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ABSTRACT 

This dissertation developed the generalized multivariate moment generating 
function for some random vectors/matrices and their probability distribution 
functions with the intention to replace the traditional/conventional moment 
generating functions due to its simplicity and versatility. The new function 
was developed for the multivariate gamma family of distributions, the 
multivariate normal and the dirrichlet distributions as a binomial expansion 
of the expected value of an exponent of a random vector/matrix about an 
arbitrarily chosen constant. The function was used to generate moments of 
random variables and their probability distribution functions; it was applied 
to data analysis and results obtained were compared with those from 
existing traditional/conventional methods. It was observed that the function 
generated same results as the traditional/conventional methods; in addition, 
it generated both central and non-central moments in the same simple way 
without requiring further tedious manipulations; it gave more information 
about the distribution, for instance while the traditional method gives 
skewness and kurtosis values of 0 and 3 respectively for 𝑝-variate 

multivariate normal distribution, the new methods gives ((0))
𝑝×1

 and 3𝑝 

respectively and; it could generate moments of integral and real powers of 
random vectors/matrices. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

The significance of moments in explaining the characteristics of random variables 

and their probability distributions cannot be over emphasized in statistics. Basically, 

there are two types of moments namely moments about zero and moments about 

arbitrary points. Moments about zero are called crude moments while moment 

about an arbitrary point is called the central moment if the arbitrarily chosen point 

is mean or average of the distribution (Pearson, 1900; Kenney and Keeping, 1962 

and; Weisstein, 2002). The central moments are fundamental to the determination 

of such characteristics of probability distributions as the variance, skewness and 

kurtosis (Arua et al, 1997). Higher moments can be obtained in theoretical statistics 

but their applications in practical cases are yet to be uncovered. Central moments 

of any order can be obtained by the mathematical combination of crude moments. 

A very important method of obtaining moments of a random variable and its 

probability distribution is the moment generating function (Chukwu and Amuji, 

2012). However, very serious setbacks of this method of generating moments are 

that it does not always exist for all probability distributions and that it can only 

generate crude moments. To obtain the crude moment of a random variable and its 

distribution, its moment generating function is differentiated the required number 

of times and evaluated at a zero value of some real coefficient of the variable in the 

transformation that determines the function (Chukwu and Amuji, 2012; William and 

Richard, 1973). To obtain the central moments from crude moments, some 

mathematical combinations of the crude moments of required order are applied. 

The process of differentiating to obtain crude moments through moment 

generating functions and eventually having to obtain central moments from crude 
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moments by the mathematical combination of the crude moments is tedious and 

cumbersome (Oyeka et al 2010). 

In a bid to seek easier and quicker methods of finding the moments of random 

variables and their probability distributions, Oyeka et al (2008, 2010 and 2012) 

developed the univariate alternative methods for finding the moments of random 

variables and their probability distributions and bivariate alternative methods for 

finding the moments of two jointly distributed random variables and their 

probability distributions respectively. The researchers of these methods showed 

that these methods yield the same results as the traditional methods of generating 

moments of random variables and their distributions, and that they are easier and 

quicker to apply without requiring any further modifications, can handle cases of 

non-negative powers that are not necessarily integers and, in special cases, can 

handle non positive real powers enabling the generation of moments of negative 

powers. 

In order to validate the findings made by the researchers of the Alternative methods 

of generating moments of random variables and their distributions, this study will 

review their works and eventually use them as springboard for the development of 

the multivariate generalized moment generating functions. 

1.2 STATEMENT OF PROBLEM 

Though the traditional methods for generating moments of random variables and 

their probability distributions have proved to be viable tools, they do not always 

exist, their application is limited to single power of random variables and they are 

used to generate only crude moments (Bulmer, 1979). Thus, they are not suitable 

for the generation of moments where non-integer and non-positive powers are 

considered. The alternative methods of generating moments of random variables 

and their probability density functions as obtained by Oyeka et al (2008, 2010 and 
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2012) for the univariate and bivariate distributions have such beautiful qualities as 

being easier and quicker to apply than the traditional methods and being able to 

generate moments of non-integer and non-positive powers of random variables. 

These findings however, have not been validated by an independent study. More 

so, the Generalized Multivariate Moment Generating Function of Random 

Vectors/matrices and their probability distributions has not been developed. 

1.3 AIM AND OBJECTIVES OF THE STUDY 

The aim of this study is to develop generalized multivariate moment generating 

functions for probability distributions of some random variables, while the specific 

objectives are to; 

1. validate alternative methods of generating moments for the univariate and 

bivariate distributions; 

2. develop the function for specific multivariate probability distribution 

functions; 

3. use the function to generate moments for their respective probability 

distribution functions; 

4. apply the method in data analysis; 

5. expose the advantages of the new method over the traditional/conventional 

ones. 

1.4 SIGNIFICANCE OF THE STUDY 

This study will be significant in developing functions that can generate both crude 

moments, central moments and moments about arbitrarily chosen constants for 

some multivariate random vectors and their probability density functions which are 

more versatile, easier and quicker to apply than the traditional methods. 
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1.5 SCOPE OF THE STUDY 

This work develops the Generalized Multivariate Moment Generating Function of 

random variables and their probability distributions. It specifically develops the 

function for the Multivariate Gamma Family of distributions, the Multivariate 

Normal distribution and the Dirrichlet (Multivariate Beta) distribution. It uses the 

developed functions to generate moments of the distributions, applies the methods 

to data analysis with the hope of exposing the advantages of the new methods over 

the traditional/conventional ones. 

1.6 LIMITATION OF THE STUDY 

This study develops generalized multivariate moment generating functions of 

multivariate random variables and their probability distributions; specifically for the 

multivariate gamma, the multivariate normal and the dirrichlet distributions. 

However, these methods can only be used for continuous distributions. Thus, the 

limitation of this study is that the functions it developed are not applicable to 

discrete random variables and their probability distributions. 

So many works have been done in the areas of Moments of Random Variables, 

Moments Generating Functions, Characteristic Functions, Factorial Moment 

Generating Functions, Multivariate Moment Generating Function, Univariate and 

Bivariate Alternative Moment Generating Functions. Those works shall be reviewed 

in the next chapter. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1: LITEREATURE REVIEW 

Pearson (1900) stated that the 𝑟𝑡ℎ moment of a random variable about the origin 

of its distribution is the expected value of the 𝑟𝑡ℎ power of the random variable. 

This assertion was supported by William and Richard (1973) and Oyeka (2013). 

Arizona (2009) stated that the expected value of 𝑋𝑚 is called the 𝑚𝑡ℎ moment of 𝑋. 

Grimmet and Stirzaker (2001) stated that there are two types of moments of 

random variables namely, crude or uncorrected moments and central or corrected 

moments. He stated further that the 𝑘𝑡ℎ crude or uncorrected moment of a random 

variable, 𝑋, with probability distribution, 𝑝(𝑥) is given by the expectation of 𝑋 to 

the power of 𝑘 and that, the 𝑘𝑡ℎ central or corrected moment of a random variable, 

𝑋, with mean, 𝜇, and probability distribution, 𝑝(𝑥), is given by the expectation of 

the 𝑘𝑡ℎ power of the difference between the random variable, 𝑋, and its mean, 𝜇. 

Feller (1966) stated that, as in the case of discrete random variables, we define the 

𝑘𝑡ℎ moment of a continuous random variable, 𝑋, by the expected value of the 𝑘𝑡ℎ 

power of 𝑋 provided the integral exists. 

Ross (1993) stated that the expected value of a random variable, 𝑋, 𝐸(𝑋), is also 

referred to as the mean or the first moment of 𝑋. He states further that the quantity 

𝐸(𝑋𝑛), 𝑛 ≥ 1, is called the 𝑛𝑡ℎ moment of 𝑋. 

Lukacs (1972) defined the moment of random variables as follows; let 𝑋 be a 

random variable and let 𝑘 be a positive integer and suppose that the expectation of 

𝑋𝑘 exists, then, this expectation is called the moment (algebraic moment) of order 

𝑘 of the random variable, 𝑋. He stated further that the expectation of the 𝑘𝑡ℎ power 
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of the absolute value of the random variable, 𝑋, is called the absolute moment of 

order 𝑘 of 𝑋. 

The moment generating function of a random variable is a special form of 

expectation of a random variable that generates moment of the random variable 

and its distribution. 

In support of the above assertion, Onyeka (2000) posited that there are some 

functions that can easily generate some parameters of a random variable adding 

that such functions are called generating functions. He gave some examples as the 

moment generating function, (𝑚𝑔𝑓), the probability generating function, (𝑝𝑔𝑓), 

and the characteristic function, (𝑐𝑓). He argued further that direct computation of 

central moments may be quite cumbersome in which case one could resort to first 

obtaining the first 𝑘 crude moments and then using them to compute the 𝑘𝑡ℎ 

central moment and, that a function that facilitates quick generation of crude 

moments is known as the moment generating function which he defined as the 

expected value of 𝑒𝑡𝑥. 

Grimmett and Welsh (1986) emphasized that the moment generating function is the 

expectation of a function of the random variable. 

Arizona (2009) stated that the expected value of exponential 𝑡𝑥 is called the Laplace 

transformation or the moment generating function. 

Vidyadhar (1995) defined the Laplace-Steiltjes transform of a nonnegative random 

variable, 𝑋, as 𝜑𝑋(𝑠) = 𝐸(𝑒
−𝑠𝑥), assuming that it exists for some complex 𝑠 with 

𝑅𝑒(𝑠) > 0. He highlighted the properties of the Laplace transform to include that it 

uniquely identifies a distribution function; the 𝑟𝑡ℎ moment of the random variable, 

𝑋, is obtained from its Laplace transform as 𝐸(𝑋𝑟) = (−1)𝑟
𝑑𝑟

𝑑𝑠𝑟
𝜑𝑋(𝑠)|

𝑠=0
; 
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computing the cumulative density function and probability density function of 𝑋 

from 𝜑𝑋(𝑠) is a complicated affair; if 𝑋1 and 𝑋2 are independent, 𝜑𝑋1+𝑋2(𝑠) =

𝜑𝑋1(𝑠). 𝜑𝑋2(𝑠). 

These properties are the properties of the moment generating function, therefore, 

the moment generating function is a Laplace transform of its density function. 

William and Richard (1973) stated that the moment generating function, 𝑀(𝑡), for 

a random variable, 𝑌, is defined to be 𝐸(𝑒𝑡𝑦). They added that the moment 

generating function for, 𝑌, exists if there exists a positive constant 𝑏 such that 𝑀(𝑡) 

is finite for |𝑡| ≤ 𝑏. 

Statlect (2015) asserted that if the expected value of 𝑒𝑥𝑝(𝑡𝑥) exists and is finite for 

all real numbers belonging to the closed interval |𝑡| ≤ 𝑏, then it could be said that 

the random variable, 𝑋, possesses a moment generating function and the function 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) is called the moment generating function of 𝑋. 

Hossein (2015) defined the moment generating function (𝑀𝐺𝐹) of a random 

variable, 𝑋, as the expected value of 𝑒𝑥𝑝(𝜃𝑥) for all real 𝜃 for which the sum (in the 

case of discrete random variables) or the integral (in the case of continuous random 

variables) converges absolutely. He stated further that in some cases the existence 

of the moment generating function can be a problem for non-zero 𝜃. 

Ross (1993) defined the moment generating function 𝜑(𝑡) of the random variable, 

𝑋, for all values 𝑡 as the expected value of 𝑒𝑡𝑥. He stressed that 𝜑(𝑡) is called the 

moment generating function because all of the moments of 𝑋 can be obtained by 

successively differentiating 𝜑(𝑡). He continued by asserting that an important 

property of moment generating function is that the moment generating function of 

the sum of independent random variables is just the product of individual moment 

generating functions. 
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Weisstein (2015) supported this assertion by showing that moment generating 

function of sum of random variables equals the product of moment generating 

functions of the individual random variables. 

William and Richard (1973) summarily concluded that a moment generating 

function is simply a mathematical device that sometimes (but not always) provides 

an easy way to find the crude moment of random variables and to prove the 

equivalence of two probability distributions. 

Grimmett and Welsh (1986) pointed out that a key problem with moment 

generating function is that moment generating function may not exist, as the 

integrals need not converge absolutely. They stated that an important property of 

the moment generating function is that if two distributions have the same moment 

generating function, then they are identical at almost all points. They added that in 

some cases, the moments exist and yet the moment generating function does not 

due to the fact that the limiting state may not exist. He gave the lognormal 

distribution as example of when this occurs. 

Statlect (2015) stated that moment generating functions have great practical 

relevance not only because they can be used to easily derive moments, but also 

because a probability distribution is uniquely determined by its moment generating 

function. The source added that this fact, coupled with the analytical tractability of 

moment generating functions, makes them handy tool to solve several problems, 

such as deriving the distribution of sum of two or more random variables. In 

continuation of the discussion on the properties of the moment generating function, 

the source stressed that if 𝑋 and 𝑌 are two random variables with distribution 

functions, 𝑓(𝑥) and 𝑓(𝑦), and moment generating functions, 𝑀𝑋(𝑡) and 𝑀𝑌(𝑡), 

then 𝑋 and 𝑌 have the same distribution if and only if they have the same moment 



9 
 

generating functions. The source concluded by emphasizing that this proposition is 

extremely important and relevant from a practical viewpoint because it is much 

easier to prove equality of the moment generating function than prove equality of 

the distribution functions. 

In a similar argument, Chukwu and Amuji (2012) stated that the moment generating 

function may not exist, citing the beta distribution as an example of such 

distributions where moment generating function does not exist. 

Onyeka (2000) supported this argument by stating that there are some random 

variables whose moment generating function do not exist. He added that where it 

exists, there are two methods of generating crude moments from the moment 

generating function, emphasizing that one method is by expanding the moment 

generating function in Maclaurin’s Series (expansion method); and the other is by 

differentiating the moment generating function (differentiation method). He, 

however, observed that there are cases where the expansion of the moment 

generating function in Maclaurin’s Series is not possible and that the choice of which 

method to use is only a matter of convenience. 

William and Richard (1973) stated that moment generating function possesses two 

important applications. The first being to find moments of random variables while 

the second is in proving that a random variable possesses a particular probability 

distribution. They highlighted that if moment generating function exists for a 

particular distribution, it is unique; meaning that, it is impossible for variables with 

different probability distributions to have the same moment generating functions. 

Ross (1993) posited that another important result is that the moment generating 

function uniquely determines the distribution. This means that there exists a one-
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to-one correspondence between the moment generating function and the 

probability distribution function of random variables. 

Weisstein (2015) asserted that the moment generating function of the uniform 

distribution is not differentiable at zero but that moments can be calculated by 

differentiating and then taking limit at zero. 

A commonly used alternative to the moment generating function of random 

variables and their probability distributions is the characteristic function which 

unlike the moment generating function always exists. 

Hossein (2014) posited that there are random variables for which the moment 

generating function does not exist on any real interval with positive length. He cited 

the Cauchy distributed random variable as a typical example. He defined the 

characteristic function as 𝜑𝑋(𝜔) = 𝐸[𝑒
𝑗𝑤𝑋] where 𝑗 = √−1 and 𝜔 is a real-valued 

random variable. He stressed that the advantage of characteristic function over the 

moment generating function is that it is defined for all real valued random variables. 

Lukacs (1970) stated that if a random variable admits a density function, then the 

characteristic function is its dual, in the sense that each of them is a Fourier 

Transform of the other. He stated further that if a random variable has a moment 

generating function, then the domain of the characteristic function can be extended 

to the complex plane and 𝜑𝑋(−𝑖𝑡) = 𝑀𝑋(𝑡); this function always exists. He 

concluded by stating that if a random variable has a probability density function, 

then the characteristic function is its Fourier Transform with sign reversal in the 

complex exponential. 

Feller (1966) discussed characteristic function as the expectation of 𝑒−𝜆𝑥, a useful 

tool made available for the study of arbitrary non-negative random variables. He 

added that this property is shared by the exponential function with a purely 
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imaginary argument, that is, by the function defined for real 𝑥 by 𝑒𝑖𝜃𝑥 = 𝑐𝑜𝑠𝜃𝑥 +

𝑖𝑠𝑖𝑛𝜃𝑥 where 𝜃 is a real constant and 𝑖2 = −1. He argued further that 𝑡 being 

bounded, the expectation of this function exists under any circumstance and 

provides a powerful and universally applicable tool but bought at the price of 

introducing complex-valued functions and random variables. He continued by 

stating that the characteristic function is the Fourier-Stieltjes transform of the 

distributions which are defined for all bounded measures and the term 

characteristic function emphasizes that the measure has a unit mass. He highlighted 

some properties of the characteristic function of a random variable and its 

distribution as follows: it is continuous, equals one at zero, its absolute value is less 

than or equal to one, the characteristic function of linear transformation of a 

random variable is a function of the random variable, the characteristic function of 

the convolution of two distributions has a characteristic function that is equal to the 

product of the characteristic functions of the two distributions and that if 𝑥2 with 

characteristic function, 𝜑, has the same distribution as −𝑥1 then, |𝜑|2 is the 

characteristic function of the symmetrized distribution. 

Onyeka (2000) in his discussion of characteristic function stated that the moment 

generating function exists only when |𝑒𝑡𝑥| < 1 for some 𝑡 in the interval −ℎ < 𝑡 <

ℎ where ℎ is a positive number; a restriction that no doubt reduces the usefulness 

of the moment generating function. According to him, a closely related function 

which exists for all distributions is the characteristic function. In a brief definition, 

he stated that the characteristic function of a random variable, 𝑋, with probability 

distribution, 𝑝(𝑥), is given by 𝜑𝑋(𝑡) = 𝐸(𝑒
𝑖𝑡𝑥) where 𝑖 = √−1 is a complex 

number. He concluded that the characteristic function exists for all real values of 𝑡 

and for all discrete and continuous distributions and, that characteristic function 

just like the moment generating function is a unique function of a given distribution. 
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Arizona (2009) asserted that 𝜑𝑋(𝜃), equals the expectation of 𝑒𝑖𝜃𝑥, is called the 

Fourier Transform or the Characteristic Function and because the absolute value of 

the exponential 𝑖𝜃𝑥, 𝑒𝑖𝜃𝑥, equals 1, the expectation exists for any random variable. 

By the definitions of the moment generating function and the characteristic 

function, one can infer that the characteristic function is obtained by replacing 𝑡 in 

moment generating function of a random variable by 𝑖𝑡. That is, if the moment 

generating function, 𝑀𝑋(𝑡), is defined as the expectation of 𝑒𝑡𝑥 then the 

characteristic function can be defined as the expectation of 𝑒𝑖𝑡𝑥 implying that it is 

equal to 𝑀𝑋(𝑖𝑡). 

The factorial moment generating function is a mathematical device that generates 

the factorial moments of a random variable and its distribution. 

William and Richard (1973) stated that a mathematical device that is very useful in 

finding the probability distributions and other properties of integral-valued random 

variables is the probability generating function. In giving a mathematical definition 

to this function, they asserted that if 𝑌 is an integral-valued random variable for 

which 𝑃[𝑌 = 𝑖] = 𝑝𝑖 , 𝑖 = 0, 1, 2, … the probability generating function  𝑝(𝑡) for 𝑌 is 

defined to be values of 𝑡 such that 𝑃(𝑡) is finite. Here the coefficient of 𝑡𝑦 is 𝑃(𝑡). 

They posited further that repeated differentiation of 𝑃(𝑡) yields factorial moments 

for the random variable 𝑌 which they defined as follows: “the 𝑘𝑡ℎ factorial moment 

for a random variable, 𝑌, is defined to be 𝜇𝑘 = 𝐸[𝑌(𝑌 − 1)(𝑌 − 2)… (𝑌 − 𝑘 + 1)], 

where  𝑘 is a positive integer.” 

Hogg et al (2013) stated that the factorial moment generating function of the 

probability distribution of a real-valued random variable, 𝑋, is defined as 𝑀𝑋(𝑡) =

𝐸[𝑡𝑥] for all complex numbers 𝑡 for which this expectation exists. They stated 

further that this is the case at least for all 𝑡 on the unit circle |𝑡| = 1. On the 
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relationship between factorial moment generating functions and probability 

generating functions, they stated that, if 𝑋 is a discrete random variable taking 

values only in the set {0, 1, 2, … } of nonnegative integers, then 𝑀𝑋(𝑡) is also called 

probability generating function of 𝑋 and 𝑀𝑋(𝑡) is well-defined at least for all 𝑡 on 

the closed disk |𝑡| ≤ 1. It affirmed that the factorial moment generating function 

generates the factorial moments of the probability distribution. Going on to the 

mathematical procedure of obtaining factorial moments from factorial moment 

generating functions, it affirmed that provided 𝑀𝑋(𝑡) exists in a neighbourhood of 

𝑡 = 1, the 𝑛𝑡ℎ factorial moment is given by 𝐸[(𝑋)𝑛] = 𝑀𝑋
(𝑛)

=
𝑑𝑛

𝑑𝑡𝑛
𝑀𝑋(𝑡)|𝑡=1. 

Riordan (1958) and Daley and Vere-Jones (2003) both agreed that the factorial 

moments are useful for studying nonnegative integer-valued random variables and, 

that factorial moments serve as analytical tools in the mathematical field of 

combinatorics, which is the study of discrete mathematics structures. 

Potts (1953) asserted that 𝐸((𝑋)𝑟) = 𝐸[𝑋(𝑋 − 1)(𝑋 − 2)… (𝑋 − 𝑟 + 1)] where 

(𝑋)𝑟 = 𝑥(𝑥 − 1)(𝑥 − 2)… (𝑥 − 𝑟 + 1) ≡
𝑥!

(𝑥−𝑟)!
 . He emphasized therefore that if 𝑋 

is binomially distributed with probability of success, 𝑝𝜖[0,1], 𝑛 number of trials, 

then the factorial moments of 𝑋 are 𝐸[(𝑋)𝑟] =
𝑛!

(𝑛−𝑟)!
𝑝𝑟        𝑟𝜖[0, 1, … , 𝑛]. He 

affirmed that for all 𝑟 > 𝑛  the factorial moments are zero. 

Vidyadhar (1995) defined the generating function, 𝐺𝐹, of a nonnegative integer-

valued random variable, 𝑋, as 𝑔𝑋(𝑧) = 𝐸(𝑧
𝑥). He affirmed that this function is 

defined for all complex 𝑧 with |𝑧| ≤ 1. He stated as the properties of 𝐺𝐹 that a 

probability distribution is uniquely identified by its generating function; the 

probability density function can be derived (at least in theory) from its generating 

function by 𝑃(𝑋 = 𝑘) =
1

𝑘!

𝑑𝑘

𝑑𝑧𝑘
𝑔𝑋(𝑧)|

𝑧=0
; moments of 𝑋 can be derived from its 𝐺𝐹 
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as 𝐸[(𝑋)𝑟] =
𝑑𝑟

𝑑𝑧𝑟
𝑔𝑋(𝑍)|𝑧=1 where (𝑋)𝑟 = 𝑋(𝑋 − 1)… (𝑋 − 𝑟 + 1) and; if 𝑋1 and 

𝑋2 are independent random variables then 𝑔𝑋1+𝑋2(𝑧) = 𝑔𝑋1(𝑧)𝑔𝑋2(𝑧). 

These properties are those of the factorial moment generating function of the 

random variable. 

The moment generating function of random variables and probability densities can 

be extended to Multivariate Statistics. 

As a build-up to the theory of moment generating function of multivariate random 

variables and their probability density, Grimmett and Welsh (1986) stated more 

generally that where 𝑋 = (𝑋1, … , 𝑋𝑛)
𝑇, an 𝑛 −dimensional random vector, one 

uses 𝑡. 𝑋 = 𝑡𝑇𝑋 instead of 𝑡𝑥. 

Bulmer (1979) supported this statement by defining the moment generating 

function of 𝑛 −dimensional random vector as 𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑇𝑋) while adding that 

the reason for defining this function is that it can be used to find all moments of the 

distribution. 

In reviewing the multivariate moment generating function of a multivariate Normal 

Distribution, Onyeagu (2003) stated that the moment generating function of a 

univariate normal random variable, 𝑋, is given as 𝑀𝑋(𝑡) = 𝑒
𝜇𝑡+

1

2
𝜎2𝑡2 but for the 

multivariate case where 𝑋𝑝×1~𝑁𝑝(𝜇, Σ), the moment generating function, 𝑀𝑋(𝑡) of 

𝑋 is given as 𝐸(𝑒𝑡
′𝑋) = 𝑒𝑥𝑝 (𝑡′𝜇 +

1

2
𝑡′Σt). 

Oyeka et al (2008) developed a method of finding moments or expected values of 

the distribution of a non-negative power of a continuous random variable based 

directly on the distribution of the random variable itself. They stated that 𝐸(𝑋)𝑐𝑛 is 

interpreted as the 𝑐𝑛𝑡ℎ moment or expected value of 𝑋 about zero with  𝑐 and 𝑛 



15 
 

being non-negative integers. But if expressed as 𝐸(𝑋𝑐)𝑛, this can be seen as also 

equal to the 𝑛𝑡ℎ moment of the distribution of 𝑋𝑐 about zero where 𝑐, (𝑐 ≥ 0) is 

some non-negative real number not necessarily an integer. 

Interest here is in finding 𝐸(𝑋𝑐)𝑛, the 𝑛𝑡ℎ moment of the distribution of 𝑋𝑐 about 

zero given the distribution of 𝑋 where 𝑐 is a non-negative real number and 𝑛 is non-

negative integer. The assumption here is that 𝑋 is continuously differentiable on the 

real line or over its range of definition with probability density function, (𝑝𝑑𝑓), 

𝑓(𝑥). 

In finding 𝐸(𝑋𝑐)𝑛 one would need to first find, and then use, the distribution of 𝑋𝑐 

in the calculations. However, as seen from their illustrations, the results obtained 

using either the distribution of 𝑋  𝑐  or simply using the distribution of 𝑋 are always 

the same. Hence, in finding the moments of the distribution of some functions such 

as 𝑋𝑐 of a given random variable, 𝑋, it is not necessary to find and use the 

distribution of this function. 

Use of the method was illustrated with continuous random variables taking on the 

𝑝𝑑𝑓’s: 𝑓(𝑥) = 2𝑥; 0 < 𝑥 < 1; Beta, 𝛽, distribution, 𝑓(𝑥) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
. 𝑥𝛼−1(1 −

𝑥)𝛽−1, 0 < 𝑥 < 1; the Gamma distribution, 𝑓(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥

𝛽, 0 < 𝑥 < ∞ and 

the normal distribution, 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−
1

2
(
𝑥−𝜇

𝜎
)
2

, −∞ < 𝑥 < ∞. Results were also 

presented of the Chi-Square distribution, Exponential distribution, Pareto 

distribution, Raleigh distribution, Uniform distribution and the Weibull distribution. 

They stressed that calculations using the usual Moment Generating Function are 

relatively more difficult than using their new method. 
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In conclusion, they emphasized that their developed method always exists for all 

continuous probability distributions unlike the usual moment generating function 

which does not always exist. 

Oyeka et al (2010) proposed the Alternative Moment Generating Function (AMGF). 

They defined the method as 

𝑀𝑋
𝑐(𝑡) = 𝐸(𝑒𝑡𝑥

𝑐
) = ∫ (1 +

(𝑡𝑥𝑐)

1!
+
(𝑡𝑥𝑐)2

2!
+ ⋯+

(𝑡𝑥𝑐)𝑟

𝑟!
+ ⋯)

∞

−∞

𝑓(𝑥)𝑑𝑥 

∴ 𝑀𝑋
𝑐(𝑡) =∑

𝑡𝑟

𝑟!

∞

𝑟=0

∫ 𝑥𝑐𝑟
∞

−∞

𝑓(𝑥)𝑑𝑥 =∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇𝑟(𝑐) 

where 𝜇𝑟(𝑐) is the 𝑟𝑡ℎ moment of the distribution of 𝑋𝑐 about zero. 

They asserted that 𝑀𝑋
𝑐(𝑡) is called the Alternative Moment Generating Function 

(AMGF) of the distribution of the random variable, 𝑋𝑐. 

They showed that the usual moment generating function is not always defined at 

𝑡 = 0, and therefore unlike the Alternative Moment Generating Function, 𝑀𝑋
𝑐(𝑡) 

cannot always be used to find the moments of the distribution of the random 

variable, 𝑋. 

They emphasized that this non-existence is a serious limitation which Alternative 

Moment Generating Function does not have. Hence, making it preferable and easier 

to use. 

Illustration of the application of the Alternative Moment Generating Function 

(AMGF) was presented for some common continuous probability distributions 

including the beta distribution, the gamma distribution and the normal distribution. 
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Specifically, they presented the Alternative Moment Generating Functions of the 

Beta, Uniform, Gamma, Chi-square, Exponential and Normal distributions. 

In a concluding statement, they asserted that the method is much more generalized 

and enables one to obtain the moments of the distribution of all non-negative real 

powers of a continuous random variable. 

Oyeka et al (2012) developed and presented the Alternative Moment Generating 

Function (AMGF) of the joint distribution of some functions of powers of two 

continuous random variables when both powers are not necessarily whole 

numbers. 

They defined the moment generating function of the joint distribution 𝑢 = 𝑋𝑐 and 

𝑣 = 𝑌𝑑  with 𝑝𝑑𝑓, 𝑓(𝑥, 𝑦) on the real line as 

𝑀𝑢,𝑣(𝑡1, 𝑡2) = 𝑀𝑋𝑐𝑌𝑑(𝑡1, 𝑡2) = 𝐸(𝑒
𝑡1𝑥

𝑐+𝑡2𝑥
𝑐
), (𝑡1 ≥ 0, 𝑡2 ≥ 0) 

where 𝜇𝑟(𝑐𝑑) is the 𝑟𝑡ℎ moment of the joint distribution of 𝑋𝑐 and 𝑌𝑑 about zero. 

They asserted that 𝑀𝑢𝑣(𝑡1𝑡2) is called the Alternative Moment Generating Function 

of the distribution of the random variables 𝑋𝑐 and 𝑌𝑑 and that it generates all 

conceivable moments of the joint distribution of the random variables, 𝑢 = 𝑋𝑐 and 

𝑣 = 𝑌𝑑. 

They affirmed that the 𝑟𝑡ℎ moment of this joint distribution is the coefficient of 
𝑡1
𝑟𝑡2
𝑟

𝑟!
 

or its 𝑟𝑡ℎ derivative with respect to 𝑡1 and 𝑡2 evaluated at 𝑡1 = 𝑡2 = 0. 

They posited that the AMGF where 𝑐 = 𝑑 = 1; that is, for the joint distribution of 

the random variable 𝑋 and 𝑌 is obtained as 

𝑀𝑋𝑌(𝑡1𝑡2) =∑
𝑡1
𝑟𝑡2
𝑟

𝑟!

∞

𝑟=0

𝜇𝑟
′ (1,1) 
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The marginal distribution of the random variable 𝑢 = 𝑋𝑐 is obtained by setting 𝑑 =

0 and 𝑡2 = 1 while the corresponding marginal distribution of the random variable 

𝑣 = 𝑌𝑑  is obtained by setting 𝑐 = 0 and 𝑡1 = 1. 

They illustrated the application of this method with some general distributions and 

the joint distribution of two independent normal variables. Subsequently, they 

concluded that the method is quicker and easier to apply than the usual or regular 

Moment Generating Function where it exists. 

