
 1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Advances in ICT today has made data more voluminous and multifarious and its being

transferred at high speed (Sergio, 2015). Applications in cloud like Yahoo weather,

Facebook photo gallery and Google search index is changing the IT landscape in a

profound way (Stone et al., 2008; Barroso et al., 2003). Reasons for these trends

include scientific organizations solving big problems related to high performance

computing workloads, diverse public services being digitized and new resources used.

Mobile devices, global positioning systems, sensors, social media, medical imaging,

financial transaction logs and lots of them are all sources of massive data generating

large sets of complex data (Sergio, 2015). These applications are evolving to be data-

intensive which processes very large volumes of data hence, require dynamically

scalable, virtualized resources to handle them.

Large firms like Google, Amazon, IBM, Microsoft and Apple are processing vast

amount of data (Dominique, 2015). International Data Corporation (IDC) survey in

2011 estimated the total world wide data size which they called digital data universe at

1.8 zegabytes (ZB) (Dominique, 2015). IBM observed that about 2.5 quintillion bytes

of data is created each day and about 90% of data in the world was created in the last

two year (IBM, 2012). This is obviously large. An analysis given by Douglas (2012)

showed that data generated from the earliest starting point until 2003 represented close

to 5exabytes and rose to 2.7zettabytes as at 2012 (Douglas, 2012). Type of data that has

rapid increase is the unstructured data (Nawsher et al., 2014). This is because, these

data are characterized by human information such as high-definition videos, scientific

simulations, financial transactions, seismic images, geospatial maps, tweets, call-centre

conversations, mobile calls, climatology and weather records (Douglas, 2012).

Computer world submit that unstructured information account for more than 70% of all

data in an organization (Holzinger et al., 2013). Most of these data are not modelled,

they are random and very difficult to analyse (Nawsher et al., 2014).

 2

A new crystal ball of the 21
st
 century that helps put all these massive data together,

classifying them according to their kinds or nature is referred to as Big Data. Big data is

a platform that helps in the storage, classification and analysing massive volume of data

(Camille, 2015). Hortonworks (2016) defined big data as a collection of large datasets

that cannot be processed using traditional computing techniques. These data includes

black box data (data from components of helicopter, airplanes and jets), social media

data such as facebook and twitter, stock exchange data that holds information about the

“buy” and “sell” decisions made on a share of different companies, power grid data like

information consumed by a particular node with respect to a base station, transport data

which includes model, capacity, distance and availability of a vehicle. Big data can also

be seen as accumulation of huge and complex datasets that is too hard to process using

database management tools or traditional data processing application with the

challenges of capturing, storing, searching, sharing, transferring, analysing and

virtualization. Madeen (2012) also see big data as “too big, too fast or too hard for

existing tools to process”. “Too big” from Madden‟s explanation has to do with the

amount of data which might be at petabyte – scale and come from various sources.

“Too fast” is data growth, which is fast and must be processed quickly and “too hard” is

the difficulties of big data that does not fit neatly into an existing processing tool

(Madden, 2012).

 The characteristics of big data are better defined by Gartner in Beyer and Laney (2012)

as the three Vs (Volume, Velocity and Variety). Volume refers to the amount of data to

be processed. Volume of data could amount to hundreds of terabytes or even petabytes

of information generated from everywhere (Avita et al., 2013). As organization grows,

more data sources consisting large datasets increase the volume of data. Oracle gave the

rate at which data grows. It was observed that data is growing at a 40% compound

annual rate, reaching nearly 45ZB by 2020 (Oracle, 2012). Velocity is speed at which

data grows. According to Sircular (2013), velocity is the most misunderstood big data

characteristic. She described data velocity as the rate of changes and combining datasets

that are coming with different speeds (Sircular, 2013). Variety has to do with the type

of data. Big data accommodate structured data (relational data), semi-structured data

(XML data) and unstructured data (word, pdf, text, media logs). From analytics

perspective, data variety is seen as the biggest challenge to effectively gain insight in

big data. Some researchers believe that taming data variety and volatility will be a key

 3

to big data analytics (Nawsher et al., 2014). IBM came with an additional V for big data

characteristic which is “veracity” (IBM, 2012) Veracity addressed the inherent

trustworthiness of data. Since data will be used for decision making, it is important to

make sure that such data can be trusted (IBM, 2012). Some researchers mentioned

“viability” and “value” as the fourth and fifth big data characteristics leaving “veracity”

out of the Vs (Biehn, 2013).

These ever increasing data pools obviously have a profound impact not only on

hardware storage requirements and user applications, but also on the file system design,

implementation and the actual I/O performance and scalability behaviour of today‟s IT

environment. To improve I/O performance and scalability therefore, the obvious answer

is to provide a means such that users can read/write from/to multiple disks (Dominique,

2015). Assume a hypothethical setup with 100 drives, each holding just 1/100 of 1TB

data and all of these drives are accessed in parallel at 100MB/second. It then means that

1TB of data can be fetched in less than 2minutes. If same operation is to be performed

with just a drive, then it will take more than 2½hours to accomplish same task. Today‟s

huge and complex semi-structured or unstructured data are difficult to manage using

traditional technologies like RDBMS hence, the introduction of HDFS and MapReduce

framework in Hadoop. Hadoop is a distributed data storage/data processing framework.

Data sets processed by traditional database (RDBMS) solutions are by far much smaller

compared with the data pool utilized in Hadoop environment (Dominique, 2015). While

Hadoop adopts a brute-force access method, RDBMS solution only banks on optimized

accessing routines such as indexes, read-head and write-behind technique (Dominique,

2015). Hadoop excels in an environment that reveals a massive parallel processing

infrastructure where data is unstructured to the point where no RDBMS optimization

techniques can be used to boost I/O performance (Dominique, 2015). Hadoop is

therefore, designed to process efficiently, large data volumes by linking many

commodity systems so that they can work as parallel entity. The framework was

designed basically to provide reliable, shared storage and analysis infrastructure to the

user community. Hadoop has two components – HDFS (Hadoop Distributed File

System) and MapReduce framework (Nagina and Sunita, 2016). The storage portion of

the framework is provided by HDFS while the analysis functionality is presented by

MapReduce (Dominique, 2015). Other components also constitute Hadoop solution

suite.

 4

MapReduce framework was designed as a tool for data driven programming model

which aims at processing large-scale data-intensive applications in cloud on commodity

processors (Dean and Ghemawat, 2008). MapReduce has two components – Map and

Reduce (Wang, 2015) with intermediate shuffling procedures and the data formatted as

unstructured (key, value) pair (Dean and Ghemawat, 2008). HDFS replicates data unto

multiple data nodes to safeguard the file system from any potential loss so that, if one

data node gets fenced, there are at least two other nodes holding same data set

(Dominique, 2015).

The first generation Hadoop called Hadoop_v1 was an open source of MapReduce

(Bialecki et al., 2005). It has a centralised component called JobTracker that plays the

role of both resource management and task scheduling. Another centralized component

is the NameNode which is the file metadata server for HDFS that stores application data

(Shvachko et al., 2010). With Hadoop_v1, scalability beyond 4000 nodes was not

possible with the centralized responsibility of JobTracker/TaskTracker architecture. To

overcome this bottleneck and to promote this programming framework so that it carries

other standard programming models and not just implementation of MapReduce, the

Apache Hadoop Community developed the next generation Hadoop called YARN (Yet

Another Resource Negotiator). This newer version of Hadoop called YARN decouples

resource management infrastructure from JobTracker in Hadoop_v1. Hadoop YARN

introduced a centralized Resource Manager (RM) that monitors and allocates resources.

Each application also delegates a centralized per-application master (AM) to schedule

tasks to resource containers managed by Node Manager (NM) on each compute node

(Wang, 2015). The HDFS and its centralized metadata management remains the same

on this newer programming model (Wang, 2015). Improvement made on Hadoop_v1

(by decoupling the resource management infrastructure) enables YARN to run many

application frameworks like MapReduce, Message Passing Interface (MPI), interactive

applications and scientific workflows. This eases the resource sharing of the Hadoop

cluster.

With the scheduler separated from RM and the implementation of per-application

master (AM), Hadoop has achieved an unprecedented scalability. However, there are

inevitable design issues that are preventing Hadoop from scaling to extreme scales.

These issues are in the centralized paradigm in the implementation of some components

in YARN framework. This research work therefore, seeks to develop a model solution

 5

that will decentralize the responsibilities of resource manager for scalable resource

management in YARN.

1.2 Statement of the Problem

Data driven models like Hadoop have gained tremendous popularity in Big Data

analytics. Though great efforts have been made through the implementation of Hadoop

framework by decoupling of resource management infrastructure which has allowed

Hadoop to scale to tens of thousands of commodity cluster processors, the centralized

designs of resource manager and metadata management of HDFS has adversely

affected Hadoop scalability (ability to expand the cluster) to tomorrow‟s extreme-scale

datacentres. This challenge therefore, led us to the following problem definition.

i. How to develop a model alternative that will ensure better scalable resource

management in YARN.

ii. To address scalability issues of Hadoop through decentralized resource

management in order to improve response and turnaround time of clients‟

jobs.

iii. How to provide a mechanism that will guard against failure of resource

management deamons during job execution.

iv. How to evaluate the scalability of the new model to the existing model using

efficiency and average task-delay ratio as performance metrics.

1.3 Aim and Objectives of the Study

The aim of this research work is to develop a model of an improved scalable resource

management system for Hadoop YARN.

The objectives of the study are to;

i. Decentralize the global control of Resource Manager in YARN framework

by providing another layer called Rack Unit Resource Manager (RU_RM)

layer.

 6

ii. Configure RU_RM layer to ensure that each RU_RM controls resource

requests for compute nodes within its rack instead of a single Resource

Manager controlling all the compute nodes in the cluster.

iii. Develop ring architecture in RU_RM layer to ensure that all Rack Unit

resource managers form a peer-to-peer architecture such that each Rack Unit

resource manager holds resources for which it is directly responsible to and

also have backup copies of resources for the RU_RM preceding/succeeding

it.

iv. Carry out a performance evaluation test between the new model and YARN

with Hadoop benchmark workload called WordCount.

1.4 Significance of the Study

The major significance of this research is to deliver an elastic, scalable and easy way to

optimize and streamline operations in YARN so as to provide better quality of service

to users. The research work seeks to make sure that no single point of failure exists in

YARN framework. The global resource manager in YARN is a per cluster resource

manager controlling all data nodes in the network. Once this daemon fails, all jobs will

halt and have to be restarted. This process however, leads to delay in response time and

the execution of jobs in the framework. With the introduction of per-rack resource

manager layer in the new model, each rack unit resource manager is directly responsible

for its corresponding data nodes. Single point of failure experienced in the existing

framework therefore, is eliminated so that jobs will have lower response and execution

time.

The introduction of novel ring approach in the rack unit resource manager layer of the

new model ensured that all rack unit resource managers form a peer-to-peer architecture

such that each rack unit resource manager holds resources for which it is directly

responsible to and also have backup copies of resources for the RU_RM

preceding/succeeding it. This will ensure that resources are available to users on

demand and efficiently utilized to provide greater turnaround time for safety critical

jobs like computer controlled radiation machines in health sector. Failure of a single

rack unit resource manager will no longer affect the processing of jobs since the rack

unit resource manager preceding/succeeding it will take responsibility of all data nodes

within the failed rack. The framework will enable surplus data to be streamlined for any

 7

distributed processing system across cluster of computers. It will scale up single servers

to a very large number of machines; each and every of these machines offering local

computation and storage space. This will allow for rapid data transfer facilitated by well

laid out distributed file system.

The introduction of rack-aware resource manager in this system can now provide a cost

effective storage solution to business analysts. Its highly scalable storage/processing

capability will facilitate businesses to easily access data sources and tap into different

types of data to produce value for such data. Significantly noted is that, data

management industry has expanded from software and web into retail,

healthcare/hospitals, media and entertainment, information services, finance and

government. This creates a huge demand for a more scalable system that will provide

excellent data analytic services. Most enterprises/organizations use and analyse lower

volume of data with a very large amount wasted. It is a bad practice to term data as

unwanted as many part of these data can be put to good use by an

organization/enterprice. This system therefore has the capability of storing and

processing of large amount of data that can help organization improve the functionality

of each and every business unit which inludes research, design, development,

marketing, advertising, sales and customers handling.

One vital component of data analytics is machine learning. Machine learning is

significantly used in medical domain to predict cancer, natural language processing,

search engine, recommendation engines, bio-informatics, image processing, text

analytics and much more. Machine learning algorithms gain significance where data

size is big; especially when it is unstructured, as it means making sence out of

thousands of parameters, of billions of data values. Since this system processes large

datasets across different cluster of cheap commodity servers, the place of big data

comes into picture, which is also significant for running machine learning algorithms.

With this rack-aware resource management system, data scientists and engineers will be

able to ingest more data and processes into machine learning tools and be sure of lower

response time during job execution. An efficient library can be developed to enable

running various machine learning algorithms on this system in a distributed manner.

 8

1.5 Scope of the Study

This research work considered the resource management of YARN framework and

provided a model alternative that help to improve management of applications/jobs in

this framework. The scope of this work therefore, is limited to resource manager

daemon of YARN framework. Hadoop benchmark workload called WordCount was

used to compare the new model and the existing model. The map task counts the

frequency of each individual word in a subset data file while the reduce task shuffles

and gather the frequency of all the words.

1.6 Limitation of the Study

The simulator for Hadoop YARN called YARNsim (Ning et al., 2015) has very limited

tools for carrying out this work. The current version (developed recently) does not

support fault tolerance models (Ning et al., 2015), only FIFO scheduling algorithm was

built into the simulator and it has no plugins that allows modifications to suit research

improvements in Hadoop hence, the need to use real test bed. However, this situation

will not be a drawback to achieving desired objective for this research work.

1.7 Definition of Terms

Datacenter (DC):- Is a centralized repository for storage, management and

dissemination of data and information organized around a particular body of

knowledge.

Framework:- Is a layered structure in any programming model, which shows what

kind of program can or should be built and how they would interrelate.

Hadoop:- Is an open source Java-based programming model which supports processing

and storage of large pool of data sets in a distributed environment.

HDFS:- Hadoop Distributed File System use in Hadoop framework to store clients

data.

MapReduce:- A component of Hadoop framework that processes clients data.

Nodes:- Just two or more different computers connected within a network.

 9

Scalable:- Ability to change in size.

Scalability:- Ability of a system or application to continue to function well even when

it changes in size or volume in order to meet its desired objectives.

Task:- A piece of work to be carried out by system.

YARN:- Yet Another Resource Negotiator is the newer version of Hadoop framework

used in storage and processing of large data sets.

Resource Manager:- Is a core component of YARN responsible for scheduling of jobs

and management of compute nodes in a cluster.

Cluster:- Is a special type of computational framework designed specifically for storing

and analysing huge amounts of structured/unstructured data in a distributed computing

environment.

 10

CHAPTER TWO

LITERATURE REVIEW

2.1 Theoretical Framework

Relational database technology has proved not to be effective for analysis of massive

datasets hence; many organizations have developed technology to utilize large clusters

of commodity servers to provide high performance computing capabilities for

processing and analysing large datasets (Anthony, 2015). These clusters consist of

hundreds or thousands of commodity machines which are connected by high bandwidth

networks. The commodity servers are powerful than supercomputers which existed

during the early 90‟s (Anthony, 2015). These commodity servers have led to new trend

in super computer design for high performance using clusters of independent processors

connected in parallel (Vinayak et al., 2012). Computing problems today are suitable for

parallelization, where problems can be divided into a manner that will allow

independent processing nodes work on a portion of the problem in parallel. This is

achieved by dividing the data to be processed into portions and then combining the final

processing results for each portion (Nyland et al., 2000). This method of parallelization

is what is referred to as “data-parallelism” or “horizontal portioning” (Nyland et al.,

2000) and it is the potential solution to petabytes scale data processing requirements.

Data-parallelism can be seen as a computation applied independently to each data item

of a set of data so as to allow a degree of parallelism to be sealed with the volume of

data (Anthony, 2015). Why data – parallelism applications are developed, is to allow

for scalable performance which result in magnitude improvement. The key issue with

this development however, lies in the choice of algorithm, strategy for data

decomposition, load balancing on processing nodes, communications between

processing nodes and the overall accuracy of the results (Vinayak et al., 2012). Cluster

configuration makes it possible to partition data used by applications among available

computing nodes and processed independently to achieve performance and scalability

based on the amount of data (Anthony, 2015). This parallel processing approach is most

times referred to as “shared nothing” approach because, each node consist of its own

processor, local memory and disk resources. It shares nothing with other nodes in the

cluster. Figure 2.1 gives a clear understanding of this new paradigm.

 11

Figure 2.1: Commodity Computing Cluster (Anthony, 2015)

Clusters become extremely effective when it is easy to relatively separate problems into

a number of parallel tasks with no dependency or communication required between

these tasks other than overall management of the tasks. There are applications which are

I/O bound or need to process large volumes of data. These data-intensive applications

devote most of processing time to I/O and movement of data. Parallel processing of

data-intensive applications requires partitioning of data into multiple segments and

processing each segment in a distributed and parallel manner with same executable

application program and then re-assembling the results from each node to produce the

computed output data (Anthony, 2015). These applications uses distributed data and

distributed file systems in which data is located across a cluster of processing nodes

such that, instead of moving data to the source machine, program or algorithm is

transferred to the nodes with the data that needs to be processed (Anthony, 2015). This

approach of “move the code to the data” is extremely effective since program size is

usually small in comparison to the large datasets to be processed. It also result in much

less network traffic since data can be read locally instead of across the network. This

technique makes executable program to process data on the nodes where these data

resides thereby reducing system overhead and increasing performance (Anthony, 2015).

One of the examples of these cluster technology that describe the characteristics and

requirements of data-intensive applications is the Hadoop system.

 12

Hadoop is an open-source Apache Software Foundation (ASF) project which is written

in Java programming language that provides cost-effective and scalable infrastructure

for distribution and parallel processing of large datasets across commodity of clusters

(Shvachko et al., 2010). The programming paradigm was inspired by Google File

System (GFS) (Ghemawat et al., 2003) and Google‟s MapReduce distributed

computing environment. The idea was first conceived by Dough Cutting, an employee

then with Yahoo and together with Professor Mike Caferalla of the University of

Michigan, developed Hadoop later called Apache Hadoop (Shouvik and Daniel, 2013).

Hadoop was named after Dough Cutting‟s son toy elephant (White, 2009). Hadoop has

been used to process highly distributable problems across large amount of datasets with

commonly available, inexpensive internal disk drives (Ibrahim et al., 2016). There are

basically two components in Hadoop (i) Hadoop Distributed File System (HDFS) and

(ii) MapReduce framework.

This chapter is in seven sections. The theoretical framework which gives background

theory to the research work has been discussed in the first section. The next section will

discuss classic Hadoop and its limitations. This will be followed by the next generation

Hadoop called YARN in section three. Section four will look at Hadoop clusters and

their network topology while section five describes various components of Hadoop

ecosystem. Section six will review related distributed data storage and parallel

processing platforms and the last section will give clear distinction and research gap

between these platforms.

2.2 Classic Hadoop

Hadoop is a scalable, fault tolerant, open source framework for distributed storage and

parallel processing of large sets of data on commodity hardware (Hortonworks, 2016).

The idea was conceived after Google released a white paper in 2004 describing the use

of MapReduce in solving big data problems. By 2005, Dough Cutting and Mike

Cafarella (both working at Yahoo as at that time) developed Hadoop, which is a better

version of distributed storage and parallel processing framework than Google File

System (GFS) and MapReduce (MR) (Hortonworks, 2016). Yahoo donated Hadoop

project to Apache in 2006 hence; the name Apache Hadoop. Hadoop has two basic

 13

components; Hadoop Distributed File System (HDFS) and MapReduce (Hortonworks,

2016).

2.2.1 HDFS Architecture

HDFS is a master/slave architecture consisting of NameNode called master, secondary

node called checkpoint and several DataNodes called slaves (Ibrahim et al., 2016). The

major/centralized controller that handles all file system operations is the NameNode

hence; any request to the file system (like create, delete and read a file) must go through

the NameNode. NameNode also handles block mappings of input files as shown in

Figure 2.2. Each file is divided into blocks (default is 64MB) with each independently

replicated across DataNodes for redundancy. Block creation, deletion and replication

are managed by the DataNode upon instruction from the NameNode (Ibrahim et al.,

2016). A periodic heartbeat message is always sent from the DataNodes to NameNode

(usually, default heartbeat is 3s) to be sure that there is no loss of connectivity between

the two. If NameNode is unable to establish this periodic heartbeat from DataNode, it

considers such DataNode out of service, unavailable or dead and hence, will not

forward any new request to such DataNode. The NameNode at this point, schedules

creation of new replicas of those blocks in the unavailable DataNode on another

DataNode (Ibrahim, et al., 2016).

Figure 2.2: HDFS Architecture (Dominique, 2015)

 14

HDFS also provides an option to configure Secondary NameNode, which periodically

merges namespace image with the edit log in NameNode to prevent edit log from

becoming two large (Dominique, 2015). Secondary NameNode normally is configured

on a separate physical system which makes the merge activities CPU intensive. The

Secondary NameNode stores merged copy of namespace image so as to provide backup

when NameNode is fenced. However, the Secondary NameNode lags behind the

primary hence, if the primary data is completely lost, the file system becomes non-

functional. Based on the design principle of HDFS, a file is stored as a sequence of

(same-sized) blocks, with the exception of the last file block which may be small for a

block. Such file size is stored in a sub-size of a block (no internal fragmentation)

(Shouvik and Daniel, 2013).

Placement of replicas is paramount to HDFS reliability and performance. Optimizing

replica placement is considered as a feature that distinguishes HDFS from most

common distributed file systems. A rack-aware replica placement policy will improve

data reliability, availability and will optimize network bandwidth utilization. Most

HDFS installations execute cluster environment that encompasses many racks

(Dominique, 2015). Since inter-rack communication travels through switches and in

most configurations, bandwidth potential among nodes in the same rack is greater than

the network bandwidth among nodes hosted in different racks, there is need for HDFS

replica placement to be rack-aware. One option is to place replicas in different racks so

as to prevent data loss in a situation where an entire rack fails. Such policy will evenly

distribute replicas in the cluster to provide efficient load balancing and prevent rack

failure scenarios. However, it will increase the cost of writing data to different racks, as

each write request will require transferring blocks to multiple racks. A common HDFS

placement policy is to store 2/3 replicas on different nodes of the same local rack and

the last on another node from a different rack (Dominique, 2015). This addresses the

inter-rack write scenario and also eliminates the chances of a rack failure with no

impact on data reliability and availability guarantees. To minimize network bandwidth

consumption and maximize read/write latency without impacting data reliability and

availability, we suggest that 2/3 replicas for each complete file block be placed on

different nodes in same local rack. The reason is because, the chance of a rack failure is

far less than that of a node failure and, a backup replica is in another rack in situation of

failure.

 15

2.2.2 MapReduce Architecture

Hadoop_v1 MapReduce (MRv1) framework is based on centralized master/slave

architecture (Ibrahim et al., 2016). In this framework, there is a single master server

called JobTracker and several slave servers called TaskTrackers (Dominique, 2015).

JobTracker represents the centralized program that keeps track of all slave nodes

through the TaskTracker and provides interface infrastructure for all job submissions.

TaskTracker helps execute actual data stored on each slave nodes. Users submit jobs to

JobTracker which inserts the job into pending job queue and execute them based on the

type of scheduler chosen. Once a job is submitted, the JobTracker gives a job ID to the

client program and starts allocating map task to idle TaskTracker as shown in Figure

2.3.

Figure 2.3: MapReduce Architecture (Ibrahim et al., 2016)

Each TaskTracker has a defined number of task slots based on the node capacity.

Through periodic heartbeat, the JobTracker knows the number of free slots in the

TaskTracker hence; JobTracker can determine appropriate job setup for the

TaskTracker. The assigned TaskTracker will then fork a map task to execute the map

processing cycle (1 map task for each input split). Map task extracts input data from the

split using Record_Reader and an Input_Format for the said job. This process invokes

the user provided map function, which emits a number of <key, value> pairs in the

memory buffer (Dominique, 2015). Once the map task has finished execution, the

 16

commit process cycle is initiated, which flushes the memory buffer to the index and

data file pair (Ibrahim et al., 2016), where these index and data file pairs are merged

into a single construct. The JobTracker initiates the reduce task through the

TaskTracker where these files are concatenated into a single entity. As more map tasks

are completed, JobTracker keeps notifying TaskTracker to concatenate files using

reduce function until all tasks are completed and an output data generated. This process

is shown in Figure 2.4.

Figure 2.4: Representation of Map and Reduce Tasks (Wissem et al., 2018)

Looking at the centralized nature of JobTracker and its responsibilities, there is a single

point of failure. If JobTracker fails, all running jobs will halt. This means that, map

tasks and incomplete reduce tasks will have to be re-executed hence, low throughput

and high execution time. Facebook observed that single JobTracker in MapReduce

framework is a bottleneck and most times, start-up time for a job is several tens of

seconds (Dean and Ghemawat, 2008). It was obvious that JobTracker could not handle

its dual responsibilities of managing the cluster resources and also scheduling users‟ job

adequately. Facebook noticed that at peak load, cluster utilization dropped precipitously

due to scheduling overhead experience in Hadoop framework (Dean and Ghemawat,

2008). Facebook also noticed that polling from TaskTrackers to the JobTracker during a

periodic heartbeat is a bottleneck for Hadoop scheduler as it slows down processing

 17

which thereby affect scalability (Dean and Ghemawat, 2008). Another issue is the slot

based model. Most times, slot configuration does not match job mix. As a result, once

there is need for upgrade to change the number of slots on node(s), all jobs will be

killed which is unacceptable (Shouvik and Daniel, 2013). Because of these bottlenecks,

Facebook saw the need for a better scheduling framework with better scalability and

cluster utilization by lowering latency for small jobs and scheduling based on actual

task resource requirements rather than a count of map and reduce tasks (Wang et al.,

2013).

Facebook developed Corona (Dean and Ghemawat, 2008), a new scheduling framework

that separates cluster resource management from job scheduling. Corona introduced a

cluster manager whose sole responsibility is to track nodes in the cluster and the amount

of free resources available (Shouvik and Daniel, 2013). In Corona, a dedicated

JobTracker was also introduced for each job, and can run either in that same process as

the client (for small jobs) or as a separate process in the cluster (for large jobs). What

differentiate Hadoop MapReduce framework from Corona is that, Corona uses push-

based rather than pull-based scheduling (Shouvik and Daniel, 2013). In Corona, once

the cluster manager receives resource requests from the JobTracker, it pushes the

resource grants back to the JobTracker which creates tasks and then pushes these tasks

to the TaskTrackers for execution. In Corona, cluster manager does not perform any

tracking or monitoring of job‟s progress. The responsibility is left to the individual job

trackers. This separation makes scheduling faster since JobTrackers tracks only one job

each and has less code complexity. Corona therefore, manages a lot of jobs and

achieves better cluster utilization. Figure 2.5 depicts a notional diagram of Corona‟s

main components.

 18

Figure 2.5: Corona‟s main components (Shouvik and Daniel, 2013)

Yahoo is also a major player in Hadoop ecosystem. When Yahoo discovered that

JobTracker is a bottleneck in their huge Hadoop clusters, they developed MapReduce

version-2. Hadoop_v1 has indeed reached a scalability limit of around 4000+ nodes

(Shouvik and Daniel, 2013). Scalability requirement of 20,000 nodes and 200,000 cores

was required but was not possible with the current JobTracker/TaskTracker architecture

(Shouvik and Daniel, 2013). In 2009, YARN was developed. YARN stands for Yet

Another Resource Negotiator and it‟s the next generation of Hadoop (0.23 and beyond).

YARN architecture decomposes two principal responsibilities of the old JobTracker

into (i) resource management, (ii) job scheduling/monitoring entity. This new design is

based on a global (yet centralized) Resource Manager (RM) and a per-

ApplicationMaster (AM) daemon (Dominique, 2015). RM and per-node NodeManager

(NM) reflects the new data computation framework of YARN. RM consists of

ApplicationsManager (AppMg) and a scheduler (Shouvik and Daniel, 2013).

