location, press the 'next' button

Step 4) After pressing 'next' button in above step, the following page will be displayed. This

page asks about whether you want to automatically start Cassandra and OpsCenter.

1. Mark the checkboxes if you to want to automatically start Cassandra and opsCenter.

2. After providing this information, press the 'next' button.

212

Step 5) After pressing the next button, following page will be displayed.

Setup has collected all the necessary information and now the setup is ready to install. Press

install button.

213

Step 6) After pressing 'install' button, following page will be displayed.

Datastax community edition is being installed. After installation is completed, click on next

button. When setup is installed successfully, press the 'Finish' button.

Completion phase of Cassandra Installation

214

Now you can create a keyspace, tables, and write queries.

Steps ti Install MSI Link:

Download MSI here

https://docs.nomagic.com/display/CEDW183/Installing+and+configuring+Cassandra+on+Windo

ws

Integration of PHP and Cassandra

Step 1: Download PHP Cassandra driver here

http://downloads.datastax.com/php-driver/windows/cassandra/v1.3.0/cassandra-php-driver-1.3.0-

5.6-ts-vc11-x86.zip

Step 2: Copy and Paste PHP Cassandra driver to this folder location: C:\xampp\php\ext

Step 3: Open php.ini file and add the code below

[Cassandra]

extension=php_cassandra.dll

Step 4: Restart the Apache web Server

Steps to Install Redis

Step 1: Download Redis-x64-2.8.2104.zip

https://github.com/MSOpenTech/redis/releases/tag/win-2.8.2104

Step 2: Extract the zip to prepared directory

Step 3: Run redis-server.exe

https://docs.nomagic.com/display/CEDW183/Installing+and+configuring+Cassandra+on+Windows
https://docs.nomagic.com/display/CEDW183/Installing+and+configuring+Cassandra+on+Windows
http://downloads.datastax.com/php-driver/windows/cassandra/v1.3.0/cassandra-php-driver-1.3.0-5.6-ts-vc11-x86.zip
http://downloads.datastax.com/php-driver/windows/cassandra/v1.3.0/cassandra-php-driver-1.3.0-5.6-ts-vc11-x86.zip
https://github.com/MSOpenTech/redis/releases/tag/win-2.8.2104

215

Step 4: Run redis-cli.exe

Powered Redis Server

216

MongoDB installation Setup

Mongodb Installation in progress

217

Complete installation of the MongoDB software

Complete installation of the DataStax (Cassandra) software

218

Welcome screen for the software installation of Cassandra NoSQL.

Php mysql integration

219

PHP MongoDB Integration

PHP Cassandra Integration

To initiate saving information to several other database engines.

220

Command Line Interface Displaying MongoDB Server Starting Up

Command Line Interface Displaying MongoDB Shell

221

Command Line Interface displaying Cassandra Shell and Sample Queries

Command Line Interface displaying Redis Server starting up

222

Powered Neo4j Server

Input operation for MySQL_Cassandra

223

Input operation for MySQL_Redis

Input operation for MySQL_Neo4j

224

Output operation for MySQL_Neo4j

Input operation for MySQL_Cassandra_MongoDB

225

Input operation for MySQL_Cassandra_Redis_MongoDB

Output operation for MySQL_Cassandra_Redis_MongoDB

226

Input operation for MySQL_Cassandra_Redis_Neo4j_MongoDB

Output operation for MySQL_Cassandra_Redis_Neo4j_Mongo

227

MySQL System

MySQL Add Query for 500 records

The Insertion operation was completed in 21.34 seconds. The time displayed shows that MySQL

system is slow for insertions.

MySQL Read Query for 500 records

The read operation for 500 records was completed in 0.02148 seconds. This query completion

time asserts that MySQL system is good for read operations.

228

Update Query for 500 records

The update query for 500 records was completed in 22.90267 seconds. The completion time for

the 500 records shows that MySQL system is not suitable for update operations.

Delete Query for 500 records

The delete operation for 500 records was completed in 0.185519 seconds. The result confirms

that MySQL performs deletion fast.

229

Excerption as a result of system timeout in MySQL

The system timed out as a result of the time limit of 120 seconds (2 minutes) which was set for

running tests for the systems. The time limit was increased to 1,200 seconds as a result of the

uncertainty of completion times experienced during the testing of the MySQL system.

