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CHAPTER ONE 

INTRODUCTION 

1.1 Background of  the Study 

Advances in ICT today has made data more voluminous and multifarious and its being 

transferred at high speed (Sergio, 2015). Applications in cloud like Yahoo weather, 

Facebook photo gallery and Google search index is changing the IT landscape in a 

profound way (Stone et al., 2008; Barroso et al., 2003). Reasons for these trends 

include scientific organizations solving big problems related to high performance 

computing workloads, diverse public services being digitized and new resources used. 

Mobile devices, global positioning systems, sensors, social media, medical imaging, 

financial transaction logs and lots of them are all sources of massive data generating 

large sets of complex data (Sergio, 2015). These applications are evolving to be data-

intensive which processes very large volumes of data hence, require dynamically 

scalable, virtualized resources to handle them.  

Large firms like Google, Amazon, IBM, Microsoft and Apple are processing vast 

amount of data (Dominique, 2015). International Data Corporation (IDC) survey in 

2011 estimated the total world wide data size which they called digital data universe at 

1.8 zegabytes (ZB) (Dominique, 2015). IBM observed that about 2.5 quintillion bytes 

of data is created each day and about 90% of data in the world was created in the last 

two year (IBM, 2012). This is obviously large. An analysis given by Douglas (2012) 

showed that data generated from the earliest starting point until 2003 represented close 

to 5exabytes and rose to 2.7zettabytes as at 2012 (Douglas, 2012). Type of data that has 

rapid increase is the unstructured data (Nawsher et al., 2014). This is because, these 

data are characterized by human information such as high-definition videos, scientific 

simulations, financial transactions, seismic images, geospatial maps, tweets, call-centre 

conversations, mobile calls, climatology and weather records (Douglas, 2012). 

Computer world submit that unstructured information account for more than 70% of all 

data in an organization (Holzinger et al., 2013). Most of these data are not modelled, 

they are random and very difficult to analyse (Nawsher et al., 2014). 
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A new crystal ball of the 21
st
 century that helps put all these massive data together, 

classifying them according to their kinds or nature is referred to as Big Data. Big data is 

a platform that helps in the storage, classification and analysing massive volume of data 

(Camille, 2015). Hortonworks (2016) defined big data as a collection of large datasets 

that cannot be processed using traditional computing techniques. These data includes 

black box data (data from components of helicopter, airplanes and jets), social media 

data such as facebook and twitter, stock exchange data that holds information about the 

“buy” and “sell” decisions made on a share of different companies, power grid data like 

information consumed by a particular node with respect to a base station, transport data 

which includes model, capacity, distance and availability of a vehicle. Big data can also 

be seen as accumulation of huge and complex datasets that is too hard to process using 

database management tools or traditional data processing application with the 

challenges of capturing, storing, searching, sharing, transferring, analysing and 

virtualization. Madeen (2012) also see big data as “too big, too fast or too hard for 

existing tools to process”. “Too big” from Madden‟s explanation has to do with the 

amount of data which might be at petabyte – scale and come from various sources. 

“Too fast” is data growth, which is fast and must be processed quickly and “too hard” is 

the difficulties of big data that does not fit neatly into an existing processing tool 

(Madden, 2012). 

 The characteristics of big data are better defined by Gartner in Beyer and Laney (2012) 

as the three Vs (Volume, Velocity and Variety). Volume refers to the amount of data to 

be processed. Volume of data could amount to hundreds of terabytes or even petabytes 

of information generated from everywhere (Avita et al., 2013). As organization grows, 

more data sources consisting large datasets increase the volume of data. Oracle gave the 

rate at which data grows. It was observed that data is growing at a 40% compound 

annual rate, reaching nearly 45ZB by 2020 (Oracle, 2012). Velocity is speed at which 

data grows. According to Sircular (2013), velocity is the most misunderstood big data 

characteristic. She described data velocity as the rate of changes and combining datasets 

that are coming with different speeds (Sircular, 2013). Variety has to do with the type 

of data. Big data accommodate structured data (relational data), semi-structured data 

(XML data) and unstructured data (word, pdf, text, media logs). From analytics 

perspective, data variety is seen as the biggest challenge to effectively gain insight in 

big data. Some researchers believe that taming data variety and volatility will be a key 
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to big data analytics (Nawsher et al., 2014). IBM came with an additional V for big data 

characteristic which is “veracity” (IBM, 2012) Veracity addressed the inherent 

trustworthiness of data. Since data will be used for decision making, it is important to 

make sure that such data can be trusted (IBM, 2012). Some researchers mentioned 

“viability” and “value” as the fourth and fifth big data characteristics leaving “veracity” 

out of the Vs (Biehn, 2013). 

These ever increasing data pools obviously have a profound impact not only on 

hardware storage requirements and user applications, but also on the file system design, 

implementation and the actual I/O performance and scalability behaviour of today‟s IT 

environment. To improve I/O performance and scalability therefore, the obvious answer 

is to provide a means such that users can read/write from/to multiple disks (Dominique, 

2015). Assume a hypothethical setup with 100 drives, each holding just 1/100 of 1TB 

data and all of these drives are accessed in parallel at 100MB/second. It then means that 

1TB of data can be fetched in less than 2minutes. If same operation is to be performed 

with just a drive, then it will take more than 2½hours to accomplish same task. Today‟s 

huge and complex semi-structured or unstructured data are difficult to manage using 

traditional technologies like RDBMS hence, the introduction of HDFS and MapReduce 

framework in Hadoop. Hadoop is a distributed data storage/data processing framework. 

Data sets processed by traditional database (RDBMS) solutions are by far much smaller 

compared with the data pool utilized in Hadoop environment (Dominique, 2015). While 

Hadoop adopts a brute-force access method, RDBMS solution only banks on optimized 

accessing routines such as indexes, read-head and write-behind technique (Dominique, 

2015). Hadoop excels in an environment that reveals a massive parallel processing 

infrastructure where data is unstructured to the point where no RDBMS optimization 

techniques can be used to boost I/O performance (Dominique, 2015). Hadoop is 

therefore, designed to process efficiently, large data volumes by linking many 

commodity systems so that they can work as parallel entity. The framework was 

designed basically to provide reliable, shared storage and analysis infrastructure to the 

user community. Hadoop has two components – HDFS (Hadoop Distributed File 

System) and MapReduce framework (Nagina and Sunita, 2016). The storage portion of 

the framework is provided by HDFS while the analysis functionality is presented by 

MapReduce (Dominique, 2015). Other components also constitute Hadoop solution 

suite. 
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MapReduce framework was designed as a tool for data driven programming model 

which aims at processing large-scale data-intensive applications in cloud on commodity 

processors (Dean and Ghemawat, 2008). MapReduce has two components – Map and 

Reduce (Wang, 2015) with intermediate shuffling procedures and the data formatted as 

unstructured (key, value) pair (Dean and Ghemawat, 2008). HDFS replicates data unto 

multiple data nodes to safeguard the file system from any potential loss so that, if one 

data node gets fenced, there are at least two other nodes holding same data set 

(Dominique, 2015). 

The first generation Hadoop called Hadoop_v1 was an open source of MapReduce 

(Bialecki et al., 2005). It has a centralised component called JobTracker that plays the 

role of both resource management and task scheduling. Another centralized component 

is the NameNode which is the file metadata server for HDFS that stores application data 

(Shvachko et al., 2010). With Hadoop_v1, scalability beyond 4000 nodes was not 

possible with the centralized responsibility of JobTracker/TaskTracker architecture. To 

overcome this bottleneck and to promote this programming framework so that it carries 

other standard programming models and not just implementation of MapReduce, the 

Apache Hadoop Community developed the next generation Hadoop called YARN (Yet 

Another Resource Negotiator). This newer version of Hadoop called YARN decouples 

resource management infrastructure from JobTracker in Hadoop_v1. Hadoop YARN 

introduced a centralized Resource Manager (RM) that monitors and allocates resources. 

Each application also delegates a centralized per-application master (AM) to schedule 

tasks to resource containers managed by Node Manager (NM) on each compute node 

(Wang, 2015). The HDFS and its centralized metadata management remains the same 

on this newer programming model (Wang, 2015). Improvement made on Hadoop_v1 

(by decoupling the resource management infrastructure) enables YARN to run many 

application frameworks like MapReduce, Message Passing Interface (MPI), interactive 

applications and scientific workflows. This eases the resource sharing of the Hadoop 

cluster.  

With the scheduler separated from RM and the implementation of per-application 

master (AM), Hadoop has achieved an unprecedented scalability. However, there are 

inevitable design issues that are preventing Hadoop from scaling to extreme scales. 

These issues are in the centralized paradigm in the implementation of some components 

in YARN framework. This research work therefore, seeks to develop a model solution 
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that will decentralize the responsibilities of resource manager for scalable resource 

management in YARN. 

 

1.2 Statement of the Problem 

Data driven models like Hadoop have gained tremendous popularity in Big Data 

analytics. Though great efforts have been made through the implementation of Hadoop 

framework by decoupling of resource management infrastructure which has allowed 

Hadoop to scale to tens of thousands of commodity cluster processors, the centralized 

designs of resource manager and metadata management of HDFS has adversely 

affected Hadoop scalability (ability to expand the cluster) to tomorrow‟s extreme-scale 

datacentres. This challenge therefore, led us to the following problem definition. 

i. How to develop a model alternative that will ensure better scalable resource 

management in YARN. 

ii. To address scalability issues of Hadoop through decentralized resource 

management in order to improve response and turnaround time of clients‟ 

jobs. 

iii. How to provide a mechanism that will guard against failure of resource 

management deamons during job execution. 

iv. How to evaluate the scalability of the new model to the existing model using 

efficiency and average task-delay ratio as performance metrics. 

 

1.3 Aim and Objectives of the Study 

The aim of this research work is to develop a model of an improved scalable resource 

management system for Hadoop YARN. 

The objectives of the study are to; 

i. Decentralize the global control of Resource Manager in YARN framework 

by providing another layer called Rack Unit Resource Manager  (RU_RM) 

layer.  
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ii. Configure RU_RM layer to ensure that each RU_RM controls resource 

requests for compute nodes within its rack instead of a single Resource 

Manager controlling all the compute nodes in the cluster.  

iii. Develop ring architecture in RU_RM layer to ensure that all Rack Unit 

resource managers form a peer-to-peer architecture such that each Rack Unit 

resource manager holds resources for which it is directly responsible to and 

also have backup copies of resources for the RU_RM preceding/succeeding 

it. 

iv. Carry out a performance evaluation test between the new model and YARN 

with Hadoop benchmark workload called WordCount. 

 

1.4 Significance of the Study 

The major significance of this research is to deliver an elastic, scalable and easy way to 

optimize and streamline operations in YARN so as to provide better quality of service 

to users. The research work seeks to make sure that no single point of failure exists in 

YARN framework. The global resource manager in YARN is a per cluster resource 

manager controlling all data nodes in the network. Once this daemon fails, all jobs will 

halt and have to be restarted. This process however, leads to delay in response time and 

the execution of jobs in the framework. With the introduction of per-rack resource 

manager layer in the new model, each rack unit resource manager is directly responsible 

for its corresponding data nodes. Single point of failure experienced in the existing 

framework therefore, is eliminated so that jobs will have lower response and execution 

time. 

The introduction of novel ring approach in the rack unit resource manager layer of the 

new model ensured that all rack unit resource managers form a peer-to-peer architecture 

such that each rack unit resource manager holds resources for which it is directly 

responsible to and also have backup copies of resources for the RU_RM 

preceding/succeeding it. This will ensure that resources are available to users on 

demand and efficiently utilized to provide greater turnaround time for safety critical 

jobs like computer controlled radiation machines in health sector. Failure of a single 

rack unit resource manager will no longer affect the processing of jobs since the rack 

unit resource manager preceding/succeeding it will take responsibility of all data nodes 

within the failed rack. The framework will enable surplus data to be streamlined for any 
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distributed processing system across cluster of computers. It will scale up single servers 

to a very large number of machines; each and every of these machines offering local 

computation and storage space. This will allow for rapid data transfer facilitated by well 

laid out distributed file system. 

 

The introduction of rack-aware resource manager in this system can now provide a cost 

effective storage solution to business analysts. Its highly scalable storage/processing 

capability will facilitate businesses to easily access data sources and tap into different 

types of data to produce value for such data. Significantly noted is that, data 

management industry has expanded from software and web into retail, 

healthcare/hospitals, media and entertainment, information services, finance and 

government. This creates a huge demand for a more scalable system that will provide 

excellent data analytic services. Most enterprises/organizations use and analyse lower 

volume of data with a very large amount wasted. It is a bad practice to term data as 

unwanted as many part of these data can be put to good use by an 

organization/enterprice. This system therefore has the capability of storing and 

processing of large amount of data that can help organization improve the functionality 

of each and every business unit which inludes research, design, development, 

marketing, advertising, sales and customers handling. 

 

One vital component of data analytics is machine learning. Machine learning is 

significantly used in medical domain to predict cancer, natural language processing, 

search engine, recommendation engines, bio-informatics, image processing, text 

analytics and much more. Machine learning algorithms gain significance where data 

size is big; especially when it is unstructured, as it means making sence out of 

thousands of parameters, of billions of data values. Since this system processes large 

datasets across different cluster of cheap commodity servers, the place of big data 

comes into picture, which is also significant for running machine learning algorithms. 

With this rack-aware resource management system, data scientists and engineers will be 

able to ingest more data and processes into machine learning tools and be sure of lower 

response time during job execution. An efficient library can be developed to enable 

running various machine learning algorithms on this system in a distributed manner. 
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1.5 Scope of the Study 

This research work considered the resource management of YARN framework and 

provided a model alternative that help to improve management of applications/jobs in 

this framework. The scope of this work therefore, is limited to resource manager 

daemon of YARN framework. Hadoop benchmark workload called WordCount was 

used to compare the new model and the existing model. The map task counts the 

frequency of each individual word in a subset data file while the reduce task shuffles 

and gather the frequency of all the words.  

 

1.6 Limitation of the Study 

The simulator for Hadoop YARN called YARNsim (Ning et al., 2015) has very limited 

tools for carrying out this work. The current version (developed recently) does not 

support fault tolerance models (Ning et al., 2015), only FIFO scheduling algorithm was 

built into the simulator and it has no plugins that allows modifications to suit research 

improvements in Hadoop hence, the need to use real test bed. However, this situation 

will not be a drawback to achieving desired objective for this research work. 

1.7 Definition of Terms 

Datacenter (DC):- Is a centralized repository for storage, management and 

dissemination of data and information organized around a particular body of 

knowledge. 

Framework:- Is a layered structure in any programming model, which shows what 

kind of program can or should be built and how they would interrelate. 

Hadoop:- Is an open source Java-based programming model which supports processing 

and storage of large pool of data sets in a distributed environment. 

HDFS:- Hadoop Distributed File System use in Hadoop framework to store clients 

data. 

MapReduce:- A component of Hadoop framework that processes clients data. 

Nodes:- Just two or more different computers connected within a network. 
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Scalable:- Ability to change in size. 

Scalability:- Ability of a system or application to continue to function well even when 

it changes in size or volume in order to meet its desired objectives. 

Task:- A piece of work to be carried out by system. 

YARN:- Yet Another Resource Negotiator is the newer version of Hadoop framework 

used in storage and processing of large data sets. 

Resource Manager:- Is a core component of YARN responsible for scheduling of jobs 

and management of compute nodes in a cluster. 

Cluster:- Is a special type of computational framework designed specifically for storing 

and analysing huge amounts of structured/unstructured data in a distributed computing 

environment. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Theoretical Framework 

Relational database technology has proved not to be effective for analysis of massive 

datasets hence; many organizations have developed technology to utilize large clusters 

of commodity servers to provide high performance computing capabilities for 

processing and analysing large datasets (Anthony, 2015). These clusters consist of 

hundreds or thousands of commodity machines which are connected by high bandwidth 

networks. The commodity servers are powerful than supercomputers which existed 

during the early 90‟s (Anthony, 2015). These commodity servers have led to new trend 

in super computer design for high performance using clusters of independent processors 

connected in parallel (Vinayak et al., 2012). Computing problems today are suitable for 

parallelization, where problems can be divided into a manner that will allow 

independent processing nodes work on a portion of the problem in parallel. This is 

achieved by dividing the data to be processed into portions and then combining the final 

processing results for each portion (Nyland et al., 2000). This method of parallelization 

is what is referred to as “data-parallelism” or “horizontal portioning” (Nyland et al., 

2000) and it is the potential solution to petabytes scale data processing requirements. 

Data-parallelism can be seen as a computation applied independently to each data item 

of a set of data so as to allow a degree of parallelism to be sealed with the volume of 

data (Anthony, 2015). Why data – parallelism applications are developed, is to allow 

for scalable performance which result in magnitude improvement. The key issue with 

this development however, lies in the choice of algorithm, strategy for data 

decomposition, load balancing on processing nodes, communications between 

processing nodes and the overall accuracy of the results (Vinayak et al., 2012). Cluster 

configuration makes it possible to partition data used by applications among available 

computing nodes and processed independently to achieve performance and scalability 

based on the amount of data (Anthony, 2015). This parallel processing approach is most 

times referred to as “shared nothing” approach because, each node consist of its own 

processor, local memory and disk resources. It shares nothing with other nodes in the 

cluster. Figure 2.1 gives a clear understanding of this new paradigm. 
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Figure 2.1: Commodity Computing Cluster (Anthony, 2015) 

Clusters become extremely effective when it is easy to relatively separate problems into 

a number of parallel tasks with no dependency or communication required between 

these tasks other than overall management of the tasks. There are applications which are 

I/O bound or need to process large volumes of data. These data-intensive applications 

devote most of processing time to I/O and movement of data. Parallel processing of 

data-intensive applications requires partitioning of data into multiple segments and 

processing each segment in a distributed and parallel manner with same executable 

application program and then re-assembling the results from each node to produce the 

computed output data (Anthony, 2015). These applications uses distributed data and 

distributed file systems in which data is located across a cluster of processing nodes 

such that, instead of moving data to the source machine, program or algorithm is 

transferred to the nodes with the data that needs to be processed (Anthony, 2015). This 

approach of “move the code to the data” is extremely effective since program size is 

usually small in comparison to the large datasets to be processed. It also result in much 

less network traffic since data can be read locally instead of across the network. This 

technique makes executable program to process data on the nodes where these data 

resides thereby reducing system overhead and increasing performance (Anthony, 2015). 

One of the examples of these cluster technology that describe the characteristics and 

requirements of data-intensive applications is the Hadoop system. 
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Hadoop is an open-source Apache Software Foundation (ASF) project which is written 

in Java programming language that provides cost-effective and scalable infrastructure 

for distribution and parallel processing of large datasets across commodity of clusters 

(Shvachko et al., 2010). The programming paradigm was inspired by Google File 

System (GFS) (Ghemawat et al., 2003) and Google‟s MapReduce distributed 

computing environment. The idea was first conceived by Dough Cutting, an employee 

then with Yahoo and together with Professor Mike Caferalla of the University of 

Michigan, developed Hadoop later called Apache Hadoop (Shouvik and Daniel, 2013).  

Hadoop was named after Dough Cutting‟s son toy elephant (White, 2009). Hadoop has 

been used to process highly distributable problems across large amount of datasets with 

commonly available, inexpensive internal disk drives (Ibrahim et al., 2016). There are 

basically two components in Hadoop (i) Hadoop Distributed File System (HDFS) and 

(ii) MapReduce framework. 

This chapter is in seven sections. The theoretical framework which gives background 

theory to the research work has been discussed in the first section. The next section will 

discuss classic Hadoop and its limitations. This will be followed by the next generation 

Hadoop called YARN in section three. Section four will look at Hadoop clusters and 

their network topology while section five describes various components of Hadoop 

ecosystem. Section six will review related distributed data storage and parallel 

processing platforms and the last section will give clear distinction and research gap 

between these platforms. 

 

2.2 Classic Hadoop 

Hadoop is a scalable, fault tolerant, open source framework for distributed storage and 

parallel processing of large sets of data on commodity hardware (Hortonworks, 2016). 

The idea was conceived after Google released a white paper in 2004 describing the use 

of MapReduce in solving big data problems. By 2005, Dough Cutting and Mike 

Cafarella (both working at Yahoo as at that time) developed Hadoop, which is a better 

version of distributed storage and parallel processing framework than Google File 

System (GFS) and MapReduce (MR) (Hortonworks, 2016). Yahoo donated Hadoop 

project to Apache in 2006 hence; the name Apache Hadoop. Hadoop has two basic 
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components; Hadoop Distributed File System (HDFS) and MapReduce (Hortonworks, 

2016). 

2.2.1 HDFS Architecture 

HDFS is a master/slave architecture consisting of NameNode called master, secondary 

node called checkpoint and several DataNodes called slaves (Ibrahim et al., 2016). The 

major/centralized controller that handles all file system operations is the NameNode 

hence; any request to the file system (like create, delete and read a file) must go through 

the NameNode. NameNode also handles block mappings of input files as shown in 

Figure 2.2. Each file is divided into blocks (default is 64MB) with each independently 

replicated across DataNodes for redundancy. Block creation, deletion and replication 

are managed by the DataNode upon instruction from the NameNode (Ibrahim et al., 

2016). A periodic heartbeat message is always sent from the DataNodes to NameNode 

(usually, default heartbeat is 3s) to be sure that there is no loss of connectivity between 

the two. If NameNode is unable to establish this periodic heartbeat from DataNode, it 

considers such DataNode out of service, unavailable or dead and hence, will not 

forward any new request to such DataNode. The NameNode at this point, schedules 

creation of new replicas of those blocks in the unavailable DataNode on another 

DataNode (Ibrahim, et al., 2016). 

 

Figure 2.2: HDFS Architecture (Dominique, 2015) 
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HDFS also provides an option to configure Secondary NameNode, which periodically 

merges namespace image with the edit log in NameNode to prevent edit log from 

becoming two large (Dominique, 2015). Secondary NameNode normally is configured 

on a separate physical system which makes the merge activities CPU intensive. The 

Secondary NameNode stores merged copy of namespace image so as to provide backup 

when NameNode is fenced. However, the Secondary NameNode lags behind the 

primary hence, if the primary data is completely lost, the file system becomes non-

functional. Based on the design principle of HDFS, a file is stored as a sequence of 

(same-sized) blocks, with the exception of the last file block which may be small for a 

block. Such file size is stored in a sub-size of a block (no internal fragmentation) 

(Shouvik and Daniel, 2013). 

Placement of replicas is paramount to HDFS reliability and performance. Optimizing 

replica placement is considered as a feature that distinguishes HDFS from most 

common distributed file systems. A rack-aware replica placement policy will improve 

data reliability, availability and will optimize network bandwidth utilization. Most 

HDFS installations execute cluster environment that encompasses many racks 

(Dominique, 2015). Since inter-rack communication travels through switches and in 

most configurations, bandwidth potential among nodes in the same rack is greater than 

the network bandwidth among nodes hosted in different racks, there is need for HDFS 

replica placement to be rack-aware. One option is to place replicas in different racks so 

as to prevent data loss in a situation where an entire rack fails. Such policy will evenly 

distribute replicas in the cluster to provide efficient load balancing and prevent rack 

failure scenarios. However, it will increase the cost of writing data to different racks, as 

each write request will require transferring blocks to multiple racks. A common HDFS 

placement policy is to store 2/3 replicas on different nodes of the same local rack and 

the last on another node from a different rack (Dominique, 2015). This addresses the 

inter-rack write scenario and also eliminates the chances of a rack failure with no 

impact on data reliability and availability guarantees. To minimize network bandwidth 

consumption and maximize read/write latency without impacting data reliability and 

availability, we suggest that 2/3 replicas for each complete file block be placed on 

different nodes in same local rack. The reason is because, the chance of a rack failure is 

far less than that of a node failure and, a backup replica is in another rack in situation of 

failure. 
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2.2.2 MapReduce Architecture 

Hadoop_v1 MapReduce (MRv1) framework is based on centralized master/slave 

architecture (Ibrahim et al., 2016). In this framework, there is a single master server 

called JobTracker and several slave servers called TaskTrackers (Dominique, 2015). 

JobTracker represents the centralized program that keeps track of all slave nodes 

through the TaskTracker and provides interface infrastructure for all job submissions. 

TaskTracker helps execute actual data stored on each slave nodes. Users submit jobs to 

JobTracker which inserts the job into pending job queue and execute them based on the 

type of scheduler chosen. Once a job is submitted, the JobTracker gives a job ID to the 

client program and starts allocating map task to idle TaskTracker as shown in Figure 

2.3.  

 

Figure 2.3: MapReduce Architecture (Ibrahim et al., 2016) 

Each TaskTracker has a defined number of task slots based on the node capacity. 

Through periodic heartbeat, the JobTracker knows the number of free slots in the 

TaskTracker hence; JobTracker can determine appropriate job setup for the 

TaskTracker. The assigned TaskTracker will then fork a map task to execute the map 

processing cycle (1 map task for each input split). Map task extracts input data from the 

split using Record_Reader and an Input_Format for the said job. This process invokes 

the user provided map function, which emits a number of <key, value> pairs in the 

memory buffer (Dominique, 2015). Once the map task has finished execution, the 
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commit process cycle is initiated, which flushes the memory buffer to the index and 

data file pair (Ibrahim et al., 2016), where these index and data file pairs are merged 

into a single construct. The JobTracker initiates the reduce task through the 

TaskTracker where these files are concatenated into a single entity. As more map tasks 

are completed, JobTracker keeps notifying TaskTracker to concatenate files using 

reduce function until all tasks are completed and an output data generated. This process 

is shown in Figure 2.4. 

 

Figure 2.4: Representation of Map and Reduce Tasks (Wissem et al., 2018) 

Looking at the centralized nature of JobTracker and its responsibilities, there is a single 

point of failure. If JobTracker fails, all running jobs will halt. This means that, map 

tasks and incomplete reduce tasks will have to be re-executed hence, low throughput 

and high execution time. Facebook observed that single JobTracker in MapReduce 

framework is a bottleneck and most times, start-up time for a job is several tens of 

seconds (Dean and Ghemawat, 2008). It was obvious that JobTracker could not handle 

its dual responsibilities of managing the cluster resources and also scheduling users‟ job 

adequately. Facebook noticed that at peak load, cluster utilization dropped precipitously 

due to scheduling overhead experience in Hadoop framework (Dean and Ghemawat, 

2008). Facebook also noticed that polling from TaskTrackers to the JobTracker during a 

periodic heartbeat is a bottleneck for Hadoop scheduler as it slows down processing 
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which thereby affect scalability (Dean and Ghemawat, 2008). Another issue is the slot 

based model. Most times, slot configuration does not match job mix. As a result, once 

there is need for upgrade to change the number of slots on node(s), all jobs will be 

killed which is unacceptable (Shouvik and Daniel, 2013). Because of these bottlenecks, 

Facebook saw the need for a better scheduling framework with better scalability and 

cluster utilization by lowering latency for small jobs and scheduling based on actual 

task resource requirements rather than a count of map and reduce tasks (Wang et al., 

2013). 