 19

2.3 Yet Another Resource Negotiator (YARN)

YARN lifts some functions into a platform layer responsible for management of

resources. It leaves the coordination of logical execution plans to a host of framework

implementation (Vinod et al., 2013). The per-cluster Resource Manager (RM) in

YARN tracks resource usage and node liveliness (Vinod et al., 2013). It enforces

allocation invariants and arbitrates contention among tenants. Separating units of

JobTracker helps the RM use an abstract description of tenants‟ requirements but

remain ignorant of the semantics of each allocation, the semantics of task allocation is

the sole responsibility of Application Master (AM). AM coordinates the logical plan of

a single job by requesting for resources from RM, generating a plan from resources

received and coordinating the execution of the plan around possible faults that may

occur (Vinod et al., 2013).

2.3.1 Overview of YARN

Resource Manager of YARN run as a daemon on a dedicated machine, and act as a

central authority managing resources among various competing nodes in the cluster (see

Figure 2.6). RM enforces rich familiar properties such as fairness and locality across

commodity servers. Base on the need of an application, scheduling priorities and

availability of resources, RM dynamically allocates leases called containers to

applications to run on particular nodes in the cluster (Vinod et al., 2013).

Figure 2.6: Architecture of YARN (Vinod et al., 2013)

 20

Containers are logical bundle of resources (e.g. 4GB of RAM, 2CPU) bound to a

particular node (Vinod et al., 2013). To track the amount of containers in the cluster,

RM uses a special system daemon called Node Manager (NM) running on each

commodity server. The Node Managers are responsible for monitoring of resource

availability, containers lifecycle management (e.g. start, kill) and to report any possible

fault to the RM. NMs achieve this through a heartbeat communication protocol

(Ibrahim et al., 2016).

Job submission to RM passes through a public submission protocol and goes through an

admission control phase. This is done to make sure that security credentials are

validated and various operational and administrative checks are performed (Vinod et

al., 2013). Once a job is accepted, a scheduler in YARN is triggered. If the scheduler

has enough resources, the application is moved from accepted state to a running state.

Apart from internal book keeping that helps in task management, the next step is

allocating a container for the AM and spawning it on a node in the cluster (Vinod et al.,

2013). A record of accepted job is normally written to a persistent storage and

recovered in case of RM restart or failure.

The AM serves as the “head” of a job (Vinod et al., 2013). It manages all lifecycle

aspects of the job including dynamically increasing and decreasing resource

consumption, controlling the flow of execution (mappers and reducers), handling faults

and computation skew and also perform local optimizations of commodity servers

(Apache, 2016). Delegating all these functions to AM helps YARN architecture gained

a great deal of scalability, flexible programming model, an improved upgrade/testing

capability. To complete a job, AM will need to harness resources like CPU, RAM and

disk available on multiple nodes. For AM to obtain a container, it issue resource request

to RM with specification of locality preference and what properties a container should

possess. Once a resource is released on behalf of an AM, RM will generate a lease for

the resource, which is pulled by a subsequent AM heartbeat. To guarantee authenticity

when AM presents the container lease to the RM, a token-based security mechanism is

put in place (Vinod et al., 2013). Once an AM discovers that a container is ready for its

use, it encodes an application-specific launch request with the least (Apache, 2016). A

running container communicates with AM through this application-specific protocol to

report status and liveliness and receive framework-specific commands. In all of these,

YARN neither facilitates nor enforces any communication. YARN deployment only

 21

provides basic, yet robust infrastructure for lifecycle management and monitoring of

containers, while application-specific semantics are managed by each framework

(Vinod et al., 2013).

2.3.2 Resource Management components of YARN

2.3.2.1 Resource Manager

RM exposes two public interfaces and one internal interface (Apache, 2016). The public

interfaces are client submitting applications and AM dynamically negotiating access to

resources. The internal interface is towards NM‟s ability for cluster monitoring and

resource access management (Apache, 2016). For this dissertation, focus is on the

public interfaces as it best explain important frontier between YARN platform and

various applications/framework running on it. RM is a global model of cluster state

against the digest of resource requirements reported by running applications. This

global model of cluster state makes it possible to tightly enforce global scheduling

properties. Communication messages and scheduler state therefore, must be very

effective and efficient for any RM to scale against application demand and the size of

cluster (Vinod et al., 2013). YARN has helped to achieve this with the scheduler

handling only an overall resource profit for each application, ignoring local

optimizations and internal application flow. While this approach has made YARN scale

against application demand, a greater number of commodity hardware in a cluster

together with a greater number of applications demand will cause delay in response

time (by the scheduler) for each application demand thereby resulting in high

turnaround time.

Application Masters codify their need for resources by making one or more

ResourceRequests each of which track the number of containers (e.g. 200 containers),

resource per container (4GB, 2CPU), locality preference and priority of requests within

the application (Apache, 2016). ResourceRequests are designed in a way that it captures

full detail of users‟ needs and/or a roll-up version of it (e.g. one can specify node-level,

rack-level and global locality preferences). This approach makes communication and

storage requests easier and efficient for the scheduler and also allows applications to

express their needs clearly. ResourceRequest roll-up version also guides the scheduler

 22

in a situation where perfect locality cannot be achieved; an alternative can be provided

(e.g. rack-local allocation, if the desired node is busy). RM respond to AM request by

generating containers together with tokens that grant access to resources (Apache,

2016). Once an application completes its execution, RM forwards an exit status of

finished containers as reported by NMs to the corresponding AMs (Apache, 2016).

Looking at the responsibilities of RM, it is important to point out that RM is not

responsible for coordinating application execution or task fault tolerance. It does not

provide status or metrics for running applications (now part of AM) and it does not

serve framework-specific reports of completed jobs (now delegated to a per-framework

daemon). RM only handles live resource scheduling of applications with the heartbeat

communication from AMs and NMs in the cluster. However, for a greater number of

commodity servers and applications demand, response time from the global model of

RM will be slow. It is therefore, necessary to provide a per-rack RM to handle all

request/communication for NMs and AMs within the local rack with the global resource

manager only assigning application demands to each of the Rack Unit Resource

Manager (RU_RM) and monitoring the liveliness of each of these units.

2.3.2.2 Application Master

AMs are daemon inside the worker nodes that coordinate the execution of applications

in the cluster. They are also in the cluster just like any other container (Vinod et al.,

2013). There is always a periodic heartbeat communication between AM and RM to be

sure of liveliness of a container and to update the record of its demand. AM always

encodes its preferences and constraints in a heartbeat message to the RM. After the first

heartbeat communication, subsequent heartbeats make AM receive a container lease on

bundles of resources bound to a particular workstation in the cluster (Apache, 2016).

AM can update its execution plan so as to accommodate perceived abundance or

scarcity based on the containers it receives from RM (Apache, 2016). Allocation to

applications in YARN is late binding. Hence, probability that AM make a request may

not remain true when it finally receives its resources, but the semantic of the container

are fungible and framework specific. AM also updates its resource asks to the RM if the

containers it receives from RM affect both its present and future requirements (Ibrahim

et al., 2016).

 23

To explain the role of AM better, let us use MapReduce. In YARN, MapReduce AM

optimizes for locality among map tasks with identical resource requirements. Any time

AM gets a container, it first matches it against the set of pending map tasks by looking

for a task with the input split close to the container. Once this is done, the two other

nodes with the replicated input split for that block of data becomes less desirable. AM

update its request to RM diminishing the weight on the other k-1 hosts. If the host

processing the input split fails, AM will update the RM demanding for compensation

from the k-1 hosts (Apache, 2016).

It is clear from the responsibilities of AM that RM does not interpret container status. It

is the AM that determines the semantics of the success or failure of the container.

2.3.2.3 Node Manager

Node Manager is a worker daemon in YARN that helps authenticate container leases,

manages containers‟ dependencies, monitors containers‟ execution and also provides set

of services to containers (Vinod et al., 2013). It can be configured to report resources

like CPU, memory etc. Once registration is confirmed between RM and NM, the NM

heartbeats its status and receives instruction from RM. YARN has Container Launch

Context (CLC) that describes all the containers (including NMs) in the framework.

CLC has records that include a map of environment variables, dependencies stored in

remotely accessible storage, security tokens, payloads for NM services and command

necessary to create a process. CLC also include credentials to authenticate download.

Any time AM request for a container and it is validated, the NM configures the

environment for the container, which includes initializing its monitoring subsystem

with the resource constraints specified in the lease (Vinod et al., 2013).

NM is also responsible for killing containers as directed by the RM or the AM.

Containers are killed based on; RM reporting its owning application as completed,

scheduler decided to evict it for another tenant, AM detects that the container exceeded

the limit of its least or AM discovers that owing application is no longer needed

(Apache, 2016). Anytime a container is killed or exits, NM cleans up its working

directory in local storage. Also, at the completion of any application, resources own by

 24

its containers are discarded on all nodes and all processes for that application still

running in the cluster cancelled (Vinod et al., 2013).

NM periodically monitors the health of physical nodes in the cluster. It checks if there

is an issue with the local disk and frequently run an admin configured script to check

any hardware/software issues. Anytime a problem is discovered with the node, NM will

change its state to “unhealthy” and will report RM through heartbeat protocol about the

status of the node. The scheduler makes specific decision of killing containers and/or

stopping future allocations to the said node until its health issue is addressed (Apache,

2016).

Careful study of literatures has shown that RM remains a single point of failure. RM

will recover from its failure reading its state from persistent storage. After recovery, it

kills all running containers and live application and then restart them. This research

work therefore, seeks to provide a technique on how to decentralize the functions of

RM to each local rack in a cluster environment such that when RM fails, AM continue

to work before RM is restored.

2.4 Hadoop Cluster and the Network

The three major layers of machine roles in any Hadoop deployment are the client

machines, master nodes and the slave nodes (Brad, 2011). The master nodes are

responsible for overseeing two key functional processes that make up Hadoop

framework; the HDFS that stores massive data and the MapReduce responsible for

running parallel computation (Brad, 2011). The slave node layer makes up the vast

majority of workstations that store and also process data. Client machine have Hadoop

installed with all the cluster settings so as to enable for loading of data into cluster,

submission of mapreduce/other applications describing how the applications should

retrieve and process data and how it should view results once task is completed. Figure

2.7 shows typical server roles with these three major layers.

 25

Figure 2.7: Hadoop Server Roles (Brad, 2011)

Typical architecture of Hadoop cluster has rack servers populated in racks connected to

a top of a rack switch (Brad, 2011). The rack switch has uplinks which are also

connected to another tier of switches, which connects all other racks with uniform

bandwidth to form a cluster (see Figure 2.8).

Figure 2.8: Hadoop Cluster (Brad, 2011)

Majority of these servers are slave nodes with lots of local disk storage, moderate

amount of central processing unit and DRAM. Master nodes in the cluster have

 26

different configuration favouring more CPU and DRAM. In a typical workflow of

Hadoop framework, data are loaded into the cluster (HDFS writes),

computations/analysis is carried out on data (MapReduce), results are stored in the

cluster (HDFS writes) and results can be read from the cluster (HDFS reads).

Hadoop has the concept of “rack awareness”. The framework gives the client the option

to manually define rack number of each slave node in the cluster. There are two reasons

for setting rack awareness when storing data in HDFS; data loss prevention and

network performance (Brad, 2011). Since data are replicated to avoid losing all copies

of data, it is expected that while doing this, all data are not replicated at different nodes

on same local rack. If this happened and the rack experiences a failure such as switch or

power failure, then that data will be lost. It is also believed that two machines in same

rack have more bandwidth and lower latency between each other than two machines in

two separate racks. This is true because rack switch uplink bandwidth is usually less

than its downlink bandwidth. Also, in-rack latency is lower than cross-rack latency.

Hence, network performance can be enhanced if the framework is rack aware.

Figure 2.9 gives a description of how to load data (say file.txt) into the cluster. From the

description, file.txt has three blocks (Blk A, Blk B and Blk C). To write Blk A to

HDFS, the client consults the NameNode for permission to write file.txt to the cluster.

The client gets permission from NameNode and will receive list of three (3) data nodes

for the block. The Name Node uses the principle of rack awareness to influence

decision as to which data node to provide for the client.

Figure 2.9: Preparing HDFS Writes (Brad, 2011)

 27

Before the client writes Blk A of file.txt to the cluster, it picks the first data node (from

the list of data nodes provided by Name Node) and opens a TCP connection to alert the

data node to get ready to receive a block. It also release the list of the remaining two

data nodes to the first data node to alert them and be sure they are ready to receive

duplicate of the block. The first data node (say data node 1) opens a TCP connection to

the second data node (say data node 5) to be ready for Blk A and the second data node

also opens a TCP connection to the third data node (say data node 6) to be ready for Blk

A of file.txt. The acknowledgements of readiness come back on the same TCP pipeline

until the first data node sends a “ready” message back to the client. At this point, the

client is ready to begin writing block data into the cluster (Brad, 2011).

From Figure 2.10a, a replication pipeline is created as data block is written into the

cluster. This ensures that as a data node is receiving block data, it pushes a copy of that

data to the next node in the pipeline. This approach shows a primary example of

leveraging the rack awareness data in Name Node to improve cluster performance. You

notice from Figure 2.10a that the second and third data nodes in the pipeline are in the

same rack, hence the final leg of the pipeline does not need to traverse between racks

but benefit from in-rack bandwidth and low latency.

Figure 2.10a: Pipeline Write showing Figure 2.10b: Pipeline Write showing

data nodes receiving block data (Brad, 2011) data nodes sending block received

 report (Brad, 2011).

Once all the three nodes have successfully received the block, the nodes will send a

“block received” report to the Name Node as shown in Figure 2.10b. A “success”

message is also sent back up the pipeline and TCP sessions close down. The client at

 28

this point receives a success message and notifies the NameNode that data block has

successfully been written. The Name Node updates its metadata information with the

node locations of Blk A in file.txt. The client will then start the pipeline process for the

other data blocks. As other blocks of file.txt are written, the first node in the pipeline

vary from the one used for Blk A, spreading around the hot spots of in-rack and cross-

rack traffic for replication. This is illustrated in Figure 2.11.

Figure 2.11: Multi-block replication pipeline (Brad, 2011)

Because of the replication factor in Hadoop framework, more bandwidth and storage

are used. Assume you have 1TB file to be loaded into cluster, it is approximated that

you consume 3TB of network traffic to successfully load the file and 3TB of disk space

to hold the file. After successful completion of the replication pipeline of each block

into the cluster, it is expected that the file is spread in blocks across the cluster of

machines, each having a relatively small part of the data. The more blocks you have in a

file, the more machines the data will positively spread. It is also expected that the more

CPU cores and disk drive that have a piece of data, the more parallel processing power

and faster results. This is the sole motive behind building large and wide clusters (Brad,

2011).

A cluster can scale wide or deep. When more machines are added to a cluster, then we

say the cluster is scaling wide. It is expected also that, the network scale appropriately.

 29

Another approach is scaling the cluster deep. In this approach, each machine in the

cluster is scale up with more disk drives and more CPU cores. Instead of increasing the

number of nodes, you increase the density of each machine. This approach however,

requires that you put yourself on a trajectory where more network I/O requirements

may be demanded of fewer machines (Brad, 2011).

The Name Node of the HDFS in a cluster holds all the file system metadata for the

cluster. It oversees the healthy state of each data node in the cluster and coordinates

access to them. It keeps track of the cluster storage capacity making sure that each

block of data meets its minimum defined replica policy. Name Node is the central

controller of HDFS. It does not hold cluster data itself but knows what blocks make up

a file and where these blocks are located in the cluster (Brad, 2011). Anytime client

wants to read data, the Name Node points the client to the Data Nodes they need to talk

to. Data nodes send heartbeats to Name Node at interval of 3seconds through a TCP

handshake using same port number that define the Name Node daemon. Every tenth

heartbeats of Data Node to Name Node is a block report that tells Name Node about the

blocks it has (Brad, 2011). This report makes Name Node build its metadata and ensure

that three copies of each block of data exist on different nodes in different racks (Brad,

2011). Name Node forms a crucial component of HDFS without which client will be

unable to read/write to HDFS and will be difficult to schedule map reduce jobs or other

applications on Hadoop framework. Anytime heartbeat communication stops between

Name Node and Data Node, it is presumed that such Data Node is dead and any data its

holding gone as well. Previous block reports received from the said Data Node will help

the Name Node to know which copies of blocks died along the node. Using rack aware

policy, the Name Node will re-replicate those blocks on other data nodes. The

limitation with this however, is when an entire rack of severs falls off the network due

to rack switch failure or power failure. It then means that the Name Node will instruct

the remaining nodes in the cluster to re-replicate all the data blocks lost in the rack. This

process may mean that hundreds of terabytes of data will need to begin traversing the

network (Apache, 2016).

To guard against failure of Name Node, Hadoop has a sever called the Secondary Name

Node. There is a common misconception however about the responsibility of Secondary

Name Node in Hadoop. Many think that its role is to provide availability backup for

Name Node but it is not the case. The Secondary Name Node occasionally connects to

 30

the Name Node (by default, every one hour) to fetch a copy of Name Node in-memory

metadata and files used to store metadata, which sometimes both daemons may be out

of sync. If perhaps the Name Node dies, the copy retained by Secondary Name Node

can be used to recover the Name Node but may not be the exact copy of what the Name

Node holds before failure. In a busy cluster however, some Hadoop administrators may

configure the Secondary Name Node to provide this responsibility much more

frequently than the default one hour setting (Apache, 2016).

For a client to retrieve a file from HDFS (say output of a job), the client will have to

contact the Name Node and ask for the block location of the file (Brad, 2011). The

Name Node will then release a list of each Data Nodes holding each block of file to be

retrieved. From the list released to the client, it picks the first data node and reads a

block at a time. Client will not progress to the next block until the previous block

completes (Apache, 2016).

There are situations where a data node may also need to read a block from another data

node in the cluster. This situation is possible if a data node has been asked to process a

data that it does not have locally. In this case, the data node will need to retrieve the

data from the data node that holds the block over a network before it can begin process.

This situation is another key area that makes Name Node rack awareness principle an

optimal solution for network performance. When the data node request from Name

Node the location of the block to be processed, the Name Node checks if a data node on

same rack has the block. If so, Name Node provides in-rack location from which to

retrieve the block of data. In this situation, the flow of data does not traverse two or

more switches to create a congested link between two racks. Data can be retrieved

quicker in-rack and processing begins early. Jobs are also completed much faster.

There are situations in Hadoop cluster that you need to add new racks full of servers

and network to an existing cluster. It is possible to have what is called “unbalanced

cluster” in this situation.

 31

Figure 2.12: Unbalanced Cluster (Brad, 2011)

Figure 2.12 gives a pictorial representation of what it means to have an unbalanced

cluster. As described in Figure 2.12, Rack 1&2 were the existing racks containing block

of files. When two new racks were added to the cluster, no block of data was spread

from the old racks to the new ones (Brad, 2011). This means that, the two new racks

will remain idle until they are loaded with files. Again, if data nodes in Rack 1&2 are

busy, they will have no choice than to assign jobs to data nodes in the new racks. The

data nodes in the new rack will therefore attempt to grasp data over the network to

begin processing. As a result, more network traffic and slower job completion times

occur. To avoid this situation of unbalanced cluster, Hadoop includes a nifty utility

called “balancer” in its framework. Balancer will look at difference in available storage

space between data nodes in the cluster and will try to provide balance to a certain

degree. New data nodes with free storage space will be detected by this utility and

copying of data blocks off data nodes with less storage space to nodes with free space

will begin. This scenario is described in Figure 2.13. This utility however, must be set

by the administrator anytime the need arises and anytime the command is cancelled, the

operation stops (Brad, 2011).

 32

Figure 2.13: Balanced Cluster (Brad, 2011)

2.5 Hadoop Ecosystem

Hadoop ecosystem provides furnishings that turns Hadoop framework into a

comfortable home for big data activities. Figure 2.14 gives an overview of some

components built on top of Hadoop framework. The description in Figure 2.14 shows

only few out of many components in Hadoop ecosystem. While some of these

components in the ecosystem are intended to supplement one or two of Hadoop‟s core

elements (HDFS and MapReduce), others are commercially available framework

solutions that provides more comprehensive functionality (Hortonworks, 2016).

Figure 2.14: Hadoop Ecosystem (Garcia, 2014)

 33

Hadoop ecosystem is in sections; data integration and government has mechanism for

data workflow/lifecycle, real-time data ingest and batch integration mechanism. The

data access section is for metadata management and allows the use of high-level

programming languages to access data in HDFS. Data management section is the core

of this framework. It stores, manages and process data. Security has mechanism for

authentication, authorization, accountability and data protection while operations

section is to allow addition of nodes to a cluster and for provisioning, managing,

monitoring and scheduling of applications. We will have a closer look at some of these

components.

Falcon:- This component is a data management framework for simplifying data

lifecycle management and processing pipelines on Apache Hadoop. It enables users to

configure, manage and orchestrate data motion, pipeline processing, disaster recovery,

and data retention workflows. Instead of hard-coding complex data lifecycle

capabilities, Hadoop applications can now rely on the well-tested Apache Falcon

framework for these functions. Falcon‟s simplification of data management is quite

useful to anyone building apps on Hadoop. Data Management on Hadoop encompasses

data motion, process orchestration, lifecycle management, data discovery, etc. among

other concerns that are beyond ETL. Falcon is a new data processing and management

platform for Hadoop that solves this problem and creates additional opportunities by

building on existing components within the Hadoop ecosystem (ex. Apache Oozie,

Apache Hadoop DistCp etc.) without reinventing the wheel (Hortonworks, 2016).

Sqoop/Flume:- These components are distributed, reliable and available service in

Hadoop ecosystem that efficiently collects, aggregate and move large amount of big

data into HDFS (Hortonworks, 2016). It is important to note that Hadoop does not

create data. Data is usually created in other systems and brought into Hadoop. There is

need for a mechanism therefore, that will help get data into Hadoop. Two of these

mechanisms are Sqoop and Flume. Sqoop is a mechanism to get data from relational

databases like Oracle, SQL server and MySQL. It is not just a mechanism to get data

into Hadoop but also help get data out of Hadoop to these relational database systems. It

has an input/output utility which helps in carrying out these operations. The word

„Sqoop‟ is from „Sq for SQL‟ and „oop for Hadoop‟. Most data brought into Hadoop

may not be structured data. To help get unstructured data into Hadoop therefore, Flume

is used. It has a simple and flexible architecture based on streaming data flows. It is

 34

robust and fault tolerant with tuneable reliability mechanisms and many failover and

recovery mechanisms. It uses a simple extensible data model that allows for online

analytic application (Hortonworks, 2016).

WebHDFS:- This component support users of HDFS in operations that includes

reading of files, writing to files, making directories, changing permissions and

renaming. It is the first class built-in component of HDFS that runs inside Namenodes

and Datanodes in the cluster (Hortonworks, 2016).

Pig:- This component is created by Yahoo. The purpose of this component is to provide

a high-level API that can be written in English-like statement using words like join,

soft, filter etc in Java codes. So, when a user writes in pig script and run it on Hadoop, it

internally produces MapReduce equivalent making life easier for the developer.

Hive:- Is a component created by Facebook and use on top of Hadoop ecosystem. It

was created to make Hadoop easier. Hadoop is created using Java language but most

users are familiar with SQL hence, the need for Hive. It is also a high-level language

created to assist developers familiar with SQ language.

HBase:- Is Google BigTable Inspired. Non-relational distributed database. Random,

real-time read/write operations in column-oriented very large tables (BDDB: Big Data

Data Base). It‟s the backing system for MR jobs outputs. It‟s the Hadoop database. It‟s

for backing Hadoop MapReduce jobs with Apache HBase tables (Hortonworks, 2016).

Knox:- It is a system that provides a single point of secured access for Apache Hadoop

clusters. The goal is to simplify Hadoop security for both users (i.e. who access the

cluster data and execute jobs) and operators (i.e. who control access and manage the

cluster). The Gateway run as a server (or cluster of servers) that serves one or more

Hadoop clusters (Hortonworks, 2016).

Ambari:- Is an open source mechanism that helps create a cluster, provision it, manage

and monitor the cluster. For example, this mechanism can be used to add a node to a

cluster.

Oozie:- Workflow scheduler system for MR jobs using DAGs (Direct Acyclical

Graphs). Oozie Coordinator can trigger jobs by time (frequency) and data availability

(Hortonworks, 2016).

 35

Other components in Hadoop ecosystem are summarized in Table 2.1. The components

are summarized based on their categories/functions.

Table 2.1: Hadoop Ecosystem

S/N Category Component

1. Distributed File System HDFS, Red Hat GlusterFS, Quanteast File System

(QFS), Ceph File System, Lustre File System,

Alluxio, GridGain, XtreemFS

2. Distributed Programming Apache Ignite, MapReduce, Pig, JAQL, Spark,

Storm, Flink, NetFlix, Apache REEF, Apache

Twill, Apache DataFu, Apache Hama, Pache Beam

3. NoSQL Databases

 Column Data Model Hbase, Cassandra, Hyper table, Accumolo, Kudu,

Parquet

 Document Data Model MongoDB, RethinkDB, ArangoDB

 Stream Data Model Eventstore

 Key-value Data Model Redis Database, Linkedln, RocksDB, OpenTSDB

 Graph Data Model ArangoDB, TitanDB

4. SQL-on-Hadoop Hive, HCatalog, Cloudera Impala, Facebook

Presto, Splout SQL, Apache Tajo, Phoenix, MRQL

5. Data Ingestion Flume, Sqoop, Facebook Scribe, Kafka, Netflix

Suro, Cloudera Morphline

6. Machine Learning Apache Mahout, Cloudera Oryx, MADLib, Apache

SystemML

7. Security Apache Sentry, Apache Knox Gateway, Apache

Ranger

8. Metadata Management Metascope

9. System Development Apache Ambari, Cloudera HUE, Apache Mesos,

Hortonworks HOYA, Apache Helix, Apache

Bigtop, Cloudbreak, Apache Eagle

10. Applications Apache Nutch, Apache OODT, HIPI Library

Source:- Hortonworks, 2016.

 36

2.6 Review of Related Literatures

Information technology world has been facing big data challenges for over few decades.

The term „big data‟ has been for over four decades, it‟s just that the definition has been

changing (Vinayak et al., 2012). In the 70‟s big meant megabytes; at a time, big grew to

gigabytes, then terabytes and petabytes. Today‟s IT notion has grown to exabytes and

zettabytes are presumably in the wings (Vinayak et al., 2012). To perform any

meaningful analysis on these voluminous and complex data therefore requires scaling

up the hardware/software platforms. Multicore CPU is one of the early attempts

developed to solve big data challenges.

Multicore allows a single machine has dozens of processing cores (Bekkerman et al.,

2012). These type of machine usually shared memory but only one disk. Multicore

machines have gained internal parallelism over the past few years and more recently,

the number of core per chip together with the number of operations a core can perform

has increased significantly (Dilpreet and Chandan, 2014). Until the last few years, these

hardware platforms together with their multithread operating systems are mainly

responsible for accelerating the algorithms for big data analytics. This platform allows

task to be broken down into threads with each thread executed in parallel on different

CPU cores (Dilpreet and Chandan, 2014). Most of the programming languages in use

also provided libraries to create threads and use CPU parallelism. The most popular

among these programming languages is the Java language because of its existence for

several years. A large number of software applications and programming environments

are well developed for this platform (Dilpreet and Chandan, 2014).

Though Multicore CPUs is one of the earliest approaches to solving problem of massive

data, its major drawback is in the limited number of processing cores and the primary

dependence on system memory for data access. System memory will always be limited

to a few of hundred gigabytes and this limitation affects the size of data that a CPU can

process efficiently (Dilpreet and Chandan, 2014). At any point a data size exceeds

system memory, access to disk becomes a big problem and even if data fits into a

system memory, CPU core will attempt to process data at a much faster rate than the

RAM speed hence; creating memory access bottleneck.

