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CHAPTER ONE 

INTRODUCTION 

1.0 Background to the Study 

The use of geospatial information is growing continuously and needs to be updated 

frequently with the highest possible metric or thematic accuracy. Remote sensing offers 

the possibility of a fast and area-wide assessment of urban changes and developments. 

Remote sensing uses the visible, infrared and microwave sections or regions of the 

electromagnetic spectrum to record information about earth features under study 

(Igbokwe, 2010).  

Recently the possibility of Very High Resolution (VHR) images and LiDAR (Light 

Detection and Ranging) data which are complementary by each other‘s types of 

information have proved to be reliable source of updates especially for land use land 

cover (LULC) information. Remote sensing data and digital image processing 

techniques have helped to reduce this burden of manual interpretation by making 

available continuously precise data for an automatic, systematic and efficient territorial 

and urban management.With increasing availability and wide utilization of sub-meter 

imagery, object-based image analysis (OBIA) has become the most basic means to 

process VHR imagery (Blaschke, 2010). The recent launch of many commercial VHR 

sensor systems (such as GeoEye-1, Pléiades-2, and WorldView-3) greatly improved the 

spatial resolution of imagery remotely sensed, with several 1–4 m multispectral bands 

and a sub-meter panchromatic band.  
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Urban landscapes are characterized by a complex spectral mixture of materials that are 

predominately made up of impervious surfaces, vegetation and soil. This heterogeneous 

composition of urban landscapes is difficult to map using traditional per-pixel 

classification (Mhangara et al 2015,)Digital image processing techniques are either 

pixel- or object-based (Soille, 2003,). Due to the high internal variance of high 

resolution imagery, previous urban mapping efforts using the per-pixel method have 

often produced unsatisfactory results (Blaschke and Strobl, 2001; Blaschke, 2009).The 

main drawback of per-pixel classification in a multi-dimensional feature space is that it 

doesn‘t make use of any spatial concept (Blaschke and Strobl, 2001). Especially in high-

resolution images it is very likely that neighboring pixels belong to the same land cover 

class due to spatial patterns of differing complexity or texture. The application of 

traditional automatic classification systems, based on the pixel‘s spectral value, have 

been showing very unsatisfactory results when applied to high resolution images (Rego 

and Koch, 2003; Blaschke et al., 2001).   In high resolution imagery each pixel is related 

not to the character of object or area as a whole, but to the components of the image. As 

a result, a lot more classes are detected when it is classified (Smith et al., 2000).  

Recently, classification technology has progressed from traditional pixel-based statistical 

methods to knowledge- and object-based classification (OBC) approaches (Hodgson et 

al., 2003; Taubenböck et al., 2006). Object-oriented image processing overcomes these 

difficulties by first segmenting the image into meaningful multi-pixel objects of various 

sizes, based on both spectral and spatial characteristics of groups of pixels.According to 

Gamanya et al. (2007), the use of image segmentation and image understanding 



3 
 

algorithms replace classification based on entire pixel dominant classes hence providing 

a robust and reliable way to automate the classification processing chain. Object-

oriented classification using multi-resolution image segmentation technique facilitates 

extraction of object primitives necessary for good classification results (Naussbaum and 

Menz, 2008). Furthermore, the fractal nature of remotely sensed imagery allows for 

object-oriented classification as they consider the geometric, spectral and topologic 

properties of image objects (Blaschke and Strobl, 2001). These unique characteristics 

offer great potential in the often diverse and dynamic nature of urban land cover classes 

(Zhou and Troy, 2008).   

Remotely sensed data from airborne and space borne platforms offer global coverage at 

varying spatial, spectral, and temporal resolutions, and are the major sources of 

geospatial information (Baltsavias and Gruen, 2003). The emergence of new 

technologies in remote sensing which provide valuable data in various forms and scales 

for mapping and monitoring land cover features has created new research focus in the 

research community. It provides an opportunity for fast update of urban spatial 

classifications to match the dynamic transformations that characterize urban 

environments.For instance, its use has increased dramatically due to availability of high-

density LiDAR data as well as high spatial/spectral resolution airborne imageries. The 

diverse sensor technologies allow to measure different aspects of objects on the Earth, 

from spectral characteristics in multispectral and hyperspectral images (HSIs), to height 

information in Light Detection and Ranging (LiDAR) data, to amplitude and phase in 

Synthetic Aperture Radar (SAR) systems. In other words, the passive sensing of 
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hyperspectral systems can be effective in describing the phenomenology of the observed 

scene over a continuum of spectral channels, whereas the active sensing of LiDAR 

systems can be exploited for characterizing topographical information of the scene. 

The main goal of classification is to be able to effectively discriminate ground features. 

Even when the horizontal information for categories, shapes, and boundaries of ground 

features can be determined, urban features are so complex that multispectral imagery 

and traditional classification techniques are not sufficient for classifying them, e.g. while 

it is generally easy to distinguish vegetation and man-made objects using NIR (Near 

Infrared) images, it is still very difficult to discriminate between trees and grass. Again, 

sometimes in using the traditional method buildings are classified into other categories 

because of spectral variations caused by apparent differences in roof composition and 

shadow effects. However, such misclassification may be resolved by adding height 

information. So, even without NIR, using color images (containing only RGB bands) 

together with LiDAR data may improve classification accuracy. 

Although highly capable in their own right, LiDAR and spectral information still lack 

certain details. LiDAR provides detailed information regarding geometries such as 

spatial distances, heights and canopy penetration but lacks any information concerning 

the particularities in the electromagnetic spectrum. Spectral provides highly detailed 

electromagnetic information to the point of material identification, but it is limited to 

two dimensions without spatial information in the ‗z‘ or height dimension. These 

technologies are uniquely matched to lead to fusion opportunities.LiDAR has a unique 

advantage of being able to penetrate through foliage to capture some aspects within and 
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below vegetation. Hyperspectral imaging is a passive system that captures distinct 

spectra of ground features, exploiting electronic characteristics and molecular vibrations 

to identify and classify materials. Studies have shown that these two datasets 

complement each other and optimize classification capabilities. LiDAR data provides 

accurate measurement of landcover structures in the vertical plane; however, current 

LiDAR sensors have limited coverage in the horizontal plane. Multispectral data provide 

extensive coverage of landcover classes in the horizontal plane but are relatively 

insensitive to variation in their height. Therefore, the integration of LiDAR and multi-

spectral data can greatly improve the measurement and mapping of landcover classes. 

New approaches such as the use of height information have been developed given the 

growing demand for accurate geospatial information (Potsiou et al 2010). A variety of 

Extremely High Spatial Resolution (EHSR) sensors and platforms are now available. 

This data combined with complementary data such as DSM, are suitable for the 

detection of buildings (Ioannidis, Psaltis & Potsiou 2009). 

It is obvious that no single technology can be always sufficient for reliable image 

interpretation. For example, hyperspectral imageryshouldnotbeusedtodifferentiateobjects 

composed of the same material, such as roofs and roads both made of concrete. On the 

other hand, LiDAR data alone cannot beusedtoseparateobjectswith the same 

elevation,suchasroads with the same height but made of asphalt or concrete.In mapping 

and analyzing land cover features, the integration of LiDAR and high-resolution satellite 

imagery has a promising future. LiDAR provides very accurate position and height 

information, but less direct information on the object‘s geometrical shape, while high-
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resolution imagery offers very detailed information on objects, such as spectral 

signature, texture, shape etc. Combining these two kinds of complementary datasets is 

quite promising for building extraction, 3D city modelling etc. (Tao and Yasuoka, 

2002). Rottensteiner et al. (2003) integrated LiDAR and high-resolution multispectral 

data for the automatic detection of buildings with heterogeneous appearances; a 

hierarchic integration technique was adopted to detect buildings in urban settings. 

Hofmann (2001) used an object-based classification scheme to detect buildings and 

roads in IKONOS data using additional elevation information. Fusion of these two data 

sources is an obvious approach in order to capitalize on their respective advantages and 

compensate for their respective shortcomings for fine-scale land cover classification 

(Lee et al., 2008; Anderson et al., 2008). 

1.1 Statement of the Problem 

What is increasingly clear, however, is that urbanization is an important component of 

regional and global environmental change (Foley et al. 2005) and has significant 

implications for both environmental systems (Grimm et al. 2008) and human health and 

well-being (Patz et al. 2005). An understanding of emerging spatial patterns ofurban 

form is a necessity as the spatial configuration of the urban landscape provides a 

snapshot of various economic, social and political factors that influence land use 

decisions (Netzband, Stefanov & Redman 2007). As metropolitan areas grow and 

change at an unprecedented rate (Fraser, Dial & Grodecki 2006), the provision of spatial 

and temporal data that illustrate where changes are occurring becomes imperative 

(Eurosense 2011). To this end, high quality, regularly updated information on the 
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patterns and processes within the urban environment – including maps that monitor 

location and extent – is essential (Potere and Schneider 2007). Mapping of urban land 

use/cover has therefore become an important requirement for urban land cover mapping, 

planning and management. 

The study area has been carved out of River state of Nigeria. It is an area with high 

socio-economic activity especially because of the dominant oil exploration activities. All 

these, as a consequence bring about diverse and spatially dispersed land uses by all 

classes of the population. Unfortunately, Rivers State like many other similar places in 

Nigeria has not been given sufficient attention in the area of the regular environmental 

changes caused by natural and anthropogenic processes. Availability of up-to-date maps 

with their corresponding information will in no small measure help planners and other 

government agencies properly carry outplanning, monitoring and development of 

residential amenities, basic facilities, utilities and services.This study aims to evaluate 

the pixel and object based in order to determine more accurateand faster methods of 

analyzing land use and land cover features that undergo regular changes caused by these 

natural and human activities within the study area. The study will also give attention to 

the extraction of unpaved roads which has not been given much attetion in urban 

features extraction. 

There is no doubt therefore, that understanding the spatial distribution of human 

activities and physical environment at various levels will play critical role in sustainable 

planning and development. 
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1.2 Aim and Objectives of the Research 

The aim of this study is to evaluate object and pixel based techniques in urban mapping 

using VHR image and LiDAR data. The aim was achieved through the following 

objectives: 

(i) To carry out mapping of urban features (buildings, roads, vegetation, water bodies 

and bare soil.) from Geoeye-1 (VHR) image of 2012 using object-based and pixel-based 

techniques. 

(ii) To statistically compare the results obtained from the two techniques and evaluate 

the capabilitiesof the nDSM to optimize the accuracy of urban features extraction. 

(iii) To combine the Geoeye-1 image and LiDAR derived nDSM in the 3-D analysis of 

the features extracted. 

(iv) To develop a technique for the extraction/identification of unpaved road 

(v) To produce a digital urban map of the study site. 

1.3 Research Questions 

(i) Does object based method of classification achieve higher accuracy than the pixel 

based method in land cover classification using VHR image? 

(ii)Does the addition of nDSM from LiDAR data improve the classification accuracy of 

urban land cover? 

(iii)Does the addition of LiDAR derived nDSM to the VHR image effective in the 3-D 

analysis of features extracted?  
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1.4 Research Hypothesis 

To statistically evaluate the research questions, the following hypotheses are drawn for 

investigation: 

Ho: There is no significant difference between the accuracies of object based and 

pixel based methods of classification using high spatial resolution imagery. 

Ho1  The addition of nDSM does not significantly improve the accuracy of high 

resolution image classification of urban area. 

