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Abstract

The major motivation for this study is the desire to fully appreciate the
landscape of weak topology, a key tool in functional analysis. Thus a con-
structive approach was taken which provided the key to open up the weak
topology landscape and led to the exposure of several facts (erstwhile ob-
scure) about weak topology and topology in general. It is proved that the
well known co-finite topology on any nonempty set is a tree of many co-
finite-like topologies which were called semi-co-finite topologies. The concept
of reducibility of topologies was introduced and it was proved (among other
things) that the discrete topology of a set X cannot be reduced in a strong
sense if the cardinality of X is greater than 2. We proved that all the factor
spaces are discrete if a product topology is discrete in either finite or infinite
dimensional situations. We established the conditions for the inducement
by a weak topology on its range topological spaces (and inheritance by a
weak topology, from its range spaces) of the properties of the lower separa-
tion axioms of T0, T1, and T2 (Hausdorff). We then obtained the conditions
for the inducement by a weak topology on its range topological spaces (and
inheritance by a weak topology, from its range spaces) of the properties of
the higher separation axioms of Tychonoff, Normality, Regularity, Complete
Regularity, and Complete Normality. We proved that any nontrivial weak
topology is actually in the middle of a chain of pairwise strictly comparable
weak topologies. We proved that every seminorm topology, which already is
known to be locally convex, is actually the peak (maximum) of a sequence
of pairwise strictly comparable non-locally-convex weak topologies which are
generated by the given family of seminorms. We introduced the concepts of
complement of a topology, complement topology and the supra of a topology.
We introduced and defined the concept of Exhaustive Topology and showed
that the supra of a topology cannot be discrete if the topology is not exhaus-
tive. We also proved that no topology can exist between a topology τ and
the supra τs of τ and have a distinct supra from τs. We defined discrete weak
topology and indiscrete weak topology and showed that these weak topologies
may not be trivial as topologies.
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Chapter 1

INTRODUCTION

1.1 Background to the Study

The contributions of this thesis fall within the general area of Functional
Analysis, more specifically, in the area of Topology. The major point of focus
within the area is on Weak Topology, a very important aspect of Functional
Analysis. Over the years weak topology has become a very important tool in
the area of Functional Analysis; an area of active research interest. Topology,
often called analysis situs, can be seen as an extension and generalization
of Euclidean geometry; the result of generalizing the idea of nearness from
distance to openness. (Kelly (1975), Benjamin Sims (1976), Angus Taylor
and David Lay (1980), James Munkres (2007), and Morris (2016)) More
precisely we have the following definitions.

Definition 1.1 Let X be any non-empty set and let τ be a family of subsets
of X having the property that

1. ∅ ∈ τ ;

2. X ∈ τ ;

3. τ is closed under finite intersections; and

4. τ is closed under arbitrary unions.

Then τ is called a topology on X and the pair (X, τ) is called a topological
space.

Definition 1.2 If (X, τ) is a topological space, then a subset G of X is called
a τ -open set, or simply an open set if τ is clear from context, if G ∈ τ .
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Definition 1.3 If τ1 and τ2 are two topologies on a set X such that, say,
every τ1-open set is τ2-open, then the topology τ1 is said to be weaker (or
coarser) than the topology τ2. Conversely, we also say that τ2 is stronger (or
finer) than τ1.

Definition 1.4 If τ1 and τ2 are two topologies on a set X such that τ1 is not
weaker than τ2 and, also, τ2 is not weaker than τ1, then the two topologies τ1

and τ2 are said to be incomparable.

Definition 1.5 Let (X, τ) and (Y, γ) be two topological spaces. Let f :
(X, τ)→ (Y, γ) be a function on X into Y . Then f is said to be τ -continuous,
or simply continuous if τ is clear from context, if f−1(G) ∈ τ for all G ∈ γ.

Geometrically speaking, a function f is said to be continuous on an interval
if its graph over the interval can be drawn without removing pencil from
paper. Continuity of functions is a very important concept in analysis, as
such research efforts have been devoted to finding the minimal conditions
that guarantee the continuity of a function or classes of functions.

Let X be any nonempty set, let {(Yα, τα)} be a family of topological
spaces and let {φα} be a family of functions on X into Yα. It is of interest to
determine the weakest (smallest) topology on X with respect to which each
function in the family {φα} is continuous. Such a topology is called the weak
topology on X generated by the family of functions {φα}.

Theorem 1.1 Let {φα}α∈∆ be any family of functions on X into Yα, re-
spectively, in that φα : X → Yα, α ∈ ∆ . For each α ∈ ∆, we consider the
inverse images φ−1

α (Gα) where Gα ∈ τα. For simplicity, put Uα = φ−1
α (Gα)

and let U = {Uα} ⊂ 2X . And let B =
{
Bn
α =

n⋂
i=1

Uαi : Uαi ∈ U
}

, the family

of sets each of which is an intersection of a finite number of sets of U . Put
τ = { ⋃

α∈∆
Bα}, the collection of arbitrary unions of sets of B. Then

1. τ is a topology on X.

2. each φα is τ -continuous.

3. τ is the smallest topology on X with respect to which each φα is con-
tinuous.

Proof:
To show that τ is a topology on X, we only prove that
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• ∅ ∈ τ ,

• X ∈ τ ,

• τ is closed under finite intersections, and that

• τ is closed under arbitrary unions.

1. • Select only the empty set ∅ from each τα. That is, put ∅ = Gα ∈
τα. Then φ−1

α (Gα) = φ−1
α (∅) = ∅. =⇒ Nα =

n⋂
i=1

Uαi =
n⋂
i=1
∅ = ∅,

for such Gα. =⇒ ⋃
α∈∆

Nα = ∅, =⇒ ∅ =
⋃
α∈∆

Nα ∈ τ , =⇒ ∅ ∈ τ .

• Take Gα = Yα ∈ τα, for each α ∈ ∆. Then Uα = φ−1
α (Yα) = X,

for such Gα. Therefore Nα =
n⋂
i=1

Uαi = X, for such Gα. =⇒ X =⋃
α∈∆

Bα ∈ τ ; for such Gα. =⇒ X ∈ τ .

• We remark that the intersection of a finite number of sets of τ
is an arbitrary union of sets of B, and hence belongs to τ . That
proves closure under finite intersection.1

• Clearly any union, say V , of sets of τ is an arbitrary union of sets
of B, proving that V ∈ τ . Hence τ is a topology on X.

2. We observe that ∀Gα ∈ τα, on Yα, φ−1
α (Gα) ∈ τ , on X. Thus φα is

τ -continuous, ∀α ∈ ∆.

3. Suppose that γ is another topology on X with respect to which each
φα is continuous. Then this implies that ∀Gα ∈ τα, φ−1

α (Gα) ∈ γ.
But φ−1

α (Gα) ∈ τ . Hence φ−1
α (Gα) ∈ γ ∀ φ−1

α (Gα) ∈ τ . ⇒ τ ≤ γ.
This implies that τ is weaker than any other topology γ with respect
to which all the φα’s are continuous. That is, τ is the smallest such
topology.

Definition 1.6 The topology τ on X in Theorem 1.1 is the weak topology
on X generated or induced by the family {φα} of functions.

1To prove this in another way, it suffices to show that the intersection of two sets of τ is
a set of τ . So let

⋃
Bα and

⋃
Bγ be two sets of τ . Then (

⋃
Bα)

⋂
(
⋃
Bγ) =

⋃
(Bα

⋂
Bγ)

and this is a set of τ since it is a union of sets of B.
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1.2 Statement of the Problem

1. First, we observe that φ−1
α (Gα) ∈ τ if, and only if, Gα ∈ τα. Thus,

the topology of the range spaces play critical roles in determining the
resulting weak topology on X. How does the resulting weak topology
change with changes in the range space topologies? More precisely,
how does the resulting weak topology react to changes in the topology
of one range space?

2. The term weak topology conveys the idea of a coarser topology. Can
a weak topology on a set X be finer than a so called strong or usual
topology on the set? For instance, if X = IRn is there a weak topology
on X finer than the usual topology?

3. Let (X, ||.||) be a normed linear space. The norm topology or the
topology induced by the norm on X is called the strong topology on
X, the topology induced on X by the family X∗ (the dual of X) of all
the bounded linear functionals on X is called weak topology τw on X,
and the topology induced on X∗ by the family of bounded linear maps
(X∗∗) on X∗ is called the weak star topology τw∗. Most treatises tend
to give the impression that these are the only ”useful” topologies as far
as a normed linear space is concerned. Are there other ’useful’ weak
topologies of interest on X? Can a weak topology be constructed on X
which is finer than the strong topology? If answered in the affirmative,
this question has interesting implications on the issue of convergence
of sequences, series, nets and filters.

4. For any known class of functions, such weak topology, τ (say), on X is
such that if γ ≥ τ , then φα : (X, γ) −→ (Yα, τα) is continuous ∀α. That
is, {∅, X} ≤ τ ≤ γ ≤ 2X . Since anything that exists so far as weak
topology is created through a constructive approach, by exploiting and
analyzing the continuity property of functions, why should we stop at
the weak topology or weak topologies already achieved from construc-
tion? That is, why should the experimentation stop? Do we know, for
instance, if a weak topology can possibly be created which is stronger
than a ’strong topology’?

5. It may be interesting to estimate the size of this kind of topology for
a given class of functions, in order to know its relationship with other
(possibly weak) topologies on X. For example, the weak topology on
a normed linear space X is defined by some writers as the smallest
topology on X with respect to which a particular class of bounded
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linear maps, on X, are continuous. (See e.g. Hewitt (1950), Chidume
(1996).) How small or big is this weak topology when compared with
other possible weak topologies on the same normed linear space? It is
important to construct some other weak topologies on a typical normed
linear space in other to compare and contrast them.

6. Another particular example of a class of functions worth looking at
here is the class of projection maps on IR2. Take X = IR2 and Y1,Y2

(in Theorem 1.1) as IR1 and IR2. Then the class becomes {p1, p2} where
pi : IR2 → IRi is defined by pi(x, y) = x, if i = 1 and pi(x, y) = y, if
i = 2. IR is endowed with its usual topology. Then p−1

i [(xi, yi)] is an
open infinite strip in the plane, for each Gi = (xi, yi) open in IRi, 1 ≤
i ≤ 2. Their finite intersections p−1

i [(x,yi)]
⋂
p−1
j [(xj, yj)], 1 ≤ i, j ≤ 2

consists of open rectangles in the plane. Certainly as a base, these open
rectangles do not generate the discrete topology of IR2. Hence the weak
topology of IR2 in terms of the projection maps is strictly coarser than
the discrete topology of IR2 (except of course the factor spaces IRi are
endowed with discrete topologies).

7. This brings another point to light: The topology of each of the range
spaces of a class of functions contributes to the nature of their common
(weak) topology of continuity. This point underlines the need, again,
to construct by varying the range spaces. We can, for instance, take
a range space (or two) to be itself a weak topological space. If such
a weak topological space is not actually constructed, it would not be
clear what an open set in it would look like; and, hence, certainly it
would not be known what a subbasic or a basic open set in the second
inducement weak topology would look like. And so on.

8. For example, again let X = IR2 and IR1 (i.e. the horizontal factor space)
be endowed with the discrete topology while the vertical factor space,
IR2, is still endowed with the usual topology of IR, and p1, p2 remain
the respective projection maps. Then since singletons are open in IR1

it makes sense to consider their inverse images p−1
1 ({x}); x ∈ IR. These

inverse images are vertical infinite straight lines in the plane as shown
in the appended pages of tables (fig.1). From there, we observe that
the line p−1

1 ({x0}) is a strong (i.e. not broken) line; where x0 is a fixed
but an arbitrarily chosen element of IR. The inverse images of open
sets in IR2 will still be p−1

2 [(x, y)], where (x, y) is an open interval in
IR2 = IR. They are still represented by open infinite horizontal strips
of the form shown in fig.2. The intersections p−1

1 ({x0})
⋂
p−1

2 [(a, b)] of
these inverse images will be finite (in terms of length) line segments with
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open ends. Such lines will also be standing erect in the plane as shown
in fig.3. Hence the (weak) topology on IR2, of the projection maps,
in line with Theorem 1.1, will include as open sets finite (in length)
vertical straight lines with the end-points excluded. (By interchanging
the roles of IR1 and IR2 we will see that another weak topology on IR2

exists which includes finite horizontal straight lines, without the end-
points, as open sets.) It may also be noticed that since sets of the form
(a, b], [a, b), [a, b], (a, b), etc. are open in IR1, it follows that different
rectangles, including the open rectangles, as shown in fig.4 are all open
in this weak topology.

9. The last statement reveals yet another point. The discrete topology
of IR2 can be obtained as the weak topology of the projection maps
by taking the inverse images p−1(G) of projection maps of IR2 when
the factor spaces are endowed with their own discrete topologies. Of
course in the finite-dimensional case this idea is not new—yet again
we are in a uniquely right position here to not only ask the question
What about infinite dimensions? but to give the best answer so far
to it. One may also ask: What about the converse? We have an
important contribution with respect to its converse. This is part of
the discussions in Chapter 5. (References: Goodner (1950), Hewitt
(1953), Ptak (1954), Halmos (1958), Robertson (1958), Horvath (1966),
Schaefer (1971), Rudin (1973), Costa and Farber (2009), Douglas and
Nowak (2009), Niederkruger and Rechtman (2009), Shelluchin (2009),
Jean-Paul etal., (2009), Ramachandran and Wolfston (2009), Sabloff
and Traynor (2009), and Leininger and Margalit (2013).)

1.3 Aim and Objectives

The broad aim of this study is to explore deeply, and thus more fully appre-
ciate the vast landscape of Weak Topology by taking a constructive approach
and asking questions (maybe outside the box). More specifically, the objec-
tives of the study are to:

1. apply a geometric/constructive approach in studying weak topology.

2. determine how the resulting weak topology on a set X changes with
respect to changes in the topologies of the range spaces.

3. determine the process of inheritance or inducement of discreteness
property between a weak topology and the topologies of the range
spaces in a weak topological system.
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4. determine the process of inheritance and inducement of the lower sep-
aration axioms T0, T1, T2 (Hausdorff), and T2 1

2
(Tychonoff) properties

between a weak topology and the topologies of the range spaces in a
weak topological system. The same searchlight of inquiry is beamed
on the higher separation axioms such as regularity, normality, complete
regularity, and perfect normality.

5. investigate whether a fixed family of functions will always (or not al-
ways) generate different weak topologies on a set X—even as the range
topologies change—and to characterize the scenarios in general weak
topological systems.

1.4 Study Area and Scope

This study focuses on Weak Topology. Weak topology is a very important
aspect of Functional Analysis. Our focus is on extending and generalizing
various concepts relating to weak topology.

1.5 Some Historical Preliminaries

1.5.1 On Discreteness and the Separation Axioms

Rene Descartes (1596–1650) was the first man to come up with the idea of a
set whose elements are ordered coordinate points. In his work La Geometrie,
published in 1637, he visualized this kind of set to exist in the form of what
has come to be known as the Cartesian plane, after his name. Since most
geometrical shapes and figures idealized by the geometer, Euclid, can easily
be depicted pictorially on the Cartesian plane, some people also refer to this
plane as the Euclidean plane. The idea of Cartesian product sets has, since
the time of Descartes, also been extended beyond the plane—to arbitrary
product sets.

The first person to think of topologizing a (Cartesian) product set was
Tieze, who lived through the late nineteenth century to the early twentieth
century. His idea gave rise to the box topology ; also called Tieze topology by
some people. Soon after his contemporary, Tychonoff, constructed a topol-
ogy now commonly known as the product topology (or Tychonoff product
topology) on Cartesian product sets. (Angus Taylor and David Lay (1980))

Several topological results have since early twentieth century been estab-
lished in respect of (particularly) the product topology on Cartesian product
sets. Yet all is never done. Among our contributions in this work is the
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statement and proof (in section 4.5) that if a product topology is perfectly
normal, then all the factor spaces would be perfectly normal and, hence, com-
pletely normal. Also we proved (in that section) that if a product topology is
completely regular then all the factor spaces will be completely regular. And
we prove in section 4.4 that if a product topology is discrete, then all the
factor spaces are discrete. (Nachbin (1948), Nachbin (1954), Collins (1955),
Kakutani and Klee (1963), Seymour Lipschutz (1965), Johnson (1967), Ben-
jamin Sims (1976), Sheldon Davis (2005), D’Aristotile and Fiorenza (2006),
Buhovsky (2009), Yan Song (2013), Schirmer (2013), Greenwood and Lock-
yer (2013), Matkowski (2013), Abbas Mujaheed etal., (2013), Ikegami etal.,
(2013), Yukinobu Toda (2013), Bernard etal., (2013), and Morris (2016).)

1.5.2 Complement Topology: What is it?

It is known that a topology τ on a set X is the collection of all the open
subsets of X. Hence, a topology τ on a set X is a collection of subsets of X
which satisfy the axiom of openness ; the standard four conditions. Openness
of a subset is therefore relative to the topology under consideration. Some
sets which are considered closed in one topology are open in another topol-
ogy and vice-versa. A question of interest is Can all those sets considered
closed with respect to a topology on a set X be precisely the ones considered
open with respect to another topology on X? Of course, we are excluding the
trivial cases of the discrete and indiscrete topologies on X. This seemingly
academic but rather interesting question is the main motivation for the in-
quiry that led to the discovery of what we are inclined to call Complement
Topology. (Myers (1950), Bartle etal., (1955), Kelly (1955), Wada (1961),
Barov and Dijkstra (2009), Zhao and Liang (2011), Carmago etal., (2013),
Elias and Wilson (2013), and Delaroche (2013).)
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Chapter 2

LITERATURE REVIEW

2.1 The Usual Weak Topologies

Definition 2.1 Two linear spaces A and B, over the same scalar field, K,
are said to be in duality if A maps B into K via linear maps ϕa : B → K,
where ϕa(b) = 〈a, b〉, and a ∈ A are chosen arbitrarily and fixed; and B maps
A into K via linear maps ϕb : A → K where ϕb(a) = 〈a, b〉, and b ∈ B are
chosen arbitrarily and fixed.

Remark
The full meaning of the definition is that the pairing maps ϕa on B into K
are linear, and the pairing maps ϕb on A into K are linear. One may also
better understand this idea by looking at the following alternative definition.

Definition 2.2 By a dual system we mean a pair (A,B) of two linear spaces
over the same scalar field K, together with a bilinear form 〈., .〉 : A×B → K
on the product of A and B into K.

Definition 2.3 The duality (A,B) is said to be separated in B if the maps
ϕa are one-to-one, and separated in A if the maps ϕb are one-to-one. If the
duality is separated in both A and B then the dual system is simply said to
be separated.

WEAK TOPOLOGIES AND POLARS OF SETS

Definition 2.4 Let (X,X∗) be a dual system over K, where X∗ is the topo-
logical dual of X. Let A be a finite subset of X. Then the polar A◦ of A is
a subset of X∗ defined by
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A◦ = {f ∈ X∗ : |〈x, f〉| ≤ 1,∀x ∈ A}

Theorem 2.1 The collection τ = {A◦ : A is a finite subset of X} is a
topology on X∗, called the weak star topology.1

Definition 2.5 If we interchange the roles of X and X∗ in theorem 2.1 above
we get a topology on X, called the weak topology on X.2

Definition 2.6 If we collect the polars of compact subsets of X∗ we get the
Mackey topology on X.

Definition 2.7 If we collect the polars of bounded subsets of X∗ we get the
strong topology on X; and the strong topology coincides with the norm topol-
ogy.3

NOTE
Some writers (though not many) also call the weak topology the weakened
topology when they compare it with what they call the initial topology. Am-
biguity arises then in this area if we also note that some writers see the weak
topology as the initial topology itself. (See for instance Edwards (1995), page
89; and some internet references below.)

The process of Theorem 1.1 (which we have to reiterate is not our in-
novation) in this work results in the formulation of several weak topologies
depending on functions, their domain of definition and range spaces. Many
people have used the process to obtain some weak topologies, but certainly
not many people (to say the least) have used this process to construct weak
topologies. For example, using the process, one can easily believe that a
weak topology would be obtained on the Cartesian plane R2 if the projection
maps are the family of functions—resulting in a product topology—and the
range spaces are endowed with the cofinite topology. However, one should
not and cannot just believe any statement about the shape or structure of an
open set in such a weak topology if actual construction of the weak topology
has never been done. (And one might still ask: What is actual construction
here and when might it really be necessary. Answer: Actual construction
here means simply taking cofinite-topology-open sets (or generally speaking,

1It is our opinion that this is not the only topology on X∗ that is worth being called
weak star topology. Any family of functions on X∗ can be used to construct a weak star
topology on X∗. The acronym star is just an indication that the weak topology (in a
context) on X∗ is actually obtained on X∗. We also express similar thoughts and opinion
about what has definitively been called the weak topology on X.

2See Taylor and Lay (1980), page 157 on this; and Edwards (1995), pages 88-89.
3(Taylor and Lay (1980), page 168)
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open sets) in the range spaces and first collecting their inverse images under
the projection maps before finally building up the weak topology according
to Theorem 1.1. This actual construction might be needed when, for in-
stance, we want to obtain or construct another weak topology on any other
set using this cofinite topology induced weak topology as one of the range
topological spaces.) Strictly speaking, different ways of constructing weak
topology result in different weak topologies being obtained; since a change of
class of functions, a change of range spaces, or a change of domain space will
necessarily change the substance of the weak topology obtained. In all these
cases still it is only by constructing a weak topology that we can practically
know the geometrical properties of its open sets. In their discussion of Weak
Topologies some authors assume throughout the existence of bounded linear
maps of different sorts; in fact, from the outset some explain this topic as
the study of the relationship between a linear space and its conjugate or
dual space (Halperin (1953), Kolmogorov and Fomin (1957), Yosida (1968),
Angus Taylor and David Lay (1980), Rudin (1991), and Edwards (1995)).
We have to state here, though, that weak topologies do not have to do with
only dual systems; nor does it have to be defined among linear spaces which
are known to be in duality. In short, the existence (or otherwise) of linear
structure on a set does not make (or mar) the possibility of a weak topol-
ogy being obtained on the set. In fact, in some important applications of
topology—like in space-time physics—you cannot have linear structure on a
set before you get a topology on it. (What for instance would be 5Paris or
where will 3London+ 7NewY ork be?)

The somewhat narrow focus of research on weak topologies, the somewhat
even fewer results so far existing in this area, and the actual dearth of inten-
sive and extensive research activities on weak topologies in the recent times
have even made some mathematicians to come to a conclusion that nothing
new can come from any research effort entirely devoted to weak topology! We
are however not discouraged or deterred by this really dangerous conclusion;
if anything, we are rather encouraged and motivated by them. We re-viewed
the concept of weak topology here from the prism of constructive approach,
and the result is not discouraging.

One impeccable fact is this: Whenever a family of functions is changed,
or a range space is changed, or the domain space is changed, a different weak
topology is obtained. Accepting this fact and taking it for granted is not
enough. It is important that we go further to use it to construct as many
weak topologies as we can, in order to see what more we can see, and possibly
say more as we can about weak topologies.
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The following definition of the weak topology and the weak star topology
can also be found in existing literature, and no publication (past or present)
has opined that something more is needed—on the basis of the kind of insight
that practical construction can give.

Definition 2.8 Let E be a normed linear space over K(= R or C) and let
E∗ be the space of all bounded linear functionals on E. For each x ∈ E, fixed
but chosen arbitrarily, let ϕx be a function on E∗, ϕx : E∗ → K defined by
ϕx(f) = 〈x, f〉, ∀f ∈ E∗. Then the coarsest topology on E∗ relative to which
all the functions ϕx are continuous is known as the weak topology on E∗. This
is the topology often referred to as weak star topology, and it corresponds to
the one given in terms of polars. If we interchange the roles played by E
and E∗ and have (linear) functionals defined on E, in terms of elements of
E∗, ϕf : E → K, defined by ϕf (x) = 〈x, f〉 = f(x), where f ∈ E∗, we obtain
what is often (only) known as the weak topology on the linear space E.

We have to state here that some mathematicians have defined the weak
star topology, on E∗, as the coarsest topology on E∗ with respect to which
elements of a subspace of the bidual E∗∗ (precisely the range J(E) of the
canonical map of E) are continuous. They then defined the weak topology
on E∗ as the coarsest topology, on E∗, with respect to which all elements
of the bidual E∗∗ are continuous. Question: If we mean by the bidual E∗∗

the topological dual of E∗ what do we call the topology on E∗ generated by
the algebraic dual of E∗ (or a subspace thereof); and vice versa? The same
reasoning and final question applies to whatever we may have, before now,
called the weak topology on E. The fact is that the use of the article the in
the phrase: the weak topology on X is more or less an error (when either (a) it
is used to imply that only one fixed family of functions can induce what may
be called weak or weak star topology on a set, or (b) it is used to mean that
any given family of functions can induce only one weak or weak star topology
on a set X). And surprisingly (as will be seen in the excerpts at the end of
this section) many authors in this area of mathematical research have main-
tained the use of the article the in their definition of weak topology, without
due attention to the numerosity of weak topologies that can be constructed
on a set.4 This is why for instance some authors have stated some theorems
on weak topology as if only one weak topology is in existence. For example,

4Even a fixed family of functions can be used to obtain different weak topologies on
one set—by varying the topology of the range spaces. So, when we say the weak topology
or the weak star topology the next question would be, or should be: which one?
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in Proposition 6.9 on page 124 of Chidume (1996), it is explicitly stated that:
”The weak topology is Hausdorff.” Part of our contribution to knowledge in
this thesis is the exposition that some weak topologies are NOT Hausdorff.
(See subsection 4.1.13.) One topological property of one weak topology may
not be shared by other weak topologies.
And even if in the end it is accepted to define weak topology as one unique
topological object on a set, it is equally acceptable that the method (of The-
orem 1.1) used in obtaining such a topology on a set can be extended in use
to obtain other topologies, on the same set, which would deserve a name no
less than ’weak topologies’.
REMARK

1. It may be observed that E here is not taken to be a Banach space as
is done in some writings. Completeness of E is not necessary in this
definition; in fact there are cases in which E is just a linear space (not
normed). And in this work many of the constructions do not require a
linear structure on a set to be made possible.

2. We may observe that this (weak star) topology is usually the only other
weak topology that some mathematicians often talk about.

3. The functions ϕx are bounded and linear; and if we denote this weak
topology by τ , then even though the dual system (E,E∗) is separated
in E∗ we cannot say that all bounded linear maps (i.e. not only those
of the form ϕx) are continuous with respect to this topology τ . One
simple reason for this is that the maps ϕx are defined on E∗ whereas
the usual elements f of E∗ are defined on E. There are two classes
of bounded linear maps in focus here; those of the form φx on E∗ and
those of the form φf , f ∈ E∗ on E.

Let us now take some excerpts from literature on how different authors
have approached the concept of weak topology in terms of its definition.

1. ”Let E be a set and let {Yi}i∈I be a family of topological spaces. For
each i ∈ I we shall associate a map ϕi : E → Yi. Our problem of
interest is to find how to endow E with a smallest topology such that
the maps ϕi, i ∈ I are continuous.” Quoted from Chidume (1996), page
121.

2. ”Let E be a Banach space and f ∈ E∗. For each f ∈ E∗ we associate
a map ϕf : E → R defined by ϕf (x) = 〈f, x〉 = f(x) for all x ∈ E. As
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f ranges over E∗ we obtain a family {ϕf}f∈E∗ of maps of E into R.
Definition 6.6
The weak topology on E (denoted by ω) is the smallest topology on E
which makes the maps ϕf continuous.” Quoted from Chidume (1996),
page 124.

3. ”Suppose that E is a vector space, no topology on E being involved.
Let L be a vector subspace of E, and let E∗ be the algebraic dual of
E. Amongst those topologies on E∗ relative to which each function
x∗ → 〈x, x∗〉 is continuous, x being fixed but arbitrary in L, there is a
weakest. This topology is denoted by σ(E∗, L) and is termed the weak
topology on E∗ generated by L.” Quoted from Edwards R.E. (1995),
page 88, Subsection 1.11.1

4. ”Suppose again that E is a vector space with algebraic dual E∗. We
let M be a vector subspace of E∗. The method of Subsection 1.11.1
leads then to the topology σ(E∗∗,M). Using the device of injecting E
into E∗∗ (Subsection 1.4.7), we obtain the induced topology σ(E,M),
spoken of as the weak topology on E generated by M .
Naturally, σ(E,M) can equally well be defined without intermediate
reference to E∗∗ and the injection of E into E∗∗. It is simply the weakest
topology on E relative to which each of the linear forms x → 〈x, x∗〉,
x∗ being fixed but arbitrary, is continuous.” Quoted from Edwards R.E
(1995), page 88, Subsection 1.11.2

One may now wonder if the excerpts and quotations above cannot have more
modern, recent and even present-day updates, since the excerpts seem to
come from only (more or less) very old works. The answer to this is that
what one may call the latest ideas and updates on weak topology are not
radically different from the old ones. The following excerpts from some in-
ternet publications will illustrate this point.

SOME INTERNET REFERENCES

1. ”A normed vector space (X, ‖.‖X) automatically generates a topology,
known as the norm topology or strong topology on X, generated by
the open balls. . . . . . However, in some cases, it is useful to work in
topologies on vector spaces that are weaker than a norm topology. . . . .
. Two basic weak topologies for this purpose are the weak topology on a
normed vector space X, and the weak∗ topology on a dual vector space
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X∗.” Culled from page 1 of 13 of Internet publication titled The strong
and weak topologies: What’s new, by Terence Tao, 21 February, 2009,
via the link http://terrytao.wordpress.com/2009/02/21/245b-notes-11.
Terence Tao (2009)

2. ”Definition 2 (Weak and weak∗ topologies)
Let V be a topological vector space, and let V ∗ be its dual.

• The weak topology on V is the topology generated by the seminorms
‖x‖λ = |λ(x)| for all λ ∈ V ∗.
• The weak∗ topology on V ∗ is the topology generated by the semi-

norms ‖λ‖x = |λ(x)| for all x ∈ V ”. Culled from page 3 of
13 of Internet publication titled The strong and weak topologies:
What’s new, by Terence Tao, 21 February, 2009, via the link
http://terrytao.wordpress.com/2009/02/21/245b-notes-11.

3. ”Let X be a topological vector apace over K. We may define a possibly
different topology on X using the continuous (or topological) dual space
X∗. The dual space consists of all linear functions from X into the base
field K which are continuous with respect to the given topology. The
weak topology on X is the initial topology with respect to X∗. In other
words, it is the coarsest topology such that each element of X∗ is a
continuous function. A subbase for the weak topology is the collection
of sets of the form ϕ−1(U) where ϕ ∈ X∗ and U is an open subset
of the base field K.” Excerpted from Weak topology, on Wikipedia,
the free encyclopedia, 2013, page 2. While the author of this internet
publication did not make his/her name known, references were made to
works by Yosida Kosaku (1980), Gert Pedersen (1989), Walter Rudin
(1991), John Conway (1994),and Willard Stephen (2004).

4. ”More generally, if F is a subset of the algebraic dual space, then the
initial topology of X with respect to F , denoted by σ(X,F ), is the
weak topology with respect to X.” Excerpted from Weak topology, on
Wikipedia, the free encyclopedia, 2013, page 2. While the author of this
internet publication did not make his/her name known, references were
made to works by Yosida Kosaku (1980), Gert Pedersen (1989), Walter
Rudin (1991), John Conway (1994),and Willard Stephen (2004).

5. ”A space X can be embedded into X∗∗ by x 7→ Tx, where Tx(φ) =
φ(x). Thus T : X → X∗∗ is an injective linear mapping, though it
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is not surjective unless X is reflexive. The weak∗ topology on X∗ is
the weak topology induced by the image of T . In other words, it is the
coarsest topology such that the maps Tx from X∗ to the base field R or
C remain continuous.” Excerpted from Weak topology, on Wikipedia,
the free encyclopedia, 2013, page 3. While the author of this internet
publication did not make his/her name known, references were made to
works by Yosida Kosaku (1980), Gert Pedersen (1989), Walter Rudin
(1991), John B. Conway (1994),and Willard Stephen (2004).

6. Jawad Y. Abuhlail in his Ph.D. Dissertation (on On the Linear Weak
Topology and Dual Pairings Over Rings) in 2001, talked about linear
weak topology which has to do with R-pairing, R-modules, dual pairings,
dense pairings and locally projective modules. In this internet publica-
tion, the auther (in 2003) made references to Berning (1994), Bourbaki
(1974), Brszinski (2003), Garfinked (1976), Kothe (1966), Kelly and
Namioka (1976), Lambe and Radford (1997), Ohm and Rush (1972),
Radford (1973), Wisbaner (1991), and Zimmermann-Huisgen (1976).

From the foregoing, it may already be clear that even the so-called latest
writings on weak topology have not really brought any change to how the
concept is conceptualized : no blame is intended here. Certainly they seem
interested or involved in a discussion of the topic as a flash in the pan of what
they actually set out to do—use any definition of weak topology available to
them to achieve any goal they set out to achieve; not to use the definitions
to construct weak topologies in order to have a more practical feel of the
concept. The usual approach to the concept of weak topology can best be
described as theory on weak topologies while the approach to the concept
adopted here can be described as practice on weak topologies.

The existence of many versions and (even) variants of analytic definition
of weak topology again highlights the need to clarify this concept further,
and the constructive approach (adopted in this thesis) to formulating weak
topologies does not only come in handy in this regard: it also made more
discoveries about topology in general possible as revealed hereafter.
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Chapter 3

METHODOLOGY

3.1 Introduction

Necessarily in this work, we have applied the scientific method of research in
carrying out our study—encompassing hypothesis, observation, experimen-
tation, new theorems (when available) and their proof, and conclusions. Let
us briefly state below how these apply in the context of this thesis.

1. Hypothesis: The hypotheses are the basic definitions of topology,
open or closed sets, topological space, weaker and stronger topologies,
weak topology, continuity of functions, etc. These are outlined in the
background to the study.

2. Observations: We observed the variants and versions of weak topol-
ogy (in terms of the definition) in literature and we raised some ques-
tions concerning these various definitions.

3. Experimentation: We did not just raise the questions. We tried to
find answers to the questions by constructiong weak topologies. And,
in doing this, we strictly and rigidly followed the procedure already laid
down in Theorem 1.1.

4. New Theorems: The experiments we made with construction re-
sulted in new revelations coming up. Some of these new revelations are
stated and proved as new results.

5. Conclusions: Each section ends with a list of conclusive assertions
which are carried forward to the chapter on summaries, conclusions and
suggestions. These sectional summaries, conclusions and suggestions
altogether form chapter five.
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”A good research method should lead to:

• Originality/Novelty

• Contribution

• Significance

• Technical Soundness; and

• Critical Assessment of Existing Work

(Igbokwe (2009))

3.2 The Hyperplane-Open Weak Topologies

of IRn

In this section we practically construct weak topologies, compare or con-
trast them with other (weak) topologies, and describe, depict and sketch the
geometrical shapes and properties of open sets in such (weak) topological
spaces. In particular, we start off by bringing forth constructible and easy
to visualize examples of weak topologies such as

1. line-open topology in IRn; n ≥ 2

2. plane-open topology in IRn; n ≥ 3

3. hyperplane-open topology on IRn, generally.

Throughout the remainder of this work, IR will denote the set of real num-
bers, IN the set of natural numbers and IRn the product of n-copies of IR, for
each n ∈ IN. (For references see Bochner and Taylor (1938), Lefschetz (1949),
Williamson (1954), Koethe (1969), Porter (1996), Balacheff (2009), Stephen
(2004), and Klein etal., (2009).)

We know that in general, lines (curved or not) are not open in the usual
topology of the Cartesian plane IR2. It is also known that lines, curved or
straight, are open subsets of IR2 when the discrete topology is assumed. Is
there another topology on IR2 in which lines are open? If there are, are they
weak topologies and what is their landscape. We are here set to introduce
another topology on IR2, and indeed on IRn, with respect to which lines (even
if only straight ones) are open. We recall or observe that the usual topology
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of IR2 is generated (in line with theorem 1.1) by the projection maps when
the factor spaces of IR2 are themselves endowed with their usual topologies.

Construction 3.1 Consider IR2. Let the horizontal factor space IR1 be en-
dowed with the discrete topology (IR1, D) and the vertical factor space with
the usual topology (IR2, u). Then the coarsest topology on IR2 with respect to
which the projection maps p1 and p2 are continuous is called the vertical line
open topology because vertical lines are among the basic open sets in this
topology.

Singletons {x0} are open in the horizontal factor space (IR1). So p−1
1 ({x0})

is a subbasic open set in the resulting weak topology on IR2. Such a set is
an infinite (in length) vertical line passing through the point (x0, 0) in the
plane. That is

p−1
1 ({x0}) = {(x0, y) : y ∈ IR}.

Hence the basic open sets in this weak topology on IR2 include vertical lines
with finite lengths; that is, vertical lines with finite lengths without the end
points. To see this, we recall or observe that a sub-basic open set emanating
from the vertical factor space IR2, where the sets (a, b) are open, is of the
form

p−1
2 {(a, b)} = {(x, y) : a < y < b},

an infinite horizontal open strip. Its intersection with vertical lines will result
to finite vertical lines (without the endpoints) as open sets.

The result is that when the base for this weak topology is formed all
vertical lines in the plane, no matter their length, will turn out to be basic
elements and, as such, open in this resultant topology. (See fig.3) This topol-
ogy will include vertical lines of all lengths because the second factor space,
the vertical factor space, with usual topology still has intervals of various
lengths as open sets and the inverse images of such open intervals under the
second projection map, that is

p−1
2 {(a, b)} = {(x, y) : a < y < b}

will still be infinite horizontal strips. Their intersection with infinite vertical
lines will result to vertical lines of all lengths as open sets.

At this juncture one may still ask: How many topologies on IR2 are all
vertical lines open with respect to? For now we know there are two topolo-
gies (this Verical line open topology and the discrete topology) on IR2 with
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respect to which all vertical lines are open. We may still define the open
vertical line topology as the weaker topology on IR2 which makes all vertical
lines open.

Vertical lines are not the only open sets in this topology on IR2. In the
discrete topological factor space, the horizontal axis, every other type of set
(apart from singletons) is still open. In particular, subintervals of IR of the
form (a, b], [a, b), (a, b), [a, b] are all open. Hence the usual open rectangles,
vertically half-open, half-closed, and vertically closed rectangles are all open
in this open vertical line topology of IR2. It then follows that this topology
is strictly stronger than the usual topology of IR2 and yet strictly weaker
than the discrete topology of IR2 since, for instance, singletons are not open
in this topology. (Later we shall show how to construct weak topologies on
IRn, n ≥ 2 in which some singletons are open and others are not.)

Construction 3.2 Consider IR2 but now with the horizontal factor space IR1

endowed with the usual topology and the vertical factor space IR2 endowed with
the discrete topology. Then the horizontal line open topology on IR2 results.

As with the open vertical line topology of IR2, the open horizontal line topol-
ogy is generated by the projection maps. Also it is easy to see that the
open horizontal line weak topology is strictly stronger than the standard
Euclidean topology of IR2 and strictly weaker than the discrete topology of
IR2. We also observe that these two weak topologies (i.e. the open vertical
and the open horizontal line topologies of IR2) are not comparable; that is,
neither is stronger or weaker than the other. The intersection of these two
topologies on IR2 is finer than the usual topology of IR2. This is proved next.

Proposition 3.1 Let τv, τh and τu denote respectively the open vertical line,
the open horizontal line and the usual topologies on IR2. Then

1. τu ≤ τv;

2. τu ≤ τh; hence

3. τu ≤ τv
⋂
τh.