 37

The development of CPUs however, is not at same pace with Graphic Processing Units

(GPUs) (Dilpreet and Chandan, 2014). The number of cores per CPU is in double digits

with processing power close to 10Gflops when compared with a single GPU which has

more than 2500 processing cores with 1000Tflops of processing power (Dilpreet and

Chandan, 2014). This massive parallelism in GPU makes it more appealing option for

parallel computing applications. GPUs which were primarily intended for graphical

operations such as video, image editing, and accelerated graphic processing became a

general-purpose computing on graphic processing units (GPGPU). Recently, Nvidia

launched Tesla series of GPUs which are specially designed for high performance

computing. Nvidia has released Compute Unified Device Architecture (CUDA)

framework that allows GPU programming accessible to all programmers without

delving into the hardware details (Dilpreet and Chandan, 2014). GPU architecture

usually has two levels of parallelism. At first level, there are several multiprocessors

(MPs) and within each of these multiprocessors are several streaming processors (SPs).

GPU programs are normally broken down into threads which are executed on SPs and

these threads are grouped together to form thread blocks that run on a multiprocessor

(Dilpreet and Chandan, 2014). Communication takes place between threads within a

block. Each thread has access to small but extremely fast shared cache memory and

larger global main memory. Threads from different block cannot communicate each

other as they may be scheduled at different times. This implies that, any job to be run

on GPU has to be broken down into blocks of computation that can run independently

without communicating with each other (Hong and Kim, 2009). GPUs have been used

in the development of faster machine learning algorithms. GPUminer is a good library

used to implement machine learning algorithms on GPU architecture using CUDA

framework (Dilpreet and Chandan, 2014).

Graphic Processing Unit (GPU) also has a major drawback of limited memory. Even

with 12GB memory per GPU, which is the current architecture (Dilpreet and Chandan,

2014); it cannot handle terabyte scale data. At any point data exceeds this size;

performance automatically decreases significantly as the disk access becomes a

bottleneck. Also, there are limited number of software and algorithms available for

GPUs (Dilpreet and Chandan, 2014). This is due to the way task is broken down in

GPU hence, not many existing analytical algorithms are easily portable to GPUs.

 38

Peer-to-peer network was another means intended by researchers to break through the

challenges of big data (Steinmetz and Wehrles, 2005). Peer – to – peer network

involves the connection of millions of machines in a network (Milojicic et al., 2003). It

is a decentralized and distributed network framework where nodes serve as consume

resources for big data analytics. It is one of the oldest distributed computing platforms

which uses Message Passing Interface (MPI) as it communication protocol to

communicate between peers (Dilpreet and Chandan, 2014). Each node in the network

can store data instance and the network can scale out to millions of nodes. One main

feature of MPI which is the standard communication paradigm used in this network is

its state processing process. Processes can live so long the system does not shutdown

and there is no need to read same data again and again as in the case of other

frameworks like MapReduce (Dilpreet and Chandan, 2014). All parameters in a P2P

network are preserved locally which makes it suitable for iterative processing (Seivert

and Casanova, 2004). MPI is also a master/slave paradigm (Dilpreet and Chandan,

2014). When deployed as a master – slave model, the slave machine can become the

master for other processes. This feature is extremely useful for dynamic resource

allocation where the slaves have large amounts of data to process (Dilpreet and

Chandan, 2014). Although MPI in Peer – to – Peer network seems to be suitable for

developing algorithms for big data analytics, its primary drawback is its inability to

handle faults in a network. MPI has no mechanism to handle fault hence, when used on

top of a P2P network which is itself completely unreliable hardware; a node failure may

cause the whole system to shut down. With newer frameworks like Hadoop, MPI is no

longer widely used.

Multicore CPU, GPUs and P2P network together with databases like Sybase, Informix,

oracle and ingress where however, early attempts to solve big data challenges. Things

took different turn with dynamic computations over ever-larger amounts of data

becoming a necessity. SQL became inapt for the challenge, unstructured data needed to

be analysed also to gain data science driven insights. This time gave birth to real „big

data‟ era with the introduction of Google File System and MapReduce by Google and

subsequent release of Classic Hadoop by Yahoo.

Apart from Yahoo, other systems have recognized limitations in the classic Hadoop

architecture and have provided alternative models to these limitations. Some of the

efforts which closely resemble YARN are COSMOS, Mesos, Corona and Omega for

 39

Microsoft, Twitter, Facebook and Google respectively (Chaike et al., 2008; Hindmand

et al., 2011; Facebook, 2012; Schwarzkopf et al., 2013). Though these systems share a

common inspiration of high-level goal of improving scalability, latency and

programming model flexibility, they all have their architectural differences. These

differences are most times in diverse design priorities and historical contexts. For

instance, Mesos architectural design aim at providing a scalable and resilient core so

that various frameworks can efficiently share clusters (Benjamin et al., 2012). Due to

the emergence of diverse frameworks, Mesos design philosophy is to provide a minimal

interface that will enable efficient resource sharing across frameworks so that, control

about task scheduling and execution can be pushed to the frameworks (Benjamin et al.,

2012). By pushing control to the frameworks, Mesos will allow each framework to

implement its approach to solving problems in the cluster (for instance, achieving data

locality and dealing with fault). Secondly, this approach will keep the design of Mesos

simple and will help minimize the rate of changes required of the system. This design

philosophy therefore, is necessary to make Mesos scalable and robust. Figure 2.15

shows the main components of Mesos.

Figure 2.15: Mesos Architectural Design (Benjamin et al., 2012)

Mesos has a master process responsible for managing slave daemons running on each

cluster node, and also has frameworks that run tasks on these slaves (Benjamin et al.,

 40

2012). The master daemon uses resource offers to achieve fine-grained sharing across

frameworks. Resource offer is a list of free resources available on multiple slave nodes.

Based on an organizational policy like fair sharing or priority, the master daemon in

Mesos decides how many resources to be allocated to each framework. Each framework

that will run on Mesos has a scheduler that registers the master to be offered resources,

and has an executor process that launches slave nodes to run the framework‟s tasks

(Benjamin et al., 2012). The scheduler in each framework selects which offered

resources to use. Once a framework accepts an offer, it passes Mesos a description of

the tasks it wants to launch on them. Figure 2.16 gives an illustration of how framework

gets scheduled to run tasks.

Figure 2.16: Resource offer in Mesos (Benjamin et al., 2012)

In the first step, you notice Slave_1 reports to the Master that it has 4GB memory and

4CPUs. The Master daemon in Mesos now invokes the Allocation_Module which in

turn informs framework that it has been offered all available resources. In the second

step, the Master sends a resource offer describing these resources to the framework. The

framework‟s scheduler in step 3 then replies the Master daemon with information about

2 tasks to be run on the slave node (2CPUs, 1GB RAM) and (1CPU, 2GB RAM) for

task 1 and task 2 respectively. In the final step, the Master sends the tasks to the slave

 41

which allocates appropriate resources to the framework‟s executor (Benjamin et al.,

2012).

Though the MapReduce frameworks of both Mesos and YARN have schedulers at two

levels, they also have their significant differences. Mesos‟ architectural design

implements an offered-based resource manager while YARN has a request-based

resource manager (Hindman et al., 2011). Mesos leverages a pool of central schedulers

just like the type obtained in classic Hadoop but, YARN uses a per-job intra-framework

scheduler which allows AM to request for resources depending on the criteria which

includes location, CPU and memory demand. Allocation of resources in YARN are late

binding, where application framework is obligated to use the resources provided by the

container but does not have to apply them to a logical task on request. This

framework/application decides which task to run with these resources. This is achieved

through its own internal, second level scheduler.

Microsoft developed a computing platform called Collaborative Online Social Media

Observatory (COSMOS) for storing and analysing massive data sets. The design

philosophy aimed at running large clusters consisting of thousands of commodity

servers (Chaike et al., 2008). Disk storage in this framework is distributed so that each

server has one or more direct-attached disks. The main objectives behind COSMOS

platform are;

i. Availability:- To avoid whole system outages, Cosmos platform is resilient

to multiple hardware failures. It does this by replicating data many times

throughout the system with file metadata being managed by a quorum group

of 2f + 1 servers so as to tolerate f failures (Chaike et al., 2008).

ii. Reliability:- This framework is design in a way that it recognizes transient

hardware conditions so as to avoid corrupting the system. A periodic scrub

to detect corrupt or bit rot data is performed on disk data before it is used.

Also, system components are check-summed end-to-end and a mechanism is

applied to crash faulty components (Chaike et al., 2008).

iii. Scalability:- Cosmos is capable of storing and processing petabytes of data

and can accommodate more servers to the cluster without impacting

performance.

 42

iv. Performance:- This framework is capable of running thousands of individual

servers with data distributed among these servers. Each job is broken down

into small units of computation and distributed across a large number of

CPUs and storage devices.

v. Cost:- It is cheaper to build, operate and expand than the traditional

approaches.

Figure 2.17: COSMOS Software Layers (Chaike et al., 2008)

Cosmos platform has three basic components as described in Figure 2.17; COSMOS

storage, COSMOS execution environment and SCOPE. COSMOS storage system is an

append-only file designed to reliably and efficiently store extremely large sequential

files (Chaike et al., 2008). The platform is optimized for large sequential I/O. All writes

are appended only with data distributed and replicated for fault tolerance. Data are also

compressed to save storage and increase I/O throughput (Chaike et al., 2008).

COSMOS store is designed such that it provides a hierarchical namespace that stores

sequential file of unlimited size. A file is composed of sequence of extents. Extent is a

unit of space allocation which are most times in few hundred megabytes in size (Chaike

et al., 2008). A data within any extent consist of a sequence of append blocks with

 43

block boundaries defined by application appends. Append blocks are also few

megabytes in size and it contains a collection of application-define records stored in a

compressed form with compression and de-compression done transparently at the client

side (Chaike et al., 2008). The second component of COSMOS platform is the

COSMOS Execution Environment. The lowest level of this environment provides only

the ability to run arbitrary executable code on a server (Chaike et al., 2008). Through

the execution protocol of this platform, clients can upload application code and

resources onto the system. A recipient server then assigns the task a priority and

executes it at an appropriate time. Building an efficient and fault tolerant application at

this lowest level is difficult, error prone, time consuming and tedious (Chaike et al.,

2008). In COSMOS therefore, applications are programmed against execution engine

that provides high-level program interface and a runtime that handles optimization

details, data partitioning, parallelism, fault tolerance and resource management (Chaike

et al., 2008). Job Manager (JM) is the runtime component of the execution engine. It is

the central and coordinating process for all processing vertices with the application.

Structured Computations Optimized for Parallel Execution (SCOPE) is the third

component of COSMOS platform. It is a high-level scripting language for writing data

analysis jobs in COSMOS. SCOPE compiler and optimizer help translate scripts to

efficient parallel execution plans. It resembles SQL but has the expression of C-sharp.

This design choice has several advantages. Its SQL resemblance reduces the learning

curve for users and eases porting of existing SQL scripts into SCOPE. It C-sharp

expression can use C-sharp library hence; customer C-sharp classes can compute

functions off scalar values or manipulate whole row sets (Chaike et al., 2008).

COSMOS architectural framework closely resembles that of YARN in terms of storage

and computer layers, their differences lies in the use of centralized resource manager.

Though this framework have no central resource manager, its architectural design

seems to be used for a single application type; SCOPE. If our desire is for a narrower

target, COSMOS can leverage many optimizations such as native compression, indexed

files and co-location partitions of datasets to speed up SCOPE.

Corona as earlier discussed, separates cluster resource management from job

scheduling. It introduces a cluster manager whose sole responsibility is to track nodes in

the cluster and to track the amount of free resources (Shouvik and Daniel, 2013). It has

 44

a dedicated JobTracker for each job and can run either in the same process as the client

(for small jobs) or as a separate process in the cluster (for large jobs). With Corona,

Facebook measured some improvements over classic Hadoop. Some of these metrics

includes average time to refill slots (Shouvik and Daniel, 2013). This metric gauges the

amount of time a map/reduce slot remains idle on a TaskTracker. There was

improvement in Corona compared to similar period for MapReduce. Cluster utilization

was another improvement in Corona over Classic Hadoop. Cluster utilization improved

along with refill-slot metric. Classic Hadoop system was also found to be unfair in its

allocation and a dramatic improvement was seen with Corona‟s resource scheduling

fairness (Shouvik and Daniel, 2013).

The approach used by Corona is a push based approach, which is different to the

heartbeat based control-plane framework approach in YARN and other frameworks.

Though latency/scalability tradeoff of these two frameworks deserves a detailed

comparison, heartbeat communication protocol negotiates and monitors the availability

of a resource in a cluster. It is intended to indicate the health of a machine hence;

consideration between overload in YARN due to constant heartbeat between resource

manager and other components and efficient fault tolerance in Corona since it is push

based will have to look at.

Omega framework uses a shared state approach for its scheduling process, where each

scheduler is granted full access to the entire cluster so that they can compete in a free-

for-all manner, use opportunistic concurrency control to mediate clashes when they

update the cluster state (Malte et al., 2013). Omega has no central resource collector; all

of its allocation decisions take place in the scheduler. Omega maintains a resilient

master copy of the resource allocation in a cluster called cell state. Each scheduler in

this framework has a private, local, frequently-updated copy of cell state for the purpose

of scheduling decisions (Malte et al., 2013). Each scheduler sees the entire state of the

cell and can lay claim to any available resources in the cluster provided it has

permission and priority to do so. Any time a scheduler makes a placement decision,

update operation is done in the shared copy cell state in an atomic commit (Malte et al.,

2013). It is expected that one of the commit succeed in the case of conflict. But,

whether or not the transaction succeeds, the scheduler will re-sync its local copy of cell

state afterwards and if necessary, re-runs its scheduling algorithm and tries again (Malte

et al., 2013).

 45

Omega schedulers operate completely in parallel; it does not have to wait for jobs in

other scheduler and no inter-scheduler head of line blocking. To guard against any

conflict causing starvation in the cluster, the schedulers uses incremental transactions.

The scheduler uses all-or-nothing transaction to achieve gang scheduling where either

all tasks of a job are scheduled together or none of the tasks is scheduled. If none of the

task is scheduled, the scheduler must try to schedule the entire job again (Malte et al.,

2013). This process helps to avoid resource hoarding since a gang-scheduled job can

pre-empt lower-priority tasks once sufficient resources are available and its transaction

commits. In Omega framework, different schedulers can implement different policies

but they must agree on what resource allocations are permitted, like a notion of whether

a machine is full, common scale for expressing the relative importance of enforcement

engine for high-level cluster-wide goals. The framework relies on the emergent

behaviours that result from decisions of individual scheduler hence; fairness is not the

sole concern of this framework but the need to meet business requirements (Malte et al.,

2013).

High Performance Cluster Computing platform is another distributed and parallel data

processing system for big data. It was developed in 2000 by LexisNexis Risk Division

and released as an open-source project in 2011 (Michael et al., 2014). It is a data-

intensive computing system platform created initially to reply to business needs of

storing large volume of data (Camille, 2015). When HPCC system became fully

operational, LexisNexis wanted to market it but Hadoop has already been implanted

and widely used by companies (Patrick, 2011). Contrast to Hadoop platform, HPCC

system is programmed in C++ language and executes natively on top of operating

system leading to more predictable latencies and faster execution (Patrick, 2011).

Enterprise control language is specifically designed for data management and query

processing in HPCC system. The language is optimized for data-intensive operations,

declarative, non-procedural and data flow oriented tasks. It uses syntax that is modular,

reusable, extensible and highly productive (Camille, 2015).

HPCC system has two basic components; Thor Data Refinery Cluster and Roxy Rapid

Data Delivery Cluster. Thor is a back-end batch oriented data workflow processing and

analytics system equivalent to MapReduce in Hadoop framework (Camille, 2015). This

component analyses and indexes huge amount of data. It uses a distributed file system

called Thor DFS with parallel processing capability credit to its master/slave node

 46

system (Camille, 2015). Roxie component of HPCC system is a front-end real-time data

processing and analytics system. The component allows for real-time and analytics of

data through parameterized Enterprise Control Language (ECL) queries (Camille,

2015). Roxie is like Hbase and Hive in Hadoop ecosystem (Anthony, 2015). It works

with key/value store and is multi-threaded. It implements a master/slave node system

like Thor. Roxie employs a distributed indexed-based file system called Roxie DFS

with an index file to store file locations. The server to store file location and job

scheduler in this component is Deli server, which function as system data store for job

work unit information and provides naming services for distributed file systems

(Michael et al., 2014). With the introduction of Thor DFS, cluster can now scale from

single node to thousands of nodes (Camille, 2015). However, neither data locality nor

elastic scheduling needs of map and reduce phases were expressible with this

framework. Perhaps the reason is that the framework was originally created to support

MPI style and HPC application model and to run coarse-grained non-elastic workloads.

Disco is another attempt towards storage and processing of massive data. It was

developed by Ville Tuulos in 2008 as a project of the Nokia Research Centre (Camille,

2015). The framework can distribute and replicate data, and also schedules jobs. It has

tools that can index billion of data points and query them real-time (Camille, 2015). The

framework can also analyse chunks of data in parallel and will collect intermediate

results into a final result with MapReduce paradigm created by Google (Camille, 2015).

Just like the Hadoop framework, Disco system is also based on a node system with

master/slave architecture as described in Figure 2.18.

 47

Figure 2.18: Disco Architecture (Prashanth et al., 2011)

Disco core is written in Erlang (a functional language that allows fault tolerance for

distributed applications) and it is the first big data framework that implements Python

language jobs (Prashanth et al., 2011). This framework was designed to process larger

applications like web services in a way that tasks can be delegated to a cluster

independently from the core application. It has a Python API called disco.ddfs with two

components; REST-style Web API which helps in job control and Easy-to-use Web

Interface that is used for status monitoring (Prashanth et al., 2011). The worker protocol

in Disco makes it easier to accept jobs written in other languages. It has a file system

called Disco Distributed File System (DDFS). This file system adapt to MapReduce

architecture and allow storage and processing of massive data such as structured data

(worksheet and databases SQL) and unstructured data (text, documents, log of

applications, sensors, pictures and videos).

DDFS has a special tool called tag-based file system which tags different files (Camille,

2015). For example, tags can be used to timestamp different versions of data or to

denote who owns a data or from which source it came from. This way, DDFS provides

flexible means to manage terabytes of data (Prashanth et al., 2011). This file system is

also schema-free which can be used to store arbitrary data provided the data are not

fewer than 4KB or very often updated (Prashanth et al., 2011). It is horizontally

scalable with ability to add new nodes through Disco web interface. Disco framework

 48

has DiscoDB as its own database system and Discodex which is a web front-end that

allows indexing of data originating from MapReduce operations (Camille, 2015).

Spark is an in-memory distributed data analysis platform (Telmoda, 2015). The primary

aim of this framework is to speed up batch analysis jobs, iterative machine learning

jobs, interactive query and graph processing tasks (Telmoda, 2015). It is a next

generation paradigm for big data processing developed by researchers at University of

California, Berkeley (Anthony, 2015). Spark was designed as an alternative to Hadoop

to help overcome disk I/O limitations and to improve performance. The framework

allows data to be cached in memory which helps reduce disk overhead in Hadoop for

iterative tasks (Anthony, 2015). Spark uses Resilient Distributed Datasets (RDDs)

which are great for pipeline parallel operators for computation and are also immutable,

allowing for fault tolerance based on lineage information (Telmoda, 2015). Spark

supports a rich set of higher-level tools as shown in Figure 2.19. These tools include

Shark SQL for SQL and structured data processing, Spark Streaming for development

of parallel applications, MLib for machine learning and GraphX for graph processing

(Apache, 2016).

Figure 2.19: Spark Framework (Telmoda, 2015)

The main abstraction of this framework is its resilient distributed datasets which are

immutable, partitioned collections that can be created through various data-parallel

operators. Each of these RDDs can be a collection stored in an external storage system

like HDFS or a derived dataset which is created through the application of operators to

other RDDs. There are three options for persist RDDs; in-memory storage serialized

data (with limited space), in-memory storage as de-serialized Java objects (fastest, JVM

can access RDD natively) or on-disk storage (RDD too large to keep in memory and its

 49

costly to recompute). The main goal of the framework is to treat streaming

computations as a series of deterministic batch computations on small time interval

(Telmoda, 2015). Any input data received at each interval of computation is reliably

stored across clusters to form dataset for that interval. Once the time slice completes,

the dataset is processed through deterministic parallel operation like map and reduce

operations. The operation produces new datasets representing either program outputs or

intermediate state and these outputs are stored in RDDs (Zaharia et al., 2012).

Storm is a free and open source distributed real-time computation system for big data.

The framework focuses on stream processing or better put, complex event processing

(Telmoda, 2015). It uses a fault tolerant method to perform pipeline multiple

computations on an event as it flows into a system (Apache, 2016). It can be used to

transform unstructured data, as it flows into a system (into desired format). Just like

classic Hadoop is known for batch processing, Storm reliably processes unbounded

streams of data in distributed real-time computation. The framework has many use

cases like online machine learning, real – time analytics, ETL and distributed RPC

(Telmoda, 2015).

Figure 2.20: Storm framework system architecture (Telmoda, 2015)

Figure 2.20 shows Storm system architecture with Nimbus (just like JobTracker in

Hadoop), Supervisor (manages worker nodes), Zookeeper (stores metadata) and UI (for

Web-UI). Two type of nodes exist in Storm cluster; master node which runs the daemon

„Nimbus‟ and is responsible for distributing code around the cluster, assigning tasks to

worker nodes and monitoring of failures (Apache, 2016). The slave (worker) node runs

the daemon „Supervisor‟ which receives work assigned to it, start and stops worker

processes as instructed by Nimbus (Apache, 2016).

 50

Apache Giraph is also a big data tool running on top of Hadoop framework (Bakshi and

Sonali, 2016). It is an open source version of Google Pregel most suitable for large

scale graph processing. Examples of these graph proceesing are analysis of

interconnected web (for page ranking) or social media (like facebook and twitter)

interaction that are only graph of interconnected vertices either by web page to another

through the edge (hyperlink) or users connected to each other through edges

representing friendship or some kind of fans or business (Bakshi and Sonali, 2016).

A framework close to YARN architecture is the data processing stack designed by

Spark developers called Berkeley Data Analytics Stack (BDAS) shown in Figure 2.21.

This stack has Tachyon at its lowest level which is based on HDFS (Dilpreet and

Chandan, 2014). It is fault tolerant and enables file sharing at memory-speed (data I/O

speed comparable to system memory) across a cluster (Dilpreet and Chandan, 2014).

Figure 2.21: An illustration of Berkeley Data Analysis Stack and its various

components (Dilpreet and Chandan, 2014)

The second layer of this stack has a component called Mesos which is a cluster manager

that provides efficient resource isolation and sharing across distributed

applications/frameworks (Dilpreet and Chandan, 2014). This component also supports

Hadoop, Spark, Aurora and other applications on a dynamically shared pool of

resources with scalability of tens of thousands nodes (Anthony, 2015). Its API is

available in Java, Python and C++ and it has multi-resource scheduling capabilities.

The third layer has Spark that takes the place of Hadoop MapReduce and on top of this

layer are Spark wrappers; Stack Streaming, MLib, Stack SQL, GraphX, BlinkDB for

queries with bounded errors and bounded response time on very large data, MLbase for

distributed machine learning library based on Spark (Kraska et al., 2013).

 51

Cloudera Impala is another big data analytics that helps enterprise exploit benefits of

SQL tools in achieving real-time analytics potentials when working with massive data

that are either structured or unstructured (Kornacker et al., 2015). This framework can

be used by business analyst and IT experts over a range of supported data types and

large volume of data to interact in real time with a HBase or a HDFS data store for the

sake of analytics (Bakshi and Sonali, 2016). Interestingling, Cloudera Impala can be

integrated into Hadoop stack. Figure 2.22 shows Cloudera Impala‟s position in Hadoop

stack.

Figure 2.22: Cloudera Impala status in Hadoop Stack (Bakshi and Sonali, 2016)

This framework has flexible data model, support real-time interaction through Cloudera

Enterprise RTQ (reduces response time of queries to seconds unlike HiveQL or Map

Reduce), offers effective security measure through Kerberos authentication support

(Bakshi and Sonali, 2016).

Pentaho is an open source business intelligence framework which provides range of

tools that can help customers manage their business better (Pasula, 2016). These tools

include mining tools, online analytic processing options, dashboard applications and

data integration tools. Pentaho is a multi-purpose business intelligence platform helping

 52

enterprise in analysing, integrating and presenting data through comprehensive report

and dashboards. Business analytics now rely on Pentaho to identify barriers that block

company‟s ability to extract value from data (Pasula, 2016). It was initially developed

as a report generating engine but branch into big data analytic tool to help enterprise

have insight into their business (Vidhya et al., 2014). It was integrated with most

NoSQL databases like Cassandra and MongoDB. This tool can fetch IT and business

users together through classic sorting and sifting tables with firmly coupling data

integration thereby permitting both IT and business users access, build, virtualize and

analyse data that makes an impact on business results (Vidhya et al., 2014). Pentaho

helps in reducing plan time and complexity needed to acquire and deploy big data

analytics thus helping companies to know business value of a large bit of diverse data

(Vidhya et al., 2014). It does this through the execution of data and preparation of big

data and traditional data types in any infrastructure, along with the range of analytics

from data dictionary to production analytics (Vidhya et al., 2014). Pentaho

complements Greenplum distribution of Hadoop which provides an end to end data

integration and business intelligence suite that enables easy to use, graphical

environment for managing data movement in and out of Hadoop. The integration of

Pentaho into Hadoop framework therefore, makes Hadoop a more robust framework for

big data analytics.

Jaspersoft is also an open source business intelligence platform suitable for better

decision making with the help of highly interactive reports, analytics and dashboards.

Though initially designed for small business, Jaspersoft is now moving into big data for

huge businesses (Vidhya et al., 2014). Jaspersoft server provides software that utilizes

data from diverse storage platforms like MongoDB, Cassandra and Redis. To gain

access to HBase, the Hive connector is provided by Jasper reports which is well

represented by Hadoop (Vidhya et al., 2014). Jaspersoft like Pentaho is an open source

business intelligence platform. Though this platform has helped in providing big data

analytics solutions in business, it is not an all-encompassing big data framework. In

October 24
th

 2011 at San Franscisco, Jaspersoft announces new Hadoop-based big data

analytics solution (TIBC, 2011) making the platform part of Hadoop cluster. With this

development, Hadoop is still a more robust big data framework.

Another big data platform is Splunk. Splunk is a log analysis platform. The platform

can be used with other databases like SQL (Vidhya et al., 2014), specifically used in

 53

monitoring of ordered and unordered machine data. As a business intelligence tool,

Splunk with stored data can visualize data (Siya, 2013). Splunk can define data emitted

by machines in great volumes (Vidhya et al., 2014). Splunk makes machine-generated

data accessible, usable and valuable to users. It does this by organizing and extracting

real-time insights from huge amounts of machine data provided from servers, sensors,

websites, social media platforms and open source data stores. Once these data are in

Splunk, the platform searches, monitors, reports and analyse the data without

considering how unstructured, huge or diverse the data may be (Vidhya et al., 2014).

Splunk DB has a powerful connectivity for real-time connection between one or many

relational databases. It is also used for bi-directional connectivity with Hadoop (Vidhya

et al., 2014).

Karmasphere is also a big data tool originally developed as a set of plug-ins for Eclipse

(Vidhya et al., 2014). It is a specialized IDE for creating and running Hadoop jobs

easily. One major feature of Karmasphere is that, it shows test data at each step while

setting up workflow, thus making users understand the outlook of temporary data as it

is been analysed and reduced (Vidhya et al., 2014). Karamasphere Analyst is a tool in

Karmasphere developed to ease procedure of plotting through data in Hadoop cluster.

Just like subroutine that uncompressed zipped log files, Karmasphere Analyst has

features for creating good Hadoop jobs (Vidhya et al., 2014).

IBM is not an exception in the development of big data frameworks. One of the big data

frameworks develop by this company is IBM Netezza. Netezza can be seen as either a

storage or computing framework. The reason being that, it provides both data

warehouse as well as analytics appliance (Bakshi and Solani, 2016). This framework is

a shared-nothing architecture premised on Asymmetric Massively Parallel Processing

(AMPP). It is two-tier architecture as described in Figure 2.23a and 2.23b.