2.2 SUMMARY OF LITERATURE REVIEW 

The literature reviewed shows that 𝑛𝑡ℎ moment of any given probability density 

function is obtained by differentiating the moment generating function, 𝑀𝑋(𝑡), 𝑛 

times and evaluating at 𝑡 = 0. The process becomes tedious and cumbersome as 𝑛 

increases, this also applies to the characteristic function; the moment generating 

function does not always exist for all probability density function and at all points; 

the moment generating function generates only crude moments; the moment 

generating function is application in generating only positive integral moments of 

random variables; the Univariate Alternative Moment Generating Function (Oyeka 

et al, 2008 and 2010) and the Bivariate Alternative Moment Generating Function 

(Oyeka et al, 2012) have not been verified by an independent research and a method 

that applies in multivariate data has not been developed. 
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      CHAPTER THREE 

METHODOLOGY 

3.1 UNIVARIATE GENERALIZED MOMENT GENERATING FUNCTIONS 

The general interpretation of 𝐸(𝑋𝑐 + 𝜆)𝑛 is that it is the 𝑛𝑡ℎ moment or expected 

value of the distribution of 𝑋𝑐 about some real number 𝜆 where 𝑛 and 𝑐 are usually 

non-negative integers and 𝜆 is either 0 or – 𝜇 where 𝜇 is the mean of the random 

variable or probability distribution of 𝑋. This definition applies in the classical cases. 

However, for the Alternative Method for Generating Moments of Continuous 

Distributions, while 𝑛 may still be any non-negative integer, 𝑐 and 𝜆 may be any real 

numbers that are not necessarily integers or whole numbers. The method is still 

based on the generalized definition of expected values of random variables. To 

differentiate this method from the conventional Moment Generating Functions 

(MGF) of the random variable 𝑋; usually designated by 𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋), this 

method is referred to as the Alternative Moment Generating Function (AMGF) 

designated by 𝑔𝑛(𝑐, 𝜆) read 𝑔 𝑛 of 𝑐 about 𝜆 and termed the 𝑛𝑡ℎ moment of 𝑋𝑐 

about 𝜆 for 𝑛 = 0, 1, 2, … , ;  −∞ ≤ 𝑐 ≤ ∞ and −∞ ≤ 𝜆 ≤ ∞. 

𝑔𝑛(𝑐; 𝜆) = 𝐸(𝑋
𝑐 + 𝜆)𝑛          (3.1) 

𝑔𝑛(𝑐; 𝜆) = 𝐸(𝑋
𝑐 + 𝜆)𝑛 = ∫(𝑥𝑐 + 𝜆)𝑛𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫ ∑(
𝑛
𝑟
) 𝜆𝑛−𝑟(𝑥𝑐)𝑟𝑓(𝑥)𝑑𝑥

𝑛

𝑟=0

∞

−∞

 

=∑(
𝑛
𝑟
) 𝜆𝑛−𝑟 ∫ 𝑥𝑐𝑟𝑓(𝑥)𝑑𝑥

∞

−∞

𝑛

𝑟=0

=∑(
𝑛
𝑟
) 𝜆𝑛−𝑟𝜇𝑟

′ (𝑐)

𝑛

𝑟=0

        (3.2) 

where 
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𝜇𝑟
′ (𝑐) = ∫ 𝑥𝑐𝑟𝑓(𝑥)𝑑𝑥

∞

−∞

            (3.3) 

is the 𝑟𝑡ℎ moment of 𝑋𝑐 about zero, or the (𝑐𝑟)𝑡ℎ moment of 𝑋 about zero. The 

𝑔𝑛(𝑐; 𝜆) as defined in Equation 3.2 generates all conceivable moments of the 

distribution of 𝑋𝑐 for all real values of 𝑐. 

From the definition of the generalized moment generating function; 𝑔𝑛(𝑐; 𝜆), some 

of its properties include: 

𝑔0(𝑐; 𝜆) = 1         (3.4) 

𝑔1(𝑐; 𝜆) = 𝐸(𝑋
𝑐 + 𝜆) = 𝜆 + 𝜇1

′ (𝑐)               (3.5) 

Equation 3.5 is the first moment of the distribution of 𝑋𝑐 about 𝜆.  

If 𝜆 = 0; that is, if the 𝑛𝑡ℎ moment of 𝑋𝑐 is taken about the origin (zero) then, 

𝑔𝑛(𝑐; 0) = 𝐸(𝑋
𝑐 − 0)𝑛 = 𝜇𝑛

′ (𝑐)              3.6 

Equation 3.6 gives the 𝑛𝑡ℎ crude moment of the distribution. 

If 𝜆 = −𝜇, the 𝑛𝑡ℎ moment or mean value of 𝑋𝑐 about the mean then 

𝑔𝑛(𝑐;−𝜇) = 𝐸(𝑋
𝑐 − 𝜇)𝑛 = 𝜇𝑛(𝑐)                  3.7 

That is, the 𝑛𝑡ℎ moment of 𝑋𝑐 about its mean 𝜇, 𝜇 = 𝜇1(𝑐) 

Under specified conditions 𝑔𝑛(𝑐; 𝜆) may be used to obtain all possible moments of 

the distribution of 𝑋𝑐 where 𝑐 is some non-positive-real-numbers thereby enabling 

one to obtain moments of random variables with negative and fractional indices. 

The above properties of 𝑔𝑛(𝑐; 𝜆) are quite consistent with existing theories of 

probability distributions. For example, from Equation 3.4, the sum of all probability 

values over its range of definition is always 1. Equation 3.5 in particular also 
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conforms with the known fact that first moments of distributions about their mean 

𝜆 = −𝜇1(𝑐)
′, is always zero. If in Equation 3.7 we let 𝑛 = 2, that is, if the second 

moment of a distribution is taken about its mean, the resulting value is the variance 

of that distribution. 

As noted above, generalized moment generating functions, 𝑔𝑛(𝑐; 𝜆) may be used to 

obtain all conceivable moments of a continuous distribution. For example, the 

variance, third and fourth moments of the distribution of 𝑌 = 𝑋𝑐  are obtained from 

equation 3.2 by setting 𝜆 = −𝜇1(𝑐)
′ = −𝜇 where 𝜇 is the mean of 𝑋𝑐. Thus, 

𝜇2(𝑐) = 𝑔2(𝑐;−𝜇)                       3.8 

variance of 𝑋𝑐. 

𝜇3(𝑐) = 𝑔3(𝑐;−𝜇)                         3.9 

the third moment of 𝑋𝑐 about its mean; and 

𝜇4(𝑐) = 𝑔4(𝑐;−𝜇)                         3.10 

the fourth moment of the distribution of 𝑋𝑐 about its mean. Hence, the skewness, 

𝑠𝑘(𝑐) and kurtosis, 𝑘𝑢(𝑐) of the distribution of 𝑋𝑐 are obtained respectively as 

𝑠𝑘(𝑐) =
𝜇3(𝑐)

(𝜇2(𝑐))
3
2

=
𝑔3(𝑐;−𝜇)

(𝑔2(𝑐;−𝜇))
3
2

                             3.11 

𝑘𝑢(𝑐) =
𝜇4(𝑐)

(𝜇2(𝑐))
2 =

𝑔4(𝑐;−𝜇)

(𝑔2(𝑐;−𝜇))
2                           3.12 
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Suppose the random variable 𝑋 has the probability density function, (𝑝𝑑𝑓); 

𝑓(𝑥) = 2𝑥, 0 < 𝑥 < 1                                3.13 

Interest is to find an expression for the estimation of all conceivable moments of 

the random variable 𝑌 = 𝑋. Conventionally, the mean and variance of 𝑌 = 𝑋 is by 

definition 

𝜇 = 𝜇1
′ =

2

3
 and 𝜎2 =

1

18
 obtained as follows; 

𝐸(𝑋) = ∫𝑥𝑓(𝑥)𝑑𝑥

1

0

                     3.14 

= ∫𝑥. 2𝑥𝑑𝑥

1

0

= 2∫𝑥2
1

0

𝑑𝑥 

=
2𝑥3

3
]
0

1

 

∴ 𝐸(𝑥) =
2

3
= 𝜇 

𝑉𝑎𝑟(𝑥) = 𝐸(𝑥2) − [𝐸(𝑥)]2                         3.15 

Now, 

𝐸(𝑥2) = ∫𝑥2
1

0

. 𝑓(𝑥)𝑑𝑥 

= ∫𝑥2
1

0

. 2𝑥. 𝑑𝑥 
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= 2∫𝑥3
1

0

. 𝑑𝑥 

= 2 [
𝑥4

4
]
0

1

 

∴ 𝐸(𝑥2) =
1

2
 

⇒ 𝑉𝑎𝑟(𝑥) =
1

2
− (

2

3
)
2

 

=
1

2
−
4

9
 

∴ 𝑉𝑎𝑟(𝑥) =
1

18
 

To develop a more generalized expression for obtaining these moments and more, 

we have from Equation 3.2 that 

𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
)

𝑛

𝑟=0

. 𝜆𝑛−𝑟
2

𝑐𝑟 + 2
 

where  

𝜇𝑟(𝑐)
′ =

2

𝑐𝑟 + 2
 

that is, 

𝐸(𝑋𝑐𝑟) = 2∫𝑥𝑐𝑟+1
1

0

𝑑𝑥 

=
2𝑥𝑐𝑟+2

𝑐𝑟 + 2
]
0

1
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∴ 𝐸(𝑥𝑐𝑟) =
2

𝑐𝑟 + 2
 

For 𝑐 = 1, 

𝜇𝑟(1)
′ =

2

𝑟 + 2
 

Since 𝑐 = 1 in this present case. 

The first moment (𝑛 = 1) of 𝑌 = 𝑋 about 𝜆 is from above expression 

𝑔1(1; 𝜆) = 𝜆 +
2

1 + 2
= 𝜆 +

2

3
 

Obtained as follows; 

𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟
2

𝑟 + 2
 

Thus for 

𝑔1(𝑐; 𝜆) =∑(
1
𝑟
)

1

𝑟=0

𝜆1−𝑟
2

𝑟 + 2
 

= (
1
0
) 𝜆1−0

2

0 + 2
+ (

1
1
) 𝜆1−1

2

1 + 2
 

∴ 𝑔1(𝑐; 𝜆) = 𝜆 +
2

3
 

If now 𝜆 = 0, then 𝑔1(1; 0) = 0 +
2

3
=

2

3
= 𝜇1

′ = 𝜇, the mean of 𝑌 = 𝑋 as earlier 

obtained. Hence if 𝜆 =
−2

3
 then as expected, 𝑔1 (1;−

2

3
) = 0. If now we set 𝑛 = 2, 

that is, if interest is in determining the second moment of 𝑌 = 𝑋 about 𝜆, we have 

𝑔2(1; 𝜆) = 𝜆
2 + 2𝜆 ∗

2

3
+
2

4
= 𝜆2 +

4𝜆

3
+
1

2
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If we now let 𝜆 = −𝜇1(1) = −𝜇 =
−2

3
, then we would have that 

𝑔2 (1;
−2

3
) = (

−2

3
)
2

+
4

3
(
−2

3
) +

1

2
=
4

9
−
8

9
+
1

2
=
1

18
= 𝜎2 

that is, the variance of 𝑌 = 𝑋 as earlier obtained. 

If we had chosen 𝑐 =
1

2
, that is, if interest is in determining the moments of 𝑌 = 𝑋

1

2, 

then we would have that 

𝜇𝑟(𝑐)
′ = 𝜇𝑟 (

1

2
)
′

=
2

𝑐𝑟 + 2
=

2

1
2
𝑟 + 2

 

so that, 

𝑔𝑛 (
1

2
; 𝜆) =∑(

𝑛
𝑟
) . 𝜆𝑛−𝑟

𝑛

𝑟=0

2

1
2
𝑟 + 2

 

Hence the first moment of 𝑌 = 𝑋
1

2 about 𝜆 is 

𝑔1 (
1

2
; 𝜆) = 𝜆 +

2

1
2
+ 2

= 𝜆 +
4

5
 

so that if 𝜆 = 0 then,  

𝑔1 (
1

2
; 0) =

4

5
 

If 𝜆 = −𝜇1 (
1

2
)
′
= −𝜇 =

−4

5
 then 𝑔1 (

1

2
;
−4

5
) = 0 

The second moment of 𝑌 = 𝑋
1

2 about 𝜆 is 

𝑔2 (
1

2
; 𝜆) = 𝜆2 + 2𝜆 (

4

5
) +

2

3
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Hence, if 𝜆 = −𝜇1 (
1

2
)
′
= −𝜇 =

−4

5
, then 

𝑔2 (
1

2
;−𝜇) = 𝑔2 (

1

2
;
−4

5
) = (

−4

5
)
2

+ 2(
−4

5
) (
4

5
) +

2

3
=
2

3
−
16

25
=
2

75
= 𝜎2 

the variance of the distribution of 𝑌 = 𝑋
1

2 as would have been obtained using the 

traditional method. 

Using the moment generating function would have that the corresponding moment 

generating function for 𝑌 = 𝑋 is 

𝑀𝑌(𝑡) = 𝑀𝑋(𝑡) =
𝑡𝑒𝑡 − 𝑒𝑡

𝑡2
= (

𝑡 − 1

𝑡2
) 𝑒𝑡 

Obtained as follows: 

𝑀𝑌(𝑡) = 𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) 

= ∫𝑒𝑡𝑥
1

0

∗ 𝑥 ∗ 𝑑𝑥 = ∫𝑥𝑒𝑡𝑥𝑑𝑥

1

0

 

Integrating by parts, 

Let 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒𝑡𝑥 

∴ ∫𝑥𝑒𝑡𝑥𝑑𝑥

1

0

= [𝑥
𝑒𝑡𝑥

𝑡
]
0

1

−∫
𝑒𝑡𝑥

𝑡

1

0

𝑑𝑥] 

=
𝑒𝑡

𝑡
−
𝑒𝑡𝑥

𝑡2
]
0

1

 

=
𝑒𝑡

𝑡
−
𝑒𝑡

𝑡2
=
𝑡𝑒𝑡 − 𝑒𝑡

𝑡2
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∴ 𝑀𝑋(𝑡) =
(𝑡 − 1)𝑒𝑡

𝑡2
 

which is fairly cumbersome to obtain and even if differentiable with respect to 𝑡, 

the resulting derivatives do not exist at 𝑡 = 0. Hence the method of generating 

function cannot possibly be used to obtain the moments of distribution of the 

random variable 𝑌 = 𝑋 and other similarly specified distributions. 

3.2 GENERALIZED MOMENT GENERATING FUNCTION (GMGF) FOR THE BETA 

FAMILY OF DISTRIBUTIONS 

Suppose interest is in finding the 𝑔𝑚𝑔𝑓 of the distribution of the random variable, 

𝑌 = 𝑋𝑐, where 𝑋 has the beta distribution with parameters 𝛼 and 𝛽 and 𝑝𝑑𝑓, 𝑓(𝑥) 

given as 

𝑓(𝑥) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, 0 < 𝑥 < 1, 𝛼 > 0, 𝛽 > 0 

To obtain the required 𝑔𝑚𝑔𝑓 we have from Equation 3.3 that  

𝜇𝑟
′ (𝑐) =

Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
∫𝑥𝑐𝑟
1

0

𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥 

=
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
∫𝑥𝑐𝑟+𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥

1

0

 

or 

𝜇𝑟
′ (𝑐) =

Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)

Γ(𝑐𝑟 + 𝛼)Γ(𝛽)

Γ(𝑐𝑟 + 𝛼 + 𝛽)
                            (3.16) 

Hence from Equation 3.2 we have that the 𝑔𝑚𝑔𝑓 of the beta family of distributions 

represented by the random variable 𝑌 = 𝑋𝑐  is 

𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
) 𝜆𝑛−𝑟

𝑛

𝑟=0

Γ(𝛼 + 𝛽)Γ(𝑐𝑟 + 𝛼)

Γ(𝛼)Γ(𝑐𝑟 + 𝛼 + 𝛽)
              (3.17) 
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All desired moments of the beta family of distributions may be obtained using 

Equation 3.17. For instance the first moment of 𝑋𝑐 about 𝜆 is 

𝑔1(𝑐; 𝜆) = 𝜆 + 𝜇1(𝑐)
′ = 𝜆 +

Γ(𝛼 + 𝛽)

Γ(𝛼)

Γ(𝑐 + 𝛼)

Γ(𝑐 + 𝛼 + 𝛽)
 

If 𝑐 = 1; that is, if interest is in the first moment or mean of 𝑌 = 𝑋 then, we have 

𝑔1(1; 𝜆) = 𝜆 +
𝛼

𝛼 + 𝛽
 

so that if 𝜆 = 0; that is, if the moment is taken about zero, then 

𝑔1(1; 0) = 𝜇1(1) = 𝜇1 =
𝛼

𝛼 + 𝛽
 

the mean of the beta distribution.  

If 𝑛 = 2 and 𝑐 = 1 then, 

𝑔2(1; 𝜆) = 𝜆
2 + 2𝜆 (

𝛼

𝛼 + 𝛽
) +

𝛼(𝛼 + 1)

(𝛼 + 𝛽)(𝛼 + 𝛽 + 1)
 

Hence if  

𝜆 = −𝜇1(1)
′ = −𝜇1 =

−𝛼

𝛼 + 𝛽
 

then we have, 

𝑔2 (1;
−𝛼

𝛼 + 𝛽
) = (

−𝛼

𝛼 + 𝛽
)
2

+ 2(
−𝛼

𝛼 + 𝛽
) (

𝛼

𝛼 + 𝛽
) +

𝛼

(𝛼 + 𝛽)

(𝛼 + 1)

(𝛼 + 𝛽 + 1)
 

=
𝛼

(𝛼 + 𝛽)

(𝛼 + 𝛽)

(𝛼 + 𝛽 + 1)
− (

𝛼

𝛼 + 𝛽
)
2

= 𝜎2 

the variance of the beta distribution. 

This is obtained as 
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𝑔2 (1;
−𝛼

𝛼 + 𝛽
) = (

−𝛼

𝛼 + 𝛽
)
2

+ 2(
−𝛼

𝛼 + 𝛽
) (

𝛼

𝛼 + 𝛽
) +

𝛼

(𝛼 + 𝛽)

(𝛼 + 1)

(𝛼 + 𝛽 + 1)
 

= (
𝛼

𝛼 + 𝛽
)
2

− 2(
𝛼

𝛼 + 𝛽
)
2

+
𝛼

(𝛼 + 𝛽)

(𝛼 + 1)

(𝛼 + 𝛽 + 1)
 

=
𝛼

(𝛼 + 𝛽)

(𝛼 + 1)

(𝛼 + 𝛽 + 1)
− (

𝛼

𝛼 + 𝛽
)
2

= 𝜎2 

If we set 𝛼 = 𝛽 = 1 in Equation 3.17, then we obtain the 𝑔𝑚𝑔𝑓 of the uniform 

distribution in a generalized form as 

𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
) 𝜆𝑛−𝑟

𝑛

𝑟=0

Γ(𝑐𝑟 + 1)

Γ(𝑐𝑟 + 2)
=∑(

𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟
1

𝑐𝑟 + 1
                     (3.18) 

The moments of the beta family of distributions which are easily obtained using the 

𝑔𝑚𝑔𝑓 are more difficult to obtain with the traditional moment generating function. 

In fact, it can only be obtained by the introduction of the De L’Hospital’s Rule of 

differentiation (Chukwu and Amuji 2012; 27). 

3.3 GENERALIZED MOMENT GENERATING FUNCTION (𝑮𝑴𝑮𝑭) FOR THE GAMMA 

FAMILY OF DISTRIBUTIONS 

Suppose the random variable, 𝑋, has the gamma distribution with parameters 𝛼 and 

𝛽, and 𝑝𝑑𝑓, 𝑓(𝑥), given as 

𝑓(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥
𝛽  ; 𝑥 ≥ 0, 𝛼 > 0, 𝛽 > 0           (3.19) 

To determine the 𝑔𝑚𝑔𝑓 of the random variable 𝑌 = 𝑋𝑐  where 𝑋 has the gamma 

distribution from Equation 3.2, we have that 

𝜇𝑟
′ (𝑐) =

1

𝛽𝛼Γ(𝛼)
∫ 𝑥𝑐𝑟
∞

0

𝑥𝛼−1𝑒
−
𝑥
𝛽𝑑𝑥 
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=
1

𝛽𝛼Γ(𝛼)
∫ 𝑥𝑐𝑟+𝛼−1
∞

0

𝑒
−
𝑥
𝛽𝑑𝑥 

Letting 𝑣 =
𝑥

𝛽
, integrating and simplifying, we have that 

𝜇𝑟
′ (𝑐) =

𝛽𝑐𝑟Γ(𝑐𝑟 + 𝛼)

Γ(𝛼)
                    (3.20) 

Equation 3.20 is obtained a follows: 

𝜇𝑟
′ (𝑐) =

1

𝛽𝛼Γ(𝛼)
∫ 𝑥𝑐𝑟+𝛼−1
∞

0

𝑒
−
𝑥
𝛽𝑑𝑥 

Let  

𝑥

𝛽
= 𝑣 

⇒ 𝛽𝑣 = 𝑥 

∴
𝑑𝑥

𝑑𝑣
= 𝛽 

∴ 𝑑𝑥 = 𝛽𝑑𝑣 

∴ 𝜇𝑟
′ (𝑐) =

1

𝛽𝛼Γ(𝛼)
∫(𝛽𝑣)𝑐𝑟+𝛼−1
∞

0

𝑒−𝑣𝛽𝑑𝑣 

=
𝛽𝑐𝑟+𝛼−1𝛽

𝛽𝛼Γ(𝛼)
∫ 𝑣𝑐𝑟+𝛼−1
∞

0

𝑒−𝑣𝑑𝑣 

=
𝛽𝑐𝑟𝛽𝛼𝛽

𝛽𝛼𝛽Γ(𝛼)
∫ 𝑣𝑐𝑟+𝛼−1
∞

0

𝑒−𝑣𝑑𝑣 
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∴ 𝜇𝑟
′ (𝑐) =

𝛽𝑐𝑟

Γ(𝛼)
∫ 𝑣𝑐𝑟+𝛼−1
∞

0

𝑒−𝑣𝑑𝑣 

∴ 𝜇𝑟
′ (𝑐) =

𝛽𝑐𝑟

Γ(𝛼)
Γ(𝑐𝑟 + 𝛼) 

Hence using equation 3.20 in equation 3.2 yields the 𝑔𝑚𝑔𝑓 of the gamma family of 

distributions represented by the random variable 𝑌 = 𝑋𝑐, as 

𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟
𝛽𝑐𝑟Γ(𝑐𝑟 + 𝛼)

Γ(𝛼)
                 (3.21) 

As usual, all conceivable moments of the gamma family of distributions are obtained 

using Equation 3.21. For example, the variance of 𝑌 = 𝑋𝑐  is 

𝑔2(𝑐; 𝜆) = 𝜆
2 + 2𝜆

Γ(𝑐 + 𝛼)𝛽𝑐

Γ(𝛼)
+
Γ(2𝑐 + 𝛼)𝛽2𝑐

Γ(𝛼)
 

If 𝑐 = 1 then 

𝑔2(1; 𝜆) = 𝜆
2 + 2𝜆𝛼𝛽 + 𝛼(𝛼 + 1)𝛽2 

Hence if 𝜆 = −𝜇 = −𝛼𝛽 where 𝜇 = 𝛼𝛽 is the mean of the usual gamma 

distribution, then 

𝑔2(1;−𝛼𝛽) = (−𝛼𝛽)
2 + 2(−𝛼𝛽)(𝛼𝛽) + 𝛼(𝛼 + 1)𝛽2 

= 𝛼𝛽2 = 𝜎2 

that is the variance of the usual gamma distribution. 

That is, 

𝑔2(1; 𝜆) = 𝜆
2 + 2𝜆𝛼𝛽 + 𝛼(𝛼 + 1)𝛽2 

If 𝜆 = −𝜇 = −𝛼𝛽 
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∴ 𝑔2(1;−𝛼𝛽) = (−𝛼𝛽)
2 + 2(−𝛼𝛽)(𝛼𝛽) + 𝛼(𝛼 + 1)𝛽2 

= (𝛼𝛽)2 − 2(𝛼𝛽)2 + (𝛼2 + 𝛼)𝛽2 

= (𝛼𝛽)2 − 2(𝛼𝛽)2 + (𝛼𝛽)2 + 𝛼𝛽2 

= 2(𝛼𝛽)2 − 2(𝛼𝛽)2 + 𝛼𝛽2 

∴ 𝑔2(1;−𝛼𝛽) = 𝛼𝛽
2 

The third moment of the gamma family of distributions about 𝜆 is obtained from 

Equation 3.9 as 

𝑔3(𝑐; 𝜆) = 𝜆
3 + 3𝜆2𝛽𝑐

Γ(𝑐 + 𝛼)

Γ(𝛼)
+ 3𝜆𝛽2𝑐

Γ(2𝑐 + 𝛼)

Γ(𝛼)
+ 𝛽3𝑐

Γ(3𝑐 + 𝛼)

Γ(𝛼)
 

If in particular 𝑐 = 1 and 𝜆 = −𝛼𝛽 where 𝛼𝛽 is the mean of the gamma distribution, 

then we have that 

𝑔3(1;−𝛼𝛽) = (−𝛼𝛽)
3 + 3(−𝛼𝛽)2(𝛼𝛽) + 3(−𝛼𝛽)𝛼(𝛼 + 1)𝛽2

+ 𝛼(𝛼 + 1)(𝛼 + 2)𝛽3 = 2𝛼𝛽3 

Obtained as follows; 

𝑔3(1;−𝛼𝛽) = (−𝛼𝛽)
3 + 3(−𝛼𝛽)2(𝛼𝛽) + 3(−𝛼𝛽)𝛼(𝛼 + 1)𝛽2

+ 𝛼(𝛼 + 1)(𝛼 + 2)𝛽3 

= −(𝛼𝛽)3 + 3(𝛼𝛽)3 + 3(−𝛼𝛽)𝛼(𝛼 + 1)𝛽2 + 𝛼(𝛼 + 1)(𝛼 + 2)𝛽3 

= −(𝛼𝛽)3 + 3(𝛼𝛽)3 − 3(𝛼𝛽)[(𝛼𝛽)2 + 𝛼𝛽2] + (𝛼2 + 𝛼)(𝛼𝛽3 + 2𝛽3) 

𝑔3(1; −𝛼𝛽) = −(𝛼𝛽)
3 + 3(𝛼𝛽)3 − 3(𝛼𝛽)3 − 3𝛼2𝛽3 + (𝛼𝛽)3 + 2𝛼2𝛽3 + 𝛼2𝛽3

+ 2𝛼𝛽3 

= −3𝛼2𝛽3 + 3𝛼2𝛽3 + 2𝛼𝛽3 

∴ 𝑔3(1;−𝛼𝛽) = 2𝛼𝛽
3 



33 
 

Hence, the skewness of the gamma distribution is easily obtained using Equation 

3.11 as 

𝑠𝑘(1) =
𝑔3(1;−𝛼𝛽)

(𝑔2(1;−𝛼𝛽))
3
2

=
2𝛼𝛽3

(𝛼𝛽2)
3
2

=
2

𝛼
1
2

 

Obtained as follows; 

𝑠𝑘(1) =
𝑔3(1;−𝛼𝛽)

(𝑔2(1;−𝛼𝛽))
3
2

=
2𝛼𝛽3

(𝛼𝛽2)
3
2

 

=
2𝛼𝛽3

𝛼
3
2𝛽3

=
2𝛼

𝛼
3
2

 

= 2𝛼1−
3
2 

∴ 𝑠𝑘(1) =
2

𝛼
1
2

 

Similarly, the fourth moment of the gamma distribution about its mean is 

𝑔4(1;−𝛼𝛽) = (−𝛼𝛽)
4 + 4(−𝛼𝛽)3(𝛼𝛽) + 6(−𝛼𝛽)2𝛼(𝛼 + 1)𝛽2

+ 4(−𝛼𝛽)𝛼(𝛼 + 1)(𝛼 + 2)𝛽3 + 𝛼(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)𝛽4 = 6𝛼𝛽4 

Hence the corresponding kurtosis is 

𝑘𝑢(1;−𝛼𝛽) =
𝑔4(1;−𝛼𝛽)

(𝑔2(1;−𝛼𝛽))
2 =

6𝛼𝛽4

(𝛼𝛽2)2
=
6

𝛼
 

(Oyeka et al 2008) 

Setting 𝛼 = 1 in Equation 3.19 gives the 𝑔𝑚𝑔𝑓 of all forms of the exponential 

distribution as 
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𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟𝛽𝑐𝑟Γ(𝑐𝑟 + 1) 

=∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟𝛽𝑐𝑟(𝑐𝑟)Γ(𝑐𝑟)                   (3.22) 

Similarly, setting 𝛽 = 2 and 𝛼 =
𝑘

2
 where 𝑘 = 1, 2,… gives the 𝑔𝑚𝑔𝑓 of the chi-

square distribution with 𝑘 degrees of freedom as 

𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟2𝑐𝑟
Γ (𝑐𝑟 +

𝑘
2)

Γ (
𝑘
2)

             (3.23) 

As noted earlier, 𝑔𝑚𝑔𝑓s can be used to obtain moments of powers of random 

variables with negative indices. For example, the gamma density in Equation 3.21. 

𝑐𝑟 + 𝛼 > 0; that is, if the real number 𝑐 is such that 𝑐 ≥
−𝛼

𝑟
; 𝑟 = 1, 2,…, and some 

specified value of 𝛼 > 0. For example, if in equation 3.21 we choose 𝑐 =
−3

2
 and 𝑘 =

10 and, interest is in determining all possible moments of the random variable 𝑌 =

𝑋
−3

2 , where 𝑋 has the Chi-Square distribution with 10 degrees of freedom then it is 

possible to generate moments up to the third moment of the random variable. 