Proof:
1 and 2 are obvious from preceding discussions. For 3, let G ∈ τu. Then from
1, G ∈ τv; and from 2, G ∈ τh also. Therefore G ∈ τv and G ∈ τh, for all
G ∈ τu, as G ∈ τu is arbitrary. That is, G ∈ τv

⋂
τh,∀G ∈ τu. ⇒ τu ≤ τv

⋂
τh.
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Construction 3.3 Let n ≥ 3 and let X = IRn be the product of n copies of
IR. Let the projection maps pi : X −→ IRi, for 1 ≤ i ≤ n, be defined in the
usual way by pi(x̄) = xi, where x̄ = (x1, x2, · · · , xn), for all x̄ ∈ X. Let m
factor subspaces (1 ≤ m < n) be endowed with discrete topology and let the
remaining n −m factor subspaces retain the usual topology of IR. Then the
hyperplane-open topology of X(= IRn) is the coarsest topology on IRn relative
to which the projection maps are continuous.

In IR2, p−1
i ({xi0}) is a straight, infinite line perpendicular to the ith axis,

1 ≤ i ≤ 2, a 1-dimensional hyperplane perpendicular to the ith axis; for any
fixed point xi0 in the ith factor space. In R3, p−1

i ({xi0}) is a straight, infinite
plane (a 2-dimensional hyperplane) perpendicular to the ith axis, 1 ≤ i ≤ 3;
for any fixed point xi0 in the ith factor space. In IRn(n ≥ 4), p−1

i ({xi0}) is a
hyperplane (of dimension n− 1), 1 ≤ i ≤ n; for any fixed point xi0 in the ith
factor space. However, if n − 1 factor spaces are endowed with the discrete
topology, and the nth factor space with the usual topology, then the basic
open set

p−1
1 ({x1

0})
⋂
p−1

2 ({x2
0})

⋂ · · ·⋂ p−1
n−1({x(n−1)

0 }) =
n−1⋂
i=1

p−1
i ({xi0})

results in a one-dimensional hyperplane; a straight line (parallel to the nth
factor space which has the usual topology). So, in the product X = IRn, lines
are open in the hyperplane open topology if n− 1 factor spaces are endowed
with the discrete topology (and the nth factor space has the usual or possibly
any other topology on IR).

For example in IR3, exactly 2 factor spaces (only) have to be endowed
with the discrete topology for lines to emerge really as open sets. If we give
all three factor spaces of IR3 the discrete topology, then the resulting open
line topology would coincide with the discrete topology of IR3; and this agrees
with one of the theorems existing before. If only 1 factor space of IR3 is given
the discrete topology, then the resulting weak topology will have no lines as
open sets.
REMARK 3.1

1. We observe that m has to be strictly less than n in the last construction
since otherwise we would get the discrete topology of IRn.

2. What actually happens is that if we endow 2 factor spaces of IR3 with
the discrete topology and the remaining 1 factor space with the usual
topology of IR, then the line-open (weak) topology results. If we endow
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1 factor space of IR2 with discrete topology, then these open lines will
all be parallel to one axis of IR2; parallel to the vertical axis if the
horizontal factor space is endowed with the discrete topology, and vice
versa. In IR3, with 2 factor spaces given the discrete topology, all the
open lines will be parallel to the only 1 factor space retaining the usual
topology, and perpendicular to the plane of the two other factor spaces.

3. May be it is necessary at this point to prove that the line-open topolo-
gies constructed in this section are indeed all weak topologies. We only
prove that no other topology weaker than the assumed weak topology,
say τ , makes each of the projection maps continuous and we do this in
the general case of IRn.

Theorem 3.1 Let τ be the topology on IRn determined by the projection maps
on IRn when the factor spaces of IRn are endowed variously with discrete and
usual topologies of IR. (That is, some factor spaces of IRn are endowed with
discrete topology while the others retain the usual topology of IR.) Then τ is a
weak topology; the weak topology of IRn with respect to these projection maps.

Proof:
Let γ be another topology, on IRn, with respect to which each projection
map pi, 1 ≤ i ≤ n, on IRn, is continuous; with the factor spaces of IRn given
different topologies between the discrete and the usual topologies of R. Let
Ti, 1 ≤ i ≤ n be the topology given IRi in this arrangement. Then for each
open set Gi ∈ Ti, p

−1
i (Gi) ∈ γ, 1 ≤ i ≤ n. But p−1

i (Gi) are the sub-basic
sets of τ on IRn. It follows that, as γ is closed under finite intersections and
arbitrary unions, τ is weaker than γ.
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Chapter 4

MAIN RESULTS AND
DISCUSSIONS

4.1 Some Constructions and Their Implica-

tions

4.1.1 Point Open Weak Topologies on IRn

POINT-OPEN WEAK TOPOLOGIES OF IRn

We promised (just before Construction 3.2) to show how to construct
weak topologies on IRn, n ≥ 2, in which some singletons are open and others
are not. We fulfill that promise immediately.

Construction 4.1 Let X = {x1, x2, x3, · · · , xn} be any finite set of real num-
bers, and let 2X be the power set of X. Then {IR, 2X} is a topology on IR,
called (and introduced in this work as) the X-topology on IR. The point-open
weak topology on IRn is the weak topology, on IRn, generated by the projection
maps when the factor spaces are each endowed with the X-topology.

REMARK 4.1
We observe that actually some points of IRn (as singletons) are open in this
weak topology while the others are not. This is why we call this the point-
open weak topology of IRn. For example, let X = {x1, x2}; then 2X =
{∅, X, {x1}, {x2}} and the X-topology on IR is {∅, X, {x1}, {x2}, IR}. Let the
factor subspaces IR1 and IR2 (horizontal and vertical respectively) of IR2 be,
each, endowed with this X-topology. Then the only singletons open in the
weak topology of IR2, generated by the projection maps this time, are

p−1
1 ({x1})

⋂
p−1

2 ({x1}) = {(x1, x1)},
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p−1
1 ({x1})

⋂
p−1

2 ({x2}) = {(x1, x2)},
p−1

1 ({x2})
⋂
p−1

2 ({x1}) = {(x2, x1)},
p−1

1 ({x2})
⋂
p−1

2 ({x2}) = {(x2, x2)}.

If, say, all three factor spaces of IR3 are given this particular X-topology,
then the only open singletons of IR3 in the resulting weak topology would be
{{(x1, x1, x1)}, {(x1, x1, x2)}, {(x1, x2, x1)},
{(x2, x2, x2)}, {(x2, x2, x1)}, {(x2, x1, x2)}, {(x2, x1, x1)}, {(x1, x2, x2)}}.

We also note that some matrices of coordinate points (grid points) in the
Cartesian plane IR2 are open sets in the X-topology induced weak topology.
For example, we observe that

p−1
1 (X) = p−1

1 ({x1, x2}) = {(x, y) ∈ IR2 : x = x1}
⋃{(x, y) ∈ IR2 : x = x2}

= {(x1, y) ∈ IR2}⋃{(x2, y) ∈ IR2} = two vertical infinite lines and
p−1

2 (X) = p−1
2 ({x1, x2}) = {(x, y) ∈ IR2 : y = x1}

⋃{(x, y) ∈ IR2 : y = x2}
= {(x, x1) ∈ IR2}⋃{(x, x2) ∈ IR2} = two horizontal infinite lines.

Therefore

p−1
1 (X)

⋂
p−1

2 (X) = p−1
1 ({x1, x2})

⋂
p−1

2 ({x1, x2})
= {x1, x2} × {x1, x2} = {(x1, x1), (x1, x2), (x2, x1), (x2, x2)};

a 2× 2 matrix of four coordinate points. The matrix M is shown below.

M =

[
(x1, x2) (x2, x2)
(x1, x1) (x2, x1)

]

This matrix-open weak topology on the Cartesian plane may be compared
or contrasted with the cofinite topology induced weak topology (ahead, in
Section 4.2) in which matrices are actually closed sets.
REMARK 4.2

The type of topology called X-topology on IR here can be shown to be
generally available between any subset and its superset, and we show this
immediately in the proposition 4.1 below.

4.1.2 Subset-induced Topologies

Proposition 4.1 If X ⊂ E, then any topology, say τX , on X induces a
topology, say τXE, on E, given by τXE = τX

⋃{E}.
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Proof:

1. ∅ ∈ τXE, since ∅ ∈ τX .

2. E ∈ τXE, by definition.

3. Let {Gi}1≤i≤n ⊂ τXE. We show that
n⋂
i=1

Gi ∈ τXE. Clearly
n⋂
i=1

Gi ∈ τXE
if any of the Gis, 1 ≤ i ≤ n, comes from τX . If all the Gis are equal

(each) to E, then E =
n⋂
i=1

Gi ∈ τXE. So, in either case,
n⋂
i=1

Gi ∈ τXE for

all {Gi}1≤i≤n ⊂ τXE. Hence τXE is closed under finite intersections.

4. Let {Gα}α∈∆ ⊂ τXE be any number of sets in τXE. If one of the sets
is equal to E, say Gαo = E, then

⋃
α∈∆

Gα = E ∈ τXE, implying that⋃
α∈∆

Gα ∈ τXE. If Gα 6= E,∀α ∈ ∆, then
⋃
α∈∆

Gα ∈ τX ⊂ τXE, again

implying that
⋃
α∈∆

Gα ∈ τXE. Hence in any case τXE is closed under

arbitrary unions.

Definition 4.1 The topology τXE, on E, is called an X-topology on E; or a
topology induced on E by the topology τX on X.

Observe that one subset can induce several topologies on its superset.

Proposition 4.2 Let (E, τ) be a topological space, and let X ∈ τ be a τ -
open subset of E. Let τX = {G ∈ τ : G ⊂ X}. Then τX is a topology on
X.

Proof:

1. ∅ ∈ τX , since ∅ ∈ τ and ∅ ⊂ X.

2. X ∈ τX , since X ∈ τ and X ⊂ X.

3. Let {Gi}1≤i≤n ⊂ τX be any finite number of sets of τX ; and let N =
n⋂
i=1

Gi be the intersection of these sets. Then clearly N ∈ τ , as the

intersection of a finite number of sets of τ . Also it is clear that N ⊂ X,
since it is the intersection of some subsets of X. Hence N ∈ τX .
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4. Let {Gα}α∈∆ ⊂ τX be any family of sets of τX . Then
⋃
α∈∆

Gα = U ∈ τ ,

since τ is closed under arbitrary unions. Also U ⊂ X, as a union of
subsets of X. Hence U ∈ τX , implying that τX is closed under arbitrary
unions and, hence, a topology on X.

Definition 4.2 With X, E and τX as given in proposition 4.2, let τXE =
τX
⋃{E} be an X-topology on E. Then τXE is an open subset induced topol-

ogy on E.

Note We observe that the open subset induced topology τXE on E is
weaker than the topology τ on E.
It can be seen that Definition 4.2 is a particular case of Proposition 4.1.
EXAMPLES AND APPLICATIONS
Suppose that f : (X, τX)→ (Y, τY ) is not continuous. It might be of interest
to determine the strongest topology on Y weaker than τY with respect to
which f is continuous. Or, if f : (X, τX) → (Y, τY ) is continuous, to find
weaker topology than τY for which the mapping is still continuous.
EXAMPLE 4.1
LetX = IR= Y , and let τX = U (where U is the usual topology of IR), τY = D
(the discrete topology of R) and let f(x) = x2. Then f : (X, τX) → (Y, τY )
is not continuous since G = {4} ∈ τY but {−2, 2} = f−1(G) /∈ τX be-
cause f−1(G) is not U -open subset of IR. Let Z = (0,∞) ⊂ IR and let
U1 = {Z ⋂G : G ∈ U}⋃{IR}. Then U1 is a topology on Y , strictly weaker
than D. Let ηY = U1. Then f : (X, τX) → (Y, ηY ) is continuous. We also
observe that ηY is comparable to U and that for instance (−1, a) ∈ U but
(−1, a) /∈ ηY ,∀a ∈ R, a 6= −1.
EXAMPLE 4.2
Let U2 = {G ∈ U : G ⊂ [0,∞)}⋃{IR}. Then U2 is a topology on Y = IR.
Proof:

1. ∅, IR∈ U2.

2. Let Gi ∈ U2, i = 1, · · · ,m. Then Gi ∈ U and Gi ⊂ [0,∞), ∀i =
1, · · · ,m; or Gk = IR for some k ∈ {1, · · · ,m}. If all the Gi(i =

1, · · · ,m) are not equal to R, then
m⋂
i=1

Gi ⊂ [0,∞) and
m⋂
i=1

Gi ∈ U .

So
m⋂
i=1

Gi ∈ U2. And if all the Gi(i = 1, · · · ,m) are each equal to R,

then
m⋂
i=1

Gi = IR and so
m⋂
i=1

Gi ∈ U2. These imply that U2 is closed

under finite intersections.
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3. Let Gα ∈ U2, α ∈ ∆. Then Gα ∈ U and Gα ⊂ [0,∞),∀α ∈ ∆ or
Gα0 = IR, for some α0 ∈ ∆. Hence

⋃
α
Gα ⊂ [0,∞) or

⋃
α
Gα = R, either

of which implies that
⋃
α
Gα ∈ U2. The proof is complete.

Clearly U2 < U . Let ηY = U2. Then f : (X, τX) → (Y, ηY ) is continuous. If
θY is any topology on Y weaker than ηY then obviously f : (X, τX)→ (Y, θY )
is continuous since G ∈ θY ⇒ G ∈ ηY and so f−1(G) ∈ τX∀G ∈ θY .
EXAMPLE 4.3
Suppose f : (X, τX) → (Y, τY ) is not continuous. Let Z =

⋃{G ∈ τY :
f−1(G) ∈ τX}, and let ηY = {G ∈ τY : f−1(G) ∈ τX}. Then clearly ηY < τY
and

1. ∅, Z ∈ ηY ; observe that Z ⊂ Y .

2. Let Gi ∈ ηY ,∀i = 1, · · · ,m. Then Gi ∈ τY . And f−1(
m⋂
i=1

Gi) =

m⋂
i=1

f−1(Gi) ∈ τX , since τX is closed under finite intersections. Hence

m⋂
i=1

Gi ∈ ηY .

3. LetGα ∈ ηY , α ∈ ∆. ThenGα ∈ τY so
⋃
α∈∆

Gα ∈ τY . Also f−1(
⋃
α∈∆

Gα) =⋃
α∈∆

f−1(Gα) ∈ τX . Hence ηY is a topology on Z ⊂ Y . If Z = Y then

ηY is actually a topology on Y . Otherwise (i.e. if Z 6= Y ), then
η∗Y = ηY

⋃{Y } is a topology on Y and f : (X, τX)→ (Y, η∗Y ) is contin-
uous.

In fact, η∗Y is the strongest topology on Y , weaker than τY , with respect to
which f is continuous.
EXAMPLE 4.4
(alternative to Example 4.1)
Let f : (IR, u) → [0,+∞) ⊂ IR be a function defined by f(x) = x2; where
(IR, u) is the set of real numbers with its usual topology u. Clearly we
intuitively know that f is defined or continuous on all of IR. But which
topology do we give the range space IR of f in order to illustrate this con-
tinuity in terms of open sets of IR as the domain and as the range space?
One topology that easily comes to mind is the usual topology itself u of IR
since for any u-open subset G = (a, b) of [0,+∞), f−1(G) = f−1{(a, b)} =
(−
√
b,−
√
a)
⋃

(+
√
a,+
√
b) is a u-open set.1 But we know that f−1 is not

1x2 ∈ (a, b) ⇒ a < x2 < b. ⇒ +
√
a < x < +

√
b or −

√
a > x > −

√
b. Hence

x ∈ (−
√
b,−
√
a)
⋃

(+
√
a,+
√
b).
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defined for some u-open sets (for instance the interval (−
√
b,+
√
b) does not

exist in IR if b < 0). Generally f−1 is not defined on the open set (−∞, 0)
(and on all u-open subsets of (−∞, 0)). That is, the open set (−∞, 0) and all
u-open subsets of (−∞, 0) are irrelevant in the range space of f , in discussing
u-continuity of f ; though we know that f is u-continuous if IR as the range
is endowed the usual topology u. So we need a topology u1 on IR, strictly
weaker than (and containing all relevant or essential sets of) u in the range
space of f so that f : (IR, u)→ (IR, u1) is still u-continuous. This u1 may be
seen as the ’essential topology of the u-continuity of f ’.

Let X = (0,+∞) and put u1 = X-topology on IR defined as u1 = {G ∈
u : G ⊂ X}⋃{IR}. Then we see that

1. u1 makes f to be u-continuous in that f−1(G) ∈ u∀G ∈ u1.

2. u1 is strictly weaker than u.

3. All essential or relevant u-open sets for the discussion of continuity of
f , from the stand point of the range of f , are collected in u1 and all
the nonessential ones are left out.

The topology u1 on IR is special in that any topology strictly weaker than
u1 on IR will not contain some relevant u-open sets for the analysis of u-
continuity of f ; and any topology strictly stronger than u1 will contain some
irrelevant u-open sets for this analysis.
EXAMPLE 4.5
Let (X, τ) be a topological space and let K ⊂ X. Let
τ1 = {G ∈ τ : G ⊂ K} ∪ {K}
τ2 = {G ⊂ K : G ∈ τ or G = K}
τ3 = {G ∩K : G ∈ τ}.
These are the topologies induced on K by τ . We see that τ ∗i = τi ∪ {X},
i = 1, 2, 3, is a topology on X induced by K.
If f : (X, τX) → (Y, τY ) is continuous, might subset-induced topology still
be useful or needed? The answer is ’Yes’. Subset-induced topology might
be needed or useful if we wish to find topologies on Y , weaker than τY , with
respect to which f is continuous. In general the concept gives us flexibility in
the choice of topology we use for the analysis of the continuity of a function—
whether the function is continuous or not.

4.1.3 Reducible Topologies

The concepts of weak or strong reduction of topologies are introduced. Closely
related to these, and introduced as well, are the concepts of weak and strong
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base reduction of topologies. We also defined extensible topologies ; and de-
fined weak and strong base extension of topologies. We proved that there
exists a topology γ, weaker than a weak topology τ , on X, which has a
chain of strong reductions if one of the range spaces, say (Xα, τα) of τ , has
a chain of strong reductions. It is proved that the usual topology of the set
IR of real numbers can be reduced in the weak sense to chains of infinite
families of pairwise comparable topologies; and that the usual topology of
IR can neither be reduced in the normal sense nor in the strong sense. We
proved that a weak topology has a chain of weaker topologies if one of its
range topologies is reducible to a chain of topologies. (References: Agnew
and Morse (1938), Lefschetz (1942), Williamson (1956), Kelly and Namioka
(1963), Porter (1993), McLemman etal., (year unavailable), Dydak (1997),
Karimov and Repovs (2013), and Gothen etal., (2013).)

Throughout, X is a nonempty set.

Definition 4.3 A topology τ on X is said to be strongly reducible or
reducible in the strong sense if ∃G ∈ τ such that τ1 = τ − {G} is a
topology on X. The topology τ1 is called a strong reduction of τ .

EXAMPLE 4.6
Let X = {a, b, c} and τ = {∅, X, {a}, {c}, {a, c}}. Then τ on X is

strongly reducible, since there exists {a} ∈ τ such that τ1 = τ − {{a}} ≡
{∅, X, {c}, {a, c}} is a topology on X. Conversely, τ1 is a strong reduction of
τ .

Let X = {a, b, c} and τ = 2X = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.
Then τ = 2X is not strongly reducible.

Definition 4.4 A topology τ on X is said to be normally reducible or
simply reducible, or reducible in the normal sense if ∃Gi ∈ τ(i =
1, · · · ,m);m ∈ IN such that τ1 = τ − {G1, · · · , Gm} is a topology on X. Such
a topology τ1 is called a normal reduction of τ , or simply a reduction
of τ .

EXAMPLE 4.7
Let X = {a, b, c} and τ = 2X = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

Then τ = 2X is normally reducible, to
τ1 = τ − {{c}, {b, c}} ≡ {∅, X, {a}, {b}, {a, b}, {a, c}}.
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Definition 4.5 A topology τ on X is said to be weakly reducible or re-
ducible in a weak sense if ∃{Gα ∈ τ : α ∈ ∆} such that τ1 = τ − {Gα ∈
τ : α ∈ ∆} is a topology on X. The topology τ1 is called a weak reduction
of τ .

EXAMPLE 4.8
Let (IR, U) denote R with its usual topology U . Let X = (−∞, 0), and

τX = {G ∈ U : G ⊂ X}⋃{IR}. Then τX is a weak reduction of U , since
τX = U − {G ∈ U : G is not a subset of X}.
REMARK 4.3
1. Strongly Reducible =⇒ Normally Reducible =⇒ Weakly Reducible. But
the converses are not always true.
2. The indiscrete topology of a set cannot be reduced in any sense (strong,
normal or weak). In fact it is the weakest reduction of any topology.
3. In the first two examples above we saw that the discrete topology of X
is not reducible in the strong sense. This is actually a general fact for the
discrete topology of any set X whose cardinality is greater than 2; and we
state and prove that below as a theorem.
4. The discrete topology is not the only topology that is irreducible in the
strong sense. The usual topology of IR is not reducible in the strong sense.
This is stated and proved below as a proposition.

Theorem 4.1 (a) The discrete topology of X cannot be reduced in the strong
sense if the cardinality of X is greater than 2. (b) Every non-indiscrete
topology on a set X can be reduced in some sense (strong, normal or weak).

Proof:
(a) Let the cardinality of X be greater than 2 and let (X,D) be a discrete
topological space. Suppose G ∈ D and η = D− {G}. We need to show that
η is not a topology on X.
Without loss of generality, suppose G 6= {a}. Then there exist at least two
proper subsets of G and each is in D (as the discrete topology) and hence
separately in η. Since G is the union of all the proper subsets of G, it follows
(as G /∈ η) that η is not closed under arbitrary unions and is hence not a
topology on X.
Now suppose G = {a}, a singleton. Then from hypothesis X contains two
other mutually distinct elements x1, x2, each different from a. The sets G1 =
{a, x1} and G2 = {a, x2} are in D (as the discrete topology) and hence in η.
It is easy to see that G1 ∩G2 = G /∈ η; hence η is not a topology on X.
(b) Let τ be a non-indiscrete topology on X. Then the indiscrete topology
{∅, X} on X is a reduction of τ in some sense. The proof is complete.
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Proposition 4.3 The usual topology U of the set IR of real numbers is not
reducible in the strong sense.

Proof:
Let (IR, U) denote IR with its usual topology. Let η = U − {(a, b)},for some
(a, b) ∈ U . We show that η is not a topology on IR. For each n ∈ N put
Gn = (a+ b−a

2n
, b− b−a

2n
). Then each Gn is an element of U and an element of

η. Clearly (a, b) =
∞⋃
n=1

Gn, and since (a, b) /∈ η it follows that η is not closed

under arbitrary unions and is hence not a topology on IR.
NOTE

• Not only that the usual topology of IR cannot be reduced in the strong
sense; it can also not be reduced in the ’normal’ sense.

• There can be found many other topologies which are not reducible in
the strong sense. For example the lower limit topology of IR is not
strongly reducible and the upper limit topology of IR is not strongly
reducible. Yet infinitely many topologies can be reduced in the strong
sense—for example, the discrete topology of any set with only two
elements has a chain of strong reductions.

• So far it may appear that the only examples of strongly reducible
topologies available are finite topologies or topologies on finite sets. In-
finite topologies and indeed topologies on infinite sets can be strongly
reducible. The next example illustrates this.

EXAMPLE 4.9
Let IN = {0, 1, 2, · · ·} denote the set of natural numbers. For each n ∈ IN
let Gn be the set of all real numbers excluding the first n natural numbers.
Thus for instance

G0 = IR− {} = IR;

G1 = IR− {0};

G2 = IR− {0, 1};

G3 = IR− {0, 1, 2};

...

Gn = R− {0, 1, 2, 3, · · · , n− 1}
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Let TCIN = {∅, Gn}n∈IN. Then it is easy to see that

1. The empty set is in TCIN, from the way TCIN is defined.

2. The whole set IR of real numbers is in TCIN.

3. TCIN is closed under finite intersections.

4. And that TCIN is closed under arbitrary unions.

Hence TCIN is a topology on IR. We see that TCIN is strongly reducible since,
say τ = TCIN− {G5} is a topology on IR. (The topology TCIN here is one of
our interesting constructions in this thesis.)

Definition 4.6 A topology τ on X, with base B, is said to be strongly base
reducible or base reducible in the strong sense if there exists B0 ∈ B
such that B1 = B − {B0} is a base for a topology τ1 on X strictly coarser
than τ . Such a topology τ1 is called a strong base reduction of τ .

EXAMPLE 4.10
Let X = {a, b, c} and τ1 on X be τ1 = 2X

= {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Let B1 = {{a}, {b}, {c}} be a
base for the topology τ1 on X. Then τ1 with the base B1 is not strongly base
reducible.

However, if we endow X with the topology
τ2 = {∅, X, {a}, {b}, {a, b}, {a, c}}, with base B2 = {{a}, {b}, {a, c}}, then
τ2 would be strongly base reducible, for there exists {a} ∈ B2 such that
B3 = B2 − {{a}} ≡ {{b}, {a, c}} is a base for a topology τ3 on X given by
τ3 = {∅, X, {b}, {a, c}}.

Definition 4.7 A topology τ on X, with base B, is said to be base re-
ducible if there exists Bi ∈ B(i = 1, · · · ,m;m ∈ N) such that B1 = B−{Bi :
i = 1, · · · ,m} is a base for a topology τ1 on X strictly coarser than τ . Such
a topology τ1 is called a base reduction of τ .

Definition 4.8 A topology τ on X, with base B, is said to be weakly base
reducible or base reducible in the weak sense if ∃{Bα ∈ B : α ∈ ∆}
such that B1 = B − {Bα : α ∈ ∆} is a base for a topology τ1 on X strictly
coarser than τ . Such a topology τ1 is called a weak base reduction of τ .

EXAMPLE 4.11
Let (IR, U) denote the usual topological space of IR. Then B = {(a, b) :

a, b ∈ IR} is a base for U . Let B1 = {Bα ∈ B : Bα ⊂ (−∞, 0)}⋃{IR}. Then
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B1 is a base for a topology on IRstrictly weaker than U . That is, the topology
τX is a weak base reduction of (IR, U).
REMARK 4.4

A strongly base reducible topology is base reducible. A base reducible
topology is weakly base reducible but converses of these do not hold in gen-
eral..

Definition 4.9 A topology τ on X is said to be

1. strongly extensible if ∃G ⊂ X, G /∈ τ such that γ = τ
⋃{G} is a

topology on X. The topology γ is then called a strong extension of τ ;

2. extensible if ∃{Gi ⊂ X : Gi /∈ τ ; i = 1, · · · ,m;m ∈ IN} such that
γ = τ

⋃{G1, · · · , Gm} is a topology on X. The topology γ is called an
extension of τ ;

3. weakly extensible if ∃{Gα ⊂ X : Gα /∈ τ ;α ∈ ∆} such that γ =
τ
⋃{Gα}α∈∆ is a topology on X. Such a γ is then called a weak exten-

sion of τ .

Definition 4.10 A topology τ on X with base B is said to be

1. strongly base extensible if ∃B0 ⊂ X, B0 /∈ B such that Ω =
B
⋃{B0} is a base for a topology γ on X finer than τ . The topology γ

is then called a strong base extension of τ ;

2. base extensible if ∃{Bi ⊂ X, Bi /∈ B, i = 1, · · · ,m;m ∈ IN} such that
Ω = B

⋃{Bi; i = 1, · · · ,m} is a base for a topology γ on X finer than
τ . The topology γ is called a base extension of τ ;

3. weakly base extensible if ∃{Bα ⊂ X: Bα /∈ B,α ∈ ∆} such that
Ω = B

⋃{Bα : α ∈ ∆} is a base for a topology γ on X finer than τ . In
this case the topology γ is called a weak base extension of τ .

The following propositions hold true obviously from the definitions above.

Proposition 4.4 A topology τ on X is

1. strongly extensible if, and only if, τ is a strong reduction of some topol-
ogy γ on X;

2. extensible if, and only if, τ is a reduction of some topology γ on X;
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3. weakly extensible if, and only if, τ is a weak reduction of some topology
γ on X.

Proposition 4.5 A topology τ on X with base B is

1. strongly base extensible if, and only if, τ is a strong base reduction of
some other topology γ on X;

2. base extensible if, and only if, τ is a base reduction of some topology γ
on X;

3. weakly base extensible if, and only if, τ is a weak base reduction of some
topology γ on X.

Definition 4.11 Let τ be a strongly reducible topology on X. If τ1 is a strong
reduction of τ , τ2 a strong reduction of τ1, τ3 a strong reduction of τ2, and
so on, then the pairwise comparable family

C = {τn}n∈IN

of topologies on X is called a chain of strong reductions of τ on X.

EXAMPLE 4.12
Let X = {a, b, c} and τ on X be τ = {∅, X, {a}, {c}, {a, c}}. Then

τ1 = {∅, X, {c}, {a, c}} or τ1 = {∅, X, {a}, {a, c}} is a strong reduction of
τ . Also τ2 = {∅, X, {c}} or τ2 = {∅, X, {a}} or {∅, X, {a, c}} is a strong
reduction of τ1. And τ3 = {∅, X} is a strong reduction of τ2. Hence the
family

C1 = {τ1, τ2, τ3}

is a chain of strong reductions of τ .
For the topology τ on X given by τ = {∅, X, {a}, {c}, {a, c}, {b, c}} a chain
of strong reductions can be obtained as follows:
τ1 = {∅, X, {a}, {c}, {a, c}}; τ2 = {∅, X, {a}, {a, c}}
τ3 = {∅, X, {a}}; and τ4 = {∅, X}.
We see that

τ4 < τ3 < τ2 < τ1 < τ ;

and that

C2 = {τ1, τ2, τ3, τ4}
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is a chain of strong reductions of τ .
REMARK 4.5
We notice first that a strongly reducible topology can be reduced to a chain
of pair-wise comparable topologies. Secondly, there is often more than one
way of getting a chain of strong reductions of a strongly reducible topology.

The chains C1 and C2 in the last example are simple enough, in that
they are (each) finite. Hence one may wonder if the only examples of chain
of strong reductions (of a topology) that could be found are those that are
finite. Actually examples of denumerable chains of reductions exist. For
example, the topology TCIN on IR that we constructed above, just before def-
inition 4.6, has a countably infinite chain of strong reductions. To see this,
we observe that

TCIN =
∞⋃
n=0
{τn}

where τ0 = {∅, IR}, τ1 = τ0 ∪ {G1}, τ2 = τ1 ∪ {G2}, and so on. Then

C = {τ0, τ1, τ2, · · ·}

is a countably infinite family of strong reductions of TCIN.

Definition 4.12 Let τ be a (strongly or weakly) reducible topology on X. If
C1 and C2 are two chains of (weak or strong) reductions of τ such that for
each τ1i ∈ C1, there exists τ2j ∈ C2 such that τ1i is weaker than τ2j, then we
say that the chain C1 is weaker than the chain C2.

Definition 4.13 Let τ be a (strongly or weakly) reducible topology on X. If
C1 and C2 are two chains of (weak or strong) reductions of τ such that for
each τ1i ∈ C1, there exists a τ2j ∈ C2 such that τ1i is strictly weaker than τ2j,
then we say that the chain C1 is strictly weaker than the chain C2.

Definition 4.14 If C1 and C2 are two chains of reductions of τ on X such
that C1 is weaker than C2 and C2 is weaker than C1, then we say that C1 is
equivalent to C2.

Definition 4.15 If C1 is not weaker than C2 and C2 is not weaker than C1,
then we say that C1 and C2 are not comparable.

EXAMPLE 4.13
Let X = {a, b, c} and τ on X be τ = {∅, X, {a}, {c}, {a, c}}. Let C1 =
{τ11, τ12, τ13} where τ11 = {∅, X, {c}, {a, c}}, τ12 = {∅, X, {c}}, and τ13 =
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{∅, X}. Then C1 is a chain of strong reductions of τ .
Let C2 = {τ21, τ22, τ23} where τ21 = {∅, X, {a}, {a, c}}, τ22 = {∅, X, {a, c}},
and τ23 = {∅, X}. Then C2 is another chain of strong reductions of τ .

We see that C1 and C2 are not comparable because the topology τ12 in
C1 is not comparable to any topology in C2; and τ21 in C2 is not comparable
to any topology in C1.
EXAMPLE 4.14
Let C1 remain as in the example above and let C3 = {τ31, τ32, τ33} where
τ31 = {∅, X, {c}, {a, c}}, τ32 = {∅, X, {a, c}}, and τ33 = {∅, X}. Then C3 is
another chain of strong reductions of τ and we see that C1 is weaker (but
not strictly) than C3, since every topology in C1 is weaker than τ31. And if
we also observe that every topology in C3 is weaker than τ11, then we know
that C1 and C3 are equivalent.
EXAMPLE 4.15
Let (IR, u) denote the set of real numbers with its usual topology. Let IZ
denote the set of integers. For each z ∈ IZ, let Xz be the u-open interval
Xz = (−∞, z). Then clearly

{G ∈ u : G ⊂ Xz} = {G ∈ u : G ⊂ (−∞, z)}

is a topology on Xz. Let τz = Xz-topology on IR; in that τz = {G ∈ u : G ⊂
Xz}

⋃{IR} = {G ∈ u : G ⊂ (−∞, z)}⋃{IR}.
Then clearly if z1 < z2, Xz1 ⊂ Xz2 and τz1 is weaker than τz2 . Hence the
family

CZ = {τz}z∈IZ

is a chain of weak reductions of the usual topology on R, in that

· · · < τz−2 < τz−1 < τz0 < τz1 < τz2 < · · · < u,

where u is the usual topology on IR.
For each n ∈ IN, letXn = (−n, n) and let τn = {G ∈ u : G ⊂ Xn}

⋃{IR} be
an Xn-topology of IR obtained from the usual topology on IR. For instance,
X1 = (−1, 1) and τ1 = {G ∈ u : G ⊂ X1}

⋃{IR} is an X1-topology on
IR strictly weaker than the usual topology on IR. Also X2 = (−2, 2) and
τ2 = {G ∈ u : G ⊂ X2}

⋃{IR} is an X2-topology of IR obtained from the
usual topology on IR. And so on. Then

CIN = {τn}n∈IN

is a chain of weak reductions of u. Since, for each n ∈ IN, (−n, n) is a proper
subset of (−∞, n), we see that the chain CIN = {τn}n∈IN is strictly weaker
than CIZ = {τz}z∈IZ.
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EXAMPLE 4.16
If we replace IZ in example 4.15 with Q (the set of rational numbers) we
obtain another chain of weak reductions

CQ = {τq}q∈Q

of the usual topology of IR. And we see that CIQ and CZ are equivalent.
EXAMPLE 4.17
If we replace IZ in example 4.15 with IQc (the irrational numbers) we obtain
yet another chain of weak reductions

CIQc = {τqc}qc∈IQc

of the usual topology of IR. We see that CIQc is equivalent to both CIQ and
CIZ. Also CIQc is an uncountable chain of (weak) reductions while CIQ and CIZ

are countable.
EXAMPLE 4.18
We may replace IZ, in example 4.15, with IR itself and get another chain of
reductions

CIR = {τr}r∈IR

of the usual topology u of IR.
EXAMPLE 4.19
Another chain of reductions of the usual topology of IR may be obtained in
a different way. Let

X0 = IR;

X1 = (−∞, 1)
⋃

(1,∞);

X2 = (−∞, 1
2
)
⋃

(1,∞);

X3 = (−∞, 1
3
)
⋃

(1,∞);

...

Xn = (−∞, 1
n
)
⋃

(1,∞).

Let τ0 = X0-topology on IR (i.e. the usual topology on IR), τ1 = X1-topology
on IR, τ2 = X2-topology on IR, τ3 = X3-topology on IR, · · · , τn = Xn-topology
on IR.
Then the pair-wise comparable chain
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{τn}n∈IN

of topologies is a chain of reductions of the usual topology of IR.
EXAMPLE 4.20
Let

X1 = (−∞,−1)
⋃

(1,∞);

X2 = (−∞,−1
2
)
⋃

(1
2
,∞);

X3 = (−∞,−1
3
)
⋃

(1
3
,∞);

...

Xn = (−∞,− 1
n
)
⋃

( 1
n
,∞).

Let τ1 = X1-topology on IR, τ2 = X2-topology on IR, τ3 = X3-topology on
R, · · · , τn = Xn-topology on IR. Then τn ≤ τn+1 (since Xn ⊂ Xn+1); and,
hence, the pair-wise comparable chain

{τn}n≥1

of topologies is a chain of reductions of (or, conversely, extensions under) the
usual topology of IR.
EXAMPLE 4.21
Let r > 0 be a positive real number. Then the interval Xr = (−r, r) is a
u-open subset of IR. The family

τr = {G ∈ u : G ⊂ Xr}
⋃{IR}

is an Xr-topology on IR. It is easy to see that τr is weaker than τs if r < s; and
that τr tends to the usual topology of IR as r → ∞. Hence the uncountable
chain

HR = {τr}r>0

of pair-wise comparable topologies is another chain of weak reductions of the
usual topology of IR.

What happens on a weak topology in terms of reducibility? We show
below that if τ is a weak topology on a set X, and one of the range spaces
of (X, τ) is reducible in the strong sense, then there exists a chain of weak
topologies, each weaker than τ , on X (generated by the fixed family of func-
tions), which are a chain of reductions of τ (not necessarily in the strong
sense) if the function associated with the strongly reducible range space has
requisite properties. We prove this next in a theorem.
The following lemma will be useful in the theorem that follows after.
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Lemma 4.1 If τ is a topology on X and τ1 = τ
⋃{G} is a topology on X

(where G /∈ τ), then τ1 is only one set, G, strictly finer than τ .

Proof:
τ1 is a strong extension of τ and is, hence, only one set strictly finer than τ .
NOTE
What Lemma 4.1 says is that the introduction of just one set G into a
topology τ to produce another topology τ1 does not make τ1 to have more
than one open set (either from finite intersections or arbitrary unions) than
τ—and that the extra open set is precisely G.

Theorem 4.2 Let (X, τ) be a weak topological space generated by the family
{(Xα, τα)} of topological spaces, together with the family {fα} of functions.
There exists a chain of weak topologies, each weaker than τ , on X (generated
by this fixed family of functions), which are a chain of reductions of τ if (a)
one of the range spaces, say τα, has a chain of strong reductions, (b) fα is
one-to-one, and (c) fα maps into all the elements of each topology in the
chain of strong reductions of τα.

Proof:
Let (Xα, τα) be the range space meeting the hypotheses, for some α ∈ ∆,
and let

CΓ = {τr}r∈Γ

be a chain of strong reductions of τα. Let τr1 and τr2 be any two topologies
in CΓ such that, say τr1 is strictly weaker than τr2 by one set. That is, τr1 is
a strong reduction of τr2 . Let

τ1 = {f−1
α (G1i) : G1i ∈ τr1}

and

τ2 = {f−1
α (G2i) : G2i ∈ τr2}.

Then clearly

n⋂
i=1

f−1
α (G1i) = f−1

α

[
n⋂
i=1

(G1i)
]
∈ τ1,

as τr1 is closed under finite intersections. That is, τ1 is closed under finite
intersections. Also ⋃

f−1
α (G1i) = f−1

α (
⋃
G1i) ∈ τ1,
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implying that τ1 is closed under arbitrary unions. It is easy to see that
∅, X ∈ τ1 as ∅, Xα ∈ τr1 . Hence τ1 is a topology on X, corresponding to τr1 .
Similarly τ2 is a topology on X corresponding to τr2 . It is easy to see that
both τ1 and τ2 are weaker than τ .

It is obvious that τ1 is weaker than τ2 and (by Lemma 4.1) that τ1 is only
one set less than τ2. That is, τ1 is a strong reduction of τ2.