Facebook developed Corona (Dean and Ghemawat, 2008), a new scheduling framework 

that separates cluster resource management from job scheduling. Corona introduced a 

cluster manager whose sole responsibility is to track nodes in the cluster and the amount 

of free resources available (Shouvik and Daniel, 2013). In Corona, a dedicated 

JobTracker was also introduced for each job, and can run either in that same process as 

the client (for small jobs) or as a separate process in the cluster (for large jobs). What 

differentiate Hadoop MapReduce framework from Corona is that, Corona uses push-

based rather than pull-based scheduling (Shouvik and Daniel, 2013). In Corona, once 

the cluster manager receives resource requests from the JobTracker, it pushes the 

resource grants back to the JobTracker which creates tasks and then pushes these tasks 

to the TaskTrackers for execution. In Corona, cluster manager does not perform any 

tracking or monitoring of job‟s progress. The responsibility is left to the individual job 

trackers. This separation makes scheduling faster since JobTrackers tracks only one job 

each and has less code complexity. Corona therefore, manages a lot of jobs and 

achieves better cluster utilization. Figure 2.5 depicts a notional diagram of Corona‟s 

main components. 
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Figure 2.5: Corona‟s main components (Shouvik and Daniel, 2013) 

Yahoo is also a major player in Hadoop ecosystem. When Yahoo discovered that 

JobTracker is a bottleneck in their huge Hadoop clusters, they developed MapReduce 

version-2. Hadoop_v1 has indeed reached a scalability limit of around 4000+ nodes 

(Shouvik and Daniel, 2013). Scalability requirement of 20,000 nodes and 200,000 cores 

was required but was not possible with the current JobTracker/TaskTracker architecture 

(Shouvik and Daniel, 2013). In 2009, YARN was developed. YARN stands for Yet 

Another Resource Negotiator and it‟s the next generation of Hadoop (0.23 and beyond). 

YARN architecture decomposes two principal responsibilities of the old JobTracker 

into (i) resource management, (ii) job scheduling/monitoring entity. This new design is 

based on a global (yet centralized) Resource Manager (RM) and a per-

ApplicationMaster (AM) daemon (Dominique, 2015). RM and per-node NodeManager 

(NM) reflects the new data computation framework of YARN. RM consists of 

ApplicationsManager (AppMg) and a scheduler (Shouvik and Daniel, 2013).  
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2.3 Yet Another Resource Negotiator (YARN) 

YARN lifts some functions into a platform layer responsible for management of 

resources. It leaves the coordination of logical execution plans to a host of framework 

implementation (Vinod et al., 2013). The per-cluster Resource Manager (RM) in 

YARN tracks resource usage and node liveliness (Vinod et al., 2013). It enforces 

allocation invariants and arbitrates contention among tenants. Separating units of 

JobTracker helps the RM use an abstract description of tenants‟ requirements but 

remain ignorant of the semantics of each allocation, the semantics of task allocation is 

the sole responsibility of Application Master (AM). AM coordinates the logical plan of 

a single job by requesting for resources from RM, generating a plan from resources 

received and coordinating the execution of the plan around possible faults that may 

occur (Vinod et al., 2013). 

2.3.1 Overview of YARN 

Resource Manager of YARN run as a daemon on a dedicated machine, and act as a 

central authority managing resources among various competing nodes in the cluster (see 

Figure 2.6). RM enforces rich familiar properties such as fairness and locality across 

commodity servers. Base on the need of an application, scheduling priorities and 

availability of resources, RM dynamically allocates leases called containers to 

applications to run on particular nodes in the cluster (Vinod et al., 2013). 

 

Figure 2.6: Architecture of YARN (Vinod et al., 2013) 
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Containers are logical bundle of resources (e.g. 4GB of RAM, 2CPU) bound to a 

particular node (Vinod et al., 2013). To track the amount of containers in the cluster, 

RM uses a special system daemon called Node Manager (NM) running on each 

commodity server. The Node Managers are responsible for monitoring of resource 

availability, containers lifecycle management (e.g. start, kill) and to report any possible 

fault to the RM. NMs achieve this through a heartbeat communication protocol 

(Ibrahim et al., 2016). 

Job submission to RM passes through a public submission protocol and goes through an 

admission control phase. This is done to make sure that security credentials are 

validated and various operational and administrative checks are performed (Vinod et 

al., 2013). Once a job is accepted, a scheduler in YARN is triggered. If the scheduler 

has enough resources, the application is moved from accepted state to a running state. 

Apart from internal book keeping that helps in task management, the next step is 

allocating a container for the AM and spawning it on a node in the cluster (Vinod et al., 

2013). A record of accepted job is normally written to a persistent storage and 

recovered in case of RM restart or failure. 

The AM serves as the “head” of a job (Vinod et al., 2013). It manages all lifecycle 

aspects of the job including dynamically increasing and decreasing resource 

consumption, controlling the flow of execution (mappers and reducers), handling faults 

and computation skew and also perform local optimizations of commodity servers 

(Apache, 2016). Delegating all these functions to AM helps YARN architecture gained 

a great deal of scalability, flexible programming model, an improved upgrade/testing 

capability. To complete a job, AM will need to harness resources like CPU, RAM and 

disk available on multiple nodes. For AM to obtain a container, it issue resource request 

to RM with specification of locality preference and what properties a container should 

possess. Once a resource is released on behalf of an AM, RM will generate a lease for 

the resource, which is pulled by a subsequent AM heartbeat. To guarantee authenticity 

when AM presents the container lease to the RM, a token-based security mechanism is 

put in place (Vinod et al., 2013). Once an AM discovers that a container is ready for its 

use, it encodes an application-specific launch request with the least (Apache, 2016). A 

running container communicates with AM through this application-specific protocol to 

report status and liveliness and receive framework-specific commands. In all of these, 

YARN neither facilitates nor enforces any communication. YARN deployment only 
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provides basic, yet robust infrastructure for lifecycle management and monitoring of 

containers, while application-specific semantics are managed by each framework 

(Vinod et al., 2013). 

 

2.3.2 Resource Management components of YARN 

2.3.2.1 Resource Manager 

RM exposes two public interfaces and one internal interface (Apache, 2016). The public 

interfaces are client submitting applications and AM dynamically negotiating access to 

resources. The internal interface is towards NM‟s ability for cluster monitoring and 

resource access management (Apache, 2016). For this dissertation, focus is on the 

public interfaces as it best explain important frontier between YARN platform and 

various applications/framework running on it. RM is a global model of cluster state 

against the digest of resource requirements reported by running applications. This 

global model of cluster state makes it possible to tightly enforce global scheduling 

properties. Communication messages and scheduler state therefore, must be very 

effective and efficient for any RM to scale against application demand and the size of 

cluster (Vinod et al., 2013). YARN has helped to achieve this with the scheduler 

handling only an overall resource profit for each application, ignoring local 

optimizations and internal application flow. While this approach has made YARN scale 

against application demand, a greater number of commodity hardware in a cluster 

together with a greater number of applications demand will cause delay in response 

time (by the scheduler) for each application demand thereby resulting in high 

turnaround time. 

Application Masters codify their need for resources by making one or more 

ResourceRequests each of which track the number of containers (e.g. 200 containers), 

resource per container (4GB, 2CPU), locality preference and priority of requests within 

the application (Apache, 2016). ResourceRequests are designed in a way that it captures 

full detail of users‟ needs and/or a roll-up version of it (e.g. one can specify node-level, 

rack-level and global locality preferences). This approach makes communication and 

storage requests easier and efficient for the scheduler and also allows applications to 

express their needs clearly. ResourceRequest roll-up version also guides the scheduler 
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in a situation where perfect locality cannot be achieved; an alternative can be provided 

(e.g. rack-local allocation, if the desired node is busy). RM respond to AM request by 

generating containers together with tokens that grant access to resources (Apache, 

2016). Once an application completes its execution, RM forwards an exit status of 

finished containers as reported by NMs to the corresponding AMs (Apache, 2016). 

Looking at the responsibilities of RM, it is important to point out that RM is not 

responsible for coordinating application execution or task fault tolerance. It does not 

provide status or metrics for running applications (now part of AM) and it does not 

serve framework-specific reports of completed jobs (now delegated to a per-framework 

daemon). RM only handles live resource scheduling of applications with the heartbeat 

communication from AMs and NMs in the cluster. However, for a greater number of 

commodity servers and applications demand, response time from the global model of 

RM will be slow. It is therefore, necessary to provide a per-rack RM to handle all 

request/communication for NMs and AMs within the local rack with the global resource 

manager only assigning application demands to each of the Rack Unit Resource 

Manager (RU_RM) and monitoring the liveliness of each of these units. 

 

2.3.2.2 Application Master 

AMs are daemon inside the worker nodes that coordinate the execution of applications 

in the cluster. They are also in the cluster just like any other container (Vinod et al., 

2013). There is always a periodic heartbeat communication between AM and RM to be 

sure of liveliness of a container and to update the record of its demand. AM always 

encodes its preferences and constraints in a heartbeat message to the RM. After the first 

heartbeat communication, subsequent heartbeats make AM receive a container lease on 

bundles of resources bound to a particular workstation in the cluster (Apache, 2016). 

AM can update its execution plan so as to accommodate perceived abundance or 

scarcity based on the containers it receives from RM (Apache, 2016). Allocation to 

applications in YARN is late binding. Hence, probability that AM make a request may 

not remain true when it finally receives its resources, but the semantic of the container 

are fungible and framework specific. AM also updates its resource asks to the RM if the 

containers it receives from RM affect both its present and future requirements (Ibrahim 

et al., 2016). 
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To explain the role of AM better, let us use MapReduce. In YARN, MapReduce AM 

optimizes for locality among map tasks with identical resource requirements. Any time 

AM gets a container, it first matches it against the set of pending map tasks by looking 

for a task with the input split close to the container. Once this is done, the two other 

nodes with the replicated input split for that block of data becomes less desirable. AM 

update its request to RM diminishing the weight on the other k-1 hosts. If the host 

processing the input split fails, AM will update the RM demanding for compensation 

from the k-1 hosts (Apache, 2016). 

It is clear from the responsibilities of AM that RM does not interpret container status. It 

is the AM that determines the semantics of the success or failure of the container. 

 

2.3.2.3 Node Manager 

Node Manager is a worker daemon in YARN that helps authenticate container leases, 

manages containers‟ dependencies, monitors containers‟ execution and also provides set 

of services to containers (Vinod et al., 2013). It can be configured to report resources 

like CPU, memory etc. Once registration is confirmed between RM and NM, the NM 

heartbeats its status and receives instruction from RM. YARN has Container Launch 

Context (CLC) that describes all the containers (including NMs) in the framework. 

CLC has records that include a map of environment variables, dependencies stored in 

remotely accessible storage, security tokens, payloads for NM services and command 

necessary to create a process. CLC also include credentials to authenticate download. 

Any time AM request for a container and it is validated, the NM configures the 

environment for the container, which includes initializing its monitoring subsystem 

with the resource constraints specified in the lease (Vinod et al., 2013). 

NM is also responsible for killing containers as directed by the RM or the AM. 

Containers are killed based on; RM reporting its owning application as completed, 

scheduler decided to evict it for another tenant, AM detects that the container exceeded 

the limit of its least or AM discovers that owing application is no longer needed 

(Apache, 2016). Anytime a container is killed or exits, NM cleans up its working 

directory in local storage. Also, at the completion of any application, resources own by 
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its containers are discarded on all nodes and all processes for that application still 

running in the cluster cancelled (Vinod et al., 2013). 

NM periodically monitors the health of physical nodes in the cluster. It checks if there 

is an issue with the local disk and frequently run an admin configured script to check 

any hardware/software issues. Anytime a problem is discovered with the node, NM will 

change its state to “unhealthy” and will report RM through heartbeat protocol about the 

status of the node. The scheduler makes specific decision of killing containers and/or 

stopping future allocations to the said node until its health issue is addressed (Apache, 

2016). 

Careful study of literatures has shown that RM remains a single point of failure. RM 

will recover from its failure reading its state from persistent storage. After recovery, it 

kills all running containers and live application and then restart them. This research 

work therefore, seeks to provide a technique on how to decentralize the functions of 

RM to each local rack in a cluster environment such that when RM fails, AM continue 

to work before RM is restored. 

 

2.4 Hadoop Cluster and the Network 

The three major layers of machine roles in any Hadoop deployment are the client 

machines, master nodes and the slave nodes (Brad, 2011). The master nodes are 

responsible for overseeing two key functional processes that make up Hadoop 

framework; the HDFS that stores massive data and the MapReduce responsible for 

running parallel computation (Brad, 2011). The slave node layer makes up the vast 

majority of workstations that store and also process data. Client machine have Hadoop 

installed with all the cluster settings so as to enable for loading of data into cluster, 

submission of mapreduce/other applications describing how the applications should 

retrieve and process data and how it should view results once task is completed. Figure 

2.7 shows typical server roles with these three major layers. 
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Figure 2.7: Hadoop Server Roles (Brad, 2011) 

Typical architecture of Hadoop cluster has rack servers populated in racks connected to 

a top of a rack switch (Brad, 2011). The rack switch has uplinks which are also 

connected to another tier of switches, which connects all other racks with uniform 

bandwidth to form a cluster (see Figure 2.8). 

 

Figure 2.8: Hadoop Cluster (Brad, 2011) 

Majority of these servers are slave nodes with lots of local disk storage, moderate 

amount of central processing unit and DRAM. Master nodes in the cluster have 
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different configuration favouring more CPU and DRAM. In a typical workflow of 

Hadoop framework, data are loaded into the cluster (HDFS writes), 

computations/analysis is carried out on data (MapReduce), results are stored in the 

cluster (HDFS writes) and results can be read from the cluster (HDFS reads). 

Hadoop has the concept of “rack awareness”. The framework gives the client the option 

to manually define rack number of each slave node in the cluster. There are two reasons 

for setting rack awareness when storing data in HDFS; data loss prevention and 

network performance (Brad, 2011). Since data are replicated to avoid losing all copies 

of data, it is expected that while doing this, all data are not replicated at different nodes 

on same local rack. If this happened and the rack experiences a failure such as switch or 

power failure, then that data will be lost. It is also believed that two machines in same 

rack have more bandwidth and lower latency between each other than two machines in 

two separate racks. This is true because rack switch uplink bandwidth is usually less 

than its downlink bandwidth. Also, in-rack latency is lower than cross-rack latency. 

Hence, network performance can be enhanced if the framework is rack aware. 

Figure 2.9 gives a description of how to load data (say file.txt) into the cluster. From the 

description, file.txt has three blocks (Blk A, Blk B and Blk C). To write Blk A to 

HDFS, the client consults the NameNode for permission to write file.txt to the cluster. 

The client gets permission from NameNode and will receive list of three (3) data nodes 

for the block.  The Name Node uses the principle of rack awareness to influence 

decision as to which data node to provide for the client. 

 

Figure 2.9: Preparing HDFS Writes (Brad, 2011) 
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Before the client writes Blk A of file.txt to the cluster, it picks the first data node (from 

the list of data nodes provided by Name Node) and opens a TCP connection to alert the 

data node to get ready to receive a block. It also release the list of the remaining two 

data nodes to the first data node to alert them and be sure they are ready to receive 

duplicate of the block. The first data node (say data node 1) opens a TCP connection to 

the second data node (say data node 5) to be ready for Blk A and the second data node 

also opens a TCP connection to the third data node (say data node 6) to be ready for Blk 

A of file.txt. The acknowledgements of readiness come back on the same TCP pipeline 

until the first data node sends a “ready” message back to the client. At this point, the 

client is ready to begin writing block data into the cluster (Brad, 2011). 

From Figure 2.10a, a replication pipeline is created as data block is written into the 

cluster. This ensures that as a data node is receiving block data, it pushes a copy of that 

data to the next node in the pipeline. This approach shows a primary example of 

leveraging the rack awareness data in Name Node to improve cluster performance. You 

notice from Figure 2.10a that the second and third data nodes in the pipeline are in the 

same rack, hence the final leg of the pipeline does not need to traverse between racks 

but benefit from in-rack bandwidth and low latency. 

 

 

 

 

 

 

 

Figure 2.10a: Pipeline Write showing      Figure 2.10b: Pipeline Write showing  

data nodes receiving block data (Brad, 2011)     data nodes sending block received       

    report (Brad, 2011). 

 

Once all the three nodes have successfully received the block, the nodes will send a 

“block received” report to the Name Node as shown in Figure 2.10b. A “success” 

message is also sent back up the pipeline and TCP sessions close down. The client at 
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this point receives a success message and notifies the NameNode that data block has 

successfully been written. The Name Node updates its metadata information with the 

node locations of Blk A in file.txt. The client will then start the pipeline process for the 

other data blocks. As other blocks of file.txt are written, the first node in the pipeline 

vary from the one used for Blk A, spreading around the hot spots of in-rack and cross-

rack traffic for replication. This is illustrated in Figure 2.11. 

 

Figure 2.11: Multi-block replication pipeline (Brad, 2011) 

Because of the replication factor in Hadoop framework, more bandwidth and storage 

are used. Assume you have 1TB file to be loaded into cluster, it is approximated that 

you consume 3TB of network traffic to successfully load the file and 3TB of disk space 

to hold the file. After successful completion of the replication pipeline of each block 

into the cluster, it is expected that the file is spread in blocks across the cluster of 

machines, each having a relatively small part of the data. The more blocks you have in a 

file, the more machines the data will positively spread. It is also expected that the more 

CPU cores and disk drive that have a piece of data, the more parallel processing power 

and faster results. This is the sole motive behind building large and wide clusters (Brad, 

2011).  

A cluster can scale wide or deep. When more machines are added to a cluster, then we 

say the cluster is scaling wide. It is expected also that, the network scale appropriately. 
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Another approach is scaling the cluster deep. In this approach, each machine in the 

cluster is scale up with more disk drives and more CPU cores. Instead of increasing the 

number of nodes, you increase the density of each machine. This approach however, 

requires that you put yourself on a trajectory where more network I/O requirements 

may be demanded of fewer machines (Brad, 2011).  

The Name Node of the HDFS in a cluster holds all the file system metadata for the 

cluster. It oversees the healthy state of each data node in the cluster and coordinates 

access to them. It keeps track of the cluster storage capacity making sure that each 

block of data meets its minimum defined replica policy. Name Node is the central 

controller of HDFS. It does not hold cluster data itself but knows what blocks make up 

a file and where these blocks are located in the cluster (Brad, 2011). Anytime client 

wants to read data, the Name Node points the client to the Data Nodes they need to talk 

to. Data nodes send heartbeats to Name Node at interval of 3seconds through a TCP 

handshake using same port number that define the Name Node daemon. Every tenth 

heartbeats of Data Node to Name Node is a block report that tells Name Node about the 

blocks it has (Brad, 2011). This report makes Name Node build its metadata and ensure 

that three copies of each block of data exist on different nodes in different racks (Brad, 

2011). Name Node forms a crucial component of HDFS without which client will be 

unable to read/write to HDFS and will be difficult to schedule map reduce jobs or other 

applications on Hadoop framework. Anytime heartbeat communication stops between 

Name Node and Data Node, it is presumed that such Data Node is dead and any data its 

holding gone as well. Previous block reports received from the said Data Node will help 

the Name Node to know which copies of blocks died along the node. Using rack aware 

policy, the Name Node will re-replicate those blocks on other data nodes. The 

limitation with this however, is when an entire rack of severs falls off the network due 

to rack switch failure or power failure. It then means that the Name Node will instruct 

the remaining nodes in the cluster to re-replicate all the data blocks lost in the rack. This 

process may mean that hundreds of terabytes of data will need to begin traversing the 

network (Apache, 2016). 

To guard against failure of Name Node, Hadoop has a sever called the Secondary Name 

Node. There is a common misconception however about the responsibility of Secondary 

Name Node in Hadoop. Many think that its role is to provide availability backup for 

Name Node but it is not the case. The Secondary Name Node occasionally connects to 
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the Name Node (by default, every one hour) to fetch a copy of Name Node in-memory 

metadata and files used to store metadata, which sometimes both daemons may be out 

of sync. If perhaps the Name Node dies, the copy retained by Secondary Name Node 

can be used to recover the Name Node but may not be the exact copy of what the Name 

Node holds before failure. In a busy cluster however, some Hadoop administrators may 

configure the Secondary Name Node to provide this responsibility much more 

frequently than the default one hour setting (Apache, 2016). 

For a client to retrieve a file from HDFS (say output of a job), the client will have to 

contact the Name Node and ask for the block location of the file (Brad, 2011). The 

Name Node will then release a list of each Data Nodes holding each block of file to be 

retrieved. From the list released to the client, it picks the first data node and reads a 

block at a time. Client will not progress to the next block until the previous block 

completes (Apache, 2016). 

There are situations where a data node may also need to read a block from another data 

node in the cluster. This situation is possible if a data node has been asked to process a 

data that it does not have locally. In this case, the data node will need to retrieve the 

data from the data node that holds the block over a network before it can begin process. 

This situation is another key area that makes Name Node rack awareness principle an 

optimal solution for network performance. When the data node request from Name 

Node the location of the block to be processed, the Name Node checks if a data node on 

same rack has the block. If so, Name Node provides in-rack location from which to 

retrieve the block of data. In this situation, the flow of data does not traverse two or 

more switches to create a congested link between two racks. Data can be retrieved 

quicker in-rack and processing begins early. Jobs are also completed much faster. 

There are situations in Hadoop cluster that you need to add new racks full of servers 

and network to an existing cluster. It is possible to have what is called “unbalanced 

cluster” in this situation.  
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Figure 2.12: Unbalanced Cluster (Brad, 2011) 

Figure 2.12 gives a pictorial representation of what it means to have an unbalanced 

cluster. As described in Figure 2.12, Rack 1&2 were the existing racks containing block 

of files. When two new racks were added to the cluster, no block of data was spread 

from the old racks to the new ones (Brad, 2011). This means that, the two new racks 

will remain idle until they are loaded with files. Again, if data nodes in Rack 1&2 are 

busy, they will have no choice than to assign jobs to data nodes in the new racks. The 

data nodes in the new rack will therefore attempt to grasp data over the network to 

begin processing. As a result, more network traffic and slower job completion times 

occur. To avoid this situation of unbalanced cluster, Hadoop includes a nifty utility 

called “balancer” in its framework. Balancer will look at difference in available storage 

space between data nodes in the cluster and will try to provide balance to a certain 

degree. New data nodes with free storage space will be detected by this utility and 

copying of data blocks off data nodes with less storage space to nodes with free space 

will begin. This scenario is described in Figure 2.13. This utility however, must be set 

by the administrator anytime the need arises and anytime the command is cancelled, the 

operation stops (Brad, 2011). 
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Figure 2.13: Balanced Cluster (Brad, 2011) 

2.5 Hadoop Ecosystem 

Hadoop ecosystem provides furnishings that turns Hadoop framework into a 

comfortable home for big data activities. Figure 2.14 gives an overview of some 

components built on top of Hadoop framework. The description in Figure 2.14 shows 

only few out of many components in Hadoop ecosystem. While some of these 

components in the ecosystem are intended to supplement one or two of Hadoop‟s core 

elements (HDFS and MapReduce), others are commercially available framework 

solutions that provides more comprehensive functionality (Hortonworks, 2016).  

 

Figure 2.14: Hadoop Ecosystem (Garcia, 2014) 
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Hadoop ecosystem is in sections; data integration and government has mechanism for 

data workflow/lifecycle, real-time data ingest and batch integration mechanism. The 

data access section is for metadata management and allows the use of high-level 

programming languages to access data in HDFS. Data management section is the core 

of this framework. It stores, manages and process data. Security has mechanism for 

authentication, authorization, accountability and data protection while operations 

section is to allow addition of nodes to a cluster and for provisioning, managing, 

monitoring and scheduling of applications. We will have a closer look at some of these 

components. 

Falcon:-  This component is a data management framework for simplifying data 

lifecycle management and processing pipelines on Apache Hadoop. It enables users to 

configure, manage and orchestrate data motion, pipeline processing, disaster recovery, 

and data retention workflows. Instead of hard-coding complex data lifecycle 

capabilities, Hadoop applications can now rely on the well-tested Apache Falcon 

framework for these functions. Falcon‟s simplification of data management is quite 

useful to anyone building apps on Hadoop. Data Management on Hadoop encompasses 

data motion, process orchestration, lifecycle management, data discovery, etc. among 

other concerns that are beyond ETL. Falcon is a new data processing and management 

platform for Hadoop that solves this problem and creates additional opportunities by 

building on existing components within the Hadoop ecosystem (ex. Apache Oozie, 

Apache Hadoop DistCp etc.) without reinventing the wheel (Hortonworks, 2016). 

Sqoop/Flume:- These components are distributed, reliable and available service in 

Hadoop ecosystem that efficiently collects, aggregate and move large amount of big 

data into HDFS (Hortonworks, 2016). It is important to note that Hadoop does not 

create data. Data is usually created in other systems and brought into Hadoop. There is 

need for a mechanism therefore, that will help get data into Hadoop. Two of these 

mechanisms are Sqoop and Flume. Sqoop is a mechanism to get data from relational 

databases like Oracle, SQL server and MySQL. It is not just a mechanism to get data 

into Hadoop but also help get data out of Hadoop to these relational database systems. It 

has an input/output utility which helps in carrying out these operations. The word 

„Sqoop‟ is from „Sq for SQL‟ and „oop for Hadoop‟. Most data brought into Hadoop 

may not be structured data. To help get unstructured data into Hadoop therefore, Flume 

is used. It has a simple and flexible architecture based on streaming data flows. It is 
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robust and fault tolerant with tuneable reliability mechanisms and many failover and 

recovery mechanisms. It uses a simple extensible data model that allows for online 

analytic application (Hortonworks, 2016).  

WebHDFS:- This component support users of HDFS in operations that includes 

reading of files, writing to files, making directories, changing permissions and 

renaming. It is the first class built-in component of HDFS that runs inside Namenodes 

and Datanodes in the cluster (Hortonworks, 2016). 

Pig:- This component is created by Yahoo. The purpose of this component is to provide 

a high-level API that can be written in English-like statement using words like join, 

soft, filter etc in Java codes. So, when a user writes in pig script and run it on Hadoop, it 

internally produces MapReduce equivalent making life easier for the developer. 

Hive:- Is a component created by Facebook and use on top of Hadoop ecosystem. It 

was created to make Hadoop easier. Hadoop is created using Java language but most 

users are familiar with SQL hence, the need for Hive. It is also a high-level language 

created to assist developers familiar with SQ language. 

HBase:- Is Google BigTable Inspired. Non-relational distributed database. Random, 

real-time read/write operations in column-oriented very large tables (BDDB: Big Data 

Data Base). It‟s the backing system for MR jobs outputs. It‟s the Hadoop database. It‟s 

for backing Hadoop MapReduce jobs with Apache HBase tables (Hortonworks, 2016). 

Knox:- It is a system that provides a single point of secured access for Apache Hadoop 

clusters. The goal is to simplify Hadoop security for both users (i.e. who access the 

cluster data and execute jobs) and operators (i.e. who control access and manage the 

cluster). The Gateway run as a server (or cluster of servers) that serves one or more 

Hadoop clusters (Hortonworks, 2016). 

Ambari:- Is an open source mechanism that helps create a cluster, provision it, manage 

and monitor the cluster. For example, this mechanism can be used to add a node to a 

cluster. 

Oozie:- Workflow scheduler system for MR jobs using DAGs (Direct Acyclical 

Graphs). Oozie Coordinator can trigger jobs by time (frequency) and data availability 

(Hortonworks, 2016). 
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Other components in Hadoop ecosystem are summarized in Table 2.1. The components 

are summarized based on their categories/functions. 