 54

Figure 2.23a: IBM Netezza Tier -1 (Francisco, 2011)

Figure 2.23b: IBM Netezza Tier -2 (Francisco, 2011)

This framework handles massive complex queries very quickly. The first teir as shown

in Figure 2.23a employs a high performance Linux based symmetric multi-processing

host which is responsible for compiling data query jobs so as to generate execution

plans (Francisco, 2011). It does this by breaking down the original query into sub-task

that is suitable for parallel execution. The suitable sub-tasks are distributed over the

second tier for execution. As described in Figure 2.23b, the second tier contains

hundreds of intelligent snippet processing blades called S-Blades that form the

Massively Parallel Processing (MPP) engine of the framework (Bakshi and Solani,

2016).

Nephele – PACT framework is also a big data framework that offers Parallelization

Contracts (PACTs) which are generalization of map and reduce primitive of the

MapReduce framework (Sharanjit et al., 2014). This framework helps handle complex

 55

data flows in a cluster. Dissimilar with execution strategy obtained in MapReduce, the

PACT compiler generates multiple execution plans from where it selects optimal one.

These execution plans are evaluated and stored as direct acyclic graphs (DAG) where

the vertices of DAG are instances of PACT, while the edges denote data transportation

mechanism between the PACTs. This programming model centred on key/value pairs

and Parallelization Contracts (PACTs). The PACTs are second-ordered functions that

describe properties of the input and output of the associated first-ordered functions

(Sharanjit et al., 2014).

Microsoft Dryad is another high performance, distributed computing framework that

supports writing and execution of data-centred parallel programs (Dongyao et al.,

2017). This framework allows programmers to use resources in a cluster to run data-

parallel programs. It is possible to write simple programs which can be executed

concurrently on thousands of machines while hiding the complexity of concurrency

with this framework. The language used for execution is DryadLINQ (Yuan et al.,

2016). DryadLINQ is a sequential program which composed of LINQ expressions

performing arbitrary side-effect-free transformations on datasets (Yuan et al., 2016).

This language translates data-parallel portions of a program into a distributed execution

plan which is passed to the Dryad execution platform. Figure 2.24 describes Dryad

system architecture.

Figure 2.24: Dryad Architecture (Yuan et al., 2016)

Dryad has a centralized job manager responsible for job execution. The job manager

instantiate a job dataflow graph, schedules processes on cluster computer, provides fault

 56

tolerance for failed or slow process by re-executing them, monitors job and collects

statistics and also, transform job graph dynamically base on user‟s supplied policies. A

task scheduler helps control the cluster by managing batch queue of jobs and executing

them at a time subject to cluster policy (Yuan et al., 2016).

Condor is another batch system framework presented by Tannenbaum (2010) for high

throughput computing. This system is used extensively in High Energy Physics (HEP)

community for management of computing tasks on dedicated compute farms. The

scalability of Condor makes it an important consideration for administrators of large

and expanding compute farms that depend on this framework to integrate large

collections of computer across multiple institutions and end users with increasingly

large workflows to process. HEP community has been a large driver in recent effort to

advance the scale at which Condor can operate due to its scalability features (Bradly et

al., 2011). The architectural design of Condor has a pool defined by a daemon called

collector. Collector serves as a registry for the rest of distributed daemon in Condor

pool. Job execution nodes in the pool are represented by a daemon called startd;

responsible for carrying out job execution requests. Startd helps divide machine into

one or more logical sub-divisions called execution slots. A collection of jobs that have

been submitted by users is maintained by another daemon called schedd. This daemon

obtains a lease to run jobs on an execution slot. The lease is gotten from negotiator,

which is also a daemon responsible for pool-wide user priority management and for

matchmaking (finding compatible execution slots for resource request). Schedd has

pool of jobs submitted by users and is also responsible for communicating with other

daemons in Condor pool for running of jobs (Tannenbaum, 2010). Clients communicate

with Schedd for job management and operations such as submitting, modifying,

examining and aborting jobs. A Condor pool can have more than one Schedd, each

running on a separate computer. For manageability and ease of use however, few

number of Schedds are required (Tannenbaum, 2010).

It has been observed by users of Condor that, instantiating another schedd involves

numerous steps which include the purchase of new hardware and configuring software

that will interact with the daemon. In this framework, the status of every job is logged

to files on disk so that workload managers can rely on the semantics of queued jobs

(same job will not run in a multiple instances at the same time and once a job is

submitted, it will not disappear from the queue without atleast one record in the job‟s

 57

even log indicates that it is finished or cancelled). Because of this semantic guarantee

about job logging, transactions requiring durability are synced to the disk. Syncing

transactions to disk however can be quite expensive hence; in many situations, this has

been found to be a limiting factor for scalability of schedd.

A dispersed cloud infrastructure that uses voluntary edge resources for computation and

data storage was presented by Jonathan et al., (2017). This system called “Nebula”

described a light-weight architecture that allows distributed data intensive computing

through a number of optimizations which include location-aware data and computation

placement, replication and recovery (Jonathan et al., 2017). The design goal of this

framework is to support distributed data-intensive computing, location-aware resource

management by enabling efficient execution of distributed data-intensive applications

and sandboxed execution environment. The architectural design is shown in Figure

2.25.

Figure 2.25: Nebula System architecture (Jonathan et al., 2017)

The system consist of volunteer nodes that donates computation and storage resources

along with a set of global and application specific services which are hosted on

dedicated, stable nodes that has four major components; Nebula Central, Nebula

Monitor, DataStore Master and ComputePool (Jonathan et al., 2017). Nebula Central

serves as the front-end daemon for Nebula ecosystem providing simple and easy-to-use

 58

web-based portal so that volunteers can join the system and application writers can also

inject applications into the system. DataStore component of this system is a simple per-

application storage service which is used to support efficient and location-aware data

processing in Nebula. Each DataStore has a volunteer node that stores actual data and a

DataStore Master that keeps system metadata for data placement decisions (Jonathan et

al., 2017). ComputePool component of Nebula provides per-application computation

resources with the help of volunteer compute nodes. CompoutePool Master coordinates

the execution of applications within the compute nodes. The compute nodes access and

retrieve data with the help of DataStore and they are assigned tasks by ComputePool

based on application specific computation requirements and data location. Nebula

monitor monitors volunteer nodes and network characteristics. It checks node

computation speeds, memory and storage capabilities, network bandwidth and also

checks health information of each node and possible link failures (Jonathan et al.,

2017). Figure 2.26 describe the control and data flow and steps involved in executing a

task on the Nebula framework.

Figure 2.26: Control and data flow for job execution in Nebula system (Jonathan et al.,

2017)

To execute a task (application), the application will have to be injected into the system

via Nebula Central and the input data placed within Nebula DataStore. The compute

nodes contact ComputePool periodically and ask for tasks. Once a task is assigned to

 59

compute node, the node will download the application code and the input data from the

DataStore and then starts computation. At the end of computation, the outputs are

uploaded back to the DataStore. Finally, bandwidths between DataStore and compute

node together with location of output files are provided to the ComputePool Master

(Jonathan et al., 2017). A prototype running across edge volunteers on PlanetLab

testbed was carried out with this system and an evaluation of MapReduce on Nebula

was performed and compared against other edge-based volunteer systems. Nebula

MapReduce significantly outperformed other edge-based volunteer systems (Jonathan

et al., 2017)

Outerhout et al., (2013) proposed a distributed, low latency scheduling framework

which demonstrates a decentralized, randomized sampling approach for near-optimal

performance while avoiding throughput and availability limitations of a centralized

design. Outerhout et al., (2013) presented Sparrow; a stateless distributed scheduler that

adapts the power of two choices load balancing technique to the domain of parallel task

scheduling. The choices require scheduling each task by probing two random servers

and placing task on server that is less busy or has fewer queued tasks (Outerhout et al.,

2013). Sparrow focused mainly on fine-grained task scheduling for low latency

applications. The framework provides task scheduling which is complimentary to the

functionality provided by cluster managers. Instead of launching new task, the

framework assumes that a long running execution process is already running on each

compute node for each framework hence; it only sends a short task description when a

task is launched (Outerhout et al., 2013). The framework makes approximations when

scheduling tasks thereby trading off many of the complex features supported by

sophisticated, centralized scheduler so as to provide higher scheduling throughput and

lower latency. For instance, Sparrow does not allow certain types of placement

constraints like “my job should not be run on machines where user A‟s jobs are

running”. It also does not allow bin packing and gang scheduling (Outerhout et al.,

2013). The framework however, supports basic constraints over job placement, such as

per-task constraint (i.e. task needs to be co-resident with input data) and per-job

constraints (i.e. task must be placed on machines with appropriate cores). This feature

set in Sparrow is similar to the one in Hadoop and Spark scheduler.

This framework does not support gang scheduling typically implemented by bin

packing algorithm which searches for a reserve time splits on which an entire job can be

 60

run. Because Sparrow queue tasks on several machines, it lacks a central point from

which to perform bin packing hence, deadlocks between multiple tasks that require

gang scheduling may occur. Currently, this framework only supports FIFO order,

adding other query-level scheduling policies may improve end-to-end query

performance of the framework. It is also important that when a compute node fails, all

schedulers with outstanding requests at that node be informed. A centralized state that

relies on heartbeat protocol so as to maintain a list of nodes that are alive may be

needed in this framework.

Zhao et al., (2014) proposed FusionFS that has a distributed storage layer local to

compute nodes. This layer allows for most I/O operations and saves extreme amounts of

data movement between compute and storage resources (Zhao et al., 2014). Zhao et al.,

(2014) idea was to see how to collocate compute and storage nodes in High

Performance Computing (HPC) to enable applications manipulate their intermediate

results and checkpoints rather than transferring data over network. Zhao et al., (2014)

observed that in HPC systems, fault tolerance is achieved through some check pointing.

The system will periodically flush memory to external persistent storage during check-

pointing and will occasionally load same data back to memory so as to roll back to the

most recent correct checkpoint after a failure. Doing this makes file writes outnumber

file reads in terms of both frequency and size in HPC system. To improve write

performance therefore, will significantly reduce overall I/O cost. FusionFS was

designed to disperse metadata to all compute nodes so that, maximal concurrency of

metadata operations can be achieved. Every client of FusionFS optimized write

operations with local write, an approach that reduces network traffic and makes the

aggregate I/O throughput highly scalable (Zhao et al., 2014). FusionFS was deployed

and evaluated on 16K compute nodes of IBM Blue Gene/P supercomputers, showing a

significant improvement over other file system in HPC (Zhao et al., 2014).

FusionFS was specifically designed to overcome bottleneck in file systems of HPC.

HPC systems as discussed earlier are expensive systems with vertical scaling technique

in focus. In this technique, systems have to be more powerful to handle future

workloads. Initial addition of more processors, memory and faster hardware in an

attempt to have better performance are mostly not fully utilized at the initial stage.

Collocation of compute and storage nodes in FusionFS is a special feature in Hadoop

framework that makes it stand out. Fault tolerance of data centres is also a unique

 61

feature in Hadoop. Though fault tolerance is achieved through re-computing affected

data chunks that are replicated on multiple nodes and not through check-pointing

memory states, Hadoop technique is a better option since data are stored in in-expensive

commodity servers.

Wang et al., (2015) proposed a task execution framework called MATRIX to overcome

Hadoop scaling limitations through distributed task execution. Though MATRIX was

originally developed to schedule executions of data-intensive scientific applications of

many-task computing on supercomputers, Wang et al., (2015) saw the need to use same

framework to address scalability issues of Hadoop through decentralizing the

responsibility of resource manager. Figure 2.27 shows the architecture of MATRIX.

Figure 2.27: MATRIX Architecture (Wang et al., 2015)

The framework is fully distributed by delegating one scheduler on each compute node

(Wang et al, 2015). For each compute node, there is an executor and a key-value store

(KVS) server. The scheduler on each of these nodes has the responsibility of managing

local resources for optimizing load balancing and data-locality. The executor is saddled

with the responsibility of executing tasks while the KVS server keeps the metadata of

tasks and data files in a scalable way (Wang et al., 2015). Each scheduler in this

framework has four task queues; waiting queue (WaitQ), dedicated ready queue

(LReadyQ), shared ready queue (SReadyQ) and complete queue (CompleteQ). These

queues store tasks in different states. For instance, WaitQ keeps tasks waiting for their

parents to be processed, LReadyQ holds ready tasks whose majority of required data is

 62

local (i.e. tasks that are executed locally). SReadyQ keeps ready tasks migrated from

other compute node(s) while finished tasks are moved into the CompleteQ. Wang et al.,

(2015) claimed that MATRIX outperformed YARN by 1.27x for typical workload

(WordCount) and has the potential to enable Hadoop scale to extreme-scale data centers

for fine-graned workloads (Wang et al., 2015).

MATRIX was originally designed for scheduling fine-grained many-task data-intensive

applications on supercomputers. An attempt to leverage MATRIX distributed design

wisdoms to overcome Hadoop scaling limitations for arbitrary data processing

applications is a good approach but not robust for frameworks needed for distributed

and parallel processing. From the architecture of MATRIX, it is clear that the

framework has a per-node resource manager (each scheduler maintains a local view of

the resources on an individual node). For any framework to have a per-node RM, all

data blocks for single file must be resident on that compute node.

Albert et al., (2016) proposed a framework called Awan; a resource manager that helps

share computing resources across multiple frameworks in an Edge Cloud environment

(Albert et al., 2016). The main goal of this system is to provide a general resource

management mechanism that will allow each framework to schedule its job with high

locality in a geo-distributed environment. To achieve this goal, Awan implements a

resource lease abstraction to allocate resources to individual framework schedulers.

These schedulers can in turn make better scheduling decisions by considering the

availability of desirable local resources (Albert et al., 2016). Awan has File Master,

Node Manager, Resource Manager and Framework Scheduler as shown in Figure 2.28.

Figure 2.28: Component of Awan (Albert et al., 2016)

 63

The File Master manages all files stored in the system. It is responsible for maintaining

file metadata, handling file replication and determining which storage nodes are

responsible for storing specific files and its replicas (Albert et al., 2016). The Node

Manager monitors the health of each node and the network bandwidth (up-link and

down-link) between nodes. The bandwidth monitoring helps file master during data

placement decisions and framework scheduler during scheduling of task locally. The

framework scheduler helps in task scheduling logic for specific computing framework.

The scheduler will always attempt to schedule task with high locality since network

bandwidth is a dominant factor in task running time. The Resource Manager provides a

resource sharing service among framework schedulers. Resource Manager keeps record

of live nodes by a communication protocol with the Node Manager (Albert et al.,

2016). To ensure that Awan does not have a centralized resource manager, the

framework provides a two-level architecture as shown in Figure 2.29.

Figure 2.29: Two-level architecture of Awan (Albert et al., 2016)

This two-level architecture incorporates shared-state architecture by sharing the states

of all the resources to every framework scheduler. The Resource Manager in Awan

provides the states of all resources instead of providing the resources that are available

(Albert et al., 2016). The File Master daemon in this framework behaves the same way

as the HDFS in Hadoop while the Node Manager has similarity with the Node Manager

in Hadoop with the exception of bandwidth monitoring. However, in an attempt to

 64

provide a shared-state mechanism where all framework schedulers have global

knowledge of all resources in the cluster (both available and non-available resources),

resource lease conflicts are bound to occur between schedulers. Though a mechanism is

in place to resolve these conflicts by RM in Awan, an extra overhead will frequently be

incurred in running applications in this framework. Also, with many tools built on top

layer of YARN and its widespread implementation, Hadoop is still the most widely

used distributed data processing framework. Konstantinos et al., (2018) proposed more

features in YARN resource manager. In this work, they added new features to YARN

architecture as shown in Figure 2.30. The new features appear in orange.

Figure 2.30: Advancement in YARN Resource Manager (Konstantinos et al., 2018)

From Figure 2.30, reservation planner determines the resource needs and temporal

requirements of a job and translates job‟s completion deadlines into a Service Level

Objectives (SLOs) over predictable resource allocations (Konstantinos et al., 2018).

Service scheduler gives service owners the ability to control container placement so as

to optimise performance of their applications while optimistic scheduler allows

containers to be dispatched to Node Managers even if there are no available resources

(jobs) on that node. At any point that job arrives at the Node Manager, optimistic

containers will be picked from the queue and execution will start immediately, avoiding

any feedback delays (Konstantinos et al., 2018)

 65

YARN framework is the most widely used and powerful tool for big data analytics. It is

the architectural centre of Hadoop, extensible and very easy to integrate with many

components. It allows several engines like interactive SQL, real-time streaming, data

science and batch processing to handle data stored in a single platform. The popularity

of this framework is largely because of its ability to store, analyse and access massive

data more quickly, and it cost effectiveness across clusters of commodity servers.

Hadoop YARN is actually not a single product but a collection of several components

providing resource management and central platform to deliver consistent operations,

security and data governance tools across Hadoop cluster. This has made it an all-round

framework for big data solution.

2.7 Summary of Literature Review and Knowledge Gap

MultiCore (Bekkerman et al., 2012; Dilpreet and Chandan, 2014) and Graphic

Processing Units (Hong and Kim, 2009; Dilpreet and Chandan, 2015) can only be

scaled up (a vertical scaling method where you install more processors, memory and

faster hardware). This technique requires substantial financial investment and it is

impossible to scale up after a certain limit. MPI in Peer-to-Peer (Steinmetz and

Wehrles, 2005; Milojicic et al., 2003) has no ability to handle faults in a network. In

Mesos (Hindman et al., 2011; Benjamin et al., 2012), task description will have to be

sent upon accepting a resource hence, no second-level scheduler to determine

framework/application‟s own internal resource management. Again, because Mesos

offers resources to framework, locality preference is hindered. Though COSMOS

(Chaike et al., 2008) and Corona (Shouvik and Daniel, 2013) has similar architectural

framework with YARN, for multiple applications/frameworks however, both

frameworks will find it significantly difficult to handle. Omega (Malte et al., 2013)

architectural design geared towards distributed, multi-level scheduling which reflects a

greater focus on scalability. It is however, hard to enforce global properties such as

capacity/fairness/deadlines on this system (Schwarzkopf et al., 2013). To Google, this

approach is sensible. But for an open source platform like Hadoop, it is not amenable.

This is because, arbitrary framework from diverse independent sources share the same

cluster in Hadoop.

 66

High Performance Cluster Computing (HPCC) (Patrick, 2011; Micheal et al., 2014;

Anthony, 2015; Camille, 2015) systems were initially designed with vertical scaling

technique in focus. In this technique however, system has to be more powerful to

handle future workloads. Addition of more processors, memory and faster hardware in

an attempt to have better performance are mostly not fully utilized at the initial stage.

Disco (Prashanth et al., 2011; Camille, 2015) framework is a young big data tool which

must evolve to become even more effective. Its distributed system cannot be compared

with HDFS which is fault-tolerant. Losing a disk or a machine in Hadoop typically does

not spell disaster for the data under consideration. Spark (Telmoda, 2015; Apache,

2016) is part of Hadoop big data ecosystem, which makes Hadoop YARN more robust

than this framework when used alone. Storm (Telmoda, 2015; Apache, 2016) cluster is

superficially similar to Hadoop cluster (Telmoda, 2015). Whereas you run „MapReduce

jobs‟ in Hadoop, you run „topologies‟ in Storm. These two are very different. While

jobs eventually finish in MapReduce, topology processes forever until it is killed

(Telmoda, 2015). Giraph (Bakshi and Sonali, 2016) is sill in a very immature phase of

development which lack complete set of offered algorithms hence, can only be runned

on Hadoop framework. Berkeley Data Analysis Stack (BDAS) (Kraska et al., 2013;

Dilpreet and Chandan, 2014) emerged to attack challenges of advanced analytics and

machine learning on big data. Though this stack consist of many useful components in

the top layer for various applications, many of these components are still at early stage

of development hence; it support is limited. The cluster manager in BDAS is also a

centralized resource manager hence; start-up time for a job is several tens of seconds.

All „joins‟ operation in Cloudera Impala (Kornacker et al., 2015; Bakshi and Sonali,

2016) are performed in memory capacity not sufficient by the smallest memory node

present in the cluster. Cloudera Impala does not support querying streaming data as

with Apache Spark in Hadoop cluster. There is also single point of failure in query

execution with this framework. Pentaho (Vidhya et al., 2014; Pasula, 2016) and

Jaspersoft (Vidhya et al., 2014) are designed specifically as Business Intellegence (BI)

platform. With it self-explanatory design interface, this frameworks has made valuable

contributions by providing business suggestions to business experts. The frameworks

however, are not suitable for other big data analytic solutions like diagnostic analytics.

Splunk and Karmasphere (Vidhya et al., 2014) are part of hadoop framework which

enhance the development of several Apache Hadoop-based applications to produce

 67

insights from users‟ data. Natezza (Francisco, 2011; Bakshi and Sonali, 2016) is not

suitable for online transactional processing and does not employ any query turning

mechanism. The framework supports models like Hadoop, still making Hadoop the

most robust big data framework. Nephele-PACT (Sharanjit et al., 2014) framework is

not as robust as Hadoop framework. This framework is still in its infancy stage and

cannot accommodate big data tools like Hadoop. Hadoop has general acceptance and

usage over Nephele-PACT. Dryad (Yuan et al., 2016) has a centralized job manager

which is a bottleneck for scalability. Scalability of each instance of schedd in Condor

(Tannenbaum, 2010) is a major concern. Interaction with disk is another limiting factor

for schedd.

Nebula (Jonathan et al., 2017) is still at early stage and only a prototype has been

demonstrated. There are limited numbers of applications and frameworks that can be

ported to this system. Scalability of this system is not guaranteed because injection of

external data and techniques for both aggregation and decomposition across distributed

resources may crash the system. During execution of task, compute nodes still make

download of application codes and input data from DataStore Master, this will incur

additional overhead. Sparrow (Outerhout et al., 2013) is suitable for distributed, low

latency scheduling workloads but does not support gang scheduling. FusionFS (Zhao et

al., 2014) has vertical scale up which is very expensive. The per-node resource manager

in MATRIX (Wang et al., 2015) does not support distributed and parallel processing

technique for big data analytics. Awan (Albert et al., 2016) architecture is somewhat

similar to YARN architecture but extra overhead is frequently incurred while running

applications in Awan.

Though YARN framework stands out among most of the big data analytics due to it

ability to run several other frameworks/applications, the responsibilities of global

resource manager to handle requests from all of these applications/frameworks

obviously constitute a bottleneck for scalability of Hadoop. Even with the addition of

features in YARN resource manager as proposed by Konstantinos et al., (2018), the

global resource management in this framework slows down execution since all Node

Managers (NM) from each compute nodes in the cluster and all Application Managers

(AM) send/receive instructions/request from a single resource manager through

heartbeat protocol. This process will reduce response time and total turnaround time for

each job in the cluster. The aim of this research work is to decentralize the global

 68

resource manager in YARN by having another layer called Rack Unit Resource

Managers (RU_RM) responsible for resource management of nodes in their

corresponding rack.

 69

CHAPTER THREE

SYSTEM ANALYSIS AND METHODOLOGY

3.1 Analysis of the Existing System

YARN is acronym for “Yet Another Resource Negotiator” also called MapReduce 2. It

is considered as the next generation MapReduce, considering its improvement over

MapReduce 1 which has scalability bottleneck when cluster size grows beyond 4000

nodes. The main idea in YARN is to split the JobTracker‟s responsibilities into two:

i. Resource Manager: Does job scheduling portion of the workload.

ii. Application Master: Does the task monitoring portion of the workload.

Entities in YARN

i. Client:- Responsible for submission of jobs and also interact with

MapReduce and HDFS framework.

ii. Resource Manager:- Responsible for allocating computing resources and

data required by the job. It has two units – Resource Scheduler and

Application Manager.

iii. Node Manager:- This is present at the slave nodes and is responsible for

creating execution containers and monitoring containers‟ usage.

iv. Application Master:- Coordinates and manages MapReduce jobs, negotiates

with Resource Manager to schedule tasks. The tasks are started by Node

Manager.

v. YARN child:- Responsible to send status of task to the application master.

vi. Distributed File System:- Shares resources and job‟s artefacts between

YARN components.

3.1.1 Data Flow of the existing system

Job execution in YARN is in phases as shown in Figure 3.1. These phases include job

submission phase, job initialization phase, task assignment phase, task execution phase,

progress and update phase and job completion phase.

 70

Figure 3.1: MapReduce Job Execution in YARN

a. Job Submission Phase

 Step 1: The job gets submitted to job client.

 Step 2: The job client request for a new job id.

Step 3: The job client then checks if output directory has been created.

After verifying this, it copies the job resources to the HDFS.

Step 4: The job client then submits the job to the Resource Manager.

b. Job Initialization Phase

Remember that, Resource Manager has two units – Resource Scheduler and

Application Manager. The scheduler schedules and allocates resources while

Application Manager monitors status and process of the job.

Step 5: As soon as the scheduler picks a job, it contacts the Node

Manager to allocate a container and launch Application Master

for the job.

 71

Step 6: Application Master creates object for the job. This is done for

book keeping purposes and task management.

Step 7: The Application Master retrieves input splits from HDFS and

creates 1 map per split. The Application Master at this point

decides how to execute the job. If the job is a small task, the

Application Master runs the job in its JVM to avoid unnecessary

overhead. These type of tasks are called Uber tasks in Hadoop

framework.

c. Task Assignment Phase

Step 8: If the job is large, Application Master requests the Resource

Manager to allocate the computing resources needed. Scheduler

at this point knows where the resources are located. It gathers this

information from the heartbeat it gets from each worker node. It

uses this information to consider data locality while assigning a

task. The scheduler tries as much as possible to assign a task to

where the data are located. If this is not possible, it assigns the

task to another node within the cluster.

d. Task Execution Phase

Step 9: Application Master contacts the Node Manager assigned to

execute the task, to start a container. The Node Manager then

launches the YARN child. YARN child is a Java program which

has main class “YarnChild”. It runs a separate JVM to isolate

user code from long running system.

Step 10: YarnChild retrieves all job resources from the HDFS.

Step 11: YarnChild now runs the map and reduce tasks.

e. Progress and Update Phase

In this phase, YarnChild sends the progress report every 3 seconds to the

Application Master. Application Master in turn aggregates and sends update

directly to the job client.

 72

f. Job Completion Phase

 Application Master and task containers clean up their working state.

3.1.2 Advantages of the existing system

 From the analysis of the existing system, we observed that;

i. There is increased scalability in YARN as compared with classic

Hadoop. The reasons is because, YARN decouples the work of

JobTracker into two making it easier to scale up worker node beyond

4000.

ii. Along with MapReduce, there can be another distributed framework on

the same cluster environment.

iii. Better utilization of resources with the concept of containers. Containers

are like slots in classic Hadoop but, slots are fixed for each task while

containers are flexible. In classic MapReduce, a task will have specific

number of map and reduce slots which most times are not fully utilized.

While some slots are under-utilized, others are over-utilized.

3.1.3 Disadvantages of the existing system

Though YARN architectural design has improved scalability significantly, there are

fundamental design issues that cap the scalability of this framework towards extreme

scales. Some of these design issues include,

i. Centralized Resource Manager:- Resource manager, which is the core

component of Hadoop framework offers the functionalities of managing,

provisioning and monitoring resources like the CPU, memory and network

bandwidth of compute nodes. These responsibilities obviously, are a

bottleneck for scalability of Hadoop towards extreme scales. It also slows

down execution since all compute nodes send/receive instructions from a

single resource manager through heartbeat protocol. Once resource manager

fails, all execution will halt. Although YARN provides RM High

Availability to protect against single point of failure, this technique causes

computation overhead because, resource manager need to update the backup

storage.