As τr1 and τr2 in CΓ are arbitrary it follows that there corresponds to
CΓ a chain C of topologies on X of pair-wise comparable topologies which
can be arranged in such a way that each one is strictly weaker than the next
by only one set. If we let the elements of C to represent the (hypothetical)
range space (Xα, τα)—one after the other—in the collection of sub-base for
weak topologies on X while leaving the other range spaces unchanged, the
required chain of weaker weak topologies on X will emerge. The proof is
complete.

Theorem 4.2 indicates that a fixed family of functions can generate a
family of pairwise comparable weak topologies. Further research may now
embark on finding more considerations for this result. This is part of the
developments in the sections ahead.
NOTE

So far, all the chains of strong reduction of topologies given in this section
are countable. The question then arises as to whether there can be an un-
countable chain of strong reductions of some topology. For example, can an
uncountable chain of strong reductions be obtained for the ususal topology of
R? Further, if a range topology for a weak topology has an uncountable chain
of strong reductions, what is the implication of this on the weak topology?
That is, does the weak topology in this case inherit this property? Can we
characterize the weak topologies for which there exist families of other weak
topologies which are chains of strong reductions of the given weak topologies?
Answers to these questions are as yet unknown.

4.1.4 Reducible Topologies—Lattices

We recall the following definitions.

Definition 4.16 A relation R on a set X is called a partial order on X if

1. R is reflexive; in that xRx, for all x ∈ X,

2. R is transitive; in that xRy and yRz implies xRz,

42



3. R is anti-symmetric; in that xRy and yRx implies x = y.

Definition 4.17 A set X on which a partial order is defined is called a
partially ordered set; in brief, a poset.

Definition 4.18 If X is a poset, with partial order R, and xRy, then we
say that x precedes y, written x ≺ y. We then analogously also say that y
dominates x. If x precedes y and x 6= y, we say that x properly precedes y or
y properly dominates x.

Definition 4.19 Let X be a poset with R. Then x is called a lower bound of
y if x ≺ y; and then y is called an upper bound of x.

Definition 4.20 Let X be a poset with R. An element x0 of X is called the
first or the least element of X if x0 precedes every other element of X. The
last or greatest element of X is that which dominates every other element of
X.

Definition 4.21 Let X be a poset. An element x0 of X is called a minimal
element if no element of X properly precedes x0.

NOTE
If x0 is a minimal element of a poset X and x ≺ x0, then x = x0. Also, every
first element is a minimal element but a minimal element may not be a first
element.

Definition 4.22 Let X be a poset. An element y0 of X is called a maximal
element if no element of X properly dominates y0.

Definition 4.23 Let X be a poset. Let T be a subset of X. A lower bound of
T is an element of X which precedes every element of T . The greatest lower
bound (g.l.b.) of T is the lower bound which dominates every other lower
bound of T . The g.l.b. of T is also called the infimum of T , and denoted
inf(T ).

Definition 4.24 Let X be a poset and let T be a subset of X. An upper
bound of T is an element of X which dominates every element of T . The
least upper bound (l.u.b.) of T is the upper bound which precedes every other
upper bound of T . The l.u.b. of T is also called the supremum of T , and
denoted sup(T ).
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Definition 4.25 Two elements x, y of a poset X are said to be comparable
if either x ≺ y or y ≺ x.

Definition 4.26 A lattice is a poset in which every two elements have a g.l.b
and an l.u.b.

DEVELOPMENTS

Let C = {τα : α ∈ ∆} be a chain of (weak or strong) reductions of a
topology τ on a set X. Then C, with the relation of set inclusion ⊆ is a
poset. We also see that C is totally ordered (in that any two elements of C
are comparable). If τα1 and τα2 are two topologies in C such that, say, τα1 is
weaker than τα2 , then the g.l.b. of the sub-family T = {τα1 , τα2} of C, that
is, inf(T ), is τα1 . Also sup(T ) = τα2 . Hence C is a lattice of topologies by
set inclusion.

Let R be another relation on the chain C, where ταRτr if τα ≤ τr. That is,
the relation R(≤) on C, now, is that of comparison of topologies as topolo-
gies. With this relation on C, we see again that C is a lattice of topologies.

Corollary 4.1 Every chain C of reductions of a topology on a set X is a
lattice in at least two ways.

OBSERVATIONS

Every set (on which a partial order is defined) is not a lattice. In particu-
lar, every family of topologies is not a lattice. For example, if the topologies
in a family F are not comparable, then the family F would not be a lattice
in either of the ways; but F would still be a poset in the two ways (of set
inclusion and comparison of topologies).

If a family of subsets of a set X is pairwise comparable by set inclusion
(i.e. totally ordered by set inclusion), then it generates a topology (on X)
which has a chain of reductions. This indeed is a theorem which marks the
end and climax of this section.

Theorem 4.3 Any (set inclusion) pairwise comparable family F of subsets
of a set X generates a reducible topology τ on X. And the chain C of reduc-
tions of τ can be constructed in such a way that card(F ) = card(C).
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Proof:
Let F = {Aα : Aα ⊂ X}α∈∆ be a family of (set inclusion) pairwise com-
parable subsets of X. Let Aα1 and Aα2 be two elements of F such that,
say, Aα1 ⊂ Aα2 . Let γ1 = Aα1-induced topology on X and γ2 = Aα2-induced
topology on X. If γ1 and γ2 are not comparable, let τ1 = γ1 and τ2 = γ15γ2,
the join of γ1 and γ2 (defined as the weakest topology, on X, finer than both
γ1 and γ2). Then τ1 and τ2 are two comparable topologies on X. Precisely,
τ1 is strictly weaker than τ2.

Since F is pairwise comparable, the sets in F can be arranged such that

Aα ⊂ Ar ⊂ · · ·.

It follows from the construction above that these sets in F have, correspond-
ing to them, a family C = {τα}α∈∆ of topologies on X, which is pairwise
comparable in that

τα ≤ τr ≤ · · ·.

It is easy to see that C is equivalent to F ; that is, card(C) = card(F ).

NOTE
It is easier to see the existence of the chain C, constructed in the proof of the
theorem, if we remember that the construction can actually be done through
inducement by the discrete topologies of Aα1 and Aα2 ; or, by what is similar,
first getting a topology on Aα2 and then using this to induce a topology on
Aα1 ; and then finally using these two topologies to construct subset-induced
topologies on X.

4.1.5 Generalization of Hyperplane-Open Topologies
of IRn; The X-topology Approach

Construction 4.2 Let IRn be a Cartesian product of n copies of IR. Let
X ⊂ IR be any proper subset of IR. And let τX = 2X

⋃{IR} be the X-topology
on IR. Let m(m < n) factor spaces of IRn be endowed with this X-topology on
IR; and the remaining n−m factor spaces with the usual topology of IR. Then
from the factor spaces having the X-topology, p−1

i ({xi0}) is a hyperplane of
dimension n− 1, for each 1 ≤ i ≤ m. Their intersections

m⋂
i=1

p−1
i ({xi0}) . . . . . . . . (2.1)
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are hyperplanes of dimension n−m. If n = m+ 1, so that n− 1 = m, then
the intersection (2.1) would be a 1-dimensional hyperplane (a straight line)
in IRn. If n = m + 2, then (2.1) would be a 2-dimensional hyperplane. And
so on.

If X = IR then the X-topology, τX , on IR will simply coincide with the
discrete topology of IR itself; and then the whole analysis would boil down to
the statements already made in section 1.2.

Since X is a proper subset of IR, 2X is not equal to the discrete topology
of IR. Hence the X-topology, τX , on IR is strictly weaker than the discrete
topology of IR. Therefore, even if all the factor spaces of IRn are given this X-
topology of IR, the resulting weak topology on IRn generated by the projection
maps, would be strictly weaker than the discrete topology of IRn. Still, some
singletons (possibly infinitely many) of IRn are open in this hyperplane-open
weak topology on IRn. These singletons are sets of the form

n⋂
i=1

p−1
i ({xi0})

where xi0 ∈ X ⊂ IR.

4.1.6 Sierpinski Weak Topology and the Cartesian Plane

In this subsection, we construct a weak topology generated by the projection
maps on the product of a Sierpinski topological space with itself.

Definition 4.27 Let X = {0, 1}. Then the Sierpinski topology on X is the
collection τ = {∅, X, {0}}. The Cartesian product X ×X of X with itself is
a set of four coordinate points (as depicted in figure 5 of appended pages of
figures).

Define projection maps

pi : X ×X −→ X

by

pi(x, y) = x, if i = 1
pi(x, y) = y, if i = 2.

Then, recalling that the topology of each of the range spaces X1 and X2 is
{∅, X, {0}}, we take inverse images of the open sets under each projection
map as follows:

46



p−1
1 (∅) = ∅ ;

p−1
1 (X) = {(0, 0), (0, 1), (1, 0), (1, 1)}; and

p−1
1 ({0}) = {(0, 0), (0, 1)}

Also

p−1
2 (∅) = ∅ ;

p−1
2 (X) = {(0, 0), (0, 1), (1, 0), (1, 1)}; and

p−1
2 ({0}) = {(0, 0), (1, 0)}.

The collection S of these inverse images will be

S = {∅, {(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 0), (0, 1)}, {(0, 0), (1, 0)}}.

The finite intersections B of sets of this collection will be

B = {∅, {(0, 1), (1, 1), (0, 0), (1, 0)}, {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 0)}} .

The arbitrary unions τ of sets of B is

τ = {∅, {(0, 1), (1, 1), (0, 0), (1, 0)}, {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 0)},
{(0, 0), (0, 1), (1, 0)}}

The family τ is the (weak) topology on the Cartesian product of the Sier-
pinski space with itself, generated by the projection maps. We remark that
the two-point connected space can be modified in several ways to produce
similar topological spaces. For example, any family γ = {∅, X, {a}} will be a
connected space if X is a set containing two or more elements which include
a.
We note the following:

1. This weak topology has only six open sets, as listed out in τ above.

2. This weak topology has (in addition to the empty set and the whole
set X ×X) four other closed sets, namely the family

{{(1, 1)}, {(0, 1), (1, 1)}, {(1, 0), (1, 1)}, {(0, 1), (1, 0), (1, 1)}.

3. This weak topological space has six sets which are neither closed nor
open, namely the family
{{(0, 1)}, {(1, 0)}, {(0, 0), (1, 1)}, {(0, 1), (1, 0)}, {(0, 0), (0, 1), (1, 1)},
{(1, 0), (0, 0), (1, 1)}}. See Figure 5, appended pages of figures, for a
view of the landscape of this topology.

47



4. This weak topology is not Hausdorff, contrary to an existing result
which simply states that The weak topology is Hausdorff. To see this,
observe that no disjoint τ -open sets contain the distinct pair of points
(0,0) and (0,1); or the points (0,0) and (1,0) in X ×X.

Let us now look at the weak topology on IR2 when each factor space is given
the X-topology, where X = {0, 1}. That is, the topology on IR1, the horizon-
tal factor space, is {2X , IR} = {∅, {0}, {1}, {0, 1}, IR}. Also the same topology
{2X , IR} = {∅, {0}, {1}, {0, 1}, IR} is endowed on IR2, the vertical factor space.
Then among the sub-basic sets of the resulting weak topology (induced by
the projection maps) on IR2 are

p−1
1 ({0}) = {(0, y) : y ∈ IR}, an infinite vertical line in the plane passing

through the origin (better seen as the second factor space IR2 itself);

p−1
1 ({1}) = {(1, y) : y ∈ IR}, another vertical infinite line in the plane (better

seen as a horizontal translation of the second factor space IR2 to the
point (1,0) in the plane);

p−1
1 ({0, 1}) = p−1

1 (X) = {(0, y) : y ∈ IR}⋃{(1, y) : y ∈ IR} = IR2
⋃{(1, y) :

y ∈ IR} = 2 vertical infinite lines in the plane, one IR2 or the second
factor space and the other may be seen as a translation of IR2 to the
point (1,0) or simply as a vertical infinite line through (1,0).

In a similar way, the second projection map p2 will generate (among others)
two horizontal infinite lines in the plane; one to be seen as IR1, the horizontal
factor space itself, and the other may be seen as a shift upwards of IR1 to the
point (0,1) in the plane. In this weak topology on IR2, only these four infinite
lines (two horizontal and two vertical) are open lines, and only four points
(0,0), (0,1), (1,0), (1,1) in the Cartesian plane IR2 are open singletons.

We can use the X-topology approach, or in general the idea of subset-
induced topologies to obtain on IRn any weak topology in which a desired
number of singletons are open sets.

4.1.7 Lower (and Upper) Limit Weak Topologies of IRn

We recall that the lower limit (or Sorgenfrey) topology τL on the set IR of
real numbers is the topology generated (as a subbase) by sets of the form
{x ∈ IR: a ≤ x < b, a < b, a, b ∈ IR} = [a, b). That is, τL on IRis the topology
in which such subintervals [a, b) of IR are open sets.
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Construction 4.3 If we endow IR with this topology and define the usual
projection maps on IR× IR into IR, it becomes immediately necessary to find
out exactly what topology will result on IR2 when we follow the usual procedures
(as typified by theorem 1.1). That is, we want to find the weak topology on IR2

generated by the projection maps when the factor spaces are given the lower
limit topology. The subbase of this weak topology will be made up of sets of
the form

p−1
i {[a, b)}, where 1 ≤ i ≤ 2

The basic sets are of the form

p−1
i {[a, b)}

⋂
p−1
j {[c, d)} = {[a, b)× [c, d) : a, b, c, d ∈ IR and a < b, c < d}

where 1 ≤ i, j ≤ 2.

The topological implication of this is that half-closed, half-open rectangles
(as shown in figure 6) are open sets of this topology on IR2. These rectangles
will be closed on their left side as well as on their bottom (lower) side; and
open on the remaining two sides. This topology on IR2 is what we, here, call
the lower limit weak topology of IR2.

Construction 4.4 If we now endow IR with the upper limit topology τU ,
generated (as a subbase) by subintervals of the form {(a, b] : a, b ∈ IR, a < b},
then the resulting weak topology on IR2, generated by the projection maps, is
what we call the upper limit weak topology of IR2; or simply the upper limit
topology of IR2.

REMARK 4.6
We see that none of the lower and the upper limit weak topologies of IR2, as
constructed here, is weaker or stronger than the open line weak topologies
on IR2 constructed earlier.

However, if we endow only one factor space of IR2 with the lower or the
upper limit topology (and the other factor space with the usual topology of
IR), then the weak topology on IR2 that will result would be strictly weaker
than one of the open line (weak) topologies: strictly weaker than the open
vertical line weak topology if the horizontal axis is endowed the lower limit
topology; and strictly weaker than the open horizontal line weak topology
on IR2 if the vertical axis is given the lower limit topology. This analysis
also holds for the upper limit weak topologies. Also it should be observed
that by endowing various (but not all) factor spaces of IRn with the lower
and/or upper limit topologies, leaving the remaining factor spaces with the
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usual topology of IR and defining n-projection maps on IRn, we can always
have such topologies on IRn where polygonal solids with some edges open and
some edges closed are seen as open sets. By a polygonal solid we mean a solid
with countable number of sides each of which is a polygon. (For instance, a
cuboid is a polygonal solid of six sides each of which is a quadrilateral (or
precisely a rectangle). A smooth sphere, even though it is a solid, is not a
polygonal solid since it has an uncountable number of sides.) In fact this is
the subject of the next definition.

Construction 4.5 Let X = IRn be the product of n copies of the set IR of
real numbers. Define the projection maps pi : X −→ IRi, 1 ≤ i ≤ n, as usual
by pi(x̄) = xi, where x̄ = (x1, x2, · · · , xn),∀x̄ ∈ X. Let m factor subspaces
of X(= IRn) be endowed with the lower (or upper) limit topologies (m < n)
while the remaining n − m factor subspaces retain the usual topology of IR.
Then the weak topology on IRn generated by the projection maps of IRn, under
this arrangement, is called—for clarification—lower (respectively upper) limit
topology of IRn.

REMARK 4.7
1. For example in IR3, the open sets of this kind of topology will consist
of cuboids with some edges open and some edges closed.2 Conversely every
rectangular side of such a cuboid will have some edges open and the others
closed.
2. This topology on IRn is strictly weaker than the discrete topology of IRn.
3. The number of closed or open edges of each open polygonal solid in this
topology will depend on the number m of factor subspaces endowed with
lower (or upper) bound topology.
4. By way of comparing and contrasting, we have to state here that it is al-
ready known (before now) that if the factor spaces of IRn all retain the usual
topology of IR, then the resulting weak topology from the projection maps
will coincide with the usual Euclidean topology of IRn; and that if the factor
spaces of IRn all retain the discrete topology of IR, then the resulting weak
topology from the projection maps will coincide with the discrete topology
of IRn.

4.1.8 Comparison Theorems For Weak Topologies

Weak topology on a nonempty set X is defined as the smallest or weakest
topology on X with respect to which a given (i.e. fixed) family of functions

2See Figure 9.
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on X is continuous. (See e.g. Lipschutz (1965), page 167; Sims (1976), page
29; Taylor and Lay (1980), page 156; Edwards (1995), page 88; Chidume
(1996), page 124; Davis (2005), page 175; Munkres (2007), pages 86 and 114;
Royden and Fitzpatrick (2012), page 231; and Morris (2016), page 193.)

Let τw be a weak topology generated on a nonempty set X by a family
{fα, α ∈ ∆} of functions, together with a corresponding family {(Xα, τα), α ∈
∆} of topological spaces. If for some α0 ∈ ∆, τα0 on Xα0 is not the indiscrete
topology and fα0 meets certain requirements, then there exists another topol-
ogy τw1 on X such that τw1 is strictly weaker than τw and fα is τw1-continuous,
for all α ∈ ∆. It is observed that

1. The new topology τw1 on X deserves to be called a weak topology (with
respect to the fixed family of functions) in its own right. Hence we call
τw1 a strictly weaker weak topology on X, than τw.

2. Every weak topology τw does not have a strictly weaker weak topology
τw1 ; yet a reasonably good number of weak topologies, including the
usual weak topologies of interest, have strictly weaker weak topology
τw1 .

3. Hence a further research agenda to exhaustively establish the relation-
ship between a weak topology τw and (when it exists) its strictly weaker
weak topology τw1 , in terms of exchange of topological properties, is set.

4. Also, a research agenda is set to find out why and/or when we must
prefer to employ τw in analysis to τw1 ; and vice versa.

This subsection basically sets out to establish all the necessary and sufficient
conditions for the existence of τw1 in relation to τw. Ample examples are
given to illustrate (at appropriate places) the various issues discussed.

Definition 4.28 If τw is the weak topology on X generated by the family
{(Xα, τα)}α∈∆ of topological spaces, together with the family {fα}α∈∆ of func-
tions, we shall call the triple [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] a weak topo-
logical system.

Definition 4.29 A product topological system is a triple
[(X̄, τp), {(Xα, τα)}, {pα}]α∈∆ of a topological product space (X̄, τp), a fam-
ily of topological spaces {(Xα, τα)} which, together with the family {pα} of
projection maps, induce the product topology τp on X̄.

We observe that every product topological system is a weak topological sys-
tem, but not conversely.
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Definition 4.30 Two topologies τ1 and τ2 on a nonempty set X are said
to be strictly comparable if one of the topologies is strictly weaker than the
other.

Definition 4.31 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. The weak topology τw is called an indiscrete weak topology (or a
minimal weak topology) 3 if the family of functions in this system cannot
generate a strictly weaker weak topology than τw, on X. Conversely, τw is
an indiscrete weak topology if τw is not reducible to a strictly weaker weak
topology within the system.

Definition 4.32 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. The weak topology τw is called a discrete weak topology (or a maxi-
mal weak topology) 4 if the family of functions in this system cannot generate
a strictly stronger weak topology than τw, on X. Conversely, τw is a discrete
weak topology if τw is not extensible to a strictly stronger weak topology within
the system.

4.1.9 Some Preliminary Developments

Lemma 4.2 Let Ψ and Φ be two nonempty subsets of the power set 2X

of a nonempty set X such that (say) Ψ is a proper subfamily of Φ. If f
is a 1-1 function (on any set) mapping into all the elements of Φ, then
S1 = {f−1(G) : G ∈ Ψ} is a proper subfamily of S2 = {f−1(G) : G ∈ Φ}.

Proof:
Ψ is a proper subfamily of Φ. So, there exists G0 ∈ Φ 3 G0 /∈ Ψ, and
G ∈ Φ∀G ∈ Ψ. Then from the hypothesis S1 = {f−1(G) : G ∈ Ψ} is a sub-
family of S2 = {f−1(G) : G ∈ Φ} and—since G0 /∈ Ψ and f is 1-1 and maps
into each element of Φ—in particular the set f−1(G0) /∈ S1 (for otherwise we
will have a contradiction). This means that S1 is a proper subfamily of S2.

REMARK 4.8
If f is not 1-1, S1 may equal S2 even though Ψ is a proper subfamily of Φ.
See examples 4.22 and 4.23 below. And if f is 1-1 and there is no element of
the domain of f mapped into an element of Φ not in Ψ, then S1 may equal
S2; this is illustrated in example 4.25.

3As we shall see later, an indiscrete weak topology on X may not equal what may now
be called the ordinary indiscrete topology {X, ∅} of X.

4As we shall see later, a discrete weak topology on X may be strictly weaker than what
may now be called the ordinary discrete topology 2X of X.
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EXAMPLE 4.22
Let X = {a, b, c}, Ψ = {∅, X, {a}} and Φ = {∅, X, {a}, {b}, {a, b}}. Let
f : E → X be a map such that f(E) = {a}, where E is any nonempty set
with cardinality greater than 1. Then S1 = {f−1(G) : G ∈ Ψ} = {∅, E} and
S2 = {f−1(G) : G ∈ Φ} = {∅, E}. That is, S1 = S2.
EXAMPLE 4.23
Let E = {1, 2, 3, 4, 5, 6}, X = {a, b, c, d} and let g : E → X be a map such
that g(1) = a = g(4); g(3) = b = g(5). Let Ψ = {∅, X, {a}, {b}, {a, b}}
and Φ = {∅, X, {a}, {b}, {a, b}, {c}, {a, b, c}}. Then Ψ is a proper subfam-
ily of Φ but S1 = {g−1(G) : G ∈ Ψ} = {∅, {1, 3, 4, 5}, {1, 4}, {3, 5}} and
S2 = {g−1(G) : G ∈ Φ} = {∅, {1, 3, 4, 5}, {1, 4}, {3, 5}}. So S1 = S2. We see
that g−1(X) = g−1({a, b}) = g−1({a, b, c}) = {1, 3, 4, 5}.
EXAMPLE 4.24
Let E = {1, 3, 4, 5}, X = {a, b, c, d} and let h : E → X be a map such
that h(1) = a = h(4);h(3) = b = h(5). Let Ψ = {∅, X, {a}, {b}, {a, b}}
and Φ = {∅, X, {a}, {b}, {a, b}, {a, b, c}}. Then Ψ is a proper subfamily
of Φ but S1 = {h−1(G) : G ∈ Ψ} = {∅, {1, 3, 4, 5}, {1, 4}, {3, 5}} and
S2 = {h−1(G) : G ∈ Φ} = {∅, {1, 3, 4, 5}, {1, 4}, {3, 5}}. So S1 = S2. We
see that (although Ψ and Φ constitute different topologies on X) the weak
topology τw = {∅, E, {1, 4}, {3, 5}} generated on E by the function h remains
unchanged if the topology of X, as the range space of h, is changed between
Ψ and Φ. So it is not obvious that changing the topology of a range space in
a weak topological system will result in a change of the weak topology—as
someone might think.
EXAMPLE 4.25
Let X = {a, b, c}, Ψ = {∅, X, {a}} and Φ = {∅, X, {a}, {b}, {a, b}}. Let
f : E → X be a map such that f(E) = {a}, where E is a singleton. Then f
is 1-1 but S1 = {f−1(G) : G ∈ Ψ} = {∅, E} and S2 = {f−1(G) : G ∈ Φ} =
{∅, E}. That is, S1 = S2. This example also shows that change of a range
topology may not result in a change of the weak topology.
EXAMPLE 4.26
Let E,X,Ψ and Φ all be as defined in example 4.23 and let g : E → X be a
map defined by g(1) = a, g(3) = b, g(4) = c, g(5) = d. We now have g−1(∅) =
∅, g−1(X) = {1, 3, 4, 5}, g−1({a}) = {1}, g−1({b}) = {3} and g−1({a, b}) =
{1, 3}. Therefore S1 = {g−1(G) : G ∈ Ψ} = {∅, {1, 3, 4, 5}, {1}, {3}, {1, 3}}.
Now g−1({c}) = 4 and g−1({a, b, c}) = {1, 3, 4}. Hence S2 = {g−1(G) : G ∈
Φ} = {∅, {1, 3, 4, 5}, {1}, {3}, {1, 3}, {4}, {1, 3, 4}}. We now see that S1 is a
proper subfamily of S2.

It is good to observe that if E = {1, 3, 4, 5} in this example, and the two
extra sets {a, c} and {b, c} are included in Φ (to make it a topology), then Φ
and Ψ as different topologies on X would generate different weak topologies
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on E.
EXAMPLE 4.27
Let E = {1, 2, 3, 4, 5}, X = {a, b, c, d, e} and let h : E → X be a func-
tion defined by h(1) = a, h(2) = e, h(3) = b, h(4) = c, and h(5) = d. Let
Ψ = {∅, X, {a}, {b}, {e}, {a, b}, {a, e}, {b, e}, {a, b, e}} and Φ =
{∅, X, {a}, {b}, {c}, {e}, {a, b}, {a, e}, {b, e}, {c, e}, {c, a}, {c, b},
{a, b, e}, {a, b, c}, {b, e, c}, {a, e, c}, {a, b, c, e}}. Then S1 = {h−1(G) : G ∈
Ψ} = {∅, E, {1}, {3}, {2}, {1, 3}, {1, 2}, {3, 2}, {1, 3, 2}} and S2 = {h−1(G) :
G ∈ Φ} = {∅, E, {1}, {3}, {2}, {4}, {1, 3}, {1, 2}, {3, 2}, {1, 4}, {2, 4}, {3, 4},
{1, 3, 2}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}}.
It is easy to see that both Ψ and Φ are (strictly comparable) topologies on
X. The weak topology on E generated by h when X is endowed the topol-
ogy τ = Ψ is τw1 and if we denote by τw the weak topology generated on E
by the same function h when X is given the topology τ = Φ, then we see
immediately that τw1 and τw are strictly comparable. This contrasts sharply
with the finding in example 4.24 and shows (a) that a change of topologies in
a range space of a weak topological system can result in a change of the weak
topology and (b) that a sequence of pairwise strictly comparable topologies
in a range space of a weak topological system can lead to a sequence of cor-
respondingly strictly comparable weak topologies.

Henceforth whenever we mention 1-1 function in a weak topological sys-
tem we shall assume that it meets the conditions of lemma 4.2; except oth-
erwise stated.

Proposition 4.6 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. For some α0 ∈ ∆, arbitrary but fixed, let τ0 be a topology on Xα0

such that τ0 is strictly weaker than τα0. If (for this fixed α0 ∈ ∆) fα0 is 1-1,
then ∃τw1, a topology on X, such that (i) τw1 < τw and (ii) fα is continuous
with respect to τw1, for all α ∈ ∆.

Proof:
Let

S1 = {f−1
α (Gαi) : Gαi ∈ τα, α ∈ ∆, α 6= α0}

⋃{f−1
α0

(Gα0) : Gα0 ∈ τ0}

and let

S2 = {f−1
α (Gαi) : Gαi ∈ τα, α ∈ ∆}.

Then by lemma 4.2 S1 is a proper subfamily of S2 since τ0 is strictly weaker
than τα0 and fα0 is 1-1. We know that S2 is a sub-base for τw; and similarly,
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since τ0 is a topology on Xα0 , S1 is a sub-base for another topology τw1 on
X. As S1 is a proper subfamily of S2, there exists at least one set, say G, in
S2 such that G /∈ S1. It follows that finite intersections of sets in S2 (that
is, base for τw) contains at least one set G more than the finite intersections
of the sets in S1 (which is a base for τw1). Hence the topology τw1 is weaker
than τw by at least one set G. That is, τw1 is strictly weaker than τw. We
also observe that fα is τw1-continuous, for each α ∈ ∆.

Observations:

1. The proposition above and the lemma 4.2 that facilitated its proof relied
heavily on the existence of just one 1-1 function in a weak topological
system, not on the existence of τ0; since every non-indiscrete topology
has a strictly weaker topology (by the reducibility results, in particular
theorem 4.2 (b)).

2. Two weak topologies almost always the only ones of interest (so-called
the weak and the weak star topologies) to many authors are about linear
maps on linear spaces. The questions now vis-a-vis the proposition 4.6
here are

• Is every linear map a 1-1 function? The answer is ’No’. Projection
maps are linear but not 1-1.

• Does there exist linear maps which are 1-1? Answer: ’Yes’. The
identity maps are linear and 1-1.

• Is every 1-1 map linear? Answer: ’No’. The function f(x) = x3 is
1-1 but not linear.

3. Since there exist linear maps which are 1-1 and since the usual weak
and weak star topologies are general statements about linear maps,
proposition 4.6 implies that these topologies have strictly weaker weak
or weak star topologies. This is a very important statement; and we
therefore state it immediately below as a corollary.

Corollary 4.2 The usual weak and weak star topologies have chains of pair-
wise strictly comparable weaker weak or weak star topologies.

Proof:
Since these topologies are weak topologies generated on sets by all the linear
maps on such sets, since some linear maps (namely, the identity maps) are
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1-1 functions, proposition 4.6 ensures this result.

It may appear by now that it is only when a function f is 1-1 that S1

would be a proper subfamily of S2 given that Ψ is a proper subfamily of Φ.
This is not so. In fact, f being 1-1 is only a sufficient condition for S1 to be
a proper subfamily of S2 (given that Ψ is a proper subfamily of Φ) but it is
not a necessary condition. The following example illustrates this.
EXAMPLE 4.28
Let E = {1, 2, 3, 4, 5}, X = {a, b, c, d},Ψ = {∅, X, {a}, {b}, {a, b}} and Φ =
{∅, X, {a}, {b}, {a, b}, {c}, {a, b, c}, {a, c}, {b, c}}. Let h : E → X be a map
defined by h(1) = a, h(2) = c, h(3) = b, h(4) = a and h(5) = b. Then we see
that
S1 = {h−1(G) : G ∈ Ψ} = {h−1(∅), h−1(X), h−1({a}), h−1({b}), h−1({a, b})}
= {∅, E, {1, 4}, {3, 5}, {1, 3, 4, 5}}. Also S2 = {h−1(G) : G ∈ Φ}
= {h−1(∅), h−1(X), h−1({a}), h−1({b}), h−1({a, b}), h−1({c}), h−1({a, b, c})}
= {∅, E, {1, 4}, {3, 5}, {1, 3, 4, 5}, {2}, {1, 4, 2}, {3, 5, 2}}.
We observe that S1 and S2 are strictly comparable weak topologies on E,
just as Ψ and Φ are strictly comparable topologies on X.

A more general form of lemma 4.2 can therefore be stated as follows.

Lemma 4.3 Let Ψ and Φ be two nonempty subsets of the power set 2X of a
nonempty set X such that Ψ is a proper subfamily of Φ. If f is a function
mapping into each element of Φ, and there exists G0 ∈ Φ − Ψ such that
f−1(G0) 6= f−1(G),∀G ∈ Ψ, then S1 = {f−1(G) : G ∈ Ψ} is a proper
subfamily of S2 = {f−1(G) : G ∈ Φ}.

Proof:
Since ∃G0 ∈ Φ,3 f−1(G0) 6= f−1(G),∀G ∈ Ψ and since Ψ ⊂ Φ it fol-
lows that the collection S1 = {f−1(G) : G ∈ Ψ} is a proper subfamily of
S2 = {f−1(G) : G ∈ Φ}.

We can now also obtain a more general form of proposition 4.6.

Proposition 4.7 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. For some α0 ∈ ∆, arbitrary but fixed, let τ0 be a topology on Xα0

such that τ0 is strictly weaker than τα0. If ∃G0 ∈ τα0 such that f−1
α0

(G0) 6=
f−1
α0

(G),∀G ∈ τ0, then ∃τw1, a topology on X, such that (i) τw1 < τw and (ii)
fα is continuous with respect to τw1, for all α ∈ ∆.
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Proof:
Since ∃G0 ∈ τα0 such that f−1

α0
(G0) 6= f−1

α0
(G),∀G ∈ τ0, it follows that

G0 ∈ τα0 − τ0 and (by lemma 4.3) in particular S1 = {f−1
α0

(G) : G ∈ τ0}
is a proper subfamily of S2 = {f−1

α0
(G) : G ∈ τα0}. Clearly elements of S2

are among the sub-basic sets of τw and, since τ0 is a topology, S1 is also a
subset of a sub-base for another topology τw1 on X, strictly weaker than τw.
Since [(X, τw1), {(Xα, τα)}α∈∆, {fα}α∈∆] is a weak topological system, fα is
τw1-continuous, ∀α ∈ ∆.

REMARK 4.9
Proposition 4.7 implies that even a product topology can have a strictly
weaker product topology. The further implication of proposition 4.7 is that
the comparison result of proposition 4.6 can be extended to wider class of
weak topological systems in which a 1-1 function may not exist.
EXAMPLE 4.29
Let X1 = {a, b} = X2 be two sets and let X̄ = X1 ×X2 =
{(a, a), (a, b), (b, a), (b, b)}. Let the projection maps be defined on X̄ in the
usual way pi : X̄ → Xi, 1 ≤ i ≤ 2, by pi{(x, y)} = x, if i = 1 and pi{(x, y)} =
y, if i = 2. Let both factor spaces of X̄ be endowed with the topology
τ = {∅, {a}, {b}, {a, b}}. Then the product topology τp on X̄ is τp = 2X̄ , the
power set of X̄; a family of 16 subsets of X̄.

If we now let a factor space of X̄, say X1, be endowed with a topol-
ogy τ0 strictly weaker than τ such that ∃G0 ∈ τ and such that p−1

1 (G0) 6=
p−1

1 (G), ∀G ∈ τ0 we shall get a strictly weaker product topology τp1 , on X̄,
than τp. To see this, let τ0 on X1 be τ0 = {∅, X1, {a}}. Then (with the
topology of X2 still being τ) the product topology now on X̄ would be τp1 =
{∅, X̄, {(a, a), (a, b)}, {(a, a), (b, a)}, {(a, b), (b, b)},
{(a, a)}, {(a, b)}, {(a, a), (a, b), (b, a)}, {(a, a), (a, b), (b, b)}};
a family of only 9 subsets of X̄.

It can also be verified easily that both projection maps p1 and p2 are
continuous with respect to τp1 if τ0 and τ are endowed respectively on X1

and X2.
NOTE:
Example 4.29 actually represents a general phenomenon in product topo-
logical systems; namely that if [(X̄, τp), {(Xα, τα)}, {pα}]α∈∆ is a product
topological system, and that there exists α0 ∈ ∆ such that τα0 has a strictly
weaker topology τ0, on Xα0 , then there exists a strictly weaker product topol-
ogy τp1 than τp on X̄ with respect to which all the projection maps are con-
tinuous. We shall give a formal proof of this later, but for now, let’s have
another lemma.
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Lemma 4.4 Let pα : X̄ → Xα be a projection map of a Cartesian product
set onto a factor space. If xα1 and xα2 are two different elements of Xα, then
p−1
α (xα1) 6= p−1

α (xα2).

Proof:
Since projection maps count coordinates and return them to respective (or
corresponding) factor spaces, we have
p−1
α (xα1) = {x̄ ∈ X̄ : pα(x̄) = xα1} = {(xr)r∈∆ ∈ X̄ : xα = xα1}.

Also
p−1
α (xα2) = {x̄ ∈ X̄ : pα(x̄) = xα2} = {(xr)r∈∆ ∈ X̄ : xα = xα2}.

As tuples (or vectors) are equal if and only if their corresponding components
are equal, and since xα1 6= xα2 , we must have p−1

α (xα1) ∩ p−1
α (xα2) = ∅; that

is, p−1
α (xα1) and p−1

α (xα2) have no element in common. As both p−1
α (xα1) and

p−1
α (xα2) are nonempty, it follows that p−1

α (xα1) 6= p−1
α (xα2).

Corollary 4.3 Let pα : X̄ → Xα be a projection mapping. If A and B are
two nonempty subsets of Xα such that (say) A is a proper subset of B, then
p−1
α (A) ⊂ p−1

α (B) and p−1
α (A) 6= p−1

α (B); that is, p−1
α (A) is a proper subset of

p−1
α (B).

Proof:
Since A ⊂ B and A 6= B, ∃b0 ∈ B 3 b0 /∈ A. This implies that b0 6= a,∀a ∈ A.
This implies (by lemma 4.4) that p−1

α (b0) 6= p−1
α (a),∀a ∈ A. This implies that

p−1
α (b0) /∈ {p−1

α (a) : a ∈ A} = p−1
α (A). But {p−1

α (a) : a ∈ A} ⊂ {p−1
α (b) : b ∈

B}, because A ⊂ B. And we also know that p−1
α (b0) ∈ {p−1

α (b) : b ∈ B} as
b0 ∈ B. Hence p−1

α (A) is a proper subset of p−1
α (B).

Corollary 4.4 Let pα : X̄ → Xα be a projection mapping and let Ψ and Φ be
two nonempty subsets of the power set 2Xα of Xα. If Ψ is a proper subfamily
of Φ, then S1 = {p−1

α (G) : G ∈ Ψ} is a proper subfamily of S2 = {p−1
α (G) :

G ∈ Φ}.

Proof:
Clearly S1 = {p−1

α (G) : G ∈ Ψ} is a subfamily of S2 = {p−1
α (G) : G ∈ Φ},

from hypothesis. We only show that S1 6= S2. Let G0 ∈ Φ − Ψ. Since each
set is the union of its own elements, we have

p−1
α (G0) =

⋃
g∈G0

p−1
α (g) 6= ⋃

g∈G
p−1
α (g),∀G ∈ Ψ.

This implies that p−1
α (G0) 6= p−1

α (G),∀G ∈ Ψ. This implies that p−1
α (G0) /∈ S1

and since p−1
α (G0) ∈ S2, it follows that S1 6= S2. That is, S1 is a proper

subfamily of S2.
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Proposition 4.8 Let [(X̄, τp), {(Xα, τα)}, {pα}]α∈∆ be a product topological
system. If (for some α0 ∈ ∆) τα0 has a strictly weaker topology τ0, on Xα0,
then the product topology τp on X̄ has a strictly weaker product topology, τp1.

Proof:
From hypothesis τ0 is a proper subfamily of τα0 . By corollary 4.4, S1 =
{p−1

α0
(G) : G ∈ τ0} is a proper subfamily of S2 = {p−1

α0
(G) : G ∈ τα0}. Since

τ0 is a topology on Xα0 , S1 = {p−1
α0

(G) : G ∈ τ0} is part of a sub-base for
a product topology τp1 on X̄ (with the topologies of the other factor spaces
unchanged). Since S2 is part of a sub-base for τp and since S1 is a proper
subfamily of S2, τp1 is strictly weaker than τp.

REMARK 4.10

1. It is now clearer that the condition of 1-1-ness in proposition 4.6 is only
a sufficient, but not necessary, requirement for a strictly weaker weak
topology to be obtained, given that the topology of a range space has
a strictly weaker topology.

2. The reasoning in propositions 4.6 and 4.7 implies that if τ1 is strictly
weaker than τ0, τ2 strictly weaker than τ1, and so on, then there exist
correspondingly weak topologies τw2 , τw3 , etc., on X, such that τw >
τw1 > τw2 > τw3 > · · ·.