Table 2.1: Hadoop Ecosystem 

S/N Category Component 

1. Distributed File System HDFS, Red Hat GlusterFS, Quanteast File System 

(QFS), Ceph File System, Lustre File System, 

Alluxio, GridGain, XtreemFS 

2. Distributed Programming Apache Ignite, MapReduce, Pig, JAQL, Spark, 

Storm, Flink, NetFlix, Apache REEF, Apache 

Twill, Apache DataFu, Apache Hama, Pache Beam 

3. NoSQL Databases 

 Column Data Model Hbase, Cassandra, Hyper table, Accumolo, Kudu, 

Parquet 

 Document Data Model MongoDB, RethinkDB, ArangoDB 

 Stream Data Model Eventstore 

 Key-value Data Model Redis Database, Linkedln, RocksDB, OpenTSDB 

 Graph Data Model ArangoDB, TitanDB 

4. SQL-on-Hadoop Hive, HCatalog, Cloudera Impala, Facebook 

Presto, Splout SQL, Apache Tajo, Phoenix, MRQL 

5. Data Ingestion Flume, Sqoop, Facebook Scribe, Kafka, Netflix 

Suro, Cloudera Morphline 

6. Machine Learning Apache Mahout, Cloudera Oryx, MADLib, Apache 

SystemML 

7. Security Apache Sentry, Apache Knox Gateway, Apache 

Ranger 

8. Metadata Management Metascope 

9. System Development Apache Ambari, Cloudera HUE, Apache Mesos, 

Hortonworks HOYA, Apache Helix, Apache 

Bigtop, Cloudbreak, Apache Eagle 

10. Applications Apache Nutch, Apache OODT, HIPI Library 

Source:- Hortonworks, 2016. 
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2.6 Review of Related Literatures 

Information technology world has been facing big data challenges for over few decades. 

The term „big data‟ has been for over four decades, it‟s just that the definition has been 

changing (Vinayak et al., 2012). In the 70‟s big meant megabytes; at a time, big grew to 

gigabytes, then terabytes and petabytes. Today‟s IT notion has grown to exabytes and 

zettabytes are presumably in the wings (Vinayak et al., 2012). To perform any 

meaningful analysis on these voluminous and complex data therefore requires scaling 

up the hardware/software platforms. Multicore CPU is one of the early attempts 

developed to solve big data challenges. 

Multicore allows a single machine has dozens of processing cores (Bekkerman et al., 

2012). These type of machine usually shared memory but only one disk. Multicore 

machines have gained internal parallelism over the past few years and more recently, 

the number of core per chip together with the number of operations a core can perform 

has increased significantly (Dilpreet and Chandan, 2014). Until the last few years, these 

hardware platforms together with their multithread operating systems are mainly 

responsible for accelerating the algorithms for big data analytics. This platform allows 

task to be broken down into threads with each thread executed in parallel on different 

CPU cores (Dilpreet and Chandan, 2014). Most of the programming languages in use 

also provided libraries to create threads and use CPU parallelism. The most popular 

among these programming languages is the Java language because of its existence for 

several years. A large number of software applications and programming environments 

are well developed for this platform (Dilpreet and Chandan, 2014). 

Though Multicore CPUs is one of the earliest approaches to solving problem of massive 

data, its major drawback is in the limited number of processing cores and the primary 

dependence on system memory for data access. System memory will always be limited 

to a few of hundred gigabytes and this limitation affects the size of data that a CPU can 

process efficiently (Dilpreet and Chandan, 2014). At any point a data size exceeds 

system memory, access to disk becomes a big problem and even if data fits into a 

system memory, CPU core will attempt to process data at a much faster rate than the 

RAM speed hence; creating memory access bottleneck. 
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The development of CPUs however, is not at same pace with Graphic Processing Units 

(GPUs) (Dilpreet and Chandan, 2014). The number of cores per CPU is in double digits 

with processing power close to 10Gflops when compared with a single GPU which has 

more than 2500 processing cores with 1000Tflops of processing power (Dilpreet and 

Chandan, 2014). This massive parallelism in GPU makes it more appealing option for 

parallel computing applications. GPUs which were primarily intended for graphical 

operations such as video, image editing, and accelerated graphic processing became a 

general-purpose computing on graphic processing units (GPGPU). Recently, Nvidia 

launched Tesla series of GPUs which are specially designed for high performance 

computing. Nvidia has released Compute Unified Device Architecture (CUDA) 

framework that allows GPU programming accessible to all programmers without 

delving into the hardware details (Dilpreet and Chandan, 2014). GPU architecture 

usually has two levels of parallelism. At first level, there are several multiprocessors 

(MPs) and within each of these multiprocessors are several streaming processors (SPs). 

GPU programs are normally broken down into threads which are executed on SPs and 

these threads are grouped together to form thread blocks that run on a multiprocessor 

(Dilpreet and Chandan, 2014). Communication takes place between threads within a 

block. Each thread has access to small but extremely fast shared cache memory and 

larger global main memory. Threads from different block cannot communicate each 

other as they may be scheduled at different times. This implies that, any job to be run 

on GPU has to be broken down into blocks of computation that can run independently 

without communicating with each other (Hong and Kim, 2009). GPUs have been used 

in the development of faster machine learning algorithms. GPUminer is a good library 

used to implement machine learning algorithms on GPU architecture using CUDA 

framework (Dilpreet and Chandan, 2014). 

Graphic Processing Unit (GPU) also has a major drawback of limited memory. Even 

with 12GB memory per GPU, which is the current architecture (Dilpreet and Chandan, 

2014); it cannot handle terabyte scale data. At any point data exceeds this size; 

performance automatically decreases significantly as the disk access becomes a 

bottleneck. Also, there are limited number of software and algorithms available for 

GPUs (Dilpreet and Chandan, 2014). This is due to the way task is broken down in 

GPU hence, not many existing analytical algorithms are easily portable to GPUs. 
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Peer-to-peer network was another means intended by researchers to break through the 

challenges of big data (Steinmetz and Wehrles, 2005). Peer – to – peer network 

involves the connection of millions of machines in a network (Milojicic et al., 2003). It 

is a decentralized and distributed network framework where nodes serve as consume 

resources for big data analytics. It is one of the oldest distributed computing platforms 

which uses Message Passing Interface (MPI) as it communication protocol to 

communicate between peers (Dilpreet and Chandan, 2014). Each node in the network 

can store data instance and the network can scale out to millions of nodes. One main 

feature of MPI which is the standard communication paradigm used in this network is 

its state processing process. Processes can live so long the system does not shutdown 

and there is no need to read same data again and again as in the case of other 

frameworks like MapReduce (Dilpreet and Chandan, 2014). All parameters in a P2P 

network are preserved locally which makes it suitable for iterative processing (Seivert 

and Casanova, 2004). MPI is also a master/slave paradigm (Dilpreet and Chandan, 

2014). When deployed as a master – slave model, the slave machine can become the 

master for other processes. This feature is extremely useful for dynamic resource 

allocation where the slaves have large amounts of data to process (Dilpreet and 

Chandan, 2014). Although MPI in Peer – to – Peer network seems to be suitable for 

developing algorithms for big data analytics, its primary drawback is its inability to 

handle faults in a network. MPI has no mechanism to handle fault hence, when used on 

top of a P2P network which is itself completely unreliable hardware; a node failure may 

cause the whole system to shut down. With newer frameworks like Hadoop, MPI is no 

longer widely used. 

Multicore CPU, GPUs and P2P network together with databases like Sybase, Informix, 

oracle and ingress where however, early attempts to solve big data challenges. Things 

took different turn with dynamic computations over ever-larger amounts of data 

becoming a necessity. SQL became inapt for the challenge, unstructured data needed to 

be analysed also to gain data science driven insights. This time gave birth to real „big 

data‟ era with the introduction of Google File System and MapReduce by Google and 

subsequent release of Classic Hadoop by Yahoo. 

Apart from Yahoo, other systems have recognized limitations in the classic Hadoop 

architecture and have provided alternative models to these limitations. Some of the 

efforts which closely resemble YARN are COSMOS, Mesos, Corona and Omega for 
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Microsoft, Twitter, Facebook and Google respectively (Chaike et al., 2008; Hindmand 

et al., 2011; Facebook, 2012; Schwarzkopf et al., 2013). Though these systems share a 

common inspiration of high-level goal of improving scalability, latency and 

programming model flexibility, they all have their architectural differences. These 

differences are most times in diverse design priorities and historical contexts. For 

instance, Mesos architectural design aim at providing a scalable and resilient core so 

that various frameworks can efficiently share clusters (Benjamin et al., 2012). Due to 

the emergence of diverse frameworks, Mesos design philosophy is to provide a minimal 

interface that will enable efficient resource sharing across frameworks so that, control 

about task scheduling and execution can be pushed to the frameworks (Benjamin et al., 

2012). By pushing control to the frameworks, Mesos will allow each framework to 

implement its approach to solving problems in the cluster (for instance, achieving data 

locality and dealing with fault). Secondly, this approach will keep the design of Mesos 

simple and will help minimize the rate of changes required of the system. This design 

philosophy therefore, is necessary to make Mesos scalable and robust. Figure 2.15 

shows the main components of Mesos. 

 

Figure 2.15: Mesos Architectural Design (Benjamin et al., 2012) 

Mesos has a master process responsible for managing slave daemons running on each 

cluster node, and also has frameworks that run tasks on these slaves (Benjamin et al., 
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2012). The master daemon uses resource offers to achieve fine-grained sharing across 

frameworks. Resource offer is a list of free resources available on multiple slave nodes. 

Based on an organizational policy like fair sharing or priority, the master daemon in 

Mesos decides how many resources to be allocated to each framework. Each framework 

that will run on Mesos has a scheduler that registers the master to be offered resources, 

and has an executor process that launches slave nodes to run the framework‟s tasks 

(Benjamin et al., 2012). The scheduler in each framework selects which offered 

resources to use. Once a framework accepts an offer, it passes Mesos a description of 

the tasks it wants to launch on them. Figure 2.16 gives an illustration of how framework 

gets scheduled to run tasks. 

 

Figure 2.16: Resource offer in Mesos (Benjamin et al., 2012) 

In the first step, you notice Slave_1 reports to the Master that it has 4GB memory and 

4CPUs. The Master daemon in Mesos now invokes the Allocation_Module which in 

turn informs framework that it has been offered all available resources. In the second 

step, the Master sends a resource offer describing these resources to the framework. The 

framework‟s scheduler in step 3 then replies the Master daemon with information about 

2 tasks to be run on the slave node (2CPUs, 1GB RAM) and (1CPU, 2GB RAM) for 

task 1 and task 2 respectively. In the final step, the Master sends the tasks to the slave 
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which allocates appropriate resources to the framework‟s executor (Benjamin et al., 

2012).  

Though the MapReduce frameworks of both Mesos and YARN have schedulers at two 

levels, they also have their significant differences. Mesos‟ architectural design 

implements an offered-based resource manager while YARN has a request-based 

resource manager (Hindman et al., 2011). Mesos leverages a pool of central schedulers 

just like the type obtained in classic Hadoop but, YARN uses a per-job intra-framework 

scheduler which allows AM to request for resources depending on the criteria which 

includes location, CPU and memory demand. Allocation of resources in YARN are late 

binding, where application framework is obligated to use the resources provided by the 

container but does not have to apply them to a logical task on request. This 

framework/application decides which task to run with these resources. This is achieved 

through its own internal, second level scheduler. 

Microsoft developed a computing platform called Collaborative Online Social Media 

Observatory (COSMOS) for storing and analysing massive data sets. The design 

philosophy aimed at running large clusters consisting of thousands of commodity 

servers (Chaike et al., 2008). Disk storage in this framework is distributed so that each 

server has one or more direct-attached disks. The main objectives behind COSMOS 

platform are; 

i. Availability:- To avoid whole system outages, Cosmos platform is resilient 

to multiple hardware failures. It does this by replicating data many times 

throughout the system with file metadata being managed by a quorum group 

of 2f + 1 servers so as to tolerate f failures (Chaike et al., 2008). 

ii. Reliability:- This framework is design in a way that it recognizes transient 

hardware conditions so as to avoid corrupting the system. A periodic scrub 

to detect corrupt or bit rot data is performed on disk data before it is used. 

Also, system components are check-summed end-to-end and a mechanism is 

applied to crash faulty components (Chaike et al., 2008). 

iii. Scalability:- Cosmos is capable of storing and processing petabytes of data 

and can accommodate more servers to the cluster without impacting 

performance. 
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iv. Performance:- This framework is capable of running thousands of individual 

servers with data distributed among these servers. Each job is broken down 

into small units of computation and distributed across a large number of 

CPUs and storage devices. 

v. Cost:- It is cheaper to build, operate and expand than the traditional 

approaches. 

 

Figure 2.17: COSMOS Software Layers (Chaike et al., 2008) 

Cosmos platform has three basic components as described in Figure 2.17; COSMOS 

storage, COSMOS execution environment and SCOPE. COSMOS storage system is an 

append-only file designed to reliably and efficiently store extremely large sequential 

files (Chaike et al., 2008). The platform is optimized for large sequential I/O. All writes 

are appended only with data distributed and replicated for fault tolerance. Data are also 

compressed to save storage and increase I/O throughput (Chaike et al., 2008). 

COSMOS store is designed such that it provides a hierarchical namespace that stores 

sequential file of unlimited size. A file is composed of sequence of extents. Extent is a 

unit of space allocation which are most times in few hundred megabytes in size (Chaike 

et al., 2008). A data within any extent consist of a sequence of append blocks with 
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block boundaries defined by application appends. Append blocks are also few 

megabytes in size and it contains a collection of application-define records stored in a 

compressed form with compression and de-compression done transparently at the client 

side (Chaike et al., 2008). The second component of COSMOS platform is the 

COSMOS Execution Environment. The lowest level of this environment provides only 

the ability to run arbitrary executable code on a server (Chaike et al., 2008). Through 

the execution protocol of this platform, clients can upload application code and 

resources onto the system. A recipient server then assigns the task a priority and 

executes it at an appropriate time. Building an efficient and fault tolerant application at 

this lowest level is difficult, error prone, time consuming and tedious (Chaike et al., 

2008). In COSMOS therefore, applications are programmed against execution engine 

that provides high-level program interface and a runtime that handles optimization 

details, data partitioning, parallelism, fault tolerance and resource management (Chaike 

et al., 2008). Job Manager (JM) is the runtime component of the execution engine. It is 

the central and coordinating process for all processing vertices with the application.  

Structured Computations Optimized for Parallel Execution (SCOPE) is the third 

component of COSMOS platform. It is a high-level scripting language for writing data 

analysis jobs in COSMOS. SCOPE compiler and optimizer help translate scripts to 

efficient parallel execution plans. It resembles SQL but has the expression of C-sharp. 

This design choice has several advantages. Its SQL resemblance reduces the learning 

curve for users and eases porting of existing SQL scripts into SCOPE. It C-sharp 

expression can use C-sharp library hence; customer C-sharp classes can compute 

functions off scalar values or manipulate whole row sets (Chaike et al., 2008).  

COSMOS architectural framework closely resembles that of YARN in terms of storage 

and computer layers, their differences lies in the use of centralized resource manager. 

Though this framework have no central resource manager, its architectural design 

seems to be used for a single application type; SCOPE. If our desire is for a narrower 

target, COSMOS can leverage many optimizations such as native compression, indexed 

files and co-location partitions of datasets to speed up SCOPE. 

Corona as earlier discussed, separates cluster resource management from job 

scheduling. It introduces a cluster manager whose sole responsibility is to track nodes in 

the cluster and to track the amount of free resources (Shouvik and Daniel, 2013). It has 
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a dedicated JobTracker for each job and can run either in the same process as the client 

(for small jobs) or as a separate process in the cluster (for large jobs). With Corona, 

Facebook measured some improvements over classic Hadoop. Some of these metrics 

includes average time to refill slots (Shouvik and Daniel, 2013). This metric gauges the 

amount of time a map/reduce slot remains idle on a TaskTracker. There was 

improvement in Corona compared to similar period for MapReduce. Cluster utilization 

was another improvement in Corona over Classic Hadoop. Cluster utilization improved 

along with refill-slot metric. Classic Hadoop system was also found to be unfair in its 

allocation and a dramatic improvement was seen with Corona‟s resource scheduling 

fairness (Shouvik and Daniel, 2013). 

The approach used by Corona is a push based approach, which is different to the 

heartbeat based control-plane framework approach in YARN and other frameworks. 

Though latency/scalability tradeoff of these two frameworks deserves a detailed 

comparison, heartbeat communication protocol negotiates and monitors the availability 

of a resource in a cluster. It is intended to indicate the health of a machine hence; 

consideration between overload in YARN due to constant heartbeat between resource 

manager and other components and efficient fault tolerance in Corona since it is push 

based will have to look at. 

Omega framework uses a shared state approach for its scheduling process, where each 

scheduler is granted full access to the entire cluster so that they can compete in a free-

for-all manner, use opportunistic concurrency control to mediate clashes when they 

update the cluster state (Malte et al., 2013). Omega has no central resource collector; all 

of its allocation decisions take place in the scheduler. Omega maintains a resilient 

master copy of the resource allocation in a cluster called cell state. Each scheduler in 

this framework has a private, local, frequently-updated copy of cell state for the purpose 

of scheduling decisions (Malte et al., 2013). Each scheduler sees the entire state of the 

cell and can lay claim to any available resources in the cluster provided it has 

permission and priority to do so. Any time a scheduler makes a placement decision, 

update operation is done in the shared copy cell state in an atomic commit (Malte et al., 

2013). It is expected that one of the commit succeed in the case of conflict. But, 

whether or not the transaction succeeds, the scheduler will re-sync its local copy of cell 

state afterwards and if necessary, re-runs its scheduling algorithm and tries again (Malte 

et al., 2013). 
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Omega schedulers operate completely in parallel; it does not have to wait for jobs in 

other scheduler and no inter-scheduler head of line blocking. To guard against any 

conflict causing starvation in the cluster, the schedulers uses incremental transactions. 

The scheduler uses all-or-nothing transaction to achieve gang scheduling where either 

all tasks of a job are scheduled together or none of the tasks is scheduled. If none of the 

task is scheduled, the scheduler must try to schedule the entire job again (Malte et al., 

2013). This process helps to avoid resource hoarding since a gang-scheduled job can 

pre-empt lower-priority tasks once sufficient resources are available and its transaction 

commits. In Omega framework, different schedulers can implement different policies 

but they must agree on what resource allocations are permitted, like a notion of whether 

a machine is full, common scale for expressing the relative importance of enforcement 

engine for high-level cluster-wide goals. The framework relies on the emergent 

behaviours that result from decisions of individual scheduler hence; fairness is not the 

sole concern of this framework but the need to meet business requirements (Malte et al., 

2013). 

High Performance Cluster Computing platform is another distributed and parallel data 

processing system for big data. It was developed in 2000 by LexisNexis Risk Division 

and released as an open-source project in 2011 (Michael et al., 2014). It is a data-

intensive computing system platform created initially to reply to business needs of 

storing large volume of data (Camille, 2015). When HPCC system became fully 

operational, LexisNexis wanted to market it but Hadoop has already been implanted 

and widely used by companies (Patrick, 2011). Contrast to Hadoop platform, HPCC 

system is programmed in C++ language and executes natively on top of operating 

system leading to more predictable latencies and faster execution (Patrick, 2011). 

Enterprise control language is specifically designed for data management and query 

processing in HPCC system. The language is optimized for data-intensive operations, 

declarative, non-procedural and data flow oriented tasks. It uses syntax that is modular, 

reusable, extensible and highly productive (Camille, 2015). 

HPCC system has two basic components; Thor Data Refinery Cluster and Roxy Rapid 

Data Delivery Cluster. Thor is a back-end batch oriented data workflow processing and 

analytics system equivalent to MapReduce in Hadoop framework (Camille, 2015). This 

component analyses and indexes huge amount of data. It uses a distributed file system 

called Thor DFS with parallel processing capability credit to its master/slave node 
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system (Camille, 2015). Roxie component of HPCC system is a front-end real-time data 

processing and analytics system. The component allows for real-time and analytics of 

data through parameterized Enterprise Control Language (ECL) queries (Camille, 

2015). Roxie is like Hbase and Hive in Hadoop ecosystem (Anthony, 2015). It works 

with key/value store and is multi-threaded. It implements a master/slave node system 

like Thor. Roxie employs a distributed indexed-based file system called Roxie DFS 

with an index file to store file locations. The server to store file location and job 

scheduler in this component is Deli server, which function as system data store for job 

work unit information and provides naming services for distributed file systems 

(Michael et al., 2014). With the introduction of Thor DFS, cluster can now scale from 

single node to thousands of nodes (Camille, 2015). However, neither data locality nor 

elastic scheduling needs of map and reduce phases were expressible with this 

framework. Perhaps the reason is that the framework was originally created to support 

MPI style and HPC application model and to run coarse-grained non-elastic workloads.  

Disco is another attempt towards storage and processing of massive data. It was 

developed by Ville Tuulos in 2008 as a project of the Nokia Research Centre (Camille, 

2015). The framework can distribute and replicate data, and also schedules jobs. It has 

tools that can index billion of data points and query them real-time (Camille, 2015). The 

framework can also analyse chunks of data in parallel and will collect intermediate 

results into a final result with MapReduce paradigm created by Google (Camille, 2015). 

Just like the Hadoop framework, Disco system is also based on a node system with 

master/slave architecture as described in Figure 2.18. 
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Figure 2.18: Disco Architecture (Prashanth et al., 2011) 

Disco core is written in Erlang (a functional language that allows fault tolerance for 

distributed applications) and it is the first big data framework that implements Python 

language jobs (Prashanth et al., 2011). This framework was designed to process larger 

applications like web services in a way that tasks can be delegated to a cluster 

independently from the core application. It has a Python API called disco.ddfs with two 

components; REST-style Web API which helps in job control and Easy-to-use Web 

Interface that is used for status monitoring (Prashanth et al., 2011). The worker protocol 

in Disco makes it easier to accept jobs written in other languages. It has a file system 

called Disco Distributed File System (DDFS). This file system adapt to MapReduce 

architecture and allow storage and processing of massive data such as structured data 

(worksheet and databases SQL) and unstructured data (text, documents, log of 

applications, sensors, pictures and videos). 

DDFS has a special tool called tag-based file system which tags different files (Camille, 

2015). For example, tags can be used to timestamp different versions of data or to 

denote who owns a data or from which source it came from. This way, DDFS provides 

flexible means to manage terabytes of data (Prashanth et al., 2011). This file system is 

also schema-free which can be used to store arbitrary data provided the data are not 

fewer than 4KB or very often updated (Prashanth et al., 2011). It is horizontally 

scalable with ability to add new nodes through Disco web interface. Disco framework 
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has DiscoDB as its own database system and Discodex which is a web front-end that 

allows indexing of data originating from MapReduce operations (Camille, 2015). 

Spark is an in-memory distributed data analysis platform (Telmoda, 2015). The primary 

aim of this framework is to speed up batch analysis jobs, iterative machine learning 

jobs, interactive query and graph processing tasks (Telmoda, 2015). It is a next 

generation paradigm for big data processing developed by researchers at University of 

California, Berkeley (Anthony, 2015). Spark was designed as an alternative to Hadoop 

to help overcome disk I/O limitations and to improve performance. The framework 

allows data to be cached in memory which helps reduce disk overhead in Hadoop for 

iterative tasks (Anthony, 2015). Spark uses Resilient Distributed Datasets (RDDs) 

which are great for pipeline parallel operators for computation and are also immutable, 

allowing for fault tolerance based on lineage information (Telmoda, 2015). Spark 

supports a rich set of higher-level tools as shown in Figure 2.19. These tools include 

Shark SQL for SQL and structured data processing, Spark Streaming for development 

of parallel applications, MLib for machine learning and GraphX for graph processing 

(Apache, 2016). 

 

Figure 2.19: Spark Framework (Telmoda, 2015) 

The main abstraction of this framework is its resilient distributed datasets which are 

immutable, partitioned collections that can be created through various data-parallel 

operators. Each of these RDDs can be a collection stored in an external storage system 

like HDFS or a derived dataset which is created through the application of operators to 

other RDDs. There are three options for persist RDDs; in-memory storage serialized 

data (with limited space), in-memory storage as de-serialized Java objects (fastest, JVM 

can access RDD natively) or on-disk storage (RDD too large to keep in memory and its 



 49 

costly to recompute). The main goal of the framework is to treat streaming 

computations as a series of deterministic batch computations on small time interval 

(Telmoda, 2015). Any input data received at each interval of computation is reliably 

stored across clusters to form dataset for that interval. Once the time slice completes, 

the dataset is processed through deterministic parallel operation like map and reduce 

operations. The operation produces new datasets representing either program outputs or 

intermediate state and these outputs are stored in RDDs (Zaharia et al., 2012). 

Storm is a free and open source distributed real-time computation system for big data. 

The framework focuses on stream processing or better put, complex event processing 

(Telmoda, 2015). It uses a fault tolerant method to perform pipeline multiple 

computations on an event as it flows into a system (Apache, 2016). It can be used to 

transform unstructured data, as it flows into a system (into desired format). Just like 

classic Hadoop is known for batch processing, Storm reliably processes unbounded 

streams of data in distributed real-time computation. The framework has many use 

cases like online machine learning, real – time analytics, ETL and distributed RPC 

(Telmoda, 2015). 

 

Figure 2.20: Storm framework system architecture (Telmoda, 2015) 

Figure 2.20 shows Storm system architecture with Nimbus (just like JobTracker in 

Hadoop), Supervisor (manages worker nodes), Zookeeper (stores metadata) and UI (for 

Web-UI). Two type of nodes exist in Storm cluster; master node which runs the daemon 

„Nimbus‟ and is responsible for distributing code around the cluster, assigning tasks to 

worker nodes and monitoring of failures (Apache, 2016). The slave (worker) node runs 

the daemon „Supervisor‟ which receives work assigned to it, start and stops worker 

processes as instructed by Nimbus (Apache, 2016). 
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Apache Giraph is also a big data tool running on top of Hadoop framework (Bakshi and 

Sonali, 2016). It is an open source version of Google Pregel most suitable for large 

scale graph processing. Examples of these graph proceesing are analysis of 

interconnected web (for page ranking) or social media (like facebook and twitter) 

interaction that are only graph of interconnected vertices either by web page to another 

through the edge (hyperlink) or users connected to each other through edges 

representing friendship or some kind of fans or business (Bakshi and Sonali, 2016). 

A framework close to YARN architecture is the data processing stack designed by 

Spark developers called Berkeley Data Analytics Stack (BDAS) shown in Figure 2.21. 

This stack has Tachyon at its lowest level which is based on HDFS (Dilpreet and 

Chandan, 2014). It is fault tolerant and enables file sharing at memory-speed (data I/O 

speed comparable to system memory) across a cluster (Dilpreet and Chandan, 2014). 

 

Figure 2.21: An illustration of Berkeley Data Analysis Stack and its various 

components (Dilpreet and Chandan, 2014) 

The second layer of this stack has a component called Mesos which is a cluster manager 

that provides efficient resource isolation and sharing across distributed 

applications/frameworks (Dilpreet and Chandan, 2014). This component also supports 

Hadoop, Spark, Aurora and other applications on a dynamically shared pool of 

resources with scalability of tens of thousands nodes (Anthony, 2015). Its API is 

available in Java, Python and C++ and it has multi-resource scheduling capabilities. 