Ho2 The addition of LiDAR derived nDSM to the VHR image is not effective in the 

3-D analysis of features extracted. 

1.5  Justification of the Study 

The traditional method of acquiring land use land cover information through ground 

survey method is not only labour intensive but time consuming. They may be suitable 

for small areas as opposed to when very large and complex areas are involved in large 

scale mapping. With the reduction in manual surveying techniques, remote sensing is a 

viable alternative for updating GIS databases. There is an increasing need to derive 

tangible image objects which can be imported in a GIS-ready form from the many 

images available for a particular area (Blaschke, 2010). 

The use of VHR imagery in mapping and classification of land covers in urban areas has 

received great attention in recent times due to the availability of these images. With 

about half meter spatial resolution of VHR imagery (e.g. Geoeye, QuickBird and 

WorldView-2), small targets can be observed and detected. However, because of the 
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complexity of urban landscapes, the failure to consider spatial characteristics of the 

image in traditional pixel-based classifiers, and inconsistencies between scale of 

observation (i.e., pixel size) and the spatial characteristics of targets (e.g., buildings), 

conventional spectral-based classification approaches are ineffective (Weng and 

Quattrochi, (2006).  

With regards to mapping of roads, it is also noteworthy that a great percentage of 

previous studies have mainly focused on the paved roads without much attention to 

unpaved roads which constitute a greater percentage of transportation networks in this 

part of the world. It is therefore important to exploit the use of object based 

classification method by integrating VHR image (Geoeye-1) and LiDAR data height 

information for better land use/land cover classification results. Furthermore the research 

will seek to design an algorithm that will be suitable for the mapping of unpaved roads. 

The findings in this study can be used to determine areas of attention as well as greatly 

assist stakeholders and other decision makers in implementing development programs 

and help to address security challenges particularly in this time of kidnapping and other 

forms of crime. 

 

1.6 Scope of the Study 

The scope of this study has been defined by the objectives outlined. It has focused on the 

mapping and analysis of land cover and land use features of the study area to highlight 

the efficacy of the object oriented classification method over pixel based method when 

VHR images are used. It has also investigated the value added when the height 
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information from LiDAR data (nDSM) is added to the VHR images in discriminating 

land cover features. Multiresolution segmentation and Rule-based classification have 

been used. The LiDAR derived nDSM was also utilized to develop a 3-D model of the 

study area with a view to ascertaining the strength of VHR image and LiDAR data in 

producing 3-D modeling. Google image and ground truth values were used to update the 

map. 

As part of thisresearch, effort was made to extract unpaved roads which are common 

features within the study area and as has been noted in the literature review, not much 

attention has been given to this, in previous research studies. 

1.7 Limitations of the Study  

It was hoped that the image to be acquired for this study will include a raw LiDAR data 

from which point clouds, intensity, DTM, DSM and point classification values can also 

be derived. However,what were available are 2012 Geoeye-1 image and 2012 LiDAR 

data which has been processed to DTM and DSM. Consequently, for the LiDAR, the 

researcher was limited to the use of nDSM value which is the difference between the 

DTM and DSM. LiDAR point has classification properties that can define the type of 

object that has reflected the laser pulse. They can be classified into a number of 

categories including bare earth, top of canopy and water. The intensity is a measure, 

collected for every point, of the return strength of the laser pulse that generated the point 

which is based on the reflectivity of the object struck by the laser pulse. The lack of 

other LiDAR values limited the researcher‘s analysis to the use of nDSM only. In other 

to effectively use the LiDAR derived nDSM, a corresponding GeoEye-1 image over the 
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same area and period was acquired for the analysis. The final results of the analysis 

which were based on the 2012 images were eventually updated using the latest Google 

image of the area as well as some ground truth values of the study area. 

1.8 Significance of the Study 

This growing phase of urbanization and Industrialization has presented emergent need of 

proper town planning. This study focuses on the production of an updated map, 

development of a technique for the extraction of unpaved roads and 3-D analysis of the 

features. The OBIA ruleset developed from this study can be applied to similar imaging 

sensors, similar applications, and similar elevations at different geographic locations, 

with reasonable classification accuracy. Consequently, the ultimate results from this 

study will to a great extenthelp planners and decision makers optimise the decision and 

planning process to enable them cope with the pace of urbanization and industrialization.  

1.9 Study Area 

The study area is located in Rivers State, Nigeria (see fig. 1a). Rivers State is one of the 

six states that form the Niger Delta, in the South South geo-political zone of Nigeria 

bordering the Atlantic Ocean (see fig. 1.1b). Having critically examined the data 

available for this study, seven study sites have been carved out from 

Ogba/Egbema/Ndoni and Emohua Local Government Areas (LGA)of Rivers State (see 

fig. 1.1c) and each with varying levels of urbanization.Effort was made to select sites on 

the image not covered by cloud and must be those areas that coincide with the LiDAR 

data coverage.This was to ensure that the study sites were areas free from cloud and also 

covered by the aerial image and the LiDAR data. These sites include Omoku, Osiakpu, 
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Ikiri, Obido, Ogbogwu and Akabuka towns in Ogba/Egbema/Ndoni LGA as well as 

Egbeda town in Emuoha LGA. 

These sites were subsequently clipped from the Geoeye images and georectified using 

the LiDAR data. This process was performed using the Georeferencing tool in ArcGIS 

desktop software. Figure 1.1a, 1.1b and 1.1c presentmaps of Nigeria, Rivers State and 

the two local government areas (Ogba/Egbema/Ndoni and Emuoha LGAs) where the 

study has been carried out.  

 

 
 

Figure 1.1a: Map of Nigeria showing location of Rivers State in red 

Source: Ministry of Lands, Rivers State, Nigeria  
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Figure 1.1b: Red patch shows map of River State, Nigeria.  

Source: Ministry of Lands, Rivers State, Nigeria 
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Figure 1.1c: Map of the Study Area from where seven (7) study sites were carved out 

Source: Ministry of Lands, Rivers State, Nigeria 
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The portion carved out as the study area has been covered by both the satellite imagery 

and the LiDAR data during the acquisition in 2012. This area is located approximately 

between Latitudes04
o
 35‘ and 05

o
 40‘ North, and Longitude 06

o
 30 and 06

o
 59‘ East. 

1.9.1 Geomorphological and Vegetation of the Area 

The study area has a relatively well-drained land and rich soil, fresh water rivers, creeks, 

wetlands secondary forests and abundant sunshine and rainfall all year round (Ella, 

1995). The vegetation is a typical rainforest, characterized by various plant species 

arranged in tiers or store. Common plant species include oil palm [Elaeis guineensis], 

mango [Mangnifera indica], Native pear [Dacryodes edulis], Oil bean tree 

[penthraclethra macrophylla], Avacado pear [persea americana], Musa Spp Cassava 

[manihot esculenta], Yam [Dioscorea spp.] African star apple [chrystophyllum albidum], 

Guava [psidium guajava], Paw-Paw [cariaca papaya], etc. The climatic conditions and 

topography support a wide variety of plant and animal life. The flora consists of 

economic trees especially oil palm trees and a variety of plants species of great 

pharmacological value as human elixir.(Ellah, 1995).Underneath the earth surface are 

pools of natural gas and oil. (Ellah, 1995). 

According to Rivers State meteorological station in Port Harcourt, the climate of the 

study area is tropical and marked by two distinct seasons, the dry season (November – 

March) and the wet season (April – November).  The wet season annual rainfall is 

between 49.5mm in January and 580mm in July and is usually interrupted by a short dry 

spell in August. Average temperature ranged from 27.1C to 31.1
o
C, (Ellah, 1995) 
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In terms of land use in the study area, some sections of the land support forest growth, 

fallow lands and rivers, while roads, buildings (commercial and dwelling places) and 

other infrastructures are also notable features in the study area. In other words, apart 

from the places covered with fresh water rivers, creeks, wetlands secondary forests, 

significant sections of the land in the area are used for residential purposes and other 

social amenities such as roads, schools, hospitals and markets. The entire topography of 

the State is also characterized by a maze of rivers, lakes, creeks and swamps 

crisscrossing the low-lying plains in varying dimensions. This relatively low altitude 

gives the area its characteristic flat and monotonous low relief interspersed by many 

wetland (swamp /creek basins), which crisscross the central low lands and empty into 

the two main river systems Sombreiro and Orashi (Ellah 1995). 

1.9.2 Economic Activity in the Study Area 

Rivers State generally has maintained its importance as a leading supplier of wealth to 

the Nigerian nation because of its famous huge oil reserve and natural gas. From 

available records, the study area hosts the most of the oil exploration in Rivers State. 

According to current oil company records, no local government in Nigeria produces as 

much crude oil and gas as the Ogba/Egbema/Ndoni (ONELGA) local government (Ellah 

1995).  

The natural environment supports an agricultural economy based on fishing and farming 

for production of a wide variety of crops such as cassava, yam, maize, coco-yam, 

plantain and banana, including many vegetables such as okra, pepper and different types 
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of melon and a variety of fruits. Fishing and farming are therefore the dominant 

occupation of the local inhabitants. 

The oil exploration activity in the area on the other hand has attracted the influx of 

people from various parts of the country to settle and carry out different classes of 

businesses since there is a huge guarantee of clientele for any type of business. It is also 

important to mention the other side of the economic and environmental side of the oil 

exploration in the area. The oil spill and gas flaring have direct consequences on the 

environment. Several studies carried out can confirm that Ogba/Egbema/Ndoni area is 

immensely polluted with various pollutants ranging from acid rain, carbon monoxides, 

heavy metals and lead compounds. This can easily be seen as all the surrounding 

vegetation is damaged and some are completely destroyed for as much as 50 meter or 

more from the pint of gas flaring (Efe, 2003). Likewise, the oil spill does a lot of damage 

to agriculture and fishing and most times the land and water affected by the spillare 

rendered completely useless for mostly farming and fishing. 
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CHAPTER TWO 

THEORETICAL FRAMEWORK 

2.0 Introduction 

This section deals with a comprehensive insight into the concept of the research, its basis 

and the perspectives of the proposed analysis that will be made in the research. It will 

focus on the subject of remote sensing application of Very High Resolution (VHR) 

image and LiDAR data as well as investigate the pixel based and Object Based Image 

Analysis (OBIA) classification method and segmentation parameters. To do this, there is 

need to understand the operating principles of remote sensingwith respect toVHR and 

LiDAR data properties and their applications in LULC urban mapping. 3-D modeling 

will also be achieved. 

2.1 High Resolution Remote Sensing of Urban Areas using VHR and LiDAR 

The analysis of urban areas demands for high spatial resolution supporting data. 

Although their spatial resolution enables the identification of urban and sub-urban 

objects, these images are difficult to classify on a pixel-by-pixel basis due to their high 

level of information (Van der Sande et al., 2003). Images of urban areas contain a 

complex spatial set of spectrally distinct land feature types, which require important 

spatial/semantic information for their classification. In these cases, object- oriented 

image classification algorithms are recommended as opposed to pixel based because the 

information necessary to interpret those images is represented by image objects and their 

mutual relationships (Gamanya et al ., 2007). Pixel-based classification techniques 

utilize spectral pattern value combinations associated with different feature types, each 
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assigned a unique Digital Number (DN), evaluating spectral reflectance values present 

within each pixel to find meaningful patterns. 