 73

ii. Hadoop replication factor:- Replication factor in Hadoop framework is such

that 2/3 of each block (of a whole file) are replicated into different data

nodes across racks in a cluster. Since Application Master is expected to

monitor the execution of a job/application (with its complete number of

blocks) in a cluster, AM will need to communicate data nodes with input

splits of the corresponding job/application across racks to be able to monitor

this execution. Communication across racks will result to higher latency in

job execution.

iii. Job completion time:- Since only resource manager coordinates the release

of resources for execution of jobs, several Application Masters (AMs)

polling from Resource Manager of this framework during resource request is

a bottleneck for the system. It slows down processing, which means that

total turnaround time (job completion time) for each job will be high.

3.2 Analysis of the New System

The main aim of this model is to decentralize the global control of Resource Manager in

YARN framework by providing another layer called Rack Unit Resource

Manager (RU_RM) layer. The aim of this layer is to make compute nodes on each rack

to be controlled by their corresponding Rack Unit Resource Manager instead of a single

Resource Manager controlling all the compute nodes in the network. We believe that

this will help improve response and turnaround time for each job/application and will

eliminate single point of failure which makes jobs halt in the existing global resource

manager.

The second idea is to ensure that all Rack Unit resource managers form a peer-to-peer

architecture such that each Rack Unit resource manager holds resources for which it is

directly responsible to and also have backup copies of resources for the RU_RM

preceding/succeeding it. This will ensure that, if any RU_RM fails, the predecessor or

successor can continue with the management of compute nodes in that rack until such

RU_RM recovers from failure.

The major aim of this new framework therefore, is to provide lower turnaround time for

jobs and to ensure high availability of Resource Manager during job execution. The

 74

new framework has five (6) phases – Job submission, job initialization, task

assignment, task execution, progress/update and job completion phase. Figure 3.2

explains MapReduce job execution on our new framework.

Figure 3.2: MapReduce Job Execution on the new framework

a. Job Submission Phase

 Step 1: The job gets submitted to job client.

 Step 2: The job client request for a new job id.

Step 3: The job client then checks if output directory has been created.

After verifying this, it copies the job resources to the HDFS.

Step 4: The job client then submits the job to the Resource Manager.

b. Job Initialization Phase

Step 5: Resource Manager gets input splits for the said job.

 75

Step 6: With the information in Step 5, the Resource Manager schedules

appropriate Rack Unit Resource Manager (RU_RM) with 2/3 of

the input split to execute the job.

Step 7: The scheduler at the RU_RM picks the job and contacts the

appropriate Node Manager to launch Application Master for the

job.

Step 8: Application Master creates object for the job. This is done for

book keeping purposes and task management. The Application

Master creates 1 map per split from each input split on data node.

The Application Master at this point decides how to execute the

job. If the job is a small task, the Application Master runs the job

in its JVM to avoid unnecessary overhead.

c. Task Assignment Phase

Step 9: If the job is large, Application Master requests the Rack Unit

Resource Manager to allocate the computing resources needed

(container). Scheduler at this point knows where the resources

are located. It gathers this information from the heartbeat it gets

from each worker node in the rack. It uses this information to

consider data locality while assigning a task. The scheduler tries

as much as possible to assign a task to where the data are located.

If this is not possible, it assigns the task to another node within

the rack.

d. Task Execution Phase

Step 10: The Rack Unit Resource Manager through the appropriate Node

Manager launches the YARN child.

Step 11: YarnChild retrieves all job resources from the HDFS.

Step 12: YarnChild now runs the map and reduce tasks.

 76

e. Progress and Update Phase

In this phase, YarnChild sends the progress report every 3 seconds to the

Application Master. Application Master in turn aggregates and sends update

directly to the job client.

f. Job Completion Phase

 Application Master sends output to HDFS

Application Master and task containers clean up their working state with the

help of Container Expirer.

3.2.1 Justification of the New System

To justify the working methodology of our new model, a hypothetical evaluation is

carried out, which analyse the results obtained in this new model to results from the

YARN model. Let us assume to have three jobs (applications) to be processed and that,

each step in executing any of these job takes 0.01ns (assume that three jobs are of the

same size). For each job therefore, the first 5 steps in the existing framework holds as

obtained in Figure 3.1.

Since there is only one resource manager, the last seven steps will require Resource

Manager communicating with Node Manager to launch containers and with Application

Master for resource requests. Since no more than one instruction can be given at a time,

it means that Resource Manager will interleave these instructions between the three jobs

(applications).

Assume that the time taken for each job to be attended to is 3ns and the interveaning of

process follows FIFO order. It means that Job1 get resources immediately hence, delay

time is zero (0). Job2 will get assess to resource at time 3ns while Job3 at time 7ns. The

overall time it will take to process the three jobs will be as follows:

Job 1 = (0.01ns x 5) + 0ns = 0.05ns

Job 2 = (0.01ns x 5) + 3ns = 3.05ns

Job 3 = (0.01ns x 5) + 7ns = 7.05ns

 77

Total instruction time needed to process the three jobs = 0.05ns + 3.05ns + 7.05ns =

10.15ns

With the new model, the first 7 steps holds for all the three jobs as obtained in Figure

3.2. Since each RU_RM node executes just one job at a time, the last 5steps therefore

are carried out at the same time on different RU_RM node.

Therefore, if it takes 3ns for the three jobs to be attended to in the existing system; it

will take 1/3ns of 5steps for these jobs to be attended to in the new model. Hence, the

process time for the three jobs will be as follows:

Job 1 = (0.01ns x 7) + 1/3ns of 5 on RU_RM1 = 0.07ns + 1.67ns = 1.74ns

Job 2 = (0.01ns x 7) + 1/3ns of 5 on RU_RM2 = 0.07ns + 1.67ns = 1.74ns

Job 3 = (0.01ns x 7) + 1/3ns of 5 on RU_RM3 = 0.07ns + 1.67ns = 1.74ns

Total instruction time needed to process these three jobs = 1.74ns x 3 + = 5.22ns

From our analysis; ignoring bottlenecks associated with network bandwidth and

communication overhead, we observe that it takes 10.15ns to pass instruction that will

execute three jobs in YARN model, whereas it takes 5.22ns to do same with our new

model. This shows that, our new model promises a better response time and lower

turnaround time compared to the existing model.

3.3 The Organization and its Environment

Apache Software Foundation (ASF) who is the custodian of Hadoop project is a non-

profit public charity organization incorporated in the United States of America in 1999

primarily to provide a foundation for open and collaborative software development

projects so as to create an independent legal entity to which companies and individuals

can donate resources and be assured that those resources will be used for the public

benefit (Apache, 2016). The foundation provides a means through which individual

volunteers can be sheltered from legal suit directed at the foundation‟s projects and also

protect the „Apache‟ brand as applied to its software product, from being abused by

other organizations (Apache, 2016).

The organizational governance at a higher level of this foundation is fairly simple;

members are the ones to elect Board of Directors, the board will appoint various

 78

officers and creates Project Management Committees (PMCs) who report periodically

to the board. Most other officers report to the board through the president of the

foundation. The foundation‟s corporate government reporting structure is shown in

Figure 3.3.

Figure 3.3: Apache Corporate Governance reporting structure (Apache, 2016)

For elections and appointments purposes, the following procedures are followed in the

foundation.

i. Existing members are charged with the responsibility of nominating and

electing new members periodically, and they nominate and elect nine (9)

directors to the board annually.

ii. The board are charged with the responsibility of appointing operational

officers. They delegate responsibility for specific policy/operational areas to

each officer.

iii. The board has the sole power to appoint executive officers including the

President, Secretary, Treasurer etc who are responsible for day-to-day

operations of the foundation.

 79

iv. Most officers report to the President on a monthly basis and the President in

turn reports an overall operational status to the board also on a monthly

basis. Figure 3.4 shows the foundation‟s corporate government – elections

and appointments.

Figure 3.4: Apache Corporate Governance–Elections and Appointments (Apache, 2016)

Every Apache PMC manages their project independently. The following procedures

are followed for project governance.

i. PMCs reports progress of work directly to the board quarterly. The

organizational oversight of PMCs and its functioning as a healthy

community and to ensure they follow Apache policies is done by the board.

For technical governance however, PMCs take full charge.

ii. The chair of each PMC is a Vice President for that project and thus, an

officer of the foundation. The VP ensures that project reports are complete

and submitted to the board.

 80

iii. PMCs vote on software product releases. This is to ensure that all source

code releases are acts of the foundation itself, through properly governed

PMC.

iv. PMCs can nominate and elect new committees to their project.

v. Apache incubators called special IPMC help to mentor new podling

communities to help them learn the Apache way. Figure 3.5 gives a view of

the foundation‟s project governance structure.

Figure 3.5: Apache Project Governance Structure (Apache, 2016).

3.4 Methodology

We live in the world of objects. These objects exist in such a way that they can be

created, organised, categorized, described and manipulated upon. Hence, Object

Oriented Methodology (OOM) has come into picture for developing software. OOM is

a new system development methodology that encourages and facilitates reuse of

software components. This methodology makes it easier for a system analyst to

determine what objects are required in a system, how each of these objects behave over

time or in response to an event, responsibilities and relationships of these objects with

each other, their commonalities, differences and how the system will manipulate them.

 81

Because of the nature of this research, the new model used this methodology because it

provides nice structures for thinking and abstraction, which leads to modular design.

Also, the methodology encourages reusability and provides inheritance feature of

object-orientation. Inheritance will allow a program to use the existing classes in new

application. So many OOM exist, popular among them are Booch methodology with the

concept of Object Oriented Analysis and Object Oriented Design (OOA/OOD),

Responsibility Driven Design (RDD) methodology, Object Oriented Software

Engineering (OOSE) methodology, Object Modelling Techniques (OMT) methodology.

This research work used OMT methodology because it describes a method for analysis,

design and implementation using object-oriented technique. It is fast and provides

intuitive approach that identifies and model objects making up a system. To justify the

proposed methodology, OMT three major viewpoints was considered in the design

phase of this work, each viewpoint capturing important aspects of the system. The three

viewpoints are static, dynamic and functional behaviours of the system also described

as object model, dynamic model and functional model of OMT.

UML description of the new model with methodology adopted

UML are meant to provide model for computer applications/software. UML notation set

provides several diagrams that when used within a given methodology will increase the

understanding of a system under development. The UML diagrams used follow the

object oriented methodology for this work. The UML description looked at the three

major viewpoints of OMT in object oriented methodology with each view point

capturing important aspects of the system. The three viewpoints are static, dynamic and

functional behaviours of the system also described as object model, dynamic model and

functional model of OMT.

Object model describes objects in a system and their inter-relationships. It gives more

attention to objects as static entity and does not pay attention to object‟s dynamic

nature. This model describes the structure of object in the system. From analysis of the

new model, key objects in this model include;

a. Client

b. Resource Manager (RM)

c. Rack Unit Resource Manager (RU_RM)

 82

d. Node Manager (NM)

e. Application Master (AM)

f. Hadoop Distributed File System (HDFS)

Class diagram was used to describe the structural and data aspects of this system.

Figure 3.6 describes the class diagram for the new model, the relationship of objects,

their operations and also depicts the primary view of the overall decomposition of the

system.

Figure 3.6: Class diagram for the new model

Dynamic models are used to represent behaviour of the static constituents of software.

Static constituents are objects and their relationships. It represents the interaction,

workflow and different states of these static constituents in software. Diagrams used in

dynamic models include interaction diagrams (sequence or communication diagram),

object diagram and activity diagram. The new model describes those areas of the

system that changes using sequence diagram as shown in Figure 3.7. Sequence diagram

captures the sequence of messages flow from one object to another.

 83

Figure 3.7: Sequence diagram for the new model

 84

Functional Model:- This model describes the transformational and functional aspects of

the new system. It captures what the system does without regard to how or when it is

done. This model uses Data Flow Diagram (DFD) to show the flow of data through the

system. It views system as a function that transforms input into desired outputs. Figure

3.8 shows DFD for the new model.

Figure 3.8: DFD for the new model

3.5 High Level Model of the New System

To capture and precisely state requirements and domain knowledge of the new

framework, a high level model is presented in Figure 3.9. This model serve to focus the

thought process and to capture requirements needed for the system design.

Client

job

 85

Figure 3.9: High-Level Model of the new rack-aware resource manager framework

 86

The architectural framework of the new model as described in Figure 3.9 decouples the

responsibility of Resource Manager by providing another layer where each daemon

called Rack Unit Resource Manager (RU_RM) carry out the responsibility of allocating

resources to data nodes. This will allow high bandwidth and low latency for large files

on data nodes within the same local rack. The illustration below will help understand

our new model.

Assume we have three different files (sales, music and video file) to be stored in HDFS.

The NameNode gets these files from the client, split the files into blocks and allocates

them on free data nodes. Assume we have the following input splits.

First File: sales

Blocks: a.sales, b.sales, c.sales

Second File: music

Blocks: a.music, b.music

Third File: video

Blocks: a.video

With the new model, compute node replicates each block on different node but on same

local rack. Compute node with the replicated block will replicate the third copy on a

node in another rack. Each of the three compute nodes will communicate the

NameNode once replication is over. The NameNode will then update the metadata

server. Metadata server keeps record table for the three files as described in Table 3.1.

Table 3.1: Metadata table for all input splits in HDFS

Jobs RU_RM1 RU_RM2

DN1 DN2 DN3… DN n DN

n+1

DN

n+2

DN

n+3

…DN

p

a.sales + + +

b.sales + + +

c.sales + + +

a.music + + +

b.music + + +

a.video + + +

“+” represent data locality on a node.

 87

Remember that from Figure 3.2, Resource Manager (RM) gets input split with their

corresponding local racks from HDFS. For resource manager to schedule the

appropriate RU_RM, input split for each job is considered. If 2/3 of the replicas belong

to a particular rack, RM allocates the job to the RU_RM which in turn, allocates the

block to the appropriate compute node for execution. From Table 3.1, the file “sales”

will be allocated to RU_RM1 while “music” and “video” will be allocated to RU_RM2.

For a reliable, fault tolerant system and to guarantee lookup consistency in the presence

of failure of nodes, the RU_RM layer of the new model introduced novel relaxed-ring

architecture. This approach help eliminate single point of failure experienced in the

existing system. The new model provides that, every step in the ring needs the

agreement of two RU_RM nodes which is guaranteed with a point-to-point

communication. Our first invariant is that, every RU_RM node must have a predecessor

and a successor in the ring. Secondly, the responsibility of a RU_RM node starts with

the key of its predecessor + 1 and ends with its key. Thirdly, a RU_RM accommodates

its neighbouring peers for back-up purpose. Fourthly, every RU_RM node must

communicate its predecessor and successor and update them with its responsibilities to

remain in the ring. The last condition is that, every RU_RM node must communicate

with the central Resource Manager in situation where its neighbour node fails.

 88

CHAPTER FOUR

SYSTEM DESIGN AND IMPLEMENTATION

4.1 Objectives of the design

The objective of this design shall follow the objectives of the research study mentioned

at the beginning of this work.

(i) To decentralize the global control of Resource Manager (RM) in YARN

framework by providing another layer called Rack Unit Resource

Manager (RU_RM) layer. By decentralizing this component, there will be two

daemons serving as resource control for job execution; the central Resource

Manager and the per-rack resource manager (described as Rack Unit Resource

Manager in this work).

(ii) The second objective of this design is to ensure that all Rack Unit resource

managers form a peer-to-peer architecture such that each Rack Unit Resource

Manager holds resources for which it is directly responsible to and also have

backup copies of resources for the RU_RM preceding/succeeding it.

The whole system design is described in Figure 4.1. Resource Manager now uses push-

based approach to transfer responsibilities of scheduling jobs and monitoring node

status to Rack Unit Resource Manager.

 89

Figure 4.1: Block diagram showing whole system design processes

4.2 Decomposition and Cohesion of High Level Model

The new model has three basic layers; the global resource manager layer, rack-units

resource managers‟ layer and the compute nodes layer. The RM, whose responsibility is

to allocate job to appropriate RU_RM is highly cohesive. This module performs exactly

one task which is allocation of job to appropriate RU_RM. Each RU_RM also is high

cohesive; its responsibility is tied to nodes in its rack. In case of failure, where

responsibility is extended beyond RU_RM‟s boundary, the module ensures that data

(contents) of the extended boundary remain within the rack(s) they are originally

resident. Node managers and AMs in each data node are also highly cohesive with each

AM solving just a task at a time.

While there is high cohesion within modules in each layer, the layers are loosely

coupled. This is important so that modification at any layer of the model does not

affect/change modules in other layers. With this, maintenance becomes easier and if

additional rack (with compute nodes) is added to the cluster, RU_RM, NM and AM can

be picked and re-used without having to build them from the beginning.

 90

4.2.1 Control Centre/Main Menu

The control centre/main menu of this system is an improved YARN Resource Manager

GUI. Figure 4.2 shows the main interface. Cluster metric are displayed in the top row

while the left hand portion of the menu provides navigations to sub-menus of the

system.

Figure 4.2: Control Centre/Main Menu for the New System

The cluster metrics provides information about size of data uploaded for word count

operation, number of virtual machines connected to the server and the total time elapsed

for each word count operation. The sub-menus on the left of the control centre shows

operations that are performed on this framework.

4.2.2 The Sub-Menus/Sub-Systems

The sub-menu as shown in Figure 4.2 has the data submission, HDFS and MapReduce

sub-menus. Each of these sub-menus has specific responsibility in the model.

4.2.2.1 Data Submission Implementation

This sub-menu allows users to import text file to be stored in the server. Figure 4.3

shows the data submission sub-system.

 91

Figure 4.3: Data submission sub-system

From Figure 4.2, the user selects file to be imported from the client‟s system. Once the

user clicks on „Import‟ button, the size of file (in kB) is displayed in the cluster metric.

4.2.2.2 MapReduce Sub-system Implementation

This sub-menu allows users to run Hadoop workload called WordCount. The user can

select either the existing model or the improved model. The two models are built into

this system to allow for comparison and for the purpose of evaluation. The existing

model contains re-usable modules hence, the architecture was not altered. The user is

expected to select a file for the WordCount operation and click on the submit button.

Figure 4.4 shows the mapreduce sub-system.

Figure 4.4: MapReduce Sub-system

 92

4.2.2.3 HDFS Sub-system Implementation

The HDFS sub-menu has the Name Node, Logs and Output file list. The Name Node as

described in Figure 4.5 shows number of files that have been uploaded on the server,

total number of blocks and cluster size. It also gives description of which node is

holding a block partion.

Figure 4.5: Name Node Sub-system

To view each block partions, user double-clicks on the virtual machine holding that

block partition. Example of a block partition is shown in Figure 4.6.

Figure 4.6: Block partition from Virtual Machine_1

 93

Logs in HDFS sub-menu shows intermediate mapreduce jobs during run time. It keeps

track of the time for WordCount operation on each block partition. Viewing the log

requires that yarn.log.aggregatios enable variable in yarn_site.xml file be set.

Figure 4.7: Improved YARN MapReduce Logs

The output file described in Figure 4.8a and 4.8b shows summary of completed job in

the model. It shows the name of virtual machine with their corresponding block

partitions and results of WordCount operation.

Figure 4.8a: Output from Virtual Machine_1

 94

Figure 4.8b: Output from Virtual Machine_2

4.3 Specifications

4.3.1 Database Development Tool

The database development tool used for this system is the Computer Assisted Software

Engineering (CASE) tool. There are a number of CASE tools that provides extensive

functionality for database development. This new system uses Microsoft Visual

Studio.Net Enterprise Architect Edition called Microsoft Office Visio. It is a forward

and reverse engineering tool for databases and UML. It supports data dictionary to

accompany entity relationship template and also supports name, data type, required,

primary and notes properties.

4.3.2 Database Design and Structure

Database design and structure for this system follows the four database development

phases; conceptual data modelling, logical database design, distributed database design

and physical database design. While conceptual data modelling and logical database

design focuses on the information content of the database, distributed and physical

database design focuses on efficient implementation of the system.

i. Conceptual Data Model:- The conceptual data model for this system identifies the

highest level relationship between entities. Features of this data model include the

important entities and the relationship among them. No attribute or

 95

primary/foreign key is specified in this model. The conceptual data model of this

system is shown in Figure 4.9.

Figure 4.9: Conceptual Data Model showing relationship between entities

The rectangles (GlobalRecouseManager, Rack_Unit_ResourceManager, HDFS,

Data_Node, Node_Manager, App_Master) represent entity types while label lines

shows relationship between entities.

ii. Logical Data Model:- The logical data model for this system is a more detailed

description of the conceptual data model without regard to its physical

implementation in the database. Features here include all entities and relationships

among them, attributes for each entity are specified, primary and foreign keys

(keys identifying relationship between different entities) are specified. To ensure

that there is no redundancy, normalization is carried out in the table design

constraints (dependencies among columns). Data requirements for the new model

were used to produce ERD using Microsoft Office Visio. Figure 4.10 shows the

logical data model for this system.

 96

Figure 4.10: Logical data model showing attributes, primary and foreign keys for each

entity

Attributes/properties of these entities are listed inside the rectangle. The diagram

also shows primary keys for each entity and foreign keys that connects entities.

iii. Distributed Data Model:- To ensure that reduced response time, improved

availability of data and improved control is achieved, data are located in their

appropriate positions. The actual input splits (blocks) for each file are resident in

the appropriate data nodes within a rack. The system ensures that 2/3 of these

blocks occupy different nodes in the same rack while the third block is in another

node for fault tolerant situation. Also, 2/3 of all blocks are in a rack to ensure high

bandwidth and low-latency during job execution. The metadata file, which keeps

record of all data nodes and files they contain, is in a central location. This is done

to ensure improved control of location and movement of data. With each RU_RM

 97

handling all compute nodes and their data, improvement on control and efficient

response time was achieved. The index of files which is one of the important

aspects of this phase has been implemented with the introduction of Name Node.

This node keeps metadata of all data nodes in the cluster thereby, enhancing

efficient implementation of this model.

iv. Physical Data Model:- This phase describes how the data model was built in the

database. It shows table structures with column names and data types used for

database implementation. Figure 4.11 shows the physical data model for this

system.

 98

Figure 4.11: Physical data model showing data types

 99

4.3.3 Program Module Specification

With the proposed rack unit resource manager layer introduced in the new model, the

central resource manager is no longer responsible for monitoring of data nodes in the

cluster. Resource request and container lease are sole responsibilities of each rack unit

resource manager. Application Master now communicates corresponding rack unit

resource manager for container lease and monitoring of job process. Going by the

design objectives of this work, five different modules/components describe the whole

architecture of the new model. These components are;

a. Resource Manager allocation of job to appropriate Rack Unit Resource

Manager.

b. Rack Unit Resource Manager responsibility in executing job.

c. Description of task execution and update in RU_RM layer.

d. Description of RU_RM failure.

e. RU_RM description for joining the ring architecture

Central RM allocation of job to appropriate RU_RM:- Upon job submission by

client to RM, RM retrieves input splits from HDFS. With metadata information from

Name Node on which rack holds these input splits, RM allocates job to the appropriate

RU_RM for processing. Figure 4.12 shows an event-tracing diagram describing how

RM allocates job to appropriate RU_RM.

Figure 4.12: Event-tracing diagram for RM allocation of job to appropriate RU_RM

 100

Rack Unit Resource Manager (RU_RM) responsibility in executing job:- RU_RM

module is responsible for executing job allocated to it by RM. RU_RM is a per-rack

framework only responsible for execution of jobs within the rack, except failure occur

of its neighbouring unit. Figure 4.13 shows a scenario between RU_RM, Application

Master and the Node Manager during job execution.

Figure 4.13: Event-tracing diagram for RU_RM responsibility

Description of task execution and update in RU_RM layer:- This module ensured

that, for every job to be executed by any of the RU_RM, its predecessor and successor

must also be updated. This is important to ensure that if failure occurs, the RU_RM‟s

predecessor/successor can take over the responsibility of the failed unit. To describe

this module, state machine diagram was used. State machine shows the behaviour that

specifies sequence of states an object visits during its life time in response to events.

Figure 4.14 shows the state machine diagram for this module.

 101

Figure 4.14: State machine diagram for execution of task in a rack

Description of RU_RM failure:- This module ensures that at any point the

predecessor/successor unit of any RU_RM do not receive update, its means that such

RU_RM is not available. The predecessor/successor unit (as described in the objective

of the design) therefore, takes over the responsibility of the failed RU_RM. Figure 4.15

shows the state machine diagram for this module.

 102

Figure 4.15: State machine diagram for RU_RM failure

 103

RU_RM description for joining the ring architecture:- For a failed RU_RM to join

the ring after failure recovery, this module searches for RU_RM that is not available in

its position in the ring. It compares it with the RU_RM ready to join the ring. If the

comparison is correct, the RU_RM joins the ring and its predecessor and successor

notified. Its responsibility (which starts with predecessor key + 1 and ends with its key)

is then release to the node. Figure 4.16 gives a state machine description of this module.

Figure 4.16: State machine diagram for RU_RM joining the ring architecture

 104

4.3.4 Input/Output Format

4.3.4.1 Input Format

WordCount is the Hadoop benchmarking workload used for this research. WordCount

is a typical two-phase Hadoop workload with the map task counting the frequency of

individual words in a subset data file while the reduce task shuffles and gather the

frequency of all the words. The input data for this research work therefore is any text

file. Input format is described in Table 4.1.

Table 4.1: Typical input data format for map and reduce task

Hi, how are you

How is your job

How is your sister

How is your brother

What is the time now

What is the strength of Hadoop

To perform wordcount operation on the input data in Table 4.1, let us assume that the

file name is file.txt and the size is 140MB. If 64MB is the size of each block to be

stored in HDFS, the text file will be partitioned into 2blocks of 64MB and a block will

contain 8MB as shown in Table 4.2.

Table 4.2: Block partitions for input data

Hi, how are you

How is your job

64BM

How is your sister

How is your brother

64MB

What is the time now

What is the strength of Hadoop

8MB

The number of input splits for a file depends on the number of blocks you have for the

job. Since there are three blocks in Table 4.2, we have three input splits and there are

three corresponding mappers and reducers (one input split to a mapper and a reducer).

 105

From the blocks in Table 4.2, block1 will be allocated to the first input split, block2 to

the second and block3 to the third input split. Hadoop runs MapReduce jobs in the form

of (key, value) pair. For the text file to be read and converted into (key, value) pair,

there is an interface called RecordReader. The RecordReader reads each line in the text

and converts it into (key, value) pair with the format (byteoffset, entireline). The

„byteoffset‟ represent row number in the text while „entireline‟ is the whole text in the

line. For example, to read block1 in the file.txt, (byteoffset, entireline) will be (0, hi

how are you). The RecordReader gets the next byteoffset by reading the number of

characters in the first row. The first row has the text „hi_how_are_you_ = 15characters

including spaces. Hence, the next (byteoffset, entireline) = (16, how is your job).

4.3.4.2 Output Format

The generated data from mapper form another (key, value) pair which is referred to as

intermediate data (output). Once these intermediate data are generated, reducer function

is triggered to combine all intermediate data into final output. Shuffling phase combines

all single key to produce these intermediate data described in Table 4.3.

Table 4.3: Format of intermediate output from MapReduce task

Hi, [1]

how, [1,1,1,1]

are, [1]

you [1]

is [1,1,1,1,1]

your [1,1,1]

job [1]

sister [1]

brother [1]

the [1,1]

time [1]

now [1]

strength [1]

of [1]

Hadoop [1]

The reducer has RecordWriter. Once the intermediate data has been shuffled, the

reducer will sort it and pass it to RecordWriter which produces the output file into

HDFS. Table 4.4 describes output file format.

 106

Table 4.4: Output file format

Hi, 1

how, 4

are, 1

you, 1

is, 5

your, 3

job, 1

sister, 1

brother, 1

the, 2

time, 1

now, 1

strength, 1

of, 1

Hadoop, 1

Screen display of the output file shows the application name, application type, state of

execution, finished time, total processing time and a link to where the output file is

stored.

4.3.5 Overall Object Diagram for the New System

The object diagram in Figure 4.17 shows a snapshot of the detailed state of this system

as point of task execution. The diagram encompasses objects and their relationship at

point of execution.

 107

Figure 4.17: Object diagram of the new system at point of task execution

Figure 4.17 show that the global resource manager only allocates job to appropriate

rack unit resource manager. Rack unit resource managers execute jobs simultaneously,

each executing jobs within its rack. This approach allows for faster response time as in

contrast to the existing approach where the global resource manager is responsible for

job execution in the whole cluster.