The third layer has Spark that takes the place of Hadoop MapReduce and on top of this 

layer are Spark wrappers; Stack Streaming, MLib, Stack SQL, GraphX, BlinkDB for 

queries with bounded errors and bounded response time on very large data, MLbase for 

distributed machine learning library based on Spark (Kraska et al., 2013). 
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Cloudera Impala is another big data analytics that helps enterprise exploit benefits of 

SQL tools in achieving real-time analytics potentials when working with massive data 

that are either structured or unstructured (Kornacker et al., 2015). This framework can 

be used by business analyst and IT experts over a range of supported data types and 

large volume of data to interact in real time with a HBase or a HDFS data store for the 

sake of analytics (Bakshi and Sonali, 2016). Interestingling, Cloudera Impala can be 

integrated into Hadoop stack. Figure 2.22 shows Cloudera Impala‟s position in Hadoop 

stack. 

 

Figure 2.22: Cloudera Impala status in Hadoop Stack (Bakshi and Sonali, 2016) 

This framework has flexible data model, support real-time interaction through Cloudera 

Enterprise RTQ (reduces response time of queries to seconds unlike HiveQL or Map 

Reduce), offers effective security measure through Kerberos authentication support 

(Bakshi and Sonali, 2016). 

Pentaho is an open source business intelligence framework which provides range of 

tools that can help customers manage their business better (Pasula, 2016). These tools 

include mining tools, online analytic processing options, dashboard applications and 

data integration tools. Pentaho is a multi-purpose business intelligence platform helping 
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enterprise in analysing, integrating and presenting data through comprehensive report 

and dashboards. Business analytics now rely on Pentaho to identify barriers that block 

company‟s ability to extract value from data (Pasula, 2016).  It was initially developed 

as a report generating engine but branch into big data analytic tool to help enterprise 

have insight into their business (Vidhya et al., 2014). It was integrated with most 

NoSQL databases like Cassandra and MongoDB. This tool can fetch IT and business 

users together through classic sorting and sifting tables with firmly coupling data 

integration thereby permitting both IT and business users access, build, virtualize and 

analyse data that makes an impact on business results (Vidhya et al., 2014). Pentaho 

helps in reducing plan time and complexity needed to acquire and deploy big data 

analytics thus helping companies to know business value of a large bit of diverse data 

(Vidhya et al., 2014). It does this through the execution of data and preparation of big 

data and traditional data types in any infrastructure, along with the range of analytics 

from data dictionary to production analytics (Vidhya et al., 2014). Pentaho 

complements Greenplum distribution of Hadoop which provides an end to end data 

integration and business intelligence suite that enables easy to use, graphical 

environment for managing data movement in and out of Hadoop. The integration of 

Pentaho into Hadoop framework therefore, makes Hadoop a more robust framework for 

big data analytics. 

Jaspersoft is also an open source business intelligence platform suitable for better 

decision making with the help of highly interactive reports, analytics and dashboards. 

Though initially designed for small business, Jaspersoft is now moving into big data for 

huge businesses (Vidhya et al., 2014). Jaspersoft server provides software that utilizes 

data from diverse storage platforms like MongoDB, Cassandra and Redis. To gain 

access to HBase, the Hive connector is provided by Jasper reports which is well 

represented by Hadoop (Vidhya et al., 2014). Jaspersoft like Pentaho is an open source 

business intelligence platform. Though this platform has helped in providing big data 

analytics solutions in business, it is not an all-encompassing big data framework. In 

October 24
th

 2011 at San Franscisco, Jaspersoft announces new Hadoop-based big data 

analytics solution (TIBC, 2011) making the platform part of Hadoop cluster. With this 

development, Hadoop is still a more robust big data framework. 

Another big data platform is Splunk. Splunk is a log analysis platform. The platform 

can be used with other databases like SQL (Vidhya et al., 2014), specifically used in 
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monitoring of ordered and unordered machine data. As a business intelligence tool, 

Splunk with stored data can visualize data (Siya, 2013). Splunk can define data emitted 

by machines in great volumes (Vidhya et al., 2014). Splunk makes machine-generated 

data accessible, usable and valuable to users. It does this by organizing and extracting 

real-time insights from huge amounts of machine data provided from servers, sensors, 

websites, social media platforms and open source data stores. Once these data are in 

Splunk, the platform searches, monitors, reports and analyse the data without 

considering how unstructured, huge or diverse the data may be (Vidhya et al., 2014). 

Splunk DB has a powerful connectivity for real-time connection between one or many 

relational databases. It is also used for bi-directional connectivity with Hadoop (Vidhya 

et al., 2014). 

Karmasphere is also a big data tool originally developed as a set of plug-ins for Eclipse 

(Vidhya et al., 2014). It is a specialized IDE for creating and running Hadoop jobs 

easily. One major feature of Karmasphere is that, it shows test data at each step while 

setting up workflow, thus making users understand the outlook of temporary data as it 

is been analysed and reduced (Vidhya et al., 2014). Karamasphere Analyst is a tool in 

Karmasphere developed to ease procedure of plotting through data in Hadoop cluster. 

Just like subroutine that uncompressed zipped log files, Karmasphere Analyst has 

features for creating good Hadoop jobs (Vidhya et al., 2014). 

IBM is not an exception in the development of big data frameworks. One of the big data 

frameworks develop by this company is IBM Netezza. Netezza can be seen as either a 

storage or computing framework. The reason being that, it provides both data 

warehouse as well as analytics appliance (Bakshi and Solani, 2016). This framework is 

a shared-nothing architecture premised on Asymmetric Massively Parallel Processing 

(AMPP). It is two-tier architecture as described in Figure 2.23a and 2.23b. 
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Figure 2.23a: IBM Netezza Tier -1 (Francisco, 2011) 

 

Figure 2.23b: IBM Netezza Tier -2 (Francisco, 2011) 

This framework handles massive complex queries very quickly. The first teir as shown 

in Figure 2.23a employs a high performance Linux based symmetric multi-processing 

host which is responsible for compiling data query jobs so as to generate execution 

plans (Francisco, 2011). It does this by breaking down the original query into sub-task 

that is suitable for parallel execution. The suitable sub-tasks are distributed over the 

second tier for execution. As described in Figure 2.23b, the second tier contains 

hundreds of intelligent snippet processing blades called S-Blades that form the 

Massively Parallel Processing (MPP) engine of the framework (Bakshi and Solani, 

2016).  

Nephele – PACT framework is also a big data framework that offers Parallelization 

Contracts (PACTs) which are generalization of map and reduce primitive of the 

MapReduce framework (Sharanjit et al., 2014). This framework helps handle complex 
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data flows in a cluster. Dissimilar with execution strategy obtained in MapReduce, the 

PACT compiler generates multiple execution plans from where it selects optimal one. 

These execution plans are evaluated and stored as direct acyclic graphs (DAG) where 

the vertices of DAG are instances of PACT, while the edges denote data transportation 

mechanism between the PACTs. This programming model centred on key/value pairs 

and Parallelization Contracts (PACTs). The PACTs are second-ordered functions that 

describe properties of the input and output of the associated first-ordered functions 

(Sharanjit et al., 2014). 

Microsoft Dryad is another high performance, distributed computing framework that 

supports writing and execution of data-centred parallel programs (Dongyao et al., 

2017). This framework allows programmers to use resources in a cluster to run data-

parallel programs. It is possible to write simple programs which can be executed 

concurrently on thousands of machines while hiding the complexity of concurrency 

with this framework. The language used for execution is DryadLINQ (Yuan et al., 

2016). DryadLINQ is a sequential program which composed of LINQ expressions 

performing arbitrary side-effect-free transformations on datasets (Yuan et al., 2016). 

This language translates data-parallel portions of a program into a distributed execution 

plan which is passed to the Dryad execution platform. Figure 2.24 describes Dryad 

system architecture. 

 

Figure 2.24: Dryad Architecture (Yuan et al., 2016) 

Dryad has a centralized job manager responsible for job execution. The job manager 

instantiate a job dataflow graph, schedules processes on cluster computer, provides fault 
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tolerance for failed or slow process by re-executing them, monitors job and collects 

statistics and also, transform job graph dynamically base on user‟s supplied policies. A 

task scheduler helps control the cluster by managing batch queue of jobs and executing 

them at a time subject to cluster policy (Yuan et al., 2016). 

Condor is another batch system framework presented by Tannenbaum (2010) for high 

throughput computing. This system is used extensively in High Energy Physics (HEP) 

community for management of computing tasks on dedicated compute farms. The 

scalability of Condor makes it an important consideration for administrators of large 

and expanding compute farms that depend on this framework to integrate large 

collections of computer across multiple institutions and end users with increasingly 

large workflows to process. HEP community has been a large driver in recent effort to 

advance the scale at which Condor can operate due to its scalability features (Bradly et 

al., 2011). The architectural design of Condor has a pool defined by a daemon called 

collector. Collector serves as a registry for the rest of distributed daemon in Condor 

pool. Job execution nodes in the pool are represented by a daemon called startd; 

responsible for carrying out job execution requests. Startd helps divide machine into 

one or more logical sub-divisions called execution slots. A collection of jobs that have 

been submitted by users is maintained by another daemon called schedd. This daemon 

obtains a lease to run jobs on an execution slot. The lease is gotten from negotiator, 

which is also a daemon responsible for pool-wide user priority management and for 

matchmaking (finding compatible execution slots for resource request). Schedd has 

pool of jobs submitted by users and is also responsible for communicating with other 

daemons in Condor pool for running of jobs (Tannenbaum, 2010). Clients communicate 

with Schedd for job management and operations such as submitting, modifying, 

examining and aborting jobs. A Condor pool can have more than one Schedd, each 

running on a separate computer. For manageability and ease of use however, few 

number of Schedds are required (Tannenbaum, 2010). 

It has been observed by users of Condor that, instantiating another schedd involves 

numerous steps which include the purchase of new hardware and configuring software 

that will interact with the daemon. In this framework, the status of every job is logged 

to files on disk so that workload managers can rely on the semantics of queued jobs 

(same job will not run in a multiple instances at the same time and once a job is 

submitted, it will not disappear from the queue without atleast one record in the job‟s 
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even log indicates that it is finished or cancelled). Because of this semantic guarantee 

about job logging, transactions requiring durability are synced to the disk. Syncing 

transactions to disk however can be quite expensive hence; in many situations, this has 

been found to be a limiting factor for scalability of schedd. 

A dispersed cloud infrastructure that uses voluntary edge resources for computation and 

data storage was presented by Jonathan et al., (2017). This system called “Nebula” 

described a light-weight architecture that allows distributed data intensive computing 

through a number of optimizations which include location-aware data and computation 

placement, replication and recovery (Jonathan et al., 2017). The design goal of this 

framework is to support distributed data-intensive computing, location-aware resource 

management by enabling efficient execution of distributed data-intensive applications 

and sandboxed execution environment. The architectural design is shown in Figure 

2.25. 

 

Figure 2.25: Nebula System architecture (Jonathan et al., 2017) 

The system consist of volunteer nodes that donates computation and storage resources 

along with a set of global and application specific services which are hosted on 

dedicated, stable nodes that has four major components; Nebula Central, Nebula 

Monitor, DataStore Master and ComputePool (Jonathan et al., 2017). Nebula Central 

serves as the front-end daemon for Nebula ecosystem providing simple and easy-to-use 
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web-based portal so that volunteers can join the system and application writers can also 

inject applications into the system. DataStore component of this system is a simple per-

application storage service which is used to support efficient and location-aware data 

processing in Nebula. Each DataStore has a volunteer node that stores actual data and a 

DataStore Master that keeps system metadata for data placement decisions (Jonathan et 

al., 2017). ComputePool component of Nebula provides per-application computation 

resources with the help of volunteer compute nodes. CompoutePool Master coordinates 

the execution of applications within the compute nodes. The compute nodes access and 

retrieve data with the help of DataStore and they are assigned tasks by ComputePool 

based on application specific computation requirements and data location. Nebula 

monitor monitors volunteer nodes and network characteristics. It checks node 

computation speeds, memory and storage capabilities, network bandwidth and also 

checks health information of each node and possible link failures (Jonathan et al., 

2017). Figure 2.26 describe the control and data flow and steps involved in executing a 

task on the Nebula framework. 

 

Figure 2.26: Control and data flow for job execution in Nebula system (Jonathan et al., 

2017) 

To execute a task (application), the application will have to be injected into the system 

via Nebula Central and the input data placed within Nebula DataStore. The compute 

nodes contact ComputePool periodically and ask for tasks. Once a task is assigned to 
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compute node, the node will download the application code and the input data from the 

DataStore and then starts computation. At the end of computation, the outputs are 

uploaded back to the DataStore. Finally, bandwidths between DataStore and compute 

node together with location of output files are provided to the ComputePool Master 

(Jonathan et al., 2017). A prototype running across edge volunteers on PlanetLab 

testbed was carried out with this system and an evaluation of MapReduce on Nebula 

was performed and compared against other edge-based volunteer systems. Nebula 

MapReduce significantly outperformed other edge-based volunteer systems (Jonathan 

et al., 2017) 

Outerhout et al., (2013) proposed a distributed, low latency scheduling framework 

which demonstrates a decentralized, randomized sampling approach for near-optimal 

performance while avoiding throughput and availability limitations of a centralized 

design. Outerhout et al., (2013) presented Sparrow; a stateless distributed scheduler that 

adapts the power of two choices load balancing technique to the domain of parallel task 

scheduling. The choices require scheduling each task by probing two random servers 

and placing task on server that is less busy or has fewer queued tasks (Outerhout et al., 

2013). Sparrow focused mainly on fine-grained task scheduling for low latency 

applications. The framework provides task scheduling which is complimentary to the 

functionality provided by cluster managers. Instead of launching new task, the 

framework assumes that a long running execution process is already running on each 

compute node for each framework hence; it only sends a short task description when a 

task is launched (Outerhout et al., 2013). The framework makes approximations when 

scheduling tasks thereby trading off many of the complex features supported by 

sophisticated, centralized scheduler so as to provide higher scheduling throughput and 

lower latency. For instance, Sparrow does not allow certain types of placement 

constraints like “my job should not be run on machines where user A‟s jobs are 

running”. It also does not allow bin packing and gang scheduling (Outerhout et al., 

2013). The framework however, supports basic constraints over job placement, such as 

per-task constraint (i.e. task needs to be co-resident with input data) and per-job 

constraints (i.e. task must be placed on machines with appropriate cores). This feature 

set in Sparrow is similar to the one in Hadoop and Spark scheduler. 

This framework does not support gang scheduling typically implemented by bin 

packing algorithm which searches for a reserve time splits on which an entire job can be 
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run. Because Sparrow queue tasks on several machines, it lacks a central point from 

which to perform bin packing hence, deadlocks between multiple tasks that require 

gang scheduling may occur. Currently, this framework only supports FIFO order, 

adding other query-level scheduling policies may improve end-to-end query 

performance of the framework. It is also important that when a compute node fails, all 

schedulers with outstanding requests at that node be informed. A centralized state that 

relies on heartbeat protocol so as to maintain a list of nodes that are alive may be 

needed in this framework. 

Zhao et al., (2014) proposed FusionFS that has a distributed storage layer local to 

compute nodes. This layer allows for most I/O operations and saves extreme amounts of 

data movement between compute and storage resources (Zhao et al., 2014). Zhao et al., 

(2014) idea was to see how to collocate compute and storage nodes in High 

Performance Computing (HPC) to enable applications manipulate their intermediate 

results and checkpoints rather than transferring data over network. Zhao et al., (2014) 

observed that in HPC systems, fault tolerance is achieved through some check pointing. 

The system will periodically flush memory to external persistent storage during check-

pointing and will occasionally load same data back to memory so as to roll back to the 

most recent correct checkpoint after a failure. Doing this makes file writes outnumber 

file reads in terms of both frequency and size in HPC system. To improve write 

performance therefore, will significantly reduce overall I/O cost. FusionFS was 

designed to disperse metadata to all compute nodes so that, maximal concurrency of 

metadata operations can be achieved. Every client of FusionFS optimized write 

operations with local write, an approach that reduces network traffic and makes the 

aggregate I/O throughput highly scalable (Zhao et al., 2014). FusionFS was deployed 

and evaluated on 16K compute nodes of IBM Blue Gene/P supercomputers, showing a 

significant improvement over other file system in HPC (Zhao et al., 2014). 

FusionFS was specifically designed to overcome bottleneck in file systems of HPC. 

HPC systems as discussed earlier are expensive systems with vertical scaling technique 

in focus. In this technique, systems have to be more powerful to handle future 

workloads. Initial addition of more processors, memory and faster hardware in an 

attempt to have better performance are mostly not fully utilized at the initial stage. 

Collocation of compute and storage nodes in FusionFS is a special feature in Hadoop 

framework that makes it stand out. Fault tolerance of data centres is also a unique 
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feature in Hadoop. Though fault tolerance is achieved through re-computing affected 

data chunks that are replicated on multiple nodes and not through check-pointing 

memory states, Hadoop technique is a better option since data are stored in in-expensive 

commodity servers. 

Wang et al., (2015) proposed a task execution framework called MATRIX to overcome 

Hadoop scaling limitations through distributed task execution. Though MATRIX was 

originally developed to schedule executions of data-intensive scientific applications of 

many-task computing on supercomputers, Wang et al., (2015) saw the need to use same 

framework to address scalability issues of Hadoop through decentralizing the 

responsibility of resource manager. Figure 2.27 shows the architecture of MATRIX. 

 

Figure 2.27: MATRIX Architecture (Wang et al., 2015) 

The framework is fully distributed by delegating one scheduler on each compute node 

(Wang et al, 2015). For each compute node, there is an executor and a key-value store 

(KVS) server. The scheduler on each of these nodes has the responsibility of managing 

local resources for optimizing load balancing and data-locality. The executor is saddled 

with the responsibility of executing tasks while the KVS server keeps the metadata of 

tasks and data files in a scalable way (Wang et al., 2015). Each scheduler in this 

framework has four task queues; waiting queue (WaitQ), dedicated ready queue 

(LReadyQ), shared ready queue (SReadyQ) and complete queue (CompleteQ). These 

queues store tasks in different states. For instance, WaitQ keeps tasks waiting for their 

parents to be processed, LReadyQ holds ready tasks whose majority of required data is 
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local (i.e. tasks that are executed locally). SReadyQ keeps ready tasks migrated from 

other compute node(s) while finished tasks are moved into the CompleteQ. Wang et al., 

(2015) claimed that MATRIX outperformed YARN by 1.27x for typical workload 

(WordCount) and has the potential to enable Hadoop scale to extreme-scale data centers 

for fine-graned workloads (Wang et al., 2015).  

MATRIX was originally designed for scheduling fine-grained many-task data-intensive 

applications on supercomputers. An attempt to leverage MATRIX distributed design 

wisdoms to overcome Hadoop scaling limitations for arbitrary data processing 

applications is a good approach but not robust for frameworks needed for distributed 

and parallel processing. From the architecture of MATRIX, it is clear that the 

framework has a per-node resource manager (each scheduler maintains a local view of 

the resources on an individual node). For any framework to have a per-node RM, all 

data blocks for single file must be resident on that compute node. 

Albert et al., (2016) proposed a framework called Awan; a resource manager that helps 

share computing resources across multiple frameworks in an Edge Cloud environment 

(Albert et al., 2016). The main goal of this system is to provide a general resource 

management mechanism that will allow each framework to schedule its job with high 

locality in a geo-distributed environment. To achieve this goal, Awan implements a 

resource lease abstraction to allocate resources to individual framework schedulers. 

These schedulers can in turn make better scheduling decisions by considering the 

availability of desirable local resources (Albert et al., 2016). Awan has File Master, 

Node Manager, Resource Manager and Framework Scheduler as shown in Figure 2.28. 

 

Figure 2.28: Component of Awan (Albert et al., 2016) 
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The File Master manages all files stored in the system. It is responsible for maintaining 

file metadata, handling file replication and determining which storage nodes are 

responsible for storing specific files and its replicas (Albert et al., 2016). The Node 

Manager monitors the health of each node and the network bandwidth (up-link and 

down-link) between nodes. The bandwidth monitoring helps file master during data 

placement decisions and framework scheduler during scheduling of task locally. The 

framework scheduler helps in task scheduling logic for specific computing framework. 

The scheduler will always attempt to schedule task with high locality since network 

bandwidth is a dominant factor in task running time. The Resource Manager provides a 

resource sharing service among framework schedulers. Resource Manager keeps record 

of live nodes by a communication protocol with the Node Manager (Albert et al., 

2016). To ensure that Awan does not have a centralized resource manager, the 

framework provides a two-level architecture as shown in Figure 2.29.  

 

Figure 2.29: Two-level architecture of Awan (Albert et al., 2016) 

This two-level architecture incorporates shared-state architecture by sharing the states 

of all the resources to every framework scheduler. The Resource Manager in Awan 

provides the states of all resources instead of providing the resources that are available 

(Albert et al., 2016). The File Master daemon in this framework behaves the same way 

as the HDFS in Hadoop while the Node Manager has similarity with the Node Manager 

in Hadoop with the exception of bandwidth monitoring. However, in an attempt to 
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provide a shared-state mechanism where all framework schedulers have global 

knowledge of all resources in the cluster (both available and non-available resources), 

resource lease conflicts are bound to occur between schedulers. Though a mechanism is 

in place to resolve these conflicts by RM in Awan, an extra overhead will frequently be 

incurred in running applications in this framework. Also, with many tools built on top 

layer of YARN and its widespread implementation, Hadoop is still the most widely 

used distributed data processing framework. Konstantinos et al., (2018) proposed more 

features in YARN resource manager. In this work, they added new features to YARN 

architecture as shown in Figure 2.30. The new features appear in orange. 

 

Figure 2.30: Advancement in YARN Resource Manager (Konstantinos et al., 2018) 

From Figure 2.30, reservation planner determines the resource needs and temporal 

requirements of a job and translates job‟s completion deadlines into a Service Level 

Objectives (SLOs) over predictable resource allocations (Konstantinos et al., 2018). 

Service scheduler gives service owners the ability to control container placement so as 

to optimise performance of their applications while optimistic scheduler allows 

containers to be dispatched to Node Managers even if there are no available resources 

(jobs) on that node. At any point that job arrives at the Node Manager, optimistic 

containers will be picked from the queue and execution will start immediately, avoiding 

any feedback delays (Konstantinos et al., 2018) 
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YARN framework is the most widely used and powerful tool for big data analytics. It is 

the architectural centre of Hadoop, extensible and very easy to integrate with many 

components. It allows several engines like interactive SQL, real-time streaming, data 

science and batch processing to handle data stored in a single platform. The popularity 

of this framework is largely because of its ability to store, analyse and access massive 

data more quickly, and it cost effectiveness across clusters of commodity servers. 

Hadoop YARN is actually not a single product but a collection of several components 

providing resource management and central platform to deliver consistent operations, 

security and data governance tools across Hadoop cluster. This has made it an all-round 

framework for big data solution. 

 

2.7 Summary of Literature Review and Knowledge Gap 

MultiCore (Bekkerman et al., 2012; Dilpreet and Chandan, 2014) and Graphic 

Processing Units (Hong and Kim, 2009; Dilpreet and Chandan, 2015) can only be 

scaled up (a vertical scaling method where you install more processors, memory and 

faster hardware). This technique requires substantial financial investment and it is 

impossible to scale up after a certain limit. MPI in Peer-to-Peer (Steinmetz and 

Wehrles, 2005; Milojicic et al., 2003) has no ability to handle faults in a network. In 

Mesos (Hindman et al., 2011; Benjamin et al., 2012), task description will have to be 

sent upon accepting a resource hence, no second-level scheduler to determine 

framework/application‟s own internal resource management. Again, because Mesos 

offers resources to framework, locality preference is hindered. Though COSMOS 

(Chaike et al., 2008) and Corona (Shouvik and Daniel, 2013) has similar architectural 

framework with YARN, for multiple applications/frameworks however, both 

frameworks will find it significantly difficult to handle. Omega (Malte et al., 2013) 

architectural design geared towards distributed, multi-level scheduling which reflects a 

greater focus on scalability. It is however, hard to enforce global properties such as 

capacity/fairness/deadlines on this system (Schwarzkopf et al., 2013). To Google, this 

approach is sensible. But for an open source platform like Hadoop, it is not amenable. 

This is because, arbitrary framework from diverse independent sources share the same 

cluster in Hadoop. 
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High Performance Cluster Computing (HPCC) (Patrick, 2011; Micheal et al., 2014; 

Anthony, 2015; Camille, 2015) systems were initially designed with vertical scaling 

technique in focus. In this technique however, system has to be more powerful to 

handle future workloads. Addition of more processors, memory and faster hardware in 

an attempt to have better performance are mostly not fully utilized at the initial stage. 

Disco (Prashanth et al., 2011; Camille, 2015) framework is a young big data tool which 

must evolve to become even more effective. Its distributed system cannot be compared 

with HDFS which is fault-tolerant. Losing a disk or a machine in Hadoop typically does 

not spell disaster for the data under consideration. Spark (Telmoda, 2015; Apache, 

2016) is part of Hadoop big data ecosystem, which makes Hadoop YARN more robust 

than this framework when used alone. Storm (Telmoda, 2015; Apache, 2016) cluster is 

superficially similar to Hadoop cluster (Telmoda, 2015). Whereas you run „MapReduce 

jobs‟ in Hadoop, you run „topologies‟ in Storm. These two are very different. While 

jobs eventually finish in MapReduce, topology processes forever until it is killed 

(Telmoda, 2015). Giraph (Bakshi and Sonali, 2016) is sill in a very immature phase of 

development which lack complete set of offered algorithms hence, can only be runned 

on Hadoop framework. Berkeley Data Analysis Stack (BDAS) (Kraska et al., 2013; 

Dilpreet and Chandan, 2014) emerged to attack challenges of advanced analytics and 

machine learning on big data. Though this stack consist of many useful components in 

the top layer for various applications, many of these components are still at early stage 

of development hence; it support is limited. The cluster manager in BDAS is also a 

centralized resource manager hence; start-up time for a job is several tens of seconds.  

All „joins‟ operation in Cloudera Impala (Kornacker et al., 2015; Bakshi and Sonali, 

2016) are performed in memory capacity not sufficient by the smallest memory node 

present in the cluster. Cloudera Impala does not support querying streaming data as 

with Apache Spark in Hadoop cluster. There is also single point of failure in query 

execution with this framework. Pentaho (Vidhya et al., 2014; Pasula, 2016) and 

Jaspersoft (Vidhya et al., 2014) are designed specifically as Business Intellegence (BI) 

platform. With it self-explanatory design interface, this frameworks has made valuable 

contributions by providing business suggestions to business experts. The frameworks 

however, are not suitable for other big data analytic solutions like diagnostic analytics. 