Specifically, the possible moments of 𝑌 = 𝑋
−3

2  are obtained from Equation 3.23 as 

𝑔1 (
−3

2
; 𝜆) = 𝜆 + 2

−3
2
Γ (
−3
2
+ 5)

Γ(5)
= 𝜆 + 2

−3
2
Γ (
7
2)

24
 

= 𝜆 + 2−
3
2 ∗

5

2
∗
3

2
∗
1

2
∗
Γ (
1
2)

24
 

= 𝜆 + 2−
3
2
5√𝜋

64
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Hence setting 𝜆 = 0, we have that the mean of the random variable 𝑌 = 𝑋−
3

2 where 

𝑋 has the chi-square distribution with 10 degrees of freedom is 

𝜇 =
5 ∗ 2−

3
2√𝜋

64
=
5√2𝜋

256
 

Obtained as follows: 

𝜇 =
5 ∗ 2−

3
2√𝜋

64
=

5√𝜋

2
3
2 ∗ 64

 

=
5 ∗ √𝜋 ∗ 2

1
2

2
3
2 ∗ 64 ∗ 2

1
2

=
5√2𝜋

2
3
2
+
1
2 ∗ 64

=
5√2𝜋

22 ∗ 64
 

∴ 𝜇 =
5√2𝜋

256
 

If 𝑛 = 2 and 𝑐 = 1, the variance of 𝑌 = 𝑋−
3

2 is obtained from equation 3.23 as 

𝑔2 (−
3

2
; 𝜆) = 𝜆2 + 2𝜆(

5 ∗ 2−
3
2√𝜋

64
) +

2−3Γ(−3 + 5)

Γ(5)
 

= 𝜆2 + 2𝜆(
5 ∗ √𝜋 ∗ 2

−
3
2

64
) +

2−3

24
 

So that setting 𝜆 = −𝜇 =
5√2𝜋

256
 gives 

𝑔2 (−
3

2
;−
5√2𝜋

256
) = (

−5√𝜋 ∗ 2
−
3
2

64
)

2

+ 2(
−5 ∗ 2−

3
2√𝜋

64
)(

5 ∗ 2−
3
2√𝜋

64
) +

2−3

24
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=
2−3

24
+ (

5 ∗ 2−
3
2√𝜋

64
)

2

− 2(
5 ∗ 2−

3
2√𝜋

64
)

2

 

𝑔2 (−
3

2
;−
5√2𝜋

256
) =

2−3

24
− (

5 × 2−
3
2√𝜋

64
)

2

 

=
1

192
−
25 ∗ 𝜋

8 ∗ 642
= 0.0281148835 ≃ 0.003 

3.4 GENERALIZED MOMENT GENERATING FUNCTION (𝑮𝑴𝑮𝑭) FOR THE 

NORMAL DISTRIBUTION 

To obtain the 𝑔𝑚𝑔𝑓 of the random variable 𝑌 = 𝑋𝑐  where 𝑋 has the normal 

distribution with parameters 𝜇 and 𝜎2 with 𝑝𝑑𝑓, 𝑓(𝑥), given by 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−(
𝑥−𝜇

𝜎√2
)
2

; −∞ < 𝑥 < ∞;−∞ < 𝜇 < ∞;𝜎2 > 0 

we have from Equation 3.3 that the 𝑟𝑡ℎ moment of 𝑋𝑐 about the origin or zero is 

𝜇𝑟
′ (𝑐) =

1

𝜎√2𝜋
∫ 𝑥𝑐𝑟
∞

−∞

𝑒
−(
𝑥−𝜇

𝜎√2
)
2

𝑑𝑥 

Letting 𝑣 = (
𝑥−𝜇

𝜎√2
)
2

, solving for 𝑥, expanding binomially, integrating and simplifying 

gives 

𝜇𝑟
′ (𝑐) =∑(

𝑐𝑟
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
                 (3.24) 

Equation 3.24 is obtained as follows: 
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𝑓(𝑥) = {
1

𝜎√2𝜋
𝑒
−(
𝑥−𝜇

𝜎√2
)
2

0     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

;−∞ < 𝑥 < ∞;−∞ < 𝜇 < ∞;𝜎2 > 0 

𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)

∞

−∞

𝑑𝑥 

(Arua et al 1997) 

∴ 𝐸(𝑋𝑐𝑟) = ∫ 𝑥𝑐𝑟𝑓(𝑥)𝑑𝑥

∞

−∞

 

= ∫ 𝑥𝑐𝑟
1

𝜎√2𝜋
𝑒
−(
𝑥−𝜇

𝜎√2
)
2

𝑑𝑥 

∞

−∞

                           (3.25) 

Now letting 

𝑣 = (
𝑥 − 𝜇

𝜎√2
)
2

 

⇒ 𝑥 = 𝑣
1
2(𝜎√2) + 𝜇 

∴
𝑑𝑥

𝑑𝑣
=
1

2
(𝜎√2)𝑣−

1
2 =

𝜎𝑣−
1
2

√2
 

∴ 𝑑𝑥 =
𝜎𝑣−

1
2

√2
𝑑𝑣 

Substituting these in equation 3.25 gives 

𝐸(𝑥𝑐𝑟) = ∫ (𝜇 + √2𝜎𝑣
1
2)
𝑐𝑟 1

𝜎√2𝜋
𝑒−𝑣

𝜎𝑣−
1
2

√2
𝑑𝑣

∞

−∞

 

But 
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(𝜇 + √2𝑣
1
2)
𝑐𝑟

=∑(
𝑐𝑟
𝑡
) 𝜇𝑐𝑟−𝑡 (√2𝜎𝑣

1
2)
𝑡

𝑐𝑟

𝑡=0

=∑(
𝑐𝑟
𝑡
) 𝜇𝑐𝑟−𝑡(2𝜎2)

𝑡
2 ∗ 𝑣

𝑡
2

𝑐𝑟

𝑡=0

 

∴ 𝐸(𝑥𝑐𝑟) =∑(
𝑐𝑟
𝑡
) 𝜇𝑐𝑟−𝑡(2𝜎2)

𝑡
2

𝑐𝑟

𝑡=0

∫ 𝑣
𝑡
2

∞

−∞

1

𝜎√2𝜋
𝑒−𝑣

𝜎𝑣−
1
2

√2
𝑑𝑣 

=∑(
𝑐𝑟
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2

1

𝜎√2𝜋

𝜎

√2
∫ 𝑣

𝑡
2

∞

−∞

𝑒−𝑣𝑣−
1
2𝑑𝑣 

=∑(
𝑐𝑟
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
1

2√𝜋
2∫ 𝑣

𝑡
2
−
1
2

∞

0

𝑒−𝑣𝑑𝑣 

=∑(
𝑐𝑟
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
1

√𝜋
∫ 𝑣

𝑡
2
+
1
2
−1

∞

0

𝑒−𝑣𝑑𝑣 

=∑(
𝑐𝑟
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
1

√𝜋
Γ (
𝑡

2
+
1

2
) 

∴ 𝐸(𝑋𝑐𝑟) =∑(
𝑐𝑟
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
 

Observe here that should the value of 𝑡 be zero, that is, 𝑡 = 0 in Equation 3.24 there 

would be the need to evaluate Γ (
1

2
). This may be done using the standard normal 

distribution as follows; 

𝑓(𝑥) = {

1

√2𝜋
𝑒−

𝑥2

2 ; −∞ < 𝑥 < ∞; 𝜇 = 0; 𝜎2 = 1

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                 

 

Recall 
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∫ 𝑓(𝑥)𝑑𝑥 = 1

∞

−∞

 

∴ ∫
1

√2𝜋
𝑒−

𝑥2

2

∞

−∞

𝑑𝑥 = 1 

⇒ ∫ 𝑒−
𝑥2

2

∞

−∞

𝑑𝑥 = √2𝜋 

Let 
𝑥2

2
= 𝑣 ⇒ 𝑥2 = 2𝑣 and 𝑥 = (2𝑣)

1

2 

Hence, 

𝑑𝑥

𝑑𝑣
=
1

2
2
1
2𝑣−

1
2 = 2−

1
2𝑣−

1
2 

∴ 𝑑𝑥 = 2−
1
2𝑣−

1
2𝑑𝑣 

∴ ∫ 𝑒−
𝑥2

2

∞

−∞

= ∫ 𝑒−𝑣
∞

−∞

2−
1
2𝑣−

1
2𝑑𝑣 = √2𝜋 

∫ 𝑣−
1
2

∞

−∞

𝑒−𝑣𝑑𝑣 = 2√𝜋 

∴ 2∫ 𝑣
1
2
−1

∞

0

𝑒−𝑣𝑑𝑣 = 2√𝜋 

∫ 𝑣
1
2
−1

∞

0

𝑒−𝑣𝑑𝑣 = √𝜋 

But  
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∫ 𝑣
1
2
−1

∞

0

𝑒−𝑣𝑑𝑣 = Γ (
1

2
) 

∴ Γ (
1

2
) = √𝜋  …………… . . (4.25𝑏) 

Equation 3.24 is evaluated at even numbers of 𝑡. That is 𝑡 = 0, 2, 4, etc. 

From Equation 3.2, 

𝑔𝑛(𝑐; 𝜆) =∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟∑(
𝑐𝑟
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
                                3.26 

for even numbers of 𝑡. This implies that we set 

(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
= 0 

for all odd values of 𝑡. 

If  

𝑣 =
𝑥 − 𝜇

𝜎
 

we have that 

1

√2𝜋
∫ 𝑣𝑡
∞

−∞

𝑒−
𝑣2

2 𝑑𝑣 = 0 

for odd values of 𝑡; that is for 𝑡 = 1, 3, 5, … . 

Equation 3.26 is used to generate all conceivable moments of all forms of the normal 

distribution represented by the random variable 𝑌 = 𝑋𝑐  for all real-valued 𝑐. 

For example, the second moment of 𝑌 = 𝑋𝑐 for 𝑐 = 1 where 𝑋~𝑁(𝜇, 𝜎2) is  
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𝑔2(1; 𝜆) =∑(
2
𝑟
)

2

𝑟=0

𝜆2−𝑟∑(
𝑟
𝑡
)

𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
 

𝑟 = 0; 𝑡 = 0 

(
2
0
) 𝜆2 = 𝜆2 

𝑟 = 1; 𝑡 = 0 

(
2
1
) 𝜆(𝜇) = 2𝜆𝜇 

𝑟 = 2; 𝑡 = 0, 2 

(
2
2
) 𝜆0 [(

2
0
) 𝜇2(2𝜎2)

0
2 + (

2
2
) 𝜇0(2𝜎2)

Γ (
3
2)

√𝜋
] = 𝜇2 +

2𝜎2

2
= 𝜇2 + 𝜎2 

∴ 𝑔2(1; 𝜆) = 𝜆
2 + 2𝜆𝜇 + 𝜇2 + 𝜎2 

Let 𝜆 = −𝜇 

∴ 𝑔2(1;−𝜇) = (−𝜇)
2 + 2(−𝜇)𝜇 + 𝜇2 + 𝜎2 

= 𝜇2 − 2𝜇2 + 𝜇2 + 𝜎2 

= 2𝜇2 − 2𝜇2 + 𝜎2 

∴ 𝑔2(1;−𝜇) = 𝜎
2 

Also, the fourth moment of the random variable 𝑌 = 𝑋𝑐  about 𝜆, where 𝑋 has the 

normal distribution with parameters 𝜇 and 𝜎2 and 𝑐 = 1, is from Equation 3.2 

obtained as 

𝑔4(1; 𝜆) =∑(
4
𝑟
)

4

𝑟=0

𝜆4−𝑟∑(
𝑟
𝑡
)

𝑟

𝑡=0

𝜇𝑐𝑟−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
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Let 𝑟 = 0; 𝑡 = 0 

∴ (
4
0
) 𝜆4 = 𝜆4 

Let 𝑟 = 1; 𝑡 = 0 

(
4
1
) 𝜆3 (

1
0
) 𝜇′(2𝜎1)0 = 4𝜆3𝜇 

Let 𝑟 = 2; 𝑡 = 0, 2 

(
4
2
) 𝜆2 [∑(

2
𝑡
)

2

𝑡=0

𝜇2−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
] 

= (
4
2
) 𝜆2 [(

2
0
) 𝜇2 + (

2
2
)𝜇0(2𝜎2)

Γ (
3
2)

√𝜋
] 

= 6𝜆2 [𝜇2 +
2𝜎2

2
] = 6𝜆2(𝜇2 + 𝜎2) 

Let 𝑟 = 3; 𝑡 = 0, 2 

(
4
3
) 𝜆 [∑(

3
𝑡
)

3

𝑡=0

𝜇3−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
] 

= 4𝜆 [(
3
0
) 𝜇3(2𝜎2)0 + (

3
2
)𝜇(2𝜎2)

Γ (
3
2)

√𝜋
] 

4𝜆 [𝜇3 + 3𝜇
2𝜎2

2
] = 4𝜆(𝜇3 + 3𝜇𝜎2) 

Let 𝑟 = 4; 𝑡 = 0, 2, 4 
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(
4
4
) 𝜆0 [∑(

4
𝑡
)

4

𝑡=0

𝜇4−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
] 

= (
4
0
)𝜇4 + (

4
2
)𝜇2(2𝜎2)

1

2
+ (

4
4
)𝜇0(2𝜎2)2

Γ (
5
2)

√𝜋
 

= 𝜇4 + 6𝜇2𝜎2 + 3𝜎4 

∴ 𝑔4(1; 𝜆) = 𝜆
4 + 4𝜆3𝜇 + 6𝜆2(𝜇2 + 𝜎2) + 4𝜆(𝜇3 + 3𝜇𝜎2) + 𝜇4 + 6𝜇2𝜎2 + 3𝜎2 

The 4𝑡ℎ moment about the mean; that is, where 𝜆 = −𝜇 

𝑔4(1;−𝜇) = (−𝜇)
4 + 4(−𝜇)𝜇 + 6(−𝜇)2(𝜇2 + 𝜎2) + 4(−𝜇)(𝜇3 + 3𝜇𝜎2) + 𝜇4

+ 6𝜇2𝜎2 + 3𝜎4 

= 𝜇4 + 4𝜇4 + 6𝜇4 + 6𝜇2𝜎2 − 4𝜇4 − 12𝜇2𝜎2 + 𝜇4 + 6𝜇2𝜎2 + 3𝜎4 

= 8𝜇4 − 8𝜇4 + 12𝜇2𝜎2 − 12𝜇2𝜎2 + 3𝜎4 

∴ 𝑔4(1;−𝜇) = 3𝜎
4 

Now from Equation 3.12 the kurtosis of the normal distribution is 

𝑘𝑢(1) =
𝑔4(1;−𝜇)

[𝑔2(1;−𝜇)]
2
=

3𝜎4

(𝜎2)2
=
3𝜎4

𝜎4
= 3 

Also, the skewness of the normal distribution can be obtained with Equation 3.11 

𝑠𝑘(1) =
𝜇3(1)

[𝜇2(1)]
3
2

=
𝑔3(1;−𝜇)

[𝑔2(1;−𝜇)]
3
2

 

𝑔3(1; 𝜆) =∑(
3
𝑟
)

3

𝑟=0

𝜆3−𝑟∑(
𝑟
𝑡
)

𝑟

𝑡=0

𝜇𝑟−𝑡(2𝜎2)
𝑡
2
Γ (
𝑡
2
+
1
2)

√𝜋
 

for 𝑟 = 0, 𝑡 = 0 
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(
3
0
) 𝜆3 = 𝜆3 

for 𝑟 = 1, 𝑡 = 0 

(
3
1
) 𝜆2 (

1
0
) 𝜇 = 3𝜆2𝜇 

for 𝑟 = 2; 𝑡 = 0, 2 

(
3
2
) 𝜆 [(

2
0
) 𝜇2(2𝜎2)0 + (

2
2
)𝜇0(2𝜎2)

1

2
] 

= 3𝜆(𝜇2 + 𝜎2) 

𝑟 = 3; 𝑡 = 0, 2 

(
3
3
) 𝜆0 [(

3
0
) 𝜇3 + (

3
2
) 𝜇(2𝜎2)

1

2
] 

= 𝜇3 + 3𝜇𝜎2 

∴ 𝑔3(1; 𝜆) = 𝜆
3 + 3𝜆2𝜇 + 3𝜆𝜇2 + 3𝜆𝜎2 + 𝜇3 + 3𝜇𝜎2 

Let 𝜆 = −𝜇 

∴ 𝑔3(1;−𝜇) = (−𝜇)
3 + 3𝜇3 − 3𝜇3 − 3𝜇𝜎2 + 𝜇3 + 3𝜇𝜎2 

𝑔3(1;−𝜇) = 4𝜇
3 − 4𝜇3 − 3𝜇𝜎2 + 3𝜇𝜎2 = 0 

∴ 𝑠𝑘(1) =
𝑔3(1;−𝜇)

[𝑔2(1;−𝜇)]
3
2

=
0

(𝜎2)
3
2

= 0 

Where the value of 𝑠𝑘(1) equals 0 implies that the distribution is symmetric (Arua, 

et al 1997). 

This shows that the normal distribution is symmetric as expected. 
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3.5 THE BIVARIATE GENERALIZED MOMENT GENERATING FUNCTIONS 

The Bivariate generalized moment generating function (BGMGF) is the expected 

value of 𝑋𝑐𝑛𝑌𝑑𝑛; that is, 𝐸[𝑋𝑐𝑛𝑌𝑑𝑛] (Oyeka et al, 2012). It is interpreted as the 

(𝑐𝑛, 𝑑𝑛)𝑡ℎ moment of the joint distribution of the random variables 𝑋 and 𝑌 about 

zero, where 𝑐, 𝑑 and 𝑛 are all non-negative integers. Also, 𝑐 and 𝑑 may be non-

negative real numbers but not necessarily integers. It is assumed that both 𝑋 and 𝑌 

are continuously differentiable on the real line or over their range of definition with 

joint probability density, 𝑓(𝑥, 𝑦). The 𝑛𝑡ℎ moment or expected value of the joint 

distribution of 𝑐𝑡ℎ power of the random variable 𝑋 and the 𝑑𝑡ℎ power of the random 

variable 𝑌 about zero is denoted by 𝜇𝑛(𝑐, 𝑑). 

𝜇𝑛(𝑐, 𝑑) = 𝐸(𝑋
𝑐𝑌𝑑)𝑛; 𝑐 ≥ 0, 𝑑 ≥ 0, 𝑛 = 0, 1, 2, …             3.27 

That is, 

𝜇𝑛(𝑐, 𝑑) = ∫ ∫(𝑋𝑐)𝑛(𝑌𝑑)𝑛
∞

−∞

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

 

∬𝑥𝑐𝑛𝑦𝑑𝑛
∞

−∞

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝜇(𝑐𝑛, 𝑑𝑛) 

where 𝜇(𝑐𝑛, 𝑑𝑛) is the (𝑐𝑛, 𝑑𝑛)𝑡ℎ moment of the joint distribution of 𝑋 and 𝑌 about 

zero. 

Therefore, 

𝜇𝑛(𝑐, 𝑑) = 𝜇(𝑐𝑛, 𝑑𝑛) = ∬𝑥𝑐𝑛𝑦𝑑𝑛𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

           3.28 

𝜇0(𝑐, 𝑑) = 1 ∀ (𝑐 ≥ 0, 𝑑 ≥ 0) 
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That is, 

𝜇0(𝑐, 𝑑) = ∬𝑥0𝑦0
∞

−∞

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

= ∫ ∫ 𝑓(𝑥, 𝑦)

∞

−∞

𝑑𝑥𝑑𝑦

∞

−∞

 

= ∫ 𝑓(𝑥)

∞

−∞

𝑑𝑥 ∫ 𝑓(𝑦)

∞

−∞

𝑑𝑦 = 1 

∴ 𝜇0(𝑐, 𝑑) = 1 

The first moment; 𝑛 = 1 is, as any other moment, obtained from Equation 3.28 

That is, 

𝜇(𝑥𝑐𝑦𝑑) = 𝜇1(𝑐, 𝑑)                      3.29 

where 𝜇1(𝑐, 𝑑) = 𝜇(𝑐, 𝑑) 

= ∫ ∫ 𝑥𝑐𝑦𝑑
∞

−∞

∞

−∞

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

The joint variation of the distribution of 𝑋𝑐 and 𝑌𝑑 is 

𝑉𝑎𝑟(𝑋𝑐𝑌𝑑) = 𝜇2(𝑐, 𝑑) − 𝜇1
2(𝑐, 𝑑)               3.30 

This is the second moment of the joint distribution of 𝑋𝑐, 𝑌𝑑 about its mean. 

The skewness (𝑠𝑘) and kurtosis (𝑘𝑢) of this distribution can also be easily obtained 

with Equation 3.28 

𝑠𝑘(𝑥𝑐𝑦𝑑) =
𝜇3(𝑐, 𝑑) − 3𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 2𝜇1(𝑐, 𝑑)

3

(𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2)
3
2

               3.31 
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Obtained as follows: 

𝐸[𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]
2 = 𝐸[𝑋2𝑐𝑌2𝑑 − 2𝑋𝑐𝑌𝑑𝜇1(𝑐, 𝑑) + 𝜇1(𝑐, 𝑑)

2] 

= 𝐸(𝑋2𝑐𝑌2𝑑) − 2𝐸(𝑋𝑐𝑌𝑑)𝜇1(𝑐, 𝑑) + 𝜇1(𝑐, 𝑑)
2 

= 𝐸(𝑋2𝑐𝑌2𝑑) − 2𝜇1(𝑐, 𝑑)
2 + 𝜇1(𝑐, 𝑑)

2 

since 𝐸(𝑋𝑐𝑌𝑑) = 𝜇1(𝑐, 𝑑) 

∴ 𝐸[𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]
2 = 𝐸(𝑋2𝑐𝑌2𝑑) − 𝜇1(𝑐, 𝑑)

2 

= 𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2 

𝐸[𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]
3 = 𝐸 (𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)) [𝑋

𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]
2 

= 𝐸{[𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)][𝑋
2𝑐𝑌2𝑑 − 2𝑋𝑐𝑌𝑑𝜇1(𝑐, 𝑑) + 𝜇1(𝑐, 𝑑)

2]} 

= 𝐸[𝑋3𝑐𝑌3𝑑 − 2𝑋2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑) + 𝑋
𝑐𝑌𝑑𝜇1(𝑐, 𝑑)

2 − 𝑋2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑)

+ 2𝑋𝑐𝑌𝑑𝜇1(𝑐, 𝑑)
2 − 𝜇1(𝑐, 𝑑)

3] 

= 𝐸(𝑋3𝑐𝑌3𝑑) − 2𝐸(𝑋2𝑐𝑌2𝑑)𝜇1(𝑐, 𝑑) + 𝐸(𝑋
𝑐𝑌𝑑)𝜇1(𝑐, 𝑑)

2 − 𝐸(𝑋2𝑐𝑌2𝑑)𝜇1(𝑐, 𝑑)

+ 2𝐸(𝑋𝑐𝑌𝑑)𝜇1(𝑐, 𝑑)
2 − 𝜇1(𝑐, 𝑑)

3 

= 𝜇3(𝑐, 𝑑) − 2𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 𝜇1(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2 − 𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

+ 2𝜇1(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2 − 𝜇1(𝑐, 𝑑)

3 

= 𝜇3(𝑐, 𝑑) − 2𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 𝜇1(𝑐, 𝑑)
3 − 𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 2𝜇1(𝑐, 𝑑)

3

− 𝜇1(𝑐, 𝑑)
3 

= 𝜇3(𝑐, 𝑑) − 3𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 2𝜇1(𝑐, 𝑑)
3 

𝑠𝑘(𝑋𝑐𝑌𝑑) =
𝐸 (𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑))

3

[𝐸(𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑))
2
]

3
2
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∴ 𝑠𝑘(𝑋𝑐𝑌𝑑) =
𝜇3(𝑐, 𝑑) − 3𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 2𝜇1(𝑐, 𝑑)

3

[𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2]
3
2

 

The kurtosis (𝑘𝑢) is 

𝑘𝑢 =
𝜇4(𝑐, 𝑑) − 4𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 6𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

2 − 3𝜇1(𝑐, 𝑑)
4

[𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2]2

               3.32 

Obtained as follows: 

𝐸[𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]
4 = 𝐸 (𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)) [𝑋

𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]
3 

= 𝐸 (𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)) (𝑋
3𝑐𝑌3𝑑 − 2𝑋2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑) + 𝑋

𝑐𝑌𝑑𝜇1(𝑐, 𝑑)
2

− 𝑋2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑) + 2𝑋
𝑐𝑌𝑑𝜇1(𝑐, 𝑑)

2 − 𝜇1(𝑐, 𝑑)
3) 

= 𝐸[𝑋4𝑐𝑌4𝑑 − 2𝑋3𝑐𝑌3𝑐𝜇1(𝑐, 𝑑) + 𝑋
2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑)

2 − 𝑋3𝑐𝑌3𝑑𝜇1(𝑐, 𝑑)

+ 2𝑋2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑)
2 − 𝑋𝑐𝑌𝑑𝜇1(𝑐, 𝑑)

3 − 𝑋3𝑐𝑌3𝑑𝜇1(𝑐, 𝑑)

+ 2𝑋2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑)
2 − 𝑋𝑐𝑌𝑑𝜇1(𝑐, 𝑑)

3 + 𝑋2𝑐𝑌2𝑑𝜇1(𝑐, 𝑑)
2

− 2𝑋𝑐𝑌𝑑𝜇1(𝑐, 𝑑)
3 + 𝜇1(𝑐, 𝑑)

4] 

= 𝜇4(𝑐, 𝑑) − 2𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2 − 𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

+ 2𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2 − 𝜇1(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

3 − 𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

+ 2𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2 − 𝜇1(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

3 + 𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2

− 2𝜇1(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
3 + 𝜇1(𝑐, 𝑑)

4 

= 𝜇4(𝑐, 𝑑) − 4𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 6𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2 − 3𝜇1(𝑐, 𝑑)

4 

∴ 𝐸[𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]
4

= 𝜇4(𝑐, 𝑑) − 4𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 6𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)
2 − 3𝜇1(𝑐, 𝑑)

4 

From Equation 3.12 

𝑘𝑢 =
𝐸[𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑)]

4

[𝐸(𝑋𝑐𝑌𝑑 − 𝜇1(𝑐, 𝑑))]
2 
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𝑘𝑢 =
𝜇4(𝑐, 𝑑) − 4𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 6𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

2 − 3𝜇1(𝑐, 𝑑)
4

[𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2]2

        3.33 

Suppose in Equation 3.28 we set 𝑑 = 0, we obtain the marginal distribution of 𝑋𝑐, 

𝜇𝑥𝑛(𝑐) = 𝜇𝑛(𝑐, 0)                         3.34 

that is, 

𝜇𝑛(𝑐, 𝑑 = 0) = ∫ ∫ 𝑥𝑐𝑛
∞

−∞

∞

−∞

𝑦𝑛,𝑑=0𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

= ∫ ∫ 𝑥𝑐𝑛
∞

−∞

∞

−∞

𝑦0𝑓(𝑥)𝑓(𝑦)𝑑𝑥𝑑𝑦 

= ∫ 𝑥𝑛𝑐
∞

−∞

𝑓(𝑥)𝑑𝑥 ∫ 𝑓(𝑦)

∞

−∞

𝑑𝑦 

But  

∫ 𝑓(𝑦)

∞

−∞

𝑑𝑦 = 1 

∴ 𝜇𝑛(𝑐) = 𝜇𝑛(𝑐, 𝑑 = 0) = ∫ 𝑥𝑛𝑐
∞

−∞

𝑓(𝑥)𝑑𝑥 

Similarly, we can obtain the 𝑛𝑡ℎ moment of 𝑌𝑑 about zero by setting 𝑐 = 0 in 

Equation 3.28; that is, 

𝜇𝑦𝑛(𝑑) = 𝜇𝑛(0, 𝑑)                      3.35 

Hence, the skewness (𝑠𝑘) and kurtosis (𝑘𝑢) of the marginal distribution of 𝑋𝑐 and 

𝑌𝑑 may also be obtained as 
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𝑠𝑘(𝑋𝑐) =
𝜇𝑥3(𝑐) − 3𝜇𝑥2(𝑐)𝜇𝑥1(𝑐) + 2𝜇𝑥1(𝑐)

3

[𝜇𝑥2(𝑐) − 𝜇𝑥1(𝑐)
2]
3
2

                      3.36 

𝑘𝑢(𝑋𝑐) =
𝜇𝑥4(𝑐) − 4𝜇𝑥3(𝑐)𝜇𝑥1(𝑐) + 6𝜇𝑥2(𝑐)𝜇𝑥1(𝑐)

2 − 3𝜇𝑥1(𝑐)
4

[𝜇𝑥2(𝑐) − 𝜇𝑥1(𝑐)
2]
3
2

        3.37 

𝑠𝑘(𝑌𝑑) =
𝜇𝑦3(𝑑) − 3𝜇𝑦2(𝑑)𝜇𝑦1(𝑑) + 2𝜇𝑦1(𝑑)

3

[𝜇𝑦2(𝑑) − 𝜇𝑦1(𝑑)
2]
3
2

             3.38 

𝑘𝑢(𝑌𝑑) =
𝜇𝑦4(𝑑) − 4𝜇𝑦3(𝑑)𝜇𝑦1(𝑑) + 6𝜇𝑦2(𝑑)𝜇𝑦1(𝑑)

2 − 3𝜇𝑦1(𝑑)
4

[𝜇𝑦2(𝑑) − 𝜇𝑦1(𝑑)
2]
2        3.39 

Example: 

Suppose two continuous random variables 𝑋 and 𝑌 have the joint pdf 

𝑓(𝑥, 𝑦) =
2

𝛽2
𝑥𝑦𝑒

−
𝑦
𝛽; 0 < 𝑥 < 1, 𝑦 > 0              3.40 

then we have from Equation 3.28 that 

𝜇𝑛(𝑐, 𝑑) = 𝐸(𝑋
𝑐𝑌𝑑)𝑛 = 𝐸(𝑋𝑐𝑛𝑌𝑑𝑛) = ∫∫ 𝑥𝑐𝑛𝑦𝑑𝑛𝑓(𝑥, 𝑦)

∞

0

1

0

𝑑𝑥𝑑𝑦 

 

=
2

𝛽2
∫∫ 𝑥𝑐𝑛𝑦𝑑𝑛

∞

0

1

0

𝑥𝑦𝑒
−
𝑦
𝛽𝑑𝑥𝑑𝑦 

=
2

𝛽2
∫𝑥𝑐𝑛+1
1

0

𝑑𝑥∫ 𝑦𝑑𝑛+1
∞

0

𝑒
−
𝑦
𝛽𝑑𝑦 

=
2

𝛽2
𝑥𝑐𝑛+2

𝑐𝑛 + 2
]
0

1

∫ 𝑦𝑑𝑛+1
∞

0

𝑒
−
𝑦
𝛽𝑑𝑦 
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Now, let 

𝑤 =
𝑦

𝛽
 

⇒ 𝑦 = 𝛽𝑤 

∴
𝑑𝑦

𝑑𝑤
= 𝛽 

⇒ 𝑑𝑦 = 𝛽𝑑𝑤 

∴
2

𝛽2
𝑥𝑐𝑛+2

𝑐𝑛 + 2
]
0

1

∫ 𝑦𝑑𝑛+1
∞

0

𝑒
−
𝑦
𝛽𝑑𝑦 =

2

𝛽2
𝑥𝑐𝑛+2

𝑐𝑛 + 2
]
0

1

∫(𝛽𝑤)𝑑𝑛+1
∞

0

𝑒−𝑤𝛽𝑑𝑤 

=
2

𝛽2
𝑥𝑐𝑛+2

𝑐𝑛 + 2
]
0

1

𝛽(𝑑𝑛+2)∫ 𝑤(𝑑𝑛+2)−1

∞

0

𝑒−𝑤𝑑𝑤 

=
2

(𝑐𝑛 + 2)𝛽2
𝛽(𝑑𝑛+2)Γ(𝑑𝑛 + 2) 

𝜇𝑛(𝑐, 𝑑) =
2

(𝑐𝑛 + 2)
𝛽𝑑𝑛Γ(𝑑𝑛 + 2)                          3.41 

⇒ 𝜇0(𝑐, 𝑑) =
2

(0 + 2)
𝛽0Γ(0 + 2) 

=
2

2
Γ(2) = 1 

∴ 𝜇0(𝑐, 𝑑) = 1 

Also, if 𝑛 = 1 we have that 

𝜇1(𝑐, 𝑑) =
2

(𝑐 + 2)
𝛽𝑑Γ(𝑑 + 2) =

2𝛽𝑑Γ(𝑑 + 2)

(𝑐 + 2)
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As stated earlier, 𝑐 and 𝑑 need not be integers. Thus, if 𝑐 =
1

3
 and 𝑑 =

1

2
 then, the 

mean of the joint distribution of 𝑋
1

3 and 𝑌
1

2 is, 

𝜇 (𝑋
1
3, 𝑌

1
2) = 𝜇1 (

1

3
,
1

2
) =

2𝛽
1
2Γ (

1
2
+ 2)

(
1
3
+ 2)

 

𝜇 (𝑋
1
3, 𝑌

1
2) =

2𝛽
1
2Γ (

5
2)

7
3

=
2𝛽

1
2 (
3
2
×
1
2)
Γ (
1
2)

7
3

= 2𝛽
1
2 (
3

4
×
3

7
)√𝜋 =

9

14
√𝛽𝜋 

∴ 𝜇1 (
1

3
,
1

2
) ≈ 1.1394√𝛽 ≈ 1.14√𝛽 

Applying Equation 3.30 in Equation 3.41 we have that the joint variation of 𝑋𝑐𝑌𝑑 is 

𝑉𝑎𝑟(𝑋𝑐𝑌𝑑) = 𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2 

=
2𝛽𝑑𝑛Γ(2𝑑 + 2)

(2𝑐 + 2)
− (

2𝛽𝑑Γ(𝑑 + 2)

(𝑐 + 2)
)

2

 

=
2𝛽

(2∗
1
2
)
Γ(1 + 2)

2
3
+ 2

− (
2𝛽

1
2Γ (

1
2
+ 2)

1
3
+ 2

)

2

 

=
2𝛽Γ(3)

8
3

− (
2𝛽

1
2Γ (

5
2)

7
3

)

2

=
12𝛽

8
− (

18

28
𝛽
1
2𝜋

1
2)
2

 