4.3.6 Algorithm

Going by the design objectives of this work, five different algorithms described the

whole architecture of the new model. Algorithm 3.1 described the work of Central

Resource Manager which is allocation of job to appropriate RU_RM. Once allocation is

 108

done, all responsibilities and processes involved in the execution of that job are

controlled by the corresponding RU_RM.

Algorithm 3.1: Allocation of job to appropriate RU_RM

upon event <job submission>

client receive Job ID

client copies Job resources to HDFS

client submits job to RM

RM retrieves input split from HDFS

RM allocate job to appropriate RU_RM

end event

The central Resource Manager has a pluggable scheduler whose sole responsibility is to

allocate jobs to the appropriate RU_RM. It is a pure scheduler in the sense that it

performs no monitoring or tracking of jobs/applications status, offering no guarantees to

restart failed task either due to job or hardware failure. The scheduler performed its

function based on the metadata received from Name Node. Once job has been allocated

to the appropriate RU_RM, RM is free from any other responsibility for that job. RM

uses a push-based scheduling technique where it pushes responsibility to appropriate

RU_RM for execution. No periodic heartbeat mechanism is required between RM and

RU_RM hence; RM can manage a lot of jobs and achieves better cluster utilization.

Algorithm 3.2 shows scenario between rack unit resource manager, application master

and node manager during job execution. RU_RM is a per-rack resource manager as

compared to the per-cluster resource manager in the existing framework. 2/3 of the

complete data block for a file is stored in the same rack. This is to ensure that AM do

not need monitor job across racks in the cluster. This process ensured lower job latency

as opposed to the existing system where AM monitors job across racks in the cluster.

 109

Algorithm 3.2: RU_RM Responsibility

upon event <execute job>

RU_RM receive job allocation from RM

RU_RM scheduler prompt Node Manager to launch AM for the job

AM creates object for the job

AM retrieves and creates 1map per split from input splits

AM request for container from RU_RM

RU_RM through NM launches YARNchild

YARNchild retrieves all job resources from HDFS

YARNchild runs map and reduce task

YARNchild sends update of execution to AM

AM aggregates and send update to RU_RM through NM

AM send completed task to HDFS

AM and task container clean up working state and RU_RM notified

end event

Algorithm 3.3 ensured that, for every job to be executed by any of the Rack Unit

Resource Manager (RU_RM), its predecessor and successor must also be updated. This

is to make sure that if failure occurs, any of predecessor/successor can take over the

responsibility of the failed RU_RM.

Algorithm 3.3: Execution of Task

upon event <execute task>

 RU_RM = node(n) // n is the number of RU_RM machines on the ring

 check <RU_RM with input splits>

 for node = 1 to n

 If RU_RM(node) = <RU_RM with input splits>

 allocate <job> RU_RM(node)

 Update <RU_RM(node – 1) && (RU_RM(node + 1)>

 next node

end event

 110

Algorithm 3.4 ensured that once the predecessor or successor of any RU_RM does not

receive update, it therefore means that such RU_RM is not available hence, the

predecessor or successor (depending on which is idle) takes over the responsibility of

the failed RU_RM.

Algorithm 3.4: Rack Unit Resource Manager Failure

upon event <RU_RMnode failure>

 RU_RM = node(n)

 If heartbeat <not available> then <mark RU_RM(k)>

 for node = 1 to n

 If RU_RM(node) = RU_RM(k)

 {

 If RU_RM(node – 1) <not expanded>

 {

If RU_RM(node – 1) <idle>

 transfer <responsibility> to RU_RM(node - 1)

 }

 elseif RU_RM(node + 1) <not expanded>

 {

If RU_RM(node + 1) <idle>

 transfer <responsibility> to RU_RM(node + 1)

 }

 else

 transfer <responsibility> to RU_RM(node - 1)

 endif
 }

 endif
 next node

 update RM

end event

The RU_RM ring architecture for this design shown in Figure 4.17 helps to monitor

failure at the RU_RM layer.

 111

Figure 4.18: Ring architecture for RU_RMs in the new model

From Figure 4.18, the architecture ensured that data items (resources) are replicated on

neighbouring peers (RU_RMs) on the ring. Each of RU_RM holds resources for which

it is directly responsible and also hold resources for RU_RM proceeding and

succeeding it on the ring.

Each RU_RM on the ring updates its predecessor and successor. If after 3seconds of

execution, no signal is obtained from any of RU_RM, such RU_RM is considered dead.

Boundary of the peer (RU_RM proceeding/succeeding it) will be extended. This

process is described in Figure 4.19.

 112

Figure 4.19: Failure scenario in the ring architecture of RU_RMs

As described in Figure 4.19, if RU_RM2 fails, RU_RM1 or RU_RM3 boundary of

resource control will be expended. Expansion of boundary is dependent on two

conditions;

a. Whether RU_RM proceeding/succeeding the failed peer (RU_RM) has already

been expanded due to failure of other neighbouring node.

b. Whether the peer (RU_RM) proceeding/succeeding the failed peer is idle or busy.

Two scenarios are possible; best case scenario and worst case scenario.

Best Case Scenario:- From Figure 4.19, if RU_RM1 and RU_RM3 have not been

expanded due to failure of their neighbour peers, and none of them is idle, the peer

(RU_RM) preceding the failed peer takes over the responsibilities of the failed

RU_RM. At this point, update of both RU_RM1 and RU_RM2 will be done on

RU_RM3 as shown in Figure 4.19.

Worst Case Scenario:- A worst case scenario is the situation where two successive

peers fail intermittently as described in Figure 4.20. At this point, a back-up will be

made to allow for execution before recovery from failure is performed. For instance, if

 113

from Figure 4.20 RU_RM3 also fails. RU_RM4 resource control boundary will be

expanded. In this case, only RU_RM1 will hold resources for RU_RM2. If however,

RU_RM1 is the peer that fails, resource control boundary of RU_RMz is expanded

while RU_RM3 takes control of resources in RU_RM2.

Figure 4.20: Failure of two successive peers (RU_RMs) in the ring

In either of the two case scenarios mentioned, once a failed peer recovers from failure

and joins the ring, its resources from the peer holding it will be released to it (recovered

peer). Also, back-up of resources for peers preceding/succeeding it begins.

Upon event join as obtained in Algorithm 3.5, the system searches for RU_RM that is

not available in its position in the ring. It compares it with the RU_RM ready to join the

ring. If the comparison is correct, the RU_RM joins the ring and its predecessor and

successor notified. Its responsibility (which starts with predecessor key + 1 and ends

with its key) is then release to the node.

 114

Algorithm 3.5: Rack Unit Resource Manager joining the ring

upon event <join>

 RU_RM = node(n)

 specify <RU_RM(k)> to join

 for node = 1 to n

 If RU_RM(node) <not available>

 {

If (RU_RM(k) = RU_RM(node))

 {

(RU_RM(node) = RU_RM(k)

 perform <join ! RU_RM(node)>

 notify <RU_RM(node–1)&(RU_RM(node+1)>

 release <responsibility> to RU_RM(node)

 }

 endif
 }

endif
 next node

end event

4.3.7 Data Dictionary

Data dictionary provides detailed information about data elements and their meanings

and allowable values. It gives information about each attribute of a data model. Data

dictionary for this system are obtained from six entities in our data model as shown in

Table 4.5 to Table 4.10.

Table 4.5: Global Resource Manager

S/N Column Name Data Type Constraints

(Key)

Notes

1. JobID VARCHAR(50) Primary It identifies RM to HDFS for

input splits.

2. RU_RM_ID CHAR(9) Not Null It identifies RM to

appropriate RU_RM for job

allocation.

3. Name_NodeID CHAR(8) Not Null Keep track of input splits for

each job

4. RM_Scheduler LONG Not Null Schedules jobs based on

RU_RM_ID information.

 115

Table 4.6: Hadoop Distributed File System (HDFS)

S/N Column Name Data Type Constraints

(Key)

Notes

1. JobID VARCHAR(50) Primary,

Foreign

Track job input splits on

NameNodeID and candidate

key that identifies RM for

DataNodeList and input splits

2. Name_NodeID CHAR(8) Not Null For DataNodeList and Input

splits.

3. Number of RUs INTEGER Not Null Keeps track of number of

racks in cluster

4. Storage_Space BYTE Not Null Keeps track of storage space

in cluster

Table 4.7: Rack Unit Resource Manager

S/N Column Name Data Type Constraints

(Key)

Notes

1. RU_RM_ID CHAR(9) Primary Identifies appropriate

RU_RM from RM.

Candidate key for RM.

2. JobID VARCHAR(50) Foreign Identifies job allocation

traced to HDFS through

RM

3. Name_NodeID CHAR(8) Not Null Identifies DataNodeList

and input splits from

HDFS through RM

4. Node_ManagerID CHAR(8) Not Null Is of RU_RM for task

monitoring

5. App_MasterID VARCHAR(20) Not Null Is of RU_RM for task

execution

6. RU_RM_Scheduler LONG Not Null Schedules job input splits

to appropriate

NodeManager

 116

Table 4.8: Name Node

S/N Column Name Data Type Constraints

(Key)

Notes

1. Name_NodeID CHAR(8) Primary Identifies HDFS for data node

list and input splits

2. JobID VARCHAR(50) Primary,

Foreign

Identifies job input splits and

respective data nodes traced

to HDFS through RM

3. Data_NodeList LONG Not Null Is for Name_Node for list of

data nodes in cluster

4. Input Splits VARCHAR(50) Not Null Is for Name_Node for list of

input splits for a job.

Table 4.9: Node Manager

S/N Column Name Data Type Constraints

(Key)

Notes

1. Node_ManagerID CHAR(8) Primary Identifies App_MasterID in

connection with

RU_RM_ID

2. App_MasterID VARCHAR(20) Not Null Identifies each job for a

single Application Master

3. ContainerList VARCHAR(50) Not Null For Node Manager to track

containers

4. RU_RM_ID CHAR(9) Foreign Identifies RU_RM for job

monitoring

 117

Table 4.10: Application Master

S/N Column Name Data Type Constraints

(Key)

Notes

1. App_MasterID VARCHAR(20) Primary Identifies job allocation in

connection with

RU_RM_ID

2. RU_RM_ID CHAR(9) Primary,

Foreign

Identifies RU_RM_ID

directly via App_MasterID

3. JobID VARCHAR(50) Primary,

Foreign

Identifies allocated Job

directly via App_MasterID

4. Node_ManagerID CHAR(8) Foreign Identifies Node Manager

for task monitoring

5. Name_NodeID CHAR(8) Not Null Keeps record of processing

on Data Nodes

6. Map_Task LONGCHAR Not Null Is of App_Master for map

tasks

7. Reduce_Task LONGCHAR Not Null Is of App_Master for

reduce task

8. Logs LONGTEXT Not Null Is of App_Master for

intermediate results

9. OutputFile LONGTEXT Not Null Is of App_Master for final

result

 118

4.4 System Flowchart

System flowchart for this system is shown in Figure 4.21.

Figure 4.21: System flowchart for the new model

 119

4.5 System Implementation

System requirements for implementing the new model described features and necessary

specifications required to run this application. Requirements for the new system are

hardware and software specifications.

4.5.1 Hardware Requirements

Hardware requirements for setting up this new rack aware resource management

application in Hadoop include:

i. RAM size – minimum of 4GB

ii. Hard disk size – minimum of 50GB

iii. Processor – Intel Core 2 dual/quad/hex/octa or higher end 64bit processor

with operating frequency of 2.5GHz or higher.

iv. Graphic Adapter – NVIDIA

4.5.2 Software Requirements

Software requirements for the new system are;

i. Java Development Kit (JDK) 1.6 or later version

ii. Cygwin software – packages to install are Open ssl, Open ssh, tcp wrappers

and diffutils.

iii. Install Virtual Machine ware (VMware)

iv. Windows SDK – a .NET framework Software Development Kit (SDK) for

Microsoft.

v. Maven Protocol Buffers Plugin – a tool that generate Java source files from

.proto (protocol buffer definition).

4.6 Program Development

Program development deals with various tools, methods and procedures required for

controlling the complexity of software development, management and its maintenance.

This will be considered under choice of programming environment and justification for

the language used.

 120

4.6.1 Choice of Programming Environment

Integrated Development Environment used for this system is NetBeans IDE.

Programing language used is Java (Oracle JDK 1.7). Other supported environment used

to run this application is Windows SDK, which is a .NET Framework Software

Development Kit (SDK) from Microsoft that contains documentation, header files,

libraries and tools required for developing this system. To successfully run this

application on Windows, Maven Protocol Buffers Plugin, which is a tool that helps

generate Java source files from .proto (protocol buffer definition) was used. Cygwin

was also installed with packages like openssh, openssl, tcp wrappers and diffutils.

4.6.2 Language Justification

Java programming language was used for this system because Hadoop core architecture

was also developed using Java. Hence, to modify the architecture so as to suit the

design objectives for this application, Java language is best fit. Though there are IDEs

for Java development, NetBeans IDE supports scripting language like PHP. It also

supports Maven and is cross-platform that runs on Microsoft Windows, Mac OS X,

Linux, Solaris and other platforms supporting a compatible JVM. Windows SDK was

installed to help build windows native component (winutils.exe). Cygwin is a large

collection of GNU and open source tools that provides functionality similar to Linux

distribution on Windows. It is needed to run scripts supplied with Hadoop because they

are all written for Linux platform.

4.7 System Testing

Thorough test plan and proper execution helps deliver quality software. Test plan act as

a road-map for system testing within a project. It describes overall test strategy drawn

up for testing components of a system. This section details test plan and test data used

for the new system.

4.7.1 Test Plan

The test plan for this new model started with components test. Each component was

tested to see if it meets its design objectives. All components were later coupled to form

a whole system. This was done to simplify error localization and to ensure interleaving

 121

of processes. The first component developed was Global Resource Manager. Its

relationship with client on the local machine and cloud server used for storage were

tested to ensure jobs are granted appropriate JobID. This process was the first test plan

carried out as shown in Figure 4.22.

Figure 4.22: Module and Unit Code Test(1) showing interaction between global

resource manager, client on local machine and HDFS

The other three components developed and tested are Rack Unit Resource Manager,

Node Manager and Application Master. These three components work exactly like

components in the existing system. Hence, they are all re-usable components picked

from existing architecture. The interaction between these three components is described

in Figure 4.23.

 122

Figure 4.23: Module and Unit Code Test (2) showing interaction between Rack Unit

Resource Manager, Node Manager and Application Master

The novel ring architecture of rack unit resource managers was also tested to ascertain

continuous execution of jobs in case any rack unit resource manager fails. This test

process is shown in Figure 4.24.

Figure 4.24: Module and Unit Code Test (3) showing interaction between Rack Unit

Resource Managers

 123

Figure 4.25 describe how the three module and unit code test were coupled and

integration/acceptance test carried out to ensure that the whole model meets its design

objectives.

Figure 4.25: Whole system test plan

4.7.2 Test Data

One of the popular workload for Hadoop benchmark is WordCount. The workload

helps count the occurrence of each word in a text file. The process is to see how

efficient and fast this operation will be, so as to determine processing and response time

possible for tasks run in Hadoop framework. For this model therefore, WordCount was

used as evaluation metric to determine processing and response time between the new

and existing system. Table 4.11 shows the text file used for this evaluation. It is

important to note that, any text file can run on this application for WordCount

MapReduce task.

 124

Table 4.11: Test Data

Women writers and readers have always had to work against the establishment. Aristotle, in his time,
declared that the female is a female because she lacks certain qualities that the male, the supposed
perfect being, has. St. Thomas Aquinas believed that a woman was the imperfect form of man. In pre-
Mendelian days, men regarded their sperm as the active seed which gave form to the waiting ovum of
the woman which lacked identity till it received the male’s sperm. All these were established formations
by the society that found themselves in some of the writings of the classical period. Throughout its long
history, feminism has sought to disturb these established trends and complacent conventions of such
cultures rooted in patriarchy. Although the word feminism may only have come into English usage in the
1890s, women’s conscious struggles to resist patriarchy go much earlier than that. Feminism as we have
it today started developing only in the 18

th
 century. Hence, feminism, on a general note, is basically

concerned with the struggle for the emancipation of women and the expression of issues regarding the
ordeals of women in society. The early activities of feminism, which largely surrounded issues
concerning suffrage, are commonly referred to as first wave feminism, which started in England. At this
point, feminists like Mary Wollstonecraft and Virginia Woolf articulated what it meant to be a woman in
the society and worked towards changing the limitations imposed upon women. In the United States of
America, feminists like Margaret Fullers in 1850 and Olive Schreiner in 1848 respectively, advocated
women rights. Through the works of Virginia Woolf and Simone de Beauvoir, the first wave of feminism
challenged the conventions of their days and paved way for the emergence of the second wave. By the
19

th
 century, second wave feminism began to build on the successes recorded by the first wave

feminists. This was when feminism was developed into theories and strategies aimed at giving the
women a voice in the society and a place equal to that of men. The efforts of the first and second wave
feminists laid the foundation for the emergence of contemporary feminism. During the second wave,
Michele Barrette, through her book, Women’s Oppression Today: Problems in Marxist Feminist Analysis,
announced what is today known as Marxist Feminism. In Britain, this brand of feminism was already
popular in the late 1960s and the 1970s. It sought to extend Marxism’s analysis of class struggles into
the woman history of material and economic oppression, and especially, how the family and the
woman’s domestic labour were constructed by and reproduced the sexual division of labour. There was
also Gynocriticism that was started by Elaine Showalter which emphasised how distinctive women
writing was, saying that the women literary tradition differ from that of the men in the range of syntax,
semantics and pragmatics since the woman is physiologically different from the man. Hence, women
have their own culture of writing in such a way that behind the writing, the gender could be recognised.
The French feminist scholar Alice Jardine preferred to see that distinct nature of gender in the writing of
women as Gynesis, which did not emphasise the gender of the writer but the feminisation of the text.
That is, the feminine effect of the text, by its syntactic, semantic and pragmatic substances, made on
the writing. Another French feminist, Monique Wittig, took a more radical stand, rejecting the use of
the term “woman” because, in its socially constructed form, it would not include a lesbian, who is not a
“woman” in the sense of sexuality. She thus preferred the term “Lesbian” because it suggests an un-
oppressed sexual identity and allows the woman to name and to redefine herself in sexuality and sexual
roles. This gave rise to what is today known as lesbian feminism. Black writers and scholars living in the
United States of America and Britain embarked on appropriating feminism to their own peculiar
situation, resulting in what today is seen as Black/African feminism. In her book, In Search of Our
Mother’s Gardens, Alice Walker deconstructs the racial sense inherent in the word feminism,
substituting it with what she calls womanism, to replace black feminism. Given the peculiar demands of
the society on the African woman, Walker thought that the African woman could not totally, as
feminism demanded; rejects the man in her life. Womanism, therefore, advocates a room in which the
woman and the man can co-habit.

 125

4.7.3 Actual Test Result versus Expected Test Result

Table 4.12 and Table 4.13 summarize actual and expected results obtained from

module/unit code test and the whole system test plan carried out for this model.

Table 4.12: Results from Components test

Components Expected Result Actual Result

Global Resource Manager It is expected that this

component receive client‟s

job request, grant JobID,

retrieve input splits from

HDFS and allocate job to

appropriate RU_RM

The component does all

functions as it is expected.

Rack Unit Resource

Manager

It is expected of this

component to receive job

from RM and contact Node

Manager for job

monitoring and execution.

The component locates

appropriate Node Manager

with input splits for task

execution.

Node Manager This component is

expected to launch

Application Master for job

execution and to monitor

job execution process.

The component does just as

it was expected.

Application Master It is expected of this

component to execute job

by launching YARNChild

which create mappers for

each input split and

subsequently reducers for

each intermediate result. It

is also expected that final

result be stored in HDFS

Application Master does all

these functions through the

help of RU_RM that

releases resource containers

for task execution.

HDFS It is expected of this

component to receive job

Component does as

expected.

 126

resources from client‟s

local machine, store

location of input splits and

job resources to be

retrieved by RM for task

execution on appropriate

RU_RM.

Name Node It is expected that this

component stores list of

data nodes and input splits

for each job.

Component does as

expected by keeping

metadata of each job input

split.

Table 4.13: Whole system test result

Test Data Expected Result Actual Result

Hadoopproject.txt Expected that the system

counts each word in the

text file and output the

number of occurrence for

each. Also expecting to

know the processing and

response time for the new

system and the old system.

System does as expected.

Process and response time

for new system is less

compared to that of the

existing system.

4.7.4 Performance Evaluation

This section evaluates the new model and the existing model for scalability and

efficient resource management. Though there are other works (Albert et al., 2016;

Konstantinos et al., 2018) carried out after Hadoop YARN was developed, their major

focus was to guard again RM failure and not on scalability (ability to expand the cluster

with more data nodes). Albert et al., 2016 and Konstantinos et al., 2018 architectures

still have a centralized resource manager, which is scalability bottleneck. Also, Hadoop

YARN is an open source framework, which has a standard benchmark workload called

 127

WordCount for testing scalability hence; the need to use this framework for evaluation

test. WordCount is a typical two-phased Hadoop workload which involves map task

counting the frequency of individual word in a text file while the reduce task shuffles

and sum up the number of times each word appears in the text. This shows a

representation of a large subset of real-world MapReduce jobs that transforms data from

one representation to another and further extracts a small amount of interesting data

from these large datasets. To fairly capture the timestamp of each task, execution time

for each block of a single task was recorded. This was done for both improved model

and the existing model. Results of the total finished time are presented in a bar chart.

Two different file sizes were used for this experiment, with finished time for each block

of file recorded.

Experiment 1:- Figure 4.26 shows results of WordCount operation with text file of

30.5kB in size.

Figure 4.26: Block partitions result of wordcount operation for improved and existing

model with file size = 30.5kB

Experiment 2:- The second experiment shows a larger file size of 92kB. Figure 4.27

shows results of WordCount operation performed on this file.

 128

Figure 4.27: Block partitions result of wordcount operation for improved and existing model with file size = 92kB

0

2

4

6

8

10

12

Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9 Block10Block11Block12Block13Block14Block15Block16

YARN

Improved YARN

ti
m

e
in

 m
s

block partitions

 129

Discussion

Two performance metrics were defined for this work; efficiency and average task-delay

ratio.

i. Efficiency:- Efficiency in this work represents the percentage of the ideal

finished time (Tideal) to the actual finished time (Tactual) of a task. This metric

helps quantify the average system utilization of the new and existing model.

Efficiency = (Tactual / Tideal) * 100% eqn(4.1)

Higher efficiency therefore, indicates less scheduling overhead hence; a

better turnaround time.

To obtain Tactual for this work, we run a task of file size = 6kB. Since this

workload is contained in just 1block partition, it was assumed that no

scheduling overhead is needed. Hence, finished time (which is

approximately 3ms = 3000000000ns) forms Tactual for our work.

Performance analysis for Experiment 1

 Tideal for existing and new model are 23000000000ns and 22000000000ns

respectively.

Tactual for Exp.1 = 3000000000ns * number of blocks eqn(4.2)

Tactual = 3000000000ns * 6blocks = 18000000000ns

Efficiency of existing model from eqn(4.1)

= 18000000000ns/23000000000ns * 100%

 = 0.783 * 100%

 = 78.3%

Efficiency of new model from eqn(4.1)

= 18000000000ns/22000000000ns * 100%

 = 0.818 * 100%

 = 81.8%

 130

Performance analysis for Experiment 2

 Tideal for existing and new model are 95000000000ns and 87000000000ns

respectively.

Tactual for Exp.2 = 3000000000ns * number of blocks

Tactual = 3000000000ns * 16blocks = 48000000000ns

Efficiency of existing model from eqn(4.1)

= 48000000000ns/95000000000ns * 100%

 = 0.505 * 100%

 = 50.5%

Efficiency of new model from eqn(4.1)

= 48000000000ns/87000000000ns * 100%

 = 0.552 * 100%

 = 55.2%

Performance evaluation for the two analyses above is represented in the bar

chart in Figure 4.28.

Figure 4.28: Percentage difference between the efficiency of existing and

new model

 131

ii. Average Task-Delay Ratio:- Average Task-Delay Ratio (rtd) for this work is

computed as the normalized difference between average ideal task finished

time (Titf) and actual task finished time (Tatf). This is represented by below.

rtd = (Titf - Tatf) / Tatf eqn(4.3)

Where

 Titf = Tideal / number of blocks eqn(4.4)

 Tatf = Tactual of a single block eqn(4.5)

This metric measured how fast the models can respond from a task‟s

perspective. If rtd is small, we conclude that there is faster response time and

lower scheduling overheads.

Average Task-Delay Ratio performance analysis for Experiment 1

From eqn(4.3), Existing Model

 rtd = [(23000000000ns/6) – 3000000000ns] / 3000000000ns

 = (3833333333.3ns – 3000000000ns) / 3000000000ns

 = 833333333.3ms / 3000000000ns

 = 0.278ns

From eqn(4.3), Improved Model

 rtd = [(22000000000ns/6) – 3000000000ns] / 3000000000ns

 = (3666666666.7ns – 3000000000ns) / 3000000000ns

 = 666666666.7ns / 3000000000ns

 = 0.222ns

 Average Task-Delay Ratio performance analysis for Experiment 2

From eqn(4.3), Existing Model

 rtd = [(95000000000ns/16) – 3000000000ns] / 3000000000ns

 = (5937500000ns – 3000000000ns) / 3000000000ns

 = 2937500000ns / 3000000000ns

 = 0.979ns

 132

From eqn(4.3), Improved Model

 rtd = [(87000000000ns/16) – 3000000000ns] / 3000000000ns

 = (543750000ns – 3000000000ns) / 3000000000ns

 = 2437500000ns / 3000000000ns

 = 0.813ns

Average Task-Delay Ratio performance evaluation for the two experiments is

shown in Figure 4.29.

Figure 4.29: Average Task-Delay Ratio of existing and new model

4.7.4. Limitation of the System

The need to add more physical machines at the rack unit layer to serve as rack unit

resource managers is the limitation of this system. With results obtained from the

analysis of the existing and new system however, the benefits of this new system

outweigh the cost involved in obtaining these machines. Moreover, with the novel ring

architecture for rack unit resource managers adopted in this system, machines to be

used can be inexpensive commodity computers.

 133

4.8 System Conversion

4.8.1 Changeover Procedures

Four approaches for system changeover are possible. These four approaches; their

descriptions, advantages, disadvantages and implications of using them are as follows;

i. Direct Cut Over:- Is a direct approach where existing system is cut and

overwrite by a new system. This approach immediately stops the old system

to allow new system becomes operational. The approach is not expensive

but has high risk of data loss with no option to revert to old system as

backup.

ii. Parallel Operation:- This allows for both old and new systems to run

simultaneously for a specified period of time. The old system can only be

terminated at a point where all stakeholders are satisfied with the new

system. The approach has low risk of engagement and allows for backup in

situation where the new system fails but, it is the most expensive changeover

procedure. There is also, increased workload and delay in processing

because users need to work on both systems.

iii. Pilot Operation:- This approach implements new system at a selected

location of the company. This location is referred to as pilot site. The old

system will be allowed to run for the entire company (including the pilot

site). At any point the new system proves successful at the pilot site, it is

implemented in the rest of the company (usually using direct cut over

method). The approach reduces risk of failure, it is less expensive than

parallel and it is a safer method.

iv. Phased Operation:- This approach implements new system in modules or

stages. The approach is similar to pilot procedure but here, part of the

system is provided to all users instead of the entire system released to some

users. Though less expensive and limited risk of failure than parallel

approach, it can cost more than pilot approach if the system involves a large

number of separate phases.

 134

4.8.2 Recommended Procedure

From the four possible changeover procedures, it is clear that direct and parallel

approach will not be suitable for our new model. This is because, Hadoop project is

a very large project and drawback like high risk or high cost cannot be

accommodated. Still, phased approach is not suitable for this work because, to

achieve desired result and the purpose of comparison and analysis of both systems,

implementing the new system in modules will not yield fruitful result. Pilot

approach therefore, is the most suitable and recommended procedure for this

system. Hadoop cluster in a particular geo-graphical location can be chosen to

implement the new system and once the system is proved successful, other cluster

centres can implement the system through direct cut over. This will reduce cost and

risk of system failure.