Execution time increments for MySQL system

The query execution time was increased for MySQL when the insertion was increased from 500

to 5000 records. The increment was performed to decipher the MySQL performance when

records are larger. The add query operation which has already been noticed to be slow for 500

records and was completed in 21.33679 seconds timed out for the addition of 5,000 records.

230

MySQL Add Query for 5,000 records

Insertion of 5,000 records in MySQL system was completed in 212.87 seconds which is

approximately 4 minutes. As has been deduced from the insertion of 500 records which was

completed in 21.34 seconds, MySQL system is not a good fit for performing insertions.

MySQL Read Query for 5,000 records

The 5,000 records were read in 0.18324 seconds in MySQL system. This depicts strength in read

operations by MySQL system.

231

MySQL Update Query for 5,000 records

The query update for 5,000 records was completed in 242.30 seconds (4 minutes) in MySQL

database. MySQL performs update slowly.

MySQL Delete Query for 5,000 records

Deletion of 5,000 records was completed within 0.28454 seconds which shows that MySQL

performs deletion fast.

232

MySQL Insert operations for 10,000 records

This test shows creation or addition/insertion of 10,000 records made to MySQL system which

took 411.82 seconds, approximately 7 minutes. This means that MySQL system is very slow

when it comes to insertions.

MySQL Read Query for 10,000 records

MySQL performs very fast read operations as has been shown in the figure above where 10,000

records were updated within 0.35157 seconds.

233

MySQL Update Query for 10,000 records.

MySQL performed update on 10,000 records in 539.895 seconds which is 8.99 minutes

(approximately 9 minutes). This test shows that MySQL is not proficient for large records

updates and as such, should not be used in performing update-intensive operations.

MySQL Delete Query for 10,000 records

Deletion of 10,000 records was concluded in 0.168 seconds which signifies that delete operations

are fast in MySQL RDBMS.

MongoDB System

The review chapter confirmed MongoDB to be read-intensive and Cassandra write-intensive.

The tests below will be used as verification for that assertion.

234

MongoDB Insert Query for 500 records

MongoDB insert Query for 500 records was performed in 0.08 seconds. 500 records were used

to ascertain performance of MongoDB on relatively small record. The result shows that insert

operation is fast in MongoDB.

MongoDB Read Query for 500 records

Read Query for 500 records in MongoDB completed in 0.01545, a record time showing speed

for read operations in the MongoDB.

235

MongoDB Update Query 500 records

Update query for 500 records completed in 0.35 seconds in MongoDB which shows relative

speed for updates in the MongoDB NoSQL DBMS.

MongoDB Delete Query for 500 records

Delete query for MongoDB system completed in 0.02115 seconds in MongoDB proves that

MongoDB performs fast deletion.

236

MongoDB Insert Query for 5,000 records

Insert query in MongoDB completed in 0.76069 seconds

MongoDB Read Query for 5,000 records

Read Query in MongoDB completed in 0.14793 seconds showing that Read operation is fast for

MongoDB

237

MongoDB Update Query for 5,000 records

Update Query in MongoDb finished in 15.25472 seconds showing that MongoDB is relative fast

for Query Update but not as fast as Cassandra.

MongoDB Delete Query for 5,000 records

Delete operation finished at 0.12341 seconds in MongoDB.

238

MongoDB Insert Query for 10,000 records

Insert query finished in 1.27148 seconds for MongoDB which is slower thatn the Redis system

which has 0.78274 seconds as its completion time for 10,000 records.

MongoDB Read Query for 10,000 records

Read query was peformed in 0.26376 seconds in MongoDB. MongoDB is fast for read

operations.

239

MongoDB Update Query for 10,000 records

Update query for 10,000 records was completed in 58.6275 seconds which is significantly slower

that the 12.91777 seconds in the Cassandra system.

MongoDB Delete Query for 10,000 records

Delete Query for MongoDB completed in 0.18535 seconds.

Cassandra System

240

Cassandra Insert Query for 500 records

Add/Insert query completed in 1.42245 seconds for Cassandra. MongoDB performed the same

operation for 500 records in0.08013 seconds while Redis completed in 0.13782 seconds (Redis is

fastest for insertions).

Cassandra Read Query for 500 records

241

Read query took 0.07014 seconds to complete in Cassandra. MySQL and MongoDB took

0.02148 and 0.01545 seconds to finish.

Cassandra Update Query for 500 records

Update query was completed in 1.61405 seconds for Cassandra. Cassandra is write-intensive and

performs updates fast for large records.