=
3

2
𝛽 − (

9

14
√𝛽𝜋)

2

=
3

2
𝛽 −

81

196
𝛽𝜋 = (

3

2
−
81

196
𝜋)𝛽 

= (1.5 − 1.29831125)𝛽 ≈ 0.20𝛽 

Equation 3.41 would have also been obtained using the joint distribution of 𝑋𝑐𝑌𝑑 

given the joint distribution of 𝑋 and 𝑌. That is, 
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𝑓(𝑥, 𝑦) =
2

𝛽2
𝑥𝑦𝑒

−
𝑦
𝛽;  0 < 𝑥 < 1, 𝑦 > 0 

𝐸(𝑋𝑐𝑌𝑑)𝑛 =
2

𝛽2
∫∫(𝑥𝑐𝑦𝑑)𝑛

∞

0

1

0

𝑥𝑦𝑒
−
𝑦
𝛽𝑑𝑥𝑑𝑦 

=
2

𝛽2
∫∫ 𝑥𝑐𝑛

∞

0

1

0

𝑦𝑑𝑛𝑥𝑦𝑒
−
𝑦
𝛽𝑑𝑥𝑑𝑦 

Let 𝑥𝑐 = 𝑢 and 𝑦𝑑 = 𝑣 

⇒ 𝑥 = 𝑢
1
𝑐 ;  
𝑑𝑥

𝑑𝑢
=
𝑢
1
𝑐
−1

𝑐
 

∴ 𝑑𝑥 =
𝑢
1
𝑐
−1

𝑐
𝑑𝑢 

Also, 

𝑦 = 𝑣
1
𝑑;  
𝑑𝑦

𝑑𝑣
=
𝑣
1
𝑑
−1

𝑑
 

∴ 𝑑𝑦 =
𝑣
1
𝑑
−1

𝑑
𝑑𝑣 

∴ 𝑓(𝑢, 𝑣) =
2

𝛽2
𝑢
1
𝑐𝑣

1
𝑑𝑒

−
𝑣
1
𝑑

𝛽  

∴ 𝐸(𝑢𝑣)𝑛 = 𝐸(𝑢𝑛𝑣𝑛) =
2

𝛽2
∫∫ 𝑢𝑛 ∗ 𝑣𝑛 ∗ 𝑢

1
𝑐 ∗ 𝑣

1
𝑑 ∗ 𝑒

−
𝑣
1
𝑑

𝛽 ∗
𝑢
1
𝑐
−1

𝑐

∞

0

1

0

𝑑𝑢 ∗
𝑉
1
𝑑

𝑑
𝑑𝑣 

𝐸(𝑢𝑣)𝑛 =
2

𝑐𝑑𝛽2
∫𝑢

𝑛𝑐+2
𝑐

−1

1

0

𝑑𝑢∫ 𝑣
𝑛𝑑+2
𝑑

−1

∞

0

𝑒
−
𝑣
1
𝑑

𝛽 𝑑𝑣 
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=
2

𝑐𝑑𝛽2
[
𝑢
𝑛𝑐+2
𝑐

𝑛𝑐 + 2
𝑐

]

0

1

∫ 𝑣
𝑛𝑑+2
𝑑

−1

∞

0

𝑒
−(

𝑣
1
𝑑

𝛽
)

𝑑𝑣 

Let 𝑧 =
𝑣
1
𝑑

𝛽
;  𝑣

1

𝑑 = 𝑧𝛽 

∴ 𝑣 = (𝑧𝛽)𝑑 = 𝑧𝑑𝛽𝑑;  
𝑑𝑣

𝑑𝑧
= 𝑑𝛽𝑑𝑧𝑑−1 

∴ 𝑑𝑣 = 𝑑𝛽𝑑𝑧𝑑−1𝑑𝑧 

∴ 𝐸(𝑢𝑣)𝑛 =
2

𝑐𝑑𝛽2
[
𝑢
𝑛𝑐+2
𝑐

𝑛𝑐 + 2
𝑐

]

0

1

∫(𝑧𝑑𝛽𝑑)
𝑛𝑑+2
𝑑

−1

∞

0

𝑒−𝑧𝑑𝛽𝑑𝑧𝑑−1𝑑𝑧 

=
2𝛽𝑛𝑑+2−𝑑

𝑐𝑑𝛽2
𝑑𝛽𝑑

𝑐

𝑛𝑐 + 2
[𝑢

𝑛𝑐+2
𝑐 ]

0

1

Γ(𝑛𝑑 + 2) 

=
2𝛽𝑛𝑑+2

𝑐𝑑𝛽2
∗

𝑐𝑑

𝑛𝑐 + 2
∗ Γ(𝑛𝑑 + 2) =

2𝛽𝑛𝑑

𝑛𝑐 + 2
Γ(𝑛𝑑 + 2) 

∴ 𝜇𝑛(𝑐, 𝑑) = 𝐸(𝑢
𝑛𝑣𝑛) =

2𝛽𝑛𝑑Γ(𝑑𝑛 + 2)

𝑐𝑛 + 2
                        3.42 

Equation 3.42 is the same result as Equation 3.41. 

The 𝑛𝑡ℎ moment, 𝜇𝑥𝑛(𝑐), of the marginal distribution of 𝑋𝑐 for this illustrative 

example may be obtained by setting 𝑑 = 0 in either Equation 3.41 or Equation 3.42 

on the basis of the marginal distribution of 𝑋𝑐 given in Equation 3.40 as 

𝜇𝑥𝑛(𝑐) = 𝜇𝑛(𝑐, 0) =
2

𝑐𝑛 + 2
                        3.43 

Similarly, 𝜇𝑦𝑛(𝑑), the corresponding 𝑛𝑡ℎ moment of the marginal distribution of 𝑌𝑑 

is 
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𝜇𝑦𝑛(𝑑) = 𝜇𝑛(0, 𝑑) = 𝛽
𝑑𝑛Γ(𝑑𝑛 + 2)                 3.44 

The first moment, (𝑛 = 1), of the marginal distribution of 𝑋
1

3 about zero is obtained 

using Equation 3.43 as 

𝜇1 (
1

3
, 0) = 𝜇𝑥1 (

1

3
) = 𝜇𝑥

′ (
1

3
) =

2

1
3
+ 2

=
2 × 3

7
 

∴ 𝜇𝑥
′ (
1

3
) =

6

7
 

and 

𝜇𝑥2
′ (

1

3
, 0) =

2

1
3
∗ 2 + 2

=
3

4
 

while the corresponding variance is obtained from Equation 3.34 and 3.43 for 𝑐 =
1

3
 

as, 

𝑣𝑎𝑟 (𝑋
1
3) = 𝜇𝑥2 (

1

3
) − 𝜇𝑥1 (

1

3
)
2

 

=
3

4
− (

6

7
)
2

 

∴ 𝑣𝑎𝑟 (𝑋
1
3) = 0.01530612245 ≈ 0.02 

The skewness of the marginal distribution of 𝑋
1

3 from Equation 3.36 is, 

𝑠𝑘 (𝑋
1
3) =

𝜇𝑥3 (
1
3)
− 3𝜇𝑥2 (

1
3)
𝜇𝑥1 (

1
3)
+ 2𝜇𝑥1 (

1
3)

3

(𝜇𝑥2 (
1
3)
− 𝜇𝑥1 (

1
3)

2

)

3
2
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𝜇𝑥3 (
1

3
) =

2

(3)
1
3
+ 2

=
2

3
 

𝜇𝑥2 =
2

2 (
1
3)
+ 2

=
3

4
 

∴ 𝑠𝑘 (𝑋
1
3) =

2
3
− 3 (

3
4) (

6
7)
+ 2 (

6
7)

3

(
3
4
−
36
49)

3
2

 

=

2
3
−
54
28
+
432
343

(
3
4
−
36
49)

3
2

= −

5
2058

(
3
196)

3
2

= −
0.00242954324

0.00189364155
= −1.283000597 

𝑠𝑘 < 0 implies that the distribution is negatively skewed (Arua et al 1997). 

The marginal distribution of 𝑋𝑐 is negatively skewed. 

The kurtosis can be obtained from Equation 3.37 as follows: 

𝑘𝑢 (𝑋
1
3) =

𝜇𝑥4 (
1
3)
− 4𝜇𝑥3 (

1
3)
𝜇𝑥1 (

1
3)
+ 6𝜇𝑥2 (

1
3)
𝜇𝑥1 (

1
3)

2

− 3𝜇𝑥1 (
1
3)

4

(𝜇𝑥2 (
1
3)
− 𝜇𝑥1 (

1
3)

2

)

2  

𝜇𝑥4 (
1

3
) =

2

4 (
1
3)
+ 2

=
6

10
=
3

5
 

∴ 𝑘𝑢 (𝑋
1
3) =

3
5
− 4(

2
3) (

6
7)
+ 6 (

3
4) (

6
7)

2

− 3(
6
7)

4

(
3
196)

2 =
0.00108288213

0.00000005488
 

∴ 𝑘𝑢 (𝑥
1
3) = 19729.69872 
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A value of 𝑘𝑢(𝑐) > 3 implies leptokurtic distribution (Arua et al 1997). Thus, the 

distribution of 𝑋
1

3 is leptokurtic. 

Also, the skewness and kurtosis of the distribution of 𝑌
1

2 can be obtained from 

Equations 3.11 and 3.12 as follows: 

Using Equation 3.44 

Substituting 𝑛 = 1, 𝑑 =
1

2
 yields 

𝜇𝑦1 (
1

2
) =

1

2
𝛽
1
2√𝜋 ≈ 0.8862269255𝛽

1
2 

Substituting 𝑛 = 2, 𝑑 =
1

2
 yields 

𝜇𝑦2 (
1

2
) = 2𝛽 

Substituting 𝑛 = 3, 𝑑 =
1

2
 yields 

𝜇𝑦3 (
1

2
) =

15

8
𝛽
3
3√𝜋 

Substituting 𝑛 = 4, 𝑑 =
1

2
 yields 

𝜇𝑦4 (
1

2
) = 6𝛽2 

Therefore, 

𝑠𝑘 (𝑦
1
2) =

𝜇𝑦3 (
1
2)
− 3𝜇𝑦2 (

1
2)
𝜇𝑦1 (

1
2)
+ 2𝜇𝑦1 (

1
2)

2

(𝜇𝑦2 (
1
2)
− 𝜇𝑦1 (

1
2)

2

)

3
2

 



58 
 

=

15
8
𝛽
3
2√𝜋 − 3(2𝛽) (

1
2
𝛽
1
2)√𝜋 + 2(

1
4
𝛽)𝜋

(2𝛽 −
1
4
𝛽𝜋)

3
2

 

=

15
8
𝛽
3
2√𝜋 − 3𝛽

3
2√𝜋 +

1
2
𝛽𝜋

(2𝛽 −
1
4
𝛽𝜋)

3
2

 

=
𝛽 (
15
8
𝛽
1
2√𝜋 − 3𝛽

1
2√𝜋 +

1
2
𝜋)

𝛽
3
2 (2 −

1
4
𝜋)

3
2

 

𝑠𝑘 (𝑦
1
2) =

(
15
8 √

𝛽𝜋 − 3√𝛽𝜋 +
1
2
𝜋)

√𝛽 (2 −
1
4
𝜋)

3
2

                                      3.45 

=
3√𝛽𝜋 (

5
8
− 1) +

1
2
𝜋

√𝛽 (2 −
1
4
𝜋)

3
2

 

𝑠𝑘 (𝑦
1
2) =

−9
8 √𝛽𝜋 +

1
2
𝜋

√𝛽 (2 −
1
4
𝜋)

3
2

 

=
√𝜋 (

−9
8 √𝛽 +

1
2√

𝜋)

√𝛽 (2 −
1
4
𝜋)

3
2

 

∴ 𝑠𝑘 (𝑦
1
2) = √

𝜋

𝛽

(

 
 
1
2√
𝜋 −

9
8√

𝛽

(2 −
1
4
𝜋)

3
2

)
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The distribution of 𝑦
1

2 is negatively skewed for 𝛽 > 0 

Also, the kurtosis of the distribution of 𝑦
1

2 can be obtained as follows: 

𝑘𝑢 (𝑦
1
2) =

𝜇𝑦4 (
1
2)
− 4𝜇𝑦3 (

1
2)
𝜇𝑦1 (

1
2)
+ 6𝜇𝑦2 (

1
2)
𝜇𝑦1 (

1
2)

2

− 3𝜇𝑦1 (
1
2)

4

(𝜇𝑦2 (
1
2)
− 𝜇𝑦1 (

1
2)

2

)

2  

∴ 𝑘𝑢 (𝑦
1
2) =

6𝛽2 − 4(
15
8
𝛽
3
2√𝜋)(

1
2
𝛽
1
2√𝜋) + 6(2𝛽) (

1
2
𝛽
1
2√𝜋)

2

− 3(
1
2
𝛽
1
2√𝜋)

4

(2𝛽 − (
1
2
𝛽
1
2√𝜋)

2

)

2  

=
6𝛽2 − 4𝛽2 (

15
16)

𝜋 +
6
2
𝛽2𝜋 −

3
16
(𝛽𝜋)2

(2𝛽 −
1
4𝛽𝜋)

2  

𝑘𝑢 (𝑦
1
2) =

𝛽2 (6 −
15
4
𝜋 +

6
2
𝜋 −

3
16
𝜋2)

𝛽2 (4 + 𝜋 (
𝜋 − 8
16 ))

=
6 + 𝜋 (

6
2
−
15
4 )

−
3
16
𝜋2

4 + 𝜋 (
𝜋 − 8
16 )

 

∴ 𝑘𝑢 (𝑦
1
2) =

6 −
3
4
𝜋 −

3
16
𝜋2

4 + 𝜋 (
𝜋 − 8
16 )

= −0.0291 

This value of 𝑘𝑢 (𝑦
1

2) is negative and independent of 𝛽. The magnitude of 𝛽 does 

not determine whether it is leptokurtic, mesokurtic or platykurtic as values of 𝑘𝑢 >

3 implies leptokurtic, 𝑘𝑢 = 0 implies mesokurtic while values of 𝑘𝑢 < 3 implies 

platykurtic (Arua et al 1997). Thus kurtosis and skewness do not depend on the 

parameter of the distribution of 𝑌
1

2, 𝛽. 
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Suppose the random variables 𝑋 and 𝑌 have the joint probability density function 

(pdf): 

𝑓(𝑥, 𝑦) = (𝑥 + 𝑦)
𝑒
−(

𝑥
𝛽1
+
𝑦
𝛽2
)

𝛽1𝛽2(𝛽1 + 𝛽2)
;  𝑥 > 0, 𝑦 > 0                        3.46 

Then 

𝜇𝑛(𝑐, 𝑑) = 𝐸(𝑋
𝑐𝑌𝑑)𝑛 = ∫ ∫ 𝑥𝑐𝑛𝑦𝑑𝑛𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 

𝜇𝑛(𝑐, 𝑑) = 𝐸(𝑋
𝑐𝑌𝑑)𝑛 =

1

𝛽1𝛽2(𝛽1 + 𝛽2)
∫ ∫(𝑥 + 𝑦)

∞

0

∞

0

. 𝑒
−(

𝑥
𝛽1
+
𝑦
𝛽2
)
𝑑𝑥𝑑𝑦 

=
1

𝛽1𝛽2(𝛽1 + 𝛽2)
∫ ∫ 𝑥𝑐𝑛𝑦𝑑𝑛(𝑥 + 𝑦)𝑒

−(
𝑥
𝛽1
+
𝑦
𝛽2
)
𝑑𝑥𝑑𝑦

∞

0

∞

0

 

=
1

𝛽1𝛽2(𝛽1 + 𝛽2)
∫ ∫(𝑥𝑐𝑛+1𝑦𝑑𝑛 + 𝑥𝑐𝑛𝑦𝑑𝑛+1)

∞

0

∞

0

𝑒
−(

𝑥
𝛽1
+
𝑦
𝛽2
)
𝑑𝑥𝑑𝑦 

=
1

𝛽1𝛽2(𝛽1 + 𝛽2)
[∫ ∫ 𝑥𝑐𝑛+1𝑦𝑑𝑛𝑒

−(
𝑥
𝛽1
+
𝑦
𝛽2
)
𝑑𝑥𝑑𝑦

∞

0

∞

0

+∫ ∫ 𝑥𝑐𝑛𝑦𝑑𝑛+1
∞

0

∞

0

𝑒
−(

𝑥
𝛽1
+
𝑦
𝛽2
)
𝑑𝑥𝑑𝑦] 

Let 
𝑥

𝛽1
= 𝑢; 𝑥 = 𝛽1𝑢; 

𝑑𝑥

𝑑𝑢
= 𝛽1;  ∴ 𝑑𝑥 = 𝛽1𝑑𝑢 and 

𝑦

𝛽2
= 𝑣; 𝑦 = 𝛽2𝑣; 

𝑑𝑦

𝑑𝑣
= 𝛽2;  ∴

𝑑𝑦 = 𝛽2𝑑𝑣 
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⇒ 𝐸(𝑋𝑐𝑛𝑌𝑑𝑛)

=
1

𝛽1𝛽2(𝛽1 + 𝛽2)
[∫ ∫(𝛽1𝑢)

𝑐𝑛+1(𝛽2𝑣)
𝑑𝑛𝑒−(𝑢+𝑣)𝛽1𝛽2𝑑𝑢𝑑𝑣

∞

0

∞

0

+∫ ∫(𝛽1𝑢)
𝑐𝑛(𝛽2𝑣)

𝑑𝑛+1

∞

0

𝑒−(𝑢+𝑣)
∞

0

𝛽1𝛽2𝑑𝑢𝑑𝑣] 

𝐸(𝑋𝑐𝑌𝑑)𝑛 =
1

𝛽1𝛽2(𝛽1 + 𝛽2)
[∫ ∫(𝛽1𝑢)

𝑐𝑛+1𝑒−𝑢(𝛽2𝑣)
𝑑𝑛𝑒−𝑣𝛽1𝛽2𝑑𝑢𝑑𝑣

∞

0

∞

0

+∫ ∫(𝛽1𝑢)
𝑐𝑛𝑒−𝑢(𝛽2𝑣)

𝑑𝑛+1𝑒−𝑣𝛽1𝛽2

∞

0

𝑑𝑢𝑑𝑣

∞

0

] 

=
𝛽1𝛽2

𝛽1𝛽2(𝛽1 + 𝛽2)
[∫ 𝛽1

𝑐𝑛+1𝑢𝑐𝑛+1𝑒−𝑢𝑑𝑢

∞

0

∫ 𝛽2
𝑑𝑛𝑣𝑑𝑛𝑒−𝑣𝑑𝑣

∞

0

+∫ 𝛽1
𝑐𝑛𝑢𝑐𝑛𝑒−𝑢𝑑𝑢∫ 𝛽2

𝑑𝑛+1𝑣𝑑𝑛+1𝑒−𝑣𝑑𝑣

∞

0

∞

0

] 

=
𝛽1
𝑐𝑛+1Γ(𝑐𝑛 + 2)𝛽2

𝑑𝑛Γ(𝑑𝑛 + 1) + 𝛽1
𝑐𝑛Γ(𝑐𝑛 + 1)𝛽2

𝑑𝑛+1Γ(𝑑𝑛 + 2)

𝛽1 + 𝛽2
 

∴ 𝜇𝑛(𝑐, 𝑑) =
𝛽1
𝑐𝑛𝛽2

𝑑𝑛[𝛽1Γ(𝑐𝑛 + 2)Γ(𝑑𝑛 + 1) + 𝛽2Γ(𝑐𝑛 + 1)Γ(𝑑𝑛 + 2)]

𝛽1 + 𝛽2
      3.47 

The mean of the joint distribution of 𝑋 and 𝑌 can be obtained by setting 𝑐 = 𝑑 = 1 

and 𝑛 = 1 in Equation 3.47. That is; 

𝜇1(1,1) =
𝛽1𝛽2(𝛽1Γ(1 + 2)Γ(1 + 1) + 𝛽2Γ(1 + 2)Γ(1 + 1))

𝛽1 + 𝛽2
 

=
𝛽1𝛽2(2𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
=
2𝛽1𝛽2(𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
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∴ 𝜇1(1,1) = 2𝛽1𝛽2 

The variance of the joint distribution of 𝑋 and 𝑌 is obtained using Equation 3.30 in 

Equation 3.47 as follows: 

𝑣𝑎𝑟(𝑥, 𝑦) = 𝜇2(1,1) − 𝜇1(1,1)
2 

𝜇2(1,1) =
𝛽1
2𝛽2

2[𝛽1Γ(2 + 2)Γ(2 + 1) + 𝛽2Γ(2 + 1)Γ(2 + 2)]

𝛽1 + 𝛽2
 

=
𝛽1
2𝛽2

2[𝛽1Γ4Γ3 + 𝛽2Γ3Γ4]

𝛽1 + 𝛽2
=
𝛽1
2𝛽2

2(12𝛽1 + 12𝛽2)

𝛽1 + 𝛽2
 

=
12𝛽1

2𝛽1
2(𝛽1 + 𝛽1)

(𝛽1 + 𝛽2)
= 12𝛽1

2𝛽2
2 

∴ 𝑣𝑎𝑟(𝑋, 𝑌) = 12𝛽1
2𝛽2

2 − (2𝛽1𝛽2)
2 = 12𝛽1

2𝛽2
2 − 4𝛽1

2𝛽2
2 

⇒ 𝑣𝑎𝑟(𝑋, 𝑌) = 8𝛽1
2𝛽2

2 

The skewness of the joint distribution of 𝑋 and 𝑌 can be obtained by applying 

Equation 3.47 in Equation 3.31. That is, 

𝑠𝑘(𝑋𝑐𝑌𝑑) =
𝜇3(𝑐, 𝑑) − 3𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 2𝜇1(𝑐, 𝑑)

3

(𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2)
3
2

 

𝜇3(1,1) =
𝛽1
3𝛽2

3[𝛽1Γ(3 + 2)Γ(3 + 1) + 𝛽2Γ(3 + 1)Γ(3 + 2)]

(𝛽1 + 𝛽2)
 

=
𝛽1
3𝛽2

3[144𝛽1 + 144𝛽2]

(𝛽1 + 𝛽2)
=
144𝛽1

3𝛽2
3(𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
 

∴ 𝜇3(1,1) = 144𝛽1
3𝛽2

3 

∴ 𝑠𝑘(𝑋, 𝑌) =
144𝛽1

3𝛽2
3 − 3(12𝛽1

2𝛽2
2)(2𝛽1𝛽2) + 2(𝛽1𝛽2)

3

(12𝛽1
2𝛽2

2 − (2𝛽1𝛽2)
2)
3
2
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=
144𝛽1

3𝛽2
3 − 72𝛽1

3𝛽2
3 + 16𝛽1

3𝛽2
3

(8𝛽1
2𝛽2

2)
3
2

=
72𝛽1

3𝛽2
3 + 16𝛽1

3𝛽2
3

(8𝛽1
2𝛽2

2)
3
2

 

=
88𝛽1

3𝛽2
3

8
3
2𝛽1

3𝛽2
3

 

∴ 𝑠𝑘(𝑋, 𝑌) =
88

8
3
2

=
88

√512
 

Thus, the distribution of 𝑋𝑐 and 𝑌𝑑 is positively skewed for 𝑐 = 𝑑 = 1. 

The kurtosis can also be obtained by applying Equation 3.32 as follows: 

𝑘𝑢(𝑋, 𝑌) =
𝜇4(𝑐, 𝑑) − 4𝜇3(𝑐, 𝑑)𝜇1(𝑐, 𝑑) + 6𝜇2(𝑐, 𝑑)𝜇1(𝑐, 𝑑)

2 − 3𝜇1(𝑐, 𝑑)
4

(𝜇2(𝑐, 𝑑) − 𝜇1(𝑐, 𝑑)
2)2

 

From Equation 3.47 

𝜇4(1,1) =
𝛽1
4𝛽2

4[𝛽1Γ(6)Γ(2) + 𝛽2Γ(2)Γ(6)]

(𝛽1 + 𝛽2)
 

=
𝛽1
4𝛽2

4[120𝛽1 + 120𝛽2]

(𝛽1 + 𝛽2)
=
120𝛽1

4𝛽2
4(𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
 

∴ 𝜇4(1,1) = 120𝛽1
4𝛽2

4 

⇒ 𝑘𝑢(𝑋, 𝑌)

=
120𝛽1

4𝛽2
4 − 4(144𝛽1

3𝛽2
3)(2𝛽1𝛽2) + 6(12𝛽1

2𝛽2
2)(2𝛽1𝛽2)

2 − 3(2𝛽1𝛽2)
4

(8𝛽1
2𝛽2

2)2
 

=
120𝛽1

4𝛽2
4 − 1152(𝛽1

4𝛽2
4) + 288𝛽1

4𝛽2
4 − 48𝛽1

4𝛽2
4

64𝛽1
4𝛽2

4 =
−792𝛽1

4𝛽2
4

64𝛽1
4𝛽2

4  

∴ 𝑘𝑢(𝑋, 𝑌) = −12.375 

The marginal distribution of 𝑋𝑐 is obtained with Equation 3.34. Hence, 
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𝜇𝑥𝑛(𝑐, 0) =
𝛽1
𝑐𝑛[𝛽1Γ(𝑐𝑛 + 2) + 𝛽2Γ(𝑐𝑛 + 1)]

(𝛽1 + 𝛽2)
 …… . (3.48) 

Thus, 

𝜇𝑥1(1,0) =
𝛽1[𝛽1Γ(3) + 𝛽2Γ(2)]

(𝛽1 + 𝛽2)
=
𝛽1[2𝛽1 + 𝛽2]

(𝛽1 + 𝛽2)
…………… . . (3.49) 

𝜇𝑥2(1,0) =
𝛽1
2[𝛽1Γ(4) + 𝛽2Γ(3)]

(𝛽1 + 𝛽2)
=
𝛽1
2[6𝛽1 + 2𝛽2]

(𝛽1 + 𝛽2)
 

∴ 𝜇𝑥2(1,0) =
2𝛽1

2(3𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
…………………… . (3.50) 

𝜇𝑥3(1,0) =
𝛽1
3(𝛽1Γ(5) + 𝛽2Γ(4))

(𝛽1 + 𝛽2)
=
𝛽1
3(24𝛽1 + 6𝛽2)

(𝛽1 + 𝛽2)
 

∴ 𝜇𝑥3(1,0) =
6𝛽1

3(4𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
……………………(3.51) 

𝜇𝑥4 = (1,0) =
𝛽1
4[𝛽1Γ(6) + 𝛽2Γ(5)]

(𝛽1 + 𝛽2)
=
Γ(5)𝛽1

4(5𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
 

∴ 𝜇4(1,0) =
24𝛽1

4(5𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
 …………… . (3.51) 

Thus, 

𝜇1(1,0) =
𝛽1(2𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
 

From Equation 3.34, 

𝑣𝑎𝑟(𝑋) = 𝜇2(1,0) − 𝜇1(1,0)
2 

=
2𝛽1

2(3𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
− (

𝛽1[2𝛽1 + 𝛽2]

(𝛽1 + 𝛽2)
)

2

=
2𝛽1

2(3𝛽1 + 𝛽2)

(𝛽1 + 𝛽2)
−
4𝛽1

4 + 𝛽1
2𝛽2

2 + 4𝛽1
3𝛽2

(𝛽1 + 𝛽2)
2
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=
(𝛽1 + 𝛽2)(6𝛽1

3 + 2𝛽1
2𝛽2) − (4𝛽1

4 + 𝛽1
2𝛽2

2 + 4𝛽1
3𝛽2)

(𝛽1 + 𝛽2)
2

 

=
6𝛽1

4 + 2𝛽1
3𝛽2 + 6𝛽1

3𝛽2 + 2𝛽1𝛽2
3 − 4𝛽1

4 + 𝛽1
2𝛽2

2 + 4𝛽1
3𝛽2

(𝛽1 + 𝛽2)
2

 

=
2𝛽1

4 + 12𝛽1
3𝛽2 + 𝛽1

2𝛽2
2 + 2𝛽1𝛽2

2

(𝛽1 + 𝛽2)
2

 

∴ 𝑣𝑎𝑟(𝑋) =
2𝛽1

3(𝛽1 + 6𝛽2) + 𝛽1𝛽2
2(𝛽1 + 2)

(𝛽1 + 𝛽2)
2

 …………… . (3.52) 

Using Equation 3.36, we can obtain the skewness of the marginal distribution of 𝑋 

as follows: 

𝑠𝑘(𝑋) =
𝜇𝑥3(1) − 3𝜇𝑥2(1)𝜇𝑥1(1) + 2𝜇𝑥1(1)

3

(𝜇𝑥2(1) − 𝜇𝑥1(1)
2)
3
2

 

=

6𝛽1
3(4𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)

− 3 [
2𝛽1

2(3𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)

] [
𝛽1(2𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)

] + 2 [
𝛽1(2𝛽1 + 𝛽2)
𝛽1 + 𝛽2

]
3

{
2𝛽1

2(3𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)

− [
𝛽1(2𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)

]
2

}

3
2

 

=

6𝛽1
3(4𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)

− 3 [
2𝛽1

2(3𝛽1 + 𝛽2)𝛽1(2𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)2

] + 2 [
𝛽1(2𝛽1 + 𝛽2)
(𝛽1 + 𝛽2)

]
3

[
6𝛽1

3 + 2𝛽1
2𝛽2

𝛽1 + 𝛽2
−
(2𝛽1

2 + 𝛽1𝛽2)
2

(𝛽1 + 𝛽2)
2 ]

3
2

 

Considering the numerator, 

6𝛽1
3(4𝛽1 + 𝛽2)

𝛽1 + 𝛽2
−
3[6𝛽1

3 + 2𝛽1
2𝛽2][2𝛽1

2 + 𝛽1𝛽2]

(𝛽1 + 𝛽2)
2

+
2[2𝛽1

2 + 𝛽1𝛽2]
3

(𝛽1 + 𝛽2)
2
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=
24𝛽1

4 + 6𝛽1
3𝛽2

𝛽1 + 𝛽2
−
3(12𝛽1

5 + 10𝛽1
4𝛽2 + 2𝛽1

3𝛽2
2)

(𝛽1 + 𝛽2)
2

+
2[8𝛽1

6 + 6𝛽1
4𝛽2

2 + 12𝛽1
5𝛽2 + 𝛽1

3𝛽2
3]

(𝛽1 + 𝛽2)
3

 

=
4𝛽1

6 + 12𝛽1
5𝛽2 + 12𝛽1

4𝛽2
2 + 2𝛽1

3𝛽2
3

(𝛽1 + 𝛽2)
3

 

Now considering the denominator, 

[
(𝛽1 + 𝛽2)(6𝛽1

3 + 2𝛽1
2𝛽2) − (2𝛽1

2 + 𝛽1𝛽2)
2

(𝛽1 + 𝛽2)
2

]

3
2

= [
6𝛽1

4 + 2𝛽1
3𝛽2 + 6𝛽1

3𝛽2 + 2(𝛽1𝛽2)
2 − 4𝛽1

4 − (𝛽1𝛽2)
2 − 4𝛽1

3𝛽2
(𝛽1 + 𝛽2)

2
]

3
2

 

= [
2𝛽1

4 + 4𝛽1
3𝛽2 + (𝛽1𝛽2)

2

(𝛽1 + 𝛽2)
2

]

3
2

 

∴ 𝑠𝑘 =
4𝛽1

6 + 12𝛽1
5𝛽2 + 12𝛽1

4𝛽2
2 + 2𝛽1

3𝛽2
3

(𝛽1 + 𝛽2)
3

∗
(𝛽1 + 𝛽2)

2∗3
2

(2𝛽1
4 + 4𝛽1

3𝛽2 + (𝛽1𝛽2)
2)
2∗3
2

 

=
4𝛽1

6 + 12𝛽1
5𝛽2 + 12𝛽1

4𝛽2
2 + 2𝛽1

3𝛽2
3

(2𝛽1
4 + 4𝛽1

3𝛽2 + (𝛽1𝛽2)
2)3

 

(4𝛽1
3 + 12𝛽1

2𝛽2 + 12𝛽1𝛽2
2 + 2𝛽2

3)

÷ (𝛽1
3(8𝛽1

6 + 48𝛽1
5𝛽2 + 88𝛽1

4𝛽2
2 + 8𝛽1

3𝛽2
4 + 41𝛽1

3𝛽2
2 + 4𝛽1

3𝛽2
2

+ 16𝛽1
2𝛽2

5 + 36𝛽1
2𝛽2

4 + 8𝛽1
2𝛽2

3 + 4𝛽1𝛽2
6 + 8𝛽1𝛽2

5 + 2𝛽1𝛽2
4 + 𝛽2

6)) 

Suppose 𝛽1 = 𝛽2 = 1 

𝑠𝑘 =
66

272
= 0.24265 ……… . (3.53) 
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This value is close to symmetry with an infinitesimal sign of positive skewness. The 

larger the values of 𝛽1and 𝛽2, the more positively skewed the distribution of 𝑋 

becomes. 