Shadows cast by elevated objects also cause limitation on the use of high spatial 

resolution images. These shaded areas are usually left unclassified or simply classified as 

shadows (e.g., Shackelford and Davis, 2003), resulting in a significant loss of land 

features information. One possible approach to overcome this problem is to use spatial 

information, such as adjacency relations, for the classification of shaded areas in this 

kind of images (e.g., Yuan and Bauer, 2006; Zhou and Troy, 2008). 

Object-oriented classification algorithms, that consider not only the spectral information 

but also several other image object features, such as shape, texture and spatial context, 

may be used to improve the classification in urban areas (Benz et al ., 2004; Zhou and 

Troy, 2008). Zhou et al. (2009) used both the spatial relations to neighbouring objects 

and the Normalized Difference Vegetation Index (NDVI), to distinguish ―low shadows‖ 

into grass and pavement and ―high shadows‖ into trees and buildings. 

In addition, altimetry data from LiDAR may be helpful in the discrimination of image 

features of the same material at different heights, such as concrete buildings and 

road/vacant land in urban areas (Madhok and Landgrebe, 1999; Gamba and Houshmand, 

2002; Chen et al., 2009; Zhou et al., 2009). However, LiDAR data itself is insufficient to 

distinguish between different features with the same height, such as buildings and trees 

(Vu et al., 2004). In such cases, spectral indices, such as the NDVI, can be used to first 

discriminate between vegetation and impervious surfaces and then at a low level of 
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segmentation, the LiDAR data can be used to discriminate among features with different 

heights. 

Although highly capable in their own right, LiDAR and spectral information do lack 

certain details. LiDAR provides detailed information regarding geometries such as 

spatial distances, heights, and canopy penetration but lacks any information concerning 

the particularities in the electromagnetic spectrum. Spectral provides highly detailed 

electromagnetic information to the point of material identification, but it is limited to two 

dimensions without spatial information in the ‗z‘ or height dimension. These 

technologies are uniquely matched to lead to fusion opportunities (Mesina, 2012) 

2.2 Very High Resolution Images 

VHR satellite imagery (spatial resolution <= 1m) began with the successful launch of 

IKONOS-2 in 1999 with four multispectral bands of red (R), Green (G), blue (B), and 

near infra-red (NIR). 

The requirement of an appropriate signal to noise ratio for the high spatial resolution 

data collection has restricted the spectral resolution to four bands for a decade since 

1999 [Zhang, 2014]. Although, the successful launch of WorldView-2 with 8 MS bands 

(each with a spatial resolution of 1.8m) and 1 Pan Band (with maximum spatial 

resolution of 0.46m) has relaxed this restriction.These new generation of high spatial 

resolution satellite sensors have helped to acquire new images making it possible for 

new applications. Although their spatial resolution enables the identification of urban 

and sub-urban objects, these images are difficult to classify on a pixel-by-pixel basis due 

to their high level of information (Van der Sande et al., 2003). The images contain a 
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complex spatial set of spectrally distinct land feature types, which require important 

spatial/semantic information for their classification. In these cases, object oriented image 

classification algorithms are recommended because the information necessary to 

interpret those images is represented by image objects and their mutual relationships 

(Gamanya et al., 2007). Figure 2.1 presents the growth of optical VHR images since 

1999. 

Table 2.1: The growth of optical VHR satellite images since 1999. 

 
 

Apart from the problem mentioned above, the use of high spatial resolution images is 

related to the existence of shadows cast by elevated urban objects, particularly buildings. 

These shaded areas are usually left unclassified or simply classified as shadows (e.g., 

Shackelford and Davis, 2003), and this results in a significant loss of land features 

information.One possible approach to overcome this problem is to use spatial 
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information, such as adjacency relations, for the classification of shaded areas in this 

kind of images (e.g., Yuan and Bauer, 2006; Zhou and Troy, 2008). Object-oriented 

classification algorithms, that consider not only the spectral information but also several 

other image object features, such as shape, texture and spatial context, may be used to 

improve the classification in urban areas (Benz et al., 2004; Zhou and Troy, 2008). 

Alternatively, shadows may be classified by replacing the shadowed pixels by non-

shaded pixels of the same region from another image acquired at a different time and 

with different sun azimuth angles as proposed by Zhou et al. (2009). 

In addition, altimetry data from LiDAR may be helpful in the discrimination of image 

features of the same material at different heights, such as concrete buildings and 

road/vacant land in urban areas (Madhok and Landgrebe, 1999; Gamba and Houshmand, 

2002; Chen et al., 2009; Zhou et al., 2009). However, LiDAR data itself is insufficient to 

distinguish between different features with the same height, such as buildings and trees 

(Vu et al., 2004). A way around this problem is to use NDVI to differentiate between 

vegetation and non-vegetation areas. 

There is no doubt that in spite of these noted problems, VHR images have provided high 

amount of data related to earth observation on a daily basis. This is because satellite 

images have wide ground coverage as well as high frequency of image acquisition 

[Konecny and Schiewe, 1996]. This improvement enabled the use of VHR satellite 

imagery in a rapidly growing list of new applications, e.g., urban security, urban disaster 

management, and urban planning [Blaschke, 2010]. 
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2.2.1 Multispectral and Hyperspectral Satellite Images 

Sensors measure reflected energy within sections of the electromagnetic spectrum. 

Multispectral imagery is produced by sensors that measure reflected energy within 

specific sections or bands. The sensors usually have between 3 and 10 different band 

measurements in each pixel of the images they produce. Examples of bands in these 

sensors typically include visible green, visible red, near infrared, etc. and Landsat, 

Quickbird and Spot satellites are well known to use multispectral sensors. Conversely, 

Hyperspectral sensors measure energy in narrower and more numerous bands. They can 

contain as many as 200 or more contiguous spectral bands that provide continuous 

spectral measurement across the entire electromagnetic spectrum, an example of 

hyperspectral sensor is Hyperion.The images produced from hyperspectral sensors 

contain much more data than images from multispectral sensors and have greater 

potential to detect differences among land and water features. For example, multispectral 

images can be used to map forested areas, while hyperspectral images can be used to 

map species within the same forest area. 

2.3 LiDAR Imaging Systems 

LiDAR system (Light Detection and Ranging) also known as airborne laser scanning 

(ALS) comprises a set of instruments: the laser device; an inertial navigational 

measurement unit (IMU), which continuously records the aircraft‘s attitude vectors 

(orientation); a high-precision airborne Global Positioning System (GPS) unit, which 

records the three-dimensional position of the aircraft; and a computer interface that 

manages communication among devices and data storage. LiDAR imaging system 
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actively sends light energy known as pulses to the ground and measures reflected light 

(return) back to the sensor. So pulses of light travel to the ground, they are reflected and 

the returns are detected by the sensor while using the timing of those return trips to 

measure distances and thus produce 3-D images. Figure 2 shows LiDAR components. 

 
Figure 2.1: Components of LiDAR, Source McGaughey, (2007) 

 

 

LiDAR is a remote sensing technology that operates on a similar fashion to RADAR 

sensing, but uses laser light instead of radio waves. LiDAR scanners, which can be 

either ground based or airborne/space borne, generate 3D models of their environment 

by emitting pulses of light and precisely timing their reflections from a target. This 

timing information is used to create a point cloud, a set of possibly millions of 3D 

coordinates that represent laser-target interactions. The system uses laser technology 
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enabled with an integrated inertial/GPS system to generate data.

 

Figure2.2: Various sensors employed in LiDAR system. (Lohani, 2010). 

LIDAR offers tangible advantages, including nearly perfect registration of spatially 

distributed data and the ability to penetrate the vertical profile of a forest canopy and 

quantify its structure (Gatziolis, et al, 2008). There are two types of LIDAR acquisition 

differentiated by how backscattered laser energy is quantified and recorded by the 

system‘s receiver. With waveform LIDAR, the energy reflected back to the sensor is 

recorded as a (nearly) continuous signal. With discrete-return, small-footprint LIDAR, 

reflected energy is quantized at amplitude intervals and is recorded at precisely 

referenced points in time and space. Popular alternatives to the term ―point‖ include 

―return‖ and ―echo.‖ The energy amplitude pertaining to each return is known as 

intensity. This article addresses only small-footprint, discrete-return LIDAR. The 

discrete return LiDAR returns multiple measurements from a pulse, but not tied to the 

specific pulses, see figure 2.3. 
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Figure 2.3: Multiple LiDAR returns, Source: Tiwari, (2011) 

 

Whereas, waveform LiDAR represents multiple binned measurements associated with 

each pulse. The waveform data allows one to derive a continuous distribution of the 

laser energy for each pulse where discrete return does not, see figure2.4.  

 
 

Figure 2.4: In a waveform LiDAR, the entire return pulse is digitized and recorded in a 

discrete multiple-return LiDAR. Source: Tiwari, (2011) 
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LiDAR has become an established technique for deriving geometric information in three 

dimensions. The system is seen to offer a relatively quick technique for extracting 

accurate surface models and thus offers the potential for the creation of DEMs and other 

mapping products (Kost, Loddenkemper & Petring, 1996; Lohr, 1998). LiDAR is 

considered to offer several potential benefits for the creation of DSMs: 

1. Offers a cost-effective way of producing DSMs with an accuracy in the order of 

decimeters (Lohr, 1998), and is less prone than other remote measuring systems to 

difficulties in measurement due to variations in weather.  

2. Offers precise definition of surface features through a very high density of recorded 

points, allowing the creation of gridded DSMs with cell resolutions of 1±3 m (Lohr, 

1998). Automatic DSM generation using digital photogrammetry has problems with 

feature definition because of surface smoothing and the difficulty of controlling the 

image-matching algorithms (Smith, 1997; Smith & Waldram, 1996; Smith, Tragheim & 

Holt, 1997). 

 

2.4 LIDAR Positioning Principle 

 

LiDAR survey data acquisition begins by flying an aircraft or helicopter over an area 

and operates the laser scan from side to side. The receiver picks up the laser pulses 

reflection value of the target and records the time it takes from emission to when it is 

received back at the receiver. The distance from the aircraft to the ground is calculated 

by dividing the time by two and multiplying by the speed of light. The inertial 

navigation system keeps track of the rotations of the aircraft in the three axes (along the 
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line of flight around the wings and crab) and the GPS keeps track of the actual location 

of the aircraft in space. After scanning an area, multiple returns and points are combined 

with each other in what is known as a point cloud. Point clouds are representative 

models of an area and are processed further to create products such as a digital surface 

model (DSM) and digital elevation model (DEM). 

2.5 Characteristics of LiDAR data (Landmap Spatial Discovery, 2014) 

i. LiDAR data collection produces a geographic database with height and surface 

measurement information.  

ii. Collected by a laser at intervals of between 1m and 2m on the ground, the vertical 

accuracy of each height point is +/- 15 cm.  

iii. The LiDAR database is referenced to the British National Grid system which 

means that it can be easily integrated with other geographic databases and 

Ordnance Survey mapping.  

iv. The data collected can be used to produce both Digital Terrain Models (ground 

surface only) and Digital Surface Models (the ground and all features on it).  

v. LiDAR data is available in ERDAS Imagine format projected in British National 

Grid. 

2.6 LiDAR and other DTM and DSM Building Technologies 

For now there are three main known technologies of building DTM and DSM. The 

classical topographic survey remains the simplest and most uncomplicated way of 

building it. This is by obtaining a cloud of points and lineal elements with planimetric 

and altimetric coordinates (x, y and z), by means of some type of measurement 
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equipment (GPS, total stations, levels etc.). Besides being a precise system, it allows for 

the selection of the most representative points to be taken as the orographic 

characteristics of the terrain. However, this method can only be viable for a small area as 

it is very tedious and time consuming. 