Cassandra Delete Query for 500 records

Delete operation was completed in 1.50401 seconds in Cassandra.

242

Cassandra Insert Query for 5,000 records

Cassandra completed insertion of 5,000 records in 14.525 seconds while Redis did the same in

0.3924 seconds and MongoDB 0.6707 seconds; MySQL perfomed the same operation in

212.86839 seconds.

Cassandra Read Query for 5,000 records

243

Cassandra completed the Read operation in 0.20562 seconds which is not as fast as MySQL

which has completion time of 0.18324 seonds and MongoDB 0.14793 seconds.

Cassandra Update Query for 5,000 records

Update Query was completed in 14.41327 seconds. MongoDB performed the same operation in

15.255 seconds. Cassandra is best fit for update operation.

Cassandra Delete Query for 5,000 records

Delete query completed in 14.1387 seconds for Cassandra system. Cassandra is slow for delete

purpose.

244

Cassandra Insert Query for 10,000 records

Add query took 29.3038 seconds to complete in Cassandra system. Cassandra is not the best

option for insertion purpose in the hybrid system.

Cassandra Read Query for 10,000 records

Read query was completed in 0.17534 seconds for Cassandra system. MongoDB and MySQL

performed better for the same operation using the same amount of records.

245

Cassandra Update Query for 10,000 records

Update query completed in 12.91777 sseconds in Cassandra. Cassandra is very fast for large

volume of update operation.

Cassandra Delete Query for 10,000 records

Delete query completed in 12.55131 seconds.

Redis System

246

Redis Insert Query for 500 records

Insert query had completion time of 0.13782 seconds which is faster than all the other systems

for the same number of records. MySQL performed insertion of 500 records in 21.33679 seconds

showing that MySQL is very slow for insert operations.

Redis Read Query for 500 records

247

Read query shows 0.077155 seconds as the completion time. This falls behind MongoDBand

MySQL for the same operation, using the same number of records.

Redis Delete Query for 500 records

Delete query was completed in 0.04501 seconds for Redis. The completion time shows fast

delete operation for Redis.

Redis Insert Query for 5,000 records

Redis Insert query completed in 0.39238 seconds which is the fastest recorded time for insertion

among the systems tested.

248

Redis Read Query for 5,000 records

Redis read operation finished in 0.63152 seconds. Redis does not perform read-intensive

operations better than MySQL and MongoDB as these two systems have been enhanced for read

operations.

Redis Delete Query for 5,000 records

Delete query for 5,000 records was completed in 0.33558 seconds in Redis system. The

MongoDB and MySQL performed better than Redis in terms of delete operation with 0.12341

and 0.28454 respectively.

249

Redis Insert Query for 10,000 records

The insert query had a completion time of 0.78274 which is even faster than the MongoDB insert

operation which was completed in 1.27148 seconds. Redis is the fastest system tested in terms of

Add/ insert operations.

Redis Read Query for 10,000 records

250

Read operation was completed in 1.236 seconds depicting a relative fast read time. Read

operations are not the strong point of the Redis system as they perform better in insertions.

Figure 4 Redis Delete Query for 10,000 records

The Redis System complted the delete query in o.65028 seconds which shows that Redis is fast

for data deletion.

Neo4j System

Neo4j Insert Query for 10 records

The insertion of 10 records took a total of 11 seconds to accomplish which signifies slowness in

creation of records for Noe4j system.

251

Neo4j Read Query for 87 records

Read query for 87 records was completed in 1.145 seconds in the Neo4j system. Read operations

are performed faster than insert operations in Neo4j graph-based NoSQL system.

Neo4j Insert Query for 50 records

Neo4j accomplished insert query of 50 records in 53.402 seconds which is approximately 1

minute. Insertions are performed slowly for query data in Neo4j.

252

Neo4j Read Query for 137 records

The Read operation for 137 records was completed in 1.091 seconds which indicates slowness in

reading records by the Neo4j system.

Neo4j Insert Query for 100 records

The insert operation for 100 records was completed in 106.058 seconds. Small records were

inserted in Neo4j as it does not have the capacity to accommodate vast volumes of query data.

253

Neo4j Read Query for 237 records

The Read operation for 237 records which is a small amount of records was completed in 1.123

seconds in Neo4j system. This signifies that Neo4j is slow in reading records.