Splunk and Karmasphere (Vidhya et al., 2014) are part of hadoop framework which 

enhance the development of several Apache Hadoop-based applications to produce 
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insights from users‟ data. Natezza (Francisco, 2011; Bakshi and Sonali, 2016) is not 

suitable for online transactional processing and does not employ any query turning 

mechanism. The framework supports models like Hadoop, still making Hadoop the 

most robust big data framework. Nephele-PACT (Sharanjit et al., 2014) framework is 

not as robust as Hadoop framework. This framework is still in its infancy stage and 

cannot accommodate big data tools like Hadoop. Hadoop has general acceptance and 

usage over Nephele-PACT. Dryad (Yuan et al., 2016) has a centralized job manager 

which is a bottleneck for scalability. Scalability of each instance of schedd in Condor 

(Tannenbaum, 2010) is a major concern. Interaction with disk is another limiting factor 

for schedd.  

Nebula (Jonathan et al., 2017) is still at early stage and only a prototype has been 

demonstrated. There are limited numbers of applications and frameworks that can be 

ported to this system. Scalability of this system is not guaranteed because injection of 

external data and techniques for both aggregation and decomposition across distributed 

resources may crash the system. During execution of task, compute nodes still make 

download of application codes and input data from DataStore Master, this will incur 

additional overhead. Sparrow (Outerhout et al., 2013) is suitable for distributed, low 

latency scheduling workloads but does not support gang scheduling. FusionFS (Zhao et 

al., 2014) has vertical scale up which is very expensive. The per-node resource manager 

in MATRIX (Wang et al., 2015) does not support distributed and parallel processing 

technique for big data analytics. Awan (Albert et al., 2016) architecture is somewhat 

similar to YARN architecture but extra overhead is frequently incurred while running 

applications in Awan.  

Though YARN framework stands out among most of the big data analytics due to it 

ability to run several other frameworks/applications, the responsibilities of global 

resource manager to handle requests from all of these applications/frameworks 

obviously constitute a bottleneck for scalability of Hadoop. Even with the addition of 

features in YARN resource manager as proposed by Konstantinos et al., (2018), the 

global resource management in this framework slows down execution since all Node 

Managers (NM) from each compute nodes in the cluster and all Application Managers 

(AM) send/receive instructions/request from a single resource manager through 

heartbeat protocol. This process will reduce response time and total turnaround time for 

each job in the cluster. The aim of this research work is to decentralize the global 
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resource manager in YARN by having another layer called Rack Unit Resource 

Managers (RU_RM) responsible for resource management of nodes in their 

corresponding rack. 
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CHAPTER THREE 

SYSTEM ANALYSIS AND METHODOLOGY 

3.1 Analysis of the Existing System 

YARN is acronym for “Yet Another Resource Negotiator” also called MapReduce 2. It 

is considered as the next generation MapReduce, considering its improvement over 

MapReduce 1 which has scalability bottleneck when cluster size grows beyond 4000 

nodes. The main idea in YARN is to split the JobTracker‟s responsibilities into two: 

i. Resource Manager: Does job scheduling portion of the workload. 

ii. Application Master: Does the task monitoring portion of the workload. 

Entities in YARN 

i. Client:- Responsible for submission of jobs and also interact with 

MapReduce and HDFS framework. 

ii. Resource Manager:- Responsible for allocating computing resources and 

data required by the job. It has two units – Resource Scheduler and 

Application Manager. 

iii. Node Manager:- This is present at the slave nodes and is responsible for 

creating execution containers and monitoring containers‟ usage. 

iv. Application Master:- Coordinates and manages MapReduce jobs, negotiates 

with Resource Manager to schedule tasks. The tasks are started by Node 

Manager. 

v. YARN child:- Responsible to send status of task to the application master. 

vi. Distributed File System:- Shares resources and job‟s artefacts between 

YARN components. 

3.1.1 Data Flow of the existing system 

Job execution in YARN is in phases as shown in Figure 3.1. These phases include job 

submission phase, job initialization phase, task assignment phase, task execution phase, 

progress and update phase and job completion phase. 
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Figure 3.1: MapReduce Job Execution in YARN 

a. Job Submission Phase 

 Step 1:  The job gets submitted to job client. 

 Step 2:  The job client request for a new job id. 

Step 3:  The job client then checks if output directory has been created. 

After verifying this, it copies the job resources to the HDFS. 

Step 4:  The job client then submits the job to the Resource Manager. 

b. Job Initialization Phase 

Remember that, Resource Manager has two units – Resource Scheduler and 

Application Manager. The scheduler schedules and allocates resources while 

Application Manager monitors status and process of the job. 

Step 5:  As soon as the scheduler picks a job, it contacts the Node 

Manager to allocate a container and launch Application Master 

for the job. 
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Step 6:  Application Master creates object for the job. This is done for 

book keeping purposes and task management. 

Step 7:  The Application Master retrieves input splits from HDFS and 

creates 1 map per split. The Application Master at this point 

decides how to execute the job. If the job is a small task, the 

Application Master runs the job in its JVM to avoid unnecessary 

overhead. These type of tasks are called Uber tasks in Hadoop 

framework. 

c. Task Assignment Phase 

Step 8:  If the job is large, Application Master requests the Resource 

Manager to allocate the computing resources needed. Scheduler 

at this point knows where the resources are located. It gathers this 

information from the heartbeat it gets from each worker node. It 

uses this information to consider data locality while assigning a 

task. The scheduler tries as much as possible to assign a task to 

where the data are located. If this is not possible, it assigns the 

task to another node within the cluster. 

d. Task Execution Phase 

Step 9:  Application Master contacts the Node Manager assigned to 

execute the task, to start a container. The Node Manager then 

launches the YARN child. YARN child is a Java program which 

has main class “YarnChild”. It runs a separate JVM to isolate 

user code from long running system. 

Step 10:  YarnChild retrieves all job resources from the HDFS. 

Step 11:  YarnChild now runs the map and reduce tasks. 

e. Progress and Update Phase 

In this phase, YarnChild sends the progress report every 3 seconds to the 

Application Master. Application Master in turn aggregates and sends update 

directly to the job client. 
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f. Job Completion Phase 

 Application Master and task containers clean up their working state. 

3.1.2 Advantages of the existing system 

 From the analysis of the existing system, we observed that; 

i. There is increased scalability in YARN as compared with classic 

Hadoop. The reasons is because, YARN decouples the work of 

JobTracker into two making it easier to scale up worker node beyond 

4000. 

ii. Along with MapReduce, there can be another distributed framework on 

the same cluster environment. 

iii. Better utilization of resources with the concept of containers. Containers 

are like slots in classic Hadoop but, slots are fixed for each task while 

containers are flexible. In classic MapReduce, a task will have specific 

number of map and reduce slots which most times are not fully utilized. 

While some slots are under-utilized, others are over-utilized. 

3.1.3 Disadvantages of the existing system 

Though YARN architectural design has improved scalability significantly, there are 

fundamental design issues that cap the scalability of this framework towards extreme 

scales. Some of these design issues include, 

i. Centralized Resource Manager:- Resource manager, which is the core 

component of Hadoop framework offers the functionalities of managing, 

provisioning and monitoring resources like the CPU, memory and network 

bandwidth of compute nodes. These responsibilities obviously, are a 

bottleneck for scalability of Hadoop towards extreme scales. It also slows 

down execution since all compute nodes send/receive instructions from a 

single resource manager through heartbeat protocol. Once resource manager 

fails, all execution will halt. Although YARN provides RM High 

Availability to protect against single point of failure, this technique causes 

computation overhead because, resource manager need to update the backup 

storage. 
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ii. Hadoop replication factor:- Replication factor in Hadoop framework is such 

that 2/3 of each block (of a whole file) are replicated into different data 

nodes across racks in a cluster. Since Application Master is expected to 

monitor the execution of a job/application (with its complete number of 

blocks) in a cluster, AM will need to communicate data nodes with input 

splits of the corresponding job/application across racks to be able to monitor 

this execution. Communication across racks will result to higher latency in 

job execution.  

iii. Job completion time:- Since only resource manager coordinates the release 

of resources for execution of jobs, several Application Masters (AMs) 

polling from Resource Manager of this framework during resource request is 

a bottleneck for the system. It slows down processing, which means that 

total turnaround time (job completion time) for each job will be high. 

 

3.2 Analysis of the New System 

The main aim of this model is to decentralize the global control of Resource Manager in 

YARN framework by providing another layer called Rack Unit Resource 

Manager  (RU_RM) layer. The aim of this layer is to make compute nodes on each rack 

to be controlled by their corresponding Rack Unit Resource Manager instead of a single 

Resource Manager controlling all the compute nodes in the network. We believe that 

this will help improve response and turnaround time for each job/application and will 

eliminate single point of failure which makes jobs halt in the existing global resource 

manager.  

The second idea is to ensure that all Rack Unit resource managers form a peer-to-peer 

architecture such that each Rack Unit resource manager holds resources for which it is 

directly responsible to and also have backup copies of resources for the RU_RM 

preceding/succeeding it. This will ensure that, if any RU_RM fails, the predecessor or 

successor can continue with the management of compute nodes in that rack until such 

RU_RM recovers from failure.  

 

The major aim of this new framework therefore, is to provide lower turnaround time for 

jobs and to ensure high availability of Resource Manager during job execution. The 
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new framework has five (6) phases – Job submission, job initialization, task 

assignment, task execution, progress/update and job completion phase. Figure 3.2 

explains MapReduce job execution on our new framework. 

 

 

 

 

 

 

 

 

 

Figure 3.2: MapReduce Job Execution on the new framework 

a. Job Submission Phase 

 Step 1:  The job gets submitted to job client. 

 Step 2:  The job client request for a new job id. 

Step 3:  The job client then checks if output directory has been created. 

After verifying this, it copies the job resources to the HDFS. 

Step 4:  The job client then submits the job to the Resource Manager. 

b. Job Initialization Phase 

Step 5:  Resource Manager gets input splits for the said job. 
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Step 6:  With the information in Step 5, the Resource Manager schedules 

appropriate Rack Unit Resource Manager (RU_RM) with 2/3 of 

the input split to execute the job. 

Step 7:  The scheduler at the RU_RM picks the job and contacts the 

appropriate Node Manager to launch Application Master for the 

job. 

Step 8:  Application Master creates object for the job. This is done for 

book keeping purposes and task management. The Application 

Master creates 1 map per split from each input split on data node. 

The Application Master at this point decides how to execute the 

job. If the job is a small task, the Application Master runs the job 

in its JVM to avoid unnecessary overhead. 

c. Task Assignment Phase 

Step 9:  If the job is large, Application Master requests the Rack Unit 

Resource Manager to allocate the computing resources needed 

(container). Scheduler at this point knows where the resources 

are located. It gathers this information from the heartbeat it gets 

from each worker node in the rack. It uses this information to 

consider data locality while assigning a task. The scheduler tries 

as much as possible to assign a task to where the data are located. 

If this is not possible, it assigns the task to another node within 

the rack. 

d. Task Execution Phase 

Step 10:  The Rack Unit Resource Manager through the appropriate Node 

Manager launches the YARN child.  

Step 11:  YarnChild retrieves all job resources from the HDFS. 

Step 12:  YarnChild now runs the map and reduce tasks. 
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e. Progress and Update Phase 

In this phase, YarnChild sends the progress report every 3 seconds to the 

Application Master. Application Master in turn aggregates and sends update 

directly to the job client. 

f. Job Completion Phase 

 Application Master sends output to HDFS 

Application Master and task containers clean up their working state with the 

help of Container Expirer. 

 

3.2.1 Justification of the New System 

To justify the working methodology of our new model, a hypothetical evaluation is 

carried out, which analyse the results obtained in this new model to results from the 

YARN model. Let us assume to have three jobs (applications) to be processed and that, 

each step in executing any of these job takes 0.01ns (assume that three jobs are of the 

same size). For each job therefore, the first 5 steps in the existing framework holds as 

obtained in Figure 3.1. 

Since there is only one resource manager, the last seven steps will require Resource 

Manager communicating with Node Manager to launch containers and with Application 

Master for resource requests. Since no more than one instruction can be given at a time, 

it means that Resource Manager will interleave these instructions between the three jobs 

(applications).  

Assume that the time taken for each job to be attended to is 3ns and the interveaning of 

process follows FIFO order. It means that Job1 get resources immediately hence, delay 

time is zero (0). Job2 will get assess to resource at time 3ns while Job3 at time 7ns. The 

overall time it will take to process the three jobs will be as follows: 

Job 1 = (0.01ns x 5) + 0ns = 0.05ns 

Job 2 = (0.01ns x 5) + 3ns = 3.05ns 

Job 3 = (0.01ns x 5) + 7ns = 7.05ns 
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Total instruction time needed to process the three jobs = 0.05ns + 3.05ns + 7.05ns = 

10.15ns 

With the new model, the first 7 steps holds for all the three jobs as obtained in Figure 

3.2. Since each RU_RM node executes just one job at a time, the last 5steps therefore 

are carried out at the same time on different RU_RM node. 

Therefore, if it takes 3ns for the three jobs to be attended to in the existing system; it 

will take 1/3ns of 5steps for these jobs to be attended to in the new model. Hence, the 

process time for the three jobs will be as follows: 

Job 1 = (0.01ns x 7) + 1/3ns of 5 on RU_RM1 = 0.07ns + 1.67ns = 1.74ns 

Job 2 = (0.01ns x 7) + 1/3ns of 5 on RU_RM2 = 0.07ns + 1.67ns = 1.74ns 

Job 3 = (0.01ns x 7) + 1/3ns of 5 on RU_RM3 = 0.07ns + 1.67ns = 1.74ns 

Total instruction time needed to process these three jobs = 1.74ns x 3 + = 5.22ns  

From our analysis; ignoring bottlenecks associated with network bandwidth and 

communication overhead, we observe that it takes 10.15ns to pass instruction that will 

execute three jobs in YARN model, whereas it takes 5.22ns to do same with our new 

model. This shows that, our new model promises a better response time and lower 

turnaround time compared to the existing model. 

3.3 The Organization and its Environment 

Apache Software Foundation (ASF) who is the custodian of Hadoop project is a non-

profit public charity organization incorporated in the United States of America in 1999 

primarily to provide a foundation for open and collaborative software development 

projects so as to create an independent legal entity to which companies and individuals 

can donate resources and be assured that those resources will be used for the public 

benefit (Apache, 2016). The foundation provides a means through which individual 

volunteers can be sheltered from legal suit directed at the foundation‟s projects and also 

protect the „Apache‟ brand as applied to its software product, from being abused by 

other organizations (Apache, 2016). 

The organizational governance at a higher level of this foundation is fairly simple; 

members are the ones to elect Board of Directors, the board will appoint various 
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officers and creates Project Management Committees (PMCs) who report periodically 

to the board. Most other officers report to the board through the president of the 

foundation. The foundation‟s corporate government reporting structure is shown in 

Figure 3.3. 

 

Figure 3.3: Apache Corporate Governance reporting structure (Apache, 2016) 

For elections and appointments purposes, the following procedures are followed in the 

foundation. 

i. Existing members are charged with the responsibility of nominating and 

electing new members periodically, and they nominate and elect nine (9) 

directors to the board annually. 

ii. The board are charged with the responsibility of appointing operational 

officers. They delegate responsibility for specific policy/operational areas to 

each officer. 

iii. The board has the sole power to appoint executive officers including the 

President, Secretary, Treasurer etc who are responsible for day-to-day 

operations of the foundation. 
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iv. Most officers report to the President on a monthly basis and the President in 

turn reports an overall operational status to the board also on a monthly 

basis. Figure 3.4 shows the foundation‟s corporate government – elections 

and appointments. 

 

Figure 3.4: Apache Corporate Governance–Elections and Appointments (Apache, 2016) 

Every Apache PMC manages their project independently.  The following procedures 

are followed for project governance. 

i. PMCs reports progress of work directly to the board quarterly. The 

organizational oversight of PMCs and its functioning as a healthy 

community and to ensure they follow Apache policies is done by the board. 

For technical governance however, PMCs take full charge. 

ii. The chair of each PMC is a Vice President for that project and thus, an 

officer of the foundation. The VP ensures that project reports are complete 

and submitted to the board. 
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iii. PMCs vote on software product releases. This is to ensure that all source 

code releases are acts of the foundation itself, through properly governed 

PMC. 

iv. PMCs can nominate and elect new committees to their project. 

v. Apache incubators called special IPMC help to mentor new podling 

communities to help them learn the Apache way. Figure 3.5 gives a view of 

the foundation‟s project governance structure. 

 

Figure 3.5: Apache Project Governance Structure (Apache, 2016). 

3.4 Methodology 

We live in the world of objects. These objects exist in such a way that they can be 

created, organised, categorized, described and manipulated upon. Hence, Object 

Oriented Methodology (OOM) has come into picture for developing software. OOM is 

a new system development methodology that encourages and facilitates reuse of 

software components. This methodology makes it easier for a system analyst to 

determine what objects are required in a system, how each of these objects behave over 

time or in response to an event, responsibilities and relationships of these objects with 

each other, their commonalities, differences and how the system will manipulate them. 
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Because of the nature of this research, the new model used this methodology because it 

provides nice structures for thinking and abstraction, which leads to modular design. 

Also, the methodology encourages reusability and provides inheritance feature of 

object-orientation. Inheritance will allow a program to use the existing classes in new 

application. So many OOM exist, popular among them are Booch methodology with the 

concept of Object Oriented Analysis and Object Oriented Design (OOA/OOD), 

Responsibility Driven Design (RDD) methodology, Object Oriented Software 

Engineering (OOSE) methodology, Object Modelling Techniques (OMT) methodology. 

This research work used OMT methodology because it describes a method for analysis, 

design and implementation using object-oriented technique. It is fast and provides 

intuitive approach that identifies and model objects making up a system. To justify the 

proposed methodology, OMT three major viewpoints was considered in the design 

phase of this work, each viewpoint capturing important aspects of the system. The three 

viewpoints are static, dynamic and functional behaviours of the system also described 

as object model, dynamic model and functional model of OMT.  

UML description of the new model with methodology adopted 

UML are meant to provide model for computer applications/software. UML notation set 

provides several diagrams that when used within a given methodology will increase the 

understanding of a system under development. The UML diagrams used follow the 

object oriented methodology for this work. The UML description looked at the three 

major viewpoints of OMT in object oriented methodology with each view point 

capturing important aspects of the system. The three viewpoints are static, dynamic and 

functional behaviours of the system also described as object model, dynamic model and 

functional model of OMT. 

Object model describes objects in a system and their inter-relationships. It gives more 

attention to objects as static entity and does not pay attention to object‟s dynamic 

nature. This model describes the structure of object in the system. From analysis of the 

new model, key objects in this model include; 

a. Client 

b. Resource Manager (RM) 

c. Rack Unit Resource Manager (RU_RM) 
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d. Node Manager (NM) 

e. Application Master (AM) 

f. Hadoop Distributed File System (HDFS) 

Class diagram was used to describe the structural and data aspects of this system. 

Figure 3.6 describes the class diagram for the new model, the relationship of objects, 

their operations and also depicts the primary view of the overall decomposition of the 

system. 

 

Figure 3.6: Class diagram for the new model 

Dynamic models are used to represent behaviour of the static constituents of software. 

Static constituents are objects and their relationships. It represents the interaction, 

workflow and different states of these static constituents in software. Diagrams used in 

dynamic models include interaction diagrams (sequence or communication diagram), 

object diagram and activity diagram. The new model describes those areas of the 

system that changes using sequence diagram as shown in Figure 3.7. Sequence diagram 

captures the sequence of messages flow from one object to another. 
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Figure 3.7: Sequence diagram for the new model 
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Functional Model:- This model describes the transformational and functional aspects of 

the new system. It captures what the system does without regard to how or when it is 

done. This model uses Data Flow Diagram (DFD) to show the flow of data through the 

system. It views system as a function that transforms input into desired outputs. Figure 

3.8 shows DFD for the new model. 

 

Figure 3.8: DFD for the new model 

 

3.5 High Level Model of the New System 

To capture and precisely state requirements and domain knowledge of the new 

framework, a high level model is presented in Figure 3.9. This model serve to focus the 

thought process and to capture requirements needed for the system design. 

  

Client 

job 
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Figure 3.9: High-Level Model of the new rack-aware resource manager framework 
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The architectural framework of the new model as described in Figure 3.9 decouples the 

responsibility of Resource Manager by providing another layer where each daemon 

called Rack Unit Resource Manager (RU_RM) carry out the responsibility of allocating 

resources to data nodes. This will allow high bandwidth and low latency for large files 

on data nodes within the same local rack. The illustration below will help understand 

our new model.  

Assume we have three different files (sales, music and video file) to be stored in HDFS. 

The NameNode gets these files from the client, split the files into blocks and allocates 

them on free data nodes. Assume we have the following input splits. 

First File: sales 

Blocks: a.sales, b.sales, c.sales 

Second File: music 

Blocks: a.music, b.music 

Third File: video 

Blocks: a.video 

With the new model, compute node replicates each block on different node but on same 

local rack. Compute node with the replicated block will replicate the third copy on a 

node in another rack. Each of the three compute nodes will communicate the 

NameNode once replication is over. The NameNode will then update the metadata 

server. Metadata server keeps record table for the three files as described in Table 3.1. 

Table 3.1: Metadata table for all input splits in HDFS 

Jobs RU_RM1 RU_RM2 

DN1 DN2 DN3… DN n DN 

n+1 

DN 

n+2 

DN 

n+3 

…DN 

p 

a.sales + +    +   

b.sales   + +    + 

c.sales  + +  +    

a.music    + + +   

b.music  +    +  + 

a.video +      + + 

“+” represent data locality on a node. 
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Remember that from Figure 3.2, Resource Manager (RM) gets input split with their 

corresponding local racks from HDFS. For resource manager to schedule the 

appropriate RU_RM, input split for each job is considered. If 2/3 of the replicas belong 

to a particular rack, RM allocates the job to the RU_RM which in turn, allocates the 

block to the appropriate compute node for execution. From Table 3.1, the file “sales” 

will be allocated to RU_RM1 while “music” and “video” will be allocated to RU_RM2. 

For a reliable, fault tolerant system and to guarantee lookup consistency in the presence 

of failure of nodes, the RU_RM layer of the new model introduced novel relaxed-ring 

architecture. This approach help eliminate single point of failure experienced in the 

existing system. The new model provides that, every step in the ring needs the 

agreement of two RU_RM nodes which is guaranteed with a point-to-point 

communication. Our first invariant is that, every RU_RM node must have a predecessor 

and a successor in the ring. Secondly, the responsibility of a RU_RM node starts with 

the key of its predecessor + 1 and ends with its key. Thirdly, a RU_RM accommodates 

its neighbouring peers for back-up purpose. Fourthly, every RU_RM node must 

communicate its predecessor and successor and update them with its responsibilities to 

remain in the ring. The last condition is that, every RU_RM node must communicate 

with the central Resource Manager in situation where its neighbour node fails.  
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CHAPTER FOUR 

SYSTEM DESIGN AND IMPLEMENTATION 

4.1 Objectives of the design 

The objective of this design shall follow the objectives of the research study mentioned 

at the beginning of this work. 

(i) To decentralize the global control of Resource Manager (RM) in YARN 

framework by providing another layer called Rack Unit Resource 

Manager (RU_RM) layer. By decentralizing this component, there will be two 

daemons serving as resource control for job execution; the central Resource 

Manager and the per-rack resource manager (described as Rack Unit Resource 

Manager in this work). 

(ii) The second objective of this design is to ensure that all Rack Unit resource 

managers form a peer-to-peer architecture such that each Rack Unit Resource 

Manager holds resources for which it is directly responsible to and also have 

backup copies of resources for the RU_RM preceding/succeeding it. 

 

The whole system design is described in Figure 4.1. Resource Manager now uses push-

based approach to transfer responsibilities of scheduling jobs and monitoring node 

status to Rack Unit Resource Manager. 
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Figure 4.1: Block diagram showing whole system design processes 

 

4.2 Decomposition and Cohesion of High Level Model 

The new model has three basic layers; the global resource manager layer, rack-units 

resource managers‟ layer and the compute nodes layer. The RM, whose responsibility is 

to allocate job to appropriate RU_RM is highly cohesive. This module performs exactly 

one task which is allocation of job to appropriate RU_RM. Each RU_RM also is high 

cohesive; its responsibility is tied to nodes in its rack. In case of failure, where 

responsibility is extended beyond RU_RM‟s boundary, the module ensures that data 

(contents) of the extended boundary remain within the rack(s) they are originally 

resident. Node managers and AMs in each data node are also highly cohesive with each 

AM solving just a task at a time. 

While there is high cohesion within modules in each layer, the layers are loosely 

coupled. This is important so that modification at any layer of the model does not 

affect/change modules in other layers. With this, maintenance becomes easier and if 

additional rack (with compute nodes) is added to the cluster, RU_RM, NM and AM can 

be picked and re-used without having to build them from the beginning. 
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4.2.1 Control Centre/Main Menu 

The control centre/main menu of this system is an improved YARN Resource Manager 

GUI. Figure 4.2 shows the main interface. Cluster metric are displayed in the top row 

while the left hand portion of the menu provides navigations to sub-menus of the 

system. 

 

Figure 4.2: Control Centre/Main Menu for the New System 

The cluster metrics provides information about size of data uploaded for word count 

operation, number of virtual machines connected to the server and the total time elapsed 

for each word count operation. The sub-menus on the left of the control centre shows 

operations that are performed on this framework. 

 

4.2.2 The Sub-Menus/Sub-Systems 

The sub-menu as shown in Figure 4.2 has the data submission, HDFS and MapReduce 

sub-menus. Each of these sub-menus has specific responsibility in the model. 

 

4.2.2.1 Data Submission Implementation 

This sub-menu allows users to import text file to be stored in the server. Figure 4.3 

shows the data submission sub-system. 
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Figure 4.3: Data submission sub-system 

From Figure 4.2, the user selects file to be imported from the client‟s system. Once the 

user clicks on „Import‟ button, the size of file (in kB) is displayed in the cluster metric. 

 

4.2.2.2 MapReduce Sub-system Implementation 

This sub-menu allows users to run Hadoop workload called WordCount. The user can 

select either the existing model or the improved model. The two models are built into 

this system to allow for comparison and for the purpose of evaluation. The existing 

model contains re-usable modules hence, the architecture was not altered. The user is 

expected to select a file for the WordCount operation and click on the submit button. 

Figure 4.4 shows the mapreduce sub-system. 

 

Figure 4.4: MapReduce Sub-system 



 92 

4.2.2.3 HDFS Sub-system Implementation 

The HDFS sub-menu has the Name Node, Logs and Output file list. The Name Node as 

described in Figure 4.5 shows number of files that have been uploaded on the server, 

total number of blocks and cluster size. It also gives description of which node is 

holding a block partion. 

 

Figure 4.5: Name Node Sub-system 

To view each block partions, user double-clicks on the virtual machine holding that 

block partition. Example of a block partition is shown in Figure 4.6. 

 

Figure 4.6: Block partition from Virtual Machine_1 
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Logs in HDFS sub-menu shows intermediate mapreduce jobs during run time. It keeps 

track of the time for WordCount operation on each block partition. Viewing the log 

requires that yarn.log.aggregatios enable variable in yarn_site.xml file be set. 

 

Figure 4.7: Improved YARN MapReduce Logs 

The output file described in Figure 4.8a and 4.8b shows summary of completed job in 

the model. It shows the name of virtual machine with their corresponding block 

partitions and results of WordCount operation.  