3. If we have a weak topological system [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆],
one question is whether we can always find another topology τw1 on
X such that τw > τw1 and such that each function in the family is
continuous? That is, does τw1 always exist for every weak topology τw?
Another question (if it be found that τw1 does not exist for all weak
topologies τw) is whether we can characterize such weak topologies τw
for which we can find such τw1 . And yet another question is: What (if
any) topological property can τw transmit to, or induce on τw1? This
last question can be seen as property inheritance question—and it is
as important here as it is in human society. These questions and more
are what we shall be looking at in the next subsection.

In the following developments, when we discuss a weak topological system we
shall assume that there exists in it a range space whose associated function
is such that it returns distinct open sets (in the range space) to distinct pre-
images in the domain space; and when we give attention to a range space in
a weak topological system, we shall assume (without loss of generality) that
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the function associated with that range space returns distinct open sets to
distinct pre-images.

If in a weak topological system there is no range space for which the
associated function returns distinct open sets to distinct pre-images, then we
shall assume that the weak topology τw of the system is an indiscrete weak
topology in that it has no strictly weaker weak topology τw1 .

4.1.10 More General Results and Examples

CASE I—τw1 Does Not Exist For Every Weak Topology τw
EXAMPLE 4.30
Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system in which
each of the topological range spaces is an indiscrete space and the domain
of each of the functions is all of X. Then necessarily (X, τw) is an indiscrete
weak topological space; hence τw has no strictly weaker weak topology τw1 .
EXAMPLE 4.31
Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system in which
each of the topological range spaces is an indiscrete space. Let the domain of
one of the functions not be all of X. Then again (X, τw) is an indiscrete weak
topological space in the sense of our definitions—that is, τw has no strictly
weaker weak topology τw1 .
It is also good at this juncture to again look at example 4.24 above. In ex-
ample 4.24, change of range topologies did not result in a change of the weak
topology for the single function h. This, however, does not mean that the
weak topology τw = {∅, E, {1, 4}, {3, 5}} on E generated by h is indiscrete.
For if we endow X with the topology τ = {∅, X, {a}}, then h will generate
a weak topology τw1 = {∅, E, {1, 4}} on E, which is strictly weaker than τw.
(See also theorem 4.4 ahead.)
CASE II—τw1 Exists For Many Weak Topologies τw
EXAMPLE 4.32
Let X = {0, 1}. A Sierpinski topology on X is the collection τ = {∅, X, {0}}.
The Cartesian product of X with itself is the set X̄ = X ×X
= {(0, 0), (0, 1), (1, 1), (1, 0)} of 4 coordinate points. We can define the pro-
jection maps pi : X̄ → X, i = 1, 2 in the usual way by pi{(x, y)} = x if i = 1,
and pi{(x, y)} = y if i = 2. Let us also endow each factor space X1 and X2 of
X̄ with this Sierpinski topology. Then we have obtained all the conditions for
a product topological system [(X, τw), {(Xα, τα)}, {pα}] where the family of
functions is made up of only two projection maps; and the product topology
is the family

τw = {∅, X̄, {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 0)}, {(0, 0), (1, 0), (0, 1)}}
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of 6 subsets of X̄.
Now let us endow only one factor space of X̄ with the Sierpinski topology,

and the remaining factor space with the indiscrete topology. The product
(weak) topology that would now emerge on X̄ is seen to be

τw1 = {∅, X̄, {(0, 0), (1, 0)}}

a family of only 3 subsets of X̄. It is also easily seen that τw1 is a strictly
weaker weak topology than τw, on X̄. Yet both weak topologies are generated
by the same fixed family of functions.
EXAMPLE 4.33
The Euclidean (or usual) topology of the Cartesian plane IR2 is known as the
weak topology τw of the plane when its factor spaces IR1, IR2 (respectively the
horizontal and the vertical axes) are themselves given their usual (Euclidean)
topology, and the projection maps are the family of functions.
If we endow any of the axes of the plane IR2 with a topology strictly weaker
than the usual topology of IRthe weak topology that would then be generated
on the plane by the projection maps would be strictly weaker than (what
may now be called) the usual weak topology of the plane. And only a second
thought is all we need to see that virtually every topology on an axis of the
Cartesian plane IR2 has a strictly weaker topology—hence virtully every weak
topology (including of course product topology) on the plane has a strictly
weaker weak (or product) topology. This somewhat strong statement will
find illustration in further examples and propositions here.
EXAMPLE 4.34
Let X = (a, b) ∈ U be a fixed open interval in the usual topology U of IR.
Let γ = {G ∈ U : G ⊂ X}. Then it is easy to see that γ is a topology on X.
If we now let τ = γ ∪ {IR}, we see that τ is a topology strictly weaker than
U on IR.5 If we have the two factor spaces of IR2 endowed with the topology
τ and have the projection maps as the family of functions on R2, the weak
(product) topology now on the plane IR2 would be strictly weaker than the
usual weak topology of the plane.
EXAMPLE 4.35
Let n ∈ IN be a natural number, and let Xn = (−n, n) ∈ U , a U -open
interval, where U is the usual topology on IR. We can let τn be the topology
induced on IR by its U -open subset Xn following the process of construction
in example 4.34 above. Then we observe the following.

1. Each τn on IR is strictly weaker than the usual topology U on IR for
all n ∈ IN. Hence by endowing each factor space of IR2 with τn we can

5We can see that the development on subset-induced topologies on supersets is very
important here.
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obtain a strictly weaker weak topology (than the Euclidean topology)
on IR2, generated by the projection maps.

2. If m > n then τn is strictly weaker than τm on IR. Hence corresponding
to any pair m,n of natural numbers there exists a pair τm and τn of
strictly comparable and strictly weaker topologies than U on IR.

3. Hence corresponding to any pair m,n of natural numbers there exists
a pair τwm and τwn of strictly comparable and strictly weaker weak
topologies than the usual weak topology τw on IR2. Hence

4. There exists a chain {τwn}n∈IN of pairwise strictly comparable and
strictly weaker weak topologies than the usual weak topology τw on
IR2 in that

τw1 < τw2 < τw3 < · · · < τw

5. As n→∞, τwn → τw; and finally

6. Any nonempty subset of the set IR of real numbers can be used as the
indexing set here in place of IN and the subset-induced topologies can
be constructed in many other ways than what is done here.

REMARK 4.11

• The analysis above, particularly in example 4.34, copiously holds for
any weak topology on any nonempty set which has a range topological
space that in turn has a strictly weaker topology. And this scenario is
a very fortuitous one as it tells us that we can seek and find a strictly
weaker weak topology τw1 , than τw, provided τw is not an indiscrete
weak topology; that we can further seek and find a strictly weaker
weak topology τw2 , than τw1 , provided τw1 is not an indiscrete weak
topology; and so on.

• All the range (topological) spaces must not be endowed with only one
type of topology in order to get a strictly weaker weak topology than
a given weak topology.

• The expositions in the examples above can be extended to (particu-
larly) general Euclidean topology of IRn—and in general, to many weak
topological systems.
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• From the observations above it is clear that every pair of strictly com-
parable topologies in a range space of a weak topological system equally
has a pair of strictly comparable weak topologies generated (if it can
be so said) by them. This is a very important result which we state
below in lemma 4.5. (In this lemma it is assumed that conditions of
lemma 4.3 are met.)

Lemma 4.5 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological sys-
tem. If in a range space, say (Xr, τr) there exist two strictly comparable
topologies τr1 and τr2 where, say τr1 < τr2 (and both are strictly weaker than
τr), then there exist two strictly comparable weaker weak topologies τw1 and
τw2, generated by the fixed family of functions, on X in that τw1 < τw2 < τw.

EXAMPLE 4.36
It is known that a finite product of discrete topological spaces is discrete. We
add that if the cardinality of any of the factor spaces of a finite dimensional
discrete product space is greater than 1, then such a discrete product topol-
ogy has a strictly weaker product topology. The last statement was proved
in Proposition 4.8 above.

The strictly weaker weak topologies obtained in respect of a given weak
topology may not be pairwise strictly comparable; in fact they may not be
comparable at all. The next example illustrates this. That is, if we look
at the foregoing examples it may appear that all the strictly weaker weak
topologies τwi (when they exist) of a weak topology τw are always pairwise
comparable. This is not actually so.

Definition 4.33 Let K = { 1
n
}n∈N = {1, 1

2
, 1

3
, · · ·} ⊂ [0, 1], and let (IR, U)

denote IR with its usual topology U . Let B = (a, b) − K, where (a, b) is an
open interval of the set of real numbers with its usual topology. (We observe
that (a, b)−K = (a, b), if (a, b)

⋂
K = ∅) Then the K-topology IRk on the set

IR of real numbers is the topology generated on IR by using sets of the forms
(a, b) and (a, b) −K, that is, the family {(a, b), (a, b) −K : a < b ∈ IR}, as
subbase.

EXAMPLE 4.37
As we have seen (in subsection 4.1.7), the lower limit topology IRl on IRis gen-
erated by taking subintervals of the form [a, b) as subbase. It is clear that the
lower limit topology IRl and the K-topology IRk on IR are not comparable—
since for instance the IRk-open set

63



G = (−1, 1)−K = (−1, 0]
⋃( ∞⋃

n=1
( 1
n+1

, 1
n
)
)

. . . (∗)

is not IRl-open, and the IRl-open subinterval [0, 1) is not IRk-open.
Let IRk5IRl be the join of IRk and IRl (defined as the weakest topology stronger
than both IRk and IRl). Let (IR, u) remain the usual topological space of IR.
Then it is clear that (IR, u) < (IR, IRl) (that is, u is strictly weaker than IRl)

since (a, b) =
∞⋃

n=n0

[a+ 1
n
, b) for some n0 ∈ IN implies that every u-open set is

IRl-open, but not conversely, since no subinterval of the form [a, b) is u-open.
It is also easy to see that u < IRk as the u-basic open intervals (a, b) are
among the subbasic sets of IRk—and for instance the IRk-open set G above is
not u-open. So u ≤ IRl ∩ IRk and since IRl < IRk 5 IRl and IRk < IRk 5 IRl it
follows that u < IRk 5 IRl.
If we endow all the factor spaces of IR2 with the topology IRk 5 IRl and have
the projection maps defined in the usual way on IR2 we shall have a weak
topology τw on IR2. Let τwl , τwk and τwu denote the weak topology generated
on IR2 by the projection maps when all the factor spaces are endowed with
respectively the lower limit topology IRl, the K-topology IRk and the usual
topology u. Then it is easy to establish the following:

• τwu < τw;

• τwl < τw;

• τwk < τw;

• τwu < τwK ;

• τwu < τwl ;

• τwl and τwk are not comparable. This is because IRl and IRk are not
comparable. (See also proposition 4.11(2) ahead.)

We remark that the topologies we endow the two factor spaces of IR2 can
be mixtures of the four topologies (IRl, IRk, u, and IRk 5 IRl) here. (That is,
we do not have to endow all the factor spaces of IR2 with only one of these
topologies.) If we do this, the comparison considerations will be different.
We also remark that the analysis here can be extended to IRn, n > 2 using
these four topologies.

Construction 4.6 (K-topology-induced weak topology) Suppose the
Cartesian plane IR2 has the projection maps defined on it, as usual, and
that the factor spaces IR1 and IR2 (respectively horizontal and vertical) are
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each endowed with the K-topology. The K-topology-induced weak topology of
IR2 is the weak topology generated on IR2 by the projection maps under this
arrangement; i.e. where the factor spaces are given the K-topology.

We may want to know one or two things about the landscape of this
topology. Suppose G = [(a, b) − K] ∈ KIR is an arbitrary open set in the
K-topology of IR. Then two cases arise: namely, that either (a, b)

⋂
K = ∅

or (a, b)
⋂
K 6= ∅.

Suppose, first, that (a, b)
⋂
K 6= ∅. Then p−1

1 (G) = {x̄ ∈ IR2 : p1(x̄) ∈ G} =
{x̄ ∈ IR2 : p1(x̄) ∈ [(a, b) − K]} = {(x1, x2) ∈ IR2 : x1 ∈ [(a, b) − K]} =
{(x1, x2) ∈ IR2 : x1 ∈ (a, b) and x1 /∈ K}. This is an open vertical infinite
strip with deleted infinite vertical lines through the common points of (a, b)
and K.
If (a, b)

⋂
K = ∅, then p−1

1 (G) = {x̄ ∈ IR2 : p1(x̄) ∈ (a, b)} = {(x1, x2) ∈ IR2 :
x1 ∈ (a, b)}. This is the usual open vertical infinite strip, with no demarca-
tions in it.
In the same way, p−1

2 (G) will either be an open horizontal infinite strip with
deleted horizontal infinite lines or the usual horizontal infinite strips, without
demarcations.
NOTE:

1. Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system. If,
for some r ∈ ∆, τr has two distinct strictly weaker topologies τr1 and
τr2 then it is clear from the foregoing that we can get a strictly weaker
weak topology τw1 , than τw, on X in at least two ways.

2. Now we can confidently say that any non-indiscrete weak topology
has a strictly weaker weak topology. The last assertion is clearly an
important statement which needs to be proved. The proof of this will
be given below in theorem 4.4.

3. In terms of topological properties (like the separation axioms, compact-
ness, etc.) there is now a challenge to identify or characterize the weak
topologies whose strictly weaker weak topologies inherit their property;
and it will equally be important and interesting to find those topologi-
cal properties that are preserved under the operation of getting strictly
weaker weak topologies.

Lemma 4.6 Let τ and η be two topologies on a set X and let Sτ and Sη
denote the subbases for τ and η respectively. Then Sτ ⊂ Sη ⇒ τ ≤ η.
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Proof:

LetBτ =
{

n⋂
i=1

Gi : Gi ∈ Sτ
}

be the base for τ and letBη =
{

n⋂
i=1

Gi : Gi ∈ Sη
}

be the base for η. If Sτ ⊂ Sη then clearly Bτ ⊂ Bη, and hence that

τ =

{ ⋃
α∈∆

Bα : Bα ∈ Bτ

}
is a subfamily of η =

{ ⋃
α∈∆

Bα : Bα ∈ Bη

}
. That

is, τ ≤ η.

Clearly the following result has many fundamental and far-reaching implica-
tions.

Theorem 4.4 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological sys-
tem. If ∃(Xr, τr), for some r ∈ ∆, 3 Card(τr) > 2 then τw has a strictly
weaker weak topology. Hence any non-indiscrete weak topology has a strictly
weaker weak topology in its system.

Proof:
Card(τr) > 2 implies that τr contains at least 3 subsets of Xr. So, let τr =
{∅, Xr, G}, where G is a nonempty proper subset of Xr. Then τr1 = τr−{G}
is a topology on Xr strictly weaker than τr—or, as has been proved in the-
orem 4.1, τr can be reduced in some sense. Let τw1 be the weak topology
generated on X by the fixed family of functions when Xr has the topology
τr1 and the remaining range spaces have their topologies unchanged. Then
τw1 is strictly weaker than τw since in particular f−1

r (G) /∈ τw1 . The proof is
complete.

The meaning of theorem 4.4 is that a weak topology τw generated on a set
X by a given family F of functions has a strictly weaker weak topology τw1

on X generated by the same family F of functions provided one of its range
spaces is not an indiscrete topological space. (This is why for instance, under
example 4.31, as we looked more closely at example 4.24, we saw that the
function h generated a weaker weak topology.) And an alternative way to
say this is that a weak topology is non-indiscrete if and only if it has at least
one non-indiscrete range space.

If all the range spaces are indiscrete topological spaces in the usual sense
of having topologies of cardinality 2, it does not follow or mean that the weak
topology—being then an indiscrete weak topology—would have cardinality
equal to 2.
EXAMPLE 4.38
Let X = {a, b, c}, X1 = {x, y} and X2 = {p, q, r, s, t}. Let f1 : X → X1 be
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a function defined by f1(a) = x, f1(b) = x and f1(c) = y. Let f2 : X → X2

be a function defined by f2(b) = q and f2(c) = p. Let τ1 = {X1, ∅} be the
topology on X1 and let τ2 = {X2, ∅} be the topology on X2. Then (X1, τ1)
and (X2, τ2) are indiscrete topological spaces and the cardinality of each of
the range topologies is 2. It can easily be verified that the weak topology
τw on X generated by the family F = {f1, f2} of these two functions is
τw = {∅, X, {b, c}}; a family of 3 subsets of X.
EXAMPLE 4.39
Let X = {a, b, c}, X1 = {x, y} and X2 = {p, q, r, s, t}. Let f1 : X → X1

be a function defined by f1(a) = x and f1(b) = x. Let f2 : X → X2 be
a function defined by f2(b) = q and f2(c) = p. Let τ1 = {X1, ∅} be the
topology on X1 and let τ2 = {X2, ∅} be the topology on X2. Then (X1, τ1)
and (X2, τ2) are indiscrete topological spaces and the cardinality of each of
the range topologies is 2. Now the weak topology τw on X generated by the
family G = {f1, f2} of two functions is τw = {∅, {a, b, c}, {a, b}, {b, c}, {b}};
a family of 5 subsets of X.
It is important to observe that the family F of functions in example 4.38 is
different from the family G of functions in example 4.39. This observation
will help us not to think that a fixed family of functions can generate two
indiscrete weak topologies on the same set—as really a fixed family of func-
tions cannot generate more than one indiscrete weak topology on a set. And
the indiscrete weak topology of a family of functions must emerge only when
all the range topologies are themselves indiscrete.
An indiscrete weak topology may also emerge in the usual form (with cardi-
nality 2) in which we have known indiscrete topologies.
EXAMPLE 4.40
Let X,X1 and X2 all be as given in example 4.39 above and let X1 and
X2 retain their indiscrete topologies. If the domain of f1 is all of X and
the domain of f2 is all of X, then the weak topology τw on X generated by
these two functions will be τw = {∅, X}; with cardinality 2. So, when we
say an indiscrete weak topology we only know or mean that it is one which
has no strictly weaker weak topology; the matter of the determination of its
cardinality is something else.

Proposition 4.9 An indiscrete weak topology can have cardinality greater
than 2; however, it cannot have a strictly weaker weak topology in its own
system.

Since we have seen (from examples 4.38 and 4.39 above) that an indiscrete
weak topology can have cardinality greater than 2, since such an indiscrete
weak topology is also a topology in the ordinary sense and hence by theorem

67



4.1 can further be reduced in some sense (though not as a weak topology),
we have yet another very important exposition.

Theorem 4.5 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological sys-
tem. The following statements are equivalent.
(a) The weak topology τw is not reducible to a strictly weaker weak topology
in any sense.
(b) All the range topologies of τw, including any which may itself be a weak
topology, have cardinality 2.
(c) τw is an indiscrete weak topology.

Proof:
(a) If the weak topology τw is not reducible as a weak topology in any sense,
then all the range topologies have cardinality 2; for if a range topology has
cardinality greater than 2, theorem 4.4 would imply that τw has a strictly
weaker weak topology. That is, (a) implies (b).
(b) Clearly τw is an indiscrete weak topology if all the range topologies of τw
have cardinality 2.
(c) implies (a) by definition.

Theorem 4.4 again has this very important implication which we state below
as a corollary.

Corollary 4.5 Every non-indiscrete weak topology on a nonempty set X is
at the peak of a chain of pairwise strictly comparable weaker weak topolo-
gies.

Note
The cardinality of such a chain will depend on (a) the cardinality of X and
(b) the creative way we choose to develop the chain. If X is a finite set, then
the chain will necessarily be finite; and if X is infinite the chain can be made
to be finite or infinite. The usual Euclidean topologies of IRn(n ≥ 2), as weak
topologies, can have finite chain, denumerable chain, or uncountable chain
of pairwise strictly comparable weaker weak topologies.

Proposition 4.10 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topologi-
cal system. Let τwi denote the weak topology on X when Xα has the topology
ταi. Then

1. ταi ≤ ταj =⇒ τwi ≤ τwj ;
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2. ταi and ταj not comparable, implies τwi and τwj not comparable;

3. ταi < ταj and τri > τrj implies τwi and τwj not comparable; and

4. {ταr}, a chain, implies that {τwr} is a chain.

Proof:

1. Lemma 4.6 makes this easy to see.

2. If ταi and ταj are not comparable, then the subbases of τwi and τwj (and
hence the topologies τwi and τwj) are not comparable.

3. If ταi < ταj then from the foregoing, τwi < τwj . But then τri > τrj
implies that τwi > τwj . That is, τwi < τwj and τwi > τwj . This is a
contradiction; implying that τwi and τwj are not comparable.

4. C = {ταr} being a chain implies that the topologies in C are pairwise
comparable. Lemma 4.5 then implies that the family {τwr} of weak
topologies on X is also in chain.

4.1.11 Strictly Stronger Weak Topologies?

So far we have only been looking at the possibility of getting strictly weaker
weak topologies when and if requisite conditions are met. Let us now look
at the possibility of obtaining strictly stronger weak topologies.

This particular idea has been explored before by other researchers; how-
ever, the development here is an extension of the approach adopted before
in getting strictly stronger weak topologies. For instance, only four weak
topologies have been constructed and compared before by others. Secondly,
these four weak topologies constructed and compared before were achieved
by using polars of subsets of normed linear spaces. (In that sense it was more
or less a development on only normed linear spaces.)

Here we show the link between constructing weak topologies by the use
of polars and constructing them by the general method which we have since
adopted, and then we proved that the general method is indeed general
enough as it encompasses (what may now be called) the polar method. Then
thirdly we showed that between the four already compared weak topologies
there exist many other weak topologies—constructible even by the use of po-
lars. Finally, we proved that if two weak topologies (generated by one family
of functions) on a set are strictly comparable, then there exist in a range
space two strictly comparable topologies which induce the weak topologies.
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This last exposition is a converse way of proving the earlier assertion that the
polar method is part of the general method of construction of weak topolo-
gies.

In making this inquiry, we follow our established tradition and do not
assume that there is a linear structure or a norm on X. We also do not
assume that it would be useful (in application) to look for strictly stronger
weak topologies instead when a goal is to find the smallest topology with
respect to which a given family of functions is continuous.

This flipside exposition is necessitated by the fact (from the title of this
section) that we wish to explore and establish results on how weak topologies
can, and do actually compare with one another; and to give that inquiry a
reasonable treatment we have to, we believe, look at other situations in which
there may exist strictly stronger weak topologies (when a weak topology τw
is not the discrete topology).

It is a well known proposition that if B is a family of subsets of a given
set X, then B is a base for some topology on X if (a)

⋃
G∈B

G = X; and (b)

if G1, G2 ∈ B, then G1 ∩ G2 ∈ B. This fact will be crucially used in what
follows.

Proposition 4.11 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topologi-
cal system. If τw is not the discrete topology on X, and there exists α0 ∈ ∆
such that τα0 is not the discrete topology on Xα0 then there exists a topology
τw+1 on X such that (i) τw < τw+1; and (ii) fα is τw+1-continuous, for all
α ∈ ∆.

Proof:
Since τα0 < 2Xα0 there exists G0 ⊂ Xα0 such that G0 /∈ τα0 . Let S0 =
τα0 ∪{G0} and let B0 = {finite intersections of elements of S0}. Then we see
that (a)

⋃
G∈B0

G = Xα0 ; and (b) if G1, G2 ∈ B0, then G1 ∩ G2 ∈ B0. Hence

B0 is a base for a topology τ0 on Xα0 . It is clear that τα0 < τ0, and if we re-
place τα0 with τ0 in the weak topological system we shall get a weak topology
τw+1, on X generated by this fixed family of functions. Then it is easy to ver-
ify that (i) τw < τw+1; and that (ii) each fα is continuous with respect to τw+1.

If all the range spaces (Xα, τα) are power set discrete topological spaces,
then the weak topology τw, being then a discrete weak topology—though it
may not be equal to the power set of X—will not be extensible in any sense
(strong, normal or weak) to a strictly stronger weak topology.
EXAMPLE 4.41
Let X = {a, b, c}, X1 = {x, y}, X2 = {p, q, r, s, t} and let f1 : X → X1 on
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X into X1 be defined by f1(a) = x, f1(b) = x; and let f2 : X → X2 be
defined by f2(b) = q, f2(c) = p. Let τ1 = 2X1 be the discrete topology of X1

and let τ2 = 2X2 be the discrete topology of X2. Then (X1, τ1) and (X2, τ2)
are discrete topological spaces. The weak topology τw on X generated by f1

and f2 is τw = {∅, {a, b, c}, {b}, {c}, {a, b}, {b, c}} and it is easy to see that
τw is not extensible within this system to a strictly stronger weak topology.
That is, it is impossible to obtain a weak topology generated by {f1, f2} on
X which is strictly stronger than τw.
EXAMPLE 4.42
Let X,X1, X2, f1 and f2 all be as given in example 4.41 above and let X1

retain its discrete topology while X2 is given its indiscrete topology. Then
this time the weak topology generated on X by f1 and f2 is
τw = {∅, {a, b}, {b}, {b, c}, {a, b, c}}. Clearly τw now is extensible (in the
strong sense) to a strictly stronger weak topology within this system. From
example 4.41, we see that a discrete weak topology τw on X may actually be
strictly weaker than the normal discrete topology 2X of X; similar to what
we have seen before that an indiscrete weak topology may actually have car-
dinality greater than 2.

Since it has been known before that if all the factor spaces are discrete,
then the product topology (in finite dimensions) would be discrete, the de-
velopment here is an important revelation which we now state below as a
proposition. So, when we say ’a discrete weak topology’ we only know or
mean that it has no strictly stronger weak topology in its own system; the
matter of determining its size in comparison to the power set of X is some-
thing else.

Corollary 4.6 If all the range spaces of any weak topology are discrete topo-
logical spaces, then the weak topology is a discrete weak topology in that it
has no strictly stronger weak topology.

Corollary 4.6 is important in one aspect: It generalizes and extends the
existing discreteness result on product topologies (in finite dimensions) to
arbitrary weak topological systems. Then Proposition 4.12 (below) explains
that discreteness inherited by a weak topology from its range spaces may not
be powerset-discreteness.

Proposition 4.12 A discrete weak topology on X (i.e. one for which there
exists no strictly stronger weak topology) can be strictly weaker than the nor-
mal discrete topology 2X of X.

REMARK 4.12
While it is our conjecture that a discrete product topology in infinite dimen-
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sions will not coincide with the power set of the product set,6 it is also our
conjecture that an important research question is now set to the effect that:
Since it is now clear that every discrete weak topology on a set X does not
coincide with the power set of X, (1) can we characterize the discrete weak
topologies that coincide with the power set, (2) can the discrete weak topology
of a weak topological system coincide with the indiscrete weak topology of the
system since we now also know that an indiscrete weak topology may have
cardinality greater than 2, in other words, can we find a weak topology that
is neither reducible nor extensible? Our answer to the two questions is that
any weak topology on a singleton set meets the requirement of the questions.
So, the research will focus on sets with cardinality at least 2.

Theorem 4.6 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological sys-
tem. The following statements are equivalent.
(a) The weak topology τw is not extensible to a strictly stronger weak topology
in any sense.
(b) All the range topologies of τw are discrete topologies and if any is itself a
weak topology, then it is a discrete weak topology coinciding with the power
set.
(c) τw is a discrete weak topology.

Proof:
From (c) if τw is a discrete weak topology, then it means from definition
that (a) it is not extensible in any sense to a strictly stronger weak topology.
And if τw is not extensible in any sense then (b) it follows that all the range
topologies are power set discrete topologies. Finally, if all the range topolo-
gies are power set discrete topologies, then certainly τw is a discrete weak
topology.

Theorem 4.7 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological sys-
tem. (a) If all the range topologies are discrete topologies and none is a weak
topology, or (b) all the range topologies are discrete topologies equal to the
power set of their range spaces, then τw is a discrete weak topology

The following corollary statement is certainly a very important derivation
from the last two theorems.

6Later we shall see that what we would call the supra of the discrete product topology
in infinite dimensions would coincide with the power set discrete topology of the infinite
dimensional product set if all the factor spaces are power set discrete topological spaces.
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Corollary 4.7 If all the factor spaces of a product topology in infinite di-
mensions are power set discrete topologies, then the product topology is a
discrete product (weak) topology in the sense of our existing definitions.

Theorem 4.8 Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological sys-
tem. If τw is a non-trivial weak topology on X, then τw is in the middle
(midst) of weak topologies on X, some strictly weaker and some strictly
stronger than τw, in that {∅, X} ≤ · · · < τw1 < τw < τw+1 < · · · ≤ 2X .

Proof:
This is the conclusive meaning of all the foregoing results.

4.1.12 Relationship With Existing Results

As we have pointed out, researchers have in the past constructed weak topolo-
gies on normed linear spaces by using polars of sets. Let E be a normed linear
space, E∗ its algebraic dual, and E ′ its topological dual. What was called
the weak topology σ(E,E∗), on E (or σ(E∗, E), on E∗) is the topology on
E (or on E∗) made up of polars of finite subsets of E∗ (or of E). And what
was called the weakened topology σ(E,E ′), on E (or σ(E ′, E), on E ′) is the
topology on E (or on E ′) formed by taking polars of finite subsets of E ′ (or
of E). (See Edwards (1995), pages 88 and 89.)

A particular issue was then called the Mackey problem and it is as follows:
If we have a dual system (E,E ′), how may we characterize those locally
convex topologies on E compatible with the duality (E,E ′)—in the sense that
every element of E ′ is not only continuous but can in addition be represented
by an element of E? It was remarked (in Edwards (1995), page 504) that
such topologies do exist and that the weakest of them is σ(E,E ′). It was
also ”shown” that there is a strongest such topology, and that the others are
lying between these two. The strongest such topology is denoted by τ(E,E ′)
and is called the Mackey topology. The Mackey topology τ(E,E ′) on E is
then constructed as the topology made up of polars of weakly compact and
convex subsets of E ′. And the conclusion is that a locally convex topology
T on E is compatible with the duality (E,E ′) if and only if

σ(E,E ′) ≤ T ≤ τ(E,E ′).

If E is a LCTVS (locally convex topological vector space) and E ′ its topo-
logical dual, the relation above will hold with T the initial topology of E.
Usually the ordering is strict, it is observed, but the equality T = τ(E,E ′)
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holds for certain important types of LCTVS, which are then accordingly
called relatively strong.

Now if E is a TVS (topological vector space), E ′ its topological dual,
Arens introduced the topology on E ′ having polars Ao of compact, convex
and balanced subsets A of E as a base of neighborhoods at 0. This is called
the Arens topology on E ′ and is denoted by k(E ′, E); and it is locally convex
and weaker than the Mackey topology τ(E ′, E), as every compact subset of
E is weakly compact for the weakened topology σ(E,E ′). (If we interchange
the roles played by E and E ′, we get the Arens topology k(E,E ′) on E.)
Since it is obviously stronger than σ(E ′, E), k(E ′, E) is compatible with the
duality between E and E ′; that is, k(E ′, E) makes all maps of the form
x′ 7→ 〈x, x′〉 continuous, for any fixed element x of E.

The so-called strong topology, η(E,E ′) on E is made up of polars of the
(norm-) bounded subsets of E ′. Again, interchanging the roles of E and E ′

gets us the strong topology η(E ′, E) on E ′. (Edwards (1995), pages 507 and
508) It is noted that in general the topology η(E ′, E) is not compatible with
the duality between E and E ′. That is, it is not generally the case that each
linear form on E ′, continuous with rescpect to η(E ′, E), is generated by an
element of E.
QUESTIONS

1. What is the place of our comparison results on the four weak topologies
(namely the weakened, the Arens, the Mackey and the strong topolo-
gies) already known to be comparable, viz: σ(E,E ′) ≤ k(E,E ′) ≤
τ(E,E ′) ≤ η(E,E ′)?

2. The conclusion of earlier researches is that σ(E,E ′) is the weakest and
that τ(E,E ′) is the strongest of all those locally convex topologies on
E, compatible with the duality existing between E and E ′, which make
elements of E ′ continuous.

• Except for the Arens topology, existing research finding did not
tell whether the intermediate locally convex topologies compat-
ible with the duality (E,E ′) are weak topologies—that is, con-
structible by any known process of forming a weak topology, such
as by using polars. In short, no systematic process of looking for
such topologies (be they ’weak’ or not) is given.

• Between the Mackey (weak) topology τ(E,E ′) and the strong (but
’weak’) topology η(E,E ′), is there no intermediate weak topology
(akin to, say the Arens topology)?
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• If there exists an intermediate weak topology between the Mackey
and the strong topology, what role can such a topology play or
not play in analysis? And if there are no such intermediate weak
topologies, why?

3. Can we find (or not find) a weak topology stronger than the so-called
strong (weak) topology; and if we cannot find such a weak topology,
why?

FURTHER DEVELOPMENTS
In order to know the full impact of our comparison theorems on the exist-

ing results, we need to clearly establish the connection between constructing
weak topologies in the way we have done and constructing them by the use
of polars. And to do this, we will now recast the meaning of a ’polar’ (by way
of definition) and then look deeper into it, to see its place in the collection
of open sets of a weak topology.

Definition 4.34 Let (A,B) be a dual system over a scalar field K(= IR or
IC). (We recall that the meaning of this is that, first, A and B are linear
spaces over the same scalar field K; and secondly there exist linear maps
φb : A → K, on A into K defined by φb(a) = 〈a, b〉, for each element b of
B and linear maps φa : B → K, on B into K defined by φa(b) = 〈a, b〉, for
each element a of A.) Let G ⊂ B be any subset of B. Then the polar Go of
G is a subset of A given by Go = {a ∈ A : |〈a, b〉| ≤ 1, b ∈ G}.

REMARK 4.13

• Some use the strict inequality < in the definition of polar above; and
for obvious reasons we may have to resort to that use in the sequel.

• Any ε > 0 can be used in the definition above, in place of 1.

EXAMPLE 4.43
Let E be a linear space over K and let E∗ be its algebraic dual. Then (E,E∗)
is a dual system, for the maps φf : E → K defined by φf (x) = 〈x, f〉 = f(x)
are linear, for all f ∈ E∗; and the maps φx : E∗ → K defined by φx(f) =
〈x, f〉 = f(x) are also linear.

Let A be a finite subset of E∗. Then the polar Ao of A is

Ao = {x ∈ E : |〈x, f〉| ≤ 1, f ∈ A}.
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This is typically the set we need to understand clearly in our present discus-
sion of weak topologies. Taking a look again:
Ao = {x ∈ E : |〈x, f〉| ≤ 1, f ∈ A} = {x ∈ E : |f(x)| ≤ 1, f ∈ A}
= {x ∈ E : −1 ≤ f(x) ≤ 1, f ∈ A} = {x ∈ E : f(x) ∈ [−1, 1], f ∈ A}
= {x ∈ E : x ∈ f−1([−1, 1]), f ∈ A} =

⋂
f∈A

f−1([−1, 1]) =
n⋂
i=1

f−1
i ([−1, 1]),

as A is finite.
OBSERVATIONS:
1 If the strict inequality < is used, then the polar Ao is the intersection
of a finite number of inverse image of open sets of the scalar field K with its
usual topology, under an equally finite number of linear maps.
2 If A is infinite, the polar Ao of A is the intersection of inverse image of
an infinite number of sets under an infinite number of linear maps.
3 The collection {Ao : A ⊂ E∗} of polars is always a collection of in-
tersections of inverse images of (open or not open) sets—finite or infinite
intersections according to whether the subsets of E∗ considered are finite or
infinite.
4 These intersections (the polars) are always a base for a weak topology
and if subsets of E∗ are used to generate the polars, the weak topology would
be that generated by the elements of E∗.
5 If E∗ is replaced by E ′, the topological dual of E, we would have a
weak topology (on E) with respect to elements of E ′.
6 For the four weak topologies σ(E,E ′), k(E,E ′), τ(E,E ′), and η(E,E ′),
all elements of E ′ are continuous. The difference is that while k(E,E ′) and
τ(E,E ′) may contain some infinite intersections, σ(E,E ′) will not have such
intersections. Also η(E,E ′) will contain more exotic intersections than both
k(E,E ′) and τ(E,E ′) (but not necessarily all arbitrary intersections).
7 Hence the differences among these four weak topologies lie on the kind
of intersections they contain, and this in turn lies on the kind of sets whose
polars are used as base for the topologies. And it is indeed just that polars
are used as bases for the topologies ; the collection of polars are not directly
(necessarily) the topologies in question. So, when we say that a weak topol-
ogy is made up of polars of (some) subsets, what we really mean is that such
a weak topology is built up (or constructed) from polars of such subsets as
a base.
EXPOSITIONS
Let P0 = {Ao : A ⊂ E ′, A is finite } be the collection of polars of finite
subsets of E ′, a base for the weak topology σ(E,E ′) on E; and let G ⊂ E ′

be a relatively compact, infinite and convex subset of E ′, and let Go be the
polar of G. Let B = P0 ∪ {Go}. Then it is easy to see that
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• ⋃
p∈B

P = E; and

• If P1, P2 ∈ B then P1 ∩ P2 ∈ B, as a subset of a polar is a polar.

Hence B is a base for some topology τw, on E—a weak topology generated
by elements of E ′. We now observe that

1. The (polar) base for σ(E,E ′) does not contain the polar of any infinite,
relatively compact and convex subset of E ′. Hence σ(E,E ′) is strictly
weaker than τw.

2. The polar base for τw does not contain the polars of all infinite, rela-
tively compact and convex subsets of E ′. Hence τw is strictly weaker
than τ(E,E ′). That is, σ(E,E ′) < τw < τ(E,E ′).

3. τw has a base of neighborhoods at zero; hence it is locally convex. In
short (by 8.3.1 on page 505, of Edwards) a locally convex topology T
on E is compatible with the duality between E and E ′ if and only if
σ(E,E ′) ≤ T ≤ τ(E,E ′). Hence τw is a locally convex topology on E
compatible with the duality (E,E ′).

What we have proved is that τw is a locally convex, (E,E ′)-compatible weak
topology on E, generated by elements of E ′, which is strictly stronger than
σ(E,E ′) and strictly weaker than τ(E,E ′).

Since we can find7 other relatively compact, infinite and convex subsets
G1, G2, G3, · · · of E ′, each different from one another (and different from
G0), we can by analogy get a sequence {τw1 , τw2 , τw3 , · · ·} of locally convex,
(E,E ′)-compatible, pairwise strictly comparable weak topologies lying be-
tween σ(E,E ′) and τ(E,E ′), in that

σ(E,E ′) < τw < τw1 < τw2 < τw3 < · · · < τ(E,E ′).

Let P0 = {Ao : A ⊂ E ′, A is weakly compact and convex }, base for the
weak topology τ(E,E ′) on E; let G ⊂ E ′ be a subset of E ′ which is not
weakly compact but a bounded subset of E ′, and let Go be the polar of G.
Let B = P0 ∪ {Go}. Then B is a base for some topology T on E—a weak
topology generated by elements of E ′. And we can again see that

1. τ(E,E ′) is strictly weaker than T ;

2. T is strictly weaker than η(E,E ′);

7Non-existence of these subsets would imply non-existence of the Mackey topology as
a different topology from the weakened topology.
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3. T is locally convex (since it is for instance strictly stronger than the
Mackey topology);

4. If E ′ has other bounded subsets which are not weakly compact and
convex, there exists a family {Tn} of T -like topologies on E, lying
between τ(E,E ′) and η(E,E ′), such that τ(E,E ′) < T < T1 < · · · <
η(E,E ′); and if E ′ has no bounded subsets which are NOT weakly
compact and convex (i.e. all bounded subsets of E ′ are weakly compact
and convex) then necessarily τ(E,E ′) would coincide with η(E,E ′);

5. These weak topologies lying between τ(E,E ′) and η(E,E ′) are, like
η(E,E ′), in general not guaranteed to be compatible with the duality
(E,E ′) (because the Mackey topology is the strongest locally convex
weak topology on E which is compatible with the duality (E,E ′)).