4.9 System Security

Hadoop has evolved to address security concerns as it pertain authentication,

authorization, accounting and data protection. It is been used securely and

suffessfully today in sensitive financial service applications, private healthcare

initiatives and range of other security-sensitive environments. Since this system will

be part of the entire project with improvement on its resource management, key

security issues as addressed in the old system will also be part of this system. The

system provides two modes of authentication. First is the simple or pseudo

authentication, which places trust in user‟s assertion about who they are. The second

provides a fully secured cluster. Authorization in this system gives access privilege

for user or system and accounting provides the ability to track resources used within

the system. Two authorization mechanism put in place to secure this system are

„Admin Panel‟ login access and „Cluster‟ login access. The „Admin Panel‟ login is

as described in Figure 4.30.

 135

Figure 4.30: Admin Panel access

Figure 4.30 gives acess to the only the Admin of this system. The admin can add

users who will gain access to the system. The Admin will also, be able to know

number of files and blocks that has so far been uploaded in the cluster. This is

shown in Figure 4.31.

Figure 4.31: The Admin Dashboard

The second level of authorization is at the cluster as shown in Figure 4.32. This

allows a user to gain access to the cluster for MapReduce task.

 136

Figure 4.32: Cluster login

4.10 Training

To launch this application, you will need to pass through all security checks as

mentioned in the previous section. You can now click Central Machine to gain

access to the cluster. The main menu shown in Figure 4.33 will be displayed.

Figure 4.33: Main menu for Improved YARN

On the left hand corner are functions/submenu for this application and on the

right hand is information about the cluster metric.

 137

To import a text file to be stored in HDFS, the Import File page displayed in

Figure 4.34 is used.

Figure 4.34: Import File page

From Figure 4.34, the user will browse to locate text file (in his local machine)

to be imported into the compute nodes. The text file is broken down into blocks

of 6kB each with the last block partition saved as a block even if the block size

is less than 6kB.

To perform WordCount operation on any text file, the MapReduce function

page as shown in Figure 4.35 is launched. This function count each word stored

in the virtual nodes and gives statistics of the total of each word in a text file.

Figure 4.35: MapReduce page

 138

Figure 4.35 has two options (Improved YARN and the existing system called

YARN)

If you select Improved YARN, the system does the following

1. You enter the application (text file) you want to process e.g. abstract.docx

2. Click on WordCount

If you select YARN, the system does the following

1. You enter the application (text file) you want to process e.g. abstract.docx

2. Click on WordCount

Once WordCount operation is completed, the output screen will be displayed as

shown in Figure 4.36.

Figure 4.36: Result of WordCount operation

Figure 4.36 shows counts for each word. To see finished time for block

partitions of this file will require the user to click on Logs. To also know the

total number of blocks stored in cluster, user will need to click on NameNode.

The output menu display result of WordCount operation in a file.

4.11 Documentation

The documentation for this system describes how you install and run the

application. To install this application however, there are basic tools that need to be

in place.

 139

1. JDK installation – you will need to install JDK 1.6 or later version of Java. JDK

can be downloaded from http://www.oracle.com/technetwork/java/index.html

2. Cygwin installation – First, you will need to download Cygwin setup from

https://cygwin.com/install.html. To install, you click on setup from the folder

you downloaded.

3. The next is to download and install Windows SDK from

https://developer.microsoft.com/en-us/windows/downloads Windows SDK

provides the tools, compilers, headers and libraries needed to run the new

system.

4. Maven and Protocol Buffer will be the next tool to install. Install Maven 3.0 or

later version and protocol buffer 2.5.0 into the directory c:/maven and

c:/protobuff respectively.

5. Next step will be to setup environment path for JAVA_HOME, M2_HOME (for

Maven) and platform (x64 or win32 depending on your system architecture).

Edit the path variable under system variables to add the following:

c:/cygwin64/bin; c:/cygwin64/usr/sbin; c:/maven/bin; c:/protobuff.

To setup environment variable for JAVA_HOME for instance, you right-click

on „my computer‟ on your desktop, click „properties‟ and locate „advanced

system settings‟ as shown in Figure 4.36.

Figure 4.37: Environment Variable Setup

http://www.oracle.com/technetwork/java/index.html
https://cygwin.com/install.html
https://developer.microsoft.com/en-us/windows/downloads

 140

Click on „New‟ button on „user variables‟ section. On the „variable name‟ space,

type JAVA_HOME. On the „variable value‟ space, go to your „program file‟

from your „c – drive‟. Locate Java, then jdk. Copy the values on your URL bar

and paste in the „variable value space.

Figure 4.38: User Variable setup

6. Once the basic tools described in step 1 – 5 has been successfully installed, you

can now launch this new application. The procedure for this is as contained in

section 4.10 of this work.

 141

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary

Big data has brought in an era of data exploration and utilization with Hadoop

MapReduce computational paradigm as its major enabler. Though great efforts through

the implementation of Hadoop has made computation scale to tens of thousands

commodity cluster processors, the centralized architecture of resource manager has

adversely affected response time in large datacenters. Decentralizing the responsibilities

of resource manager to address scalability issues of Hadoop for better response,

processing, turnaround time and to eliminate single point of failure is therefore

necessary; hence, this study. The aim of this research was to develop a model of an

improved scalable resource management system for Hadoop YARN. The objectives

were to; decentralize the responsibilities of Resource Manager (RM) by creating

Rack_Unit Resource Manager (RU_RM) layer; configure RU_RM layer to ensure that

each RU_RM controls resource requests for compute nodes within its rack; develop a

ring architecture in RU_RM layer to guard against failure; and to carry out a

performance evaluation test between the developed model and existing model.

Object Modeling Technique (OMT) methodology was adopted with parallelization and

push-based techniques used to decentralize the responsibilities of RM. Java Remote

Method Invocation was implemented to maintain resource requests control within

racks. A self-stabilizing Peer-to-Peer (P2P) topology was used in the RU_RM layer so

that, if one RU_RM fails, the unit preceding/succeeding it takes over the responsibilities

of compute nodes in that rack. Hadoop benchmark workload called WordCount was

used to compare the efficiency and average task-delay ratio of the developed and

existing models.

Decentralized RM showed that cluster average execution times of the developed model

for file sizes 30.5kB and 92kB were less compared to execution times of the existing

model. 12kB containing 2 blocks from file size 30.5kB and 30kB containing 5 blocks

from file size 92kB were independently computed on two RU_RMs for a cluster

configuration of three RU_RMs. The remaining 6.5kB containing 2 blocks and 32kB

containing 6 blocks were computed on the third RU_RM. Ring architecture deployed

 142

showed that at-least one (RU_RM ≥ 1) RU_RM was available during cluster execution.

Efficiency of new model for file sizes 30.5kB and 92kB showed a difference of 3.5%

and 4.7%, respectively better than the existing model. The new model had lower

average task-delay ratio of 0.056ns and 0.166ns for file sizes 30.5kB and 92kB,

respectively compared to the existing model.

5.2 Conclusion

A model of improved scalable resource management system for Hadoop Yet Another

Resource Negotiator (YARN) is an improvement over the existing Hadoop YARN

model. The new model decouples the responsibilities of resource manager in YARN by

providing another layer called RU_RM layer. The layer forms a peer-to-peer

architecture to guard against failure. This new model was developed and tested in Java

programming language. Hadoop benchmark workload called WordCount was used for

comparing existing and new model. Finished time of block partitions recorded in log

file for a single text file was used as basis for comparing the models. Results obtained

from computation of efficiency and average task-delay ratio showed that as file size

increases, the developed model performed better than existing model. Since Hadoop

was developed for big data analytics, this work is recommended as a better solution for

a scalable and efficient resource management framework.

5.3 Recommendation

5.3.1 Application Areas

This new model can be used in various big data activities. It can be used to configure,

manage and orchestrate data motion, pipeline processing, disaster recovery and data

retention workflows. The system can be used in applications like yahoo weather,

facebook photo gallery and google search index. The system can also help analyse life-

threatening risks. This is possible where patient‟s medical history together with series

of test and results are analysed with the help of big data tools. Identifying warning signs

of data security breaches is another area of application. Before data breaches occur,

there are typical early warning signs such as unusual server pings, suspicious emails or

other forms of communication that could suggest internal collusion. With ability to

 143

mine and correlate people, business and machine-generated data all in one seamless

analytic environment, the new system can help provide complete picture of who is

doing what and when.

5.3.2 Suggestions for Further Research

Further design issue that can be looked at in YARN framework is the centralized

metadata management of the framework. HDFS is the default distributed file system

responsible for keeping all files/blocks metadata in a centralized daemon called Name

Node. This daemon monitors all compute nodes through its metadata information. With

the rate at which this framework is growing, the number of data files will increase

significantly that will lead to a much higher demands of memory footprints and

metadata access ratio. This will obviously overwhelm the centralized metadata

management. Things may become worst for abundant small data files. To avoid this

situation therefore, further research should be carried out to have efficient metadata

management in this framework.

Another area of interest is data replica system for rack failure in Hadoop framework.

Anytime heartbeat communication stops between NameNode and Data Node, it is

presumed that such Data Node is dead and any data its holding gone as well. Previous

block reports received from the said Data Node will help the NameNode to know which

copies of blocks died along the with the node. Using rack-aware policy, the NameNode

will re-replicate those blocks on other data nodes. The limitation with this however is,

when an entire rack of servers falls off the network due to rack switch failure or power

failure, it then means that the NameNode will instruct the remaining nodes in the cluster

to re-replicate all the data blocks lost in that rack. This process may mean that hundreds

of terabytes of data will need to begin traversing the network.

5.4 Contribution to Knowledge

Decentralizing the global control of resource manager in YARN framework by

providing Rack_Unit Resource Manager (RU_RM) layer and the peer-to-peer ring

 144

architecture designed to guide against RU_RM failure has added positively to the

existing knowledge.

i. There is improved scalability:- With the breaking down of Resource

Manager‟s responsibilities into Rack Unit Resource Manager (RU_RM),

more nodes can easily be added to each rack without predicting future

scalability bottleneck as observed with the existing framework.

ii. Easy fault/failure detection:- Isolation of slave nodes using rack aware

technique will help administrators locate faulty nodes easily.

iii. Fast execution/response to client job:- Since each RU_RM now handles the

responsibility of allocating and monitoring resources in a rack,

response/execution time for each job becomes faster compared to when a

central Resource Manager has to respond to each job needs in the cluster.

iv. Easy Recovery:- With relaxed-ring topology built with this framework, if

any Rack Unit Resource Manager fails, the predecessor or successor can

continue with the management of compute nodes in that rack until such

RU_RM recovers from failure. This process will ensure that jobs do not halt

at a point where any of the daemons (central resource manager or rack unit

resource manager) fails.

 145

REFERENCES

Albert, J., Abhishek, C. and Jon, W. (2016). Awan: Locality-aware resource manager

for geo-distributed data-intensive applications. IEEE International Conference on

Cloud Engineering (IC2E), Berlin, 2016, Germany: IEEE Computer Society.

Anthony, M. (2015). Introduction to High-Performance Computing cluster. White paper

from Lexis Nexis Risk Solutions, USA. Retrieved from

https://docs.huihoo.com/hpcc/Introduction-to-HPCC.pdf on 25th September, 2016.

Apache (2016). Apache Hadoop. Retrieved from https://hadoop.apache.org/. on 3rd

March, 2017.

Avita, K., Mohammad, W. and Goudar, R. H. (2013). Big Data: Issues, challenges,

tools and good practices”. IEEE International Conference on Robotics and

Automation, Karlsruhe, 2013, Germany: IEEE Computer Society.

Bakshi, R. P. and Sonali, A. (2016). Comparative study of big data computing and

storage tools: A review. International Journal of Database Theory and Application,

9(1), 45-66.

Barroso, L. A., Dean, J. and Holzle, U. (2003). Web search for a planet: The Google

cluster architecture. IEEE Computer Society, 23(2) 22-28.

Bekkerman R., Bilenko M., and Langford J. (2012). Scaling up Machine Learning:

Parallel and distributed approaches. Berkeley, California: University of

California.

Benjamin, H., Andy, K., Matei, Z., Ali, G., Anthony, D. J., Randy, K., Scott, S. and Ion,

S. (2012). Mesos: A platform for fine-grained resource sharing in the data centre.

Berkeley, California: University of California.

Beyer, M. A., and Laney, D. (2012). The Importance of 'Big Data: A Definition.

Retrieved from https://www.gartner.com/doc/2057415/importance-big-data-

definition on January 18
th

, 2017.

Bialecki, A., Cafarella, M., Cutting, D. and O‟Malley, O. (2005). Hadoop: A

framework for running applications on large clusters built of commodity

hardware. Retrieved from http://lucene.apache.org/hadoop/ on 6
th

 June, 2015.

Biehn, N. (2013). The missing V‟s in big data: Viability and value. Retrieved from

http://www.wired.com/insights/2013/05/the-missing-vs-in-big-data-viability-and-

value/. on June 20
th

, 2017.

https://docs.huihoo.com/hpcc/Introduction-to-HPCC.pdf
https://hadoop.apache.org/
https://www.gartner.com/doc/2057415/importance-big-data-definition
https://www.gartner.com/doc/2057415/importance-big-data-definition
http://lucene.apache.org/hadoop/
http://www.wired.com/insights/2013/05/the-missing-vs-in-big-data-viability-and-value/
http://www.wired.com/insights/2013/05/the-missing-vs-in-big-data-viability-and-value/

 146

Brad, H. (2011). Understanding Hadoop clusters and the network. Retrieved from

http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-

network/ on 23
rd

 May, 2017.

Bradly, D., Clair, S. T., Farrellee, M., Guo, Z., Livny, M., Sfiligoi, I. and Tannenbaum,

T. (2011). An update on the scalability limits of Condor batch system. Journal of

Physics, 331(6), 1-6.

Camille, R. (2015). “Big Data open platforms”. Project final report for Department of

Information and Systems Engineering, Polytechnic Institute of Coimbra. Retrieved

from https://slidex.tips/download/big-data-open-platforms on 24th June, 2017.

Chaike, R., Jenkins, B., Larson, P. A., Ramsey, B., Shakib, D., Weaver, S. and Zhou, J.

(2008) Scope: easy and efficient parallel processing of massive data sets. Proc.

VLDB Endowment, Auckland, 2008, New Zealand: ACM.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. OSDI ’04: 6th Symposium on Operating Systems Design and

Implementation, Berkeley, 2008, CA: USENIX Association.

Dilpreet, S. and Chandan, K. R. (2014). A survey on platforms for big data analytics.

Journal of Big Data: A Springer Open Journal, 1(1), 8-27. Retrieved from

https://www.journalofbigdata.com/content/1/1/8

Dominique, A. H. (2015). Hadoop design, architecture and MapReduce performance.

DH Technologies. Retrieved from www.dhtusa.com on 10
th

 March, 2015.

Dongyao, W., Sherif, S. and Liming, Z. (2017). Big data programming models.

Australia, Sydney: Springer International Publishing.

Douglas, K. (2012). Big Data Infographic: Solve your big data problems. Retrieved

from http://www.intel.in/content/www/in/en/big-data/solving-big-dataproblems-

infographic.html. On June 20
th

, 2017.

Facebook (2012). Under the hood: Scheduling MapReduce jobs more efficiently with

Corona. Retrieved from http://on.fb.me/TxUsYN on 21st October, 2015.

Francisco, P. (2011). The Netezza data appliance architecture: A platform for high

performance data warehousing and analytics. USA, IBM Redbooks.

Garcia, J. (2014). The BBT Sessions: Hortonworks, big data and the data lake.

Retrieved from http://www.dofthings.com/2014/04/the-bbbt-sessions-hortonworks-

big-data.html on 18th January, 2017.

http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
https://slidex.tips/download/big-data-open-platforms
https://www.journalofbigdata.com/content/1/1/8
http://www.dhtusa.com/
http://www.intel.in/content/www/in/en/big-data/solving-big-dataproblems-infographic.html
http://www.intel.in/content/www/in/en/big-data/solving-big-dataproblems-infographic.html
http://on.fb.me/TxUsYN
http://www.dofthings.com/2014/04/the-bbbt-sessions-hortonworks-big-data.html
http://www.dofthings.com/2014/04/the-bbbt-sessions-hortonworks-big-data.html

 147

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The Google file system. Paper

presented at the ACM SIGOPS operating systems review, New York City, 2003,

NY: ACM.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R., Shenker,

S. and Stoica, I. (2011). Mesos: a platform for fine-grained resource sharing in the

data center. In Proceedings of the 8th USENIX conference on Networked systems

design and implementation, Berkeley, 2011, CA, USA: USENIX Association.

Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A. and Hofmann-

Wellenhof, R. (2013). Combining HCI, natural language processing, and

knowledge discovery—potential of IBM content analytics as an assistive

technology in the biomedical field. Berlin, Germany: Springer.

Hong. S. and Kim, H. (2009). An analytical Model for a GPU Architecture with

memory-level and thread-level parallelism awareness. ACM SIGARCH Computer

Architecture News, New York, 2009, NY: ACM.

Hortonworks (2016). Apache Hadoop YARN. Retrieved from

https://hortonworks.com/apache/yarn on June 18th, 2017.

IBM (2012). IBM Analytics: The real-world use of big data. Retrieved from

www.m.ibm.com on 12
th

 April, 2015.

Ibrahim, A. T. H., Nor, B. A., Abdullah, G., Ibrar, Y., Feng, X., and Samee, U. K.

(2016). MapReduce: Review and Challenges. Springer Journal, 109(1), 389-421.

http://www.doi.org/10.1145/1327452.1327492

Jonathan, A., Ryden, M., Oh, K., Chandra, A., and Weissman, J. B. (2017). Nebula:

Distributed edge cloud for data intensive computing. IEEE Transaction on Parallel

and Distributed Systems, 28(11), 3229-3242.

Konstantinos, K., Suresh, A., and Douglas, C. (2018). Advancements in YARN

Resource Manager. Encyclopedia of Big Data Technoligies: Springer International

Publishing, DOI: https://doi.org/10.1007/978-3-319-63962-8_207-1.

Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C., Choi, A. and

Erickson, J. (2015). Impala: A modern, open-source SQL engine for Hadoop.

Proceedings of the Conference on Innovative Data Systems Research, California,

2015, USA: Innovative Data Systems Research.

https://hortonworks.com/apache/yarn
http://www.m.ibm.com/
http://www.doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-319-63962-8_207-1

 148

Kraska, T., Talwalkar, A., Duchi, J., Griffith, R., Franklin, M. J., and Jordan, M.

(2013). MLbase: A Distributed Machine-learning System. In: Proceedings of Sixth

Biennial Conference on Innovative Data Systems Research, California, 2013, USA:

Innovative Data Systems Research.

Madden, S. (2012). From Databases to Big Data. IEEE Internet Computing, 16(3), 4-6.

https://doi.org/10.1109/MIC.2012.50

Malte, S., Andy, K., Michael, A. and John, W. (2013). Omega: Flexible, scalable

schedulers for large compute clusters. Google Inc, Prague, 2013, Czech Republic:

ACM.

Michael, E., Payne, L. B., Ngo, F. V. and Amy, W. A. (2014). Managing the academic

data lifecycle: A case study of HPCC. IEEE International Conference on Big Data,

Washington, 2014, USA: IEEE Computer Society.

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,

Rollins, S., and Xu, Z. (2003). Peer-to-peer computing. Technical Report HPL-

2002-57, HP Labs, California, CA: Hewlett-Packard Company.

Nagina, D. and Sunita, D. (2016). Scheduling algorithm in big data: A Survey.

International Journal of Engineering and Computer Science, 5(8), 17737-17743.

Nawsher, K., Ibrar, Y., Ibrahim, A. T. M., Zakira, I., Waleed, K. M. A., Muhammad,

A., Muhammad, S. and Abdullahi, G. (2014). Big data: Survey, technologies,

opportunities and challenges. The Scientific World Journal, 14(7) 1-18.

http://dx.doi.org/10.1155/2014/712826

Ning, L., Xi, Y., Xian-He, S., Jonathan, J., and Robert, R. (2015). YARNsim:

Simulating Hadoop YARN. 15
th

 IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, Shenzhen, 2015, China: IEEE.

Nyland, L. S., Prins, J. F., Goldberg, A. and Mills, P. H. (2000). A design methodology

for data-parallel applications. IEEE Transactions on Software Engineering, 26(4),

293-314.

Oracle (2012). From overload to impact: An industry scorecard on big data business

challenges. Retrieved from www.oracle.com on 16
th

 April, 2015.

Outerhout, K., Patrick, W., Matei, Z. and Ion, S. (2013). Sparrow: Distributed, low

latency scheduling. Hertz Foundation Fellowship, Pennsylvania, 2013, USA:

ACM. dx.doi.org/10.1145/2517349.2522716

http://dx.doi.org/10.1155/2014/712826
http://www.oracle.com/
http://www.dx.doi.org/10.1145/2517349.2522716

 149

Pasula, S. (2016). What is the difference between Hadoop and Pentaho? Education

Managment & Administration, Retrieved from https://www.quora.com/What-is-

the-difference-between-Hadoop-and-Pentaho on 28th June, 2018.

Patrick, T. (2011). Hadoop challenger works to add developers. Retrieved from

http://www.computerworld.com/article/2500651/business-intelligence/hadoop-

challenger-works-to-add-developers.html on June 20th, 2017.

Prashanth, M., Ville, T., and Jared, F. (2011). Disco: A computing platform for large-

scale data analytic. Proceeding of the 10
th

 ACM SIGPLAN workshop on Erland,

New York, 2011, NY, USA: ACM.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. and Wilkes, J. (2013). Omega:

flexible, scalable schedulers for large compute clusters. In Proceedings of the 8th

ACM European Conference on Computer Systems, EuroSys ’13, New York, 2013,

NY, USA: ACM.

Sergio, C. G. (2015). “What about big data?” A project carried out at Computer Science

and Engineering Department of the Open University of Catalonia. Retrieved from

www.openaccess.uoc.edu/webapps/o2/bitstream/.../scruzguocTFG1215memoria.pd

... on 25
th

 July, 2016.

 Sharanjit, K., Rakhi, S., Dhriti, K. and Vasudha, B. (2014). Comparing data processing

frameworks for scalable clustering. Proceedings of the Twenty-Seventh

International Florida Artificial Intelligence Research Society Conference,

Association for the Advancement of Artificial Intelligence, Pensacola Beach, 2014,

Florida: The AAAI Press.

Shouvik, B., and Daniel, A. M. (2013). The anatomy of MapReduce jobs, scheduling

and performance challenges. Proceedings of the 2013 conference of the Computer

Measurement Group, San Diego, 2013, CA: Semantic Scholar.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The hadoop distributed

file system. 2010 IEEE 26th symposium on Mass Storage Systems and

Technologies (MSST), Washington D. C., 2010, USA: IEEE Computer Society.

Sievert, O., and Casanova, H. (2004). A simple MPI process swapping architecture for

iterative applications. International Journal of High Performance Computing

Application, 18(3), 341–352.

Sircular, S. (2013). “Gartner's big data definition consists of three parts” Forbes, 27

March, 2013. Retrieved from http://bit.ly/2sIuBrA on 28
th

 April, 2016.

https://www.quora.com/profile/Srikanth-Pasula-1
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Pentaho
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Pentaho
http://bit.ly/2sIuBrA

 150

Siya, K. (2013). What is the difference between Hadoop and Splunk? Retrieved from

https://www.quora.com/What-is-the-difference-between-Hadoop-and-Splunk on

20
th

 June, 2018.

Steinmetz, R., and Wehrles, K. (2005). Peer-to-Peer Systems and Applications. Berling,

Heidelberg: Springer.

Stone, Z., Zickler, T., and Darrell, T. (2008). Auto-tagging facebook: Social network

context improves photo annotation. IEEE Conference on Computer Vision and

Pattern Recognition Workshop, Anchorage, 2008, Alaska: IEEE Computer Society.

Tannenbaum, T. (2010). What‟s new in Condor: What‟s coming up? Condor Week,

Madison, 2010, Wisconsin: Center for High Throuhgput Computing. Retrieved

from https://research.cs.wisc.edu/htcondor/CondorWeek2010/condor-

presentations/tannenba_roadmap_2010.pdf on 30
th

 March, 2016.

Telmoda, S. M. (2015). Survey of frameworks for distributed computing: Hadoop,

Spark and Storm. Proceedings of the 10
th

 Doctorial Symposium in Informatics

Engineering DSIE’15, Porto, 2015, Portugal: DSIE.

TIBC (2011). Jaspersoft announces new Hadoop-based big data analytics solution.

Retrieved from https://www.jaspersoft.com/press/jaspersoft-announces-new-

hadoop-based-big-data-analytics-solution on 26th June, 2018.

Vidhya, S., Sarumathi, S. and Shanthi, N. (2014). Comparative analysis of diverse

collection of big data analytics tools. International Journal of Computer and

Information Engineering, 8(9), 21-40.

Vinayak, R. B., Michael, J. C. and Chan, L. (2012). Big data platforms: What‟s next?.

ACM Transactions on Accessible Computing, 9(1), 44-49.

Vinod, K. V., Arun, C. M., Chris, D., Sharad, A., Mahadev, K., Robert, E., Thomas, G.,

Jason, L., Hitesh, S., Siddaharth, S., Bikas, S., Carlo, C., Owen, O. M., Sanjay, R.,

Benjamin, R., and Eric, B. (2013). Apache Hadoop YARN: Yet Another Resource

Negotiator. SOCC ’13 Proceedings of the 4
th

 annual symposium on Cloud

Computing, New York, 2013, NY: ACM.

http://dx.doi.org/10.1145/2523616.2523633

Wang, K. (2015). Scalable Resource Management System Software for Extreme-Scale

Distributed Systems. (PhD Dissertation). Retrieved from

http://datasys.cs.iit.edu/publications/2015_IIT_PhD-thesis_Ke-Wang.pdf

https://www.quora.com/profile/Siya-Kapur-1
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Splunk
https://research.cs.wisc.edu/htcondor/CondorWeek2010/condor-presentations/tannenba_roadmap_2010.pdf
https://research.cs.wisc.edu/htcondor/CondorWeek2010/condor-presentations/tannenba_roadmap_2010.pdf
https://www.jaspersoft.com/press/jaspersoft-announces-new-hadoop-based-big-data-analytics-solution
https://www.jaspersoft.com/press/jaspersoft-announces-new-hadoop-based-big-data-analytics-solution
http://datasys.cs.iit.edu/publications/2015_IIT_PhD-thesis_Ke-Wang.pdf

 151

Wang, K., Ma, Z., and Raicu, I. (2013). Modelling many-task computing workloads on

a Petaflop IBM BlueGene/P Supercomputer. IEEE International Symposium on

Parallel and Distributed Processing, Workshops and PhD Forum, Massachusetts,

2013, USA: IEEE Computer Society.

Wang, K., Ning, L., Imam, S., Xi, Y., Xiabing, Z., Tonglin, L., Michael, L., Xiantte, S.

and Ioan, R. (2015). Overcoming Hadoop scaling limitations through distributed

task execution. Computer Science Department, Illinois Institute of Technology,

Illinois, 2015, USA: Amazon AWS Research Grant.

White, T. (2009). Hadoop: The definitive guide. Sebastopol, CA: O‟Reilly Media.

Wissem, I., Sabeur, A., Haithem, M., Mondher, M. and Engelbert, M. N. (2018). An

experimental survey on big data frameworks. 34
th

 Conference on Principles,

Technologies and Application, Bucarest, 2018, Romania: Conference Proceedings

of BDA.

Yuan, Y., Michael, I., Dennis, F. and Mihai, B. (2016). DryadLINQ: A system for

general-purpose distributed data-parallel computing using a high-level language.

8
th

 USENIX Symposium on Operating Systems Design and Implementation,

Berkeley, 2016, CA: USENIX Association.