The second technology is the photogrammetric system and it is based on performing a 

photogrammetric flight, the area on which to base the Digital Terrain Model and apply 

either photogrammetric restitution or digital correlation of images. This has shown to be 

very reliable method of obtaining Digital Terrain Models. According to (Gomez et al, 

2005), Photogrammetric restitution provides a DTM defined by a series of curves in 

level with a defined equidistance which, a priori, may be insufficient given that for 

flatland the distance between curves may be excessively large. Digital correlation of 

images provides a regular match of points with an associated altitude. The disadvantage 

here is that sometimes a DSM is presented rather than a DTM. 

The third method which is increasingly being used for this purpose is LIDAR. This 

system uses laser to measure distances and it is similar to the more-familiar radar, but 

uses laser (or light) rather than radio waves, and is often referred to as "laser radar". The 

LIDAR system is complex and comprised of a transmitter/receiver and a high-power 

laser scanner, a GPS receiver provides the position and height of the aircraft at all times, 

and an inertial measurement system (IMU) provides information on the turns made by 

the aircraft and its trajectory. During the flight, measurements are taken independently 

with the three LIDAR subsystems: GPS, IMU and ALS (Airborne Laser Scanning) but 

applying labels with the GPS time.  The labels will allow for the synchronization of all 

the measurements in post processing. In addition to the laser measurements, we must 
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also know the coordinates of the GPS antenna and the position of the ALS with respect 

to the antenna in order to assign WGS84 coordinates to the terrain points. 

It should be noted that the LIDAR system can discriminate among multiple responses 

received by a single pulse (up to 5) allowing for the determination of intermediate 

surfaces, such as power lines or vegetation coverage.  Currently there are various types 

of scanners which can recognize up to 7 echoes, other that can only recognize the first 

pulse, others that only recognize the last, and others that recognize both, etc. the type of 

scanners selected will depend on the type of job and level of data needed (Gomez et al, 

2005). Based on the large amount of pulses received (current systems can broadcast up 

to 100,000 pulses per second and 95% of the pulses issued plus their echoes are 

received), a very high density Digital surface model is generated.  A  LIDAR based 

DTM is at least three times more dense than a photogrammetric DTM. 

Accordingly, the primary goal of the airborne LIDAR system is to obtain precise digital 

terrain models which are applicable in a large number of fields and represent an efficient 

alternative to the traditional methods of obtaining Digital Terrain Models using 

photogrammetry (restitution or digital correlation of images). Another advantage is the 

speed in which the DTM is obtained thanks to the lack of any intermediate processes.  In 

addition, it is possible to build a separate DTM and DSM, which would provide even 

greater information for analysis. 

 

2.7 Advantages of LiDAR Technology 

As mentioned earlier, the other methods of topographic data collection are ground 

survey methods, interferometry, and photogrammetry. LiDAR technology has some 



32 
 

advantages in comparison to these methods, which are being listed accordingto report by 

Indian Institute of Technology, Kanpur: 

i Higher accuracy: Vertical accuracy 5-15 cm (1s) and  Horizontal accuracy 30-50 

cm    

ii Fast acquisition and processing: Acquisition of 1000 km2 in 12 hours and DEM 

generation of 1000 km2 in 24 hours.   

iii Minimum human dependence: As most of the processes are automatic unlike 

photogrammetry, GPS or land surveying.    

iv Weather/Light independence: Data collection independent of sun inclination and 

at night and slightly bad weather.       

v Canopy penetration: LiDAR pulses can reach beneath the canopy thus generating 

measurements of points there unlike photogrammetry.       

vi Higher data density: Up to 167,000 pulses per second. More than 24 points per 

m2 can be measured.Multiple returns to collect data in 3D.      

vii GCP independence: Only a few GCPs are needed to keep reference receiver for 

the purpose of DGPS.  There is no need of GCPs otherwise. This makes LiDAR ideal 

for mapping inaccessible and featureless areas. 

viii Additional data: LiDAR also observes the amplitude of back scatter energy thus 

recording a reflectance value for each data point.  This data, though poor spectrally, can 
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be used for classification, as at the wavelength used some features may be discriminated 

accurately.      

ix Cost: Is has been found by comparative studies that LiDAR data is cheaper in 

many applications.  This is particularly considering the speed, accuracy and density of 

data.  

Confusion has arisen from time to time over the difference between the terms DTM, 

DEM and DSM. Attempt will be made here to describe the terms based on several 

conclusions made by researchers. 

Digital elevation model (DEM): Generic term covering digital topographic data in all its 

various forms as well as the method for interpreting implicitly of the elevations between 

observations (Maune et al., 2001). Digital Elevation Models are bare earth (topology) 

models of the Earth‘s surface. You can derive Digital Elevation Models (or Digital 

Terrain Models) by using the ground hits from LiDAR. Ground hits are the last return of 

the LiDAR. 

Florinsky 1998, defined DTMs as digital representations of variables relating to a 

topographic surface, namely: digital elevation models (DEMs), digital models of 

gradient (G), aspect (A), horizontal (Kh) and vertical (Kv) land surface curvatures as 

well as other topographic attributes.  

Digital surface model (DSM): Model depicting elevations of the top of reflective 

surfaces, such as buildings and vegetation (Maune et al., 2001). DSM-DTM= Height of 

the objects standing in the surface of the earth that are either natural like trees canopy or 
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manmade like buildings, towers, electric poles etc. This difference is also referred to as 

Normalized Digital Surface Model (nDSM).  

2.8 LiDAR data Application in Mapping Urban Features 

While the need for large scale mapping of urban areas using EHRS imagery continues to 

grow, LiDAR technology offers the advantage of being used to derive accurate high- 

resolution digital surface models (DSMs) which can support the extraction of urban 

features (Gamba & Houshmand 2000; Renslow, Greenfiel & Guay 2000). Both airborne 

and terrestrial LiDAR are revolutionising the domain of EO for a wide range of 

applications including the mapping of canopy gaps in continuous cover forest (Gaulton 

& Malthus 2010), providing information about the ecosystem structure for 

understanding and monitoring of environmental change (Béland, Widlowski & Fournier 

2014), the city modelling and surface reconstruction (Habib et al. 2005), and building 

extraction (Niemeyer, Rottensteiner & Soergel 2014). 

It is reported that an accuracy of the order of 0.2 m horizontally (x,y) and 0.1 m 

vertically (z) can be achieved in the production of DSMs (Lohr, 1998) from LiDAR 

depending on the system used. A last pulse Digital Surface Model (DSM) is created 

from the original LiDAR points using inverse distance weighting. A gradient image is 

then created by differentiating the DSM. A DTM is created.  

During the last two decades, DEM have been subsequently integrated into land feature 

classification from remotely sensed data (Weidner, 1997) due to the limitations of pixel-

by-pixel classification based essentially on spectral information. DEM have since been 

used to extract buildings (Koc & Turker 2005,), roads (Clode, Kootsookos 
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&Rottensteiner 2004) and trees (Kim & Muller 2011), either as a single dataset or 

combined with remotely sensed imagery. The literature indicates that elevation data 

resolves the difficulties related to spectral similarities of land features having different 

height, for example parking lots and buildings, grass and trees ( Koc & Turker 2005; 

Gamba & Houshmand 2000). 

Urban planning, infrastructural development, and roof modelling require building 

footprints (Li et al. 2013; Wang, Lodha & Helmbold 2006), which are defined as the 

area within the perimeter of a building measured at the foundation. The generation of 3-

D building models from point clouds provided by LiDAR has also gained importance 

(Wang, Lodha & Helmbold 2006). The DSM not only provides a geometric description 

for building extraction (Brunn & Weidner 1997), but also provides height information 

essential for distinguishing objects with similar spectral information, such as building, 

roads, water, coal piles, and different vegetation types (Yu et al. 2011). According to 

Koc & Turker (2005), the basic idea behind using a DSM for building extraction is that 

man-made objects with different heights can be detected by applying a height threshold 

to nDSM. 

Extraction of vegetation is also another application of LiDAR data in urban features 

mapping. In some cases, DSM is used in conjunction with high resolution image and in 

some other cases, only DSM can be used depending on the nature of discrimination. For 

example, Iovan, Boldo & Cord (2008) extracted urban vegetation using high-resolution 

colour infrared (CIR) digital images and a DSM within a high density urban area. 

Priestnall, Jaafar & Duncan (2000) used the standard deviation of DSM to differentiate 
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buildings from trees after the study area was split into above-surface information and 

surface information.  

Beyond the 3-D coordinates determination capability, LiDAR intensity data have proven 

beneficial in data registration, feature extraction, classification, surface analysis, and 

segmentation to name just a few examples. The primary benefit of LiDAR intensity lies 

in the fact that it is related to surface reflectance and other surface characteristics and 

several intensity processing techniques have been developed and implemented to 

calibrate, normalize, or otherwise correct the recorded intensity values to produce values 

that are more useful and more closely related to true surface characteristics. In order to 

accurately and comprehensively retrieve various tree properties, making full use of 

LiDAR data attributes is necessary (Moffiet et al, 2005). Laser return intensity is such a 

data attribute which is closely related to the spectral reflectance of object surfaces. This 

data attribute facilitates exposing object-inherent information such as tree biochemical 

and physiological properties (García et al, 2011). In combination with the common 3-D 

coordinates that show the spatial location of each laser point, laser return intensity can 

further derive the spatial distributions of object biophysical properties such as forest 

biomass carbon stocks (García et al, 2011).LiDAR intensity is particularly useful in 

distinguishing features in land use/cover. For example, impervious surfaces stand out in 

light intensity images. OBIA segmentation can separate these features using light 

intensity values. Hence, the data attribute of laser return intensity has long been stressed 

in the field of LiDAR-based forest remote sensing. 
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According to (Kongo, 2015) LiDAR application in feature extraction is undoubtedly 

very useful due to the following reasons: 

(1) Dense LiDAR point clouds enable the generation of highly accurate high-resolution 

nDSM;   

(2) Surface features can be extracted on the basis of a height context analysis of the 

LiDAR points, thus enabling accurate mapping of surface features like buildings, trees, 

power lines, and pipelines;   

(3) Dense LiDAR point clouds provide the easiest way to identify small changes in 

elevation, hence making it easier to map regions with little textural variations, including 

variations in the surface of vegetation canopies;  

(4) LiDAR pulses penetrate the vegetation canopy creating multiple returns which can 

be used to facilitate vegetation classification in different seasons;   

(5)  Multiple returns of LiDAR enable the mapping of ground elevations, even in regions 

of dense vegetation. 

2.9 Land Cover Classification 

The general aim of land cover classification is the associations of each pixel within the 

image with a specific land cover class to produce precise classification maps of the data. 

The purpose of image classification is to label the pixels in the image with meaningful 

information of the real world (Jensen, 2006; Igbokwe, 2009). In other words image 

classification is performed in order to derive specific information on the amount and 

spatial distribution of various types of land use and land cover, from remotely sensed 
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data (i.e. satellite imagery, aerial photographs), and is generally regarded as the process 

of creating thematic maps from images (Campbell 1996, Lillesand and Kiefer 

1994).Urban and environmental applications depend on these classification results. The 

major steps of image classification may include: determination of a suitable 

classification system; selection of training samples; image preprocessing; feature 

extraction; post-classification processing; and accuracy assessment (Lu and Weng, 

2007). Before raw data image data is transformed into land cover image maps, a 

decision must be taken on what categories of land cover is needed. The only requirement 

for any land cover category is that it has a distinct signature that a satellite can record.  