Now let G be an unbounded subset of E ′ which is also not weakly com-
pact, and let Go be its polar. Let Po be the polar base of η(E,E ′) and let
B = Po ∪ {Go}. Then again B is easily seen to be a base for some weak
topology T on E, generated by the elements of E ′. And we notice that
η(E,E ′)—the strong topology—is strictly weaker than this weak topology
T .

We have shown that the bases (coming as collections of polars) for these
weak topologies are actually nothing but intersections (finite or infinite) of
pre-images (under the linear maps) of some subsets of the scalar field under-
lying the dual system. Finally, the next question to consider is whether the
four weak topologies (σ(E,E ′), k(E,E ′), τ(E,E ′) and η(E,E ′)) which have
traditionally been compared are actually induced or generated on E by some
correspondingly compared topologies in a range space or two. This will show
that Proposition 4.10 (1) and/or Lemma 4.5 apply also to these four weak
topologies.

Proposition 4.13 Let B1 be a base for a topology τ1 on X and let B2 be
a base for another topology τ2 on X. If B1 is a proper subfamily of B2 (or
conversely that τ1 is strictly weaker than τ2), then the subbase S1 for τ1 is
a proper subfamily of the subbase S2 for τ2. Hence for a weak topological
system [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆], if B1 is a polar base for another
weak topology τw1 on X generated by the same family of functions, and that B1

is a proper subfamily of a polar base B2 of τw (or conversely that τw1 < τw),
then there exist two topologies τ1 and τ2 on a range space Xα0, for some
α0 ∈ ∆, such that τ1 is strictly weaker than τ2 and τw1 is the weak topology
on X when Xα0 has the topology τ1 and τw is the weak topology on X when
Xα0 has the topology τ2.
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Proof:
From the hypothesis and since B1 = {finite intersections of sets in S1}, and
since B2 is analogously defined for S2, B1 is a proper subfamily of B2 if and
only if S1 is a proper subfamily of S2.

Let [(X, τw), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system and
let τw1 be another weak topology, on X, generated by the fixed family of
functions. Let B1 and B2 be the respective polar bases for τw1 and τw. Then
τw1 < τw if and only if B1 is a proper subfamily of B2; and B1 is a proper
subfamily of B2 if and only if the subbase S1 for τw1 (in relation to B1) is a
proper subfamily of S2, the subbase for τw (in relation to B2). Clearly S1 is
of the form

{f−1
α (Gα) : Gα ∈ τα, α ∈ ∆}

and S2 is also of the (same) form

{f−1
α (Gα) : Gα ∈ τα, α ∈ ∆}.

Since S1 ⊂ S2 and S1 6= S2, there must be a range space (Xα0 , τα0), α0 ∈ ∆, in
the weak topological system such that Xα0 has another topology τ0, strictly
weaker than τα0 , and such that

S1 = {f−1
α (Gα) : Gα ∈ τα, α ∈ ∆, α 6= α0}

⋃{f−1
α0

(Gα0) : Gα0 ∈ τ0}

and

S2 = {f−1
α (Gα) : Gα ∈ τα, α ∈ ∆}.

Let τ0 = τ1 (of the proposition) and τα0 = τ2, and the proof is complete.

4.1.13 Cursory Look at an Existing Result

Let us again point out some of the benefits of taking a constructive approach
to the study of weak topology: (1) The constructive approach enables us to
create or obtain weak topologies of virtually all kinds of topological proper-
ties; (2) It can help us to check the correctness or otherwise of our intended
general result; for example there is a theorem in literature which simply
states that The weak topology is Hausdorff. (See proposition 6.9, page 124 of
Chidume (1996) for this.) The questions relating to this proposition are: (1)
Are all weak topologies Hausdorff? and (2) Is it to be accepted that only one
weak topology—that which is Hausdorf—is in existence, even though both
present and older works have shown the existence of several weak topologies?
Our answer to these two questions is that one topological property of a weak
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topology may not be shared by other weak topologies, and, in particular, all
weak topologies are NOT Hausdorff. We take a few illustrative examples.
EXAMPLE 4.44
Let X = {a, b, c}, Y = {1, 2, 3} and Z = {p, q, r, s, t} be three sets. Let
f : X → Y be a function defined by f(a) = 2 and f(b) = 1; and let
g : X → Z be a function defined by g(b) = p and g(c) = p. Let Y
be endowed with its indiscrete topology and let Z be given any topology.
Then the weak topology τw on X generated by these two functions f, g is
τw = {∅, X, {b}, {a, b}, {b, c}}. And it is easy to see that this weak topology
on X is not Hausdorff.
EXAMPLE 4.45
Let X, Y, Z, f, g all be as given in example 4.44. Let Z be endowed with any
topology but Y now with its discrete topology. Then the weak topology τw
on X generated by these two functions f, g now is
τw = {∅, X, {a}, {b}, {a, b}, {b, c}}. And it is easy to see that this weak topol-
ogy on X is not Hausdorff, as b 6= c and there are no disjoint τw-open sets
containing b and c.
EXAMPLE 4.46
Let X, Y, Z, f all be as given in example 4.45. Let Z be endowed with the
topology {∅, Z, {p}, {t}, {p, t}} and Y with its discrete topology. And let
g : X → Z be defined by g(b) = p and g(c) = t. Then the weak topology τw
on X generated by these two functions f, g now is τw =
{∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. And we now see that this weak
topology on X is Hausdorff.
EXAMPLE 4.47
The Sierpinski weak topology constructed earlier in subsection 4.1.6 is not
Hausdorff.
We can therefore make the following proposition without need of other proof.

Proposition 4.14 Not every weak topology is Hausdorff.

4.1.14 On Seminorm Topologies

Topologies have been generated on linear spaces by norms and families of
seminorms without recourse to the process of Theorem 1.1 which is a typ-
ical process of constructing weak topologies. We are here set to investigate
the link (if any) between topologies generated by families of seminorms in
such traditionally special way (hereafter simply referred to as ’seminorm
topologies’ and denoted by T ) and weak topologies generated by families of
seminorms (henceforth referred simply to as ’seminorm weak topologies’ and
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as usual here, denoted by τw).
SOME EXISTING CONCEPTS AND RESULTS

All the concepts, ideas and results of this subsection are in existing liter-
ature. (See e.g. Angus Taylor and David Lay, pages 96 to 107.)

Theorem 4.9 A topological linear space X has a base Ψ at 0 with the fol-
lowing properties:
(a) Each member of Ψ is balanced and absorbing.
(b) If U ∈ Ψ, there exists V ∈ Ψ such that V + V ⊂ U .
(c) If U1 and U2 are in Ψ, there exists U3 ∈ Ψ such that U3 ⊂ U1 ∩ U2.
Conversely, any nonempty collection Ψ of nonempty subsets of a linear space
X satisfying (a) to (c) is a base at 0 for a unique linear topology on X.

Definition 4.35 A topological linear space X is said to be locally convex if
every neighborhood of 0 has a convex neighborhood of 0.

REMARK 4.14
If X is a locally convex space and Ψ is the family of all absolutely convex
neghborhoods of 0, then Ψ is a base at 0. The description or construction of
base at 0 for locally convex spaces is often given in terms of seminorms.

Definition 4.36 Let X be a (real or complex) linear space. A seminorm on
X is a real-valued function p defined on X such that
(1) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X.
(2) p(λx) = |λ|p(x), for all x ∈ X and scalar λ.

REMARK 4.15
If p has the further property that p(x) 6= 0 if x 6= 0, then p is a norm.

Lemma 4.7 Let p be a seminorm on a linear space X. Then the sets

V1 = {x ∈ X : p(x) < 1} and V2 = {x ∈ X : p(x) ≤ 1}
are absorbing and absolutely convex.

Theorem 4.10 Let P be a nonempty family of seminorms on a linear space
X. For each p ∈ P let V(p) be the set {x ∈ X : p(x) < 1}. Let Ψ be the
family of all finite intersections

r1V (p1) ∩ r2V (p2) ∩ · · · ∩ rnV (pn), rk > 0, pk ∈ P .

Then Ψ is a base at 0 for a topology T that makes X a locally convex space.
Furthermore, this topology T is the smallest linear topology for X with respect
to which all the seminorms in P are continuous.
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4.1.15 Seminorm Weak Topologies Versus Seminorm
Topologies

REMARK 4.16

1. The seminorm topology T described in the last theorem is actually con-
structed without special attention to what may happen if the topology
of the set IR of real numbers, as the range space of all the seminorms
in P , is changed or varied. Hence conceptually, seminorm topologies
are different from seminorm weak topologies. Our expositions here
show that seminorm topologies T exist strictly in the midst of weak
topologies generated by the given family of seminorms.

2. We prove that every seminorm topology T (which we know is locally
convex) is at the top of a chain of pairwise strictly comparable non-
locally-convex weak topologies; and yet the same family of seminorms
would generate a weak topology strictly stronger than the seminorm
topology. And an associated question here is: Can the seminorm topol-
ogy itself be shown to be also a weak topology generated by the given
family of seminorms? Interestingly our exposition here results in an
affirmative answer to this question. We showed that the seminorm
topology T is actually a weak topology τw generated by the (same)
family of seminorms.

3. The cardinality n(P ) of P can range from 1 to infinity, it is to be
observed. If n(P ) = 1, then the seminorm topology T would be one
generated by a single seminorm, just as one norm on X can induce a
topology on X.

4. If P1 and P2 are two different families of seminorms on a linear space
X, the locally convex topologies T1 and T2 generated on X by P1 and
P2 may not be comparable, and may be comparable but not coincident.

EXAMPLE 4.48
LetX = IR2 and let p1 : X −→ IRbe a seminorm defined onX by p1{(x, y)} =
|x|. The family P = {p1} of ”seminorms” is now a singleton. Let V (p1) =
{(x, y) ∈ X : p1{(x, y)} < 1}. Then the family P of this single seminorm
nevertheless generates a seminorm topology T1 on X. The base for T1 is the
collection

Ψ = {
n⋂
k=1

rkV (p1) : rk > 0, n ∈ IN}
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of absorbing and absolutely convex subsets of X. The set V (p1) is the ver-
tically infinite open strip whose center is the vertical line x = 0 or the y
axis of the Cartesian plane—the ”p1-seminorm ball” centered on the vertical
line (0, y) with radius r = 1. (See figure 10.) Its width stretches along the
interval from -1 to 1 on the horizontal axis. Hence the sets rV (p1) (r > 0)
are as well vertically infinite open strips with widths running from −r to r
along the horizontal. (We should observe that V (p1) = P−1

1 {(−1, 1)}. 8)
This single-seminorm topology is easily seen to be locally convex but strictly
weaker than the usual topology u of X(= IR2). To see that T1 is strictly
weaker than the usual topology u of X, observe that every T1-open set is
u-open but, for instance, no u-open rectangle is T1-open.
EXAMPLE 4.49
Let X = IR2 and let p2 : X −→ IR be a seminorm defined on X by
p2{(x, y)} = |y|. The family P = {p2} of ”seminorms” is a singleton.
Let V (p2) = {(x, y) ∈ X : p2{(x, y)} < 1}. (And again we see that
V (p2) = P−1

2 {(−1, 1)}.) Then the family P of this single seminorm gen-
erates a seminorm topology T2 on X. The base for T2 is the collection

Ψ = {
n⋂
k=1

rkV (p2) : rk > 0, n ∈ IN}

of absorbing and absolutely convex subsets of X. The set V (p2) is the hor-
izontally infinite open strip whose center is the horizontal line y = 0 or the
x axis of the Cartesian plane—the ”p2-seminorm ball” centered on the line
(x, 0). (See figure 11.) Its width stretches along the interval from -1 to 1
on the vertical axis. Hence the sets rV (p2) (r > 0) are horizontally infinite
open strips with widths running from −r to r along the vertical. This single-
seminorm topology is also locally convex and strictly weaker than the usual
topology u of X(= IR2). And to see this, we only need to observe that every
T2-open set is u-open but, for instance, no u-open rectangle is T2-open. We
also see that T1 and T2 are not comparable.
EXAMPLE 4.50
If we now have a family of seminorms P = {p1, p2} on X = IR2, where el-
ements of P are as defined in the two examples above, we shall get a third
seminorm topology T3 on X. We shall continue to look at these and other
seminorm topologies in the sequel; but for now we need some background
results.

Lemma 4.8 (Topology of Balanced Sets) Let X be a linear space and
let Ψ = {B ⊂ X : B is balanced, convex and absorbent}. If τ = Ψ ∪ {∅} and
Ψ is pairwise comparable, then τ is a topology on X.

8This observation will help us soon to see this single-seminorm topology T1 as a weak
topology τw1 generated by this family of only one seminorm.

83



Proof:
We first observe that X ∈ τ since X (as the linear space) is balanced, con-
vex and absorbent; so we only need to prove that τ is closed under finite
intersections and arbitrary unions.

1. Let Bi, i = 1, · · · , n be a finite number of sets in τ , and let N =
n⋂
i=1

Bi be

their intersection. We show that N is balanced, convex and absorbent.
Let x ∈ N,−1 ≤ t ≤ 1. Then x ∈ Bi, i = 1, · · · , n; so tx ∈ Bi, i =
1, · · · , n since each Bi is balanced. This implies that tx ∈ N , and hence
that N is balanced.
Let x, y ∈ N, 0 ≤ t ≤ 1. Then x, y ∈ Bi, i = 1, · · · , n and tx+(1−t)y ∈
Bi, i = 1, · · · , n as each Bi is convex. Hence tx+(1− t)y ∈ N , implying
that N is convex.
Let x ∈ X be arbitrary. Then since each Bi is absorbent, there exists
for each i, ti ∈ IR such that tix ∈ Bi, i = 1, · · · , n. Let t = min{ti, i =
1, · · · , n}. Then tx ∈ Bi, i = 1, · · · , n; and so tx ∈ N . (Or alternatively
since elements of Ψ or indeed of τ are pairwise comparable, N = Bi0 ,
for some i0 ∈ {1, · · · , n}. Since Bi0 is absorbing, N is absorbing.) That
is, N is balanced, convex and absorbing; so N ∈ Ψ and hence is in τ .

2. Let {Bα} ⊂ τ be an arbitrary collection of sets in τ . We need to
show that U =

⋃
α
Bα ∈ τ by showing that it is balanced, convex and

absorbing.
Let x ∈ U,−1 ≤ t ≤ 1. Then x ∈ Bα0 , for some α0. Since Bα0 is
balanced, tx ∈ Bα0 . Hence tx ∈ U , implying that U is balanced.
Let x, y ∈ U, 0 ≤ t ≤ 1. Then x and y are in one set Bα0 since Ψ is
pairwise comparable. As Bα0 is convex, tx+ (1− t)y ∈ Bα0 ; and since
Bα0 ⊂ U it follows that tx+ (1− t)y ∈ U and hence that U is convex.
Clearly it is easy to see that U is absorbent since the sets that make up
U are absorbent. So U ∈ Ψ and hence U ∈ τ . The proof is complete.

NOTE
The family Ψ in Lemma 4.8 can be constructed by restricting the elements
(of Ψ) to subsets of a fixed subset of X. That is, if E ⊂ X, we can define
Ψ to be Ψ = {B ⊂ E : B is balanced, convex and absorbent}, and then
τ = Ψ ∪ {∅, X} would be a topology (on X) of the balanced subsets of E.
For example, for any fixed real number r > 0, the set Xr = (−r, r) is a
balanced, convex and absorbing subset of IR. If we let Ψ = {B ⊂ Xr : B is
balanced, convex and absorbent}, then τ = Ψ ∪ {∅, IR} would be a topology
(on IR) of the balanced subsets of Xr. We shall in the sequel make use of
this type of topology of balanced subsets of subsets of IR to construct useful
topologies.
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Proposition 4.15 If P1 and P2 are two different families of seminorms on
a linear space X, the respective locally convex topologies T1 and T2 generated
on X by P1 and P2 may not be comparable, and may be comparable but not
coincident.9

Now we have to explore the relationship of the three seminorm topologies
above with weak topologies that may be generated on X by each of the
families of seminorms.
EXAMPLE 4.51
LetX = IR2 and let p1 : X −→ IRbe a seminorm defined onX by p1{(x, y)} =
|x|. The family P = {p1} of ”seminorms” is only a singleton. To construct a
weak topology on X using this singleton as ”a family of functions” we have to
consider the topology endowed IRas the range space since each weak topology
is built in consideration of the range topologies of the family of functions.
Let (IR, u) denote the usual topological space of IR. Then it is easy to see
that the weak topology τw on X generated by this singleton of seminorm is
strictly stronger than the p1-seminorm topology T1 of example 4.48 above.
That is, T1 < τw; and to see this we observe that G ∈ T1 =⇒ G = rV (P1) =
p−1

1 {(−r, r)} ∈ τw, where (−r, r) is a u-open subinterval of IR, but for instance
p−1

1 {(2, 4)} ∈ τw but p−1
1 {(2, 4)} /∈ T1 since p−1

1 {(2, 4)} = {x̄ = (x1, x2) ∈ IR2 :
x1 ∈ (−4,−2) ∪ (2, 4)}.
Let us now change the topology of IR as the range space of p1. Let X1 =
(−1, 1) be a u-open interval and let τ1 = X1-topology on IR given as τ1 =
{(−r, r) ∈ u : 0 < r ≤ 1}∪{∅, IR}, generated (in line with Lemma 4.8) by all
the balanced u-open subsets of X1. Then the weak topology now τw1 on IR2

generated by this seminorm is strictly weaker than the seminorm topology
T1 on IR2 since every τw1-open set (which actually is of the form rV (p1)) is
T1-open but rV (p1) is not τw1-open if r > 1.
If (similarly) we let X2 = (−2, 2) be a u-open interval and let τ2 = X2-
topology on IR given as τ2 = {(−r, r) ∈ u : 0 < r ≤ 2} ∪ {∅, IR}, generated
(according to Lemma 4.8 ) by the balanced u-open subsets of X2. Then
the weak topology now τw2 on IR2 generated by this seminorm will again be
strictly weaker than the seminorm topology T1 on IR2 since every τw2-open
set (which also is of the form rV (p1)) is T1-open but rV (p1) is not τw2-open
if r > 2. And we observe that τw1 < τw2 .
If we continue this process of using the lemma on topology of balanced sets
to construct weak topologies on X = IR2 we shall get a chain

C = {τwn}, n ∈ IN

9And a research question exists here: Can two different families P1 and P2 of seminorms
on a linear space X generate the same locally convex topology T on X?
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of pairwise strictly comparable (vertical-wise, but horizontally expand-
ing) weak topologies (on IR2) at the peak of which sits the seminorm topology
T1 which itself in turn is strictly weaker than the weak topology τw obtained
when the usual topology of IR is assumed on the range space of p1. That is

τwn < τwn+1 < T1 < τw for all n ∈ IN.

We then observe that τw1 is not locally convex since (for instance) there is
no convex neighborhood of the coordinate point (2,0) in the topology τw1 ,
except of course IR2 itself. By similar analysis we also see that τw2 is not
locally convex.

If we change the process of constructing the seminorm weak topologies,
the resulting pairwise comparable chain of weak topologies may not be com-
parable to the seminorm topology T1. For example, let X0 = (0,∞) be a
u-open subset of IR. And let τ0 = {G ∈ u : G ⊂ X0}∪{IR} be an X0-topology
on IR. Then for the τ0-open set G = (0, 1), we have

p−1
1 {(0, 1)} = {(x, y) ∈ IR2 : x ∈ (−1, 0) ∪ (0, 1)}.

This is the vertically infinite open strip centered on the y axis, with radius
1, but with the y axis itself deleted. This is shown in figure 12. In general,
for any G = (a, b) in τ0,

p−1
1 (G) = {(x, y) ∈ IR2 : x ∈ (−b,−a) ∪ (a, b)}.

Then we see that (now) the weak topology τw1 on X is not comparable to the
’p1 seminorm topology’, of example 4.48, since no nonempty τw1-open proper
subset (of X = IR2) is T1-open and no nonempty T1-open proper subset of X
is τw1-open.
To see this, we observe that all the T1-open sets are balanced, convex and
absorbing while no nontrivial τw1-open set is balanced, convex or absorbent.
For example, the set

G = p−1
1 {(0, 1)} = {(x1, x2) ∈ IR2 : x1 ∈ (−1, 0) ∪ (0, 1)}

is τw1-open and it is not balanced, since for the coordinate point x̄ = (−1
2
,−1

5
)

in G and the scalar λ = 0 ∈ [−1, 1], λx̄ = (0, 0) /∈ G. Also G is not convex
since for the coordinate points x̄ = (−1

2
,−1

5
) and ȳ = (1

2
, 3

4
) in G and the

scalar λ = 1
2

we have λx̄ + (1 − λ)ȳ = (0, 11
40

) /∈ G. And G is not absorbent
since, for instance, the coordinate point (0, 11

40
) cannot be absorbed into G;

that is, no scalar multiple of this point is an element of G. This is because
λ.(0, 11

40
) = (0, 11λ

40
),∀λ ∈ IR. Let X1 = (1,∞) be another u-open subset

of IR and let τ1 = {G ∈ u : G ⊂ X1} ∪ {IR} be an X1-topology on IR. Then
for the τ1-open set G = (1, 2), we have
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p−1
1 {(1, 2)} = {(x, y) ∈ IR2 : x ∈ (−2,−1) ∪ (1, 2)}.

This is a pair of vertically infinite open strips, one centered on the vertical
line (3

2
, y) with radius 1

2
, and the other is centered on the vertical line (−3

2
, y)

with radius of 1
2
. This is shown in figure 13. Generally, for all G = (a, b) in

τ1,

p−1
1 (G) = {(x, y) ∈ IR2 : x ∈ (−b,−a) ∪ (a, b)},

a pair of vertically infinite open strips, one centered on the vertical line
(a+b

2
, y) with radius b−a

2
, and the other is centered on the vertical line (−a+b

2
, y)

with radius of b−a
2

. Then the weak topology τw2 now on X generated by
P = {p1} is strictly weaker than the earlier weak topology τw1 . That is

τw2 < τw1 .

We can continue this process and the result is that there exists a chain

C = {τwn , n ∈ IN}

of pairwise strictly comparable non locally convex weak topologies gener-
ated by P = {p1} which are not comparable to the seminorm topology T1

generated by P = {p1}. That is

· · · < τw3 < τw2 < τw1 .

EXAMPLE 4.52
Let X = IR2 and now let p2 : X −→ IR be a seminorm defined on X by
p2{(x, y)} = |y|. The family P = {p2} of ”seminorms” is also a singleton.
Let (IR, u) denote the usual topological space of IR. The weak topology τw on
X generated by this singleton of seminorm is strictly stronger than the p2-
seminorm topology T2 of example 4.49 above. That is, τw > T2, where T2 is
as given in example 4.49 above. And to see this, it is enough to observe that
V (p2) = p−1

2 {(−1, 1)}; so every T2-open set is τw-open but not conversely as,
for instance p−1

2 {(2, 4)} is not T2-open but τw-open.
Let us now change the topology of IR as the range space of p2.
Let X1 = (−1, 1) be a u-open interval and let τ1 = X1-topology on IR given
as τ1 = {(−r, r) ∈ u : 0 < r ≤ 1} ∪ {∅, IR}, generated (in line with Lemma
4.8) by all the balanced u-open subsets of X1. Then the weak topology now
τw1 on IR2 generated by this seminorm is strictly weaker than the seminorm
topology T2, of P = {p2} in example 4.49 above, on IR2 since every τw1-open
set (which again is of the form rV (p2)) is T2-open but rV (p2) is not τw1-open
if r > 1.
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If (similarly) we let X2 = (−2, 2) be a u-open interval and let τ2 = X2-
topology on IR given as τ2 = {(−r, r) ∈ u : 0 < r ≤ 2} ∪ {∅, IR}, generated
(according to Lemma 4.8 ) by the balanced u-open subsets of X2, then the
weak topology now τw2 on IR2 generated by this seminorm will again be
strictly weaker than the seminorm topology T2 on IR2 since every τw2-open
set (which also is of the form rV (p2)) is T2-open but rV (p2) is not τw2-open
if r > 2. We then observe that τw1 < τw2 .
If we continue this process of using the lemma on topology of balanced sets
to construct weak topologies on X = IR2 we shall get a chain

C = {τwn}, n ∈ IN

of pairwise strictly comparable (horizontal-wise, vertically expanding)
weak topologies (on IR2) at the peak of which sits the seminorm topology T2

which itself in turn is strictly weaker than the weak topology τw obtained
when the usual topology of IR is assumed on the range space of p2. That is

τwn < τwn+1 < T2 < τw for all n ∈ IN.

We then observe that τw1 is not locally convex since (for instance) there is no
convex neighborhood of the coordinate point (4,0) in the topology τw1 . And
similarly we also see that τw2 is not locally convex.

Now let X0 = (0,∞) be a u-open subset of IR and let τ0 = {G ∈ u : G ⊂
X0} ∪ {IR} be an X0-topology on IR. Then for the τ0-open set G = (0, 1), we
have

p−1
2 {(0, 1)} = {(x, y) ∈ IR2 : y ∈ (−1, 0) ∪ (0, 1)}.

This is the horizontally infinite open strip centered on the x axis, with radius
1, but with the x axis itself deleted. This is shown in figure 14. And in
general, for any G = (a, b) in τ0,

p−1
2 (G) = {(x, y) ∈ IR2 : y ∈ (−b,−a) ∪ (a, b)}.

The weak topology τw1 on X is not weaker than the ’p2 seminorm topology’.
Let X1 = (1,∞) be another u-open subset of IR. Let τ1 = {G ∈ u : G ⊂

X1} ∪ {IR} be an X1-topology on IR. Then for the τ1-open set G = (1, 2), we
have

p−1
2 {(1, 2)} = {(x, y) ∈ IR2 : y ∈ (−2,−1) ∪ (1, 2)}.

This is a pair of horizontally infinite open strips, one centered on the hori-
zontal line (x, 3

2
) with radius 1

2
, and the other is centered on the horizontal

line (x,−3
2
) with radius of 1

2
. This is shown in figure 15. And generally, for

any G = (a, b) in τ1,
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p−1
2 (G) = {(x, y) ∈ IR2 : y ∈ (−b,−a) ∪ (a, b)},

a pair of horizontally infinite open strips, one centered on the horizontal
line (x, a+b

2
) with radius b−a

2
, and the other is centered on the horizontal

line (x,−a+b
2

) with radius of b−a
2

. Then the weak topology τw2 now on X
generated by P = {p2} is strictly weaker than the earlier weak topology τw1 .
That is

τw2 < τw1 .

We can continue this process and the result is that there exists a chain

C = {τwn , n ∈ IN}

of pairwise strictly comparable non locally convex weak topologies generated
by P = {p2} not comparable to T2. That is,

· · · < τw3 < τw2 < τw1 .

EXAMPLE 4.53
Now let X = IR2 and let p1, p2 : X −→ IR be the two seminorms defined
on X respectively by p1{(x, y)} = |x| and p2{(x, y)} = |y|. Then again
P = {p1, p2} is a family of seminorms on X. Let (IR, u) denote the usual
topological space of IR. The weak topology τw on X generated by this fam-
ily P of seminorms is strictly stronger than the 2-seminorm topology T3 of
example 4.50 above for the reasons already explained using topology of bal-
anced sets in example 4.51 here. The only rectangles open in the seminorm
topology T3 are those of the form (−r, r) × (−r, r)—that is, those centered
at the origin. Any rectangle not centered at the origin is not open in T3.
This is one of the reasons why T3 < τw. By contrast if b > a > 0, then
p−1

1 {(a, b)} ∩ p−1
2 {(a, b)} ∈ τw but p−1

1 {(a, b)} ∩ p−1
2 {(a, b)} /∈ T3.

Also τw < u = the usual topology of IR2 because single rectangles not cen-
tered at the origin are not τw-open. (Only even mumbers of such rectangles
are τw-open.) So, we have

T3 < τw < u.

And as we have seen, T3 may be seen as a topology of only ”origin-centered
concentric rectangles”, τw as a ”topology of (in addition to T3-open sets)
pairs of non-concentric rectangles”, and the usual topology u as a ”topology
of (in addition to τw-open sets) arbitrarily single rectangles”.

Now let the two factor spaces of IR2 be given the topology of balanced
subsets of X1 = (−1, 1) (after the rules outlined in Lemma 4.8 on topology
of balanced sets, and as already constructed in example 4.51 above). The
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weak topology τw1 now on X = IR2 generated by the family P = {p1, p2} of
these two seminorms will (as can easily be seen) be strictly weaker than the
seminorm topology T3: To see this, we observe that the only origin-centered
rectangles open in τw1 are those of the form (−r, r)× (−r, r), 0 < r < 1; that
is, origin-centered sub-rectangles of (−1, 1)× (−1, 1). The complete picture
of the landscape of τw1 is cross-like after the axes of the plane, with the
origin as the center of the cross. So

τw1 < T3 < τw < u. . . . . . . . . . . . . . (1)

If we repeat the construction process here, with X2 = (−2, 2) replacing
X1 = (−1, 1) we get another cross-like (or cross-wise) weak topology τw2 on
IR2 generated by this family P of two seminorms. And it is easy to see that
τw1 is strictly weaker than τw2 and that both weak topologies are not locally
convex. Hence τw1 < τw2 < T3 < τw < u.
Indefinite continuation of the construction process here gives a sequence
{τwn} of non-locally-convex, pairwise strictly comparable cross-wise weak
topologies on IR2 generated by the family P of these two seminorms; so that

τw1 < τw2 < · · · < T3 < τw < u. . . . . . . . . . . . . . . (2)

As n tends to ∞, Xn = (−n, n) tends to X∞ = (−∞,∞) = IR and the
process of constructing these crosswise weak topologies leads to τw∞ which
would then coincide with T3. So we finally have

τw1 < τw2 < · · · < τw∞ = T3 < τw < u, . . . . . . . . . . (3)

so that the seminorm topology T3 is a weak topology which is the limit of a
chain of non-locally-convex weak topologies generated by the same family of
seminorms.
By analoguous processes, it is relatively easy to show that for a family P =
{p1, p2, · · · , pn} of n similar seminorms on X(= IRn) we can gradually move
from relation of type (1) to relations of type (2) and (3) for the seminorm
weak topologies and the seminorm topologies on X(= IRn). The question
now is whether this scenario or trend will be the case if P is another family
of seminorms on X(= IRn). And a more general and hence better question is
whether relations of any of the three types above hold for an arbitrary family
P of seminorms on an arbitrary nonempty linear space X. These questions
amplify the importance of the statement and proof of the following theorem.

Theorem 4.11 Let X be any nonempty (real or complex) linear space. Let
P be any nonempty family of seminorms on X. Let T be the locally convex
topology on X generated by the family P of seminorms. There exists a pair-
wise strictly comparable chain C = {τwn , n ∈ IN} of non locally convex weak
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topologies generated on X by the family P of seminorms at which peak is a
locally convex weak topology τw generated by P . Hence T = τw.

Proof:
Let u be the usual topology of IR, r > 0 any positive real number and let
Xr = (−r,∞) be a u-open subinterval of IR. Let τr = {G ∈ u : G ⊂ Xr}∪{IR}
be a topology induced on IR by Xr using some u-open sets.
For any 0 < k < r and b > 0, (−k, b) ∈ τr. And for any p ∈ P , we have

p−1{(−k, b)} = {x ∈ X : p(x) ∈ (−k, b)}
= {x ∈ X : −k < p(x) < b}

= {x ∈ X : −b < p(x) < b} as p(x) ≥ 0 for all x ∈ X
= {x ∈ X : p(x) < b}

= bV (p) where V (p) = {x ∈ X : p(x) < 1}.

Hence for all p ∈ P , p−1{(−k, b)} = bV (p) where V (p) = {x ∈ X : p(x) < 1}.
This equation and theorem 4.10 imply that the weak topology τw and the
seminorm topology T generated on X by the family P of seminorms are the
same. That is, T = τw.

Gradual application of Lemma 4.8 following the pattern of developments
in example 4.53 will generate a sequence C = {τwn , n ∈ IN} of pairwise strictly
comparable non locally convex weak topologies lying below T = τw. That is

τw1 < τw2 < · · · < τw∞ = τw = T .

NOTE: Proof of the last theorem is facilitated greatly by the idea that sub-
sets can induce topologies on their supersets. Also the proof is made possible
by the careful notice taken of the fact that all seminorms are real-valued func-
tions; and hence we can change the landscape of seminorm weak topology by
only tweaking the topology of the set IR of real numbers.
Future researches will have to find out how and if two different families of
seminorms on a linear space X can generate the same seminorm topology on
X—or whether this can never happen.
(References: Wehausen (1938), Arens (1947), Kelly (1958), Liusternik and
Sobolev (1974), McMaster (1990), Usher (2009), Ramachandran and Wolfs-
ton (2009), Yong etal., (2012), and Karimov and Repovs (2013).)

91



4.2 Cofinite Topology: Constructions and Con-

siderations

4.2.1

Here we show that every infinite set admits infinitely many cofinite-like
topologies which we then called semi-cofinite topologies. We then showed
that the infinity of semi-cofinite topologies can be constructed to form a
chain of topologies at which peak stands the cofinite topology of the set. For
a finite set, the semi-cofinite topologies forming a chain will only be finite
in number and the discrete topology of the finite set will be at the top of
the chain of the semi-cofinite topologies, as the cofinite topology. We also
proved that each of the semi-cofinite topologies is itself at the top of yet
another chain of pairwise comparable (semi-cofinite) topologies. This last
exposition resulted into what we finally called the branching theorem—that
every cofinite topology is a tree of many semi-cofinite topologies. Finally in
the section, we constructed the cofinite topology induced weak topology on
IR2. And it is seen that matrices of coordinate points come as closed sets of
this topology. This particular development again has an interesting contrast
with the point-open weak topology (constructed in subsection 4.1.1) on IR2 in
which matrices of coordinate points actually come as open sets. (References:
Kelly (1950), Warner (1958), Mehdi (1959), Arsove and Edwards (1980),
Uribe (2008), Kapovich and Lustig (2009), Albin and Melrose (2009), and
Wang and Huang (2013), and Bilan (2013),.)

Definition 4.37 Let X be an infinite set and let C = {A ⊂ X : Ac is finite
}⋃{∅}. Then C is a topology on X, called the cofinite topology on X.

Proposition 4.16 Let X be an infinite set and let C = {A ⊂ X : Ac is
finite }⋃{∅}. Then C is a topology on X.

Proof:

1. ∅ ∈ C, by definition.

2. X ∈ C, because Xc = ∅ is finite.

3. Let {Ai}ni=1 be a finite number of sets of C. Let N =
n⋂
i=1

Ai be the

intersection of this finite number of sets. Then N c =
(

n⋂
i=1

Ai

)c
=

n⋃
i=1

Aci

must be finite, as a finite union of finite sets. Hence,
n⋂
i=1

Ai ∈ C.
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4. Let {Aα, α ∈ ∆} be an arbitrary family of sets of C. We consider the
union U =

⋃
α∈∆

Aα of this family. The complement U c of this union is

the intersection
⋂
α∈∆

Acα of finite sets and hence U belongs to C since

its complement is finite.

Even though one may loosely say that open sets of a cofinite topology are
either finite or have finite complement, it is not quite correct to say that the
cofinite topology on an infinite set X is a collection of all subsets of X which
are either finite or have finite complement. Reason: Consider the set IR of
real numbers. If we define cofinite topology on IR using the loose definition
above, then a problem will occur as follows. Suppose C is the family of all
subsets of R which are either finite or have finite complement. For each nat-
ural number n, let Gn = {n}, the singleton of n. Then each Gn belongs to C,

as a finite set. Take the union
∞⋃
n=1

Gn of all such sets. Then this union does

not belong to C since it is infinite and its complement,
( ∞⋃
n=1

Gn

)c
=
∞⋂
n=1

Gc
n, is

infinite because it includes (among others) all the irrational numbers, which
are themselves even uncountable.

Some of the well known properties of the cofinite topology C on a set X
are as follows:

1. For an infinite set X, the complement of every C-open set (apart from
the empty set) is finite—this is the actual complement finite or co-finite
property.

2. If X is infinite, then C has infinitely many open sets.

3. If X is infinite, then C is not closed under arbitrary intersections.

4. There is one, and only one cofinite topology C on a set X.

5. The cofinite topology C on a set X is always T1.

The properties of a cofinite topology outlined above will soon be compared
and contrasted with those of semi-cofinite topologies defined and constructed
below in the next subsection.
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4.2.2 Peak of a Sequence of Pair-wise Comparable Topolo-
gies

Definition 4.38 If a collection Cs of subsets of an infinite set X is such
that Cs contains the empty set and that every (other) set in Cs has finite
complement, then Cs is called a semi-cofinite topology on X if it is a strictly
weaker topology than the cofinite topology on X.

The following are the properties against which each semi-cofinite topology,
when constructed, will be checked.

1. The complement of every Cs-open set (apart from the empty set) is
finite.

2. If X is infinite, then Cs can have infinitely many open sets or only a
finite number of open sets—all depends on how we choose to construct
Cs.

3. If X is infinite, Cs can be closed under arbitrary intersections, or
not closed under arbitrary intersections—depending on how Cs is con-
structed.

4. A set X can (and do often) have more than one semi-cofinite topology.

5. No semi-cofinite topology Cs on a set X is T1.

So, one main difference between a cofinite topology C and a semi-cofinite
topology Cs is that C is T1 and Cs is never T1. And one special relation-
ship between a cofinite topology C and a semi-cofinite topology Cs is that
Cs is always strictly weaker than C, on X. Last, but not the least, the
cofinite topology C and each semi-cofinite topology Cs have the co-finite or
complement finite property in common. These differences and similarities
necessitated the new definition—for if only one topology has a name, then
a very large class of other topologies related to the named topology should
have their name in autonomy.
EXAMPLE 4.54
Let IN = {0, 1, 2, · · ·} denote the set of natural numbers. For each n ∈ IN
let Gn be the set of all real numbers excluding the first n natural numbers.
Thus for instance

G0 = IR− {} = IR;

G1 = IR− {0};
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G2 = IR− {0, 1};

G3 = IR− {0, 1, 2};

...

Gn = IR− {0, 1, 2, 3, · · · , n− 1}

Let TCIN = {∅, Gn}n∈IN.
Then it is easy to see that

1. The empty set is in TCIN, from the way TCIN is defined.

2. The whole set IR of real numbers is in TCIN.

3. The complement Gc
n of every set in TCIN, apart from the empty set, is

finite; precisely Gc
n contains the first n natural numbers.

4. And that TCIN is closed under finite intersections and arbitrary unions.

5. Hence TCIN is a topology on IR, satisfying all but one property of the
cofinite topology, on IR, namely that it is not the family of all subsets
of IRwhose complements are finite, together with the empty set. Hence
TCIN is an example of what we, in this thesis, call semi-cofinite topology,
on the set IR of real numbers. It is strictly weaker than the cofinite
topology on IR.

We shall call TCIN the semi-cofinite topology on IR generated by the set IN of
natural numbers.
EXAMPLE 4.55
Let IZ = {0, 1,−1, 2,−2, 3,−3, · · ·} denote the set of all integers, arranged
thus. For each n ∈ IN= {0, 1, 2, · · ·}, let Gn be IRwithout the first n integers
under the arrangement thus made of IZ.
Hence for instance

G0 = IR;

G1 = IR− {0};

G2 = IR− {0, 1};

G3 = IR− {0, 1,−1};

G4 = IR− {0, 1,−1, 2};

G5 = IR− {0, 1,−1, 2,−2};
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...

etc.