The kurtosis of the marginal distribution of 𝑋 is from Equation 3.37 

𝐾𝑢(𝑋𝑐) = {
24𝛽1

4[5𝛽1 + 𝛽2]

𝛽1 + 𝛽2
− 4 [

6𝛽1
3(4𝛽1 + 𝛽2)

𝛽1 + 𝛽2
] [
𝛽1(2𝛽1 + 𝛽2)

𝛽1 + 𝛽2
]

+ 6 [
2𝛽1

2(3𝛽1 + 𝛽2)

𝛽1 + 𝛽2
] [
𝛽1(2𝛽1 + 𝛽2)

𝛽1 + 𝛽2
]

2

− 3 [
𝛽1(2𝛽1 + 𝛽2)

𝛽1 + 𝛽2
]

4

}

÷ {[
2𝛽1

2(3𝛽1 + 𝛽2)

𝛽1 + 𝛽2
] − [

2𝛽1
2(3𝛽1 + 𝛽2)

𝛽1 + 𝛽2
]

2

} 

=
3𝛽1

4[8𝛽1
7(3𝛽1 + 8𝛽2) + 4𝛽1

5𝛽2
2(17𝛽1 + 4𝛽2) + 4𝛽1

4(𝛽2
4 + 4) − 8𝛽1

2𝛽2
2(4𝛽1 + 3) − 𝛽2

3(8𝛽1 + 𝛽2)]

{(𝛽1 + 𝛽2)2[2𝛽1
3(𝛽1 + 6𝛽2) + 𝛽1𝛽2

2(𝛽1 + 2)]}

− − − − − −(3.54) 

For values of 𝛽1 and 𝛽2 greater than zero the marginal kurtosis of the distribution of 

𝑋 is positive. Suppose 𝛽1 = 𝛽2 = 1, Equation 3.54 equals 6.4576271. This means 

that the marginal distribution of 𝑋 is leptokurtic (Arua et al 1997). 

The marginal distribution of 𝑌 can be obtained using Equation 3.47. Thus, 

𝜇𝑦𝑛(0, 𝑑) =
𝛽1
0𝛽2

𝑑𝑛[𝛽1Γ(0 + 2)Γ(𝑑𝑛 + 1) + 𝛽2Γ(0 + 1)Γ(𝑑𝑛 + 2)]

𝛽1 + 𝛽2
 

∴ 𝜇𝑦𝑛(0, 𝑑) =
𝛽2
𝑑𝑛[𝛽1Γ(𝑑𝑛 + 1) + 𝛽2Γ(𝑑𝑛 + 2)]

𝛽1 + 𝛽2
 ………… . . (3.55) 

⇒ 𝜇𝑦1(0,1) =
𝛽2[𝛽1Γ(1 + 1) + 𝛽2Γ(1 + 2)]

𝛽1 + 𝛽2
 

∴ 𝜇𝑦1(0,1) =
𝛽2[𝛽1 + 2𝛽2]

𝛽1 + 𝛽2
   ……… . (3.56) 
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𝜇𝑦2(0,1) =
𝛽2
2[𝛽1Γ(2 + 1) + 𝛽2Γ(2 + 2)]

𝛽1 + 𝛽2
 

∴ 𝜇𝑦2(0,1) =
𝛽2
2[2𝛽1 + 6𝛽2]

𝛽1 + 𝛽2
 ………… . . (3.57) 

𝜇𝑦3(0,1) =
𝛽2
3[𝛽1Γ(3 + 1) + 𝛽2Γ(3 + 2)]

𝛽1 + 𝛽2
 

=
𝛽2
3[6𝛽1 + 24𝛽2]

𝛽1 + 𝛽2
………… . (3.58) 

𝜇𝑦4(0,1) =
𝛽2
4[𝛽1Γ(4 + 1) + 𝛽2Γ(4 + 2)]

𝛽1 + 𝛽2
 

=
𝛽2
4[24𝛽1 + 120𝛽2]

𝛽1 + 𝛽2
 ……………… . (3.59) 

Using Equation 3.35 we have that 

𝑉𝑎𝑟(𝑌𝑑) = 𝜇𝑦2(𝑑) − 𝜇𝑦1(𝑑)
2 

Thus the variance of the marginal distribution of 𝑌1 can be obtained as, 

𝑉𝑎𝑟(𝑌) = 𝜇𝑦2(𝑑) − 𝜇𝑦1(𝑑)
2 

=
𝛽2
2[2𝛽1 + 6𝛽]

𝛽1 + 𝛽2
− [
𝛽2[𝛽1 + 2𝛽2]

𝛽1 + 𝛽2
]

2

 

𝑉𝑎𝑟(𝑌) =
𝛽2
2(2𝛽1 + 6𝛽)

𝛽1 + 𝛽2
−
𝛽1
2𝛽2

2 + 4𝛽1𝛽2
3 + 4𝛽2

4

(𝛽1 + 𝛽2)
2

 

=
𝛽2
2(2𝛽1 + 6𝛽)(𝛽1 + 𝛽2) − (𝛽1

2𝛽2
2 + 4𝛽1𝛽2

2 + 4𝛽2
4)

(𝛽1 + 𝛽2)
2

 

=
(2𝛽1

2𝛽2
2 + 6𝛽1𝛽2

3 + 2𝛽2
3𝛽1 + 6𝛽2

4) − (𝛽1
2𝛽2

2 + 4𝛽1𝛽2
3 − 4𝛽2

4)

(𝛽1 + 𝛽2)
2

 



69 
 

=
𝛽1
2𝛽2

2 − 2𝛽1𝛽2
3 + 𝛽2

4(𝛽1 − 4) + 6𝛽2
5

(𝛽1 + 𝛽2)
2

 

=
2𝛽1

2𝛽2
2 + 6𝛽1𝛽2

3 + 2𝛽2
3𝛽1 + 6𝛽2

4 − 𝛽1
2𝛽2

2 − 4𝛽1𝛽2
3 − 4𝛽2

4

(𝛽1 + 𝛽2)
2

 

=
𝛽1
2𝛽2

2 + 6𝛽1𝛽2
3 + 2𝛽2

3𝛽1 − 4𝛽1𝛽2
3 + 2𝛽2

4

(𝛽1 + 𝛽2)
2

 

Also, 

𝑉𝑎𝑟(𝑌) =
𝛽2
2(𝛽1

2 + 4𝛽1𝛽2 + 4𝛽1 + 2𝛽2
2)

𝛽1
2 + 𝛽2

2 + 2𝛽1𝛽2
  ……… . .3.60 

Using Equation 3.38, the skewness of the marginal distribution of 𝑌 is obtained as 

follows: 

𝑠𝑘(𝑌) = {
𝛽2
3[𝛽1Γ4 + 𝛽2Γ5]

𝛽1 + 𝛽2
− 3 [

𝛽2
2(2𝛽1 + 6𝛽2)

𝛽1 + 𝛽2
] [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

+
2𝛽2

2(𝛽1 + 2𝛽2)
2

𝛽1 + 𝛽2
} ÷ {

𝛽2
2[2𝛽1

2 − 𝛽1𝛽2 + 𝛽2
2(𝛽1 − 4) + 6𝛽2

3]

𝛽1 + 𝛽2
}

3
2

 

Thus, 

𝑠𝑘(𝑌) =
8𝛽1

2𝛽2
3 + 2𝛽1

2𝛽2
2 + 8𝛽2

4 − 12𝛽2
5

(𝛽1 + 𝛽2)
2

∗
(𝛽1 + 𝛽2)

2(𝛽1 + 𝛽2)

𝛽2
2(2𝛽1

2 − 𝛽1𝛽2 + 𝛽2
2(𝛽1 − 4) + 6𝛽2

3)
3
2

 

=
(𝛽1 + 𝛽2)(8𝛽1

2𝛽2
3 + 2𝛽1

2𝛽2
2 + 8𝛽2

4 − 12𝛽2
5)

(2𝛽1
2𝛽2

2 − 𝛽1𝛽2
3 + 𝛽2

4(𝛽1 − 4) + 6𝛽2
5)
3
2

 

Now, suppose 𝛽1 = 𝛽2 = 1, we have that 

𝑠𝑘(𝑌) =
2(8 + 2 + 8 − 12)

(2 − 1 − 3 + 6)
3
2

=
12

8
= 1.5 
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Then, the marginal distribution of 𝑌 is positively skewed where 𝛽1 = 𝛽2 = 1. 

Using Equation 3.39, the kurtosis of the marginal distribution of 𝑌 is obtained as 

follows: 

𝑘𝑢(𝑌) = {
𝛽2
4(24𝛽1 + 6𝛽2)

𝛽1 + 𝛽2
− 4 [

𝛽2
3(6𝛽1 + 24𝛽2)

𝛽1 + 𝛽2
] [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

+ 6 [
𝛽2
2(2𝛽1 + 6𝛽2)

𝛽1 + 𝛽2
] [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

2

− 3 [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

4

}

÷ {
𝛽2
2(2𝛽1 + 6𝛽2)

𝛽1 + 𝛽2
− (

𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
)

2

}

2

 

Consider the numerator. 

𝛽2
4(24𝛽1 + 120𝛽2)

𝛽1 + 𝛽2
− 4 [

𝛽2
3(6𝛽1 + 24𝛽2)

𝛽1 + 𝛽2
] [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

+ 6 [
𝛽2
2(2𝛽1 + 6𝛽2)

𝛽1 + 𝛽2
] [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

2

− 3 [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

4

 

=
9𝛽1

4𝛽2
4 + 72𝛽1

3𝛽2
5 + 132𝛽1

2𝛽2
6 + 96𝛽1𝛽2

7 + 8𝛽2
8

(𝛽1 + 𝛽2)
4

 

Considering the denominator, 

{
𝛽2
2(2𝛽1 + 6𝛽2)

𝛽1 + 𝛽2
− [
𝛽2(𝛽1 + 2𝛽2)

𝛽1 + 𝛽2
]

2

}

2

=
(𝛽1

2𝛽2
2 + 4𝛽1𝛽2

3 + 2𝛽2
4)2

(𝛽1 + 𝛽2)
4

 

=
𝛽1
4𝛽2

4 + 8𝛽1
3𝛽2

5 + 20𝛽1
2𝛽2

6 + 16𝛽1𝛽2
7 + 4𝛽2

8

(𝛽1 + 𝛽2)
4
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∴ 𝑘𝑢(𝑌) =
9𝛽1

4𝛽2
4 + 72𝛽1

3𝛽2
5 + 132𝛽1

2𝛽2
6 + 96𝛽1𝛽2

7 + 8𝛽2
8

(𝛽1 + 𝛽2)
4

×
(𝛽1 + 𝛽2)

4

𝛽1
4𝛽2

4 + 8𝛽1
3𝛽2

5 + 20𝛽1
2𝛽2

6 + 16𝛽1𝛽2
7 + 4𝛽2

8 

=
9𝛽1

4𝛽2
4 + 72𝛽1

3𝛽2
5 + 132𝛽1

2𝛽2
6 + 96𝛽1𝛽2

7 + 48𝛽2
8

𝛽1
4𝛽2

4 + 8𝛽1
3𝛽2

5 + 20𝛽1
2𝛽2

6 + 16𝛽1𝛽2
7 + 4𝛽2

8  ………(3.61) 

Observation here is that all coefficients in the numerator are higher than their 

counterparts in the denominator. 

Suppose 𝛽1 = 𝛽2 = 1, we have that; 

𝑘𝑢(𝑌) =
357

46
= 7.761 

Thus, the kurtosis is greater than 3 which implies leptokurtic (Arua et al 1997). 

Suppose in Equation 3.47 we let 𝑐 =
3

2
 and 𝑑 =

1

2
, the 𝑛𝑡ℎ mgoment of the joint 

distribution of 𝑋
3

2 and 𝑌
1

2 about zero can be obtained as 

𝜇1 (
3

2
,
1

2
) = 𝐸 (𝑋

3
2, 𝑌

1
2) 

=
𝛽1

3
2𝛽2

1
2 [𝛽1Γ (

3
2
+ 2) Γ (

1
2
+ 1) + 𝛽2Γ (

3
2
+ 1) Γ (

1
2
+ 2)]

𝛽1 + 𝛽2
 

=
𝛽1

3
2𝛽2

1
2 [𝛽1Γ

7
2
Γ
3
2
+ 𝛽2Γ

5
2
Γ
5
2
]

𝛽1 + 𝛽2
 

=
𝛽1

3
2𝛽2

1
2 3
16
Γ (
1
2)

2

(5𝛽1 + 3𝛽2)

𝛽1 + 𝛽2
 

But Γ (
1

2
) = √𝜋 in Equation 3.25b. ∴ (Γ

1

2
)
2
= 𝜋 
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Hence, 

𝜇1 (
3

2
,
1

2
) =

𝛽1

3
2𝛽2

1
2 3𝜋
16
(5𝛽1 + 3𝛽2)

𝛽1 + 𝛽2
 …………… . (3.63) 

Using Equation 3.48 and substituting for 𝑐 =
3

2
, the 𝑛𝑡ℎ moment of the marginal 

distribution of 𝑋
3

2 about zero is 

𝜇𝑛 (
3

2
, 0) =

𝛽1

3𝑛
2 [𝛽1Γ (

3𝑛
2
+ 2) + 𝛽2Γ (

3𝑛
2
+ 1)]

𝛽1 + 𝛽2
 …… (3.64) 

Letting 𝑛 = 1, the first moment of the marginal distribution of 𝑋
3

2 becomes 

𝜇1 (
3

2
, 0) = 𝜇 (

3

2
, 0) =

𝛽1

3
2 [𝛽1Γ (

3
2
+ 2) + 𝛽2Γ (

3
2
+ 1)]

𝛽1 + 𝛽2
 

=
𝛽1

3
2 [𝛽1Γ (

7
2)
+ 𝛽2Γ (

5
2)
]

𝛽1 + 𝛽2
=

3
4
Γ (
1
2)
𝛽1

3
2 [
5
2
𝛽1 + 𝛽2]

𝛽1 + 𝛽2
 

∴ 𝜇 (
3

2
, 0) =

3√𝜋𝛽1

3
2 [
5
2
𝛽1 + 𝛽2]

4(𝛽1 + 𝛽2)
  …………(3.65) 

Suppose 𝑐 =
1

3
 and 𝑛 = 1 in Equation 3.48, we have that 

𝜇1 (
1

3
, 0) =

𝛽1

1
3 [𝛽1Γ (

7
3)
+ 𝛽2Γ (

4
3)
]

β1 + 𝛽2
=

1
3
Γ (
1
3)
𝛽1

1
3 (
4
3
𝛽1 + 𝛽2)

𝛽1 + 𝛽2
 

=

1
3
Γ (
1
3)
𝛽1

1
3 (
4𝛽1 + 3𝛽2

3 )

𝛽1 + 𝛽2
=

1
9
Γ (
1
3)
𝛽1

1
3(4𝛽1 + 3𝛽2)

𝛽1 + 𝛽2
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∴ 𝜇1 (
1

3
, 0) =

Γ (
1
3)
𝛽1

1
3(4𝛽1 + 3𝛽2)

9(𝛽1 + 𝛽2)
   …………… . (3.66) 

To illustrate the needed modification the probability distribution and moment 

generating function of the random variable, 𝑋, note from Equation 3.46 that  

𝑓(𝑥, 𝑦) = (𝑥 + 𝑦)
𝑒−(𝑥 𝛽1⁄ +𝑦 𝛽2⁄ )

𝛽1𝛽2(𝛽1 + 𝛽2)
     𝑥 > 0, 𝑦 > 0; 𝛽1, 𝛽2 > 0 

We obtain the marginal distribution of 𝑋 as 

𝑓(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦

∞

0

 

= 𝑘 [∫ 𝑥𝑒−𝑥 𝛽1⁄

∞

0

𝑒−𝑦 𝛽2⁄ 𝑑𝑦 + ∫ 𝑦𝑒−𝑥 𝛽1⁄ . 𝑒−𝑦 𝛽2⁄ 𝑑𝑦

∞

0

] 

where 𝑘 =
1

𝛽1𝛽2(𝛽1+𝛽2)
 

= 𝑘 [𝑥𝑒−𝑥 𝛽1⁄ ∫ 𝑒−𝑦 𝛽2⁄ 𝑑𝑦

∞

0

+ 𝑒−𝑥 𝛽1⁄ ∫ 𝑦𝑒−𝑦 𝛽2⁄ 𝑑𝑦

∞

0

] 

Integrating with transformation to gamma function gives 

= 𝑘[𝑥𝑒−𝑥 𝛽1⁄ (𝛽2) + 𝛽2
2𝑒𝑥 𝛽1⁄ ] 

Substituting for 𝑘 and evaluating, we have 

𝑓(𝑥) =
𝑥𝑒−𝑥 𝛽1⁄ + 𝛽2𝑒

−𝑥 𝛽1⁄

𝛽1(𝛽1 + 𝛽2)
   − − − −−−−−− (3.67) 

therefore, the 𝑝𝑑𝑓 of 𝑌 = 𝑋𝑐;  𝑐 ≥ 0 is, using the theorem, 

𝑓(𝑦) = 𝑓(𝑔−1(𝑦)).
𝑑[𝑔−1(𝑦)]

𝑑𝑦
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where 𝑦 = 𝑔(𝑥) and 𝑥 = 𝑔−1(𝑦) 

(William and Richard, 1973 and Chukwu and Amuji, 2012). 

Now, 

𝑦 = 𝑔(𝑥) = 𝑋𝑐 

⇒ 𝑥 = 𝑔−1(𝑦) = 𝑦
1
𝑐  

∴
𝑑𝑥

𝑑𝑦
=
1

𝑐
𝑦
1
𝑐
−1 

⇒ 𝑑𝑥 =
1

𝑐
𝑦
1
𝑐
−1𝑑𝑦 

∴ 𝑓(𝑦) = [
𝑦
1
𝑐𝑒−𝑦

1
𝑐 𝛽1⁄ + 𝛽2𝑒

−𝑦
1
𝑐 𝛽1⁄

𝛽1(𝛽1 + 𝛽2)
]
1

𝑐
𝑦
1
𝑐
−1 

∴ 𝑓(𝑦) =
1

𝑐
[
𝑦
2
𝑐
−1𝑒−𝑦

1
𝑐 𝛽1⁄ + 𝛽2𝑦

1
𝑐
−1𝑒−𝑦

1
𝑐 𝛽1⁄

𝛽1(𝛽1 + 𝛽2)
] 

∴ 𝑀𝑦(𝑡) = 𝑀𝑋𝑐(𝑡) = 𝐸(𝑒
𝑡𝑥𝑐) = 𝐸(𝑒𝑡𝑦) 

=
1

𝑐[𝛽1(𝛽1 + 𝛽2)]
{∫ 𝑦

2
𝑐
−1𝑒

−
𝑦
1
𝑐

𝛽1

∞

0

. 𝑒𝑡𝑦 . 𝑑𝑦 + 𝛽2∫ 𝑦
1
𝑐
−1𝑒

−
𝑦
1
𝑐

𝛽1 . 𝑒𝑡𝑦. 𝑑𝑦

∞

0

} 

𝑀𝑦(𝑡) = 𝑘 (∫ 𝑦
2
𝑐
−1𝑒

−
𝑦
1
𝑐

𝛽1

∞

0

. 𝑒𝑡𝑦 . 𝑑𝑦 + ∫ 𝑦
1
𝑐
−1

∞

0

𝑒
−
𝑦
1
𝑐

𝛽1 . 𝑒𝑡𝑦 . 𝑑𝑦) 

where 𝑘 =
1

𝑐[𝛽1(𝛽1+𝛽2)]
 

Let 
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𝑦
1
𝑐

𝛽1
= 𝑣 ⇒ 𝑦 = (𝛽1𝑣)

𝑐; 𝑑𝑦 = 𝑐𝛽1
𝑐𝑣𝑐−1𝑑𝑣 

∴ 𝑀𝑌(𝑡) = 𝑘∫(𝛽1
𝑐𝑣𝑐)

2
𝑐
−1𝑒−𝑣𝑒𝑡(𝛽1

𝑐𝑣𝑐)𝑐𝛽1
𝑐𝑣𝑐−1𝑑𝑣

∞

0

+ 𝑘𝛽2∫(𝛽1
𝑐𝑣𝑐)

1
𝑐
−1𝑒−𝑣. 𝑒𝑡(𝛽1𝑣)

𝑐
. 𝑐𝛽1

𝑐𝑣𝑐−1𝑑𝑣

∞

0

 

Considering the first term, 

𝑘𝑐∫(𝛽1
𝑐𝑣𝑐)

2
𝑐
−1. 𝛽1

𝑐𝑣𝑐−1𝑒−𝑣𝑒𝑡(𝛽1
𝑐𝑣𝑐)𝑑𝑣

∞

0

 

= 𝑘𝑐∫ [1 +
𝑡(𝛽1

𝑐𝑣𝑐)

1!
+ ⋯+

𝑡𝑟(𝛽1
𝑐𝑣𝑐)𝑟

𝑟!
+ ⋯]

∞

0

𝑒−𝑣𝛽1
2𝑣 

Substituting for 𝑘 and evaluating gives 

𝛽1
(𝛽1 + 𝛽2)

∫ 𝑣 (1 +
𝑡

1!
(𝛽1

𝑐𝑣𝑐) + ⋯+
𝑡𝑟

𝑟!
(𝛽1

𝑐𝑣𝑐)𝑟 +⋯) 𝑒−𝑣𝑑𝑣

∞

0

 

Now, considering the second term; 

𝑘𝛽2∫(𝛽1
𝑐𝑣𝑐)

1
𝑐
−1𝑒−𝑣𝑒𝑡(𝛽1𝑣)

𝑐
. 𝑐. 𝛽1

𝑐𝑣𝑐−1𝑑𝑣

∞

0

= 𝑘𝑐𝛽2𝛽1∫ 𝑒𝑡(𝛽1𝑣)
𝑐
𝑒−𝑣𝑑𝑣

∞

0

 

= 𝑘𝑐𝛽1𝛽2∫ 𝑒𝑡(𝛽1𝑣)
𝑐

∞

0

𝑒−𝑣𝑑𝑣 

= 𝑘𝑐𝛽2𝛽1∫ [1 +
𝑡

1!
(𝛽1

𝑐𝑣𝑐) + ⋯+
𝑡𝑟

𝑟!
(𝛽1

𝑐𝑣𝑐)𝑟 +⋯] 𝑒−𝑣𝑑𝑣

∞

0
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Substituting for 𝑘 and evaluating we have, 

𝛽2
𝛽1 + 𝛽2

∫ (1 +
𝑡

1!
(𝛽1

𝑐𝑣𝑐) + ⋯+
𝑡𝑟

𝑟!
(𝛽1

𝑐𝑣𝑐)𝑟 +⋯)

∞

0

𝑒−𝑣𝑑𝑣 

Thus, 

𝑀𝑌(𝑡) =
𝛽1

(𝛽1 + 𝛽2)
∫ 𝑣 [1 +

𝑡

1!
(𝛽1

𝑐𝑣𝑐) + ⋯+
𝑡𝑟

𝑟!
(𝛽1

𝑐𝑣𝑐)𝑟 +⋯] 𝑒−𝑣𝑑𝑣

∞

0

+
𝛽2

(𝛽1 + 𝛽2)
∫ [1 +

𝑡

1!
(𝛽1

𝑐𝑣𝑐) + ⋯+
𝑡𝑟

𝑟!
(𝛽1

𝑐𝑣𝑐)𝑟 +⋯] 𝑒−𝑣𝑑𝑣

∞

0

 

=
𝛽1

(𝛽1 + 𝛽2)
∫ [𝑣𝑒−𝑣𝑑𝑣 +

𝑡

1!
𝛽1
𝑐𝑣𝑐+1𝑒−𝑣𝑑𝑣 + ⋯+

𝑡𝑟

𝑟!
𝛽1
𝑐𝑟𝑣𝑐𝑟+1𝑒−𝑣𝑑𝑣 +⋯]

∞

0

+
𝛽2

(𝛽1 + 𝛽2)
∫[𝑒−𝑣𝑑𝑣 +

𝑡

1!
𝛽1𝑣𝑒

−𝑣𝑑𝑣

∞

0

+⋯+
𝑡𝑟

𝑟!
𝛽1
𝑐𝑟𝑣𝑐𝑟𝑒−𝑣𝑑𝑣 +⋯] 

𝑀𝑌(𝑡) =
1

(𝛽1 + 𝛽2)
(𝛽1∑

𝑡𝑟

𝑟!

∞

𝑟=0

𝛽1
𝑐𝑟Γ(𝑐𝑟 + 2) + 𝛽2∑

𝑡𝑟

𝑟!
𝛽𝑐𝑟

∞

𝑟=0

Γ(𝑐𝑟 + 1)) 

∴ 𝑀𝑌(𝑡) =
𝛽1∑

𝑡𝑟

𝑟!
𝛽1
𝑐𝑟Γ(𝑐𝑟 + 2) + 𝛽2∑

𝑡𝑟

𝑟!
𝛽1
𝑐𝑟Γ(𝑐𝑟 + 1)∞

𝑟=0
∞
𝑟=0

𝛽1 + 𝛽2
 − − − −− (3.68) 

The 𝑛𝑡ℎ moment of the distribution of 𝑌 = 𝑋𝑐  about zero is taken as the co-efficient 

of ∑
𝑡𝑟

𝑟!
∞
𝑟  or the 𝑛𝑡ℎ derivative of 𝑀𝑌(𝑡) with respect to 𝑡, evaluated at 𝑡 = 0, in the 

expansion of Equation 3.68. 

That is, 

𝑀𝑌
(𝑛)(𝑜) = 𝑀𝑋𝑐

(𝑛)(0) =
𝛽1
𝑐𝑛[𝛽1Γ(𝑐𝑛 + 2) + 𝛽2Γ(𝑐𝑛 + 1)]

𝛽1 + 𝛽2
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∴ 𝑀𝑌
(𝑛)(0) =

𝑐𝑛Γ(𝑐𝑛)𝛽1
𝑐𝑛[𝛽1(𝑐𝑛 + 1) + 𝛽2]

𝛽1 + 𝛽2
            (3.69) 

The modification yields the same result as 𝜇𝑥𝑛(𝑐) in Equation 3.48. 

3.6 GENERALIZED MULTIVARIATE MOMENT GENERATING FUNCTION                         

(GMMGF) 

This section develops the generalized moment generating function for multivariate 

random variable 𝑌 = 𝑋𝑐  about a constant vector or matrix, 𝜆. This is called the 

Multivariate Generalized Moment Generating Function, 𝑮𝑛(𝑐; 𝝀).  

Suppose 𝑡 ∈ ℝ is a (𝑝 × 𝑝) square matrix or a (𝑝 × 1) column vector, 𝑌 = 𝑋𝑐  and 

𝑐 ∈ ℝ. 

Therefore, 

𝑀(𝑌;𝜆)(𝑡) = 𝑀(𝑋𝑐;𝜆)(𝑡) = 𝐸(𝑒
𝑡′(𝑋𝑐+𝜆))    − − − −−−−−(3.70) 

Equation 3.70 may be read as the moment generating function of 𝑋𝑐 about 𝜆. 

Equation 3.70 may be evaluated with the Maclaurin’s series expansion as 

𝐸(𝑒𝑡
′(𝑋𝑐+𝜆)) = 𝐸 (∑

[𝑡′(𝑋𝑐 + 𝜆)]𝑛

𝑛!

∞

𝑛=0

) = ∑
(𝑡′)𝑛

𝑛!
𝐸(𝑋𝑐 + 𝜆)𝑛

∞

𝑛=0

 

∴ 𝑀(𝑋𝑐;𝜆)(𝑡) = 𝐸(𝑋
𝑐 + 𝜆)𝑛∑

(𝑡′)𝑛

𝑛!

∞

𝑛=0

 − − − −−−− −(3.71) 

The coefficient of ∑
(𝑡′)𝑛

𝑛!
∞
𝑛=0  in Equation 3.71 yields the 𝑛𝑡ℎ moment of the random 

variable 𝑌 = 𝑋𝑐  and may be termed the Multivariate Generalized Moment 

Generating Function, 𝑮𝑛(𝑐; 𝝀). It generates all conceivable moments of 𝑿𝑐 about  𝝀. 

Obviously, if 𝑐 = 1, 𝜆 = 0 and 𝑛 = 1, Equation 3.71 yields the first moment of 𝑿 

about zero also called the mean of the distribution of 𝑿. 
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If 𝑐 = 1, 𝜆 = −𝜇, and 𝑛 = 2, we have from Equation 3.71 that 𝐺𝑛(1;−𝜇) =

𝑉𝑎𝑟(𝑋). That is; 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋 − 𝜇)2 

Higher moments of the distribution of 𝑋 are similarly obtained by varying the value 

of 𝑛 accordingly. 

Equation 3.71 may be evaluated as 

𝑮𝑛(𝑐; 𝝀) = 𝐸(𝑿
𝑐 + 𝝀)𝑛 = 𝐸 (∑(

𝑛
𝑟
)

𝑛

𝑟=0

𝝀𝑛−𝑟𝑿𝑐𝑟)

=∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝝀𝑛−𝑟𝐸(𝑿𝑐𝑟)  − − − −(3.72) 

(Riordan, 1958) 

The Generalized Multivariate Moment Generating Functions, 𝐺𝑛(𝑐; 𝜆) will be 

developed for the Multivariate Gamma, Normal and the Dirrichlet Distributions. 

3.7 GENERALIZED MULTIVARIATE MOMENT GENERATING FUNCTION 

(GMMGF) FOR THE MULTIVARIATE GAMMA DISTRIBUTION 

Let 𝑋 be a positive-definite real 𝑝 × 𝑝 matrix distributed as Multivariate Gamma 

with shape parameter, 𝛼, scale parameter, 𝛽, and scale, Σ (a positive-definite real 

𝑝 × 𝑝 matrix). Then, the probability density function, PDF, of 𝑋 is given as, 

𝑓(𝑋) =
|Σ|−𝛼

𝛽𝑝𝛼Γ𝑝(𝛼)
|𝑋|𝛼−(𝑝+1) 2⁄ 𝑒𝑥𝑝 (𝑡𝑟 (−

1

𝛽
Σ−1𝑋))  − − − − −−− (3.73𝑎) 

where Γ𝑝 is the multivariate gamma function. (Gupta and Nagar, 1999 and Royen, 

2006) 
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Where the shape parameter, 𝛼 =
𝜂

2
, and the scale parameter, 𝛽 = 2, the 

Multivariate Gamma Distribution reduces to the Wishart Distribution. 

𝑓(𝑿) =
|𝑣|−

𝜂
2

2
𝜂𝑝
2 Γ𝑝 (

𝜂
2)
 |𝑋|

𝜂−𝑝−1
2 𝑒−

1
2
𝑡𝑟(𝑣−1𝑿)  − − − −−−− − (3.73𝑏) 

(Wishart 1928). 