In remote sensing, pixel is the ground area corresponding to one number of a digital 

image data set. In a classification process unknown pixels are identified and assigned to 

a predefined class or they are combined to unknown clusters according to an appropriate 

decision rule. The decision rule is a mathematical algorithm that performs the actual 

sorting of pixels into distinct classes (Lillesand and Kiefer, 1994). The selection of a 

suitable classification method is significant for improving classification accuracy. A 

recent review of classification algorithms (Lu and Weng, 2007) grouped the large 

number of classifiers available to the remote sensing analyst into: supervised; 

unsupervised; soft; hard; parametric; non-parametric; pixel-based; object-based. 

2.9.1 Classification Techniques 

Based on the idea that different feature types on the earth's surface have different 

spectral reflectance and remittance properties, their recognition is carried out through the 

classification process. There are various classification approaches that have been 
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developed and widely used to produce land cover maps (Aplin, 2006). Satellite image 

classification plays a major role in extract and interpretation of valuable information 

from massive satellite images. Satellite image classification methods can be broadly 

classified into three categories (see figure 2.5) and all three methods have their own 

advantages and disadvantages  

(1) Automatic: These classification methods use algorithms that applied systematically 

the entire satellite image to group pixels into meaningful categories. Automated satellite 

image classification methods can be further classified into two categories - supervised 

and unsupervised classification methods. The supervised classification requires that the 

analyst inputs training sets. These training samples are the most important factor in 

supervised classification. Accuracy of the methods highly depends on the samples taken 

for training. Training samples are two types, one used for classification and another for 

supervising classification accuracy. Major supervised classification method uses the 

following statistical techniques: 

i Artificial Neural Network (ANN) 

ii Binary Decision Tree (BDT) 

iii Image Segmentation 

Unsupervised classification technique uses clustering mechanisms to group satellite 

image pixels into unlabeled classes/clusters. Later analyst assigns meaningful labels to 

the clusters and produces well classified satellite image. Most common unsupervised 

satellite image classification is  

i ISODATA (Al-Ahmadi, et al 2009) 

ii Support Vector Machine (SVM)  



40 
 

iii K-Means (Ahmed, et al, 2009) 

(2) Manual: Manual satellite image classification methods are robust, effective and 

efficient methods. But manual methods consume more time. In manual methods the 

analyst must be familiar with the area covered by the satellite image. Efficiency and 

accuracy of the classification, depends on analyst knowledge and familiarity towards the 

field of study Sunitha, et al (2015).  

(3) Hybrid: This method is a combination of the automated and the manual methods. 

Automated method is used for the initial classification before manual is employed to 

refine and correct the errors. 

 
Figure 2.5: Satellite image classifications methods hierarchy, Source: Sunitha, (2015) 

 

This research has used the Maximum Likelihood Classification (MLC) for the pixel-

based classification method and the Rule based classification for the object-based 

method. 
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2.9.1.1 Maximum Likelihood Classification (MLC) 

The MLC is one of the most popular supervised methods in which a pixel with the 

maximum likelihood is classified into the corresponding class. It is a parametric 

statistical method where the analyst supervises the classification by identifying 

representative areas, called training zones. The computer algorithm uses these zones to 

classify the pixels into spectral classes that are most alike. It is assumed that the 

distribution training data is Gaussian (normally distributed). During classification, all 

unclassified pixels are assigned class membership based on the relative likelihood of the 

pixel occurring within each class probability density function (Lillesand et al, 2004). 

Maximum likelihood classifier may have difficulty distinguishing the pixels that come 

from different land cover classes but have very similar spectral properties. As a result, 

may lead to ‗salt and pepper‘ effects in classification maps especially when many mixed 

pixels are involved. 

2.9.1.2 K-Nearest Neighbour (KNN) 

K-NN is a non-parametric classification method and when you say a technique is non-

parametric, it means that it does not make any assumptions on the underlying data 

distribution. It is one of simplest algorithms available for supervised learning. Despite its 

simplicity, k-NN can outperform more powerful classifiers and is used in a variety of 

applications (Zakka, 2016) It is called nearest neighbor because classification depends 

only on the nearest neighbor. The classification is based on a majority vote of the k-

nearest neighbours, based on Euclidean distance in feature space, whereby 'k' specifies 

the number of neighbours to be used. In k-NN classification, the output is a class 
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membership. An object is classified by a majority vote of neighbours, with the object 

being assigned to the class most common among its 'k' nearest neighbours (k is a 

positive integer, typically small). If k=1 then the object is simply assigned to the class of 

that single nearest neighbor. 

Some advantages of k-NN are that it is simple to understand and easy to implement. 

Furthermore, k-NN works just as easily with multiclass data sets whereas other 

algorithms are hardcoded for the binary setting. Finally, the non-parametric nature of k-

NN gives it an edge in certain settings where the data may be highly ―unusual‖. On the 

other hand, k-NN has computationally expensive testing phase and can suffer from 

skewed class distributions if a particular class is frequent in the training set. Finally, the 

accuracy of k-NN can be severely degraded with high-dimension data because there is 

little difference between the nearest and farthest neighbor. 

2.9.1.3 Supervised Object Based Classification 

There are two main approaches in object based image classification – the supervised and 

the rule based methods. The supervised is very similar to pixel based supervised 

classification, based on selection of training samples that are used to train the 

classification algorithm. However for supervised object based method, instead of single 

pixels or random group of pixels, compact image objects with calculated features 

(statistics), which are result of image segmentation process, are selected. Supervised 

classification algorithms include Nearest Neighbor (NN) classification (e.g., Jensen, 

2005), Standard Nearest Neighbor, Fuzzy membership functions (Benz et al., 2004) and 

others. 
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2.9.1.4 Rule Based Classification Method 

The rule based classification method has been employed in the object based analysis of 

this research. This method does not use any samples for the classification, but is based 

purely on the expert knowledge of the user. The user assigns objects to classes based on 

expertise/prior knowledge. A set of conditions or rules commonly referred to as rule set 

is developed by the user for each target class. The rule set development makes use of 

image object features, such as spectral mean value, size, shape, texture, or different 

contextual image features are used in the rule set development to assign image objects 

that fulfill the criteria to the respective classes. One advantage of this method is that the 

users as a result, has full control of the classification process and able to confidently 

determine where image objects belong. Another advantage is that the rule set is 

transferable to another image, so it can be re-used again in another scene or project. The 

ability to reuse the rule set later completely as it is or with minor manual modifications 

makes it a very valuable approach. 

Rules are created based on human knowledge and reasoning about specific land-cover 

types (ENVI-Zoom 2010). For example, dark building has a low NDVI, roads are 

elongated, buildings are rectangle in shape, water has a low mean value in NIR band, 

and vegetation has a high NDVI and trees are highly textured compared to grass. To 

extract specific features, multiple rules can be defined to separate unwanted features 

from targeted features, and assigning wanted objects to desired feature class 

(Hamedianfar 2014). In this research rule sets were defined for classification based on 

available spectral, spatial and textural characteristics. 
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2.10 Very High Resolution (VHR)ImageAnalysis 

The main goal of the classification is to detect and name the elements (geographical 

objects and phenomena) on the Earth surface (fig. 2.6). With the use of visual (manual) 

interpretation (fig. 2.6a) the operator tries to define land use classes by selecting the 

closed groups of similar pixels. Digital (automatic) classification defines classes by the 

means of spectral and/or geometric, texture, context, temporal information combined 

with mathematical (statistical) grouping into classes (Navulur, 2007; Oštir, 2006). 

 
Figure 2.6: Different classification approaches, performed on a vegetation example 

(Blaschke et al., 2008): a) visual interpretation, b) pixel-based classification and c) 

object-based classification. 

 

The next method in terms of evolution is the Digital Pixel-based method of classification 

(fig. 2.6b), uses the pixel's spectral signature to allocate each individual pixel to the most 

appropriate thematic class. This approach focuses on the individual pixel, which in 

general does not present the semantic unity of geographical reality (geographical object) 

and neglects the importance of the neighbouring pixels. The third and commonly in use 

today (fig 2.6c) is the Digital Object-based method. This one starts by grouping pixels 

with common structural characteristics, and then these segments are allocated into the 
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correct thematic classes based on several attributes. Thus, object-based classification 

combines the advantages of both, visual interpretation and pixel-based classification. 

However, the key factor in the accuracy of satellite-data-based thematic information lies 

in the efficient procedures used to classify satellite images. The great importance of such 

procedures is revealed through numerous past studies and devoted research 

(Schowengerdt, 2007; Oštir, 2006). There is also a recognition of limitations with pixel-

based image approaches (i.e., that pixels are not true geographical objects, that pixel 

topology is limited, that current remote sensing image analysis largely neglects the 

spatial photointerpretive elements (i.e., texture, context, shape), and that increased 

variability implicit within VHR imagery confuses traditional pixel-based classifiers 

resulting in lower classification accuracies). 

One of the impressing challenges in land cover mapping comes from the increase in 

spatial resolution power of imaging sensors. Usually in the images acquired by these 

sensors, the size of objects is much smaller than the size of a single pixel. The 

availability of a range of Very high resolution (VHR) images offers an advantage for 

more precise extraction of information by developing advanced classification schemes. 

However the higher the resolution of an image the more inaccurate the pixel based 

classification method becomes. The challenge of classifying urban land cover from high 

resolution remote sensing data arises from the spectral and spatial heterogeneity of such 

imagery. The frequent alternation and coexistence of built-up structures, vegetation, bare 

soil or water areas and the heterogeneity of the objects themselves (for example roads 

with cars) result in distinct spectral variation within these areas of literal homogenous 
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land cover classes. Digital image classification is the process of assigning pixels to 

meaningful classes. It is a computer-assisted analysis of images for consequential 

information extraction. Thus, classification can also be termed as information extraction. 

A pixel is assumed to be an individual unit which carries several spectral band values 

(Campbell et al, 2011). In the field of RS, numerous attempts have been made for 

developing an effective approach for the information extraction processes.  

In order to characterize this complex highly-structured urban environment, an object-

oriented approach with shape parameters and neighborhood relations provides additional 

analysis potential from remote sensing apart from spectral information. Recent 

developments in ―object-oriented‖ image classification (based on image segmentation) 

have taken advantage of the detailed spatial characteristics of high-resolution datasets. 

The research in this area has emphasized the reduction of spectral variability within the 

objects and the incorporation of additional information from spatial and contextual 

image/ object characteristics (Blaschke and Strobl, 2001). 

2.11 LiDAR data for Image Analysis 

Basically LiDAR data are used to generate DTM and DSM. They are also capable in 

many applications such as 3D city modeling and classification of land cover map. 