 

Figure 4.8a: Output from Virtual Machine_1 
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Figure 4.8b: Output from Virtual Machine_2 

 

4.3 Specifications 

4.3.1 Database Development Tool 

The database development tool used for this system is the Computer Assisted Software 

Engineering (CASE) tool. There are a number of CASE tools that provides extensive 

functionality for database development. This new system uses Microsoft Visual 

Studio.Net Enterprise Architect Edition called Microsoft Office Visio. It is a forward 

and reverse engineering tool for databases and UML. It supports data dictionary to 

accompany entity relationship template and also supports name, data type, required, 

primary and notes properties. 

 

4.3.2 Database Design and Structure 

Database design and structure for this system follows the four database development 

phases; conceptual data modelling, logical database design, distributed database design 

and physical database design. While conceptual data modelling and logical database 

design focuses on the information content of the database, distributed and physical 

database design focuses on efficient implementation of the system. 

i. Conceptual Data Model:- The conceptual data model for this system identifies the 

highest level relationship between entities. Features of this data model include the 

important entities and the relationship among them. No attribute or 
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primary/foreign key is specified in this model. The conceptual data model of this 

system is shown in Figure 4.9. 

 

Figure 4.9: Conceptual Data Model showing relationship between entities 

The rectangles (GlobalRecouseManager, Rack_Unit_ResourceManager, HDFS, 

Data_Node, Node_Manager, App_Master) represent entity types while label lines 

shows relationship between entities. 

ii. Logical Data Model:- The logical data model for this system is a more detailed 

description of the conceptual data model without regard to its physical 

implementation in the database. Features here include all entities and relationships 

among them, attributes for each entity are specified, primary and foreign keys 

(keys identifying relationship between different entities) are specified. To ensure 

that there is no redundancy, normalization is carried out in the table design 

constraints (dependencies among columns). Data requirements for the new model 

were used to produce ERD using Microsoft Office Visio. Figure 4.10 shows the 

logical data model for this system.  
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Figure 4.10: Logical data model showing attributes, primary and foreign keys for each 

entity 

 

Attributes/properties of these entities are listed inside the rectangle. The diagram 

also shows primary keys for each entity and foreign keys that connects entities.  

 

iii. Distributed Data Model:- To ensure that reduced response time, improved 

availability of data and improved control is achieved, data are located in their 

appropriate positions. The actual input splits (blocks) for each file are resident in 

the appropriate data nodes within a rack. The system ensures that 2/3 of these 

blocks occupy different nodes in the same rack while the third block is in another 

node for fault tolerant situation. Also, 2/3 of all blocks are in a rack to ensure high 

bandwidth and low-latency during job execution. The metadata file, which keeps 

record of all data nodes and files they contain, is in a central location. This is done 

to ensure improved control of location and movement of data. With each RU_RM 
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handling all compute nodes and their data, improvement on control and efficient 

response time was achieved. The index of files which is one of the important 

aspects of this phase has been implemented with the introduction of Name Node. 

This node keeps metadata of all data nodes in the cluster thereby, enhancing 

efficient implementation of this model. 

 

iv. Physical Data Model:- This phase describes how the data model was built in the 

database. It shows table structures with column names and data types used for 

database implementation. Figure 4.11 shows the physical data model for this 

system. 
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Figure 4.11: Physical data model showing data types 
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4.3.3 Program Module Specification 

With the proposed rack unit resource manager layer introduced in the new model, the 

central resource manager is no longer responsible for monitoring of data nodes in the 

cluster. Resource request and container lease are sole responsibilities of each rack unit 

resource manager. Application Master now communicates corresponding rack unit 

resource manager for container lease and monitoring of job process. Going by the 

design objectives of this work, five different modules/components describe the whole 

architecture of the new model. These components are; 

a. Resource Manager allocation of job to appropriate Rack Unit Resource 

Manager. 

b. Rack Unit Resource Manager responsibility in executing job. 

c. Description of task execution and update in RU_RM layer. 

d. Description of RU_RM failure. 

e. RU_RM description for joining the ring architecture 

Central RM allocation of job to appropriate RU_RM:- Upon job submission by 

client to RM, RM retrieves input splits from HDFS. With metadata information from 

Name Node on which rack holds these input splits, RM allocates job to the appropriate 

RU_RM for processing. Figure 4.12 shows an event-tracing diagram describing how 

RM allocates job to appropriate RU_RM. 

 

Figure 4.12: Event-tracing diagram for RM allocation of job to appropriate RU_RM 
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Rack Unit Resource Manager (RU_RM) responsibility in executing job:- RU_RM 

module is responsible for executing job allocated to it by RM. RU_RM is a per-rack 

framework only responsible for execution of jobs within the rack, except failure occur 

of its neighbouring unit. Figure 4.13 shows a scenario between RU_RM, Application 

Master and the Node Manager during job execution. 

 

Figure 4.13: Event-tracing diagram for RU_RM responsibility 

 

Description of task execution and update in RU_RM layer:- This module ensured 

that, for every job to be executed by any of the RU_RM, its predecessor and successor 

must also be updated. This is important to ensure that if failure occurs, the RU_RM‟s 

predecessor/successor can take over the responsibility of the failed unit. To describe 

this module, state machine diagram was used. State machine shows the behaviour that 

specifies sequence of states an object visits during its life time in response to events. 

Figure 4.14 shows the state machine diagram for this module. 
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Figure 4.14: State machine diagram for execution of task in a rack 

Description of RU_RM failure:- This module ensures that at any point the 

predecessor/successor unit of any RU_RM do not receive update, its means that such 

RU_RM is not available. The predecessor/successor unit (as described in the objective 

of the design) therefore, takes over the responsibility of the failed RU_RM. Figure 4.15 

shows the state machine diagram for this module. 
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Figure 4.15: State machine diagram for RU_RM failure 
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RU_RM description for joining the ring architecture:- For a failed RU_RM to join 

the ring after failure recovery, this module searches for RU_RM that is not available in 

its position in the ring. It compares it with the RU_RM ready to join the ring. If the 

comparison is correct, the RU_RM joins the ring and its predecessor and successor 

notified. Its responsibility (which starts with predecessor key + 1 and ends with its key) 

is then release to the node. Figure 4.16 gives a state machine description of this module. 

 

 

Figure 4.16: State machine diagram for RU_RM joining the ring architecture 
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4.3.4 Input/Output Format 

4.3.4.1 Input Format 

WordCount is the Hadoop benchmarking workload used for this research. WordCount 

is a typical two-phase Hadoop workload with the map task counting the frequency of 

individual words in a subset data file while the reduce task shuffles and gather the 

frequency of all the words. The input data for this research work therefore is any text 

file. Input format is described in Table 4.1. 

Table 4.1: Typical input data format for map and reduce task 

Hi, how are you 

How is your job 

How is your sister 

How is your brother 

What is the time now 

What is the strength of Hadoop 

 

To perform wordcount operation on the input data in Table 4.1, let us assume that the 

file name is file.txt and the size is 140MB. If 64MB is the size of each block to be 

stored in HDFS, the text file will be partitioned into 2blocks of 64MB and a block will 

contain 8MB as shown in Table 4.2. 

Table 4.2: Block partitions for input data 

Hi, how are you 

How is your job 

64BM 

How is your sister 

How is your brother 

64MB 

What is the time now 

What is the strength of Hadoop 

8MB 

 

The number of input splits for a file depends on the number of blocks you have for the 

job. Since there are three blocks in Table 4.2, we have three input splits and there are 

three corresponding mappers and reducers (one input split to a mapper and a reducer). 
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From the blocks in Table 4.2, block1 will be allocated to the first input split, block2 to 

the second and block3 to the third input split. Hadoop runs MapReduce jobs in the form 

of (key, value) pair. For the text file to be read and converted into (key, value) pair, 

there is an interface called RecordReader. The RecordReader reads each line in the text 

and converts it into (key, value) pair with the format (byteoffset, entireline). The 

„byteoffset‟ represent row number in the text while „entireline‟ is the whole text in the 

line. For example, to read block1 in the file.txt, (byteoffset, entireline) will be (0, hi 

how are you). The RecordReader gets the next byteoffset by reading the number of 

characters in the first row. The first row has the text „hi_how_are_you_ = 15characters 

including spaces. Hence, the next (byteoffset, entireline) = (16, how is your job). 

4.3.4.2 Output Format 

The generated data from mapper form another (key, value) pair which is referred to as 

intermediate data (output). Once these intermediate data are generated, reducer function 

is triggered to combine all intermediate data into final output. Shuffling phase combines 

all single key to produce these intermediate data described in Table 4.3. 

Table 4.3: Format of intermediate output from MapReduce task 

Hi, [1] 

how, [1,1,1,1] 

are, [1] 

you [1] 

is [1,1,1,1,1] 

your [1,1,1] 

job [1] 

sister [1] 

brother [1] 

the [1,1] 

time [1] 

now [1] 

strength [1] 

of [1] 

Hadoop [1] 

 

The reducer has RecordWriter. Once the intermediate data has been shuffled, the 

reducer will sort it and pass it to RecordWriter which produces the output file into 

HDFS. Table 4.4 describes output file format. 
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Table 4.4: Output file format 

Hi, 1 

how, 4 

are, 1 

you, 1 

is, 5 

your, 3 

job, 1 

sister, 1 

brother, 1 

the, 2 

time, 1 

now, 1 

strength, 1 

of, 1 

Hadoop, 1 

 

Screen display of the output file shows the application name, application type, state of 

execution, finished time, total processing time and a link to where the output file is 

stored. 

 

4.3.5 Overall Object Diagram for the New System 

The object diagram in Figure 4.17 shows a snapshot of the detailed state of this system 

as point of task execution. The diagram encompasses objects and their relationship at 

point of execution. 
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Figure 4.17: Object diagram of the new system at point of task execution 

Figure 4.17 show that the global resource manager only allocates job to appropriate 

rack unit resource manager. Rack unit resource managers execute jobs simultaneously, 

each executing jobs within its rack. This approach allows for faster response time as in 

contrast to the existing approach where the global resource manager is responsible for 

job execution in the whole cluster. 

 

4.3.6 Algorithm 

Going by the design objectives of this work, five different algorithms described the 

whole architecture of the new model.  Algorithm 3.1 described the work of Central 

Resource Manager which is allocation of job to appropriate RU_RM. Once allocation is 
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done, all responsibilities and processes involved in the execution of that job are 

controlled by the corresponding RU_RM. 

Algorithm 3.1: Allocation of job to appropriate RU_RM 

upon event <job submission> 

client receive Job ID 

client copies Job resources to HDFS 

client submits job to RM 

RM retrieves input split from HDFS 

RM allocate job to appropriate RU_RM 

end event 

 

The central Resource Manager has a pluggable scheduler whose sole responsibility is to 

allocate jobs to the appropriate RU_RM. It is a pure scheduler in the sense that it 

performs no monitoring or tracking of jobs/applications status, offering no guarantees to 

restart failed task either due to job or hardware failure. The scheduler performed its 

function based on the metadata received from Name Node. Once job has been allocated 

to the appropriate RU_RM, RM is free from any other responsibility for that job. RM 

uses a push-based scheduling technique where it pushes responsibility to appropriate 

RU_RM for execution. No periodic heartbeat mechanism is required between RM and 

RU_RM hence; RM can manage a lot of jobs and achieves better cluster utilization.  

 

Algorithm 3.2 shows scenario between rack unit resource manager, application master 

and node manager during job execution. RU_RM is a per-rack resource manager as 

compared to the per-cluster resource manager in the existing framework. 2/3 of the 

complete data block for a file is stored in the same rack. This is to ensure that AM do 

not need monitor job across racks in the cluster. This process ensured lower job latency 

as opposed to the existing system where AM monitors job across racks in the cluster. 
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Algorithm 3.2: RU_RM Responsibility 

upon event <execute job> 

RU_RM receive job allocation from RM 

RU_RM scheduler prompt Node Manager to launch AM for the job 

AM creates object for the job 

AM retrieves and creates 1map per split from input splits 

AM request for container from RU_RM 

RU_RM through NM launches YARNchild 

YARNchild retrieves all job resources from HDFS 

YARNchild runs map and reduce task 

YARNchild sends update of execution to AM 

AM aggregates and send update to RU_RM through NM 

AM send completed task to HDFS 

AM and task container clean up working state and RU_RM notified 

end event 

 

Algorithm 3.3 ensured that, for every job to be executed by any of the Rack Unit 

Resource Manager (RU_RM), its predecessor and successor must also be updated. This 

is to make sure that if failure occurs, any of predecessor/successor can take over the 

responsibility of the failed RU_RM. 

Algorithm 3.3: Execution of Task 

upon event <execute task> 

 RU_RM = node(n)  // n is the number of RU_RM machines on the ring 

 check <RU_RM with input splits>  

 for node = 1 to n 

  If RU_RM(node) = <RU_RM with input splits> 

   allocate <job> RU_RM(node) 

   Update <RU_RM(node – 1) && (RU_RM(node + 1)> 

 next node 

end event  
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Algorithm 3.4 ensured that once the predecessor or successor of any RU_RM does not 

receive update, it therefore means that such RU_RM is not available hence, the 

predecessor or successor (depending on which is idle) takes over the responsibility of 

the failed RU_RM.  

 

Algorithm 3.4: Rack Unit Resource Manager Failure 

upon event <RU_RMnode failure> 

 RU_RM = node(n) 

 If heartbeat <not available> then <mark RU_RM(k)> 

 for node = 1 to n 

  If RU_RM(node) = RU_RM(k) 

     { 

   If RU_RM(node – 1) <not expanded>  

   { 

If RU_RM(node – 1) <idle>  

       transfer <responsibility> to RU_RM(node - 1) 

      } 

   elseif RU_RM(node + 1) <not expanded> 

      { 

If RU_RM(node + 1) <idle>  

       transfer <responsibility> to RU_RM(node + 1) 

       } 

   else 

    transfer <responsibility> to RU_RM(node - 1) 

   endif 
   } 

  endif 
 next node 

 update RM 

end event 

 

The RU_RM ring architecture for this design shown in Figure 4.17 helps to monitor 

failure at the RU_RM layer. 
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Figure 4.18: Ring architecture for RU_RMs in the new model 

 

From Figure 4.18, the architecture ensured that data items (resources) are replicated on 

neighbouring peers (RU_RMs) on the ring. Each of RU_RM holds resources for which 

it is directly responsible and also hold resources for RU_RM proceeding and 

succeeding it on the ring.  

 

Each RU_RM on the ring updates its predecessor and successor. If after 3seconds of 

execution, no signal is obtained from any of RU_RM, such RU_RM is considered dead. 

Boundary of the peer (RU_RM proceeding/succeeding it) will be extended. This 

process is described in Figure 4.19. 
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Figure 4.19: Failure scenario in the ring architecture of RU_RMs 

 

As described in Figure 4.19, if RU_RM2 fails, RU_RM1 or RU_RM3 boundary of 

resource control will be expended. Expansion of boundary is dependent on two 

conditions; 

a. Whether RU_RM proceeding/succeeding the failed peer (RU_RM) has already 

been expanded due to failure of other neighbouring node. 

b. Whether the peer (RU_RM) proceeding/succeeding the failed peer is idle or busy. 

 

Two scenarios are possible; best case scenario and worst case scenario. 

Best Case Scenario:- From Figure 4.19, if RU_RM1 and RU_RM3 have not been 

expanded due to failure of their neighbour peers, and none of them is idle, the peer 

(RU_RM) preceding the failed peer takes over the responsibilities of the failed 

RU_RM. At this point, update of both RU_RM1 and RU_RM2 will be done on 

RU_RM3 as shown in Figure 4.19. 

 

Worst Case Scenario:- A worst case scenario is the situation where two successive 

peers fail intermittently as described in Figure 4.20. At this point, a back-up will be 

made to allow for execution before recovery from failure is performed. For instance, if 
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from Figure 4.20 RU_RM3 also fails. RU_RM4 resource control boundary will be 

expanded. In this case, only RU_RM1 will hold resources for RU_RM2. If however, 

RU_RM1 is the peer that fails, resource control boundary of RU_RMz is expanded 

while RU_RM3 takes control of resources in RU_RM2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Failure of two successive peers (RU_RMs) in the ring 

 

In either of the two case scenarios mentioned, once a failed peer recovers from failure 

and joins the ring, its resources from the peer holding it will be released to it (recovered 

peer). Also, back-up of resources for peers preceding/succeeding it begins. 

 

Upon event join as obtained in Algorithm 3.5, the system searches for RU_RM that is 

not available in its position in the ring. It compares it with the RU_RM ready to join the 

ring. If the comparison is correct, the RU_RM joins the ring and its predecessor and 

successor notified. Its responsibility (which starts with predecessor key + 1 and ends 

with its key) is then release to the node. 
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Algorithm 3.5: Rack Unit Resource Manager joining the ring 

upon event <join> 

 RU_RM = node(n) 

 specify <RU_RM(k)> to join 

 for node = 1 to n 

  If RU_RM(node) <not available> 

  { 

If (RU_RM(k) = RU_RM(node))  

       { 

(RU_RM(node) = RU_RM(k) 

    perform <join ! RU_RM(node)> 

    notify <RU_RM(node–1)&(RU_RM(node+1)> 

    release <responsibility> to RU_RM(node) 

        } 

   endif 
  } 

endif 
 next node 

end event 

 

4.3.7 Data Dictionary 

Data dictionary provides detailed information about data elements and their meanings 

and allowable values. It gives information about each attribute of a data model. Data 

dictionary for this system are obtained from six entities in our data model as shown in 

Table 4.5 to Table 4.10. 

Table 4.5: Global Resource Manager 

S/N Column Name Data Type Constraints 

(Key) 

Notes 

1. JobID VARCHAR(50) Primary It identifies RM to HDFS for 

input splits. 

2. RU_RM_ID CHAR(9) Not Null It identifies RM to 

appropriate RU_RM for job 

allocation. 

3. Name_NodeID CHAR(8) Not Null Keep track of input splits for 

each job 

4. RM_Scheduler LONG Not Null Schedules jobs based on 

RU_RM_ID information. 
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Table 4.6: Hadoop Distributed File System (HDFS) 

S/N Column Name Data Type Constraints 

(Key) 

Notes 

1. JobID VARCHAR(50) Primary, 

Foreign 

Track job input splits on 

NameNodeID and candidate 

key that identifies RM for 

DataNodeList and input splits 

2. Name_NodeID CHAR(8) Not Null For DataNodeList and Input 

splits. 

3. Number of RUs INTEGER Not Null Keeps track of number of 

racks in cluster 

4. Storage_Space BYTE Not Null Keeps track of storage space 

in cluster 

 

Table 4.7: Rack Unit Resource Manager 

S/N Column Name Data Type Constraints 

(Key) 

Notes 

1. RU_RM_ID CHAR(9) Primary Identifies appropriate 

RU_RM from RM. 

Candidate key for RM. 

2. JobID VARCHAR(50) Foreign Identifies job allocation 

traced to HDFS through 

RM 

3. Name_NodeID CHAR(8) Not Null Identifies DataNodeList 

and input splits from 

HDFS through RM 

4. Node_ManagerID CHAR(8) Not Null Is of RU_RM for task 

monitoring 

5. App_MasterID VARCHAR(20) Not Null Is of RU_RM for task 

execution 

6. RU_RM_Scheduler LONG Not Null Schedules job input splits 

to appropriate 

NodeManager 
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Table 4.8: Name Node 

S/N Column Name Data Type Constraints 

(Key) 

Notes 

1. Name_NodeID CHAR(8) Primary Identifies HDFS for data node 

list and input splits 

2. JobID VARCHAR(50) Primary, 

Foreign 

Identifies job input splits and 

respective data nodes traced 

to HDFS through RM 

3. Data_NodeList LONG Not Null Is for Name_Node for list of 

data nodes in cluster 

4. Input Splits VARCHAR(50) Not Null Is for Name_Node for list of 

input splits for a job. 

 

Table 4.9: Node Manager 

S/N Column Name Data Type Constraints 

(Key) 

Notes 

1. Node_ManagerID CHAR(8) Primary Identifies App_MasterID in 

connection with 

RU_RM_ID 

2. App_MasterID VARCHAR(20) Not Null Identifies each job for a 

single Application Master 

3. ContainerList VARCHAR(50) Not Null For Node Manager to track 

containers 

4. RU_RM_ID CHAR(9) Foreign Identifies RU_RM for job 

monitoring 
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Table 4.10: Application Master 

S/N Column Name Data Type Constraints 

(Key) 

Notes 

1. App_MasterID VARCHAR(20) Primary Identifies job allocation in 

connection with 

RU_RM_ID 

2. RU_RM_ID CHAR(9) Primary, 

Foreign 

Identifies RU_RM_ID 

directly via App_MasterID 

3. JobID VARCHAR(50) Primary, 

Foreign 

Identifies allocated Job 

directly via App_MasterID 

4. Node_ManagerID CHAR(8) Foreign Identifies Node Manager 

for task monitoring 

5. Name_NodeID CHAR(8) Not Null Keeps record of processing 

on Data Nodes 

6. Map_Task LONGCHAR Not Null Is of App_Master for map 

tasks 

7. Reduce_Task LONGCHAR Not Null Is of App_Master for 

reduce task 

8. Logs LONGTEXT Not Null Is of App_Master for 

intermediate results 

9. OutputFile LONGTEXT Not Null Is of App_Master for final 

result 
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4.4 System Flowchart 

System flowchart for this system is shown in Figure 4.21. 

 

Figure 4.21: System flowchart for the new model 
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4.5 System Implementation 

System requirements for implementing the new model described features and necessary 

specifications required to run this application. Requirements for the new system are 

hardware and software specifications. 

4.5.1 Hardware Requirements 

Hardware requirements for setting up this new rack aware resource management 

application in Hadoop include: 

i. RAM size – minimum of 4GB 

ii. Hard disk size – minimum of 50GB 

iii. Processor – Intel Core 2 dual/quad/hex/octa or higher end 64bit processor 

with operating frequency of 2.5GHz or higher. 

iv. Graphic Adapter – NVIDIA 

4.5.2 Software Requirements 

Software requirements for the new system are; 

i. Java Development Kit (JDK) 1.6 or later version 

ii. Cygwin software – packages to install are Open ssl, Open ssh, tcp wrappers 

and diffutils. 

iii. Install Virtual Machine ware (VMware) 

iv. Windows SDK – a .NET framework Software Development Kit (SDK) for 

Microsoft. 

v. Maven Protocol Buffers Plugin – a tool that generate Java source files from 

.proto (protocol buffer definition). 

 

4.6 Program Development 

Program development deals with various tools, methods and procedures required for 

controlling the complexity of software development, management and its maintenance. 

This will be considered under choice of programming environment and justification for 

the language used. 
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4.6.1 Choice of Programming Environment 

Integrated Development Environment used for this system is NetBeans IDE. 

Programing language used is Java (Oracle JDK 1.7). Other supported environment used 

to run this application is Windows SDK, which is a .NET Framework Software 

Development Kit (SDK) from Microsoft that contains documentation, header files, 

libraries and tools required for developing this system. To successfully run this 

application on Windows, Maven Protocol Buffers Plugin, which is a tool that helps 

generate Java source files from .proto (protocol buffer definition) was used. Cygwin 

was also installed with packages like openssh, openssl, tcp wrappers and diffutils. 

4.6.2 Language Justification 

Java programming language was used for this system because Hadoop core architecture 

was also developed using Java. Hence, to modify the architecture so as to suit the 

design objectives for this application, Java language is best fit. Though there are IDEs 

for Java development, NetBeans IDE supports scripting language like PHP. It also 

supports Maven and is cross-platform that runs on Microsoft Windows, Mac OS X, 

Linux, Solaris and other platforms supporting a compatible JVM. Windows SDK was 

installed to help build windows native component (winutils.exe). Cygwin is a large 

collection of GNU and open source tools that provides functionality similar to Linux 

distribution on Windows. It is needed to run scripts supplied with Hadoop because they 

are all written for Linux platform. 

 

4.7 System Testing 

Thorough test plan and proper execution helps deliver quality software. Test plan act as 

a road-map for system testing within a project. It describes overall test strategy drawn 

up for testing components of a system. This section details test plan and test data used 

for the new system. 

4.7.1 Test Plan 

The test plan for this new model started with components test. Each component was 

tested to see if it meets its design objectives. All components were later coupled to form 

a whole system. This was done to simplify error localization and to ensure interleaving 
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of processes. The first component developed was Global Resource Manager. Its 

relationship with client on the local machine and cloud server used for storage were 

tested to ensure jobs are granted appropriate JobID. This process was the first test plan 

carried out as shown in Figure 4.22. 

 

Figure 4.22: Module and Unit Code Test(1) showing interaction between global 

resource manager, client on local machine and HDFS 

The other three components developed and tested are Rack Unit Resource Manager, 

Node Manager and Application Master. These three components work exactly like 

components in the existing system. Hence, they are all re-usable components picked 

from existing architecture. The interaction between these three components is described 

in Figure 4.23. 
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Figure 4.23: Module and Unit Code Test (2) showing interaction between Rack Unit 

Resource Manager, Node Manager and Application Master 

 

The novel ring architecture of rack unit resource managers was also tested to ascertain 

continuous execution of jobs in case any rack unit resource manager fails. This test 

process is shown in Figure 4.24. 

 

Figure 4.24: Module and Unit Code Test (3) showing interaction between Rack Unit 

Resource Managers 
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Figure 4.25 describe how the three module and unit code test were coupled and 

integration/acceptance test carried out to ensure that the whole model meets its design 

objectives. 