Then TCIZ = {∅, Gn}n∈IN is a semi-cofinite topology (different from the one
above) on IR, as can easily be verified.
We observe that in TCIN, G2 = IR− {0, 1} and that in TCIZ, G2 = IR− {0, 1}.
However in TCIN, G3 = IR− {0, 1, 2} and in TCIZ, G3 = IR− {0, 1,−1} and we
see that though G2 is common to both TCIN and TCIZ, G3 is not common to
the two topologies on IR. It may be further verified that Gn is not common to
the two topologies if n ≥ 3. Hence these two topologies are not comparable.
But we can obtain two comparable semi-cofinite topologies on IR based on
the two subsets IN and IZ. Let IZ be written in the alternative (and usual)
form IZ = {· · · ,−2,−1, 0, 1, 2, · · ·} and let Gn = IR− {n integers } for each
n ∈ IN = {0, 1, 2, · · ·}. That is, Gn is IR without a finite number of whole
numbers. We can also observe that the complement of each Gn is a finite
number of integers. This observation is helpful in proving that the family
TIZ = {∅, Gn}n∈IN is closed under arbitrary unions; for if {Gα}α∈∆ ⊂ TIZ is
any family of sets in TIZ, then

⋂
α∈∆

Gc
α is a finite number of integers. It follows

that ( ⋂
α∈∆

Gc
α

)c
=

⋃
α∈∆

Gα

is IR without n whole numbers. Similarly we see that

n⋂
i=1

Gi =
(

n⋃
i=1

Gc
i

)c
is the complement of a finite number of whole numbers. Hence TIZ is a semi-
cofinite topology on IR. And it is easy to see that TCIN is strictly weaker
than TIZ. There are other ways of constructing strictly comparable pairs of
semi-cofinite topology on any infinite set. Later developments here will show
that.
EXAMPLE 4.56
Let IP = {p1, p2, p3, · · ·} be the ordered (ascendingly) set of all prime num-
bers, and IR and IN as earlier introduced. Let Gn denote IR without the first
n prime numbers. Then TCIP = {∅, Gn}n∈IN is yet another semi-cofinite topol-
ogy on IR, different from the two introduced earlier.
EXAMPLE 4.57
Let IQ = {q1, q2, q3, · · ·} be the set of all rational numbers, and IR and
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IN as earlier introduced. Put Gn = IR− {n rational numbers }. Then
TCIQ = {∅, Gn}n∈IN is another semi-cofinite topology on IR.
EXAMPLE 4.58
Let IQc be the set of all irrational numbers, and IRand INremain as introduced
before. Put Gn = IR− {n irrational numbers}, and let TCIQc = {∅, Gn}n∈IN.
Then TCIQc is a semi-cofinite topology on IR.
EXAMPLE 4.59
With IR and IN as earlier introduced, let Gn = IR− {n real numbers }. Put
TCIR = {∅, Gn}n∈IN. Then TCIR is the cofinite topology on IR.
NOTE:
We observe that the topology constructed last above (i.e. example 4.59),
TCIR, is the family of all subsets of IRwhose complements are finite, together
with the empty set—hence only this topology is the cofinite topology on IR.
The general method of constructing cofinite topologies supplied here can be
used to construct cofinite topology on any set. For example if we put IN= IR
then example 4.54 will coincide with what is found in Lipschutz (1965). If
IN= IR in example 4.59 we get the cofinite topology on IN.

We have proved that all the constructions 4.54 to 4.58 are semi-cofinite
topologies. We have also proved, in Proposition 4.16, that the family defined
in definition 4.37 is indeed a topology on X. We provide below an alterna-
tive, rigorous and particular proof that the family in example 4.59 is indeed
the cofinite topology on the set IR of real numbers.

Proposition 4.17 The family TCIR as constructed in example 4.59 is the
cofinite topology on the set IR of real numbers.

Proof:
We only prove that TCIR is closed under finite intersections and arbitrary
unions, since the remaining two properties of a (cofinite) topology are easily
seen to be satisfied by TCIR; we also note that TCIR is a T1-space (property of
all cofinite topologies) as singletons are TCIR-closed subsets of IR. We recall
that

G0 = IR;

G1 = IR− {r11};

G2 = IR− {r21, r22};

G3 = IR− {r31, r32, r33};

G4 = IR− {r41, r42, r43, r44};
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...

Gn = IR− {rn1, rn2, rn3, · · · , rnn}; where rni ∈ IR.

Now let N =
n⋂
k=1

Gk =
n⋂
k=1

(IR− {rk1, rk2, rk3, · · · , rkk})

= IR−
n⋃
k=1
{rk1, rk2, rk3, · · · , rkk}. Hence the complement N c of N is N c =

n⋃
k=1
{rk1, rk2, rk3, · · · , rkk}, a finite union of finite sets; and hence must be fi-

nite. Alternatively we can consider directly the cardinality of N c. Card(N c)

is such that Card(N c) ≤ 1 + 2 + 3 + · · · + n = n(n+1)
2

< ∞. So N c is finite,
implying that TCIR is closed under finite intersections.
Now let U =

⋃
α∈∆

Gα ≡
⋃
m≥t

Gm =
⋃
m≥t

(IR− {rmi}mi=1) = IR− (
⋂
m≥t
{rmi}mi=1).

Hence U c =
⋂
m≥t
{rmi}mi=1 ⊂ {rti}ti=1. Hence Card(U c)≤ t <∞, implying that

TCIR is also closed under arbitrary unions.

OBSERVATIONS
[1] We have said that the topologies TCIN and TCIZ (in examples 4.54 and
4.55) are not comparable, from the observation that G3 in TCIN is G3 =
IR− {0, 1, 2} while in TCIZ, G3 = IR− {0, 1,−1}. Hence G3 in TCIN is not the
same as G3 in TCIZ. If we denote Gn in TCIN by TCIN(Gn), and Gn in TCIZ by
TCIZ(Gn) then it is easy to see that TCIN(Gn) /∈ TCIZ if n ∈ N and n ≥ 3; and,
conversely, TCIZ(Gn) /∈ TCIN if n ∈ IN and n ≥ 3, though TCIN(Gn) = TCIZ(Gn)
if n = 0, 1, 2.
[2] However, if we define Gn in TCIN by Gn = IR− {n natural numbers },
and define Gn in TCIZ by Gn = IR−{n whole numbers }, then it would be seen
that, since the set IN of natural numbers is a subset of the set IZ of integers,
the collection TCIN of the set of real numbers without some natural numbers
is a sub-collection of the collection TCIZ of IR without some integers. Hence
the semi-cofinite topology TCIN on IR (this time) is strictly weaker than the
semi-cofinite topology TCIZ on IR. That is, TCIN< TCIZ. Similarly TCIP< TCIZ,
and TCIZ < TCIQ. And all the five semi-cofinite topologies, on IR, above can
be summarized as follows:

1. TCIN< TCIZ< TCIQ< TCIR;

2. TCIP< TCIZ< TCIQ< TCIR;

3. TCIQc < TCIR; and
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4. TCIP< TCIN.

The procedure for constructing the semi-cofinite topologies, on IR, above can
be applied to any infinite set and summaries similar to 1 to 4 can be put
under a lemma as follows.

Lemma 4.9 (The Cofinite Topology Lemma) Let A and B be two infi-
nite subsets of an infinite set X such that A ⊂ B (where A is a proper subset
of B). Then there exist semi-cofinite topologies TCA and TCB, on X, induced
respectively by A and B such that TCA < TCB; that is, TCA is strictly weaker
than TCB.

EXAMPLE 4.60
Let X be an infinite set and let B = X − {x1} and A = B − {x2} =
X − {x1, x2}. Then A is an infinite and proper subset of B, and (W.L.O.G)
B is an infinite and proper subset of X. Let

G0 = X − {} = X;

G1 = B = G0 − {x1} ≡ X − {x1};

G2 = A = G1 − {x2} = B − {x2} ≡ X − {x1, x2};

G3 = G2 − {x3} = A − {x3} = G1 − {x2, x3} = B − {x2, x3} ≡ X −
{x1, x2, x3};

G4 = G3 − {x4}
= G2 − {x3, x4}
= G1 − {x2, x3, x4}
= G0 − {x1, x2, x3, x4}

...

Gn = Gn−1 − {xn}
= Gn−2 − {xn−1, xn}
= Gn−3 − {xn−2, xn−1, xn}

...

= G0 − {x1, x2, · · · , xn}.
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Let TCA = {∅, G0, G2, G3, · · · , Gn, · · ·}. Then TCA is a semi-cofinite topology
on X.
Let TCB = {∅, Gn}n∈IN. Then TCB is another semi-cofinite topology on X.

And we see that TCA is a strictly weaker topology than TCB on X—since
G1 ∈ TCB and G1 /∈ TCA and every TCA-open set is TCB-open.

We also see that the open sets of both semi-cofinite topologies satisfy the
inclusions

· · · ⊂ G3 ⊂ G2 ⊂ G0 = X, for TCA;

and

· · · ⊂ G3 ⊂ G2 ⊂ G1 ⊂ G0 = X, for TCB.

Hence both semi-cofinite topologies are closed under arbitrary intersections.
Finally, we remark that one must not follow the process of construction used
here to have two comparable semi-cofinite topologies induced on X by A
and B. For example we could have used procedures exactly similar to those
used in examples 4.57 and 4.58, and still have TCA to be strictly weaker than
TCB—only that this time the semi-cofinite topologies may not be closed un-
der arbitrary intersections.

Let CIN and CIZ be respectively the cofinite topology on IN and IZ. Let
TIN = CIN

⋃{IZ}⋃{IR} and TIZ = CIZ
⋃{IR}. Then, by subset-induced topolo-

gies, both TIN and TIZ are topologies on IR and TIN is strictly weaker than TIZ.
Finally we observe that these two topologies are semi-cofinite topologies on
IR.
REMARK 4.17
We know that every infinite set, say X = {x1, x2, x3, · · ·}, has an infinite
proper subset, say X1 = {x2, x3, x4, · · ·}. From the cofinite topology lemma,
above, we can construct (or there exists) a semi-cofinite topology TCX1 on X,
and TCX , such that TCX > TCX1 . Since X1 is itself infinite, it has an infinite
proper subset, say X2. By the cofinite topology lemma again, there exists
a semi-cofinite topology TCX2 on X such that TCX > TCX1 > TCX2 . The
reasoning can continue like that, and what we have proved is the following.

Theorem 4.12 (Cofinite Topology Theorem) Let X be any infinite set.
There exists a sequence {τ1, τ2, τ3, · · ·} of (semi-cofinite) topologies on X,
forming a chain in that

C = TCX > τ1 > τ2 > τ3 > · · ·
where C = TCX is the cofinite topology on X.
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4.2.3 The Branching Theorem

Definition 4.39 A topology is called a chain-element topology if it is an
element of a family of topologies which form a (decreasing or increasing)
chain on a set.

NOTE
One implication of the cofinite topology theorem is that every infinite set
has infinitely many semi-cofinite topologies. The other implication is that
an infinity of semi-cofinite topologies on any infinite set can be constructed
to form a chain, on the top of which sits the cofinite topology of the set.
We observe that each of the semi-cofinite topologies so far constructed here
has an infinite number of open sets. However, we also have to point out that
they alone are not the only semi-cofinite topologies: there are some semi-
cofinite topologies with only finite numbers of open sets. In fact, each of the
chain-element semi-cofinite topologies with infinite number of open sets can
be shown to be (themselves) the limit of an increasing sequence of pair-wise
comparable semi-cofinite topologies with finite numbers of open sets.
EXAMPLE 4.61
Let us take another look at example 4.54, the semi-cofinite topology TCIN

on IR generated by the set of natural numbers. If we serially collect finite
numbers of open sets of TCIN, we shall get an increasing sequence of semi-
cofinite topologies on IR forming a chain at the top of which sits TCIN. To see
this, we go as usual and let

G0 = IR− {} = IR;

G1 = IR− {0};

Then τ1 = {∅, G0, G1} is a semi-cofinite topology, on IR, strictly weaker than
TCIN.

Let G2 = IR− {0, 1}. Then, with G0 and G1 as earlier defined, τ2 =
{∅, G0, G1, G2} is yet another (semi-cofinite) topology, strictly weaker
than TCIN, on IR.

...

Continuing like that, with Gn = IR− {0, 1, 2, · · · , n − 1} and Gi (1 ≤ i ≤
n−1) as earlier defined, we see that τn = {∅, Gk}nk=0 is a (semi-cofinite)
topology on IR, strictly weaker than TCIN.
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We finally observe that τ1 is strictly weaker than τ2, and τ2 is strictly weaker
than τ3, and so on. That is

τ1 < τ2 < τ3 < · · · < TCIN,

where TCIN is as earlier introduced in example 4.54. That is, some semi-
cofinite topologies can branch out into the limit of another sequence of pair-
wise comparable topologies. Since each of the chain element topologies (τn
on X) in the cofinite topology theorem is induced on X by an infinite set,
Xn, each of these semi-cofinite topologies can be made to sit at the top of
yet another sequence of pairwise comparable topologies. For example, if τn is
induced on X by Xn, let Xni be Xn without i elements (where i ∈ IN). That
is, Xn1 = Xn−{x1}, where x1 ∈ Xn; Xn2 = Xn1−{x2}, where x2 ∈ Xn1 ; and
so on. We see that Xn ⊃ Xn1 ⊃ Xn2 · · ·. It follows from the cofinite topology
lemma that the semi-cofinite topology TCXn1 on X is strictly weaker than
TCXn = τn; TCXn2 is strictly weaker than TCXn1 ; TCXn3 is strictly weaker than
TCXn2 ; and so on. That is

· · · < TCXn3 < TCXn2 < TCXn1 < TCXn = τn < TCX = C, . . . (∗)

where C is the cofinite topology on X.
That is, the topology τn on X, induced by the subset Xn of X, sits at the

top of a chain of pairwise comparable topologies. Each Xni , subset of Xn,
induces the topology TXni on X, strictly weaker than τn, as seen in (∗). By
a process similar to what has been used to generate (∗), under τn, we can
have another chain

H = {TXnij }
∞
j=1

of topologies on X, pairwise comparable, and such that each TXnij
is strictly

weaker than TXni . The process can continue for each of the (infinite) subsets
Xni(i = 1, 2, 3, · · ·) of X—and their own subsets—and what we have proved
is the following.

Theorem 4.13 (Branching) Each of the chain element topologies under
the cofinite topology theorem is itself at the peak of yet another chain of (semi-
cofinite) topologies. If the original set X is infinite, then this branching will
be endless; if X is finite, the branching will terminate.

For example each of the semi-cofinite topologies 4.54 to 4.58 above, on IR, is
the limit of a sequence of pair-wise comparable monotone increasing semi-
cofinite topologies.
EXAMPLE 4.62
We may again let
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G0 = IN= {0, 1, 2, · · ·};

G1 = IN− {0} = {1, 2, 3, · · ·}.

Then τ1 = {∅, G0, G1} is a (semi-cofinite) topology on the set IN of natural
numbers. If we also let

G0 = IN, G1 = IN− {0}, G2 = IN− {0, 1} = {2, 3, 4, · · ·},

then τ2 = {∅, G0, G1, G2} is another topology, strictly stronger than τ1, on
IN. If we continue like that, for each n ∈ IN then

τn = {∅, Gk}nk=0

is a semi-cofinite topology on IN, strictly stronger than τn−1. We then see
that the family H1 = {τn}∞n=1 of topologies on IN form an increasing chain
of topologies, on IN, at which peak lies the cofinite topology on IN. We
note that each chain element of H1 has only finitely many open sets. This
is to be contrasted with H2 = {τn}∞n=1 whose elements τ1 = TCX1 , τ2 =
TCX2 , τ3 = TCX3 , · · ·, have each infinitely many open sets, where X1 =
N −{0} = {1, 2, 3, · · ·}, X2 = N −{0, 1} = {2, 3, 4, · · ·}, etc., and the topolo-
gies τ1 = TCX1 , τ2 = TCX2 , τ3 = TCX3 , · · · are constructed according to the
remark in Lemma 4.9.

Each of the chain-element semi-cofinite topologies with only a finite num-
ber of open sets (i.e. elements of H1) is an example of complement topology
(defined in the next section).
Finite Sets

Since the complement of every subset of a finite set is finite, any search
for subsets of a finite set whose complements are finite is not an interesting
exercise. Hence we do not often talk about cofinite topologies on finite sets.
However if X is finite, then 2X the power set of X is the cofinite topology
on X since it satisfies the definition of cofinite topology. Also if X is finite,
say X = {x1, x2, x3, · · · , xn}, then we have some semi-cofinite topologies on
X, forming a chain also. These semi-cofinite topologies can be constructed
as follows:

Let G0 = X;

G1 = X − {x1}. Then τ1 = {∅, G0, G1} is a semi-cofinite topology on X.

Let G2 = X − {x1, x2}. Then τ2 = {∅, Gk}2
k=0, where G0, G1 are as earlier

defined, is another semi-cofinite topology on X, strictly stronger than
τ1.
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With G3 = X − {x1, x2, x3}, we see that τ3 = {∅, Gk}3
k=0 is another semi-

cofinite topology, strictly stronger than τ2.

...

Continuing like that, with Gn = X − {x1, x2, x3, · · · , xn} = ∅, we see that
τn = {∅, Gk}nk=0 is a topology, strictly stronger than τn−1.

That is

τ = τn = {∅, Gk}nk=0

is a topology on X, stronger than all the other ones. So, we have a finite
sequence {τk}nk=1 of topologies on X forming a chain in that

τn > τn−1 > · · · > τ1

and the power set 2X of X, or its cofinite topology, is at the top of this finite
sequence of topologies.

4.2.4 Cofinite Topology Induced Weak Topology

Let us reconsider the projection maps pi : IR2 −→ IR, where 1 ≤ i ≤ 2,
such that p1(x, y) = x and p2(x, y) = y. We wish to find the weak topology,
induced by the projection maps, on IR2 when the two factor spaces of IR2 are
endowed with the cofinite topology of IR, as has been constructed in example
4.59

Let Gn ∈ TCIR be an open subset of IRwhen IRis endowed with the cofinite
topology. Then the inverse image10 of Gn under, say p1, is p−1

1 (Gn) =

{(x1, x2) = x̄ ∈ IR2 : p1(x̄) ∈ Gn}

= {x̄ ∈ IR2 : p1(x̄) ∈ IR and p1(x̄) /∈ Gc
n}

= {x̄ ∈ IR2 : p1(x̄) /∈ {rn1, rn2, · · · , rnn} and p1(x̄) ∈ IR}

= {(x1, x2) ∈ IR2 : x1 /∈ Gc
n, x1 ∈ IR}

= {IR2, without a finite number of infinite vertical lines }

= {IR2, without exactly n vertical infinite lines }.

By the same token we find that

10See Figure 7.
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p−1
2 (Gn) = {IR2, without exactly n horizontal infinite lines}.

The above constitute the subbasic sets of the (weak) topology of IR2, under
this arrangement. The base for this (weak) topology has some interesting
sets. For example, the whole plane IR2, excluding some matrices of coordi-
nate points, are among the basic sets of the cofinite topology induced weak
topology on IR2. This means that among the open sets of this topological
space are the whole plane itself without some matrices of coordinate points.
To see this, we observe that

p−1
1 (Gn) = {(x1, x2) ∈ IR2 : x1 /∈ {rn1, rn2, · · · , rnn}}; and
p−1

2 (Gn) = {(x1, x2) ∈ IR2 : x2 /∈ {rn1, rn2, · · · , rnn}}.

Therefore
p−1

1 (Gn)
⋂
p−1

2 (Gn) = {(x1, x2) ∈ IR2 : x1, x2 /∈ {rn1, rn2, · · · , rnn}}
= {(x1, x2) ∈ IR2 : x1 /∈ Gc

n, x2 /∈ Gc
n}

= IR2 − (Gc
n ×Gc

n)
= IR2 − {{rn1, rn2, · · · , rnn} × {rn1, rn2, · · · , rnn}}
= IR2 − {(rn1, rn1), (rn1, rn2), · · · , (rnn, rnn)}
= IR2 − {(rni, rnj)}ni,j=1,
the whole plane without a square n×n matrix of coordinate points. We also
see that
p−1

1 (Gn) = {(x1, x2) ∈ IR2 : x1 /∈ {rn1, rn2, · · · , rnn}}; and
p−1

2 (Gm) = {(x1, x2) ∈ IR2 : x2 /∈ {rm1, rm2, · · · , rmm}}.
Hence
p−1

1 (Gn)
⋂
p−1

2 (Gm) = {(x1, x2) ∈ IR2 : x1 /∈ {rn1, rn2, · · · , rnn}
and x2 /∈ {rm1, rm2, · · · , rmm}}
= {(x1, x2) ∈ IR2 : x1 /∈ Gc

n, x2 /∈ Gc
m}

= IR2 − (Gc
n ×Gc

m)
= IR2 − {{rn1, rn2, · · · , rnn} × {rm1, rm2, · · · , rmm}}
= IR2 − {(rn1, rm1), (rn1, rm2), · · · , (rnn, rmm)}
= IR2 − {(rni, rmj)}n,mi,j=1,
the whole plane excluding an n×m matrix of coordinate points.

In fact all kinds of matrices (column, row vectors, and others) of coordi-
nate points are closed sets of this topological space. (This may be contrasted
with the X-topology induced weak topology on the plane in which matrices
are actually open sets. See Subsection 4.1.1 again.) Finally, we state that by
considering the semi-cofinite topologies on IR we are bound to have similar
weak topologies on IR2. For example, if we use the semi-cofinite topology
TCIN on IR induced by the set of natural numbers, then all the vertical and
the horizontal lines mentioned above would pass through points or positions
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of natural numbers. If we use the semi-cofinite topology TCIQc then the lines
will all pass through points of irrational numbers. And so on.

4.3 Complement of a Topology and Comple-

ment Topologies

4.3.1 Definition, Properties and Implications

Definition 4.40 Let (X, τ) be a topological space. Then the complement τ c

of the topology τ on X is the family

τ c = {Gc : G ∈ τ}

of complements of τ -open sets.

Definition 4.41 If (X, τ) is a topological space and the complement τ c of τ
is itself also a topology on X, then τ is called a complement topology, on X.

REMARK 4.18
Since τ = (τ c)c, it follows that τ is a complement topology on X if and only
if τ c is also a complement topology on X. It turns out that large classes of
topologies are complement topologies.

Theorem 4.14 Every topology on a finite set is a complement topology.

Proof:
Let τ be a topology on a finite set X and let τ c be its complement. Then

1. Clearly both ∅ and X belong to τ c.

2. Let {Gi}ni=1 ⊂ τ c. Then
⋂n
i=1 Gi = (

⋃n
i=1 G

c
i)
c. But Gi ∈ τ c ⇒ Gc

i ∈ τ .
⇒ ⋃n

i=1G
c
i ∈ τ . ⇒ ⋂n

i=1Gi = (
⋃n
i=1G

c
i)
c ∈ τ c. ⇒ τ c is closed under

finite intersections.

3. Let {Gα}α∈∆ ⊂ τ c. Then
⋃
α∈∆Gα = (

⋂
α∈∆ G

c
α)c. Now, Gα ∈ τ c ⇒

Gc
α ∈ τ . ⇒ ⋂

α∈∆G
c
α ∈ τ , as finite intersections of sets of τ belong

to τ . (We observe that the intersection cannot be infinite since X is
finite.) Hence, since the complement of every set in τ is collected in
τ c, it follows that

⋃
α∈∆ Gα = (

⋂
α∈∆G

c
α)c ∈ τ c. This implies that τ c

is also closed under arbitrary unions. Hence the complement of every
topology on a finite set is a topology on the set.
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EXAMPLE 4.63
Let X = {x1, x2, x3, · · · , xn} be any non-empty finite set and let

τ = {∅, X, {x1}, {x1, x2}}

be a topology on X. Then τ c = {X, ∅, {x2, x3, · · · , xn}, {x3, x4, · · · , xn}} is
clearly a topology on X.
EXAMPLE 4.64
Let X = {x1, x2, x3, · · · , xn} be a non-empty finite set and let

τk = {∅, X, {x1}, {x1, x2}, · · · , {x1, x2, · · · , xk}}; 1 ≤ k < n.

Then τk is a topology on X, for all k. Now

τk
c = {X, ∅, {x2, · · · , xn}, {x3, · · · , xn}, · · · , {xk+1, · · · , xn}}

is also a topology on X, 1 ≤ k < n. (This example illustrates the remark
after Definition 4.41 above. More of such examples appear at the end of this
section.)
The proof of theorem 4.14 above points the way to a more general result.

Theorem 4.15 Let X be any nonempty set and let τ be a finite topology
(topology with finite cardinality) on X. Then τ is a complement topology on
X.

Corollary 4.8 Let X be an infinite set and let τ be a topology on X. Then
the complement τ c of the topology τ is itself a topology on X if τ contains
only a finite number of open sets.

EXAMPLE 4.65
Let a, b ∈ IR be any two real numbers. Then τ = {∅, IR, {a}, {b}, {a, b}}

is a topology on IR. Without loss of generality, we can let a < b. Then the
complement
τ c = {∅, IR, IR− {a}, IR− {b}, IR− {a, b}}
= {∅, IR, (−∞, a)

⋃
(a,+∞), (−∞, b)⋃(b,+∞), (−∞, a)

⋃
(a, b)

⋃
(b,+∞)}

of τ is easily seen to be a topology on IR.

Let G0 = IN = {0, 1, 2, · · ·}, G1 = {1, 2, 3, · · ·}, G2 = {2, 3, 4, · · ·}.
Then τ = {∅, Gk}2

k=0 is easily seen to be a topology on IN. The comple-
ment of τ , τ c = {∅, IN, {0}, {0, 1}} is also a topology on IN. In general
if G0 = IN, G1 = IN− {0}, G2 = IN− {0, 1}, G3 = IN− {0, 1, 2}, · · ·,
Gn = IN− {0, 1, 2, · · · , n − 1}, then τ = {∅, Gk}nk=0 is a topology on IN,
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and its complement τ c is also a topology on IN.

Now, every topology τ on a finite set is necessarily finite. Hence theo-
rem 4.15 asserts, relative to theorem 4.14, that every finite topology on an
infinite set is a complement topology. This raises the following interesting
question: Are the finite topologies the only topologies on infinite sets that are
complement topology? That is, is a complement topology on an infinite set
necessarily finite? The next theorem which answers the above question in
the negative provides a characterization of complement topologies.

Theorem 4.16 A topology τ on a set X is a complement topology if, and
only if τ is closed under arbitrary intersections.

Proof:
=⇒ Clearly if τ is a complement topology then it is closed under arbitrary
intersections.
⇐=. Let τ be closed under arbitrary intersections and let τ c be the comple-
ment of τ . We show that τ c is a topology on X. We need only show that
τ c is closed under arbitrary unions, as the other properties of a topology are
easily seen to be satisfied by τ c. So, let {Aα : α ∈ ∆} ⊂ τ c be any family of
sets of τ c. We consider

(
⋃
α∈∆Aα)c =

⋂
α∈∆A

c
α . . . . . . . (1)

Clearly Acα ∈ τ , for all Aα ∈ τ c. Since τ is, by hypothesis, closed under
arbitrary intersections

⋂
α∈∆ A

c
α ∈ τ . Hence the left side of (1) is an element

of τ ; implying that [(
⋃
α∈∆ Aα)c]

c
= (

⋃
α∈∆ Aα) ∈ τ c.

From theorem 4.16, it follows that every discrete topology is a complement
topology; and in particular it follows that discrete topologies of infinite sets
(which necessarily contain infinitely many open sets) are complement topolo-
gies. And there are other complement topologies, with infinitely many open
sets, which are not discrete topologies.

Lemma 4.10 (Comparison) Let τ1 and τ2 be any two complement topolo-
gies on a set X such that (say) τ1 is weaker than τ2. Then τ c1 is weaker than
τ c2 .

4.3.2 Application of the Comparison Lemma

Definition 4.42 A family C = {τα}α∈∆ of topologies on a set, X, is called
a chain of topologies, on X, if elements of C are pair-wise comparable, in
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that for any two topologies, τα and τr, in C, either τα is weaker than τr or
vice versa.

Theorem 4.17 Let X = {x1, x2, x3, · · · , xn} be any non-empty finite set.
There exists a finite family of topologies on X forming a chain, such that the
family of their complement topologies is also a chain.

Proof:
Let

G0 = X;

G1 = X − {x1} = {x2, x3, · · · , xn}.

Then τ1 = {∅, G0, G1} is a topology on X.
Let

G0 = X;

G1 = X − {x1} = {x2, x3, · · · , xn};

G2 = X − {x1, x2} = {x3, x4, · · · , xn}.

Then τ2 = {∅, Gk}2
k=0 is a topology on X, stronger than τ1.

...

Let

G0 = X;

G1 = X − {x1} = {x2, x3, · · · , xn};

G2 = X − {x1, x2} = {x3, x4, · · · , xn};

G3 = X − {x1, x2, x3} = {x4, x5, · · · , xn};

...

Gk = X − {x1, x2, · · · , xk} = {xk+1, xk+2, · · · , xn},

1 ≤ k ≤ n. Then τk = {∅, Gt}kt=0 is a topology on X finer than τk−1. Hence
{τk}nk=1 is a (finite) family of topologies on X forming a chain in that

τ1 < τ2 < · · · < τn.

We also see that
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τ c1 = {∅, X, {x1}};

τ c2 = {∅, X, {x1}, {x1, x2}}, etc.

are topologies (in chain) on X.

Proof of Theorem 4.17 can be extended to any set—even if infinite—with
a chain of complement topologies (using lemma 4.10). The next corollary
states this.

Corollary 4.9 Let C = {τα}α∈∆ be a chain of complement topologies on
any set X. Then the family C∗ = {τ cα : τα ∈ C}α∈∆ of complements of the
topologies in C is also a chain of complement topologies on X. Conversely,
the family of the complements of the topologies in a chain of complement
topologies on any set X is itself also a chain of complement topologies on X.

MORE EXAMPLES
EXAMPLE 4.66
The usual topology u on the set IR of real numbers is not closed under arbi-
trary intersections and is thus not a complement topology.
EXAMPLE 4.67
The usual topology on the Cartesian plane is not closed under arbitrary in-
tersections and is, hence, not a complement topology.
EXAMPLE 4.68
The lower limit (or Sorgenfrey) topology on IR is not closed under arbitrary
intersections and is also not a complement topology.
EXAMPLE 4.69
LetX = {x1, x2, · · · , xn} be a finite set, and let k ∈ INbe such that 2k−1 ≤ n.
Then

τ2k−1 = {∅, X, {x1}, {x1, x3}, · · · , {x1, x3, · · · , x2k−1}}

is a topology on X, for 1 ≤ k ≤
[
n+1

2

]
. We see also that

τ c2k−1 = {X, ∅, {x2, · · · , xn}, {x2, x4, · · · , xn}, · · · , {x2, x4, · · · , xn}}

is a topology on X.
EXAMPLE 4.70
LetX = {x1, x2, · · · , xn} be a finite set, and let k ∈ INbe such that 2k−1 ≤ n.

Then τ2k−1 =

{
∅, X,

k⋃
t=1
{x2t−1}

}
is a topology on X, for 1 ≤ k ≤

[
n+1

2

]
. Also

τ c2k−1 =

{
X, ∅, X −

k⋃
t=1
{x2t−1}

}
is a topology on X; 1 ≤ k ≤

[
n+1

2

]
.
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EXAMPLE 4.71
Let X = {x1, x2, · · · , xn} be a finite set, n = mt + r, 0 ≤ r < m. Let τm =

{∅, X, {xm}, {xm, x2m}, · · · , {xm, x2m, · · · , xtm}} =

{
∅, X,

k⋃
i=1
{xim}

}
; 1 ≤ k ≤

t. Then τm is a topology on X. And we see that

{
X, ∅, X −

k⋃
i=1
{xim}

}
; 1 ≤

k ≤ t is a topology on X.
REMARK 4.18
It is known that a topological space (X, τ) is a T1-space if, and only if, sin-
gletons are τ -closed subsets of X. It is observable from the foregoing that if
a topology τ on a set X is a complement topology then the very sets which
are seen as τ -closed are the sets which constitute the open sets of another
topology on X, with equal cardinality as τ . These imply the following.

Corollary 4.10 If (X, τ) is a T1 topological space, then τ is a complement
topology if, and only if, τ is the discrete topology of X.

Proof:
Since (X, τ) is T1, singletons of X are τ -closed. Since τ is a complement
topology on X and singletons of X are τ -closed, it follows that singletons
are among the τ c-open sets. Hence every subset of X is τ c-open, implying
that τ c is the discrete topology of X. Since (τ c)c = τ , it follows that τ is the
discrete topology of X.

REMARK 4.19
That a topology is a complement topology does not imply that it is T1. Also,
every T1-space is not a complement topology. By Corollary 4.10, a T1-space
which is a complement topology must be a discrete topology. It follows that
if a T1-space is not discrete then it cannot be a complement topology. For
example, the set IR of real numbers with its usual topology u is T1 but u is
not a complement topology. Hence all complement topologies are not T1 and
all T1-spaces are not complement topologies.

One axiom of a generic topology τ is that τ is closed under finite in-
tersections. If a topology τ is closed under arbitrary intersections (hence a
complement topology) then we may theoretically feel more at ease to work
with it; since then we would not really care so much about the type of inter-
sections of τ -open sets we may have before us. Therefore we may now pose
the following question: Since every topology is not a complement topology,
can we find for each topology τ another topology τs which is a complement
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topology so specially related to τ that it (τs) would coincide with τ if τ was
a complement topology, and (if τ was not a complement topology) no other
complement topology would be strictly stronger than τ and strictly weaker
than τs? Among other things, the following expositions shall establish the
answer to this question.

4.3.3 The Supra of a Topology—Constructive Approach

Construction 4.7 Let (X, τ) be a topological space and let S = {B =⋂
α∈∆

Aα : Aα ∈ τ} be the collection of arbitrary intersections of τ -open sets.

Let τs = {U =
⋃
δ∈ω

Bδ : Bδ ∈ S} be the collection of all unions (i.e. any

possible union) of the sets in S.

Then we have the following observations.

1. Every τ -open set is in S and hence in τs; that is, τ ⊂ S ⇒ τ ⊂ τs.

2. Hence ∅ ∈ τs and X ∈ τs.

3. Any union of sets in τs is simply a union of sets in S and is hence a set
in τs.

4. Sets U in τs are of the form U =
⋃
B, B ∈ S and B =

⋂
α∈∆

Aα, where

Aα ∈ τ . Therefore any intersection of the sets in τs is a union of
intersections of some sets Aα ∈ τ . Since the intersections of Aα ∈ τ
are collected in S, it follows that any intersection of the sets in τs is a
union of some sets in S and is, hence, in τs. That is

⋂
r∈w

Ur =
⋃
B, B ∈ S.

Hence
⋂
r∈w

Ur ∈ τs; implying that τs is closed under arbitrary intersec-

tions.

What we have proved is the following.

Theorem 4.18 (The Supra-topology Theorem) Let (X, τ), S and τs be
as introduced above. Then

1. τs is a topology on X;
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2. τ is weaker than τs;

3. τs is closed under arbitrary intersections and hence by theorem 4.16 is
a complement topology on X;

4. If τ was closed under arbitrary intersections, hence a complement topol-
ogy itself, then τ = S = τs;

5. If τ is not a complement topology, then τ is strictly weaker than τs.

Note
We observe that τs is well defined and is uniquely related to τ . This assertion
will be proved formally in theorem 4.19 below.

Definition 4.43 Let (X, τ) and τs be as introduced above. Then we shall call
τs the supra of the topology τ on X, because τ is weaker than, and specially
related to τs on X.

OBSERVATIONS

1. To every topology τ on a set X there corresponds a supra topology τs
(with τ ≤ τs) on X.

2. Every supra topology τs is a complement topology, since τs is closed
under arbitrary intersections.

3. τ = τs if, and only if, τ is a complement topology. In fact, τs is the
weakest complement topology finer than τ . (see Theorem 4.19 below)
Hence τs is the complement topology generated by τ .

4. Every τs-open set is either an intersection of τ -open sets or a union of
such intersections.

5. Every complement topology is a supra topology. (Proved next in the
proposition below)

Proposition 4.18 Every complement topology on a set X is a supra topol-
ogy.

Proof:
Let τ on a set X be a complement topology. Then (from Theorem 4.16) τ is
closed under arbitrary intersections. It follows that S = {B =

⋂
α∈∆

Aα : Aα ∈
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τ} = τ . Therefore τs = {U =
⋃
δ∈ω

Bδ : Bδ ∈ S} = τ . That is, τ is equal to its

own supra and is, hence, a supra topology.

EXAMPLE 4.72
Every discrete topology is a supra-topology.
EXAMPLE 4.73
Each indiscrete topology is a supra-topology.
EXAMPLE 4.74
Any topology that has only a finite number of open sets (hence every topol-
ogy on a finite set) is a supra-topology.
EXAMPLE 4.75
The usual topology u of the set IR of real numbers is not a supra-topology.
EXAMPLE 4.76
The lower limit (or Sorgenfrey) topology on IR is not a supra-topology.
EXAMPLE 4.77
The usual topology of the Cartesian plane is not a supra-topology.
EXAMPLE 4.78
The supra us of the usual topology u of the set IR of real numbers is the dis-
crete topology of IR. This is because the S for us has singletons as elements
and us is closed under arbitrary unions.

Theorem 4.19 τs is the smallest complement topology, on X, stronger than
τ .

Proof:
Let γ be another complement topology stronger than τ but strictly weaker
than τs on X. If τ = γ, implying that τ is itself a complement topology, it
would follow from theorem 4.18 (4) that τs = τ = γ, a contradiction. Hence
τ must be strictly weaker than γ. That is

τ < γ < τs. . . . . . . . . (∗)

It follows from (∗) that the family S = {B =
⋂
α∈∆

Aα : Aα ∈ τ} is a proper

subfamily of the family S1 = {B =
⋂
α∈∆

Aα : Aα ∈ γ}. Hence again the family

{⋃B : B ∈ S} = τs is a subfamily of the family {⋃B : B ∈ S1} = γ (this
equality being true because γ is, by hypothesis, a complement topology).
That is, τs is a subfamily of γ; a contradiction of (∗). Hence the proof is
complete. Hence the supra τs of a topology τ is unique and is the smallest
complement topology stronger than τ .
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In fact, it is also true that no topology γ on a set X, exists between a topol-
ogy τ and its supra τs if γs 6= τs. This is proved next.

Proposition 4.19 No other topology, say γ, on a set X, can strictly exist
between a topology τ on X and its supra τs and have a different supra γs on
X.

Proof:
Let γ be another topology stronger than τ but strictly weaker than τs on X,
and let γs be the supra of γ. We need to show that γs = τs. Let

S = {B =
⋂
α∈∆

Aα : Aα ∈ τ} and S1 = {B =
⋂
α∈∆

Aα : Aα ∈ γ}.

Then the supra τs of τ is

τs = { ⋃
δ∈ω

Bδ : Bδ ∈ S}

and the supra γs of γ is

γs = { ⋃
δ∈ω

Bδ : Bδ ∈ S1}.

If γs < τs we have a contradiction since τs is built up from τ and τ < γ.
If τs < γs we again have a contradiction, as γ is a proper subfamily of τs.
Hence γs = τs.

EXAMPLE 4.79
Let (IR, u), IR, l) and (IR, d) denote the usual topological space of IR, the lower
limit topological space of R and the discrete topological space of IR, respec-
tively. Then u < l < d and us = ls = d.

Note: The supra of a topology and the complement of the topology are
not the same. The supra will always be a topology while the complement
may not be a topology. For example the usual topology u of IR is such that
uc is not a topology but us is a topology, the discrete topology of IR.