LiDAR data is just a data set of mass points with X-, Y-, Z- coordinates and possibly 

with attributes like amplitude or echo count so in order to extract information from it, it 

has to undergo further processing. Vosselman et al. (2010) stated that converting point 

cloud in raster image through interpolation algorithm or structuring laser scanner data by 

Delaunay triangulation, k-D tree or octree data structures can visualize LiDAR data and 
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make the point cloud organized. The availability of this structure makes it possible for 

the point cloud segmentation to be performed. During this process points that belong to 

the same planar, cylinder or smooth surface are grouped together corresponding to some 

criterion. Then, the extracted features by such point cloud segmentation are required for 

buildings modelling or terrain surface extraction. Traditionally, LiDAR point cloud has 

been frequently used in ground point extraction (Priestnall, Jaafar, & Duncan, 2000) and 

points of building or vegetation classification (Norbert & Claus, 1999). Song et al. 

(2002) evaluated the possibility of using LiDAR intensity data for land cover 

classification. In that case, interpolation and filtering methods were performed to reduce 

noise effect. 

Antonarakis, Richards, & Brasington (2008) used airborne LiDAR data to classify 

planted forest and natural forest in sweeping meanders. Two methods of object-based 

classification were compared, one included the influence of the ground and the other 

excluded the ground point supplemented with the help of aerial digital photographs. The 

exercise was seen to be successful with accuracies of 95% and 94% respectively. Several 

primary features were generated from LiDAR data, vegetation height model, percentage 

canopy hits model, intensity models and skewness and kurtosis models. Brennan and 

Webster (2006) described the utilization of segmentation and rule-based object-oriented 

classification techniques based on LiDAR data. Land cover types like building, road, 

water vegetation, and so on were extracted by analyzing DSM, DEM, intensity, multiple 

echoes, and normalized height derived from LiDAR data. 
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2.12 Pixel-based Analysis of Satellite Images 

Remote sensing uses the visible, infra-red, and micro-wave spectra to get information 

about the earth surface. Different land types reflect the sun energy in different ways, thus 

their spectral response varies, and this is what enables their analysis via the 

spectrometric processes. Pixel-based analysis has been a common praxis in the remote 

sensing data studies. Its classification method is based on the so called spectral 

signature, i.e. the characteristic reflection of electromagnetic waves from the Earth‘s 

surface which is wavelength dependent (Oštir, 2006). Most methods are based on cluster 

analysis, and the two most common approaches are: a) unsupervised classification in 

which the algorithm automatically finds the best pixel candidate (on the basis of a 

previously selected number of classes) and classifies them according to the statistically 

closest membership; b) supervised classification, which utilizes the training sample 

patterns and reference data for the statistically-based sorting into classes. Notable 

shortcomings of the pixel-based classification include: 

- Confusion of target objects with other classes 

- Visual quality, shadow and contrast features affect quality of object extractions 

- Only the spectral values of features are used. 

New high resolution sensors significantly increase the within-class spectral variability 

and, therefore, decrease the potential accuracy of a purely pixel-based approach to 

classification. So time went on with the advent of higher resolution images, the pixel 

based method of classification became more time consuming and less effective. The 

need for better results from the studies of the changes in the Earth surface ultimately 
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culminated in the necessity for a completely new approach (Blaschke in Strobl, 2001). 

According to (Veljanovski, 2011) the key motives behind the transition from pixel-based 

to object-based analysis of remote sensing data were: (1) the demand for improved 

interpretative values of remote sensing data in different applications (mostly in time 

comparison studies, and manifestations of remote sensing data used for planning); (2) 

increasing the availability of high resolution satellite data, on which one can observe 

surface objects in greater detail (including the increasing interest in the contextual 

validation of the image content); and (3) higher level of development of technological 

equipment and algorithms used for processing remote sensing data (accessibility to a 

wider user society; transfer of GIS object-based spatial analysis towards the field of 

raster remote sensing data and their particularities).Nowadays, object-based analysis of 

satellite data is well-established, and there is a common consensus that it is based on the 

concepts of segmentation, edge-detection, as well as object detection and classification, 

all of which have been present in the field of remote sensing already for decades 

(Johansen et al., 2011). Object based method provides a methodological framework of 

computer-based image analysis of a complex environment, possibly in a multi-level 

object hierarchy, based on spectral, spatial and structural information available in objects 

(Benz et al., 2004; Niemeyer and Canty, 2003; Hay et al., 2006). 

2.13 Object Based Image Analysis (OBIA) 

Research on urban mapping has gained momentum, chiefly due to the availability and 

accessibility of VHR imagery, and successful results using object-based image analysis 

(OBIA) (Pinho et al. 2008; Zhou 2013). The OBIA approach incorporates spatial 
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contexts and mutual relationships between objects, and is often referred to as 

GEOgraphic object-based image analysis (GEOBIA) when used in EO (Conchedda, 

Durieux & Mayaux 2008). According to Blaschke, Lang & Hay (2008: 78) GEOBIA is 

proposed to replace OBIA ―because the term OBIA encompassed techniques used in 

many different disciplines such as biomedical imaging, Astronomy, Microscopy, 

Computer vision and others‖. GEOBIA is defined by Blaschke, Lang & Hay (2008: 77) 

as ―a sub-discipline of GIS devoted to developing automated methods to partitioning RS 

imagery into meaningful image-objects, and assessing their characteristics through 

spatial, spectral and temporal scales, so as to generate new geographic information in 

GIS-ready format‖. 

One of the key elements of the OBIA approach is that it can integrate all data types 

including DEM (DTM, DSM and nDSM), shapefiles, and LiDAR data in combination 

with image data as opposed to the traditional pixel-based approach ( Koc & Turker 

2005; Wang 2009; Zhou 2013). OBIA combine spectral information (tone and colour), 

with spatial arrangements (size, shape, texture and pattern) in association with 

neighbouring objects (Campbell & Vynne 2012; Laliberte et al. 2004).  

One of the critical steps in image analysis is to determine the most relevant features and 

algorithms to be used in classification (BLASCHKE 2010). Image objects which are 

essentially made up from pixels have information like the spectral signature, the shape 

and size or context and eCognition software works well with objects for classification. 

Features use upper and lower range to define the characteristics of image objects. In this 
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study the following feature sets will be used to define limits of specified classes for 

classification. They include:  

i. Elevation 

ii. Colour: mean and standard deviation of each band, band ratios (NDVI, NDWI....)  

iii. Size: area, length to width ratio, relative border length  

iv. Shape: rectangular fit  

v. Texture: smoothness  

vi. Relation to neighbours (class level). 

The next will be to classify the image objects created through the segmentation process. 

Rule based classification will be applied to classify using the feature sets. eCognition 

offers two types of classifiers: the Nearest Neighbour (NN) and Fuzzy Membership 

Function. These two classifiers act as class descriptors. The nearest neighbor (NN) 

which assigns classes to image objects based on minimum distance measurements has 

been chosen for the proposed method. NN classifier is appropriate for describing 

variation in fine resolution images.  

Although many feature sets will be used, the nDSM derived from LiDAR for height 

difference and the NDVI for vegetation separation will be the prominent feature sets in 

use. Similarly, brightness will be used to classify shadow, whereas NDWI will be used 

to differentiate water bodies and impervious surfaces. Features such as homogeneity, 

standard deviation of nDSM, shape index, and rectangular fit will be used to refine the 

classification. 
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The aim of classification is to identify the image object as certain class. According to the 

researcher‘s proposal, seven categories of features classification have been defined for 

the proposed research. They include buildings, paved roads, bare soil, Trees, grass/low 

vegetation, water bodies and shadows. A rule-set based classification will be constructed 

to classify each object into certain class. Threshold of objects using their related 

characteristics will be determined in order to properly classify the image objects.  

(a) Vegetation: The first phase in this rule based classification process aims to mask out 

vegetation. The normalized difference vegetation index (NDVI) has been widely used in 

the literature to separate vegetation from non-vegetation areas. Therefore, NDVI will be 

used to separate vegetation and non-vegetation. 

NDVI = (NIR-R)/NIR+R) ………(1) 

Where NIR and R are the mean values of all pixels (within the boundary of each object) 

in band near infrared and red for a given object in each level of segmentation and a 

threshold value of about 0.3 for classifying vegetation will be set. Having extracted 

vegetation area, it will further be classified into trees and grass. These two classes are 

distinguishable using their height difference or textural characteristics. In the proposed 

study, the ancillary data or height information (nDSM) from the LiDAR data will be 

used to separate trees from grasses by setting a height threshold. The result of LiDAR 

surface acquisition is in almost every case a Digital Surface Model (DSM) which 

represents the first pulse reflection and a Digital Terrain Model  (DTM)  which  forms  

the  surface  after  removal  of  vegetation  and  manmade  structures.  nDSM = DSM-

DTM. 
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(b) Shadow: Shadows are dark features in optical imagery, and because the 

segmentation of such imagery is mainly based on the spectral structure of the image 

[Smith and Morton 2010]. Shadows influence segmentation shaded features. 

Furthermore, shadow is an important factor that reduces the spectral values of the 

shaded objects and thus influences the land cover classification [Lu et al., 2010]. As a 

result of this, it should be extracted from the non-vegetation and vegetation areas before 

further classification. Shadows can be extracted using two spectral properties (NDWI 

and Brightness) and two morphological features (Density and Area). The normalized 

difference water index (NDWI) [Mcfeeters 1996] is a metric used for masking out black 

bodies (water and shadow) in VHR imagery [Chen et al., 2009] and is defined as follows 

[Mcfeeters 1996]: 

NDWI = (G-NIR)/G+NIR)…….(2) 

Where, G is the averages mean value of all pixels (within the boundary of each object) 

in each level of segmentation for the band green and NIR is the Near Infrared band. The 

morphological features Density and Area of objects help to fine tune the shadow areas. 

The size of shadows in optical imagery depends primarily on the height of objects but 

also on the sun elevation angle [Dare 2005]. 

(c) Water bodies: The Normalized Difference Water Index (NDWI) will be used to 

delineate water features and tarred roads. This index maximizes reflectance of water by 

using green light wavelengths and minimizes low reflectance of NIR by water features 

while taking advantages of the high reflectance of NIR by vegetation and soil features. 
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With this index water features are enhanced due to positive values and vegetation and 

soil are suppressed due to zero or negative values.  

NDWI = G – NIR/G + NIR……..(3) 

(d) Buildings: For buildings, the determined object primitives in segmentation, such as 

scale parameter, shape, completeness, brightness, and statistical parameters, will be used 

to determine threshold values for classification in the analysis step to form the target 

object class. An object-based classification considering the characteristics of elevation, 

spectral, texture, roughness, and shape information is performed to detect the building 

regions (Hofmann, et. al, 2001). 

For the elevation, the nDSM height information which is most relevant characteristics of 

buildings will be used to distinguish buildings in the non-vegetation area. Spectrally, the 

NDVI had earlier been used in this proposal to separate vegetation from the non-

vegetation area from where the building is being extracted. 

The shape attribute includes size and length-to-width ratio.  An area threshold is used to 

filter out those small objects. That means the regions smaller than a minimum area (e.g., 

10m2 considering the locality of the study area) are discarded. The length-to-width ratio 

is suitable to remove the thin objects.  The objects are eliminated when the length-to-

width ratio is larger than a threshold. 

(e) Paved Roads: After dark features, buildings, water and vegetation have been 

classified, roads will be extracted from the remaining ‗non-vegetated‘ areas using rules 

that will be derived from spectral indices, geometry and texture. Therefore, for the 
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classification, a rule sets will be developed with thresholds on the spectral bands, 

spectral indices, geometric properties, texture related features to classify paved roads. 