Equation 3.73b gives the wishart distribution for 𝛽 = 2 and 𝛼 =
𝜂

2
 where 𝜂 is the 

sample size. 

Γ𝑝 is defined in two forms. In the first definition, 

Γ𝑝(𝛼) = ∫ 𝑒𝑥𝑝(−𝑡𝑟(𝑠))

𝑠>0

|𝑠|𝛼−(𝑝+1) 2⁄ 𝑑𝑠 − − − −−−−−− (3.74) 

where 𝑠 > 0 means 𝑠 is positive-definite. 

The other definition, more useful in practice, is 

Γ𝑝(𝛼) = 𝜋
𝑝(𝑝−1) 4⁄ ∏Γ[𝛼 + (1 − 𝑗) 2⁄ ]

𝑝

𝑗=1

−− −−−−−−−− (3.75) 

(James, 1964 and Royen, 2006). 

From Equation 3.75 we have the recursive relationship: 

Γ𝑝(𝛼) = 𝜋
(𝑝−1) 2⁄ Γ(𝛼)Γ𝑝−1 (𝛼 −

1

2
) = 𝜋(𝑝−1) 2⁄ Γ𝑝−1(𝛼). Γ[𝛼 + (1 − 𝑝) 2⁄ ]   (3.76) 

Thus, 



80 
 

Γ1(𝛼) = Γ(𝛼)

Γ2(𝛼) = 𝜋
1 2⁄ Γ(𝛼)Γ (𝛼 −

1

2
)

Γ3(𝛼) = 𝜋
3 2⁄ Γ(𝛼)Γ (𝛼 −

1

2
) Γ(𝛼 − 1)}

 
 

 
 

−−−− −−−−(3.77) 

and so on. (James 1964) 

Now, applying Equation 3.72, the generalized moment generating function about 

𝜆𝑝×𝑝 is developed as 

𝑮𝑛(𝑐; 𝝀) = 𝐸(𝑿
𝑐 + 𝝀)𝑛 = 𝐸 (∑𝝀𝑛−𝑟 . 𝑿𝑐𝑟 . (

𝑛
𝑟
)

𝑛

𝑟=0

) =∑(
𝑛
𝑟
) 𝜆𝑛−𝑟𝐸(𝑿𝑐𝑟)

𝑛

𝑟=0

 

where 𝐸(𝑋𝑐𝑟) = ∫ 𝑥𝑐𝑟
∞

−∞
𝑓(𝑥)𝑑𝑥, for 𝑝 −variate gamma distribution from Equation 

3.73 is 

∑(
𝑛
𝑟
)𝜆𝑛−𝑟 ∫

|Σ|−𝛼

𝛽𝑝𝛼Γ𝑝(𝛼)
|𝑋|𝑐𝑟+𝛼−(𝑝+1) 2⁄ 𝑒𝑥𝑝 (𝑡𝑟 (−

1

𝛽
𝚺−1𝑋))

𝑋>0

𝑑𝑿

𝑛

𝑟=0

 

=∑(
𝑛
𝑟
) 𝜆𝑛−𝑟

|Σ|−𝛼

𝛽𝑝𝛼Γ𝑝(𝛼)
∫|𝑋|𝑐𝑟+𝛼−(𝑝+1) 2⁄ 𝑒𝑥𝑝 (𝑡𝑟 (−

1

𝛽
𝚺−1𝑋))

𝑋>0

𝑑𝑿

𝑛

𝑟=0

 

=∑(
𝑛
𝑟
) 𝝀𝑛−𝑟

|𝚺|𝛼+𝑐𝑟𝛽𝑝(𝛼+𝑐𝑟)Γ𝑝(𝛼 + 𝑐𝑟)

𝚺𝛼𝛽𝑝𝛼Γ𝑝(𝛼)

𝑛

𝑟=0

 

∴ 𝑮𝑛(𝑐; 𝝀) = 𝐸(𝑿
𝑐 + 𝝀)𝑛 =∑(

𝑛
𝑟
) 𝝀𝑛−𝑟

|𝚺|𝑐𝑟𝛽𝑝𝑐𝑟Γ𝑝(𝛼 + 𝑐𝑟)

Γ𝑝(𝛼)

𝑛

𝑟=0

 − − − −− (3.78) 

Substituting 𝛽 = 2 and 𝛼 =
𝜂

2
 in Equation 3.78 gives the multivariate generalized 

moment generating function of the wishart distribution as 
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𝑮𝑛(𝑐; 𝝀) =∑(
𝑛
𝑟
)𝝀𝑛−𝑟

|𝚺|𝑐𝑟2𝑝𝑐𝑟Γ𝑝 (
𝜂
2
+ 𝑐𝑟)

Γ𝑝 (
𝜂
2)

𝑛

𝑟=0

  − − − −−−−− (3.79) 

Equation 3.79 depends on 𝑝, the number of variables, and 𝜂, the number of 

observations (sample size), which shows that it is the  Multivariate Generalized 

Moment Generating Function, 𝑮𝑛(𝑐; 𝝀), of a 𝑝 −variate extension of the chi-square 

random variable. 

The practical application of this function is better appreciated where 𝑛 = 1. That is, 

𝑛 = 1, 𝑟 = 0, 1 𝑎𝑛𝑑 𝑐 = 1 

𝑮1(1;  𝝀) =∑(
1
0
)

1

𝑟=0

𝝀1−𝑟
𝚺𝑟𝛽𝑝𝑟Γ𝑝(𝛼 + 𝑟)

Γ𝑝(𝛼)
  − − − −−−− − (3.79𝑎) 

= (
1
0
)𝝀 + (

1
1
)
𝚺𝛽𝑝Γ𝑝(𝛼 + 1)

Γ𝑝(𝛼)
= 𝝀 + 𝛼𝛽𝑝Σ   − − − − −−(3.79b) 

Now substituting 𝜆 with −𝜆 in order to get the first central moment, it implies that 

−𝝁 + 𝛼𝛽𝑝𝚺 = ((0))
𝒑×𝒑

 

∴ 𝝀 = 𝛽𝑝𝛼𝚺 = 𝛽𝑝−1(𝛼𝛽𝚺) − − −−−   (3.79𝑐)                           

The coefficient of 𝛽𝑝−1 in Equation 3.79c is the mean of the distribution while 𝛽𝑝−1 

indicates that the dimension (number of variables) of the distribution is 𝑝. 

Where 𝛽 = 2, 𝛼 =
𝜂

2
, we have for the Wishart distribution; 

𝝀 = 2𝑝−1 (2
𝑛

2
𝚺) = 2𝑝−1(𝑛𝚺) − − − −−−−−  (3.79𝑑) 

This may be interpreted as a 𝑝 −variate Wishart distribution with mean, 𝑛𝚺, which 

is the coefficient of 2𝑝−1 in Equation 3.79d. 
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To further illustrate the use of the Generalized Multivariate Moment Generating 

Function, suppose 𝑐 = 1, 𝑛 = 2, 𝑟 = 0, 1, 2 and 𝑝 = 3, we have from Equation 3.78 

𝑮2(𝑐; 𝝀) = 𝐸(𝑿
𝑐 + 𝝀)2 =∑(

2
𝑟
)𝝀2−𝑟

Γ𝑝(𝑟 + 𝛼)

Γ𝑝(𝛼)
𝚺𝑟𝛽3𝑟

2

𝑟=0

 

= 𝝀′𝝀 +
2Γ2(𝛼 + 1)Γ(𝛼)𝝀

′𝚺𝛽3

Γ2(𝛼)Γ(𝛼 − 1)
+
Γ2(𝛼 + 2)Γ(𝛼 + 1)𝚺

′𝚺𝛽6

Γ2(𝛼)Γ(𝛼 − 1)
 

Evaluating further using equation of 3.77 yields 

𝑮2(1; 𝝀) = 𝝀
′𝝀 +

2𝜋
1
2Γ(𝛼 + 1)Γ (𝛼 +

1
2)
Γ(𝛼)𝝀′𝚺𝛽3

𝜋
1
2. Γ(𝛼). Γ (𝛼 −

1
2)
Γ(𝛼 − 1)

+
𝜋
1
2Γ(𝛼 + 2)Γ (𝛼 −

3
2)
Γ(𝛼 + 1)𝚺′𝚺𝛽6

𝜋
1
2Γ(𝛼)Γ (𝛼 −

1
2)
. Γ(𝛼 − 1)

 

∴ 𝑮2(1; 𝝀) = 𝝀
′𝝀 +

2Γ(𝛼 + 1)Γ (𝛼 +
1
2)
𝝀′𝚺𝛽3

Γ (𝛼 −
1
2)
Γ(𝛼 − 1)

+
Γ(𝛼 + 2). Γ (𝛼 −

3
2)
Γ(𝛼 + 1)𝚺′𝚺𝛽6

Γ(𝛼)Γ (𝛼 −
1
2)
Γ(𝛼 − 1)

   − − − − (3.80) 

Thus, for the wishart distribution, where 𝛽 = 2 and 𝛼 =
𝜂

2
, we have 

𝑮2(1; 𝝀) = 𝝀
′𝝀 +

2Γ (
𝜂
2
+ 1)Γ (

𝜂
2
+
1
2)
𝝀′𝚺23

Γ (
𝜂
2
−
1
2)
Γ (
𝜂
2
− 1)

+
Γ (
𝜂
2
+ 2) . Γ (

𝜂
2
−
3
2)
Γ (
𝜂
2
+ 1)𝚺′𝚺26

Γ (
𝜂
2)
Γ (
𝜂
2
−
1
2)
Γ (
𝜂
2
− 1)
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∴ 𝑮2(1; 𝜆) = 𝝀
′𝝀 +

16Γ (
𝜂 + 2
2 ) Γ (

𝜂 + 1
2 ) 𝝀′𝚺

Γ (
𝜂 − 1
2 ) Γ (

𝜂 − 2
2 )

+
64Γ(

𝜂 + 4
2 ) . Γ (

𝜂 − 3
2 )Γ (

𝜂 + 2
2 )𝚺′𝚺

Γ (
𝜂
2)
Γ (
𝜂 − 1
2 ) Γ (

𝜂 − 2
2 )

  − − − −−− (3.81) 

This is the second moment of a 𝑝 = 3 variate Wishart distribution about 𝝀. It is a 

function of 𝜂, the number of observations (sample size). 

3.8 CASE OF INDEPENDENCE OF GAMMA RANDOM VARIABLES 

Suppose 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑝 are independent gamma random variables each with 

probability density function 

𝑓(𝑥𝑖) =
1

𝛽𝑖
𝛼𝑖Γ(𝛼𝑖)

𝑥𝑖
𝛼𝑖−1𝑒−𝑥𝑖 𝛽𝑖⁄ −−−−−−−− (3.82) 

then, the joint density function of the random variable is 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑝) =∏
𝑥𝑖
𝛼𝑖−1𝑒−𝑥𝑖 𝛽𝑖⁄

𝛽𝑖
𝛼𝑖Γ(𝛼𝑖)

𝑝

𝑖=1

 − − − −−− (3.83) 

(Furman, 2008) 

Hence, the generalized moment generating function about 𝜆 of the joint distribution 

of the 𝑝 independent gamma random variables is obtained as follows: 

𝑮𝑛(𝑐; 𝜆) = (∑(
𝑛
𝑟
)𝝀𝑛−𝑟

𝑛

𝑟=0

)

𝑝

𝐸(𝑿𝑐𝑟) 

where 
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𝐸(𝑋𝑐𝑟) =∏∫
𝑥𝑖
𝛼𝑖+𝑐𝑟−1𝑒−𝑥𝑖 𝛽𝑖⁄ 𝑑𝑥𝑖

𝛽𝑖
𝛼𝑖Γ(𝛼𝑖)

∞

0

𝑝

𝑖=1

 

Let  

𝑥𝑖
𝛽𝑖
= 𝑦𝑖;   𝑥𝑖 = 𝛽𝑖𝑦𝑖;   

𝑑𝑥𝑖
𝑑𝑦𝑖

;  ⇒ 𝑑𝑥𝑖 = 𝛽𝑖𝑑𝑦𝑖  

∴ 𝐸(𝑋𝑐𝑟) =∏∫
(𝛽𝑖𝑦𝑖)

(𝛼𝑖+𝑐𝑟)−1𝑒−𝑦𝑖𝛽𝑖𝑑𝑦𝑖

𝛽𝑖
𝛼𝑖Γ(𝛼𝑖)

∞

0

𝑝

𝑖=1

=∏
𝛽𝑖
𝑐𝑟

Γ(𝛼𝑖)

𝑝

𝑖=1

∫ 𝑦𝑖
(𝛼𝑖+𝑐𝑟)−1𝑒−𝑦𝑖

∞

0

𝑑𝑦𝑖 

=∏
𝛽𝑖
𝑐𝑟Γ(𝛼𝑖 + 𝑐𝑟)

Γ(𝛼𝑖)

𝑝

𝑖=1

 

∴ 𝑮𝑛(𝑐; 𝝀) = (∑(
𝑛
𝑟
)𝝀𝑛−𝑟

𝑛

𝑟=0

)

𝑝

∏𝛽𝑖
𝑐𝑟
Γ(𝛼𝑖 + 𝑐𝑟)

Γ(𝛼𝑖)

𝑝

𝑖=1

  − − − − (3.84) 

Suppose 𝑐, 𝜆, 𝑛 and 𝑟 vary amongst the random variables, we have that 

𝑮𝑛𝑖(𝑐𝑖; 𝜆𝑖) =∏∑ (
𝑛𝑖
𝑟𝑖
) 𝜆𝑖

𝑛𝑖−𝑟𝑖𝛽𝑖
𝑐𝑖𝑟𝑖

Γ(𝛼𝑖 + 𝑐𝑖𝑟𝑖)

Γ(𝛼𝑖)

𝑛𝑖

𝑟𝑖=0

𝑝

𝑖=1

  − − − − (3.85) 

However, if all the parameters (𝑐𝑖 , 𝜆𝑖 , 𝛽𝑖 , 𝛼𝑖 , 𝑛𝑖 and 𝑟𝑖) are constant for all the random 

variables, we have 

𝑮𝑛𝑖(𝑐𝑖; 𝜆𝑖) = 𝑮𝑛(𝑐; 𝜆) = [∑(
𝑛
𝑟
)𝝀𝑛−𝑟

𝛽𝑐𝑟Γ(𝛼 + 𝑐𝑟)

Γ(𝛼)

𝑛

𝑟=0

]

𝑝

−−−− (3.86) 

Example: Suppose all parameters are constant for a 𝑝-independent-variate gamma 

distribution; 𝑛 = 2, 𝑐 = 1, 𝜆 = −𝜇 = −𝛼𝛽 then, 

𝐺2(1; (−𝛼𝛽)) = [𝜆
2 + 2𝛼𝛽𝜆

Γ(𝛼)

Γ(𝛼)
+ 𝛽2(𝛼 + 1)𝛼

Γ(𝛼)

Γ(𝛼)
]

𝑝
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= [(−𝛼𝛽)2 + 2(−𝛼𝛽)(𝛼𝛽) + 𝛼(𝛼 + 1)𝛽2]𝑝 = [−(𝛼𝛽)2 + (𝛼𝛽)2 + 𝛼𝛽2]𝑝 

∴ 𝑮2[1; (−𝛼𝛽)] = (𝛼𝛽
2)𝑝  − − − −  (3.87) 

Thus, the second moment about the mean of 𝑝-dimensional independent 

multivariate gamma random variable is the 𝑝𝑡ℎ power of the variance of their 

univariate equivalents. 

3.9 GENERALIZED MULTIVARIATE MOMENT GENERATING FUNCTION (GMMGF) OF 

THE NORMAL DISTRIBUTION 

A random variable, 𝑋, is said to have a univariate normal density if its density 

function is of the form: 

𝑓(𝑋) =
1

√2𝜋𝜎
𝑒
−
1
2
(
𝑥−𝜇
𝜎

)
2

−−− − (3.88) 

The joint density of independent normal variates, 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑝 is 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑝) =
1

(2𝜋)
𝑝
2𝜎1… 𝜎𝑝

𝑒
−
1
2
∑ (

𝑥𝑖−𝜇𝑖
𝜎𝑖

)
2𝑝

𝑖=1 −−−− (3.89) 

Let    

𝑿(𝑝×1) =

(

 
 
 

𝑥1
𝑥2
.
.
.
𝑥𝑝)

 
 
 

, 𝝁(𝑝×1) =

(

 
 
 

𝜇1
𝜇2
.
.
.
𝜇𝑝)

 
 
 

 and 𝚺(𝑝×𝑝) =

(

 

𝜎1
2 0 ⋯ 0

0 𝜎2
2  ⋯ 0

⋮ ⋮ ⋮
0 0 … 𝜎𝑝

2
)

  

Then, 

𝑓(𝑿) =
1

(2𝜋)
𝑝
2|𝚺|

1
2

𝑒𝑥𝑝 [−
1

2
(𝑿 − 𝝁)′𝚺−1(𝑿 − 𝝁)] − − − − (3.90) 

−∞ ≤ 𝑿 ≤ ∞, |𝚺| > 0 
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The covariance matrix of the random vector, 𝑿, with correlated random variables is 

given as 

𝚺 = (

𝜎11 𝜎12… 𝜎1𝑝
𝜎21 𝜎22… 𝜎2𝑝
⋮ ⋮ ⋮
𝜎𝑝1 𝜎𝑝2… 𝜎𝑝𝑝

) 

By substituting this in Equation 3.90, it becomes the multivariate density function 

of the random vector of 𝑝 −correlated random variables. (Ogum 2002; Onyeagu 

2003; Johnson and Wichern 1992) 

Thus 𝑿~𝑁𝑝(𝝁, 𝚺). 

From Equation 3.72, 

𝑮𝑛(𝑐; 𝝀) = 𝐸(𝑿
𝑐 + 𝝀)𝑛 =∑(

𝑛
𝑟
)

𝑛

𝑟=0

𝝀𝑛−𝑟𝐸(𝑿𝑐𝑟) 

where 

𝐸(𝑿𝑐𝑟) = ∫ 𝑿𝑐𝑟
∞

−∞

𝑓(𝑿)𝑑𝑿𝑝 

∴ 𝐸(𝑿𝑐𝑟) = ∫
𝑿𝑐𝑟

(2𝜋)
𝑝
2|𝚺|

1
2

∞

−∞

𝑒𝑥𝑝 [−
1

2
(𝑿 − 𝝁)′Σ−1(𝑿 − 𝝁)] 𝑑𝑿𝑝 

𝐸(𝑿𝑐𝑟) = ∫ … ∫
𝑿𝑐𝑟

(2𝜋)
𝑝
2|𝚺|

1
2

𝑒
−[
1
2
∑ (

𝑥𝑖−𝜇𝑖
𝜎𝑖

)
2𝑝

𝑖=1 ]
𝑑𝑥1…𝑑𝑥𝑝

∞

−∞

∞

−∞

 

Let 

(
𝑥𝑖 − 𝜇𝑖

𝜎𝑖√2
)

2

= 𝑣𝑖; ⇒ 𝑣
𝑖

1
2 =

𝑥𝑖 − 𝜇𝑖

𝜎𝑖√2
; 𝑥𝑖 = 𝜇𝑖 + 𝜎𝑖√2𝑣𝑖

1
2;  
𝑑𝑥𝑖
𝑑𝑣𝑖

= √2𝜎𝑖
1

2
𝑣
𝑖

1
2 
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∴ 𝑑𝑥𝑖 =
𝜎𝑖𝑣𝑖

−
1
2

√2
𝑑𝑣𝑖 

Hence, 

𝐸(𝑿𝑐𝑟) =
1

(2𝜋)
𝑝
2|Σ|

1
2

∫ … ∫ (𝜇𝑖 + 𝜎𝑖√2𝑣𝑖

1
2)

𝑐𝑟∞

−∞

∞

−∞

. 𝑒
−
1
2
∑ (

𝑥𝑖−𝜇𝑖
𝜎𝑖

)
2𝑝

𝑖=1 𝑑𝑥1…𝑑𝑥𝑝 

=
2𝑝

(2𝜋)
𝑝
2|Σ|

1
2

∫ … ∫ (𝜇𝑖 + 𝜎𝑖√2𝑣𝑖

1
2)

𝑐𝑟∞

0

∞

0

𝑒
−
1
2
∑ (

𝑥𝑖−𝜇𝑖
𝜎𝑖

)
2𝑝

𝑖=1 𝑑𝑥1… . 𝑑𝑥𝑝 

But, 

(𝜇𝑖 + 𝜎𝑖√2𝑣𝑖

1
2)

𝑐𝑟

=∑(
𝑛
𝑡
)

𝑐𝑟

𝑡=0

𝜇𝑖
𝑐𝑟−𝑡(2𝜎𝑖

2𝑣𝑖)
𝑡
2 

Now, 

𝐸(𝑿𝑐𝑟) =
∑ (

𝑐𝑟
𝑡
) 𝜇𝑖

𝑐𝑟−𝑡2𝑝(2𝑝𝜎𝑖
2)
𝑡
2𝑐𝑟

𝑡=0

(2𝜋)
𝑝
2|𝚺|

1
2

∫ …∫ 𝑣
𝑖

𝑡
2

∞

0

∞

0

𝑒−∑ 𝑣𝑖
𝑝
𝑖=1 .

𝜎𝑖𝑣𝑖
−
1
2

√2
𝑑𝑣1…𝑑𝑣𝑝 

𝐸(𝑿𝑐𝑟) =
∑ (

𝑐𝑟
𝑡
) 𝜇𝑖

𝑐𝑟−𝑡2𝑝(2𝑝𝜎𝑖
2)
𝑡
2𝑐𝑟

𝑡=0

(2𝜋)
𝑝
2|𝚺|

1
2

.
𝜎𝑖

2
𝑝
2

∫ …∫ 𝑣
𝑖

(
𝑡
2
+
1
2
)−1

∞

0

∞

0

𝑒−∑ 𝑣𝑖
𝑝
𝑖=1 𝑑𝑣1…𝑑𝑣𝑝 

=
∑ (

𝑐𝑟
𝑡
)𝑐𝑟

𝑡=0 𝝁𝑐𝑟−𝑡2𝑝(2𝑝𝚺)
𝑡
2|𝚺|

1
2

(2𝜋)
𝑝
2 . 2

𝑝
2|𝚺|

1
2

[Γ (
𝑡

2
+
1

2
)]
𝑝

 

∴ 𝐸(𝑿𝑐𝑟) =
∑ (

𝑐𝑟
𝑡
) 𝝁𝑐𝑟−𝑡(2𝑝𝚺)

𝑡
2𝑐𝑟

𝑡=0

𝜋
𝑝
2

[Γ (
𝑡

2
+
1

2
)]
𝑝

 

Hence, 



88 
 

∴ 𝑮𝑛(𝑐; 𝝀) =
∑ (

𝑛
𝑟
) 𝝀𝑛−𝑟 ∑ (

𝑐𝑟
𝑡
) 𝝁𝑐𝑟−𝑡(2𝑝𝚺)

𝑡
2 [Γ (

𝑡
2
+
1
2)
]
𝑝

𝑐𝑟
𝑡=0

𝑛
𝑟=0

𝜋
𝑝
2

−−−−(3.91) 

As with Equation 3.24, Equation 3.91 is evaluated at even number values of 𝑡. That 

is, where 𝑡 = 0, 2, 4,… 

Examples: 

For 𝑐 = 1, 𝑛 = 1, 𝑟 = 0,1 and 𝑡 = 0 

𝑮1(1; 𝝀) =∑(
1
0
)𝝀1−0

1

𝑟=0

[∑ (
𝑟
𝑡
)𝝁𝑟−𝑡(2𝑝𝚺)

𝑡
2 [Γ (

𝑡
2
+
1
2)
]
𝑝

𝑟
𝑡=0 ]

𝜋
𝑝
2

 

∴ 𝑮1(1; 𝝀) = 𝝀 + 𝝁  − − − − (3.92) 

Suppose 𝝀 = −𝝁, the first moment of 𝑿1 = 𝑿 about 𝝁 is obtained as 

𝑮1(1;−𝜇) = −𝝁 + 𝝁 = 0 

as expected. 

For 𝑐 = 1, 𝑛 = 2, 𝑟 = 0, 1, 2 and 𝑡 = 0 ,2; then 

𝑮2(1; 𝝀) =∑(
2
𝑟
)𝝀2−𝑟 [

∑ (
𝑟
𝑡
)𝝁𝑟−𝑡(2𝑝𝚺)

𝑡
2 [Γ (

𝑡
2
+
1
2)
]
𝑝

𝑟
𝑡=0

𝜋
𝑝
2

]

2

𝑟=0

 

If 𝑟 = 0, 𝑡 = 0 

(
2
0
) 𝝀2−0 = 𝝀2 

𝑟 = 1, 𝑡 = 0 
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(
2
1
)𝝀2−1

[
 
 
 
 

(
1
0
)𝝁1−0(2𝑝𝚺)

0
2

(Γ(
0
2
+
1
2))

𝑝

𝜋
𝑝
2

]
 
 
 
 

= 2𝝀𝝁 

For 𝑟 = 2;  𝑡 = 0, 2 

(
2
2
) 𝝀2−2∑(

2
𝑡
)

2

𝑡=0

𝝁2−𝑡(2𝑝𝚺)
𝑡
2
[Γ (

𝑡
2
+
1
2)
]
𝑝

𝜋𝑝
 

= (
2
0
)𝝁2(2𝑝𝚺)0

[Γ (
1
2)
]
𝑝

𝜋
𝑝
2

+ (
2
2
)𝝁0(2𝑝Σ)

2
2
[Γ (

3
2)
]
𝑝

𝜋
𝑝
2

= 𝝁2 + (2𝑝𝚺) (
1

2
)
𝑝

 

= 𝝁′𝝁 + 𝚺 

∴ 𝑮2(1; 𝝀) = 𝝀
2 + 2𝝀𝝁 + 𝝁2 + 𝚺 = 𝝀′𝝀 + 2𝝀′𝜇 + 𝝀′𝝀 + 𝚺  − − − (3.93) 

Now, let 𝝀 = −𝝁; hence the second moment of 𝑿1 = 𝑿 about the mean, 𝜇, is 

 2(1;−𝝁) = (−𝝁)
2 + 2(−𝝁)(𝝁) + 𝝁2 + 𝚺 = 2𝝁2 − 2𝝁2 + 𝚺 

∴ 𝑮2(1;−𝝁) = 𝚺 − − − −− (3.94) 

That is the variance-covariance matrix as expected. 

Also, 𝑮3(1; 𝝀) is obtained from Equation 3.91 as follows: 

𝑛 = 3;  𝑟 = 0, 1, 2, 3; 𝑡 = 0, 2 

Now, where 𝑟 = 0 

(
3
0
)𝝀3−0 [(

0
0
)𝝁0−0(2𝑝𝚺)

0
2
[Γ (

0
2
+
1
2)
]
𝑝

𝜋
𝑝
2

] = 𝝀3 

where 𝑟 = 1; 𝑡 = 0 
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(
3
1
)𝝀2 [(

1
0
)𝝁1−0(2𝑝𝚺)

0
2(
𝜋
𝑝
2

𝜋
𝑝
2

)] = 3𝝀2𝝁 

where 𝑟 = 2; 𝑡 = 0, 2 

(
3
2
)𝝀3−2 [(

2
0
)𝝁2−0(2𝑝𝚺)

0
2
𝜋
𝑝
2

𝜋
𝑝
2

+ (
2
2
)𝝁2−2(2𝑝𝚺)

2
2
[Γ (

2
2
+
1
2)
]
𝑝

𝜋
𝑝
2

] = 3𝝀𝝁𝟐 + 3𝝀𝚺 

 

where 𝑟 = 3;  𝑡 = 0, 2 

(
3
3
) 𝝀0 [(

3
0
)𝝁3−0(2𝑝𝚺)

0
2
[Γ (

0
2
+
1
2)
]
𝑝

𝜋
𝑝
2

+ (
3
2
)𝝁3−2(2𝑝𝚺)

2
2
[Γ (

2
2
+
1
2)
]
𝑝

𝜋
𝑝
2

] 

= 𝝁3 + 3𝝁(2𝑝𝚺)
[Γ (

3
2)
]
𝑝

𝜋
𝑝
2

= 𝝁3 + 3𝝁𝚺 

∴ 𝑮3(1; 𝝀) = 𝝀
3 + 3𝝀2𝝁 + 3𝝀𝝁2 + 3𝝀𝚺 + 𝝁3 + 3𝝁𝚺 − − − − (3.95) 

Now, let 𝜆 = −𝜇. Thus, 

𝑮3(1;−𝝁) = (−𝝁)
3 + 3(−𝝁)2𝝁 + 3(−𝝁)𝝁𝟐 + 3(−𝝁)𝚺 + 𝝁3 + 3𝝁𝚺 

∴ 𝑮3(1;−𝝁) = −(𝝁
′𝝁)𝝁 + 3(𝝁′𝝁)𝝁 − 3(𝝁′𝝁)𝝁 − 𝚺𝛍 + (𝝁′𝝁)𝝁 + 3𝚺𝛍 = ((0))

𝑝×1
−− (3.96) 

In the same reasoning, 𝑮4(1; 𝝀) is obtained as follows: 

𝑛 = 4; 𝑟 = 0, 1, 2, 3, 4; 𝑡 = 0, 2, 4 

where 𝑟 = 0; 𝑡 = 0 
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(
4
0
)𝝀4−0 [(

0
0
)𝝁0−0(2𝑝𝚺)

0
2
[Γ (

0
2
+
1
2)
]
𝑝

𝜋
𝑝
2

] = 𝝀4 

where 𝑟 = 1; 𝑡 = 0 

(
4
1
)𝝀4−1 [(

1
0
)𝝁1−0(2𝑝𝚺)

0
2
[Γ (

0
2
+
1
2)
]
𝑝

𝜋
𝑝
2

] = 4𝝀3𝝁 

where 𝑟 = 2; 𝑡 = 0, 2 

(
4
3
) 𝝀4−3 [(

3
0
)𝝁3−0(2𝑝𝚺)

0
2 + (

3
2
)𝝁3−2(2𝑝𝚺)

2
2 (
1

2
)
𝑝 𝜋

𝑝
2

𝜋
𝑝
2

] = 4𝝀[𝝁3 + 3𝝁𝚺] 

= 4𝝀𝝁𝟑 + 12𝝀𝝁𝚺 

where 𝑟 = 4;  𝑡 = 0, 2, 4 

(
4
4
) 𝝀4−4 [(

4
0
)𝝁4−0(2𝑝𝚺)

0
2 + (

4
2
)𝝁4−2(2𝑝𝚺)

2
2 (
1

2
)
𝑝 𝜋

𝑝
2

𝜋
𝑝
2

+ (
4
4
)𝝁4−4(2𝑝𝚺)

4
2
[Γ (

5
2)
]
𝑝

𝜋
𝑝
2

] 

= (𝝁𝝁′)(𝝁𝝁′) + 6𝝁𝝁′𝚺 + (2𝑝𝚺)2 (
3

2
.
1

2
)
𝑝 𝜋

𝑝
2

𝜋
𝑝
2

= (𝝁𝝁′)(𝝁𝝁′) + 6𝝁𝝁′𝚺 +
22𝑝

22𝑝
. 3𝑝𝚺′𝚺 

= (𝝁𝝁′)(𝝁𝝁′) + 6𝝁𝝁′𝚺 + 3𝑝𝚺′𝚺 
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𝑮4(1; 𝝀) = 𝝀
4 + 4𝝀3𝝁 + 6𝝀2𝝁2 + 6𝝀2𝚺 + 4𝝀𝜇3 + 12𝝀𝝁𝚺 + 𝝁4 + 6𝝁𝟐𝚺 + 𝟑𝑝𝚺2

− −−−−− (3.97) 

Now, let 𝜆 = −𝜇; therefore, the fourth moment of 𝑋1 = 𝑋 about its mean, 𝜇, is 

obtained as 

𝐺4(1;−𝜇) = (𝝁𝝁
′)(𝝁𝝁′) − 4(𝝁𝝁′)(𝝁𝝁′) + 6(𝝁𝝁′)(𝝁𝝁′) + 6𝝁𝝁′𝚺 − 4(𝝁𝝁′)(𝝁𝝁′)

− 12𝝁𝝁′𝚺 + (𝝁𝝁′)(𝝁𝝁′) + 6𝝁𝝁′𝚺 + 3𝑝𝚺′𝚺 

= 12𝝁𝝁′Σ − 12𝝁𝝁′𝚺 + 3𝑝𝚺′𝚺 

∴ 𝑮4(1;−𝝁) = 3
𝑝𝚺′𝚺 − − − − (3.98) 

Using Equation 3.96 and Equation 3.94 in Equation 3.11, the skewness of the 

distribution of 𝑋1 = 𝑋 is obtained as 

𝑺𝑲(1) =
𝑮3(1;−𝝁)

[𝑮2(1;−𝝁)]
3
2

= ((0))
𝑝×1

    − − − −  (3.99) 

Thus, it is observed that the ratio of the third moment of 𝑿1 = 𝑿 about its mean, 

𝝁, to the (
3

2
)
𝑡ℎ

 power of its second moment is its skewness which equals zero, 0. 