4.3.4 The Supra of a Topology—Analytic Approach

So far, the foregoing process of developing and/or defining the supra τs of a
topology τ on a set X may be said to be constructive in nature. Let us now
explore an alternative approach which may rightly be seen as analytic.
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Construction 4.8 Let (X, τ) be any topological space and let Ψ = {γ : γ is
a complement topology on X and τ is weaker than γ}.

Then

1. Ψ is nonempty, since at least Ψ contains the discrete topology of X
which, as we have seen, is an easy example of complement topology;
and every other topology on X is weaker than its discrete topology.

2. If τ is itself a complement topology on X, then τ ∈ Ψ.

3. If τ is itself not a complement topology on X, then τ /∈ Ψ.

Theorem 4.20 Let (X, τ) and Ψ be as introduced above. Let τs =
⋂
γ∈Ψ

γ be

the intersection of all the topologies in Ψ. Then

1. τs is a complement topology on X, and τ is weaker than τs.

2. If τ is itself a complement topology on X, then τ = τs.

3. If τ is not a complement topology on X, then τ is strictly weaker than
τs.

4. Hence τs is the supra of the topology τ on X.

Proof:

1. It is clear that τs is a topology on X, being an intersection of topologies
on X. We only need to show here that τs is closed under arbitrary
intersections. So, let {Aα}α∈∆ ⊂ τs be any family of sets in τs; that is,
τs-open sets. Then {Aα}α∈∆ ⊂ γ, for each γ ∈ Ψ. Since each γ ∈ Ψ
is a complement topology, it follows that

⋂
α∈∆

Aα ∈ γ, for each γ ∈ Ψ.

Hence
⋂
α∈∆

Aα ∈
⋂
γ∈Ψ

γ = τs. Therefore τs is a complement topology on

X.

2. Clearly if τ is itself a complement topology on X, then τ ∈ Ψ and⋂
γ∈Ψ

γ = τs = τ .

3. Also if τ is not a complement topology, then τ /∈ Ψ and, hence, τ is
strictly weaker than τs.

4. All the results in 1 to 3 show that τs is the supra of the topology τ on
X since the supra of a topology is unique.
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Corollary 4.11 The supra of an infinite dimensional product topology is
a power set discrete topology if all the factor spaces are power set discrete
topologies.

NOTE
The outcome of the constructive process of subsection 4.3.3 corroborates (and
is corroborated by) the analytic process of subsection 4.3.4 on the question
of existence and uniquess of supra-topologies.

4.3.5 Exhaustive Topologies

Definition 4.44 Let (X, τ) be a topological space. The topology τ is called
an exhaustive topology on X if for each x in X there exists a τ -open proper
subset of X11 containing x. By notations, τ is exhaustive on X if ∀x ∈ X,
∃G ∈ τ such that G 6= X and x ∈ G.

EXAMPLE 4.80
Let X = (−∞, 0)

⋃
(0,+∞) = IR−{0}. Then any topology induced on IR by

X (i.e. X-topology on IR) cannot be exhaustive on IR since no open proper
subset of IR in such a topology would contain the element 0.
EXAMPLE 4.81
Every discrete topology is exhaustive since for each x ∈ X, the singleton {x}
is an open proper subset of X and contains x.
EXAMPLE 4.82
Let (IR, u) be the ususal topological space of IR. Then u is exhaustive on IR
since for each real number x, the interval (x−1, x+1) is u-open and contains
x.
EXAMPLE 4.83
Let (IR, L) denote IR with the lower limit topology L. Then L is exhaustive
on IR.

Lemma 4.11 Let (X, τ) be a topological space. If the supra τs of the topology
τ is discrete, then τ is exhaustive on X. Conversely, if τ is not exhaustive
then τs is not (or cannot be) discrete.

11If X is itself a singleton then the only possible topologies on X are its discrete and
indiscrete topologies—which are, in this case, coincident—and we shall then say that τ on
X is exhaustive since every other discrete topology is exhaustive. Since a closer look also
shows that the indiscrete topology is not exhaustive on any set, we may still say that any
topology on a singleton is both exhaustive and non-exhaustive. For this, we shall assume
that our topologies in further discussions are not defined on singletons.
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Proof:
Recall: Each τs-open set is either an intersection of τ -open sets or a union of
such intersections.
Let τs be discrete. Then τs is discrete if, and only if, each singleton {x} is
τs-open. Since a singleton cannot emerge as the union of two or more distinct
sets (of different elements) we assume that singletons in τs emerged from in-
tersections of τ -open sets. If {x} emerges as the intersection of any number
of sets, then the element x of X must belong to (at least) one proper subset
of the set X—except of course the universal set X itself is a singleton, a
case which has automatically been ruled out of our considerations. All these
imply that each element x of X is contained in some τ -open proper subset
of X; implying that τ is exhaustive on X.

Now, we prove the lemma by converse. Suppose (X, τ) is not exhaustive.
We show that τs is not the discrete topology of X. Our assumption (that
τ is not exhaustive) implies that there exists x0 ∈ X such that no τ -open,
proper subset of X contains x0. This further implies that the singleton {x0}
cannot emerge from the intersection of any number of τ -open sets. (That is,
{x0} is not in the subbase S for τs.) This proves that {x0} /∈ τs; implying
that τs is not the discrete topology of X.

REMARK 4.20
We know that two or more different topologies on one set can have one supra
topology in common. The following two theorems state that even when this
is so, and provided that the common-supra topologies are actually different
from one another, these topologies nevertheless generate other distinct supra
topologies in number as many as the topologies with common supra.

Theorem 4.21 Let τ1 and τ2 be two non-exhaustive and non-complement
topologies on X such that τ1 is strictly weaker than τ2. Then the supra τs1 of
τ1 is strictly weaker than the supra τs2 of τ2.

Proof:
Let

S1 = {⋂Aα : Aα ∈ τ1} and S2 = {⋂Aα : Aα ∈ τ2}.

Then the supra τs1 of τ1

τs1 = {⋃Bδ : Bδ ∈ S1} and the supra of τ2 is τs2 = {⋃Bδ : Bδ ∈ S2}.

Since τ1 is strictly weaker than τ2, and τ2 is not a complement topology,
τ2 6= τs2 and also τ2 contains at least one more set, say G, than τ1. Hence S2

contains at least one more set than S1. It follows that τs2 contains at least
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one more set than τs1 . Since S1 is a subfamily of S2, τs1 a subfamily of τs2 ,
and the supra of τ1 and τ2 are, respectively, τs1 and τs2 , the proof is complete.

NOTE
[1] In this theorem τ1 can be a complement topology but τ2 should not be a
complement topology.
[2] If τ2 is a complement topology, then the supra of τ2 does not get bigger
than τ2. And since the supra of τ1 is an extension of τ1 (when τ1 is non-
complement topology), the supra of τ1 may coincide with the supra of τ2 if
τ2 is a complement topology—though this will not always be the case as it
depends on how far below τ2 is τ1.
EXAMPLE 4.84
Let (IR, τ1) be a topological space such that each r 6= 0 has the usual Eu-
clidean neighborhoods that do not contain 0, and the only open set contain-
ing 0 is the whole space IR. Let (IR, τ2) be a topological space such that each
r ∈ R with r 6= 0 is an isolated point, and the only open set containing 0 is
the whole space IR. Then τ1 is strictly weaker than τ2, and these spaces are
not exhaustive because of 0. The supra τs1 of τ1 is τ2, and the supra τs2 of
τ2 is also τ2. Therefore τs1 is not strictly weaker than τs2 . This happened
because (a) τ2 is a complement topology and hence equal to its own supra;
and (b) τ1 is very close in size as a topology (landscape) to τ2. If τ1 is not
very close to τ2, then τs1 would still be strictly weaker than τs2 even if τ2

were a complement topology. The next example illustrates this.
EXAMPLE 4.85
Let (IR, τ1) be a topological space such that each r ∈ IR with r /∈ [−1, 1] has
the usual Euclidean neighborhoods that do not contain points of [−1, 1], and
the only open set containing points of [−1, 1] is the whole space IR. Let (IR, τ2)
be exactly as in example 4.84 above. Then τ1 < τ2 and these spaces are not
exhaustive for obvious reasons. The interval (0,1) is open in the supra τs2 of
τ2 but this interval is not open in the supra (now) of τ1. Hence τs1 < τs2 .

Theorem 4.22 To every two incomparable topologies on a set X there cor-
respondingly exist two incomparable complement topologies on X.

Proof:
Let γ and η be two incomparable topologies on X. Then there exist Gγ ∈ γ
and Gη ∈ η such that Gγ /∈ η and Gη /∈ γ. Let

τ(Gγ) = {G ∈ γ : G ⊂ Gγ}
⋃ {X} and τ(Gη) = {G ∈ η : G ⊂ Gη}

⋃ {X}.
Then both τ(Gγ) and τ(Gη) are topologies on X. Also Gγ ∈ τ(Gγ) and
Gη ∈ τ(Gη) with Gγ /∈ τ(Gη) and Gη /∈ τ(Gγ). Hence these two topologies,
on X, are not comparable. Let
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S1 = {⋂Aα : Aα ∈ τ(Gγ)} and S2 = {⋂Aα : Aα ∈ τ(Gη)}.

Then S1 and S2 are not comparable, as families of sets, since at least they
are made distinct by Gγ and Gη. Hence the supra τ(Gγ)s of τ(Gγ) given by
τ(Gγ)s = {⋃B : B ∈ S1} is distinct from, and incomparable to the supra
τ(Gη)s of τ(Gη) given by τ(Gη)s = {⋃B : B ∈ S2}—because for instance
Gη ∈ τ(Gη)s but Gη /∈ τ(Gγ)s and Gγ ∈ τ(Gγ)s but Gγ /∈ τ(Gη)s. Since the
supra of each topology is a complement topology, the proof is complete.

1. The meaning of Theorem 4.21 is this: If two topologies are distinct,
comparable and non-exhaustive, they generate two distinct and com-
parable complement topologies provided the stronger topology is not a
complement topology.

2. The meaning of Theorem 4.22 is this: Provided two topologies are
incomparable, even if they have common supra, they nevertheless gen-
erate two other incomparable complement topologies—which will not
be their supras.

3. Theorem 4.22 necessarily also shows how to construct the distinct com-
plement topologies as illustrated in the example below.

EXAMPLE 4.86
Let τl = {[a, b) : a, b ∈ IR} be the lower limit topology on IRand τu = {(a, b] :
a, b ∈ IR} the upper limit topology on IR. Then τl and τu are incomparable
and have common supra—the discrete topology of IR. Any two topologies
induced on IR by the two subintervals [a, b) and (a, b] will have their supras
incomparable since such supras will contain the subintervals [a, b) and (a, b]
separately.

Theorem 4.23 Let X be any nonempty and non-singleton set and let X1 =
X − {x1}, where x1 ∈ X. Then any topology induced on X by X1 cannot be
exhaustive; hence the supra of such a topology cannot be discrete.

Proof:
Let τ be an X1-topology on X. Then (since x1 /∈ X1) no τ -open proper
subset of X contains the element x1 of X, as all τ -open proper subsets of X
are subsets of X1. Hence τ is not exhaustive and (by Lemma 4.11) the supra
τs of τ is hence not discrete.

REMARK 4.21
Theorem 4.23 can be seen like this: If (X, τ) is a topological space and there
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exists x0 ∈ X such that no τ -open proper subset of X contains x0, then τs,
the supra of τ , is not discrete. This may be seen as an alternative (to Lemma
4.11) way of proving that only an exhaustive topology can have discrete supra
topology. These results can be used to know exactly whether the supra of a
topology can or cannot be discrete.

So far, we have been notably silent on the converse of Lemma 4.11.
Namely, if a topology τ on X is exhaustive, is the supra τs of τ necessarily
the discrete topology on X? Answer: No. The supra of an exhaustive topol-
ogy may not be discrete. For example, let X = {a, b, c, d} and let τ on X
be defined as τ = {∅, X, {a, b}, {c, d}}. Then τ is an exhaustive topology on
X, since every element of X is contained in a τ -open proper subset of X.
The supra τs of τ is equal to τ itself; and since τ is clearly not the discrete
topology of X, this explanation is complete.

4.3.6 The Supra of a Weak Topology

Let X be a nonempty set. For each α ∈ ∆, let fα : X → (Xα, τα) be a map of
X into a topological space (Xα, τα). Let {fα}α∈∆ be the family of such maps
of X into various topological spaces {(Xα, τα)}α∈∆, and let S = {f−1

α (Gα) :
Gα ∈ τα} be the collection of inverse images of only (but all) the open sets
of the, topological, range spaces. Let B = {⋂

α
f−1
α (Gα) : f−1

α (Gα) ∈ S} be

the collection of arbitrary intersections (across the range spaces) of the sets
in S, in that fα must vary within the family {fα}α∈∆ of functions on X. Let
τb = {⋃Bδ : Bδ ∈ B} be the collection of arbitrary unions of the sets in B.

REMARK 4.22

1. If X =
∏
α∈∆

Xα is a Cartesian product of the family of range (topo-

logical) spaces, and the family {fα}α∈∆ = {pα}α∈∆ of functions is the
projection maps, then τb is nothing but what has been known before
as the box topology. This time too the corresponding weak topology,
say τ on X, is called product topology on X.

2. If X is not a Cartesian product set and (hence) the family {fα}α∈∆ of
functions is not the projection maps, τb is still a topology on X, and
we shall continue the use of the nomenclature already developed and
simply then call τb the (generalized) box topology, on X, corresponding
to, or generated by the family {fα}α∈∆ of functions. We shall make a
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difference by specifying that τb is generated by the projection maps
{pα}α∈∆ when the old box topology is assumed.

DEVELOPMENTS
Now let

D =
{⋂
α
f−1
α (Gα),

⋂
r
f−1
α (Gαr),

⋂
α
f−1
α (

⋂
r
Gαr) : Gα, Gαr ∈ τα

}
be the collection of all possible intersections12 of the sets in S. And let
τs = {⋃

δ
Dδ : Dδ ∈ D} be the collection of arbitrary unions of sets in D.

Then

1. ∅ and X are both in τs.

2. τs is closed under arbitrary unions.

3. The intersection of any number of sets in τs is a union of some sets in
D and is, hence, in τs. That is, τs is a topology on X, closed under
arbitrary intersections. Since both τs and the weak topology τ on X
have the same subbase S, it follows that τs is the supra of the weak
topology τ on X.

Theorem 4.24 Let τ , τb and τs, respectively, be the weak topology, the box
topology, and the supra topology on X, generated by the family {fα}α∈∆ of
functions. Then we have the following observations.

1. τ is always weaker than τb, and τb is always weaker than τs. That is,
τ ≤ τb ≤ τs.

2. If the number of range spaces {(Xα, τα)}α∈∆, hence the family of func-
tions, is finite, then τ = τb; and both will equal τs if, and only if, the
topology τα of each of the range spaces is closed under arbitrary inter-
sections.

3. If the family {fα}α∈∆ of functions is infinite, then τ will be strictly
weaker than τb (i.e. τ < τb); and then τb will equal τs if, and only if,
each τα is closed under arbitrary intersections.

4. If the family {(Xα, τα)}α∈∆ of range spaces is infinite, and τα is not a
complement topology (i.e. not closed under arbitrary intersections), for
some α ∈ ∆, then τ is strictly weaker than τb and τb is strictly weaker
than τs. That is, τ < τb < τs.

12Contrast this with the fact that the so-called arbitrary intersections collected in B,
for τb, were taken only across the range spaces.
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5. If the family {(Xα, τα)}α∈∆ of range spaces is finite, and τα is not closed
under arbitrary intersections, for some α ∈ ∆, then both τ and τb will
be strictly weaker than τs, and equal to each other (i.e. τ = τb < τs).

6. If the family {(Xα, τα)}α∈∆ of range spaces is finite, and each of the
topologies τα is closed under arbitrary intersections, then the three
topologies τ , τb and τs will coincide; i.e. τ = τb = τs.

7. If the family {(Xα, τα)}α∈∆ of range spaces is infinite, and τα is closed
under arbitrary intersections, for each α ∈ ∆, then both τb and τs will
coincide, and be (both) strictly stronger than τ . That is, τ < τb = τs.

Proof:

1. Since τ , τb, and τs all have the same subbase S, S ⊂ τ , S ⊂ τb, and
S ⊂ τs. That is, S ⊂ τ

⋂
τb
⋂
τs. Each of τ , τb, and τs is closed under

arbitrary unions of (particularly) the sets in S. The differences between
τ , τb, and τs, if any, lie in how the base of each of these topologies is
formulated as intersections of the sets in S. So, let Bτ be the base for
τ . Then as seen already, B (as given above) is the base for τb, and D
is the base for τs. We know that Bτ contains all finite intersections of
sets in S, and B contains in addition to this the arbitrary intersections⋂
α
f−1
α (Gα), where fα varies over the family of functions. Hence τ ≤ τb.

And τ = τb if, and only if, the range spaces {(Xα, τα)}α∈∆ and/or the
family {fα}α∈∆ of functions is finite.
And D contains, in addition to elements of B, the arbitrary intersec-
tions (of sets of S) of the form

⋂
r
f−1
α (Gαr) = f−1

α [
⋂
r
(Gαr)], obtained by

holding a function fα fixed and varying the open sets of its range space;
and D also contains such intersections as

⋂
α
f−1
α (

⋂
r
Gαr) obtained by tak-

ing arbitrary intersections of open sets of the range spaces and varying
the functions across these range spaces. These show that τb ≤ τs. That
is, τ ≤ τb ≤ τs.

2. We have seen that τ = τb if, and only if, the range spaces {(Xα, τα)}α∈∆

and/or the family {fα}α∈∆ of functions is finite. If (in this case) τα is
not closed under arbitrary intersections, for some α ∈ ∆, then it follows
that

⋂
r
(Gαr) /∈ τα, if this intersection is infinite. This implies that

f−1
α [

⋂
r
(Gαr)] /∈ τ and (as τ = τb) f

−1
α [

⋂
r
(Gαr)] /∈ τb. Since

⋂
r
f−1
α (Gαr) =

f−1
α [

⋂
r
(Gαr)] ∈ τs and

⋂
r
f−1
α (Gαr) = f−1

α [
⋂
r
(Gαr)] /∈ τ = τb, it follows
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that both τ and τb are (not only equal but) strictly weaker than τs.
That is, τ = τb < τs.

3. If {(Xα, τα)}α∈∆ is finite and each τα is a complement topology (i.e.
closed under arbitrary intersections), then, from 2, τ = τb = τs.

4. If {(Xα, τα)}α∈∆ is infinite and each τα is a complement topology, then
it is easy to see from 1 and 3 that τb = τs, and that τ is strictly weaker
than both τb and τs. That is, τ < τb = τs.

5. If {(Xα, τα)}α∈∆ is infinite and, for some α ∈ ∆, τα is not a complement
topology, then from the foregoing, τ < τb < τs.

All the possible scenarios above are summarized in the following list.

1. In general τ ≤ τb ≤ τs;

2. We can have τ = τb < τs;

3. Or we have τ < τb = τs;

4. Or we have τ < τb < τs;

5. Or we have τ = τb = τs.

EXAMPLE 4.87
Let (IR, u) be the set IR of real numbers with its usual topology. Then for
each n ∈ IN, the interval Gn = (x0 − 1

n
, x0 + 1

n
) is u-open. We see that

∞⋂
n=1

Gn =
∞⋂
n=1

(x0 − 1
n
, x0 + 1

n
) = {x0} /∈ u. Hence for projection maps,

∞⋂
n=1

p−1
k [(x0 − 1

n
, x0 + 1

n
)] = p−1

k {x0} . . . .(∗)

In IR2, with the factor spaces given their usual topology, (∗) is an infinite (ver-
tical or horizontal) line. Clearly the box topology τb on IR2—even as it used
to be known only in connection with projection maps on Cartesian product
sets—does not contain (∗) when the factor spaces have the usual topology
of IR. However, it is clear that (∗) is in τs; and in this case τ = τb < τs,
exemplifying item 2 of the summarized listing above.
EXAMPLE 4.88
Let IN= {0, 1, 2, · · ·} be the set of natural numbers. Let G0 = IN, G1 = IN−
{0}, G2 = IN−{0, 1}, etc. Then the semi-cofinite topology CIN = {∅, Gn}n∈IN,
on IN, is closed under arbitrary intersections. If we endow each factor space
of the Cartesian product IN× IN with this semi-cofinite topology, then given
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any finite family {fα} of functions on IN× IN into its factor spaces, the bases
Bτ , B, and D—hence the topologies τ , τb, and τs—are equal. This illustrates
case 5.
EXAMPLE 4.89
However, if we give each factor space of the infinite dimensional product set
∞∏
k=1

INk the cofinite topology of IN, which is not closed under arbitrary inter-

sections, then the weak topology τ would be strictly weaker than the box
topology τb, and the box topology τb would be strictly weaker than the supra
τs of τ ; illustrating item 4.
EXAMPLE 4.90
If we give each factor space of the infinite dimensional product set

∞∏
k=1

INk

the semi-cofinite topology (constructed above) of IN, which is closed under
arbitrary intersections, then the weak topology τ would be strictly weaker
than the box topology τb, and the box topology τb would be equal to the
supra τs of τ ; illustrating item 3.

4.4 Discrete Weak Topology of Cartesian Prod-

uct Sets

4.4.1 Finite Dimensional Case

Let

X =
n∏
i=1

Xi

be the Cartesian product of a finite number of topological spaces. Then sets
of the form

Ak =
m⋂

i=1,i 6=k
p−1
i (Gi)

⋂
p−1
k ({x∗k}),

where Gi is open in Xi and the pis are the projection maps, will be of use in
the proof of our first theorem. We see that

Ak = {(x1, x2, · · · , x∗k, · · · , xn) : xi ∈ Gi, 1 ≤ i ≤ m ≤ n, i 6= k,
xk = x∗k, xj ∈ Xj, j > m} ⊂ X.

To see the fact of A more clearly, we note that for any subset (open or not)
Gi of Xi, p

−1
i (Gi) = {x̄ ∈ X : pi(x̄) ∈ Gi} = {x̄ ∈ X : pi(x̄) = xi ∈ Gi} =

{x̄ ∈ X : xi ∈ Gi and xj ∈ Xj,∀j 6= i, 1 ≤ i, j ≤ n} = {x̄ ∈ X : the i-th
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coordinate of x̄ is in the subset Gi of Xi and the other coordinates come
from the other factor spaces without restriction }. Hence, if there are m
open sets, Gi, 1 ≤ i ≤ m ≤ n, from m factor spaces of X, the intersection of

their inverse images
m⋂
i=1

p−1
i (Gi) is

m⋂
i=1

p−1
i (Gi) = {x̄ ∈ X : the i-th coordinate of x̄ must come from the (open)

subset Gi in Xi, 1 ≤ i ≤ m ≤ n, and the other coordinates come freely from
the remaining unaffected factor spaces}.

If we consider a singleton {x∗k} in Xk, then it is easy to see that

p−1
k ({x∗k}) = {x̄ ∈ X : xi ∈ Xi and xk = x∗k, i 6= k} =
{x̄ = (x1, x2, · · · , x∗k, · · · , xn) : xi ∈ Xi, i 6= k}.

It follows from all these that

Ak =
m⋂

i=1,i 6=k
p−1
i (Gi)

⋂
p−1
k ({x∗k}) = {x̄ ∈ X : xi ∈ Gi and

xk = x∗k, 1 ≤ i ≤ m ≤ n, xj ∈ Xj, j > m}, i, j 6= k,

where we mean by xt the t-th coordinate of the tuple x̄. We also observe that
a fixed point x̄∗ in X is one in which all the coordinates x1, x2, · · · , xn are
fixed to x∗1, x

∗
2, · · · , x∗n, respectively. So, such a fixed point may be denoted

as x̄∗ = (x∗1, x
∗
2, · · · , x∗n). As we have seen, to fix only one coordinate x∗k of a

tuple in X, we can take the inverse image

p−1
k ({x∗k})

of the singleton of x∗k in Xk, under the k-th projection map. Therefore, a
singleton x̄∗ in X may be seen as the intersection

{x̄∗} =
n⋂
i=1

p−1
i ({x∗i })

of singletons from all the factor spaces, under the projection maps. This is
true in finite- as well as infinite-dimensional Cartesian product sets. That is,

if X =
∞∏
i=1

Xi and x̄∗ ∈ X, then the singleton of x̄∗ can be expressed (in this

context) as

{x̄∗} =
∞⋂
i=1

p−1
i ({x∗i }),
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and this shows that the product topology on an infinite-dimensional Carte-
sian product set is not discrete if all the factor spaces are discrete topological
spaces, because singletons in such a space can neither emerge as sub-basic
sets nor basic sets.

The proof of the following theorem, which makes use of the set A de-
scribed above, can best be seen as proof from first principles. It is both
rigorous and cumbrous, even doubtful except that its prediction is impecca-
bly butressed later by theorem 4.26. Theorem 4.25 represented the first idea
that came to us about how to prove this lofty intuition while theorem 4.26
is the fortuitous second thought.

Theorem 4.25 Let {(Xi, τi) : i = 1, · · · , n} be a finite number of topological

spaces, X =
n∏
i=1

Xi the Cartesian product of these spaces and let τp be the

product topology on X, induced by these spaces. If τp is the discrete topology
on X, then each (Xi, τi) is a discrete topological space, i ∈ {1, · · · , n}.

Proof:
Let

X = X1 ×X2 × · · · ×Xn =
n∏
i=1

Xi

be the Cartesian product of a finite family of nonempty sets, each being a
topological space. Suppose the product topology τp on X is discrete. We
show that each Xi, 1 ≤ i ≤ n, is a discrete topological space. Suppose one
of the factor spaces, say Xk (1 ≤ k ≤ n) is not a discrete topological space.
Then ∃x∗k ∈ Xk 3 {x∗k} is not an open set in Xk. We consider sets of the
form

Ak =
m⋂

i=1,i 6=k
p−1
i (Gi)

⋂
p−1
k ({x∗k}),

where Gi is open in Xi and the pis are the projection maps. We see that

Ak = {(x1, x2, · · · , x∗k, · · · , xn) : xi ∈ Gi, 1 ≤ i ≤ m ≤ n and
i, j 6= k, xk = x∗k, xj ∈ Xj, j > m} ⊂ X.

Since {x∗k} ⊂ Xk is not open in the topology of Xk, p
−1
k ({x∗k}) is not in

the subbase for this product topology τp on X which, by hypothesis, is dis-
crete. Hence, in particular, sets of the form A are not open in X which, by
hypothesis, is a discrete topological space. This is a contradiction. Hence
every factor space of X must be a discrete topological space if X is a discrete
product topological space. (Another way to look at sets of type A is to see
them as subsets of p−1

k ({x∗k}) in X. Since p−1
k ({x∗k}) is not in the sub base,
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not all nonempty subsets of it are in the base. Conversely, if all subsets of
p−1
k ({x∗k}) are open in X, then p−1

k ({x∗k}) must also be open in X.) That is,
each Xi(1 ≤ i ≤ n) is discrete if (X, τ) is discrete.

4.4.2 Generalizations—Infinite-dimensional Case, Weak
and Box Topologies

Theorem 4.26 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If (X, τ) is discrete, then any range space (Xα, τα) for which fα
is onto and an open map is discrete.

Proof:
Let (Xα, τα) be a range space for which fα is onto and an open map; and let
{xα} ⊂ Xα be a singleton in Xα. We need to show that {xα} ∈ τα. Since
xα ∈ Xα and fα is onto, there exists an x ∈ X such that fα(x) = xα. For
this x ∈ X, the singleton {x} is τ -open, since (X, τ) is discrete. It follows
that {xα} = fα({x}) ∈ τα, as fα is an open map.

NOTE
Since the family of functions in theorem 4.25, the projection maps, are

onto and open maps, theorem 4.26 aptly generalizes theorem 4.25, and it also
serves as an alternative way of proving Theorem 4.25. It (theorem 4.26) does
not only generalize theorem 4.25; it also extends it to situations in which the
Cartesian product set (in 4.25) is infinite-dimensional. Hence this corollary.

Corollary 4.12 If a product topology—on a finite- or infinite-dimensional
Cartesian product set—is discrete, then each of the factor spaces is a discrete
topological space.

Corollary 4.13 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If for some α0 ∈ ∆, fα0 is bijective (i.e. one-to-one and onto) then
(Xα0 , τα0) is discrete if and only if (X, τ) is discrete.

Definition 4.45 Let {(Xα, τα)}α∈∆ be any family of topological spaces and
let X =

∏
α∈∆

Xα be the Cartesian product of these sets. Let τb be the box

topology on X, induced by the projection maps pα : X → Xα.

Corollary 4.14 A box topology τb is discrete if, and only if, τα is discrete,
∀α ∈ ∆.
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Proof:
(⇒) Suppose τb is discrete and that τα0 is not discrete, for some α0 ∈ ∆.
Then ∃x∗α0

∈ Xα0 , 3 {x∗α0
} /∈ τα0 . So p−1

α0
({x∗α0

}) is not a subbasic open set in
τb. Hence in particular p−1

α0
({x∗α0

}) is not open in τb. Contradiction! Hence
each (Xα, τα) is discrete if (X, τb) is discrete.
(⇐) Now let τα be discrete, ∀α ∈ ∆. Then {xα} ∈ τα, ∀xα ∈ Xα. Hence
∀x̄ ∈ X, {x̄} =

⋂
α∈∆

p−1
α ({xα}) is a basic open set in τb; so τb is discrete.

4.5 Weak Topological Systems; More Exten-

sions and Generalizations

4.5.1 Introduction

Definition 4.46 A function f : (X, τ) → (Y, γ) from one topological space
(X, τ) to another topological space (Y, γ) is called an open map if it maps
open sets to open sets; in the sense that f(U) ∈ γ for all U ∈ τ .

Definition 4.47 A function f : (X, τ) → (Y, γ) from one topological space
(X, τ) to another topological space (Y, γ) is called a closed map if it maps
closed sets to closed sets; in the sense that [f(U c)]c ∈ γ for all U ∈ τ .

(References: Neumann (1935), Titchmarsh (1939), Friedrichs (1944), James
(1951), Nakano (1951), Cooke (1953), Simmons (1963), James (1964), Schechter
(1971), Pedersen (1989), Conway (1994), Munkres (2007), Albers and Frauen-
felder (2009), Memarian (2009), Sandon (2009), Abbondandolo and Schwarz
(2009), Ping (2013), Sunukjian and Baykur (2013), Medvedev and Zhuzhoma
(2013), Carlson (2013), Valdez-Sanchez (2013), Wahl (2013), Murakami (2013),
Toda (2013) and Morris (2016).)

4.5.2 The First Separation Axioms, and Discreteness

Lemma 4.12 Any one-to-one function fα in a weak topological system
[(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] is an open map.

Proof:
Let U ∈ τ and let fα(U) = Uα, where fα is a one-to-one function in the
weak topological system. Then U = f−1

α (Uα). Since U ∈ τ , it follows that
f−1
α (Uα) ∈ τ . ⇒ Uα ∈ τα. (Note: If Uα /∈ τα, then f−1

α (Uα) is not in τ . This
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is because τ is built up from, or constructed by first collecting all sets of the
form f−1

α (Uα), where Uα ∈ τα, and leaving out all other subsets of Xα which
are not τα-open. Conversely, the only subsets of X of the form f−1

α (Uα) which
are directly τ -open are those for which Uα are τα-open; being the subbasic
sets of τ .) That is, fα(U) = Uα ∈ τα, if fα is one-to-one and U ∈ τ . Hence
fα is an open map.

We remark that an open map in a weak topological system may not be one-
to-one. For example, it is known that the projection maps (which generate
the weak topology known as product topology) are open maps, and they are
not one-to-one.

Lemma 4.13 Any one-to-one function fα in a weak topological system
[(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] maps closed sets to closed sets. That is, it
is a closed map in the sense of definition 4.47.

Proof:
Let U be a τ -closed subset of X, so that U c ∈ τ . Then by lemma 4.12,
fα(U c) = U c

α ∈ τα, so that Uα = (U c
α)c is τα-closed. Now (by one-to-

one) f−1
α (Uα) ⊂ U . ⇒ Uα ⊂ fα(U). [NOTE: If f−1

α (Uα)
⋂
U c 6= ∅, then

∃z ∈ f−1
α (Uα)

⋂
U c. ⇒ z ∈ f−1

α (Uα) and z ∈ U c. ⇒ fα(z) ∈ Uα and (as
fα(U c) = U c

α) fα(z) ∈ U c
α. This is a contradiction since Uα

⋂
U c
α = ∅.]

Let xα ∈ fα(U). Then ∃x ∈ U , 3 fα(x) = xα. If xα /∈ Uα, for this
xα ∈ fα(U), then it follows that xα ∈ U c

α. ⇒ ∃x ∈ U , 3 fα(x) = fα(y), for
some y ∈ U c (because U c

α = fα(U c)). But x 6= y, ∀x ∈ U and y ∈ U c and fα
is one-to-one. We have a contradiction. Hence xα ∈ Uα, ∀xα ∈ fα(U). That
is, Uα ⊂ fα(U) ⊂ Uα; implying that fα(U) = Uα. Since U is an arbitrary
τ -closed subset of X and Uα is τα-closed, the proof is complete.13

Theorem 4.27 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If there exists an α ∈ ∆ such that (Xα, τα) is discrete and (for
this α ∈ ∆) fα is one-to-one, then (X, τ) is discrete.

Proof:
Let {x} ⊂ X be a singleton in X. We show that {x} ∈ τ . Since some
Xα is discrete and its fα is one-to-one, it follows that (for this α ∈ ∆)

13An alternative proof is this: Let U be a τ -closed subset of X, and let fα(U) = Uα. Now
U , τ -closed, implies that U c ∈ τ . And xα ∈ fα(U c) ⇐⇒ f−1

α (xα) /∈ U . ⇐⇒ xα /∈ fα(U).
⇐⇒ xα ∈ [fα(U)]c = U cα (as fα(U) = Uα). So, fα(U c) = U cα and, by lemma 4.12,
fα(U c) = U cα ∈ τα; implying that fα(U) = Uα = (U cα)c is τα-closed.
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fα({x}) = {xα} ∈ τα, by Lemma 4.12; and that, as fα is one-to-one,
f−1
α ({xα}) = {x} is a subbasic set of τ—and, hence, that {x} ∈ τ . This

proves that (X, τ) is a discrete topological space.

We observe that theorem 4.27 extends its counterpart in product topology
which has been in existence. Theorem 4.27 is important because

1. Unlike its analogue which has since been obtained for product topolo-
gies, theorem 4.27 does not require all the range (or factor) spaces of a
weak topology to be discrete;

2. It only requires that a function be one-to-one and its range space to be
discrete;

3. Theorem 4.27 applies to general weak topological sytems.

Definition 4.48 A function f : X → Y is said to be well-behaved if x 6= y
in X implies that f(x) 6= f(y) in Y .

Theorem 4.28 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If (for some α ∈ ∆ ) fα is well-behaved, and, for this α ∈ ∆, (Xα, τα)
is T0, then (X, τ) is T0.

Proof:
Let x 6= y in X. Then xα = fα(x) 6= fα(y) = yα, for the α ∈ ∆. Since Xα is
T0 there exists Uα ∈ τα 3 xα ∈ Uα, yα /∈ Uα, say. Now, f−1

α (Uα) ∈ τ , by defi-
nition of τ , and clearly x ∈ f−1

α (xα) ∈ f−1
α (Uα) = U , say. That is, x ∈ U ∈ τ .

Suppose y ∈ U also. Then it follows That yα = fα(y) ∈ fα(U) = Uα. This
implies that yα ∈ Uα, a contradiction to the earlier assumption that yα /∈ Uα.
Hence X is T0.

Theorem 4.29 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. (X, τ) is T1 if one (Xα, τα) is T1 and its associated function fα
is well-behaved.

Proof:
Let x 6= y in X. We find U, V ∈ τ such that x ∈ U, y ∈ V and x /∈ V, y /∈ U .
As x 6= y and one of the functions, say fα, is well-behaved it follows that
fα(x) = xα 6= yα = fα(y). Since in addition Xα is T1 for this particular
α ∈ ∆, and xα 6= yα ∈ Xα, there exist two τα-open subsets Uα, Vα of Xα such
that xα ∈ Uα, yα ∈ Vα and xα /∈ Vα, yα /∈ Uα. Clearly fα(x) = xα ∈ Uα im-
plies that x ∈ f−1

α (xα) ∈ f−1
α (Uα) = U ; that is, x ∈ U = f−1

α (Uα) ∈ τ .

131



Similarly y ∈ V = f−1
α (Vα) ∈ τ . If say x ∈ V , then it follows that

xα = fα(x) ∈ fα(V ) = Vα, implying that xα ∈ Vα. This is a contradic-
tion to the assumption above. Hence x /∈ V and, similarly, y /∈ U .

REMARK 4.23
We note that in a product topological system the product topology is T0

(or T1) if all the factor spaces are T0 (or respectively T1). In theorems 4.28
and 4.29 these ideas are extended to a general weak topological system by
removing the condition that all the range spaces be T0 (or T1) and replacing
it with the smaller requirement that a range space be T0 (or T1) and its
associated function to be well-behaved. We also apply this approach to
theorem 4.30 below.

Theorem 4.30 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. Then (X, τ) is T2 if one (Xα, τα) is T2 and its associated function
fα is well-behaved.

Proof:
Let x 6= y in X. We find U, V ∈ τ such that U

⋂
V = ∅ and x ∈ U, y ∈ V .

As x 6= y and one of the functions, say fα, is well-behaved it follows that
fα(x) = xα 6= yα = fα(y). Since in addition Xα is T2 for this particular
α ∈ ∆, and xα 6= yα in Xα, there exist two disjoint τα-open subsets Uα, Vα
of Xα such that xα ∈ Uα, yα ∈ Vα. Clearly fα(x) = xα ∈ Uα implies that
x ∈ f−1

α (xα) ∈ f−1
α (Uα) = U ∈ τ ; that is, x ∈ U = f−1

α (Uα) ∈ τ . Similarly
y ∈ V = f−1

α (Vα) ∈ τ . If U
⋂
V 6= ∅, then it follows that ∃z ∈ U

⋂
V =

f−1
α (Uα)

⋂
f−1
α (Vα). ⇒ z ∈ f−1

α (Uα)
⋂
f−1
α (Vα) = f−1

α (Uα
⋂
Vα) = ∅. That is,

fα(z) ∈ ∅; a contradiction. Hence U
⋂
V = ∅ and, as U, V ∈ τ , the proof is

complete.

Theorem 4.31 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. Any range space (Xα, τα) whose function fα is one-to-one and onto
is T0 if (X, τ) is T0.

Proof:
Let xα 6= yα in Xα. We find Uα ∈ τα such that xα ∈ Uα, say, and
yα /∈ Uα. Since fα is one-to-one and onto, there exist, in X, x = f−1

α (xα)
and y = f−1

α (yα) such that x 6= y. As X is T0, there exists U ∈ τ such
that, say x ∈ U and y /∈ U . Clearly as x = f−1

α (xα) ∈ U , it follows that
fα(x) = xα ∈ fα(U) = Uα ∈ τα as, also, fα is open (by lemma 4.12). If
yα ∈ Uα also, then it follows that y = f−1

α (yα) ∈ f−1
α (Uα) = U . That is,

y ∈ U ; a contradiction. Hence (Xα, τα) is T0.
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Theorem 4.32 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If (X, τ) is T1 and fα is onto and one-to-one (i.e. a bijection),
for some α ∈ ∆, then (Xα, τα) is T1, for this α ∈ ∆.