 

Figure 4.25: Whole system test plan 

4.7.2 Test Data 

One of the popular workload for Hadoop benchmark is WordCount. The workload 

helps count the occurrence of each word in a text file. The process is to see how 

efficient and fast this operation will be, so as to determine processing and response time 

possible for tasks run in Hadoop framework. For this model therefore, WordCount was 

used as evaluation metric to determine processing and response time between the new 

and existing system. Table 4.11 shows the text file used for this evaluation. It is 

important to note that, any text file can run on this application for WordCount 

MapReduce task. 
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Table 4.11: Test Data 

Women writers and readers have always had to work against the establishment. Aristotle, in his time, 
declared that the female is a female because she lacks certain qualities that the male, the supposed 
perfect being, has. St. Thomas Aquinas believed that a woman was the imperfect form of man. In pre-
Mendelian days, men regarded their sperm as the active seed which gave form to the waiting ovum of 
the woman which lacked identity till it received the male’s sperm. All these were established formations 
by the society that found themselves in some of the writings of the classical period. Throughout its long 
history, feminism has sought to disturb these established trends and complacent conventions of such 
cultures rooted in patriarchy. Although the word feminism may only have come into English usage in the 
1890s, women’s conscious struggles to resist patriarchy go much earlier than that. Feminism as we have 
it today started developing only in the 18

th
 century.  Hence, feminism, on a general note, is basically 

concerned with the struggle for the emancipation of women and the expression of issues regarding the 
ordeals of women in society. The early activities of feminism, which largely surrounded issues 
concerning suffrage, are commonly referred to as first wave feminism, which started in England. At this 
point, feminists like Mary Wollstonecraft and Virginia Woolf articulated what it meant to be a woman in 
the society and worked towards changing the limitations imposed upon women.  In the United States of 
America, feminists like Margaret Fullers in 1850 and Olive Schreiner in 1848 respectively, advocated 
women rights. Through the works of Virginia Woolf and Simone de Beauvoir, the first wave of feminism 
challenged the conventions of their days and paved way for the emergence of the second wave.  By the 
19

th
 century, second wave feminism began to build on the successes recorded by the first wave 

feminists.  This was when feminism was developed into theories and strategies aimed at giving the 
women a voice in the society and a place equal to that of men.  The efforts of the first and second wave 
feminists laid the foundation for the emergence of contemporary feminism. During the second wave, 
Michele Barrette, through her book, Women’s Oppression Today: Problems in Marxist Feminist Analysis, 
announced what is today known as Marxist Feminism. In Britain, this brand of feminism was already 
popular in the late 1960s and the 1970s. It sought to extend Marxism’s analysis of class struggles into 
the woman history of material and economic oppression, and especially, how the family and the 
woman’s domestic labour were constructed by and reproduced the sexual division of labour.  There was 
also Gynocriticism that was started by Elaine Showalter which emphasised how distinctive women 
writing was, saying that the women literary tradition differ from that of the men in the range of syntax, 
semantics and pragmatics since the woman is  physiologically different from the man. Hence, women 
have their own culture of writing in such a way that behind the writing, the gender could be recognised. 
The French feminist scholar Alice Jardine preferred to see that distinct nature of gender in the writing of 
women as Gynesis, which did not emphasise the gender of the writer but the feminisation of the text. 
That is, the feminine effect of the text, by its syntactic, semantic and pragmatic substances, made on 
the writing. Another French feminist, Monique Wittig, took a more radical stand, rejecting the use of 
the term “woman” because, in its socially constructed form, it would not include a lesbian, who is not a 
“woman” in the sense of sexuality. She thus preferred the term “Lesbian” because it suggests an un-
oppressed sexual identity and allows the woman to name and to redefine herself in sexuality and sexual 
roles. This gave rise to what is today known as lesbian feminism. Black writers and scholars living in the 
United States of America and Britain embarked on appropriating feminism to their own peculiar 
situation, resulting in what today is seen as Black/African feminism. In her book, In Search of Our 
Mother’s Gardens, Alice Walker deconstructs the racial sense inherent in the word feminism, 
substituting it with what she calls womanism, to replace black feminism. Given the peculiar demands of 
the society on the African woman, Walker thought that the African woman could not totally, as 
feminism demanded; rejects the man in her life. Womanism, therefore, advocates a room in which the 
woman and the man can co-habit. 
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4.7.3 Actual Test Result versus Expected Test Result 

Table 4.12 and Table 4.13 summarize actual and expected results obtained from 

module/unit code test and the whole system test plan carried out for this model. 

Table 4.12: Results from Components test 

Components Expected Result Actual Result 

Global Resource Manager It is expected that this 

component receive client‟s 

job request, grant JobID, 

retrieve input splits from 

HDFS and allocate job to 

appropriate RU_RM 

The component does all 

functions as it is expected. 

Rack Unit Resource 

Manager 

It is expected of this 

component to receive job 

from RM and contact Node 

Manager for job 

monitoring and execution. 

The component locates 

appropriate Node Manager 

with input splits for task 

execution. 

Node Manager  This component is 

expected to launch 

Application Master for job 

execution and to monitor 

job execution process. 

The component does just as 

it was expected. 

Application Master It is expected of this 

component to execute job 

by launching YARNChild 

which create mappers for 

each input split and 

subsequently reducers for 

each intermediate result. It 

is also expected that final 

result be stored in HDFS 

Application Master does all 

these functions through the 

help of RU_RM that 

releases resource containers 

for task execution. 

HDFS It is expected of this 

component to receive job 

Component does as 

expected. 
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resources from client‟s 

local machine, store 

location of input splits and 

job resources to be 

retrieved by RM for task 

execution on appropriate 

RU_RM. 

Name Node It is expected that this 

component stores list of 

data nodes and input splits 

for each job. 

Component does as 

expected by keeping 

metadata of each job input 

split. 

 

Table 4.13: Whole system test result 

Test Data Expected Result Actual Result 

Hadoopproject.txt Expected that the system 

counts each word in the 

text file and output the 

number of occurrence for 

each. Also expecting to 

know the processing and 

response time for the new 

system and the old system. 

System does as expected. 

Process and response time 

for new system is less 

compared to that of the 

existing system. 

 

4.7.4 Performance Evaluation 

This section evaluates the new model and the existing model for scalability and 

efficient resource management. Though there are other works (Albert et al., 2016; 

Konstantinos et al., 2018) carried out after Hadoop YARN was developed, their major 

focus was to guard again RM failure and not on scalability (ability to expand the cluster 

with more data nodes). Albert et al., 2016 and Konstantinos et al., 2018 architectures 

still have a centralized resource manager, which is scalability bottleneck. Also, Hadoop 

YARN is an open source framework, which has a standard benchmark workload called 



 127 

WordCount for testing scalability hence; the need to use this framework for evaluation 

test.  WordCount is a typical two-phased Hadoop workload which involves map task 

counting the frequency of individual word in a text file while the reduce task shuffles 

and sum up the number of times each word appears in the text. This shows a 

representation of a large subset of real-world MapReduce jobs that transforms data from 

one representation to another and further extracts a small amount of interesting data 

from these large datasets. To fairly capture the timestamp of each task, execution time 

for each block of a single task was recorded. This was done for both improved model 

and the existing model. Results of the total finished time are presented in a bar chart. 

Two different file sizes were used for this experiment, with finished time for each block 

of file recorded. 

Experiment 1:- Figure 4.26 shows results of WordCount operation with text file of 

30.5kB in size. 

 

 

 

 

 

 

 

 

Figure 4.26: Block partitions result of wordcount operation for improved and existing 

model with file size = 30.5kB 

 

Experiment 2:- The second experiment shows a larger file size of 92kB. Figure 4.27 

shows results of WordCount operation performed on this file. 
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Figure 4.27: Block partitions result of wordcount operation for improved and existing model with file size = 92kB 
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Discussion 

Two performance metrics were defined for this work; efficiency and average task-delay 

ratio. 

i. Efficiency:- Efficiency in this work represents the percentage of the ideal 

finished time (Tideal) to the actual finished time (Tactual) of a task. This metric 

helps quantify the average system utilization of the new and existing model. 

Efficiency  = (Tactual / Tideal) * 100%    eqn(4.1) 

Higher efficiency therefore, indicates less scheduling overhead hence; a 

better turnaround time. 

To obtain Tactual for this work, we run a task of file size = 6kB. Since this 

workload is contained in just 1block partition, it was assumed that no 

scheduling overhead is needed. Hence, finished time (which is 

approximately 3ms = 3000000000ns) forms Tactual for our work. 

 

Performance analysis for Experiment 1 

 Tideal for existing and new model are 23000000000ns and 22000000000ns 

respectively.  

Tactual for Exp.1 = 3000000000ns * number of blocks   eqn(4.2) 

Tactual = 3000000000ns * 6blocks = 18000000000ns 

 

Efficiency of existing model from eqn(4.1)  

=  18000000000ns/23000000000ns * 100% 

    = 0.783 * 100% 

    = 78.3% 

Efficiency of new model from eqn(4.1)  

=  18000000000ns/22000000000ns * 100% 

    = 0.818 * 100% 

    = 81.8% 

 

 

 

 

 



 130 

Performance analysis for Experiment 2 

 Tideal for existing and new model are 95000000000ns and 87000000000ns 

respectively.  

Tactual for Exp.2 = 3000000000ns * number of blocks    

Tactual = 3000000000ns * 16blocks = 48000000000ns 

Efficiency of existing model from eqn(4.1)  

=  48000000000ns/95000000000ns * 100% 

    = 0.505 * 100% 

    = 50.5% 

Efficiency of new model from eqn(4.1)  

=  48000000000ns/87000000000ns * 100% 

    = 0.552 * 100% 

    = 55.2% 

 

Performance evaluation for the two analyses above is represented in the bar 

chart in Figure 4.28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28: Percentage difference between the efficiency of existing and 

new model 
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ii. Average Task-Delay Ratio:- Average Task-Delay Ratio (rtd) for this work is 

computed as the normalized difference between average ideal task finished 

time (Titf) and actual task finished time (Tatf). This is represented by below. 

rtd  = (Titf - Tatf) / Tatf     eqn(4.3) 

Where 

  Titf  = Tideal / number of blocks  eqn(4.4) 

  Tatf = Tactual of a single block   eqn(4.5) 

 

This metric measured how fast the models can respond from a task‟s 

perspective. If rtd is small, we conclude that there is faster response time and 

lower scheduling overheads. 

 

Average Task-Delay Ratio performance analysis for Experiment 1 

From eqn(4.3), Existing Model 

 rtd  = [(23000000000ns/6) – 3000000000ns] / 3000000000ns 

  = (3833333333.3ns – 3000000000ns) / 3000000000ns 

  = 833333333.3ms / 3000000000ns 

  = 0.278ns 

 

From eqn(4.3), Improved Model 

 rtd  = [(22000000000ns/6) – 3000000000ns] / 3000000000ns 

  = (3666666666.7ns – 3000000000ns) / 3000000000ns 

  = 666666666.7ns / 3000000000ns 

  = 0.222ns 

 Average Task-Delay Ratio performance analysis for Experiment 2 

From eqn(4.3), Existing Model 

 rtd  = [(95000000000ns/16) – 3000000000ns] / 3000000000ns 

  = (5937500000ns – 3000000000ns) / 3000000000ns 

  = 2937500000ns / 3000000000ns 

  = 0.979ns 
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From eqn(4.3), Improved Model 

 rtd  = [(87000000000ns/16) – 3000000000ns] / 3000000000ns 

  = (543750000ns – 3000000000ns) / 3000000000ns 

  = 2437500000ns / 3000000000ns 

  = 0.813ns 

 

Average Task-Delay Ratio performance evaluation for the two experiments is 

shown in Figure 4.29. 

 

 

 

 

 

 

 

Figure 4.29: Average Task-Delay Ratio of existing and new model 

 

4.7.4. Limitation of the System 

The need to add more physical machines at the rack unit layer to serve as rack unit 

resource managers is the limitation of this system. With results obtained from the 

analysis of the existing and new system however, the benefits of this new system 

outweigh the cost involved in obtaining these machines. Moreover, with the novel ring 

architecture for rack unit resource managers adopted in this system, machines to be 

used can be inexpensive commodity computers. 
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4.8 System Conversion 

4.8.1 Changeover Procedures 

Four approaches for system changeover are possible. These four approaches; their 

descriptions, advantages, disadvantages and implications of using them are as follows; 

i. Direct Cut Over:- Is a direct approach where existing system is cut and 

overwrite by a new system. This approach immediately stops the old system 

to allow new system becomes operational. The approach is not expensive 

but has high risk of data loss with no option to revert to old system as 

backup. 

ii. Parallel Operation:- This allows for both old and new systems to run 

simultaneously for a specified period of time. The old system can only be 

terminated at a point where all stakeholders are satisfied with the new 

system. The approach has low risk of engagement and allows for backup in 

situation where the new system fails but, it is the most expensive changeover 

procedure. There is also, increased workload and delay in processing 

because users need to work on both systems. 

iii. Pilot Operation:- This approach implements new system at a selected 

location of the company. This location is referred to as pilot site. The old 

system will be allowed to run for the entire company (including the pilot 

site). At any point the new system proves successful at the pilot site, it is 

implemented in the rest of the company (usually using direct cut over 

method). The approach reduces risk of failure, it is less expensive than 

parallel and it is a safer method. 

iv. Phased Operation:- This approach implements new system in modules or 

stages. The approach is similar to pilot procedure but here, part of the 

system is provided to all users instead of the entire system released to some 

users. Though less expensive and limited risk of failure than parallel 

approach, it can cost more than pilot approach if the system involves a large 

number of separate phases. 
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4.8.2 Recommended Procedure 

From the four possible changeover procedures, it is clear that direct and parallel 

approach will not be suitable for our new model. This is because, Hadoop project is 

a very large project and drawback like high risk or high cost cannot be 

accommodated. Still, phased approach is not suitable for this work because, to 

achieve desired result and the purpose of comparison and analysis of both systems, 

implementing the new system in modules will not yield fruitful result. Pilot 

approach therefore, is the most suitable and recommended procedure for this 

system. Hadoop cluster in a particular geo-graphical location can be chosen to 

implement the new system and once the system is proved successful, other cluster 

centres can implement the system through direct cut over. This will reduce cost and 

risk of system failure. 

 

4.9  System Security 

Hadoop has evolved to address security concerns as it pertain authentication, 

authorization, accounting and data protection. It is been used securely and 

suffessfully today in sensitive financial service applications, private healthcare 

initiatives and range of other security-sensitive environments. Since this system will 

be part of the entire project with improvement on its resource management, key 

security issues as addressed in the old system will also be part of this system. The 

system provides two modes of authentication. First is the simple or pseudo 

authentication, which places trust in user‟s assertion about who they are. The second 

provides a fully secured cluster. Authorization in this system gives access privilege 

for user or system and accounting provides the ability to track resources used within 

the system. Two authorization mechanism put in place to secure this system are 

„Admin Panel‟ login access and „Cluster‟ login access. The „Admin Panel‟ login is 

as described in Figure 4.30. 
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Figure 4.30: Admin Panel access 

Figure 4.30 gives acess to the only the Admin of this system. The admin can add 

users who will gain access to the system. The Admin will also, be able to know 

number of files and blocks that has so far been uploaded in the cluster. This is 

shown in Figure 4.31. 

 

Figure 4.31: The Admin Dashboard 

The second level of authorization is at the cluster as shown in Figure 4.32. This 

allows a user to gain access to the cluster for MapReduce task. 
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Figure 4.32: Cluster login 

4.10 Training 

To launch this application, you will need to pass through all security checks as 

mentioned in the previous section. You can now click Central Machine to gain 

access to the cluster. The main menu shown in Figure 4.33 will be displayed. 

 

Figure 4.33: Main menu for Improved YARN 

On the left hand corner are functions/submenu for this application and on the 

right hand is information about the cluster metric. 
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To import a text file to be stored in HDFS, the Import File page displayed in 

Figure 4.34 is used. 

 

Figure 4.34: Import File page 

From Figure 4.34, the user will browse to locate text file (in his local machine) 

to be imported into the compute nodes. The text file is broken down into blocks 

of 6kB each with the last block partition saved as a block even if the block size 

is less than 6kB. 

To perform WordCount operation on any text file, the MapReduce function 

page as shown in Figure 4.35 is launched.  This function count each word stored 

in the virtual nodes and gives statistics of the total of each word in a text file.  

 

Figure 4.35: MapReduce page 



 138 

Figure 4.35 has two options (Improved YARN and the existing system called 

YARN) 

If you select Improved YARN, the system does the following 

1. You enter the application (text file) you want to process e.g. abstract.docx 

2. Click on WordCount  

If you select YARN, the system does the following 

1. You enter the application (text file) you want to process e.g. abstract.docx 

2. Click on WordCount 

 

Once  WordCount operation is completed, the output screen will be displayed as 

shown in Figure 4.36. 

 

Figure 4.36: Result of WordCount operation 

Figure 4.36 shows counts for each word. To see finished time for block 

partitions of this file will require the user to click on Logs. To also know the 

total number of blocks stored in cluster, user will need to click on NameNode. 

The output menu display result of WordCount operation in a file. 

 

4.11  Documentation 

The documentation for this system describes how you install and run the 

application. To install this application however, there are basic tools that need to be 

in place. 



 139 

1. JDK installation – you will need to install JDK 1.6 or later version of Java. JDK 

can be downloaded from http://www.oracle.com/technetwork/java/index.html 

2. Cygwin installation – First, you will need to download Cygwin setup from 

https://cygwin.com/install.html. To install, you click on setup from the folder 

you downloaded.  

3. The next is to download and install Windows SDK from 

https://developer.microsoft.com/en-us/windows/downloads Windows SDK 

provides the tools, compilers, headers and libraries needed to run the new 

system. 

4. Maven and Protocol Buffer will be the next tool to install. Install Maven 3.0 or 

later version and protocol buffer 2.5.0 into the directory c:/maven and 

c:/protobuff respectively. 

5. Next step will be to setup environment path for JAVA_HOME, M2_HOME (for 

Maven) and platform (x64 or win32 depending on your system architecture). 

Edit the path variable under system variables to add the following: 

c:/cygwin64/bin; c:/cygwin64/usr/sbin; c:/maven/bin; c:/protobuff. 

To setup environment variable for JAVA_HOME for instance, you right-click 

on „my computer‟ on your desktop, click „properties‟ and locate „advanced 

system settings‟ as shown in Figure 4.36. 

 

Figure 4.37: Environment Variable Setup 

http://www.oracle.com/technetwork/java/index.html
https://cygwin.com/install.html
https://developer.microsoft.com/en-us/windows/downloads
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Click on „New‟ button on „user variables‟ section. On the „variable name‟ space, 

type JAVA_HOME. On the „variable value‟ space, go to your „program file‟ 

from your „c – drive‟. Locate Java, then jdk. Copy the values on your URL bar 

and paste in the „variable value space.  

 

Figure 4.38: User Variable setup 

 

6. Once the basic tools described in step 1 – 5 has been successfully installed, you 

can now launch this new application. The procedure for this is as contained in 

section 4.10 of this work. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Summary 

Big data has brought in an era of data exploration and utilization with Hadoop 

MapReduce computational paradigm as its major enabler. Though great efforts through 

the implementation of Hadoop has made computation scale to tens of thousands 

commodity cluster processors, the centralized architecture of resource manager has 

adversely affected response time in large datacenters. Decentralizing the responsibilities 

of resource manager to address scalability issues of Hadoop for better response, 

processing, turnaround time and to eliminate single point of failure is therefore 

necessary; hence, this study. The aim of this research was to develop a model of an 

improved scalable resource management system for Hadoop YARN. The objectives 

were to; decentralize the responsibilities of Resource Manager (RM) by creating 

Rack_Unit Resource Manager (RU_RM) layer; configure RU_RM layer to ensure that 

each RU_RM controls resource requests for compute nodes within its rack; develop a 

ring architecture in RU_RM layer to guard against failure; and to carry out a 

performance evaluation test between the developed model and existing model.  

Object Modeling Technique (OMT) methodology was adopted with parallelization and 

push-based techniques used to decentralize the responsibilities of RM. Java Remote 

Method Invocation was implemented to maintain resource requests control within 

racks. A self-stabilizing Peer-to-Peer (P2P) topology was used in the RU_RM layer so 

that, if one RU_RM fails, the unit preceding/succeeding it takes over the responsibilities 

of compute nodes in that rack. Hadoop benchmark workload called WordCount was 

used to compare the efficiency and average task-delay ratio of the developed and 

existing models. 

Decentralized RM showed that cluster average execution times of the developed model 

for file sizes 30.5kB and 92kB were less compared to execution times of the existing 

model. 12kB containing 2 blocks from file size 30.5kB and 30kB containing 5 blocks 

from file size 92kB were independently computed on two RU_RMs for a cluster 

configuration of three RU_RMs. The remaining 6.5kB containing 2 blocks and 32kB 

containing 6 blocks were computed on the third RU_RM. Ring architecture deployed 
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showed that at-least one (RU_RM ≥ 1) RU_RM was available during cluster execution. 

Efficiency of new model for file sizes 30.5kB and 92kB showed a difference of 3.5% 

and 4.7%, respectively better than the existing model. The new model had lower 

average task-delay ratio of 0.056ns and 0.166ns for file sizes 30.5kB and 92kB, 

respectively compared to the existing model.  

 

5.2 Conclusion 

A model of improved scalable resource management system for Hadoop Yet Another 

Resource Negotiator (YARN) is an improvement over the existing Hadoop YARN 

model. The new model decouples the responsibilities of resource manager in YARN by 

providing another layer called RU_RM layer. The layer forms a peer-to-peer 

architecture to guard against failure. This new model was developed and tested in Java 

programming language. Hadoop benchmark workload called WordCount was used for 

comparing existing and new model. Finished time of block partitions recorded in log 

file for a single text file was used as basis for comparing the models. Results obtained 

from computation of efficiency and average task-delay ratio showed that as file size 

increases, the developed model performed better than existing model. Since Hadoop 

was developed for big data analytics, this work is recommended as a better solution for 

a scalable and efficient resource management framework. 

 

5.3 Recommendation 

5.3.1 Application Areas 

This new model can be used in various big data activities. It can be used to configure, 

manage and orchestrate data motion, pipeline processing, disaster recovery and data 

retention workflows. The system can be used in applications like yahoo weather, 

facebook photo gallery and google search index. The system can also help analyse life-

threatening risks. This is possible where patient‟s medical history together with series 

of test and results are analysed with the help of big data tools. Identifying warning signs 

of data security breaches is another area of application. Before data breaches occur, 

there are typical early warning signs such as unusual server pings, suspicious emails or 

other forms of communication that could suggest internal collusion. With ability to 
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mine and correlate people, business and machine-generated data all in one seamless 

analytic environment, the new system can help provide complete picture of who is 

doing what and when. 

 

5.3.2 Suggestions for Further Research 

Further design issue that can be looked at in YARN framework is the centralized 

metadata management of the framework. HDFS is the default distributed file system 

responsible for keeping all files/blocks metadata in a centralized daemon called Name 

Node. This daemon monitors all compute nodes through its metadata information. With 

the rate at which this framework is growing, the number of data files will increase 

significantly that will lead to a much higher demands of memory footprints and 

metadata access ratio. This will obviously overwhelm the centralized metadata 

management. Things may become worst for abundant small data files. To avoid this 

situation therefore, further research should be carried out to have efficient metadata 

management in this framework. 

Another area of interest is data replica system for rack failure in Hadoop framework. 

Anytime heartbeat communication stops between NameNode and Data Node, it is 

presumed that such Data Node is dead and any data its holding gone as well. Previous 

block reports received from the said Data Node will help the NameNode to know which 

copies of blocks died along the with the node. Using rack-aware policy, the NameNode 

will re-replicate those blocks on other data nodes. The limitation with this however is, 

when an entire rack of servers falls off the network due to rack switch failure or power 

failure, it then means that the NameNode will instruct the remaining nodes in the cluster 

to re-replicate all the data blocks lost in that rack. This process may mean that hundreds 

of terabytes of data will need to begin traversing the network.  

 

5.4 Contribution to Knowledge 

Decentralizing the global control of resource manager in YARN framework by 

providing Rack_Unit Resource Manager (RU_RM) layer and the peer-to-peer ring 



 144 

architecture designed to guide against RU_RM failure has added positively to the 

existing knowledge. 

i. There is improved scalability:- With the breaking down of Resource 

Manager‟s responsibilities into Rack Unit Resource Manager (RU_RM), 

more nodes can easily be added to each rack without predicting future 

scalability bottleneck as observed with the existing framework. 

ii. Easy fault/failure detection:- Isolation of slave nodes using rack aware 

technique will help administrators locate faulty nodes easily. 

iii. Fast execution/response to client job:- Since each RU_RM now handles the 

responsibility of allocating and monitoring resources in a rack, 

response/execution time for each job becomes faster compared to when a 

central Resource Manager has to respond to each job needs in the cluster. 

iv. Easy Recovery:- With relaxed-ring topology built with this framework, if 

any Rack Unit Resource Manager fails, the predecessor or successor can 

continue with the management of compute nodes in that rack until such 

RU_RM recovers from failure. This process will ensure that jobs do not halt 

at a point where any of the daemons (central resource manager or rack unit 

resource manager) fails. 
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APPENDIX A 

PROGRAM LISTING 

 
package org.apache.hadoop.yarn.server.resourcemanager; 
 
 
import java.io.IOException; 
import java.util.concurrent.BlockingQueue; 
import java.util.concurrent.LinkedBlockingQueue; 
 
import org.apache.commons.logging.Log; 
import org.apache.commons.logging.LogFactory; 
import org.apache.hadoop.classification.InterfaceAudience.Private; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.metrics2.lib.DefaultMetricsSystem; 
import org.apache.hadoop.security.SecurityUtil; 
import org.apache.hadoop.util.ReflectionUtils; 
import org.apache.hadoop.util.StringUtils; 
import org.apache.hadoop.yarn.YarnException; 
import org.apache.hadoop.yarn.api.records.ApplicationAttemptId; 
import org.apache.hadoop.yarn.api.records.ApplicationId; 
import org.apache.hadoop.yarn.api.records.NodeId; 
import org.apache.hadoop.yarn.conf.YarnConfiguration; 
import org.apache.hadoop.yarn.event.AsyncDispatcher; 
import org.apache.hadoop.yarn.event.Dispatcher; 
import org.apache.hadoop.yarn.event.EventHandler; 
import org.apache.hadoop.yarn.security.ApplicationTokenSecretManager; 
import org.apache.hadoop.yarn.security.client.ClientToAMSecretManager; 
import org.apache.hadoop.yarn.server.RMDelegationTokenSecretManager; 
import org.apache.hadoop.yarn.server.resourcemanager.amlauncher.AMLauncherEventType; 
import org.apache.hadoop.yarn.server.resourcemanager.amlauncher.ApplicationMasterLauncher; 
import org.apache.hadoop.yarn.server.resourcemanager.recovery.Recoverable; 
import org.apache.hadoop.yarn.server.resourcemanager.recovery.Store; 
import org.apache.hadoop.yarn.server.resourcemanager.recovery.Store.RMState; 
import org.apache.hadoop.yarn.server.resourcemanager.recovery.StoreFactory; 
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMApp; 
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppEvent; 
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppEventType; 
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.AMLivelinessMonitor; 
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttempt; 
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptEvent; 
import 
org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptEventType; 
import org.apache.hadoop.yarn.server.resourcemanager.rmcontainer.ContainerAllocationExpirer; 
import org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNode; 
import org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNodeEvent; 
import org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNodeEventType; 
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.ResourceScheduler; 
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.event.SchedulerEvent; 
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.event.SchedulerEventType; 
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.fifo.FifoScheduler; 
import org.apache.hadoop.yarn.server.resourcemanager.security.DelegationTokenRenewer; 
import org.apache.hadoop.yarn.server.resourcemanager.webapp.RMWebApp; 
import org.apache.hadoop.yarn.server.security.ApplicationACLsManager; 
import org.apache.hadoop.yarn.server.security.ContainerTokenSecretManager; 
import org.apache.hadoop.yarn.server.webproxy.AppReportFetcher; 
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import org.apache.hadoop.yarn.server.webproxy.ProxyUriUtils; 
import org.apache.hadoop.yarn.server.webproxy.WebAppProxy; 
import org.apache.hadoop.yarn.server.webproxy.WebAppProxyServlet; 
import org.apache.hadoop.yarn.service.AbstractService; 
import org.apache.hadoop.yarn.service.CompositeService; 
import org.apache.hadoop.yarn.service.Service; 
import org.apache.hadoop.yarn.webapp.WebApp; 
import org.apache.hadoop.yarn.webapp.WebApps; 
import org.apache.hadoop.yarn.webapp.WebApps.Builder; 
 