This shows that the multivariate normal distribution is symmetric. 

Using Equation 3.98 and Equation 3.94 in Equation 3.12, the kurtosis of the 

distribution of 𝑋1 = 𝑋 is obtained as 

𝑲𝑼(1) =
𝑮4(1;−𝝁)

[𝑮2(1;−𝝁)]
2
=
3𝑝Σ′Σ

Σ′Σ
= 3𝑝  − − − −  (3.100) 

This may be interpreted as mesokurtic because the base is equal to 3 or because 

the 𝑝𝑡ℎ root of 𝑲𝒖(1) is equal to 3. It may equally be termed a 𝑝 −variate 

mesokurtic distribution. 
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All conceivable moments of the Multivariate Normal Distribution including 

situations where 𝑐 is real can be obtained with the multivariate generalized 

moment generating function (Equation 3.91). 

The traditional moment generating function, which demands on more tedious 

derivations, yields a skewness of zero and a kurtosis value of 3 as can be seen below 

3.10 THE TRADITIONAL MULTIVARIATE NORMAL MOMENT GENERATING 

FUNCTION 

This section tends to review the notion of multivariate moment generating 

function and specifically shows the derivation of the moment generating 

function of a multivariate normal distribution. 

As a prelude to the discussion of multivariate moment generating function, 

Bulmer (1979) stated more generally that, where 𝑋 = (𝑋1, … , 𝑋𝑛)
′, an 𝑛-

dimensional random vector, one uses 𝑡. 𝑥 = 𝑡′𝑋 instead of 𝑡. 𝑋 

∴ 𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡′𝑋)  − − − −−−  (3.101) 

If 𝑋~𝑁(𝜇, 𝜎2), then the moment generating function for the univariate case is 

𝑀𝑋(𝑡) = 𝑒
𝑢𝑡+

1
2
𝜎2𝑡2  

For the multivariate case, let 

𝑋𝑝×1~𝑁𝑝(𝜇, Σ) and 𝑀𝑋(𝑡) denote the moment generating function of 𝑋. 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡′𝑋) = ∫ … ∫

𝑒𝑡
′𝑋𝑒−

1
2
{(𝑋−𝜇)′Σ−1(𝑋−𝜇)}

(2𝜋)
𝑝
2|Σ|

1
2

 𝑑𝑋1…𝑑𝑋𝑝     (3.102)

∞

−∞

∞

−∞

 

(Onyeagu, 2003). 

Considering the numerator, 
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𝑒𝑡
′𝑋𝑒−

1
2
{(𝑋−𝜇)′Σ−1(𝑋−𝜇)} = 𝑒−

1
2
{(𝑋−𝜇)′Σ−1(𝑋−𝜇)−2𝑡′𝑋} 

Now, considering the exponent, 

(𝑋 − 𝜇)′Σ−1(𝑋 − 𝜇) − 2𝑡′𝑋

= 𝑋′Σ−1𝑋 − 𝑋′Σ−1𝜇 − 𝜇′Σ−1𝑋 + 𝜇′Σ−1𝜇 − 2𝑡′𝑋 

= 𝑋′Σ−1𝑋 − 2(𝜇 + Σ𝑡)′Σ−1𝑋 + 𝜇′Σ−1𝜇 

= 𝑋′Σ−1𝑋 − 2(𝜇 + Σ𝑡)′Σ−1𝑋 + (𝜇 + Σ𝑡)′Σ−1(𝜇 + Σ𝑡) + 𝜇′Σ−1𝜇

− (𝜇 + Σt)′Σ−1(𝜇 + Σ𝑡) 

= (𝑋 − 𝜇 − Σ𝑡)′Σ−1(𝑋 − 𝜇 − Σ𝑡) − (2𝑡′𝜇 + 𝑡′Σ𝑡) 

∴ 𝑒−
1
2
{(𝑋−𝜇)′Σ−1(𝑋−𝜇)−2𝑡′𝑋} = 𝑒𝑡

′𝜇+
1
2
𝑡′Σ𝑡 . 𝑒−

1
2
{(𝑋−𝜇−Σ𝑡)′Σ−1(𝑋−𝜇−Σ𝑡)} 

∴ 𝑀𝑋(𝑡) = 𝑒
𝑡′𝜇+

1
2
𝑡′Σ𝑡 ∫ … ∫

𝑒−
1
2
{(𝑋−𝜇−Σ𝑡)′Σ−1(𝑋−𝜇−Σ𝑡)}

(2𝜋)
𝑝
2|Σ|

1
2

∞

−∞

∞

−∞

𝑑𝑋1…𝑑𝑋𝑝 

⇒ 𝑀𝑋(𝑡) = 𝑒
𝑡′𝜇+

1
2
𝑡′Σ𝑡  − − − −  (3.103) 

The 𝑛𝑡ℎ moment of the multivariate normal random variable, 𝑋, is obtained by 

taking the 𝑛𝑡ℎ derivative of 𝑀𝑋(𝑡), equation 3.103, and evaluating at 𝑡 = 0 

(Onyeagu, 2003).  

Now, 

𝑑𝑀𝑋(𝑡)

𝑑𝑡
= (𝜇 + 𝑡′Σ)𝑒𝑡

′𝜇+
1
2
𝑡′Σ𝑡 

Thus, the first moment about zero is obtained as 

𝑑𝑀𝑋(𝑡)

𝑑𝑡
|
𝑡=0

= 𝐸(𝑋) = 𝜇 − − − − (104) 

Also, 
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𝑑2𝑀𝑥(𝑡)

𝑑𝑡2
= Σ𝑒𝑡

′𝜇+
1
2
𝑡′Σ𝑡 + (𝜇 + Σ𝑡)′(𝜇 + Σt)𝑒𝑡

′𝜇+
1
2
𝑡′Σ𝑡 

Thus, the second moment about zero can be obtained as 

𝑑2𝑀𝑋(𝑡)

𝑑𝑡2
|
𝑡=0

= 𝜇′𝜇 + Σ   − − − −  (105) 

Hence the variance of the multivariate normal random variable and its 

probability density function is obtained using Equations 105 and 104 as follows: 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 𝜇′𝜇 + Σ − 𝜇′𝜇 

∴ 𝑉𝑎𝑟(𝑋) = Σ 

𝑑3𝑀𝑋(𝑡)

𝑑𝑡3
=
𝑑

𝑑𝑡
(Σ𝑒𝑡

′𝜇+
1
2
𝑡′Σ𝑡 + (𝜇 + Σt)′(𝜇 + Σ𝑡)𝑒𝑡

′𝜇+
1
2
𝑡′Σt) 

= (𝜇 + Σ𝑡)Σ𝑒𝑡
′𝜇+

1
2
𝑡′Σ𝑡 + (2𝜇′Σ + 2Σ′Σ𝑡)𝑒𝑡

′𝜇+
1
2
𝑡′Σt

+ (𝜇′𝜇 + 2𝜇′Σ𝑡 + (Σt)′Σ𝑡)(𝜇 + 𝑡′Σ)𝑒𝑡
′𝜇+

1
2
𝑡′Σ𝑡 

= [Σ𝜇 + Σ′Σ𝑡 + 2𝜇′Σ + 2(Σt)′Σ + (𝜇′𝜇)𝜇 + 𝜇′𝜇Σ𝑡 + 2𝜇′Σ𝑡𝜇 + 2𝜇′(Σ𝑡)′Σ𝑡

+ (Σ𝑡)′Σ𝑡 + (Σ𝑡)′Σ𝑡(Σt)]𝑒𝑡
′𝜇+

1
2
𝑡′Σt

 

Thus, the third moment about is 

𝑑3𝑀𝑋(𝑡)

𝑑𝑡3
|
𝑡=0

= 2Σμ + (𝜇𝜇′)𝜇 + Σ𝜇 = 3Σμ + (𝜇𝜇′)𝜇 − − − − (106) 

Hence the skewness of the distribution can be obtained using a combination of 

Equations 104, 105 and 106 as 

𝑠𝑘 =
3Σμ + (𝜇𝜇′)𝜇 − 3(𝜇𝜇′ + Σ)𝜇 + 2(𝜇𝜇′)𝜇

(𝜇2 − 𝜇
′𝜇)

3
2
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=
3Σ′𝜇 + (𝜇𝜇′)𝜇 − 3(𝜇𝜇′)𝜇 − 3Σ′𝜇 + 2(𝜇𝜇′)𝜇

(𝜇2 − 𝜇
′𝜇)

3
2

 

=
0

(𝜇2 − 𝜇
′𝜇)

3
2

 

∴ 𝑠𝑘 = 0 − − − − (107) 

This implies that the Multivariate Distribution is symmetric. 

Also, 

𝑑4𝑀𝑋(𝑡)

𝑑𝑡4
=
𝑑

𝑑𝑡
[Σ𝜇 + Σ′Σ𝑡 + 2𝜇′Σ + 2(Σt)′Σ + (𝜇′𝜇)𝜇 + 𝜇′𝜇Σ𝑡 + 2𝜇′Σ𝑡𝜇

+ 2𝜇′(Σ𝑡)′Σ𝑡 + (Σ𝑡)′Σ𝑡 + (Σ𝑡)′Σ𝑡(Σt)]𝑒𝑡
′𝜇+

1
2
𝑡′Σ𝑡 

= (Σ′Σ)𝑒𝑡
′𝜇+

1
2
𝑡′Σ𝑡 + (Σ′𝜇 + Σ′𝑡Σ)(𝜇 + Σ𝑡) + (2Σ′Σ)𝑒𝑡

′𝜇+
1
2
𝑡′Σ𝑡

+ (2Σ′𝜇 + 2Σ′Σ𝑡)(𝜇 + Σ′𝑡)

+ (2𝜇′Σ𝜇 + 2Σ′𝑡Σ + 𝜇′Σμ + 4𝜇′Σ𝑡Σ + 3Σ𝑡′Σ𝑡Σ)𝑒𝑡
′𝜇+

1
2
𝑡′Σ𝑡 + 

𝑑4𝑀𝑋(𝑡)

𝑑𝑡4
|
𝑡=0

= 3Σ′Σ + 6𝜇𝜇′Σ + (𝜇𝜇′)(𝜇𝜇′) − − − − (3.108) 

Hence the kurtosis of the distribution can be obtained using a combination of 

Equations (3.104), (3.105), (3.106), (3.107) and (3.108) as 

𝑘𝑢

=
3Σ′Σ + 6𝜇𝜇′Σ + (𝜇𝜇′)(𝜇𝜇′) − 4(3Σ′𝜇 + (𝜇𝜇′)𝜇)𝜇′ + 6(𝜇𝜇′𝜇 + 𝜇Σ)𝜇′ − 3(𝜇𝜇′)(𝜇𝜇′)

(𝜇2 + 𝜇
′𝜇)2

 

=
3Σ′Σ + 6𝜇𝜇′Σ + (𝜇𝜇′)(𝜇𝜇′) − 12𝜇𝜇′Σ − 4(𝜇𝜇′)(𝜇𝜇′) + 6(𝜇𝜇′)(𝜇𝜇′) + 6𝜇𝜇′Σ − 3(𝜇𝜇′)(𝜇𝜇′)

(𝜇2 + 𝜇′𝜇)2
 

=
3Σ′Σ

Σ′Σ
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∴ 𝑘𝑢 = 3 − − −− (3.109) 

This also implies that the Multivariate Normal Distribution is leptokurtic but 

this method does not give any account of the number of variables in the 

analysis. 

Higher moments and other parameters of the multivariate normal distribution 

that depend on them can be obtained with this method. However, evaluating 

moments about the mean (central moments) using the relationships between 

moments about zero (crude moments) and taking 𝑛𝑡ℎ derivative become more 

difficult as 𝑛 gets higher. 

3.11 GENERALIZED MULTIVARIATE MOMENT GENERATING FUNCTION 

(GMMGF) FOR DIRRICHLET (MULTIVARIATE BETA) DISTRIBUTION 

The Dirrichlet distribution, often denoted 𝐷𝑖𝑟(𝛼), is a family of continuous 

multivariate probability distributions parameterized by a vector 𝛼 of positive 

reals. It is a multivariate generalization of the beta distribution (kotz et al; 

2000). 

The density function of the Dirichlet distribution is given as 

𝑓(𝑥1, … , 𝑥𝑘) =
1

𝛽(𝛼)
∏𝑥𝑖

𝛼𝑖−1

𝑘

𝑖=1

                                                      (3.110) 

where 

𝛽(𝛼) =
∏ Γ(𝛼𝑖)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

 𝑎𝑛𝑑 𝛼 = (𝛼1, … , 𝛼𝑘) 
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For 𝑘 ≥ 2 number of categories (integers), 𝛼1, … , 𝛼𝑘 concentration 

parameters, where 𝛼𝑖 > 0 with support variables: 𝑥1, … , 𝑥𝑘  ∈ (0, 1) and 

∑ 𝑥𝑖
𝑘
𝑖=1 = 1. 

∴ 𝑓(𝑥𝑖 , … 𝑥𝑘) =
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏𝑥𝑖
𝛼𝑖−1

𝑘

𝑖=1

                                       (3.111) 

Using equation (3.111) in (3.72) 

𝐸(𝑋𝑖
𝑐𝑟) =

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∫𝑥𝑖
𝑐𝑟∏𝑥𝑖

𝛼𝑖−1

𝑘

𝑖=1

1

0

𝑑𝑥𝑖 

=
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∫∏𝑥𝑖
𝛼𝑖+𝑐𝑟−1

𝑘

𝑖=1

1

0

𝑑𝑥𝑖 

∴ 𝐸(𝑋𝑖
𝑐𝑟) =

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 𝑐𝑟)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 + 𝑐𝑟)

                                     (3.112) 

Hence, 

𝑮𝑛(𝑐; 𝝀) =∑(
𝑛
𝑟
)

𝑛

𝑟=0

𝜆𝑛−𝑟
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 𝑐𝑟)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 + 𝑐𝑟)

                              (3.113) 

Now, let 𝑛 = 1, 𝑐 = 1 𝑎𝑛𝑑 𝑟 = 0, 1 

𝑮1(1; 𝜆) = 𝜆
1 +

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 𝑐𝑟)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 + 𝑐𝑟)

 = 𝜆 +
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

 

Suppose 𝜆 = −𝜇 

𝑮𝟏(1;−𝜇) = −𝜇 +
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

= 0 

(First moment about the mean) 
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Hence, 

𝐸(𝑋𝑖) =
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

                                               (3.114) 

Suppose 𝑛 = 2; 𝑟 = 0, 1, 2; 𝑐 = 1 and 𝜆 =
−𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

 from Equation (3.113) 

𝑮2(1; 𝜆) =∑(
2
𝑟
)

2

𝑖=1

𝜆2−𝑟
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 𝑟)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖 + 𝑟
𝑘
𝑖=1 )

 

𝑟 = 0;                                                                                                                                     

(
2
0
) 𝜆2−0

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

= 𝜆2 

𝑟 = 1;                                                                                                                                     

(
2
1
) 𝜆2−1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 1)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)

= 2𝜆
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

𝛼𝑖∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∑ 𝛼𝑖
𝑘
𝑖=1 Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

= 2𝜆
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

 

𝑟 = 2                                                                                                                                     

(
2
2
) 𝜆0

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ 𝛼𝑖
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 2)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 + 2)

=
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )(𝛼𝑖 + 1)(𝛼𝑖)∏ Γ(𝛼𝑖)

𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1 (∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 )Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

=
(𝛼𝑖 + 1)(𝛼𝑖)∏ Γ(𝛼𝑖)

𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1 (∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 )

=
(𝛼𝑖 + 1)(𝛼𝑖)

(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

∴ 𝐺2(1;  𝜆) = 𝜆
2 + 2𝜆

𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

+
(𝛼𝑖 + 1)(𝛼𝑖)

(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 )

                      (3.115) 
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Thus the second central moment; that is, 𝜆 =
−𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

 becomes 

𝑮2(1; 𝜆) =
𝛼𝑖
2

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2 − 2
𝛼𝑖
2

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2 +
𝛼𝑖(𝛼𝑖 + 1)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)

 

=
𝛼𝑖(𝛼𝑖 + 1)(∑ 𝛼𝑖

𝑘
𝑖=1 ) − 𝛼𝑖

2(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2
(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )

 

=
𝛼𝑖[(∑ 𝛼𝑖

𝑘
𝑖=1 )(𝛼𝑖 + 1) − 𝛼𝑖(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )]

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2
(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )

 

=
𝛼𝑖

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2

[𝛼𝑖 ∑ 𝛼𝑖
𝑘
𝑖=1 + ∑ 𝛼𝑖

𝑘
𝑖=1 − 𝛼𝑖 ∑ 𝛼𝑖

𝑘
𝑖=1 − 𝛼𝑖]

(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)

 

𝑮2(1; 𝝀) = 𝑉𝑎𝑟(𝑋𝑖) =
𝛼𝑖

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2

(∑ 𝛼𝑖 − 𝛼𝑖
𝑘
𝑖=1 )

(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )

 

Let ∑ 𝛼𝑖
𝑘
𝑖=1 = 𝛼0. Thus, 

𝑉𝑎𝑟(𝑋𝑖) =
𝛼𝑖

𝛼0
2

(𝛼0 − 𝛼𝑖)

(𝛼0 + 1)
                                    (3.116) 

Now, for 𝑛 = 3;  𝑐 = 1; 𝑟 = 0,1,2,3; we have 

𝑟 = 0                                                          

(
3
0
) 𝜆3−0

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

= 𝜆3 

𝑟 = 1  

(
3
1
) 𝜆3−1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 1)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )

= 3𝜆2
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ 𝛼𝑖
𝑘
𝑖=1

𝛼𝑖∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∑ 𝛼𝑖
𝑘
𝑖=1 Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

= 3𝜆2
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1
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𝑟 = 2  

(
3
2
) 𝜆3−2

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 2)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖 + 2
𝑘
𝑖=1 )

 

= 3𝜆
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

𝛼𝑖(𝛼𝑖 + 1)∏ Γ(𝛼𝑖)
𝑘
𝑖=1

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

𝑟 = 3  

(
3
3
) 𝜆3−3

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 3)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 + 3)

 

=
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)∏ Γ(𝛼𝑖)
𝑘
𝑖=1

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

=
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)

 

∴ 𝐺3(1; 𝜆) = 𝜆
3 + 3𝜆2

𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

+ 3𝜆
𝛼𝑖(𝛼𝑖 + 1)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )

+
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )

           (3.117) 

Now, let 𝜆 =
−𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

. Hence to obtain the third central moment of the Dirrichlet 

distribution we have; 

𝐺3(1; 𝜆) =
−𝛼𝑖

3

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3 + 3
𝛼𝑖
2

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2

𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

− 3
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

(𝛼𝑖 + 1)

(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )

+
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)
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=
−𝛼𝑖

3

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3 + 3
𝛼𝑖
3

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3 − 3
𝛼𝑖
2

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2

(𝛼𝑖 + 1)

(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)

+
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

(𝛼𝑖
2 + 3𝛼𝑖 + 2)

(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )

 

=
2𝛼𝑖

3(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 ) − 3𝛼𝑖(𝛼𝑖

3 − 𝛼𝑖
2) + (∑ 𝛼𝑖

𝑘
𝑖=1 )

2
(𝛼𝑖

3 + 3𝛼𝑖
2 + 2𝛼𝑖)

(∑ 𝛼𝑖
𝑘
𝑖==1 )

3
(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )

 

=
(2𝛼𝑖

3∑ 𝛼𝑖
𝑘
𝑖=1 + 2𝛼𝑖

3)(∑ 𝛼𝑖
𝑘
𝑖=1 + 2) − 3𝛼𝑖

3∑ 𝛼𝑖
𝑘
𝑖=1 − 3𝛼𝑖

2∑ 𝛼𝑖
𝑘
𝑖=1 + (∑ 𝛼𝑖

𝑘
𝑖=1 )

2
(𝛼𝑖

3 + 3𝛼𝑖
2 + 2𝛼𝑖)

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3
(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)

 

=
3𝛼𝑖

3∑ 𝛼𝑖
𝑘
𝑖=1 (∑ 𝛼𝑖 + 1

𝑘
𝑖=1 ) + 𝛼𝑖

3 [(∑ 𝛼𝑖
𝑘
𝑖=1 )

2
+ 4] − 3𝛼𝑖

2∑ 𝛼𝑖(1 − ∑ 𝛼𝑖
𝑘
𝑖=1 ) + 2𝛼𝑖(∑ 𝛼𝑖

𝑘
𝑖=1 )

2𝑘
𝑖=1

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3
(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)

 

∴ 𝐺3 (1;
−𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

)

=
3𝛼𝑖

3𝛼0(𝛼0 + 1) + 𝛼𝑖
3(𝛼0 + 4) − 3𝛼𝑖

2𝛼0(1 − 𝛼0) + 2𝛼𝑖𝛼0
2

𝛼0
3(𝛼0 + 1)(𝛼0 + 2)

           (3.118) 

Hence skewness can be determined as 

𝑆𝑘(1) =
3𝛼𝑖

3𝛼0(𝛼0 + 1) + 𝛼𝑖
3(𝛼0 + 4) − 3𝛼𝑖

2𝛼0(1 − 𝛼0) + 2𝛼𝑖𝛼0
2

𝛼0
3(𝛼0 + 1)(𝛼0 + 2)

∗
𝛼0
3(𝛼0 + 1)

3
2

𝛼𝑖
3(𝛼0 − 𝛼𝑖)

3
2

 

∴ 𝑆𝑘(1)

=
3𝛼𝑖

3𝛼0(𝛼0 + 1) + 𝛼𝑖
3(𝛼0 + 4) − 3𝛼𝑖

2𝛼0(1 − 𝛼𝑖) + 2𝛼𝑖𝛼0
2

(𝛼𝑖
3𝛼0

2 + 3𝛼𝑖
3𝛼0 + 2𝛼𝑖

3)

(𝛼0 + 1)
3
2

(𝛼0 − 𝛼𝑖)
3
2

     (3.119) 

Hence the Dirrichlet distribution is positively skewed since 𝛼𝑖 > 0; ∀ 𝑖. 

Now, let 𝑛 = 4; 𝑐 = 1; 𝑟 = 0, 1, 2, 3, 4 

𝑟 = 0  
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(
4
0
) 𝜆4−0

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

= 𝜆4 

𝑟 = 1  

(
4
1
) 𝜆4−1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 1)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )

= 4𝜆3
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

𝛼𝑖

(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

 

Hence, for 𝑟 = 1 we have 

(
4
1
) 𝜆4−1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

.
∏ Γ(𝛼𝑖 + 1)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)

= 4𝜆3
𝛼𝑖

(∑ 𝛼𝑖
𝑘
𝑖=1 )

 

𝑟 = 2  

(
4
2
) = 𝜆4−2

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

.
∏ Γ(𝛼𝑖 + 2)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖 + 2
𝑘
𝑖=1 )

= 6𝜆2
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ𝑘
𝑖=1 (𝛼𝑖)

𝛼𝑖(𝛼𝑖 + 1)Γ(𝛼𝑖)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

= 6𝜆2
𝛼𝑖

(∑ 𝛼𝑖
𝑘
𝑖=1 )

(𝛼𝑖 + 1)

(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)

 

𝑟 = 3  

(
4
3
) 𝜆4−3

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 3)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖 + 3
𝑘
𝑖=1 )

 

= 4𝜆
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ𝑘
𝑖=1 (𝛼𝑖)

𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)∏ Γ(𝛼𝑖)
𝑘
𝑖=1

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

= 4𝜆
𝛼𝑖

(∑ 𝛼𝑖
𝑘
𝑖=1 )

(𝛼𝑖 + 1)(𝛼𝑖 + 2)

(∑ 𝛼𝑖
𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )

 

𝑟 = 4  
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(
4
4
) 𝜆4−4

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖 + 4)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖 + 4
𝑘
𝑖=1 )

 

=
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ𝑘
𝑖=1 (𝛼𝑖)

𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)(𝛼𝑖 + 3)∏ Γ(𝛼𝑖)
𝑘
𝑖=1

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 3

𝑘
𝑖=1 )Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

 

=
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)(𝛼𝑖 + 3)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 3

𝑘
𝑖=1 )

 

Hence, 

𝐺4(1; 𝜆) = 𝜆
4 + 4𝜆3

𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

+ 6𝜆2
𝛼𝑖(𝛼𝑖 + 1)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)

 

+4𝜆
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )

+
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)(𝛼𝑖 + 3)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 3)

             (3.120) 

Now, let 𝜆 =
−𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

. Hence the fourth central moment becomes 

𝐺4(1; 𝜆) =
𝛼𝑖
4

(∑ 𝛼𝑖
𝑘
𝑖=1 )

4 − 4
𝛼𝑖
3

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3

𝛼𝑖

(∑ 𝛼𝑖
𝑘
𝑖=1 )

+ 6
𝛼𝑖
2

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2

𝛼𝑖(𝛼𝑖 + 1)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )

− 4
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )

+
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)(𝛼𝑖 + 3)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 3)
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= 3
𝛼𝑖
4

(∑ 𝛼𝑖
𝑘
𝑖=1 )

4 + 6
𝛼𝑖
3

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3

(𝛼𝑖 + 1)

(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )

− 4
𝛼𝑖
2

(∑ 𝛼𝑖
𝑘
𝑖=1 )

2

(𝛼𝑖 + 1)(𝛼𝑖 + 2)

(∑ 𝛼𝑖 + 1
𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)

+
𝛼𝑖(𝛼𝑖 + 1)(𝛼𝑖 + 2)(𝛼𝑖 + 3)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 3)

 

=
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

{
6𝛼𝑖

3∑ 𝛼𝑖
𝑘
𝑖=1 + 6𝛼𝑖

2∑ 𝛼𝑖
𝑘
𝑖=1 − 3𝛼𝑖

3∑ 𝛼𝑖
𝑘
𝑖=1 − 3𝛼𝑖

3

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3
(∑ 𝛼𝑖

𝑘
𝑖=1 + 1)

+
(∑ 𝛼𝑖

𝑘
𝑖=1 )(6 − 3𝛼𝑖

3 − 6𝛼𝑖
2 − 21𝛼𝑖) − 12𝛼𝑖

2(𝛼𝑖 − 4)

(∑ 𝛼𝑖
𝑘
𝑖=1 )(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)(∑ 𝛼𝑖

𝑘
𝑖=1 + 3)

} 

∴ 𝐺4(1; 𝜆)

=
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

{
(∑ 𝛼𝑖 + 2

𝑘
𝑖=1 )(∑ 𝛼𝑖 + 3

𝑘
𝑖=1 )(3𝛼𝑖

3∑ 𝛼𝑖
𝑘
𝑖=1 + 6𝛼𝑖

2∑ 𝛼𝑖
𝑘
𝑖=1 − 3𝛼𝑖

3)

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3
(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)(∑ 𝛼𝑖 + 3

𝑘
𝑖=1 )

 

+
(∑ 𝛼𝑖

𝑘
𝑖=1 )2[∑ 𝛼𝑖

𝑘
𝑖=1 (6 − 3𝛼𝑖

3 − 6𝛼𝑖
2 − 21𝛼𝑖)] − 12𝛼𝑖

2(𝛼𝑖 + 4)

(∑ 𝛼𝑖
𝑘
𝑖=1 )

3
(∑ 𝛼𝑖 + 1

𝑘
𝑖=1 )(∑ 𝛼𝑖

𝑘
𝑖=1 + 2)(∑ 𝛼𝑖 + 3

𝑘
𝑖=1 )

}  

∴ 𝐺4(1; 𝜆)

=
𝛼𝑖
𝛼0
{
(𝛼0 + 2)(𝛼0 + 3)(3𝛼𝑖

3𝛼0 + 6𝛼𝑖
2𝛼0 − 3𝛼𝑖

3)

𝛼0
3(𝛼0 + 1)(𝛼0 + 2)(𝛼0 + 3)

+
𝛼0
2[𝛼0(6 − 3𝛼𝑖

3 − 6𝛼𝑖
2 − 21𝛼𝑖)] − 12𝛼𝑖

2(𝛼𝑖 + 4)

𝛼0
3(𝛼0 + 1)(𝛼0 + 2)(𝛼0 + 3)

}                     (3.121) 

Hence the kurtosis of the distribution may be obtained as 
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𝑘𝑢(1) = {
(𝛼0 + 2)(𝛼0 + 3)(3𝛼𝑖

3𝛼0 + 6𝛼𝑖
2𝛼0 − 3𝛼𝑖

3)

𝛼0
3(𝛼0 + 1)(𝛼0 + 2)(𝛼0 + 3)

+
𝛼0
2[𝛼0(6 − 3𝛼𝑖

3 − 6𝛼𝑖
2 − 21𝛼𝑖)] − 12𝛼𝑖

2(𝛼𝑖 + 4)

(𝛼0 + 1)(𝛼0 + 2)(𝛼0 + 3)
} ×

(𝛼0 + 1)
2

𝛼𝑖(𝛼0 − 𝛼0)
2

 

∴ 𝑘𝑢(1)

=
6𝛼𝑖

2𝛼0
3 + 3𝛼𝑖

3𝛼0
2 + 18𝛼𝑖

3𝛼0 + 39𝛼𝑖
2𝛼0 + 24𝛼0

3 + 15𝛼0
4 − 66𝛼𝑖

2𝛼0
2 + 3𝛼0

5

(𝛼0
3 + 6𝛼0

2 + 11𝛼0 + 6)

×
(𝛼0 + 1)

2

𝛼𝑖(𝛼0 − 𝛼𝑖)
2
                       (3.122) 

The value of 𝑘𝑢(1) is positive and may be less than, equal to or greater than 3 

depending on the values of 𝛼𝑖∀ 𝑖 = 1, 2,… , 𝑘 where 𝛼0 = ∑ 𝛼𝑖
𝑘
𝑖=1 . 