Proof:
Let xα 6= yα in Xα. We find Uα, Vα ∈ τα such that xα ∈ Uα, yα ∈ Vα and
xα /∈ Vα, yα /∈ Uα. Since fα is onto for this α ∈ ∆ there exist x, y ∈ X
such that fα(x) = xα, fα(y) = yα. If x = y, then it follows that fα(x) =
xα = fα(y) = yα (as fα is 1-1). Since xα 6= yα, it follows that x 6= y. Since
x 6= y ∈ X and (X, τ) is T1, there exist U, V ∈ τ such that x ∈ U, y ∈ V and
x /∈ V, y /∈ U . Since fα is an open map (as a one-to-one function in a weak
topological system), fα(U) = Uα and fα(V ) = Vα are τα-open subsets of Xα.
We know that xα = fα(x) ∈ fα(U) = Uα. That is, xα ∈ Uα and, similarly,
yα ∈ Vα. Suppose, that xα ∈ Vα also. Then it follows that xα ∈ Vα = fα(V ).
Hence x = f−1

α (xα) ∈ f−1
α (Vα) = V . Thus x ∈ V , a contradiction. Hence

xα /∈ Vα and, similarly, yα /∈ Uα. That is, (Xα, τα) is T1.

Theorem 4.33 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If (X, τ) is T2 and fα is a bijection, for some α ∈ ∆, then (Xα, τα)
is T2, for this α ∈ ∆.

Proof:
Let xα 6= yα in Xα. We find Uα, Vα ∈ τα such that xα ∈ Uα, yα ∈ Vα and
Vα ∩ Uα = ∅. Since fα is onto for this α ∈ ∆ there exist x, y ∈ X such that
fα(x) = xα, fα(y) = yα. Since xα 6= yα, we know that x 6= y. And since
x 6= y ∈ X and (X, τ) is T2, there exist U, V ∈ τ such that x ∈ U, y ∈ V and
U∩V = ∅. Since fα is an open map (as a one-to-one function in a weak topo-
logical system), fα(U) = Uα and fα(V ) = Vα are τα-open subsets of Xα. We
know that xα ∈ Uα and that yα ∈ Vα. We need to show now that Uα∩Vα = ∅.
So, suppose that Uα ∩ Vα 6= ∅. Then it follows that f−1

α (Uα
⋂
Vα) 6= ∅. But

f−1
α (Uα

⋂
Vα) = f−1

α (Uα)
⋂
f−1
α (Vα) and f−1

α (Uα)
⋂
f−1
α (Vα) = U ∩ V since fα

is one-to-one. Thus U ∩ V 6= ∅, a contradiction to the earlier assumption
about U and V . Hence Uα ∩ Vα = ∅. That is, (Xα, τα) is T2.

Definition 4.49 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If fα(x) = 0, ∀α ∈ ∆, ⇒ x = 0, then we say that the family
{fα}α∈∆ of functions is nonvanishing. If each element of the family {fα}α∈∆

of functions is a linear map, then we call the family linear, or a linear family
of functions.
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Theorem 4.34 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If each (Xα, τα) is T0, then (X, τ) is T0 if the family {fα}α∈∆ of
functions is linear and nonvanishing.

Proof:
Let x 6= y in X. Then x − y 6= 0. If fα(x) = fα(y), ∀α ∈ ∆, then it follows
that fα(x) − fα(y) = 0, ∀α ∈ ∆. Again by linearity of each fα, we have
fα(x − y) = fα(x) − fα(y) = 0, ∀α ∈ ∆. Hence fα(x − y) = 0, ∀α ∈ ∆. It
follows that, as the family of functions is nonvanishing, x − y = 0. That is,
x = y; a contradiction. Hence ∃α ∈ ∆, 3 fα(x) 6= fα(y). Let xα = fα(x)
and yα = fα(y), for this α ∈ ∆. Then xα 6= yα, in Xα. Since, in particular,
this Xα is T0, ∃Gα ∈ τα, 3 xα ∈ Gα, yα /∈ Gα, say. Now, f−1

α (Gα) ∈ τ and
(as fα(x) = xα ∈ Gα) x ∈ f−1

α (Gα). If also y ∈ f−1
α (Gα), then it follows that

yα = fα(y) ∈ Gα, a contradiction to the assumption made before. Hence
y /∈ f−1

α (Gα) ∈ τ and x ∈ f−1
α (Gα). That is, X is T0.

Theorem 4.35 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If each (Xα, τα) is T1, then (X, τ) is T1 if the family {fα}α∈∆ of
functions is linear and nonvanishing.

Proof:
Let x 6= y in X. Then (without loss of details) ∃α ∈ ∆, 3 fα(x) = xα 6= yα =
fα(y), in Xα. Since Xα is T1, there exist two τα-open subsets Uα, Vα of Xα

such that xα ∈ Uα, yα ∈ Vα and xα /∈ Vα, yα /∈ Uα. Clearly fα(x) = xα ∈ Uα
implies that x ∈ f−1

α (xα) ⊂ f−1
α (Uα) = U ; that is, x ∈ U = f−1

α (Uα) ∈ τ .
Similarly y ∈ V = f−1

α (Vα) ∈ τ . If say x ∈ V , then it follows that
xα = fα(x) ∈ fα(V ) = Vα, implying that xα ∈ Vα. This is a contradic-
tion to the assumption above. Hence x /∈ V and, similarly, y /∈ U . That is,
(X, τ) is T1.

Theorem 4.36 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If each (Xα, τα) is T2, then (X, τ) is T2 if the family {fα}α∈∆ of
functions is linear and nonvanishing.

Proof:
Let x, y in X be such that x 6= y. We find U, V ∈ τ 3 U ⋂V = ∅, x ∈ U, y ∈
V . Then (no loss of details) ∃α ∈ ∆, 3 fα(x) = xα 6= yα = fα(y), in Xα. As
Xα is T2 there exist Uα, Vα ∈ τα such that Uα

⋂
Vα = ∅ and xα ∈ Uα, yα ∈ Vα.

We see that (as xα = fα(x) ∈ Uα ∈ τα) x ∈ f−1
α (xα) ∈ f−1

α (Uα) = U ∈ τ ;
and, similarly, y ∈ f−1

α (yα) ∈ f−1
α (Vα) = V ∈ τ . If U

⋂
V 6= ∅, then it
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follows that f−1
α (Uα)

⋂
f−1
α (Vα) 6= ∅. ⇒ f−1

α (Uα
⋂
Vα) 6= ∅. ⇒ f−1

α (∅) 6= ∅, a
contradiction. Hence U

⋂
V = ∅, and (X, τ) is T2.

REMARK 4.24
The last three theorems (4.34, 4.35 and 4.36) are important generalizations
of existing results on product topologies, as projection maps are linear and
nonvanishing. In particular, theorem 4.36 explains why (as well as indicates
when) a weak topology may or may not be Hausdorff.
EXAMPLE 4.91
As an example, we consider again the weak topology on the Cartesian prod-
uct of a Sierpinski space with itself, with six open sets. This Sierpinski weak
topology, as it were, is not Hausdorff. To see this, take two distinct points of
X × X = {(0, 0), (0, 1), (1, 0), (1, 1)} to be x = (0, 0) and y = (0, 1). In the
Sierpinski weak topology τ = {∅, {(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 0), (0, 1)},
{(0, 0), (1, 0)}, {(0, 0)}, {(0, 0), (0, 1), (1, 0)}}, on X ×X,
there are no disjoint open sets containing x = (0, 0) and y = (0, 1). The
reason for this is that the range spaces, each the Sierpinski topological space
{X, ∅, {0}}, are not Hausdorff.

4.5.3 On Normality

Definition 4.50 A topological space (X, τ) is said to be normal if for any
two disjoint τ -closed subsets A,B of X there exist two disjoint τ -open subsets
U, V of X such that A ⊂ U and B ⊂ V .

Theorem 4.37 (Normal Weak Topologies) Let
[(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system. If for some
α ∈ ∆, fα is one-to-one then (X, τ) is normal if and only if (Xα, τα) is
normal, for the fixed α ∈ ∆.

Proof:
=⇒ Suppose (Xα, τα) is normal and that fα is one-to-one, for some α ∈ ∆.
We show that (X, τ) is normal. So, let A and B be two disjoint τ -closed sub-
sets of X. We find two disjoint τ -open subsets U and V of X such that
A ⊂ U and B ⊂ V . From the hypothesis fα(A) = Aα and fα(B) = Bα are
two disjoint τα-closed subsets of Xα, as 1-1 functions are closed maps in a
weak topological system. Since (Xα, τα) is normal, there exist two disjoint
τα-open subsets, say Uα and Vα, of Xα such that Aα ⊂ Uα and Bα ⊂ Vα. By
τ -continuity of each fα, or from the definition of τ , both f−1

α (Uα) and f−1
α (Vα)

are τ -open. As fα(A) = Aα ⊂ Uα, it follows that A = f−1
α (Aα) ⊂ f−1

α (Uα).
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That is, A ⊂ f−1
α (Uα); and similarly B ⊂ f−1

α (Vα).
Next, we show that f−1

α (Uα)
⋂
f−1
α (Vα) = ∅. Suppose that

f−1
α (Uα)

⋂
f−1
α (Vα) 6= ∅. Then ∃z ∈ f−1

α (Uα)
⋂
f−1
α (Vα). This implies that

z ∈ f−1
α (Uα) and z ∈ f−1

α (Vα). This implies that fαz ∈ Uα and fαz ∈ Vα.
This implies that fαz ∈ Uα

⋂
Vα = ∅. A contradiction. Putting U = f−1

α (Uα)
and V = f−1

α (Vα) we see that A ⊂ U,B ⊂ V and that U
⋂
V = ∅. Hence X

is normal.
⇐= Let (X, τ) be normal and let fα be one-to-one, for some α ∈ ∆.
Let Aα and Bα be two disjoint τα-closed subsets of Xα, for this α ∈ ∆. By
τ -continuity of each fα, A = f−1

α (Aα) and B = f−1
α (Bα) are two τ -closed

subsets of X. They (A and B) are also disjoint, for otherwise we would get
a contradiction to the assumption that Aα and Bα are disjoint (as fα is 1-1).
As X is normal, A and B closed and disjoint in X, there exist two disjoint
τ -open sets U and V in X such that A ⊂ U and B ⊂ V . Since this fα is
an open map (as every 1-1 function in a weak topological system is an open
map), fα(U) and fα(V ) are τα-open subsets of Xα. f−1

α (Aα) = A ⊂ U ⇒
Aα ⊂ fα(U) ∈ τα. Similarly f−1

α (Bα) = B ⊂ V ⇒ Bα ⊂ fα(V ) ∈ τα. If
fα(U)

⋂
fα(V ) 6= ∅, then ∃xα ∈ fα(U)

⋂
fα(V ). It follows that xα ∈ fα(U)

and xα ∈ fα(V ). ⇒ f−1
α (xα) ∈ U and f−1

α (xα) ∈ V . ⇒ f−1
α (xα) ∈ U ⋂V .

⇒ U
⋂
V 6= ∅. A contradiction to the earlier assumption about U and V .

Hence the proof is complete.

Definition 4.51 A topological space (X, τ) is said to be perfectly normal
if it has exact Urysohn functions; in the sense that if A and B are two
disjoint closed subsets of X, there exists a τ -continuous real-valued function
g : X → [0, 1] such that g−1({0}) = A and g−1({1}) = B.

Theorem 4.38 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If fα is one-to-one and (Xα, τα) is perfectly normal, for some α ∈ ∆
then (X, τ) is perfectly normal.

Proof:
Let a range space (Xα, τα) be perfectly normal and let A andB be two disjoint
τ -closed subsets of X. We need to show that there is an Urysohn function
F on X, for A and B. From the hypothesis fα(A) = Aα and fα(B) = Bα

are two disjoint τα-closed subsets of Xα. Since Xα is perfectly normal, there
exists a continuous function gα : Xα → [0, 1], a Urysohn function, such that
gα(Aα) = {0} and gα(Bα) = {1}.
Define F : X → R by F (x) = (gα ◦ fα)(x) = gα(fα(x)) = gα(xα), where gα
is the Urysohn function on Xα corresponding to fα(A) = Aα and fα(B) =
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Bα and xα = fα(x).14 We prove that F is an Urysohn function on X,
corresponding to A and B.

If x ∈ A, then fα(x) ∈ Aα; hence gα(fα(x)) = 0,∀x ∈ A, as gα(Aα) = {0}.
Therefore F (x) = (gα ◦ fα)(x) = 0∀x ∈ A. That is F (A) = {0}. Similarly
F (B) = {1}.

We also see that

F−1({0}) = (gα ◦ fα)−1({0})

= (f−1
α ◦ g−1

α )({0})

= f−1
α (g−1

α ({0}))

≡ f−1
α (Aα), as g−1

α ({0}) = Aα from hypothesis.

= A, as fα(A) = Aα and fα is 1-1.

Hence F−1({0}) = A. And in a similar way, F−1({1}) = B.
Next we show that F is continuous. Let U be an open set in R. Then

F−1(U) = (gα ◦ fα)−1(U);

≡ (f−1
α ◦ g−1

α )(U);

= f−1
α (g−1

α (U)). . . . . . (2.3)

Continuity of gα ensures that g−1
α (U) is τα-open; and τ -continuity of fα, or the

definition of τ , guarantees that f−1
α (g−1

α (U)) is an open set in (X, τ). That
is, (2.3) is τ -open, implying that F is τ -continuous; and hence an Urysohn
function (with respect to A and B) on X. That is, (X, τ) is perfectly normal.

Theorem 4.39 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If fα is an open map, for some α ∈ ∆ then, for this α ∈ ∆, (Xα, τα)
is perfectly normal if (X, τ) is perfectly normal.

Proof:
Let (X, τ) be perfectly normal and let Aα and Bα be any two disjoint τα-
closed subsets of Xα. We need to find a Urysohn function gα (with respect
to Aα and Bα) on Xα.

Since fα is τ -continuous and Aα and Bα are τα-closed, f−1
α (Aα) = A

14If two or more range spaces ofX are perfectly normal and their corresponding functions
fα are one-to-one, then the function F on X can be defined using any one Urysohn function
gα on Xα.
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and f−1
α (Bα) = B are τ -closed subsets of X. If f−1

α (Aα)
⋂
f−1
α (Bα) 6= ∅,

then ∃z ∈ f−1
α (Aα)

⋂
f−1
α (Bα) = f−1

α (Aα
⋂
Bα). ⇒ fα(z) ∈ Aα

⋂
Bα, a

contradiction to the earlier assumption that Aα and Bα are disjoint. Hence
f−1
α (Aα)

⋂
f−1
α (Bα) = A

⋂
B = ∅.

As (X, τ) is perfectly normal, there exists a Urysohn function F : X →
[0, 1] such that F (A) = {0} and F (B) = {1}. Define gα : Xα → R by
gα(xα) = (F ◦f−1

α )(xα); where F is the Urysohn function on X, corresponding
to f−1

α (Aα) = A and f−1
α (Bα) = B.

We need to show that gα is a Urysohn function on Xα corresponding
to Aα and Bα. Clearly as f−1

α (Aα) = A, it follows that if xα ∈ Aα then
f−1
α (xα) ∈ A and that (as F (A) = {0}) F (f−1

α (xα)) ≡ (F ◦ f−1
α )(xα) = 0.

Hence gα(xα) = 0, ∀xα ∈ Aα. ⇒ gα(Aα) = {0}. In a similar way, gα(Bα) =
{1}.

Now,

g−1
α ({0}) = (F ◦ f−1

α )−1({0})

= (fα ◦ F−1)({0})

= fα(F−1({0}))

≡ fα(A), as F is, from hypothesis, the Urysohn function corresponding to
A and B.

= Aα, as fα(A) = Aα.

Therefore g−1
α ({0}) = Aα. And in a similar way, g−1

α ({1}) = Bα.
Next, we show that gα is continuous. Let U be an open subset of R. Then

g−1
α (U) = (F ◦ f−1

α )−1(U);

≡ (fα ◦ F−1)(U);

= fα(F−1(U)). . . . . . . . . . (2.4)

Continuity of F on X ensures that F−1(U) is a τ -open set. The fact that
fα is an open map (hypothesis) ensures that (2.4), fα(F−1(U)), is a τα-open
set; and hence that g−1

α (U) is τα-open. So gα is continuous and, considering
the other properties it satisfies, an Urysohn function (with respect to Aα and
Bα) on Xα. Hence this (Xα, τα) is perfectly normal.

Corollary 4.15 If a product topology is perfectly normal, then all the factor
spaces are perfectly normal.
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Definition 4.52 A topological space (X, τ) is completely normal if every
subspace of X is normal.

Before now, no specific theorem or statement has been made concerning per-
fect normality of weak topologies on Cartesian product sets; or, for that
matter, general weak topological systems. However, it is known (see e.g.
Morris (2016), page 213; 6(b)) that a perfectly normal space is completely
normal. Hence we have yet another result on product topologies.

Corollary 4.16 If a product topology is perfectly normal, then each of the
factor spaces is completely normal.

Proof:
By Theorem 4.39 and/or Corollary 4.15 each factor space is perfectly normal.
By the remark just made, the result follows.

Theorem 4.40 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If fα is a one-to-one function and (Xα, τα) is perfectly normal, for
an α ∈ ∆ then (X, τ) is completely normal.

Proof:
By theorem 4.38, (X, τ) is perfectly normal as (Xα, τα) is perfectly normal.
Since every perfectly normal space is completely normal (Morris 2016), (X, τ)
is completely normal as a perfectly normal space.

Theorem 4.41 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If fα is an open map, for some α ∈ ∆ then (for this α ∈ ∆)
(Xα, τα) is completely normal if (X, τ) is perfectly normal.

Proof:
From theorem 4.39, (Xα, τα) is perfectly normal and, hence, completely nor-
mal.

4.5.4 Regularity

Definition 4.53 A topological space (X, τ) is said to be regular if for any
τ -closed set G, that is Gc ∈ τ , and x /∈ G there exist two disjoint τ -open
subsets U and V of X such that x ∈ U and G ⊂ V .
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Theorem 4.42 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If fα is a one-to-one map, for some α ∈ ∆ then (X, τ) is regu-
lar if, for this α ∈ ∆, (Xα, τα) is regular.

Proof:
Let a range space (Xα, τα) be regular and let Gc ∈ τ, x /∈ G and x ∈ X. That
is, G is a τ -closed subset of X and x is not an element of G.
Since fα is one-to-one and x /∈ G, it follows that fα(x) = xα /∈ fα(G), for
this α ∈ ∆. Also, as fα is a closed map, fα(G) = Gα is a τα-closed subset of
Xα. So Gα is closed in Xα and fα(x) = xα /∈ fα(G) = Gα. As Xα is regular,
there exist two disjoint τα-open subsets Uα and Vα of Xα such that xα ∈ Uα
and Gα ⊂ Vα.
Clearly G ⊂ f−1

α (Vα) ∈ τ , as fα(G) = Gα ⊂ Vα. Also x = f−1
α (xα) ∈

f−1
α (Uα) ∈ τ . If f−1

α (Uα)
⋂
f−1
α (Vα) 6= ∅, then ∃z ∈ f−1

α (Uα)
⋂
f−1
α (Vα) =

f−1
α (Uα

⋂
Vα). This implies that fα(z) ∈ (Uα

⋂
Vα); a contradiction to the

assumption that (Uα
⋂
Vα) = ∅. Hence f−1

α (Uα)
⋂
f−1
α (Vα) = ∅, and so X is

regular.

Theorem 4.43 Let [(X, τ), {(Xα, τα)}α∈∆, {α}α∈∆] be a weak topological sys-
tem. If fα is a bijection, then for this α ∈ ∆, Xα is regular if (X, τ) is regular.

Proof:
Let (X, τ) be regular and let Gc

α ∈ τα, xα /∈ Gα ⊂ Xα. Then by τ -continuity
of fα, f−1

α (Gα) is a τ -closed subset of X. As fα is onto, ∃x0 ∈ X 3
fα(x0) = xα and x0 /∈ T−1

α (Gα) = G; for otherwise it would follow that
x ∈ f−1

α (Gα)∀x ∈ X 3 fα(x) = xα; this will imply that f−1
α (xα) ∈ f−1

α (Gα)
and, hence, that xα ∈ Gα, which is a contradiction.
As X is regular, there exist two disjoint τ -open sets U and V such that
x0 ∈ U and G ⊂ V . It is easy to see that Uα = fα(U) and Vα = fα(V ) are
two disjoint τα-open subsets of Xα and that xα ∈ Uα, Gα ⊂ Vα.

4.5.5 T3, T4, Completely Regular and Tychonoff Spaces

Definition 4.54 A topological space (X, τ) is called a T3-space if it is a
regular T1-space.

Theorem 4.44 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is a one-to-one function, and for this α ∈ ∆,
(Xα, τα) is T3 (i.e. regular and T1) then (X, τ) is T3.
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Proof:
We have proved in theorem 4.42 above that (X, τ) is regular. We only prove
now that (X, τ) is also T1.

So let x 6= y in X. We find U, V ∈ τ such that x ∈ U, y ∈ V and
x /∈ V, y /∈ U . Since x 6= y and the function fα, is one-to-one it follows
that fα(x) = xα 6= yα = fα(y). Since in addition Xα is T1 (as a T3-space)
for this particular α ∈ ∆, and xα 6= yα ∈ Xα, there exist two τα-open
subsets Uα, Vα of Xα such that xα ∈ Uα, yα ∈ Vα and xα /∈ Vα, yα /∈ Uα.
Clearly fα(x) = xα ∈ Uα implies that x ∈ f−1

α (xα) ∈ f−1
α (Uα) = U ; that is,

x ∈ U = f−1
α (Uα) ∈ τ . Similarly y ∈ V = f−1

α (Vα) ∈ τ . If say x ∈ V , then
it follows that xα = fα(x) ∈ fα(V ) = Vα, implying that xα ∈ Vα. This is a
contradiction to the assumption above. Hence x /∈ V and, similarly, y /∈ U .
That is, (X, τ) is T1 and, hence, T3.

Theorem 4.45 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is a bijection, then for this α ∈ ∆, (Xα, τα)
is T3 if (X, τ) is T3.

Proof:
We have proved in theorem 4.43 (above) that (Xα, τα) is regular if fα is onto
and one-to-one. We only need to prove now that (Xα, τα) is T1 also. From
theorem 4.32 the proof is complete.

Definition 4.55 A topological space (X, τ) is called a T4-space if it is a
normal T1-space.

Theorem 4.46 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is a bijective function, then for this α ∈ ∆,
(Xα, τα) is T4 (i.e. normal and T1) if (X, τ) is T4.

Proof:

From the results of theorem 4.37, (Xα, τα) is normal as (X, τ) is normal.
From theorem 4.32 (Xα, τα) is T1 as (X, τ) is T1.

�

Theorem 4.47 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is a one-to-one function, and for this α ∈ ∆,
(Xα, τα) is T4, then (X, τ) is T4.
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Proof:
By theorem 4.37 (X, τ) is normal and by theorem 4.44 it is also T1.

Definition 4.56 A topological space (X, τ) is said to be completely regular if
for any τ -closed subset A of X and an element x ∈ X, not in A, there exists
a real-valued τ -continuous function f : X → [0, 1] on X into [0, 1] such that
f(A) = {1} and f(x) = 0.

Theorem 4.48 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is a one-to-one function, and for this α ∈ ∆,
(Xα, τα) is completely regular, then (X, τ) is completely regular.

Proof:
Let (given the hypothesis) Ac ∈ τ, x /∈ A, x ∈ X. Then, for the satisfying
α ∈ ∆, fα(A) = Aα and fα({x}) = {xα} are disjoint subsets of Xα. It
then follows that xα /∈ Aα. Also it is clear that Aα is a τα-closed subset
of Xα. As (Xα, τα) is completely regular, there exists a continuous function
gα : Xα → [0, 1] on Xα into [0, 1] such that gα(Aα) = {1} and gα(xα) = 0.

Define F : X → [0, 1] by F (x) = (gα ◦ fα)(x) = gα(fα(x)); where gα and
fα are as already introduced above. We prove that, for the given pair of x
and A above, F (A) = {1} and F (x) = 0. Clearly, for any a ∈ A, fα(a) ∈ Aα
as fα(A) = Aα. It follows that F (a) = (gα ◦ fα)(a) = gα(fα(a)) = 1, for any
element a of A (since gα(a) = 1,∀a ∈ Aα). Hence F (A) = {1}. It is easy to
see that F (x) = 0, for x /∈ A.

Next, we show that F is continuous. Let U be an open set in IR. Then

F−1(U) = (gα ◦ fα)−1(U);

≡ (f−1
α ◦ g−1

α )(U);

= f−1
α (g−1

α (U)). . . . . . (6.9)

Continuity of gα ensures that g−1
α (U) is τα-open; and τ -continuity of fα, or

the definition of τ , guarantees that f−1
α (g−1

α (U)) is an open set in (X, τ).
That is, (6.9) is τ -open, implying that F is τ -continuous. That is, (X, τ) is
completely regular.

Theorem 4.49 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is an open map, then for this α ∈ ∆,
(Xα, τα) is completely regular if (X, τ) is completely regular.
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Proof:
Let xα /∈ Aα, A

c
α ∈ τα. Then by τ -continuity, f−1

α (Aα) is τ -closed. If
f−1
α ({xα})

⋂
f−1
α (Aα) 6= ∅, then it follows that f−1

α ({xα}
⋂
Aα) 6= ∅. This

implies that (as {xα}
⋂
Aα = ∅) f−1

α (∅) 6= ∅; a contradiction. Hence
f−1
α ({xα})

⋂
f−1
α (Aα) = ∅. Let x be any element of f−1

α ({xα} (assuming fα is
not one-to-one), and let A = f−1

α (Aα). Then clearly x /∈ A and A is τ -closed.
As (X, τ) is completely regular, there exists a continuous function F :

X → [0, 1] such that F (A) = {1} and F (x) = 0. Define gα : Xα → [0, 1] by
gα(x) = (F ◦ f−1

α )(x); where F and fα are as already given. If x ∈ Aα, then
f−1
α (x) ⊂ f−1

α (Aα) = A. Hence for any x ∈ Aα, gα(x) = (F ◦ f−1
α )(x) = 1,

since F (A) = {1}. It follows that gα(Aα) = {1}. Similarly for the given
xα /∈ Aα, gα(xα) = 0.

Next, we show that gα is continuous. Let U be an open subset of IR. Then

g−1
α (U) = (F ◦ f−1

α )−1(U);

≡ (Tα ◦ F−1)(U);

= fα(F−1(U)). . . . . . . . . . (6.10)

Continuity of F on X ensures that F−1(U) is a τ -open set. The fact that fα
is an open map (hypothesis) ensures that (6.10) fα(F−1(U)) is a τα-open set;
and hence that g−1

α (U) is τα-open. So gα is continuous. Hence this (Xα, τα)
is completely regular.

Corollary 4.17 If the product topology is completely regular, then all the
factor spaces are completely regular

Definition 4.57 A completely regular T1-space is called a Tychonoff space.

Theorem 4.50 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is a one-to-one and onto map, then for
this α ∈ ∆, (Xα, τα) is a Tychonoff space if (X, τ) is a Tychonoff space.

Proof:
From Lemma 4.12 fα is an open map. Hence by theorem 4.49 (Xα, τα) is com-
pletely regular. Finally, by theorem 4.32 (Xα, τα) is T1 and, hence, Tychonoff

Theorem 4.51 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is a one-to-one function, and for this α ∈ ∆,
(Xα, τα) is Tychonoff, then (X, τ) is Tychonoff.

Proof:
Theorems 4.44 and 4.48 guarantee this.
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4.5.6 Compactness

Compactness is widely known to be one of the most important topics in the
whole of general topology. In the words of Professor Sidney Allen Morris,
”The most important topological property is compactness.” (Morris (2016))
No wonder, what is known as the famous theorem of Tychonoff is a statement
about compactness. And it simply says that arbitrary product of compact
spaces is compact; also its converse has also been known to hold in prod-
uct topological systems. But a question now is: What obtains in general
weak topological systems in terms of compactness; that is, how can we ex-
tend or generalize the property of compactness to arbitrary weak topological
systems?

Theorem 4.52 Let [(X, τ), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological
system. If, for some α ∈ ∆, fα is one-to-one and onto, and for this α ∈ ∆,
(Xα, τα) is compact, then (X, τ) is compact.

Proof:
Let {Ar}r∈w be any open cover for X. Then X ⊂ ⋃

r∈w
Ar, Ar ∈ τ . By onto

Xα = fα(X). Also fα(Ar) = Br ∈ τα, ∀r ∈ w since (by Lemma 7.1) ev-
ery one-to-one function in a weak topological system is an open map. Then
Xα = fα(X) ⊂ fα(

⋃
r∈w

Ar) ⊂
⋃
r∈w

fα(Ar) =
⋃
r∈w

Br, each Br ∈ τα.

Therefore Xα ⊂
⋃
r∈w

Br, each Br ∈ τα. Since (Xα, τα) is compact, we

have Xα ⊂
n⋃
i=1

Bri . Hence X = f−1
α (Xα) ⊂ f−1

α (
n⋃
i=1

Bri) =
n⋃
i=1

f−1
α (Bri).

⇒ X ⊂
n⋃
i=1

f−1
α (Bri) =

n⋃
i=1

Ari . That is X ⊂
n⋃
i=1

Ari ; implying that (X, τ) is

compact.

REMARK 4.25
The last theorem extends (but does not generalize) the famous theorem of
Andrey Nikolayevich Tychonoff to general weak topological systems. It shows
that a weak topology would be compact if just one of its range spaces is
compact and the function associated with the compact space is bijective.
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Chapter 5

SUMMARIES,
CONCLUSIONS AND
SUGGESTIONS

5.1 Summaries and Conclusions

5.1.1 On Section 3.2

Vertical- and horizontal-line-open weak topologies were constructed on the
Cartesian plane. In order not to trivialize this development and to actually
appreciate its importance, one may have to consider the facts that

• Just as there is no topology strictly weaker than the discrete topology
of the plane IR2 in which all parabolas, or all cubic curves, or all quartic
curves, or all quintic curves, etc. are open, no other topology on IR2

strictly weaker than the discrete topology has all vertical lines or all
horizontal lines as open sets. The construction of the line-open weak
topologies throws up the challenge for someone to try and construct
topologies (even if not weak topologies, that are smaller than the dis-
crete topology) on IR2 in which (at least) one of the other family of
curves are open.

• And closely related to this is the construction of the hyperplane-open
weak topologies on IRn in which lines, planes, etc. can be made to be
open.
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5.1.2 On Section 4.1

1. The method of the point-open weak topologies on IRn (a) can be used to
make any point in IRn open, and in particular (b) led to the emergence
of a matrix-open weak topology on IR2. This particular weak topology
may be compared or contrasted later with a weak topology, constructed
on IR2, in which matrices are actually closed sets.

2. Subset-induced topologies can be used to solve problems similar to the
one given in the illustrative example—and more. We observe that this
idea was used in the X-topology approach to hyperplane-open weak
topologies. It is also used crucially in our exposition on seminorm
topologies. Many more applications of this concept will certainly come
up in future.

3. We can use reducible topologies to obtain minimal topologies that
would be used instead in some analysis. And the idea of extensible
topologies can be used to expand a topology in a way that may en-
hance analysis.

4. The concept of base reducibility or base extension of topologies can be
used to construct topologies which compare with one another in terms
of bases.

5. The discrete topology of any set X cannot be reduced in the strong
sense if the cardinality of X is greater than 2. (Theorem 4.1 (a))

6. Every non-indiscrete topology on X can be reduced in some sense.
(Theorem 4.1 (b))

7. The comparison theorems are again an important development. The
summary of the results here is that a nontrivial weak topology actually
sits in the middle of a chain of strictly comparable weak topologies each
of which makes the fixed family of functions continuous. This implies
that we should always clarify the reason(s) why a given nontrivial weak
topology is adopted in a context of analysis.

8. Any non-indiscrete weak topology has a strictly weaker weak topology
in its system. (Theorem 4.4)

9. An indiscrete weak topology can have cardinality greater than 2; how-
ever, it is not reducible to a strictly weaker weak topology in its own
system. (Proposition 4.9)
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10. Three equivalent statements for an indiscrete weak topology are made.
(Theorem 4.5)

11. A discrete weak topology on a set X may not be equal to the power
set of X. (Proposition 4.12)

12. Equivalent statements for a discrete weak topology are made. (Theo-
rem 4.6)

13. Lemma 4.8 and theorem 4.11 are insightful results on seminorm topolo-
gies. In particular theorem 4.11 shows in clearest terms that every
seminorm topology T generated by a family P of seminorms is nothing
but a locally convex weak topology τw at the top of a sequence of non
locally convex weak topologies generated by the family P of seminorms.

14. Our cursory look (from the constructive approach) at one existing result
revealed that all weak topologies are not Hausdorff—modifying the
existing result.

All the topological developments in this section emerged as a result of our
attempt to construct weak topologies in real and rudimentary terms. While
some of them throw up new challenges and opened up new areas of research,
some are amenable to immediate exploitation for application and use. The
overall value of these developments (like that of any new development) will
only become clearer with time.

5.1.3 On Section 4.2

1. We showed that every infinite set has infinitely many cofinite-like topologies—
and these we called semi-cofinite topologies.

2. Further investigations showed that this infinity of semi-cofinite topolo-
gies can be constructed or arranged to form a chain of topologies at
which peak sits the cofinite topology. For a finite set, the semi-cofinite
topologies forming a chain will only be finite in number and at the peak
of their chain is the discrete topology of the finite set as the cofinite
topology.

3. In our Cofinite Topology Lemma it was stated and proved that any
pair of comparable, infinite and proper subsets of an infinite set in-
duces a pair of comparable semi-cofinite topologies on their superset.
This result leads to what we then later called the Cofinite Topology
Theorem.
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4. The whole episode climaxed into what we finally called the Branching
Theorem. In a lay man’s language, the Branching Theorem means that
the cofinite topology of every (finite or infinite) set stands like a tree
from which other cofinite-like topologies branch out. If the set under
study is finite, this branching will terminate or have an end; and if the
set is infinite, the branching will be endless or infinite.

5. Finally, the cofinite topology-induced weak topology on IR2 is interest-
ing in its contrasting property as a topology on IR2 in which matrices
(of coordinate points) come as closed sets.

5.1.4 On Section 4.3

From item 4 of the summarized listing—illustrated with example 4.89—we
see that a topology τb can strictly exist between a weak topology τ and its
supra τs; in the sense that τb is strictly stronger than τ and strictly weaker
than τs. However, in all the situations considered in theorem 4.24, proposi-
tion 4.20 would explain that the supra of a box topology will always be equal
to the supra of its associated weak topology.
POSTSCRIPT

1. It used to be generally accepted that many topologies are not closed
under arbitrary intersection—in fact, none of the so-called standard
(or Euclidean) topologies of IRn is closed under arbitrary intersections.
We have a fundamentally very radical development here: namely (1)
from the exposition of this dissertation it is clear that there is—related
to any topology τ—a very small topology τs which is closed under ar-
bitrary intersections and which is so close in size to τ that no other
topology can exist between it and τ and have a different supra from
τs; hence (2) supra topologies can be used to measure the closeness
(in size) of comparable topologies; (3) any two incomparable topolo-
gies nevertheless generate two distinct complement topologies even if
they have common supra (Theorem 4.22); hence (4) if we also consider
the fact that comparable topologies which are not very close in size
will generate distinct supras, we may now conclude that indeed more
topologies are closed under arbitrary intersections! By this develop-
ment, any inhibition inherent in a topology due to its lack of closure
under arbitrary intersections can now be remedied, at least in the weak
sense, through the exploitation now possible of its supra.

2. It is now clear that there are more complement topologies in existence
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than any other known class of topologies; and the big question is: why
has humanity not identified this before, in order to at least give such
topologies a name? The answer to this question is simple: The under-
lying principle behind every research effort is the fact that all is never
known. This is why every true research effort is respectable since it
has the potential to bump into new discovery (big or small). There is
always an unknown, an undiscovered out there waiting for someone to
discover, and it is only a privilege (not a prerogative) to be able to see
something profoundly different.

3. The relationship between a topology τ and its supra τs is a very inter-
esting one, and only time will tell the extent to which this connection
will be utilized in analysis and other applications.

4. The concept of exhaustive topology is another important idea which
may not only be very helpful in future but has in this work certainly
shown to be crucial in the way it has helped to indicate or suggest the
kind of topologies which might have discrete supra.

5.1.5 On Section 4.4

The two important expositions of this section are theorems 4.25 and 4.26.
Theorem 4.26 (with its very short but succint proof) is an extension and
generalization of theorem 4.25; and its immediate application is corollary
4.13. As suggested in the abstract, theorem 4.26 is a sufficient condition
for a discrete weak topology to induce the discreteness property on a range
space, and it is considered the most important contribution of this section.

5.1.6 On Section 4.5

1. Any one-to-one function in a weak topological system is an open map;
Lemma 4.12. And any one-to-one function in a weak topological system
is a closed map; Lemma 4.13. These lemmas are important results
unknown before this work. Their statement and proof facilitated much
of the other results of the chapter—and they will certainly continue
to facilitate the statement and proof of other results by researchers in
future, we believe.

2. It has been known that if all the factor spaces are discrete, the product
topology (in finite dimensions) would be discrete. As an extension,
theorem 4.27 shows that only one discrete range space of a general
weak topology can induce discreteness on the weak topology.
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3. Theorems 4.28, 4.29 and 4.30 show how a weak topology can inherit
the separation axioms of, respectively, T0, T1 and T2. These results
extend their analogues which have been in existence for only product
topologies.

4. The conditions for a weak topology to induce the properties of T0, T1

and T2 on its range spaces are established in theorems 4.31, 4.32 and
4.33. These results are extensions to other weak topologies since it is
known that if a product topology is Hausdorff then all the factor spaces
are Hausdorff.

5. It has been known that if all the factor spaces are T0, T1 or T2, then the
product topology is respectively T0, T1 or T2. Theorems 4.34, 4.35 and
4.36 generalize and extend the existing results to any weak topological
system in which the stated conditions are met.

6. In theorem 4.37 we established the conditions which guarantee ex-
change of normality between a weak topology and its range spaces.
This particular result, like some other results in this chapter, found
very useful application in other results here.

7. Theorem 4.38 showed how a perfectly normal range space can induce
this property on the weak topology; and theorem 4.39 showed how a
perfectly normal weak topology can induce this property on its range
spaces.

8. An important corollary result is obtained immediately from theorem
4.39. This is corollary 4.27.

9. Corollary 4.16 is another very important implication of theorem 4.39.

10. Theorem 4.40 is a corollary result of theorem 4.38, and theorem 4.41
is still an imporatnt outcome of theorem 4.39.

11. In theorem 4.42 we showed that a regular range space can induce reg-
ularity on the weak topology, and in theorem 4.43 we showed how a
regular weak topology can induce regularity on a range space.

12. In theorem 4.44 we showed how a T3 range space can induce the T3

property on the weak topology, and in theorem 4.45 we showed how a
T3 weak topology can induce this property on a range space.

13. In theorem 4.46 we showed how a range space can inherit the T4 prop-
erty from the weak topology, and in theorem 4.47 we showed how a
weak topology can inherit this property from a range space.

150



14. In theorem 4.48 we showed how a completely regular range space can
induce this property on the weak topology, and in theorem 4.49 we
showed how a completely regular weak topology can induce this prop-
erty on a range space.

15. Corollary 4.17 is an important fallout of theorem 4.49.

16. In theorems 4.50 and 4.51 we showed how the Tychonoff space property
is exchanged between a weak topology and its range spaces.

17. It has been known that arbitrary product of compact spaces is compact.
We showed that all the range spaces of a weak topology do not have
to be compact in order that compactness be inherited by the weak
topology from its range spaces. Theorem 4.52 is the statement and
proof of this result.

5.2 Suggestions

More intensive and extensive research is needed to focus on Weak Topology
via the constructive approach. We sincerely believe that further results that
can be achieved by such research will likely relegate our results to being only
a tip of the iceberg.

THE END
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