/** 
 * The ResourceManager is the main class that is a set of components. 
 * 
 */ 
public class ResourceManager extends CompositeService implements Recoverable { 
  private static final Log LOG = LogFactory.getLog(ResourceManager.class); 
  public static final long clusterTimeStamp = System.currentTimeMillis(); 
 
  protected ClientToAMSecretManager clientToAMSecretManager = 
      new ClientToAMSecretManager(); 
   
  protected ContainerTokenSecretManager containerTokenSecretManager = 
      new ContainerTokenSecretManager(); 
 
  protected ApplicationTokenSecretManager appTokenSecretManager = 
      new ApplicationTokenSecretManager(); 
 
  private Dispatcher rmDispatcher; 
 
  protected ResourceScheduler scheduler; 
  private ClientRMService clientRM; 
  protected ApplicationMasterService masterService; 
  private ApplicationMasterLauncher applicationMasterLauncher; 
  private AdminService adminService; 
  private ContainerAllocationExpirer containerAllocationExpirer; 
  protected NMLivelinessMonitor nmLivelinessMonitor; 
  protected NodesListManager nodesListManager; 
  private EventHandler<SchedulerEvent> schedulerDispatcher; 
  protected RMAppManager rmAppManager; 
  protected ApplicationACLsManager applicationACLsManager; 
  protected RMDelegationTokenSecretManager rmDTSecretManager; 
  private WebApp webApp; 
  protected RMContext rmContext; 
  private final Store store; 
  protected ResourceTrackerService resourceTracker; 
 
  private Configuration conf; 
 
  public ResourceManager(Store store) { 
    super("ResourceManager"); 
    this.store = store; 
    this.nodesListManager = new NodesListManager(); 
  } 
   
  public RMContext getRMContext() { 
    return this.rmContext; 
  } 
   
  @Override 
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  public synchronized void init(Configuration conf) { 
 
    this.conf = conf; 
 
    this.rmDispatcher = createDispatcher(); 
    addIfService(this.rmDispatcher); 
 
    this.containerAllocationExpirer = new ContainerAllocationExpirer( 
        this.rmDispatcher); 
    addService(this.containerAllocationExpirer); 
 
    AMLivelinessMonitor amLivelinessMonitor = createAMLivelinessMonitor(); 
    addService(amLivelinessMonitor); 
 
    DelegationTokenRenewer tokenRenewer = createDelegationTokenRenewer(); 
    addService(tokenRenewer); 
     
    this.rmContext = new RMContextImpl(this.store, this.rmDispatcher, 
        this.containerAllocationExpirer, amLivelinessMonitor, tokenRenewer); 
 
    addService(nodesListManager); 
 
    // Initialize the scheduler 
    this.scheduler = createScheduler(); 
    this.schedulerDispatcher = createSchedulerEventDispatcher(); 
    addIfService(this.schedulerDispatcher); 
    this.rmDispatcher.register(SchedulerEventType.class, 
        this.schedulerDispatcher); 
 
    // Register event handler for RmAppEvents 
    this.rmDispatcher.register(RMAppEventType.class, 
        new ApplicationEventDispatcher(this.rmContext)); 
 
    // Register event handler for RmAppAttemptEvents 
    this.rmDispatcher.register(RMAppAttemptEventType.class, 
        new ApplicationAttemptEventDispatcher(this.rmContext)); 
 
    // Register event handler for RmNodes 
    this.rmDispatcher.register(RMNodeEventType.class, 
        new NodeEventDispatcher(this.rmContext)); 
 
    //TODO change this to be random 
    this.appTokenSecretManager.setMasterKey(ApplicationTokenSecretManager 
        .createSecretKey("Dummy".getBytes())); 
 
    this.nmLivelinessMonitor = createNMLivelinessMonitor(); 
    addService(this.nmLivelinessMonitor); 
 
    this.resourceTracker = createResourceTrackerService(); 
    addService(resourceTracker); 
   
    try { 
      this.scheduler.reinitialize(conf, 
          this.containerTokenSecretManager, this.rmContext); 
    } catch (IOException ioe) { 
      throw new RuntimeException("Failed to initialize scheduler", ioe); 
    } 
 
    masterService = createApplicationMasterService(); 
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    addService(masterService) ; 
 
    this.applicationACLsManager = new ApplicationACLsManager(conf); 
 
    this.rmAppManager = createRMAppManager(); 
    // Register event handler for RMAppManagerEvents 
    this.rmDispatcher.register(RMAppManagerEventType.class, 
        this.rmAppManager); 
    this.rmDTSecretManager = createRMDelegationTokenSecretManager(); 
    clientRM = createClientRMService(); 
    addService(clientRM); 
     
    adminService = createAdminService(clientRM, masterService, resourceTracker); 
    addService(adminService); 
 
    this.applicationMasterLauncher = createAMLauncher(); 
    this.rmDispatcher.register(AMLauncherEventType.class,  
        this.applicationMasterLauncher); 
 
    addService(applicationMasterLauncher); 
 
    new RMNMInfo(this.rmContext, this.scheduler); 
 
    super.init(conf); 
  } 
 
  protected EventHandler<SchedulerEvent> createSchedulerEventDispatcher() { 
    return new SchedulerEventDispatcher(this.scheduler); 
  } 
 
  protected Dispatcher createDispatcher() { 
    return new AsyncDispatcher(); 
  } 
 
  protected void addIfService(Object object) { 
    if (object instanceof Service) { 
      addService((Service) object); 
    } 
  } 
 
  protected ResourceScheduler createScheduler() { 
    return ReflectionUtils.newInstance(this.conf.getClass( 
        YarnConfiguration.RM_SCHEDULER, FifoScheduler.class, 
        ResourceScheduler.class), this.conf); 
  } 
 
  protected ApplicationMasterLauncher createAMLauncher() { 
    return new ApplicationMasterLauncher( 
        this.appTokenSecretManager, this.clientToAMSecretManager, 
        this.rmContext); 
  } 
 
  private NMLivelinessMonitor createNMLivelinessMonitor() { 
    return new NMLivelinessMonitor(this.rmContext 
        .getDispatcher()); 
  } 
 
  protected AMLivelinessMonitor createAMLivelinessMonitor() { 
    return new AMLivelinessMonitor(this.rmDispatcher); 
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  } 
   
  protected DelegationTokenRenewer createDelegationTokenRenewer() { 
    return new DelegationTokenRenewer(); 
  } 
 
  protected RMAppManager createRMAppManager() { 
    return new RMAppManager(this.rmContext, this.clientToAMSecretManager, 
        this.scheduler, this.masterService, this.applicationACLsManager, 
        this.conf); 
  } 
 
  @Private 
  public static class SchedulerEventDispatcher extends AbstractService 
      implements EventHandler<SchedulerEvent> { 
 
    private final ResourceScheduler scheduler; 
    private final BlockingQueue<SchedulerEvent> eventQueue = 
      new LinkedBlockingQueue<SchedulerEvent>(); 
    private final Thread eventProcessor; 
 
    public SchedulerEventDispatcher(ResourceScheduler scheduler) { 
      super(SchedulerEventDispatcher.class.getName()); 
      this.scheduler = scheduler; 
      this.eventProcessor = new Thread(new EventProcessor()); 
      this.eventProcessor.setName("ResourceManager Event Processor"); 
    } 
 
    @Override 
    public synchronized void start() { 
      this.eventProcessor.start(); 
      super.start(); 
    } 
 
    private final class EventProcessor implements Runnable { 
      @Override 
      public void run() { 
 
        SchedulerEvent event; 
 
        while (!Thread.currentThread().isInterrupted()) { 
          try { 
            event = eventQueue.take(); 
          } catch (InterruptedException e) { 
            LOG.error("Returning, interrupted : " + e); 
            return; // TODO: Kill RM. 
          } 
 
          try { 
            scheduler.handle(event); 
          } catch (Throwable t) { 
            LOG.error("Error in handling event type " + event.getType() 
                + " to the scheduler", t); 
            return; // TODO: Kill RM. 
          } 
        } 
      } 
    } 
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    @Override 
    public synchronized void stop() { 
      this.eventProcessor.interrupt(); 
      try { 
        this.eventProcessor.join(); 
      } catch (InterruptedException e) { 
        throw new YarnException(e); 
      } 
      super.stop(); 
    } 
 
    @Override 
    public void handle(SchedulerEvent event) { 
      try { 
        int qSize = eventQueue.size(); 
        if (qSize !=0 && qSize %1000 == 0) { 
          LOG.info("Size of scheduler event-queue is " + qSize); 
        } 
        int remCapacity = eventQueue.remainingCapacity(); 
        if (remCapacity < 1000) { 
          LOG.info("Very low remaining capacity on scheduler event queue: " 
              + remCapacity); 
        } 
        this.eventQueue.put(event); 
      } catch (InterruptedException e) { 
        throw new YarnException(e); 
      } 
    } 
  } 
 
  @Private 
  public static final class ApplicationEventDispatcher implements 
      EventHandler<RMAppEvent> { 
 
    private final RMContext rmContext; 
 
    public ApplicationEventDispatcher(RMContext rmContext) { 
      this.rmContext = rmContext; 
    } 
 
    @Override 
    public void handle(RMAppEvent event) { 
      ApplicationId appID = event.getApplicationId(); 
      RMApp rmApp = this.rmContext.getRMApps().get(appID); 
      if (rmApp != null) { 
        try { 
          rmApp.handle(event); 
        } catch (Throwable t) { 
          LOG.error("Error in handling event type " + event.getType() 
              + " for application " + appID, t); 
        } 
      } 
    } 
  } 
 
  @Private 
  public static final class ApplicationAttemptEventDispatcher implements 
      EventHandler<RMAppAttemptEvent> { 
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    private final RMContext rmContext; 
 
    public ApplicationAttemptEventDispatcher(RMContext rmContext) { 
      this.rmContext = rmContext; 
    } 
 
    @Override 
    public void handle(RMAppAttemptEvent event) { 
      ApplicationAttemptId appAttemptID = event.getApplicationAttemptId(); 
      ApplicationId appAttemptId = appAttemptID.getApplicationId(); 
      RMApp rmApp = this.rmContext.getRMApps().get(appAttemptId); 
      if (rmApp != null) { 
        RMAppAttempt rmAppAttempt = rmApp.getRMAppAttempt(appAttemptID); 
        if (rmAppAttempt != null) { 
          try { 
            rmAppAttempt.handle(event); 
          } catch (Throwable t) { 
            LOG.error("Error in handling event type " + event.getType() 
                + " for applicationAttempt " + appAttemptId, t); 
          } 
        } 
      } 
    } 
  } 
 
  @Private 
  public static final class NodeEventDispatcher implements 
      EventHandler<RMNodeEvent> { 
 
    private final RMContext rmContext; 
 
    public NodeEventDispatcher(RMContext rmContext) { 
      this.rmContext = rmContext; 
    } 
 
    @Override 
    public void handle(RMNodeEvent event) { 
      NodeId nodeId = event.getNodeId(); 
      RMNode node = this.rmContext.getRMNodes().get(nodeId); 
      if (node != null) { 
        try { 
          ((EventHandler<RMNodeEvent>) node).handle(event); 
        } catch (Throwable t) { 
          LOG.error("Error in handling event type " + event.getType() 
              + " for node " + nodeId, t); 
        } 
      } 
    } 
  } 
 
  protected void startWepApp() { 
    Builder<ApplicationMasterService> builder =  
      WebApps.$for("cluster", ApplicationMasterService.class, masterService, "ws").at( 
          this.conf.get(YarnConfiguration.RM_WEBAPP_ADDRESS, 
          YarnConfiguration.DEFAULT_RM_WEBAPP_ADDRESS));  
    if(YarnConfiguration.getRMWebAppHostAndPort(conf). 
        equals(YarnConfiguration.getProxyHostAndPort(conf))) { 
      AppReportFetcher fetcher = new AppReportFetcher(conf, getClientRMService()); 
      builder.withServlet(ProxyUriUtils.PROXY_SERVLET_NAME,  
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          ProxyUriUtils.PROXY_PATH_SPEC, WebAppProxyServlet.class); 
      builder.withAttribute(WebAppProxy.FETCHER_ATTRIBUTE, fetcher); 
    } 
    webApp = builder.start(new RMWebApp(this)); 
  } 
 
  @Override 
  public void start() { 
    try { 
      doSecureLogin(); 
    } catch(IOException ie) { 
      throw new YarnException("Failed to login", ie); 
    } 
 
    startWepApp(); 
    DefaultMetricsSystem.initialize("ResourceManager"); 
    try { 
      rmDTSecretManager.startThreads(); 
    } catch(IOException ie) { 
      throw new YarnException("Failed to start secret manager threads", ie); 
    } 
     
    super.start(); 
 
    /*synchronized(shutdown) { 
      try { 
        while(!shutdown.get()) { 
          shutdown.wait(); 
        } 
      } catch(InterruptedException ie) { 
        LOG.info("Interrupted while waiting", ie); 
      } 
    }*/ 
  } 
   
  protected void doSecureLogin() throws IOException { 
    SecurityUtil.login(this.conf, YarnConfiguration.RM_KEYTAB, 
        YarnConfiguration.RM_PRINCIPAL); 
  } 
 
  @Override 
  public void stop() { 
    if (webApp != null) { 
      webApp.stop(); 
    } 
    rmDTSecretManager.stopThreads(); 
 
    /*synchronized(shutdown) { 
      shutdown.set(true); 
      shutdown.notifyAll(); 
    }*/ 
 
    DefaultMetricsSystem.shutdown(); 
 
    super.stop(); 
  } 
   
  protected ResourceTrackerService createResourceTrackerService() { 
    return new ResourceTrackerService(this.rmContext, this.nodesListManager, 
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        this.nmLivelinessMonitor, this.containerTokenSecretManager); 
  } 
 
  protected RMDelegationTokenSecretManager 
               createRMDelegationTokenSecretManager() { 
    long secretKeyInterval =  
        conf.getLong(YarnConfiguration.DELEGATION_KEY_UPDATE_INTERVAL_KEY,  
            YarnConfiguration.DELEGATION_KEY_UPDATE_INTERVAL_DEFAULT); 
    long tokenMaxLifetime = 
        conf.getLong(YarnConfiguration.DELEGATION_TOKEN_MAX_LIFETIME_KEY, 
            YarnConfiguration.DELEGATION_TOKEN_MAX_LIFETIME_DEFAULT); 
    long tokenRenewInterval = 
        conf.getLong(YarnConfiguration.DELEGATION_TOKEN_RENEW_INTERVAL_KEY,  
            YarnConfiguration.DELEGATION_TOKEN_RENEW_INTERVAL_DEFAULT); 
 
    return new RMDelegationTokenSecretManager(secretKeyInterval,  
        tokenMaxLifetime, tokenRenewInterval, 3600000); 
  } 
 
  protected ClientRMService createClientRMService() { 
    return new ClientRMService(this.rmContext, scheduler, this.rmAppManager, 
        this.applicationACLsManager, this.rmDTSecretManager); 
  } 
 
  protected ApplicationMasterService createApplicationMasterService() { 
    return new ApplicationMasterService(this.rmContext, 
        this.appTokenSecretManager, scheduler); 
  } 
   
 
  protected AdminService createAdminService( 
      ClientRMService clientRMService,  
      ApplicationMasterService applicationMasterService, 
      ResourceTrackerService resourceTrackerService) { 
    return new AdminService(this.conf, scheduler, rmContext, 
        this.nodesListManager, clientRMService, applicationMasterService, 
        resourceTrackerService); 
  } 
 
  @Private 
  public ClientRMService getClientRMService() { 
    return this.clientRM; 
  } 
   
  /** 
   * return the scheduler. 
   * @return the scheduler for the Resource Manager. 
   */ 
  @Private 
  public ResourceScheduler getResourceScheduler() { 
    return this.scheduler; 
  } 
 
  /** 
   * return the resource tracking component. 
   * @return the resource tracking component. 
   */ 
  @Private 
  public ResourceTrackerService getResourceTrackerService() { 
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    return this.resourceTracker; 
  } 
 
  @Private 
  public ApplicationMasterService getApplicationMasterService() { 
    return this.masterService; 
  } 
 
  @Private 
  public ApplicationACLsManager getApplicationACLsManager() { 
    return this.applicationACLsManager; 
  } 
 
  @Override 
  public void recover(RMState state) throws Exception { 
    resourceTracker.recover(state); 
    scheduler.recover(state); 
  } 
   
  public static void main(String argv[]) { 
    StringUtils.startupShutdownMessage(ResourceManager.class, argv, LOG); 
    try { 
      Configuration conf = new YarnConfiguration(); 
      Store store =  StoreFactory.getStore(conf); 
      ResourceManager resourceManager = new ResourceManager(store); 
      Runtime.getRuntime().addShutdownHook( 
          new CompositeServiceShutdownHook(resourceManager)); 
      resourceManager.init(conf); 
      //resourceManager.recover(store.restore()); 
      //store.doneWithRecovery(); 
      resourceManager.start(); 
    } catch (Throwable t) { 
      LOG.fatal("Error starting ResourceManager", t); 
      System.exit(-1); 
    } 
  } 
} 
 
 
/* 
 * To change this license header, choose License Headers in Project Properties. 
 * To change this template file, choose Tools | Templates 
 * and open the template in the editor. 
 */ 
package Database; 
 
import Model.Block; 
import Model.Log; 
import com.mysql.jdbc.CommunicationsException; 
import java.math.BigInteger; 
import java.sql.Connection; 
import java.sql.DriverManager; 
import java.sql.PreparedStatement; 
import java.sql.ResultSet; 
import java.sql.SQLException; 
import java.sql.Statement; 
import java.text.DecimalFormat; 
import java.util.ArrayList; 
import java.util.Arrays; 
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import java.util.HashMap; 
import java.util.List; 
import java.util.Map; 
import javax.swing.JOptionPane; 
 
/** 
 * 
 * @author user 
 */ 
public class DatabaseHelper { 
    private static final String classname = "com.mysql.jdbc.Driver"; 
    private static final String url = "jdbc:mysql://localhost:3306/improvedyarndata"; 
    private static final String username = "root"; 
    private static final String password = ""; 
  
    private static final String BLOCK = "blocks"; 
     
     
    private final String blockTable = "create table if not exists "+BLOCK+" (ID int auto_increment not 
null primary key, virtualmachine varchar(100), filename varchar(100), filecontent LONGTEXT, size 
varchar(20), file varchar(100), username varchar(100))"; 
     
    private Connection connection; 
     
    public DatabaseHelper(String user) 
    { 
        try{ 
            Class.forName(classname); 
            //creating database file if not exist 
            connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/mysql", 
username, password); 
            PreparedStatement pst = connection.prepareStatement("create database if not exists 
"+user); 
            pst.execute(); 
            pst.close(); 
 
            connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/"+user, 
username, password); 
            Statement stmt = connection.createStatement(); 
            stmt.execute(blockTable); 
 
            stmt.close(); 
             
        }catch(ClassNotFoundException ex) 
        { 
            ex.printStackTrace(); 
            JOptionPane.showMessageDialog(null, ex); 
        }catch(SQLException sq) 
        {    
            sq.printStackTrace(); 
            if(sq instanceof CommunicationsException) 
                JOptionPane.showMessageDialog(null, "Connection lost"); 
            else 
                JOptionPane.showMessageDialog(null, sq); 
        } 
    } 
     
     
    public void addBlock(Block block) 
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    { 
        //String sql = "insert into "+block.getVirtualMachine()+"(virtualmachine, filename, filecontent, 
size, file, username) values('"+block.getVirtualMachine()+"', '"+block.getFilename()+"', 
'"+block.getFilecontent()+"', '"+block.getSize()+"', '"+block.getFile()+"', 
'"+block.getUsername()+"')"; 
        String sql2 = "insert into "+BLOCK+"(virtualmachine, filename, filecontent, size, file, username) 
values('"+block.getVirtualMachine()+"', '"+block.getFilename()+"', '"+block.getFilecontent()+"', 
'"+block.getSize()+"', '"+block.getFile()+"', '"+block.getUsername()+"')"; 
         
        try{ 
            Statement stmt = connection.createStatement(); 
//            stmt.executeUpdate(sql); 
            stmt.executeUpdate(sql2); 
            stmt.close(); 
            //JOptionPane.showMessageDialog(null, "New sales added"); 
        }catch(SQLException sq) 
        { 
            sq.printStackTrace(); 
        } 
    } 
     
    public boolean isBlock(Block block){ 
        String sql = "select * from "+BLOCK+" where filename = '"+block.getFilename()+"' AND file = 
'"+block.getFile()+"' AND username = '"+block.getUsername()+"'"; 
        try{ 
            Statement stmt = connection.createStatement(); 
            ResultSet rs = stmt.executeQuery(sql); 
            if(rs.next()){ 
                //if(us.equalsIgnoreCase(rs.getString("username")) || 
username.equalsIgnoreCase("email")) 
                    return true; 
            } 
            rs.close(); 
            stmt.close(); 
        }catch(SQLException sq) 
        { 
            sq.printStackTrace(); 
        } 
        return false; 
    } 
     
    public int getNumberOfBlocks(String machine, String username, String filename){ 
        String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine = 
'"+machine+"' and file = '"+filename+"'"; 
        int total = 0; 
        try{ 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while(rs.next()){ 
                 
                total = total + 1; 
            } 
        }catch(SQLException sq){ 
            sq.printStackTrace(); 
        } 
        return total; 
    } 
     
    public int getNumberOfBlocks(String machine, String username){ 
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        String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine = 
'"+machine+"'"; 
        int total = 0; 
        try{ 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while(rs.next()){ 
                 
                total = total + 1; 
            } 
        }catch(SQLException sq){ 
            sq.printStackTrace(); 
        } 
        return total; 
    } 
     
    public long getBytesCount(String username){ 
        String sql = "select * from "+BLOCK+" where username = '"+username+"'"; 
        long total = 0; 
        try{ 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while(rs.next()){ 
                total += Long.parseLong(rs.getString("size")); 
            } 
        }catch(SQLException sq){ 
            sq.printStackTrace(); 
        } 
        return total; 
    } 
     
    public long getBytesCount(String file, String username){ 
        String sql = "select * from "+BLOCK+" where username = '"+username+"' AND file = '"+file+"'"; 
        long total = 0; 
        try{ 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while(rs.next()){ 
                total += Long.parseLong(rs.getString("size")); 
            } 
        }catch(SQLException sq){ 
            sq.printStackTrace(); 
        } 
        return total; 
    } 
     
    public String getFilecontent(String filename, String username){ 
        String content = ""; 
        String sql = "select * from "+BLOCK+" where username = '"+username+"' AND filename = 
'"+filename+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                content = rs.getString("filecontent"); 
                break; 
            } 
            rs.close(); 
            st.close(); 
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        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return content; 
    } 
     
     
    public List<String> getServernames(String username){ 
        List<String> servernameList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where username = '"+username+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                servernameList.add(rs.getString("virtualmachine")); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return servernameList; 
    } 
     
    public List<String> getNames(String username){ 
        List<String> nameList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where username = '"+username+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                nameList.add(rs.getString("filename")); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return nameList; 
    } 
     
    public List<byte[]> getBlock(String username){ 
        List<byte[]> blockList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where username = '"+username+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                blockList.add(rs.getString("filecontent").getBytes()); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return blockList; 
    } 
     
    public List<Block> getBlock(String machine, String username){ 
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        List<Block> blockList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine = 
'"+machine+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                Block block = new Block(rs.getString("virtualmachine"), rs.getString("filename"), 
rs.getString("filecontent"), rs.getString("size"), rs.getString ("file"), rs.getString ("username")); 
                blockList.add(block); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return blockList; 
    } 
     
    public Block getBlockObj(String machine, String username, String filename){ 
        Block block = new Block(); 
        String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine = 
'"+machine+"' and filename = '"+filename+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                block.setVirtualMachine(rs.getString("virtualmachine")); 
                block.setFilename(rs.getString("filename")); 
                block.setFilecontent(rs.getString("filecontent")); 
                block.setSize(rs.getString("size")); 
                block.setFile(rs.getString ("file")); 
                block.setUsername(rs.getString ("username")); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return block; 
    } 
     
    public List<String> getBlockFilesNames(String machine, String username){ 
        List<String> blockList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine = 
'"+machine+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                blockList.add(rs.getString("filename")); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return blockList; 
    } 
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    private List<byte[]> listDataFromBytes(byte[] source){ 
        int chunksize = 6144; 
        List<byte[]> result = new ArrayList<byte[]>(); 
        int start = 0; 
        while(start < source.length){ 
            int end = Math.min(source.length, start + chunksize); 
            result.add(Arrays.copyOfRange(source, start, end)); 
            //System.out.println("start: "+start+", end: "+end); 
            start += chunksize; 
        } 
        return result; 
    } 
     
    public String getCapacity(BigInteger size) { 
        String hrSize = ""; 
        double b = size.longValue(); 
        double k = size.longValue() / 1024.0; 
        double m = ((size.longValue() / 1024.0) / 1024.0); 
        double g = (((size.longValue() / 1024.0) / 1024.0) / 1024.0); 
        double t = ((((size.longValue() / 1024.0) / 1024.0) / 1024.0) / 1024.0); 
 
        DecimalFormat dec = new DecimalFormat("0.00"); 
 
        if (t > 1) { 
            hrSize = dec.format(t).concat(" TB"); 
        } else if (g > 1) { 
            hrSize = dec.format(g).concat(" GB"); 
        } else if (m > 1) { 
            hrSize = dec.format(m).concat(" MB"); 
        } else if (k > 1) { 
            hrSize = dec.format(k).concat(" KB"); 
        } else { 
            hrSize = dec.format(b).concat(" Bytes"); 
        } 
 
        return hrSize; 
    } 
     
    public BigInteger getRemainingCapacity(BigInteger size){ 
        BigInteger sixGB = BigInteger.valueOf(1073741824).multiply(BigInteger.valueOf(6)); 
        BigInteger remain = sixGB.subtract(size); 
        System.out.println("remain: "+remain); 
        System.out.println("used: "+size); 
        return remain; 
    } 
     
    public List<String> getServernames(String machine, String userid){ 
        List<String> servernameList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username = 
'"+userid+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                servernameList.add(rs.getString("virtualmachine")); 
            } 
            rs.close(); 
            st.close(); 
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        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return servernameList; 
    } 
     
    public List<String> getNames(String machine, String userid){ 
        List<String> nameList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username = 
'"+userid+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                nameList.add(rs.getString("filename")); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return nameList; 
    } 
     
      
    public List<String> getServernames(String machine, String userid, String filename){ 
        List<String> servernameList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username = 
'"+userid+"' and file = '"+filename+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                servernameList.add(rs.getString("virtualmachine")); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return servernameList; 
    } 
     
    public List<String> getNames(String machine, String userid, String filename){ 
        List<String> nameList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username = 
'"+userid+"' and file = '"+filename+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                nameList.add(rs.getString("filename")); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return nameList; 
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    } 
     
    public List<byte[]> getBlock(String machine, String userid, String filename){ 
        List<byte[]> blockList = new ArrayList<>(); 
        String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username = 
'"+userid+"' and file = '"+filename+"'"; 
        try { 
            Statement st = connection.createStatement(); 
            ResultSet rs = st.executeQuery(sql); 
            while (rs.next()) { 
                blockList.add(rs.getString("filecontent").getBytes()); 
            } 
            rs.close(); 
            st.close(); 
        } catch (SQLException ex) { 
            JOptionPane.showMessageDialog(null, ex.getLocalizedMessage()); 
        } 
        return blockList; 
    } 
     
    public void close(){ 
        try{ 
            connection.close(); 
        }catch(SQLException sq){ 
            JOptionPane.showMessageDialog(null, sq.getLocalizedMessage()); 
        } 
    } 
} 
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APPENDIX B 

SAMPLE OUTPUT 
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