Zaharia, M., Das, T., and Li, H. (2012). Discretized streams: an efficient and fault-

tolerant model for stream processing on large clusters. 4
th

 USENIX Workshop on

hot topics in cloud computing, Boston, 2012, MA: USENIX Association.

Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R. and

Raicu, I. (2014). FusionFS: Towards supporting data-intensive scientific

applications on extreme-scale High-Performance Computing Systems. IEEE

International Conf. on Big Data, Washington DC, 2014, USA: IEEE Computer

Society.

 152

APPENDIX A

PROGRAM LISTING

package org.apache.hadoop.yarn.server.resourcemanager;

import java.io.IOException;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.classification.InterfaceAudience.Private;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.metrics2.lib.DefaultMetricsSystem;
import org.apache.hadoop.security.SecurityUtil;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.yarn.YarnException;
import org.apache.hadoop.yarn.api.records.ApplicationAttemptId;
import org.apache.hadoop.yarn.api.records.ApplicationId;
import org.apache.hadoop.yarn.api.records.NodeId;
import org.apache.hadoop.yarn.conf.YarnConfiguration;
import org.apache.hadoop.yarn.event.AsyncDispatcher;
import org.apache.hadoop.yarn.event.Dispatcher;
import org.apache.hadoop.yarn.event.EventHandler;
import org.apache.hadoop.yarn.security.ApplicationTokenSecretManager;
import org.apache.hadoop.yarn.security.client.ClientToAMSecretManager;
import org.apache.hadoop.yarn.server.RMDelegationTokenSecretManager;
import org.apache.hadoop.yarn.server.resourcemanager.amlauncher.AMLauncherEventType;
import org.apache.hadoop.yarn.server.resourcemanager.amlauncher.ApplicationMasterLauncher;
import org.apache.hadoop.yarn.server.resourcemanager.recovery.Recoverable;
import org.apache.hadoop.yarn.server.resourcemanager.recovery.Store;
import org.apache.hadoop.yarn.server.resourcemanager.recovery.Store.RMState;
import org.apache.hadoop.yarn.server.resourcemanager.recovery.StoreFactory;
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMApp;
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppEvent;
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppEventType;
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.AMLivelinessMonitor;
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttempt;
import org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptEvent;
import
org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptEventType;
import org.apache.hadoop.yarn.server.resourcemanager.rmcontainer.ContainerAllocationExpirer;
import org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNode;
import org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNodeEvent;
import org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNodeEventType;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.ResourceScheduler;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.event.SchedulerEvent;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.event.SchedulerEventType;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.fifo.FifoScheduler;
import org.apache.hadoop.yarn.server.resourcemanager.security.DelegationTokenRenewer;
import org.apache.hadoop.yarn.server.resourcemanager.webapp.RMWebApp;
import org.apache.hadoop.yarn.server.security.ApplicationACLsManager;
import org.apache.hadoop.yarn.server.security.ContainerTokenSecretManager;
import org.apache.hadoop.yarn.server.webproxy.AppReportFetcher;

 153

import org.apache.hadoop.yarn.server.webproxy.ProxyUriUtils;
import org.apache.hadoop.yarn.server.webproxy.WebAppProxy;
import org.apache.hadoop.yarn.server.webproxy.WebAppProxyServlet;
import org.apache.hadoop.yarn.service.AbstractService;
import org.apache.hadoop.yarn.service.CompositeService;
import org.apache.hadoop.yarn.service.Service;
import org.apache.hadoop.yarn.webapp.WebApp;
import org.apache.hadoop.yarn.webapp.WebApps;
import org.apache.hadoop.yarn.webapp.WebApps.Builder;

/**
 * The ResourceManager is the main class that is a set of components.
 *
 */
public class ResourceManager extends CompositeService implements Recoverable {
 private static final Log LOG = LogFactory.getLog(ResourceManager.class);
 public static final long clusterTimeStamp = System.currentTimeMillis();

 protected ClientToAMSecretManager clientToAMSecretManager =
 new ClientToAMSecretManager();

 protected ContainerTokenSecretManager containerTokenSecretManager =
 new ContainerTokenSecretManager();

 protected ApplicationTokenSecretManager appTokenSecretManager =
 new ApplicationTokenSecretManager();

 private Dispatcher rmDispatcher;

 protected ResourceScheduler scheduler;
 private ClientRMService clientRM;
 protected ApplicationMasterService masterService;
 private ApplicationMasterLauncher applicationMasterLauncher;
 private AdminService adminService;
 private ContainerAllocationExpirer containerAllocationExpirer;
 protected NMLivelinessMonitor nmLivelinessMonitor;
 protected NodesListManager nodesListManager;
 private EventHandler<SchedulerEvent> schedulerDispatcher;
 protected RMAppManager rmAppManager;
 protected ApplicationACLsManager applicationACLsManager;
 protected RMDelegationTokenSecretManager rmDTSecretManager;
 private WebApp webApp;
 protected RMContext rmContext;
 private final Store store;
 protected ResourceTrackerService resourceTracker;

 private Configuration conf;

 public ResourceManager(Store store) {
 super("ResourceManager");
 this.store = store;
 this.nodesListManager = new NodesListManager();
 }

 public RMContext getRMContext() {
 return this.rmContext;
 }

 @Override

 154

 public synchronized void init(Configuration conf) {

 this.conf = conf;

 this.rmDispatcher = createDispatcher();
 addIfService(this.rmDispatcher);

 this.containerAllocationExpirer = new ContainerAllocationExpirer(
 this.rmDispatcher);
 addService(this.containerAllocationExpirer);

 AMLivelinessMonitor amLivelinessMonitor = createAMLivelinessMonitor();
 addService(amLivelinessMonitor);

 DelegationTokenRenewer tokenRenewer = createDelegationTokenRenewer();
 addService(tokenRenewer);

 this.rmContext = new RMContextImpl(this.store, this.rmDispatcher,
 this.containerAllocationExpirer, amLivelinessMonitor, tokenRenewer);

 addService(nodesListManager);

 // Initialize the scheduler
 this.scheduler = createScheduler();
 this.schedulerDispatcher = createSchedulerEventDispatcher();
 addIfService(this.schedulerDispatcher);
 this.rmDispatcher.register(SchedulerEventType.class,
 this.schedulerDispatcher);

 // Register event handler for RmAppEvents
 this.rmDispatcher.register(RMAppEventType.class,
 new ApplicationEventDispatcher(this.rmContext));

 // Register event handler for RmAppAttemptEvents
 this.rmDispatcher.register(RMAppAttemptEventType.class,
 new ApplicationAttemptEventDispatcher(this.rmContext));

 // Register event handler for RmNodes
 this.rmDispatcher.register(RMNodeEventType.class,
 new NodeEventDispatcher(this.rmContext));

 //TODO change this to be random
 this.appTokenSecretManager.setMasterKey(ApplicationTokenSecretManager
 .createSecretKey("Dummy".getBytes()));

 this.nmLivelinessMonitor = createNMLivelinessMonitor();
 addService(this.nmLivelinessMonitor);

 this.resourceTracker = createResourceTrackerService();
 addService(resourceTracker);

 try {
 this.scheduler.reinitialize(conf,
 this.containerTokenSecretManager, this.rmContext);
 } catch (IOException ioe) {
 throw new RuntimeException("Failed to initialize scheduler", ioe);
 }

 masterService = createApplicationMasterService();

 155

 addService(masterService) ;

 this.applicationACLsManager = new ApplicationACLsManager(conf);

 this.rmAppManager = createRMAppManager();
 // Register event handler for RMAppManagerEvents
 this.rmDispatcher.register(RMAppManagerEventType.class,
 this.rmAppManager);
 this.rmDTSecretManager = createRMDelegationTokenSecretManager();
 clientRM = createClientRMService();
 addService(clientRM);

 adminService = createAdminService(clientRM, masterService, resourceTracker);
 addService(adminService);

 this.applicationMasterLauncher = createAMLauncher();
 this.rmDispatcher.register(AMLauncherEventType.class,
 this.applicationMasterLauncher);

 addService(applicationMasterLauncher);

 new RMNMInfo(this.rmContext, this.scheduler);

 super.init(conf);
 }

 protected EventHandler<SchedulerEvent> createSchedulerEventDispatcher() {
 return new SchedulerEventDispatcher(this.scheduler);
 }

 protected Dispatcher createDispatcher() {
 return new AsyncDispatcher();
 }

 protected void addIfService(Object object) {
 if (object instanceof Service) {
 addService((Service) object);
 }
 }

 protected ResourceScheduler createScheduler() {
 return ReflectionUtils.newInstance(this.conf.getClass(
 YarnConfiguration.RM_SCHEDULER, FifoScheduler.class,
 ResourceScheduler.class), this.conf);
 }

 protected ApplicationMasterLauncher createAMLauncher() {
 return new ApplicationMasterLauncher(
 this.appTokenSecretManager, this.clientToAMSecretManager,
 this.rmContext);
 }

 private NMLivelinessMonitor createNMLivelinessMonitor() {
 return new NMLivelinessMonitor(this.rmContext
 .getDispatcher());
 }

 protected AMLivelinessMonitor createAMLivelinessMonitor() {
 return new AMLivelinessMonitor(this.rmDispatcher);

 156

 }

 protected DelegationTokenRenewer createDelegationTokenRenewer() {
 return new DelegationTokenRenewer();
 }

 protected RMAppManager createRMAppManager() {
 return new RMAppManager(this.rmContext, this.clientToAMSecretManager,
 this.scheduler, this.masterService, this.applicationACLsManager,
 this.conf);
 }

 @Private
 public static class SchedulerEventDispatcher extends AbstractService
 implements EventHandler<SchedulerEvent> {

 private final ResourceScheduler scheduler;
 private final BlockingQueue<SchedulerEvent> eventQueue =
 new LinkedBlockingQueue<SchedulerEvent>();
 private final Thread eventProcessor;

 public SchedulerEventDispatcher(ResourceScheduler scheduler) {
 super(SchedulerEventDispatcher.class.getName());
 this.scheduler = scheduler;
 this.eventProcessor = new Thread(new EventProcessor());
 this.eventProcessor.setName("ResourceManager Event Processor");
 }

 @Override
 public synchronized void start() {
 this.eventProcessor.start();
 super.start();
 }

 private final class EventProcessor implements Runnable {
 @Override
 public void run() {

 SchedulerEvent event;

 while (!Thread.currentThread().isInterrupted()) {
 try {
 event = eventQueue.take();
 } catch (InterruptedException e) {
 LOG.error("Returning, interrupted : " + e);
 return; // TODO: Kill RM.
 }

 try {
 scheduler.handle(event);
 } catch (Throwable t) {
 LOG.error("Error in handling event type " + event.getType()
 + " to the scheduler", t);
 return; // TODO: Kill RM.
 }
 }
 }
 }

 157

 @Override
 public synchronized void stop() {
 this.eventProcessor.interrupt();
 try {
 this.eventProcessor.join();
 } catch (InterruptedException e) {
 throw new YarnException(e);
 }
 super.stop();
 }

 @Override
 public void handle(SchedulerEvent event) {
 try {
 int qSize = eventQueue.size();
 if (qSize !=0 && qSize %1000 == 0) {
 LOG.info("Size of scheduler event-queue is " + qSize);
 }
 int remCapacity = eventQueue.remainingCapacity();
 if (remCapacity < 1000) {
 LOG.info("Very low remaining capacity on scheduler event queue: "
 + remCapacity);
 }
 this.eventQueue.put(event);
 } catch (InterruptedException e) {
 throw new YarnException(e);
 }
 }
 }

 @Private
 public static final class ApplicationEventDispatcher implements
 EventHandler<RMAppEvent> {

 private final RMContext rmContext;

 public ApplicationEventDispatcher(RMContext rmContext) {
 this.rmContext = rmContext;
 }

 @Override
 public void handle(RMAppEvent event) {
 ApplicationId appID = event.getApplicationId();
 RMApp rmApp = this.rmContext.getRMApps().get(appID);
 if (rmApp != null) {
 try {
 rmApp.handle(event);
 } catch (Throwable t) {
 LOG.error("Error in handling event type " + event.getType()
 + " for application " + appID, t);
 }
 }
 }
 }

 @Private
 public static final class ApplicationAttemptEventDispatcher implements
 EventHandler<RMAppAttemptEvent> {

 158

 private final RMContext rmContext;

 public ApplicationAttemptEventDispatcher(RMContext rmContext) {
 this.rmContext = rmContext;
 }

 @Override
 public void handle(RMAppAttemptEvent event) {
 ApplicationAttemptId appAttemptID = event.getApplicationAttemptId();
 ApplicationId appAttemptId = appAttemptID.getApplicationId();
 RMApp rmApp = this.rmContext.getRMApps().get(appAttemptId);
 if (rmApp != null) {
 RMAppAttempt rmAppAttempt = rmApp.getRMAppAttempt(appAttemptID);
 if (rmAppAttempt != null) {
 try {
 rmAppAttempt.handle(event);
 } catch (Throwable t) {
 LOG.error("Error in handling event type " + event.getType()
 + " for applicationAttempt " + appAttemptId, t);
 }
 }
 }
 }
 }

 @Private
 public static final class NodeEventDispatcher implements
 EventHandler<RMNodeEvent> {

 private final RMContext rmContext;

 public NodeEventDispatcher(RMContext rmContext) {
 this.rmContext = rmContext;
 }

 @Override
 public void handle(RMNodeEvent event) {
 NodeId nodeId = event.getNodeId();
 RMNode node = this.rmContext.getRMNodes().get(nodeId);
 if (node != null) {
 try {
 ((EventHandler<RMNodeEvent>) node).handle(event);
 } catch (Throwable t) {
 LOG.error("Error in handling event type " + event.getType()
 + " for node " + nodeId, t);
 }
 }
 }
 }

 protected void startWepApp() {
 Builder<ApplicationMasterService> builder =
 WebApps.$for("cluster", ApplicationMasterService.class, masterService, "ws").at(
 this.conf.get(YarnConfiguration.RM_WEBAPP_ADDRESS,
 YarnConfiguration.DEFAULT_RM_WEBAPP_ADDRESS));
 if(YarnConfiguration.getRMWebAppHostAndPort(conf).
 equals(YarnConfiguration.getProxyHostAndPort(conf))) {
 AppReportFetcher fetcher = new AppReportFetcher(conf, getClientRMService());
 builder.withServlet(ProxyUriUtils.PROXY_SERVLET_NAME,

 159

 ProxyUriUtils.PROXY_PATH_SPEC, WebAppProxyServlet.class);
 builder.withAttribute(WebAppProxy.FETCHER_ATTRIBUTE, fetcher);
 }
 webApp = builder.start(new RMWebApp(this));
 }

 @Override
 public void start() {
 try {
 doSecureLogin();
 } catch(IOException ie) {
 throw new YarnException("Failed to login", ie);
 }

 startWepApp();
 DefaultMetricsSystem.initialize("ResourceManager");
 try {
 rmDTSecretManager.startThreads();
 } catch(IOException ie) {
 throw new YarnException("Failed to start secret manager threads", ie);
 }

 super.start();

 /*synchronized(shutdown) {
 try {
 while(!shutdown.get()) {
 shutdown.wait();
 }
 } catch(InterruptedException ie) {
 LOG.info("Interrupted while waiting", ie);
 }
 }*/
 }

 protected void doSecureLogin() throws IOException {
 SecurityUtil.login(this.conf, YarnConfiguration.RM_KEYTAB,
 YarnConfiguration.RM_PRINCIPAL);
 }

 @Override
 public void stop() {
 if (webApp != null) {
 webApp.stop();
 }
 rmDTSecretManager.stopThreads();

 /*synchronized(shutdown) {
 shutdown.set(true);
 shutdown.notifyAll();
 }*/

 DefaultMetricsSystem.shutdown();

 super.stop();
 }

 protected ResourceTrackerService createResourceTrackerService() {
 return new ResourceTrackerService(this.rmContext, this.nodesListManager,

 160

 this.nmLivelinessMonitor, this.containerTokenSecretManager);
 }

 protected RMDelegationTokenSecretManager
 createRMDelegationTokenSecretManager() {
 long secretKeyInterval =
 conf.getLong(YarnConfiguration.DELEGATION_KEY_UPDATE_INTERVAL_KEY,
 YarnConfiguration.DELEGATION_KEY_UPDATE_INTERVAL_DEFAULT);
 long tokenMaxLifetime =
 conf.getLong(YarnConfiguration.DELEGATION_TOKEN_MAX_LIFETIME_KEY,
 YarnConfiguration.DELEGATION_TOKEN_MAX_LIFETIME_DEFAULT);
 long tokenRenewInterval =
 conf.getLong(YarnConfiguration.DELEGATION_TOKEN_RENEW_INTERVAL_KEY,
 YarnConfiguration.DELEGATION_TOKEN_RENEW_INTERVAL_DEFAULT);

 return new RMDelegationTokenSecretManager(secretKeyInterval,
 tokenMaxLifetime, tokenRenewInterval, 3600000);
 }

 protected ClientRMService createClientRMService() {
 return new ClientRMService(this.rmContext, scheduler, this.rmAppManager,
 this.applicationACLsManager, this.rmDTSecretManager);
 }

 protected ApplicationMasterService createApplicationMasterService() {
 return new ApplicationMasterService(this.rmContext,
 this.appTokenSecretManager, scheduler);
 }

 protected AdminService createAdminService(
 ClientRMService clientRMService,
 ApplicationMasterService applicationMasterService,
 ResourceTrackerService resourceTrackerService) {
 return new AdminService(this.conf, scheduler, rmContext,
 this.nodesListManager, clientRMService, applicationMasterService,
 resourceTrackerService);
 }

 @Private
 public ClientRMService getClientRMService() {
 return this.clientRM;
 }

 /**
 * return the scheduler.
 * @return the scheduler for the Resource Manager.
 */
 @Private
 public ResourceScheduler getResourceScheduler() {
 return this.scheduler;
 }

 /**
 * return the resource tracking component.
 * @return the resource tracking component.
 */
 @Private
 public ResourceTrackerService getResourceTrackerService() {

 161

 return this.resourceTracker;
 }

 @Private
 public ApplicationMasterService getApplicationMasterService() {
 return this.masterService;
 }

 @Private
 public ApplicationACLsManager getApplicationACLsManager() {
 return this.applicationACLsManager;
 }

 @Override
 public void recover(RMState state) throws Exception {
 resourceTracker.recover(state);
 scheduler.recover(state);
 }

 public static void main(String argv[]) {
 StringUtils.startupShutdownMessage(ResourceManager.class, argv, LOG);
 try {
 Configuration conf = new YarnConfiguration();
 Store store = StoreFactory.getStore(conf);
 ResourceManager resourceManager = new ResourceManager(store);
 Runtime.getRuntime().addShutdownHook(
 new CompositeServiceShutdownHook(resourceManager));
 resourceManager.init(conf);
 //resourceManager.recover(store.restore());
 //store.doneWithRecovery();
 resourceManager.start();
 } catch (Throwable t) {
 LOG.fatal("Error starting ResourceManager", t);
 System.exit(-1);
 }
 }
}

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package Database;

import Model.Block;
import Model.Log;
import com.mysql.jdbc.CommunicationsException;
import java.math.BigInteger;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;

 162

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.swing.JOptionPane;

/**
 *
 * @author user
 */
public class DatabaseHelper {
 private static final String classname = "com.mysql.jdbc.Driver";
 private static final String url = "jdbc:mysql://localhost:3306/improvedyarndata";
 private static final String username = "root";
 private static final String password = "";

 private static final String BLOCK = "blocks";

 private final String blockTable = "create table if not exists "+BLOCK+" (ID int auto_increment not
null primary key, virtualmachine varchar(100), filename varchar(100), filecontent LONGTEXT, size
varchar(20), file varchar(100), username varchar(100))";

 private Connection connection;

 public DatabaseHelper(String user)
 {
 try{
 Class.forName(classname);
 //creating database file if not exist
 connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/mysql",
username, password);
 PreparedStatement pst = connection.prepareStatement("create database if not exists
"+user);
 pst.execute();
 pst.close();

 connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/"+user,
username, password);
 Statement stmt = connection.createStatement();
 stmt.execute(blockTable);

 stmt.close();

 }catch(ClassNotFoundException ex)
 {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(null, ex);
 }catch(SQLException sq)
 {
 sq.printStackTrace();
 if(sq instanceof CommunicationsException)
 JOptionPane.showMessageDialog(null, "Connection lost");
 else
 JOptionPane.showMessageDialog(null, sq);
 }
 }

 public void addBlock(Block block)

 163

 {
 //String sql = "insert into "+block.getVirtualMachine()+"(virtualmachine, filename, filecontent,
size, file, username) values('"+block.getVirtualMachine()+"', '"+block.getFilename()+"',
'"+block.getFilecontent()+"', '"+block.getSize()+"', '"+block.getFile()+"',
'"+block.getUsername()+"')";
 String sql2 = "insert into "+BLOCK+"(virtualmachine, filename, filecontent, size, file, username)
values('"+block.getVirtualMachine()+"', '"+block.getFilename()+"', '"+block.getFilecontent()+"',
'"+block.getSize()+"', '"+block.getFile()+"', '"+block.getUsername()+"')";

 try{
 Statement stmt = connection.createStatement();
// stmt.executeUpdate(sql);
 stmt.executeUpdate(sql2);
 stmt.close();
 //JOptionPane.showMessageDialog(null, "New sales added");
 }catch(SQLException sq)
 {
 sq.printStackTrace();
 }
 }

 public boolean isBlock(Block block){
 String sql = "select * from "+BLOCK+" where filename = '"+block.getFilename()+"' AND file =
'"+block.getFile()+"' AND username = '"+block.getUsername()+"'";
 try{
 Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery(sql);
 if(rs.next()){
 //if(us.equalsIgnoreCase(rs.getString("username")) ||
username.equalsIgnoreCase("email"))
 return true;
 }
 rs.close();
 stmt.close();
 }catch(SQLException sq)
 {
 sq.printStackTrace();
 }
 return false;
 }

 public int getNumberOfBlocks(String machine, String username, String filename){
 String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine =
'"+machine+"' and file = '"+filename+"'";
 int total = 0;
 try{
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while(rs.next()){

 total = total + 1;
 }
 }catch(SQLException sq){
 sq.printStackTrace();
 }
 return total;
 }

 public int getNumberOfBlocks(String machine, String username){

 164

 String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine =
'"+machine+"'";
 int total = 0;
 try{
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while(rs.next()){

 total = total + 1;
 }
 }catch(SQLException sq){
 sq.printStackTrace();
 }
 return total;
 }

 public long getBytesCount(String username){
 String sql = "select * from "+BLOCK+" where username = '"+username+"'";
 long total = 0;
 try{
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while(rs.next()){
 total += Long.parseLong(rs.getString("size"));
 }
 }catch(SQLException sq){
 sq.printStackTrace();
 }
 return total;
 }

 public long getBytesCount(String file, String username){
 String sql = "select * from "+BLOCK+" where username = '"+username+"' AND file = '"+file+"'";
 long total = 0;
 try{
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while(rs.next()){
 total += Long.parseLong(rs.getString("size"));
 }
 }catch(SQLException sq){
 sq.printStackTrace();
 }
 return total;
 }

 public String getFilecontent(String filename, String username){
 String content = "";
 String sql = "select * from "+BLOCK+" where username = '"+username+"' AND filename =
'"+filename+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 content = rs.getString("filecontent");
 break;
 }
 rs.close();
 st.close();

 165

 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return content;
 }

 public List<String> getServernames(String username){
 List<String> servernameList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where username = '"+username+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 servernameList.add(rs.getString("virtualmachine"));
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return servernameList;
 }

 public List<String> getNames(String username){
 List<String> nameList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where username = '"+username+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 nameList.add(rs.getString("filename"));
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return nameList;
 }

 public List<byte[]> getBlock(String username){
 List<byte[]> blockList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where username = '"+username+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 blockList.add(rs.getString("filecontent").getBytes());
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return blockList;
 }

 public List<Block> getBlock(String machine, String username){

 166

 List<Block> blockList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine =
'"+machine+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 Block block = new Block(rs.getString("virtualmachine"), rs.getString("filename"),
rs.getString("filecontent"), rs.getString("size"), rs.getString ("file"), rs.getString ("username"));
 blockList.add(block);
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return blockList;
 }

 public Block getBlockObj(String machine, String username, String filename){
 Block block = new Block();
 String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine =
'"+machine+"' and filename = '"+filename+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 block.setVirtualMachine(rs.getString("virtualmachine"));
 block.setFilename(rs.getString("filename"));
 block.setFilecontent(rs.getString("filecontent"));
 block.setSize(rs.getString("size"));
 block.setFile(rs.getString ("file"));
 block.setUsername(rs.getString ("username"));
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return block;
 }

 public List<String> getBlockFilesNames(String machine, String username){
 List<String> blockList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where username = '"+username+"' and virtualmachine =
'"+machine+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 blockList.add(rs.getString("filename"));
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return blockList;
 }

 167

 private List<byte[]> listDataFromBytes(byte[] source){
 int chunksize = 6144;
 List<byte[]> result = new ArrayList<byte[]>();
 int start = 0;
 while(start < source.length){
 int end = Math.min(source.length, start + chunksize);
 result.add(Arrays.copyOfRange(source, start, end));
 //System.out.println("start: "+start+", end: "+end);
 start += chunksize;
 }
 return result;
 }

 public String getCapacity(BigInteger size) {
 String hrSize = "";
 double b = size.longValue();
 double k = size.longValue() / 1024.0;
 double m = ((size.longValue() / 1024.0) / 1024.0);
 double g = (((size.longValue() / 1024.0) / 1024.0) / 1024.0);
 double t = ((((size.longValue() / 1024.0) / 1024.0) / 1024.0) / 1024.0);

 DecimalFormat dec = new DecimalFormat("0.00");

 if (t > 1) {
 hrSize = dec.format(t).concat(" TB");
 } else if (g > 1) {
 hrSize = dec.format(g).concat(" GB");
 } else if (m > 1) {
 hrSize = dec.format(m).concat(" MB");
 } else if (k > 1) {
 hrSize = dec.format(k).concat(" KB");
 } else {
 hrSize = dec.format(b).concat(" Bytes");
 }

 return hrSize;
 }

 public BigInteger getRemainingCapacity(BigInteger size){
 BigInteger sixGB = BigInteger.valueOf(1073741824).multiply(BigInteger.valueOf(6));
 BigInteger remain = sixGB.subtract(size);
 System.out.println("remain: "+remain);
 System.out.println("used: "+size);
 return remain;
 }

 public List<String> getServernames(String machine, String userid){
 List<String> servernameList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username =
'"+userid+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 servernameList.add(rs.getString("virtualmachine"));
 }
 rs.close();
 st.close();

 168

 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return servernameList;
 }

 public List<String> getNames(String machine, String userid){
 List<String> nameList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username =
'"+userid+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 nameList.add(rs.getString("filename"));
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return nameList;
 }

 public List<String> getServernames(String machine, String userid, String filename){
 List<String> servernameList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username =
'"+userid+"' and file = '"+filename+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 servernameList.add(rs.getString("virtualmachine"));
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return servernameList;
 }

 public List<String> getNames(String machine, String userid, String filename){
 List<String> nameList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username =
'"+userid+"' and file = '"+filename+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 nameList.add(rs.getString("filename"));
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return nameList;

 169

 }

 public List<byte[]> getBlock(String machine, String userid, String filename){
 List<byte[]> blockList = new ArrayList<>();
 String sql = "select * from "+BLOCK+" where virtualmachine = '"+machine+"' and username =
'"+userid+"' and file = '"+filename+"'";
 try {
 Statement st = connection.createStatement();
 ResultSet rs = st.executeQuery(sql);
 while (rs.next()) {
 blockList.add(rs.getString("filecontent").getBytes());
 }
 rs.close();
 st.close();
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null, ex.getLocalizedMessage());
 }
 return blockList;
 }

 public void close(){
 try{
 connection.close();
 }catch(SQLException sq){
 JOptionPane.showMessageDialog(null, sq.getLocalizedMessage());
 }
 }
}

 170

APPENDIX B

SAMPLE OUTPUT

 171