To illustrate the practical application and consistency of the functions 

developed and presented in this chapter, they shall be used to analyze 

numerical data in the next chapter. 
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CHAPTER FOUR 

PRESENTATION AND ANALYSIS OF DATA 

4.1 PRESENTATION OF DATA 

The Data for illustration of the application and consistency of the developed 

methods are presented as follows: 
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Serial No

1 6.3848 13.4597 3.9665
2 15.8473 1.7828 9.373
3 1.5872 5.4326 2.1957
4 0.6203 4.4363 0.8513
5 2.632 10.9161 2.9904
6 7.1946 6.8832 7.0914
7 5.3607 15.3467 3.4509
8 3.4233 3.2901 3.225
9 6.775 10.6918 0.3861
10 3.727 1.6152 2.657
11 13.3058 5.0971 4.8853
12 7.9797 3.7563 6.8347
13 8.5766 8.8345 8.2838
14 6.5292 6.911 2.5925
15 10.461 0.3759 3.51
16 4.7776 2.1998 8.0186
17 8.8577 4.453 3.42
18 12.3543 3.0492 4.0527
19 12.0012 2.9735 17.6135
20 9.2999 6.9735 17.3728
21 11.3636 6.6637 9.1995
22 2.3759 8.7596 3.5722
23 5.0573 8.2106 6.324
24 4.3035 6.6792 2.6099
25 2.604 9.0652 3.8959
26 6.777 3.2669 3.8998
27 3.7905 22.3057 10.7298
28 4.1491 6.0776 5.2878
29 2.6876 3.7828 6.7316
30 1.7262 1.1808 9.5079
31 4.8571 8.5815 2.2269
32 2.5318 4.9717 5.3598
33 14.2059 2.4589 2.4659
34 4.7154 12.4749 10.3825
35 5.6329 10.7214 2.4159

with Shape Parameter = 2 and Scale Parameter = 3

Table 4.1: P = 3 - Variate Multivariate Gamma Distribution

1x
2x 3x
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Serial No Serial No

1 60 63 71 34 82 72 80

2 60 52 62 35 80 82 74

3 55 62 40 36 92 80 96

4 44 41 63 37 30 25 20

5 46 62 44 38 37 92 94

6 45 64 56 39 38 90 20

7 63 61 63 40 94 95 93

8 54 50 40 41 10 20 26

9 52 53 52 42 50 64 70

10 56 55 46 43 72 60 54

11 75 64 74 44 70 62 56

12 54 52 51 45 75 72 52

13 72 55 42 46 55 50 54

14 44 43 40 47 60 53 71

15 43 54 51 48 60 52 52

16 42 62 42 49 55 62 40

17 53 52 50 50 44 41 63

18 55 52 50 51 56 62 44

19 50 52 64 52 45 64 56

20 60 55 65 53 63 61 63

21 55 50 54

22 75 72 52

23 70 62 56

24 72 60 54

25 50 64 60

26 80 82 74

27 82 72 80

28 74 80 82

29 62 50 72

30 50 74 65

31 50 74 65

32 62 50 72

33 74 80 82

TABLE 4.2: SCORES OF FIFTY-THREE DIPLOMA LAW STUDENTS OF THE DELTA STATE

UNIVERSITY, OLEH CAMPUS IN THREE COURSES

𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3
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Serial No Serial No

1 0.309278 0.324742 0.365979 34 0.350427 0.307692 0.34188

2 0.344828 0.298851 0.356322 35 0.338983 0.347458 0.313559

3 0.350318 0.394904 0.254777 36 0.343284 0.298507 0.358209

4 0.297297 0.277027 0.425676 37 0.4 0.333333 0.266667

5 0.302632 0.407895 0.289474 38 0.165919 0.412556 0.421525

6 0.272727 0.387879 0.339394 39 0.256757 0.608108 0.135135

7 0.336898 0.326203 0.336898 40 0.333333 0.336879 0.329787

8 0.375 0.347222 0.277778 41 0.178571 0.357143 0.464286

9 0.33121 0.33758 0.33121 42 0.271739 0.347826 0.380435

10 0.356688 0.350318 0.292994 43 0.387097 0.322581 0.290323

11 0.352113 0.300469 0.347418 44 0.37234 0.329787 0.297872

12 0.343949 0.33121 0.324841 45 0.376884 0.361809 0.261307

13 0.426036 0.325444 0.248521 46 0.345912 0.314465 0.339623

14 0.346457 0.338583 0.314961 47 0.326087 0.288043 0.38587

15 0.290541 0.364865 0.344595 48 0.365854 0.317073 0.317073

16 0.287671 0.424658 0.287671 49 0.350318 0.394904 0.254777

17 0.341935 0.335484 0.322581 50 0.297297 0.277027 0.425676

18 0.350318 0.33121 0.318471 51 0.345679 0.382716 0.271605

19 0.301205 0.313253 0.385542 52 0.272727 0.387879 0.339394

20 0.333333 0.305556 0.361111 53 0.336898 0.326203 0.336898

21 0.345912 0.314465 0.339623

22 0.376884 0.361809 0.261307

23 0.37234 0.329787 0.297872

24 0.387097 0.322581 0.290323

25 0.287356 0.367816 0.344828

26 0.338983 0.347458 0.313559

27 0.350427 0.307692 0.34188

28 0.313559 0.338983 0.347458

29 0.336957 0.271739 0.391304

30 0.350427 0.391534 0.343915

31 0.26455 0.391534 0.343915

32 0.336957 0.271739 0.391304

33 0.313559 0.338983 0.347458

TABLE 4.3: PROPORTIONAL SCORES OF STUDENTS OF THE DELTA STATE

UNIVERSITY, OLEH CAMPUS IN THREE COURSES

𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3

 

The data above follows the Dirrichlet Distribution and may be assigned the 

parameters, 𝛼𝑖 = 2 ∀ 𝑖 = 1, 2, 3; ∑ 𝛼𝑖
3
𝑖=1 = 6 and 𝛼𝑖 = 1.2, 1.3, 1.4; 𝑖 = 1, 2, 3, 

respectively; ∑ 𝛼𝑖
3
𝑖=1 = 3.9. 
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4.2 DATA ANALYSIS  

4.2.1 The Multivariate Gamma Family of Distributions 

The shape parameter, 𝛼, scale parameter, 𝛽, and scale matrix, 𝚺, of the data in 

Table 4.1  for the Multivariate Gamma distribution are respectively 

𝛼 = 2, 𝛽 = 3 𝑎𝑛𝑑 𝚺 = (
15.4116 −4.9758 4.7261
−4.9758 20.9363 0.2525
4.7261 0.2525 16.3018

) 

Using Equation 3.79a, 

𝑮1(1;  𝝀) = 𝝀 + 𝛼𝛽
𝑝𝚺 

∴ 𝑮1(1;  𝝀) = 𝝀

+ 2 ∗ 3𝑝 (
15.4116 −4.9758 4.7261
−4.9758 20.9363 0.2525
4.7261 0.2525 16.3018

)                             (4.1) 

Now, using Equation 3.79c where 𝑝 = 3 yields 

𝝀 = 2 ∗ 3(
15.4116 −4.9758 4.7261
−4.9758 20.9363 0.2525
4.7261 0.2525 16.3018

) ∗ (−32)                      (4.2) 

Thus, the mean of the distribution is the coefficient of 32 therefore, 

𝝁 = 6(
15.4116 −4.9758 4.7261
−4.9758 20.9363 0.2525
4.7261 0.2525 16.3018

)                                     (4.3) 

In the same way, using Equation 3.79d for the Wishart distribution, that is, the 

distribution of 𝚺  

𝝀 = 22 ∗ 𝜂 ∗ 𝚺 = 22 ∗ 53 ∗ (
15.4116 −4.9758 4.7261
−4.9758 20.9363 0.2525
4.7261 0.2525 16.3018

)                   (4.4) 

Hence, the mean of the distribution is the coefficient of 22 which is 
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𝝁 = 53 ∗ (
15.4116 −4.9758 4.7261
−4.9758 20.9363 0.2525
4.7261 0.2525 16.3018

)                            (4.5) 

This shows that we have a 𝑝 = 3 −variate Wishart distribution with mean given 

in Equation 4.5. 

4.2.2 The Normal Distribution 

The estimates of the mean vector, �̅�, and the covariance matrix, 𝑺, in Table 4.2 

are 

�̅� = (
58.62
61.00
58.72

)  𝚺 = (
247.201 130.019 161.026
130.019 216.923 137.385
161.026 137.385 282.861

) 

Now, we represent 𝝀 = (

𝜆1
𝜆2
𝜆3

) 

Applying Equation 3.92,  

𝑮1(1;  𝝀) = 𝝀 + 𝝁 

where 𝜆 = −𝜇 = −�̅� = −(
58.62
61.00
58.72

) 

∴ 𝑮𝟏(1;  𝝀) = (
58.62
61.00
58.72

) − (

𝜆1
𝜆2
𝜆3

) 

𝑮1(1; −𝝁) = (
58.62
61.00
58.72

) − (
58.62
61.00
58.72

) = (
0
0
0
) 

∴ 𝑮𝟏(1; −𝝁) = 0                                     (4.6) 

As expected, the first moment of the 𝑝 = 3-variate normal distribution about 

its mean equals zero. 
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Now, evaluating Equation 3.91 at 𝑛 = 2 and 𝑐 = 1 yields Equation 3.93. That is, 

𝑮2(1;  𝝀) = 𝝀𝝀
′ + 𝟐𝝀𝝁′ + 𝝀𝝀′ + 𝚺 

where 𝝀 = −𝝁 we have 

𝑮𝟐(1; −𝝁) = (−𝝁)(−𝝁)
′ + 2(−𝝁)𝝁′ + (−𝝁)(−𝝁)′ + 𝚺 

where (−𝝁)(−𝝁)′ = (
−58.62
−61.00
−58.72

) (−58.62 −61.00 −58.72) 

= (
3438.3044 3575.82 3442.1664
3575.82 3721 3581.92
3442.1664 3581.92 3448.0384

) 

∴ 𝑮𝟐(1; −𝝁) = 2𝝁𝝁
′ − 2𝝁𝝁′ + 𝚺 

= 2(
3438.3044 3575.82 3442.1664
3575.82 3721 3581.92
3442.1664 3581.92 3448.0384

)

− 2(
3438.3044 3575.82 3442.1664
3575.82 3721 3581.92
3442.1664 3581.92 3448.0384

)

+ (
247.201 130.019 161.026
130.019 216.923 137.385
161.026 137.385 282.861

) 

Hence, 

𝑮2(1; −𝝁) = (
247.201 130.019 161.026
130.019 216.923 137.385
161.026 137.385 282.861

)                                       (4.7) 

Therefore the second moment of the 𝑝 = 3 −variate normal distribution is its 

covariance matrix as expected. 

Also, evaluating Equation 3.91 at 𝑛 = 3  and 𝑐 = 1 yields 3.95. That is, 

𝑮3(1;  𝝀) = (𝝀𝝀
′)𝝀 + 3(𝝀𝝁′)𝝀 + 3(𝝁𝝁′)𝝀 + 3𝚺𝛌 + (𝝁𝝁′)𝝁 + 3𝚺𝝀 
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At 𝝀 = −𝝁, Equation 3.95 becomes 

𝑮3(1; −𝝁) = [(−𝝁)(−𝝁
′)](−𝝁) + 3[(−𝝁)𝝁′](−𝝁) + 3(𝝁𝝁′)(−𝝁) + 3𝚺(−𝝁)

+ (𝝁𝝁′)𝝁 + 3𝚺𝝁 

= 4(𝝁𝝁′)𝝁 − 4(𝝁𝝁′)𝝁 + 3𝚺𝝁 − 3𝚺𝝁 

∴ 𝑮3(1; −𝝁)

= 4(
3438.3044 3575.82 3442.1664
3575.82 3721 3581.92
3442.1664 3581.92 3448.0384

)(
58.62
61.00
58.72

)

− 4(
3438.3044 3575.82 3442.1664
3575.82 3721 3581.92
3442.1664 3581.92 3448.0384

)(
58.62
61.00
58.72

)

+ 3(
247.201 130.019 161.026
130.019 216.923 137.385
161.026 137.385 282.861

)(
58.62
61.00
58.72

)

− 3(
247.201 130.019 161.026
130.019 216.923 137.385
161.026 137.385 282.861

)(
58.62
61.00
58.72

) = (
0
0
0
)    (4.8) 

Also, evaluating Equation 3.91 at 𝑛 = 4 and 𝑐 = 1 gives Equation 3.97. That is, 

𝑮4(1;  𝝀) = (𝝀𝝀
′)(𝝀𝝀′) + 4(𝝀𝝀′)(𝝀𝝁′) + 6(𝝀𝝀′)(𝝁𝝁′) + 6(𝝀𝝀′)𝚺

+ 4(𝝀𝝁′)(𝝁𝝁′) + 12(𝝀𝝁′)𝚺 + (𝝁𝝁′)(𝝁𝝁′) + 6(𝝁𝝁′)𝚺 + 3𝒑𝚺′𝚺 

Let 𝝀 = −𝝁 then Equation 3.97 becomes 

𝐺4(1; −𝜇) = (𝝁𝝁
′)(𝝁𝝁′) − 4(𝝁𝝁′)(𝝁𝝁′) + 6(𝝁𝝁′)(𝝁𝝁′) + 6(𝝁𝝁′)𝚺

− 4(𝝁𝝁′)(𝝁𝝁′) − 12(𝝁𝝁′)𝚺 + (𝝁𝝁′)(𝝁𝝁′) + 6(𝝁𝝁′)𝚺 + 3𝑝𝚺′𝚺 

= 12𝝁𝝁′𝚺 − 12𝝁𝝁′𝚺 + 3𝑝𝚺′𝚺 
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𝐺4(1; −𝜇)

= 12(
3438.3044 3575.82 3442.1664
3575.82 3721 3581.92
3442.1664 3581.92 3448.0384

)

− 12(
3438.3044 3575.82 3442.1664
3575.82 3721 3581.92
3442.1664 3581.92 3448.0384

)

+ 3𝑝 (
247.201 130.019 161.026
130.019 216.923 137.385
161.026 137.385 282.861

)(
247.201 130.019 161.026
130.019 216.923 137.385
161.026 137.385 282.861

) 

𝐺4(1; −𝜇) = 3
𝑝 (

103943 82467.5 103216
82467.5 82835.2 89599.0
103216 89599.0 124814

)                             (4.9) 

Now using Equation 3.99, the skewness of the distribution can be obtained as 

𝑺𝒌(1) =
𝑮𝟑(1; −𝝁)

|𝑮3(1; −𝝁)|
3
2

=
1

1.414 × 1010
(
0
0
0
) 

∴ 𝑺𝒌(1) = (
0
0
0
) = ((0))

3×1
                               (4.10) 

The Multivariate Normal Distribution under consideration is thus a 𝑝 =

3 −variate symmetric distribution. 

Applying Equations 4.4 and 4.2 in Equation 3.100 yields 

𝑲𝒖(1) =
𝑮4(1;−𝝁)

[𝑮2(1;−𝜇)]
𝟐
=

𝟑𝒑 (
103943 82467.5 103216
82467.5 82835.2 89599.0
103216 89599.0 124814

)

(
103943 82467.5 103216
82467.5 82835.2 89599.0
103216 89599.0 124814

)

 

∴ 𝑲𝒖(1) = 33                                      (4.11) 
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This implies that the distribution under consideration is a 𝑝 = 3 −variate 

Mesokurtic distribution. 

4.2.3 The Dirrichlet Distribution (Multivariate Extension of the Beta Family of 

Distributions) 

The data in Table 4.3 represent a symmetric Dirrichlet Distribution with 

parameters 𝛼𝑖 = 2, ∀ 𝑖 = 1, 2, 3; 𝛼0 = 6 

The mean of the 𝑖𝑡ℎ random variable is obtained from Equation 3.114 as 

𝐸(𝑋𝑖) =
𝛼𝑖

∑ 𝛼𝑖
3
𝑖=1

 

=
2

6
 

∴ 𝐸(𝑋𝑖) = 0.3333                     (4.12) 

Hence the mean vector becomes 

𝐸(𝑿) = �̅� = (
0.3333
0.3333
0.3333

) 

The Skewness of the distribution may be obtained with Equation 3.119 as 

𝑠𝑘𝑖(1) =
3𝛼𝑖

3𝛼0(𝛼0 + 1) + 𝛼𝑖
3(𝛼0 + 4) − 3𝛼𝑖

2𝛼0(1 − 𝛼𝑖) + 2𝛼𝑖𝛼0
2

(𝛼𝑖
3𝛼0

2 + 3𝛼𝑖
3𝛼0 + 2𝛼𝑖

3)
.
(𝛼0 + 1)

3
2

(𝛼0 − 𝛼𝑖)
3
2

 

=
3(23)6(6 + 1) + 23(6 + 4) − 3(22)6(1 − 2) + 2(2)62

(23 ∗ 62 + 3(23)6 + 2(23))
∗
(6 + 1)

3
2

(6 − 2)
3
2

 

 

=
3 ∗ 8 ∗ 6 ∗ 7 + 8 ∗ 10 + 3 ∗ 4 ∗ 6 + 4 ∗ 36

(8 ∗ 32 + 3 ∗ 8 ∗ 6 + 2 ∗ 8)
∗
7
3
2

4
3
2
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=
1008 + 80 + 72 + 144

256 + 144 + 16
×
18.5208

8
=
1304

416
×
18.5208

8
 

=
163 × 18.5208

416
=
3018.89

416
 

∴ 𝑠𝑘𝑖 = 7.2569                            (4.13) 

Thus the skewness vector becomes  

𝒔𝒌(1) = (
7.2569
7.2569
7.2569

) 

Hence the symmetric Dirrichlet Distribution in Table 4.3 is 𝑝 = 3 positively 

skewed distribution. 

Kurtosis of the Dirrichlet Distribution in Table 4.3 may be obtained with 

Equation 3.122 as 

𝑘𝑢𝑖(1)

=
6𝛼𝑖

2𝛼0
3 + 3𝛼𝑖

3𝛼0
2 + 18𝛼𝑖

3𝛼0 + 39𝛼𝑖
2𝛼0 + 24𝛼0

3 + 15𝛼0
4 − 66𝛼𝑖

2𝛼0
2 + 3𝛼0

5

(𝛼0
3 + 6𝛼0

2 + 11𝛼0 + 6)

×
(𝛼0 + 1)

2

𝛼𝑖(𝛼0 − 𝛼𝑖)
2
 

=
6.4. 63 + 3.8. 62 + 18.8.6 + 39.4.6 + 24.8 + 15.16 − 66.4. 62 + 3. 65

(63 + 6. 62 + 11.6 + 6)

×
(6 + 1)2

2(6 − 2)2
 

=
864 + 144 + 144 + 156 + 32 + 40 − 1584 + 3888

84
×
49

32
 

=
3684

84
×
49

32
=
180516

2688
 

∴ 𝑘𝑢𝑖(1) = 67.15625                     (4.14) 
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Thus the kurtosis vector becomes 

𝒌𝒖(1) = (
67.15625
67.15625
67.15625

) 

Hence the 𝛼𝑖 = 2, ∀ 𝑖 = 1, 2, 3 symmetric Dirrichlet Distribution in Table 4.3 is 

a 𝑝 = 3 platykurtic distribution. 

The data on Table 4.4 represents 𝑝 = 3-variate Dirrichlet Distribution with 

parameters, 𝛼𝑖 = 1.2, 1.3, 1.4 for 𝑖 = 1, 2, 3 respectively and 𝛼0 = 3.9. 

Applying Equation 3.114, the expected mean vector may be obtained as 

𝐸(𝑋) = �̅� = ((
𝛼𝑖

∑ 𝛼𝑖
3
𝑖=1

)) 

∴ �̅� = (
1.2 3.9⁄

1.3 3.9⁄

1.4 3.9⁄
) = (

0.3077
0.3333
0.3590

) 

Skewness of the non-symmetric distribution may be obtained using Equation 

3.119 as 

𝑠𝑘𝑖(1) =
3𝛼𝑖

3𝛼0(𝛼0 + 1) + 𝛼𝑖
3(𝛼0 + 4) − 3𝛼𝑖

3𝛼0(1 − 𝛼𝑖) + 2𝛼𝑖𝛼0
2

(𝛼𝑖
3𝛼0

2 + 3𝛼𝑖
3𝛼0 + 2𝛼𝑖

3)

×
(𝛼0 + 1)

3
2

(𝛼0 − 𝛼𝑖)
3
2

 

∴ 𝑠𝑘1(1)

=
3(1.23)3.9(3.9 + 1) + 1.23(3.9 + 4) − 3(1.22)3.9(1 − 1.2) + 2(1.2)3.92

(1.23(3.92) + 3(1.23)3.9 + 2(1.23))

×
(3.9 + 1)

3
2

(3.9 − 1.2)
3
2
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=
99.06624 + 13.6512 + 3.3696 + 36.504

26.28288 + 20.2176 + 3.456
×
10.84661237

4.4366
 

=
152.59104

49.95648
×
10.84661237

4.4366
=
1655.095862

221.6369192
 

∴ 𝑠𝑘1(1) = 7.4676 

𝑠𝑘2(1)

=
3(1.33)3.9(3.9 + 1) + 1.33(3.9 + 4) − 3(1.32)3.9(1 − 1.3) + 2(1.3)3.92

(1.33(3.92) + 3(1.33)3.9 + 2(1.33))

×
(3.9 + 1)

3
2

(3.9 − 1.3)
3
2

 

=
125.95401 + 17.3563 + 1.521 + 39.546

33.41637 + 25.7049 + 4.394
×
10.84661237

4.192374029
 

=
184.37731

63.51527
×
10.84661237

4.192374029
=
1999.869211

266.2797684
 

∴ 𝑠𝑘2(1) = 7.5104 

𝑠𝑘3(1)

=
3(1.4)33.9(3.9 + 1) + (1.4)3(3.9 + 4) − 3(1.4)23.9(1 − 1.4) + 2(1.4)(3.9)2

((1.4)3(3.9)2 + 3(1.4)33.9 + 2(1.4)3)

×
(3.9 + 1)

3
2

(3.9 − 1.4)
3
2

 

=
157.3152 + 21.6776 + 9.1728 + 42.588

41.73624 + 32.1048 + 54.88
×
10.84661237

3.952847075
 

=
2502.87663

508.8145865
 

∴ 𝑠𝑘3(1) = 4.9190 

Hence the skewness vector becomes 
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𝒔𝒌(1) = (
7.4676
7.5104
4.9190

) 

 

Kurtosis of the non-symmetric distribution in Table 4.4 may be obtained using 

Equation 3.122 as 

𝑘𝑢𝑖(1)

=
6𝛼𝑖

2𝛼0
3 + 3𝛼𝑖

3𝛼0
2 + 18𝛼𝑖

3𝛼0 + 39𝛼𝑖
2𝛼0 + 24𝛼0

3 + 15𝛼0
4 − 66𝛼𝑖

2𝛼0
2 + 3𝛼0

5

(𝛼0
3 + 6𝛼0

2 + 11𝛼0 + 6)

×
(𝛼0 + 1)

2

𝛼𝑖(𝛼0 − 𝛼𝑖)
2
 

Thus, 

𝑘𝑢1(1)

= (
6(1.2)2(3.9)3 + 3(1.2)3(3.9)2 + 18(1.2)33.9 + 39(1.2)23.9 + 24(3.9)3

((3.9)3 + 6(3.9)2 + 11(3.9) + 6)

+
15(3.9)4 − 66(1.2)2(3.9)2 + 3(3.9)5

((3.9)3 + 6(3.9)2 + 11(3.9) + 6)
) ×

(3.9 + 1)2

1.2(3.9 − 1.2)2
 

=
170151.1741

1745.042292
 

∴ 𝑘𝑢1(1) = 97.5055 

Also, 

𝑘𝑢2(1)

= (
6(1.3)2(3.9)3 + 3(1.3)3(3.9)2 + 18(1.3)33.9 + 39(1.3)23.9 + 24(3.9)3

(3.93 + 6(3.9)2 + 11 ∗ 3.9 + 6)

+
15(3.9)4 − 66(1.3)2(3.9)2 + 3(3.9)5

(3.93 + 6(3.9)2 + 11 ∗ 3.9 + 6)
) ×

(3.9 + 1)2

1.3(3.9 − 1.3)2
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=
7017.04224

199.479
×
24.01

8.788
=
168479.1842

1753.021452
 

∴ 𝑘𝑢2(1) = 95.1079 

Now, 

𝑘𝑢3(1)

= (
6(1.4)2(3.9)3 + 3(1.4)3(3.9)2 + 18(1.4)33.9 + 39(1.4)23.9 + 24(3.9)3

(3.93 + 6(3.9)2 + 11 ∗ 3.9 + 6)

+
15(3.9)4 − 66(1.4)2(3.9)2 + 3(3.9)5

(3.93 + 6(3.9)2 + 11 ∗ 3.9 + 6)
) ×

(3.9 + 1)2

1.4(3.9 − 1.4)2
 

=
7946.52283

199.479
×
24.01

8.75
 

∴ 𝑘𝑢3(1) = 74.9358 

Hence the kurtosis vector becomes 

𝒌𝒖(1) = (
97.5055
95.1079
74.9358

) 

This implies that the data on Table 4.4 is a 𝑝 = 3-variate leptokurtic 

distribution. 

The results obtained in this chapter shall be presented in a concise form, used 

to draw conclusions and make recommendations in next chapter. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 SUMMARY OF RESULTS 

The results obtained in this work are highlighted as follows: the univariate 

generalized moment generating function as developed by Oyeka et al (2008 and 

2010) for continuous random variable, 𝑋, with probability density function, 𝑓(𝑥), 

about an arbitrarily chosen, 𝜆, is given as the expected value of the 𝑛𝑡ℎ power of 

𝑋𝑐 + 𝜆, that is; 𝑔𝑛(𝑐; 𝜆) = 𝐸(𝑋
𝑐 + 𝜆)𝑛 = ∑ (

𝑛
𝑟
) 𝜆𝑛−𝑟𝐸(𝑥𝑐𝑟)𝑓(𝑥)𝑛

𝑟=0 𝑑𝑥 =

∑ (
𝑛
𝑟
) 𝜆𝑛−𝑟

Γ(𝛼+𝛽).Γ(𝑐𝑟+𝛼)

Γ(𝛼).Γ(𝑐𝑟+𝛼+𝛽)
𝑛
𝑟=0 , equation 3.17, for the beta family of distributions; =

∑ (
𝑛
𝑐
)𝜆𝑛−𝑟

𝛽𝑐𝑟Γ(𝑐𝑟+𝛼)

Γ(𝛼)
𝑛
𝑟=0 , equation 3.29, for the gamma family of distributions and; 

= ∑ (
𝑛
𝑟
) 𝜆𝑛−𝑟 ∑ (

𝑐𝑟
𝑡
)𝑐𝑟

𝑡=0
𝑛
𝑟=0 𝜇𝑐𝑟−𝑡(2𝜎2)

𝑡

2
Γ(

𝑡

2
+
1

2
)

√𝜋
, equation 3.26, for the univariate 

normal distribution; the bivariate generalized moment generating function about 

zero as developed by Oyeka et al (2012) was proved to be obtained as the expected 

value of the 𝑛𝑡ℎ power of 𝑋𝑐𝑌𝑑, given as, 𝑔𝑛(𝑐, 𝑑) = 𝜇𝑛(𝑐, 𝑑) = 𝐸(𝑋𝑐 , 𝑌𝑑)𝑛; 𝑐 ≥

0, 𝑑 ≥ 0, 𝑛 = 0, 1, 2, … = ∫ ∫ (𝑋𝑐)𝑛(𝑌𝑑)𝑛
∞

−∞

∞

−∞
𝑓(𝑥, 𝑦)𝑑𝑥. 𝑑𝑦; the generalized 

multivariate moment generating functions about a constant vector or matrix, 𝝀, 

𝐸(𝑿𝒄 + 𝝀)𝑛, were developed and illustrated with the multivariate gamma, the 

normal and dirrichlet distribution as; 𝑮𝑛(𝒄;  𝝀) = ∑ (
𝑛
𝑟
)𝝀𝑛−𝑟

|Σ|𝑐𝑟𝛽𝑝𝑐𝑟Γ𝑝(𝛼+𝑐𝑟)

Γ𝑝(𝛼)
𝑛
𝑟=0 , 

equation 3.78, for the multivariate gamma distribution; 𝑮𝑛(𝒄; 𝝀) =

∑ (
𝑛
𝑟
)𝝀𝑛−𝑟

|Σ|𝑐𝑟2𝑝𝑐𝑟Γ𝑝(
𝑛

2
+𝑐𝑟)

Γ𝑝(
𝑛

2
)

𝑛
𝑟=0 , equation 3.79, for the wishart distribution; =

(∑ (
𝑛
𝑟
)𝝀𝑛−𝑟𝑛

𝑟=0 )
𝑝
∏ 𝛽𝑖

𝑐𝑟𝑝
𝑖=1

Γ(𝛼𝑖+𝑐𝑟)

Γ(𝛼𝑖)
, equation 3.84, for a case of the joint distribution 

of 𝑝 independent gamma distributions; = ∏ ∑ (
𝑛𝑖
𝑟𝑖
) 𝝀𝑖

𝑛𝑖−𝑟𝑖𝛽𝑖
𝑐𝑖𝑟𝑖 Γ(𝛼𝑖+𝑐𝑖𝑟𝑖)

Γ(𝛼𝑖)

𝑛𝑖
𝑟𝑖=1

𝑝
𝑖=1 , 
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equation 3.85, for 𝑐, 𝜆, 𝑛 and 𝑟 varying among the independent distributions; =

[∑ (
𝑛
𝑟
)𝑛

𝑖=0 𝝀𝑛−𝑟𝛽𝑐𝑟
Γ(𝛼+𝑐𝑟)

Γ(𝛼)
]
𝑝

, equation 3.86, for a situation where 𝑐, 𝜆, 𝛽, 𝛼 and 𝑟 are 

constant among all the independent gamma distributions; 𝑮𝑛(𝒄; 𝝀) =

∑ (
𝑛
𝑟
)𝝀𝑛−𝑟 ∑ (

𝑐𝑟
𝑡
) 𝜇𝑐𝑟−𝑡(2𝑝Σ)

𝑡

2𝑐𝑟
𝑡=0

𝑛
𝑖=0

(Γ(
𝑡

2
+
1

2
))
𝑝

𝜋
𝑝
2

, equation 3.91 for the multivariate 

normal distribution and; 𝑮𝑛(𝑐; 𝝀) = ∑ (
𝑛
𝑟
)𝑛

𝑟=0 𝜆𝑛−𝑟
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ Γ(𝛼𝑖+𝑐𝑟)
𝑘
𝑖=1

Γ(∑ 𝛼𝑖
𝑘
𝑖=1 +𝑐𝑟)

, Equation 

3.113 for the Dirrichlet Distribution (a multivariate extension of the Beta 

Distribution). 

5.2 CONCLUSIONS 

Based on the results obtained in this work, the following conclusions may be drawn: 

the generalized multivariate moment generating function was successfully 

developed and found to be easier to apply than the traditional methods of 

generating moments because no further calculus or any other modification is 

required for its evaluation; it is more versatile than the traditional methods since it 

could handle all integral and real powers as well as central and non-central moments 

of random variables; it exists for all continuous probability distributions unlike its 

competitors such as factorial moments generating functions and moments 

generating functions which may not always exist and even if they exist, may be 

tedious and cumbersome to evaluate in practical applications especially for higher 

moments; results obtained using the generalized moment generating function are 

the same as results obtained using other methods like moment generating function 

where it exists; the kurtosis obtained from Multivariate Generalized Moment 

Generating Function of Multivariate Normal Distribution (equation 4.100) gives 

account of the number of variables included in the multivariate distribution and; 
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5.3 CONTRIBUTION TO KNOWLEDGE 

This research has made the following contributions to knowledge: it has 

developed the generalized moment generating function (GMMGF) of 

Multivariate Distributions; it developed the function for the Multivariate 

Gamma Family, Multivariate Normal and the Dirrichlet Distributions; it has 

shown the use of the function in generating moments of random 

vectors/matrices and; it showed the advantages of the new method over 

existing traditional/conventional methods. 

5.4 RECOMMENDATIONS 

The following recommendations may be made based on the conclusions drawn in 

section 5.2: 

1. application of the generalized moment generating function should be 

preferred to the traditional methods due to their simplicity and versatility 

of use in practical applications; 

2. specifically, the Multivariate Generalized Moment Generating  Function of 

the Multivariate Normal Distribution should be preferred in the evaluation 

of kurtosis of the distribution because it gives additional information about 

the distribution and; 

3. future studies should aim at developing the generalized moment 

generating function for discrete probability distributions. 
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