Note that the spectral signature features of paved roads in green and NIR band are 

similar with those of water, i.e., they both reflect green light more than reflected near 

infrared light. Instead the Built-Up Areas Index will be considered useful in detecting 

asphalt in this study.  

BAI = B – NIR/ B + NIR…….(4) 

This multi-level object based hierarchical classification will successfully mask out 

irrelevant region, thereby greatly reducing complexity of classification which should 

occur in the next level. 

2.14 Methodology of Object-Based Image Analysis 

In object based image analysis, data homogeneous regions (segments) obtained from 

satellite images are used as basic entities. It has basic procedures for obtaining segments 

and their characteristics (attributes), for analyzing these segments, sorting them into 

classes or objects (classification), verifying them and for error removal (post-

classification). 

OBIA consists of the following steps: 

i. Segmentation and computation of spectral, geometric, textural, conceptual and 

temporal attributes,  

ii. Object (semantic) classification,  

iii. Post-classification (verification, error elimination) and result validation. 
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Figure 2.7. Processing steps in the object-based analysis of remote sensing data. 

Segments produced within the first step of object-based classification influence the final 

classification results (Blaschke et al., 2008). There is a causal relationship between 

segmentation and classification, as the particularities and errors of the first transfer onto 

the latter. The character and quality of objects depends on the segments formed. 

2.14.1 Segmentation 

Image segmentation is a process of subdividing a digital image into distinct regions or 

segmentscontaining pixels with similar attributes. These regions are strongly related and 

able to depict objects of features of interest. In other words, segmentation is the 

subdivision of an image into separated regions represented by basic unclassified image 

objects called image object primitives. Therefore, for a successful and accurate image 

analysis, defining object primitives of suitable size and shape is of utmost 

importance.Image object primitives serve as information carriers and as building blocks 

for all further image analysis. Therefore, when starting an image analysis, it is important 

to invest enough time on testing and improving the segmentation to be used. To analyze 

and capture the small variations within a dataset, multilevel segmentation with varying 

parameters that is scale, shape and compactness are thus used (Wang 2009). The work of 
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Gang et al (2010) indicated that a number of segmentations at various scales may need 

to be performed in order to get meaningful image objects that lead to improve 

classification. The selection of optimal parameters is usually a trial and error process and 

tedious. Image objects produced contain information about their spectral characteristics, 

their shapes, their positions and textures, as well as information about their 

neighborhoods. Thus, they are an essential prerequisite for the subsequent image 

analysis steps. 

eCognition developer software is very popular for OBIA and can very well perform 

image segmentation. For the process of image segmentation there are many 

segmentation algorithms which are also available in eCognition: 

i. Chessboard: segments image into equal sized objects, 

ii. Contrast filter: segments image by contrast and gradient to create primitive image 

objects, 

iii. Contrast split: segments image with a given threshold into bright and dark objects, 

iv. Multi-resolution: segments image and consecutively merge objects at higher scales, 

v. Multi-threshold: segments image into user specified thresholds, 

vi. Quad tree based: segments image into a quadtree formed by square objects, and 

vii. Spectral difference: merges neighboring image objects from a previously segmented 

image. 

Problems of over-segmentation and under-segmentation are usually faced in this process 

of segmentation. Nevertheless, segmentation is considered to be appropriate when no 

extreme prevails (Blaschke et al., 2008). Segment attributes describe the characteristics 
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of individual segments. They are (Navulur, 2007): geometric (e.g. area, perimeter, 

oblongness, compactness), spectral (e.g. mean value, standard deviation, minimal and 

maximal value of each band), textural (e.g. span, entropy, variability), attributes of the 

spectrum band proportions (e.g. vegetation index), contextual (e.g. proximity of the 

neighbouring pixels, distance), temporal (e.g. time span, date, stability) and other 

attributes. 

2.14.2 Segmentation Parameters 

Segmentations, and the resulting characteristics of object primitives and eventual image 

objects, are based on shape, size, color, and pixel topology controlled through 

parameters (scale, shape and compactness) set by the user. The shape and size of the 

image objects depend greatly on the influence segmentation parameters have on spectral 

and spatial characteristics of the image layers. Settings for segmentation parameters vary 

and are determined by trial and error and experience. Settings that work well for one 

image may not work at all for another, even if the images are similar. Colour and shape 

parameters are responsible for image objects spectral and spatial homogeneity. They 

both balance each other in such a way that if colour has a high value then shape must 

have a low value. The color/shape and the compactness/smoothness parameters are 

together known as homogeneity criterion (eCognition Reference Book, 2011). The scale 

parameter limits the maximum heterogeneity for combining adjoining image objects 

(eCognition Reference Book, 2011). 

On the other hand, the value of the scale parameter affects image segmentation by 

determining the size of image objects. If the scale value is high, the variability allowed 
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within each object is high and image objects are relatively large. Conversely, small scale 

values allow less variability within each segment, creating relatively smaller segments. 

The optimization of these parameters is necessary for best segmentation result which 

guarantees high classification results. These three parameters are recommended to be 

changed in different studies to obtain optimized results. The default values are 

color/shape = 0.1, compactness/smoothness = 0.5, and scale = 10. Defining the criteria 

for minimum heterogeneity by specifying segmentation parameter constraints and 

deciding on the strategy of assembling homogeneous areas leads to a good segmentation 

result (Benz et al., 2004).  

Minho (2012) divides segmentation qualities into three main categories: 

1. Over-segmentation – the created objects are too small relative to features of interest 

2. Optimal segmentation 

3. Under-segmentation – inadequate low numbers of objects which lead to merging 

different features into one object. 

2.14.3 Multiresolution Segmentation 

The most widely used segmentation algorithm is MRS (Chen et al. 2007; Krause et al. 

2004; Salehi et al 2012; Zhou 2013). The multiresolution algorithm which is a bottom up 

algorithm locally minimizes the average heterogeneity of image objects and maximizes 

the respective homogeneity of the respective objects. The segmentation produced begins 

with single image objects of one pixel and repeatedly merges them as long as an upper 

threshold of homogeneity is not exceeded locally. The homogeneity criteria are defined 

as a combination of both spectral and shape homogeneity which are influenced by the 
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scale parameter. Multiresolution segmentation has proved to be one of the most 

successful image segmentation algorithms in OBIA framework (Nuebert et al, 2008). 

 
Figure 2.8: How Multi-resolution works, Source Benz (2004) 

2.15 Object (semantic) Classification 

After an image has been segmented into appropriate image objects, the image is 

classified by assigning each object to known and defined classes based on features and 

criteria set by the user. Each pixel in the data set is then compared numerically to each 

category in the interpretation key and labeled with the name of the category it looks 

more like (Igbokwe, 2008). To be assured of the final classified image‘s quality, the 

process of the accuracy assessment is carried out. The object (semantic) classification 

uses the segment characteristics to sort them into object classes. Individual segment 

characteristics (attributes) are compared, and membership in a particular class is 

established (Nussbaum and Menz, 2008). The two common methods of doing this are: 

defining training samples, and defining rules on the basis of representative threshold 

values (usually decision trees) that are usually defined for each target object class 

separately. The classification is done with the use of a classifier. Some of the more 

established classifiers are (Schowengerdt, 2007; Oštir, 2006; Lillesand et al., 2004):  
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i. parametric and non-parametric statistical classifiers (e.g. K-Means, ISODATA, 

minimum distance method, maximal probability method, nearest neighbour, 

parallel-piped method, vector machine support (SVM variations)),  

ii. classifiers based on neural networks (with loop information, Kohonen method),  

iii. classifiers based on machine learning (decision trees, classification and regression 

trees),  

iv. classifiers based on fuzzy logic (membership) etc. 

Classifications based on the decision tree are known to yield good results when 

analysing surface phenomena (mostly anthropological) that was built in compliance with 

certain standards and can therefore be relatively easily described by a set of rules (Lang 

and Blaschke, 2003). The same holds true when we analyse clearly distinguishable 

patterns on an image, e.g. water on a radar satellite image (Veljanovski et al. 2011a). 

The quality of the final classification definitions is linked directly to the quality of the 

segmentation and the quality of the classifier. 

2.16 Post-classification 

Post-classification serves to eliminate the evident errors (wrong classifications) and 

generalize the results. This error elimination is by visual control, field inspection and/or 

comparison with the reference source (if available), which are completely manual and 

therefore time consuming. Generalization of the obtained object classes helps to improve 

the visual quality of the final result. If, for example, we do not wish to keep the small 

objects, we can eliminate them by merging them with the dominant neighbouring classes 

using the ‗clump and sieve‘ procedures (Kokalj, 2006). These methods only work for 
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raster images while line-smoothing is used as a post-procedure for finalizing vector 

thematic maps. 

 

2.17 Advantages and Limitations of Object-based Classification 

According to (Veljanovski, T et al, 2011), the advantages of OBIA include: 

i. It uses a vast variety of remote sensing data characteristics (spectral, spatial, 

temporal) and combines them with GIS functionalities in the various processing 

phases. Within the classification process: employment and consideration of 

additional information and data layers, additional relations such as distance, etc. 

expressed through various spatial functions. Within the post-classification 

process: smoothing and generalization.  

ii. Object-based classification uses all available and usable segment characteristics 

for their classification (e.g. shape, texture, relations with other segments).  

iii. Results (identified objects) are vectors, which demand easier post-processing than 

pixel-based classification results. To a certain degree the generalization can also 

be performed during the main processing phases (e.g. elimination of small objects 

based on their shape or size).  

iv. It classifies the image contents into objects in a way that is close to the human 

understanding of the environment. The results are already generalized, since the 

classification uses clear semantic rules that can also be used to enhance or omit 

certain typical object characteristics (e.g. linearity, length, width, rectangularity of 

buildings) or enhance their key differences (e.g. typical size in nature).  
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v. The fact that the basic computation entities are objects (and not pixels) reduces 

the demand on computer algorithms and at the same time enables the users to 

utilize more complex computation techniques and a wider set of data 

characteristics (introduction of conceptual attributes).  

vi. Various free software for object-based analyses are on the increase, as is their 

compatibility and file format support.  

vii. It is an interactive multi-phase process. It enables the intermediate results to be 

checked, and immediate improvements can be made through immediate 

parameter fine-tuning. 

The classical methodology for OBIA involves repeated segmentation, classification and 

refinement of image object until the desired land cover classification is achieved. This 

incorporates the elements of manual interpretation. Authors have evaluated the method 

of image classification with two approaches: Rule set method and Nearest neighbor 

(NN) classification (Shackelford, A. K. et al, 2003). eCognition is a software with 

powerful functionality that can create the objects with different scale parameters and at 

different levels. OBIA technique for image classification not only provides higher 

accuracy but also operational simplicity, time efficiency, effectiveness of replicating 

human visual system associated with it made it more popular. Figure 2.9, below shows 

typical methodology used for OBIA. 
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Figure 2.9: Typical methodology used for OBIA, Source: Uzar, (2013) 

2.18 Accuracy Assessment  

It is very important to evaluate classification results irrespective of the method of 

classification used. It‘s also important to appreciate that apart from the errors from the 

classification itself, there are other sources of error. In addition to errors from the 

classification itself, other sources of errors, such as position errors resulting from the 

registration, interpretation errors, and poor quality of training or test samples, all affect 

classification accuracy (Powell et al., (2004). 

Accuracy assessment is an important part of any classification project. It compares the 

classified image to another data source that is considered to be accurate or ground truth 

data. Ground truth can be collected in the field; however, this is time consuming and 

expensive. Ground truth data can also be derived from interpreting high-resolution 

imagery, existing classified imagery, or GIS data layers. 

In the process of accuracy assessment, different approaches may be employed (Foody, 

2002). The error matrix approach is the one most widely used in accuracy assessment. 
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After generation of an error matrix, other important accuracy assessment elements, such 

as overall accuracy, omission error and commission error can be derived. In principal, 

this matrix provides a simple summary of classification accuracy and highlights the two 

types of thematic error that may occur, omission and commission. This not only 

summarizes the accuracy of the classification but also may convey useful information to 

enhance analyses based on the classification (e.g. Prisley and Smith 1987, Fang et al. 

2006). The confusion matrix comprises two main components which are a kappa and the 

overall accuracy (OA) calculated by Congalton & Green (2009) as follow: 

 
Where ‗Xi‘ is the value of the i

th
 corrected classified sample units; 

And ‗n‘ is the number of sample units 

 

Where r  is the number of rows in the matrix; 

Xii  Is the number of observations in a row I and column I; 

Xi+  Are the marginal totals of row i 

X+I  Are the marginal totals of column i 

N  is the total number of observations. 
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The kappa analysis is used in accuracy assessments to statistically determine if one error 

matrix is significantly different from another (Congalton & Green 2009). Additional 

details about the accuracy of the map are provided by the user and producer‘s 

accuracies. Gamba & Martin (2009) define the user and producer accuracies as: (1) the 

producer accuracy characterizes the error of omission incurred when the classified map 

misses an area of urban land; and (2) the user accuracy reflects the error of commission 

measuring the number of pixels erroneously labeled like urban land. Table 2 below from 

Jensen (2005) is a typical confusion matrix for a classification result from which the 

following accuracy values Overall, Producer, User and Kappa are calculated. 

Table 2.2: Typical Confusion Matrix  

 
Source: Jensen (2005) 
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(a) Overall accuracy: This is the total classification accuracy and it is obtained by 

dividing the total number of correct pixels (diagonal) by the total number of pixels in the 

error matrix. 

(b) Producer’s accuracy: This is also called Omission error and it occurs when pixels 

which should have been identified as belonging to a particular class were simply not 

recognized as present. The value is obtained by dividing the total pixels not correctly 

classified for each class in the reference data (column) by the total pixels for that class in 

the reference data/image (column total). 
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(c) User Accuracy: This is also referred to as Commission error and it occurs when 

pixels associated with a class are incorrectly identified as other classes or improperly 

separating a single class into two or more classes. The value is obtained by dividing the 

number of pixels not classified for each class in the classification (row) by the total 

number of pixels for that call in the classification (row total). 

(d) Kappa Coefficient: This is a measure of agreement between the classification map 

and the reference data. It expresses the proportionate reduction in error generated by a 

classification process, compared with the error of a completely random classification. 

For example: a value of 0.82 would imply that the classification process was avoiding 

82% of the errors that a completely random classification would generate. Table 3 below 

is strength of agreement of classification based on the Kappa coefficient as described by 

Landis and Kosh (1977). 

Table 2.3: Landis and Kosh (1977) Scheme of Agreement based on Kappa 

 

2.19 Hypothesis Test to Evaluate Research Questions 

Hypothesis test is a procedure based on sample evidence and probability theory, used to 

determine whether the hypothesis is a reasonable statement and should not be rejected, 

or is unreasonable and should be rejected. In other words Hypothesis test is about 
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making an inference about how the value of a parameter relates to a specific numerical 

value. 

According to University of California, Davis Department of Statistics, Summer Session 

II (2012), test of hypothesis has the following elements: 

1. Null hypothesis (H0): A theory about the values of one or more population parameters. 

The theory generally represents the status quo, which we adopt until it is proven false. 

By convention, the theory is stated as H0: parameter = value. 

2. Alternative (research) hypothesis (Ha): A theory that contradicts the null hypothesis. 

The theory generally represents that which we will accept only when sufficient evidence 

exist to establish its truth. 

3. Test statistic: A sample statistic used to decide whether to reject the null hypothesis. 

4. Rejection region: The numerical values of the test statistic for which the null 

hypothesis will be rejected. The rejection region is chosen so that the probability is that 

it will contain the test statistic when the null hypothesis is true, thereby leading to a Type 

I error. The value of is usually chosen to be small (e.g, 0.01, 0.05, or 0.10) and is 

referred to as the level of significance of the test. 

5. Assumptions: Clear statements of any assumptions made about the population(s) 

being sampled. 

6. Experiment and calculation of test statistic: Performance of the sampling experiment 

and determination of the numerical value of the test statistic. 

7. Conclusion: 

a. If the numerical value of the test statistic falls into the rejection region, we reject the 

null hypothesis and conclude that the alternative hypothesis is true. We know that the 
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hypothesis-testing process will lead to this conclusion incorrectly (a Type I error) only 

100 ɑ% of the time when H0 is true. 

b. If the test statistic does not fall into the rejection region, we do not reject H0. Thus we 

reserve the judgment about which hypothesis is true. We do not conclude that the null 

hypothesis is true because we do not (in general) know the probability β that our test 

procedure will lead to an incorrect acceptance of H0 (a Type II error). 

 

2.19.1 T-test Method of Hypothesis Testing 

The t-test which has been used in this research is probably the most commonly used 

Statistical Data Analysis procedure for hypothesis testing. Actually, there are several 

kinds of t-tests, but the most common is the "two-sample t-test" also known as the 

"Student's t-test" or the "independent samples t-test". The t-test can only be used when 

certain following conditions are met. When the population standard deviation, σ, is 

unknown and either the data is normally distributed or the sample size is greater than 30 

(n > 30), we use the t-distribution (t-statistic). 

The following steps are involved in hypothesis testing: 

Step 1 State the null hypothesis and the alternate hypothesis. 

Step2 Select the appropriate test statistic and level of significance. 

Step 3 State the decision rules. 

Step 4 Compute the appropriate test statistic and make the decision. 

Step 5 Interpret the decision. 
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Step 1: State the null hypothesis and the alternate hypothesis:- 

Null Hypothesis, H0 – statement about the value of a population parameter. 

Alternate Hypothesis, H1 –statement that is accepted if the evidence provesa null 

hypothesis to be false. 

The null hypothesis (H0) always contradicts the research hypothesis, usually stating that 

there is no difference between them while the substantive hypothesis or research 

hypothesis (H1) states the relationship in which we are really interested. 

Step 2:Select the appropriate test statistic and level of significance:- 

The t- test value Statistic is usedin this research and so the t-statisticsfor the data will be 

calculated.Choose the level of statistical significance, α. This stipulates the acceptable 

risk of a Type 1 error (rejecting H0 when H0 is true). Typical values for α are 0.05 and 

0.01. Compare tcalc to the tabulated t-value, for the appropriate significance level and 

degree of freedom. If tcalc> ttab, we reject the null hypothesis and accept the alternate 

hypothesis. Otherwise, we accept the null hypothesis. 

Step three: State the decision rules:- 

The decision rules state the conditions under which the null hypothesis will be accepted 

or rejected. The critical value for the test-statistic is determined by the level of 

significance. The critical value is the value that divides the non-reject region from the 

reject region. 

Step four:Compute the appropriate test statistic and make the decision:- 

T-test is computed and compare the computed test statistic with critical value. If the 

computed value is within the rejection region(s), we reject the null hypothesis; 

otherwise, we do not reject the null hypothesis. 
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Step five:Summerize the result by interpreting the decision in the context of the original 

claim. 
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CHAPTER THREE 

LITERATURE REVIEW 

3.0 Introduction 

This section focuseson the review of previous studies related to remote sensing of urban 

land use/land cover using VHR images and LiDAR data with a focus on object-based 

image classification methods.  

Urban landscapes are characterized by a complex spectral mixture of materials that are 

predominately made up of impervious surfaces, vegetation and soil. This heterogeneous 

composition of urban landscapes is difficult to map using traditional per pixel 

classification. Also due to the high internal variance of high resolution imagery, 

previous urban mapping efforts using the per-pixel method have often produced 

unsatisfactory results (Blaschke and Strobl, 2001; Blaschke, 2009). The new remote 

sensing technique such as object-oriented classification has further provided an 

opportunity for fast update of urban spatial classifications to match the dynamic 

transformations that characterize urban environments. This has also made it possible to 

use of high resolution satellite imagery and multispectral aerial photography have 

emerged as the most effective means of mapping large scale urban environments. This 

trend has increased dramatically in recent years due to availability of high-density laser 

scanner and high-resolution multi-spectral data. 

The main drawback of per-pixel classification in a multi-dimensional feature space is 

that it doesn‘t make use of any spatial concept (Blaschke and Strobl, 2001). This affects 

the high resolution images because the neighboring pixels could belong to the same land 
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cover class due to spatial patterns of differing complexity or texture and this creates 

some uncertainty in the overall output. The object based image analysis method has 

overcome these difficulties by first segmenting the image into meaningful multi-pixel 

objects of various sizes, based on both spectral and spatial characteristics of groups of 

pixels. In general, it suffices to say that these pixel-based classification techniques 

improve classification accuracy with some limitations: 1) they have considerable 

difficulties dealing with the abundant information of HR data, 2) they produce a 

characteristic and inconsistent salt-and-pepper classification, 3) they are not capable of 

extracting objects of interest, and 4) they cannot update GIS database expediently 

(Baatz, M., et al., 2004). Thus, the pixel-based classification methods are no longer 

applicable for HR imagery.    

VHR images and LiDAR data are common sources for object extraction. So many 

studies have been carried out by researchers in this area using different approaches and 

algorithms. In terms of utilizing LiDAR data in classification, particularly object-based 

approaches, a considerable amount of literature has been published in recent years and 

results show significant improvement in classification accuracy of impervious surface 

such as buildings, roads, and parking areas. Examples are Syed et al. (2005a), Syed et al. 

(2005b), Haitao et al. (2007), Sohn and Dowman (2007), Yongmin (2011), Dinis (2002) 

etc. 

This review will aim to examine the various approaches in terms of data source, 

methodologies adopted, results and gaps to see where their approaches will be useful to 

the proposed study and possible chances of filling any gaps identified. Specifically this 
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review will be concerned with those of them that focused on the image analysis using 

the OBIA method, those that employed LiDAR data and VHR images.Currently, there 

are commercial systems (e.g. ENVI, ERDAS, e-Cognition, IDRISI, etc.), which use 

expert classification algorithms such as rule-based, object-oriented and fuzzy 

approaches. 

3.1 Geometric Characteristics of Urban Features 

The geometry of urban surface has an important impact in remote sensing. High 

resolution images (Spaceborne and Airborne) provide great possibility for achieving an 

efficient and effective extraction of cartographic features through automated extraction 

methods. However issues of shadow and image distortion can affect the accuracy of 

extraction and sometimes urban streets are misclassified as vegetation. For instance, 

Hodgson et al, (2003) found that the low reflectance from pixels under shadow 

frequently resulted to a misclassification into the water class.As a result, Tong et al, 

(2009) suggested that high resolution imagery must be accurately orthorectified by using 

the principle of photogrammetry before applying for mapping of urban land use. 

LiDAR data has been a major focus in recent years because of its high resolution, short 

processing time and low cost. LiDAR data focus mainly on geometry rather than 

radiometry. Feature classification and extraction based on LiDAR data have been widely 

conducted (Lee et al 2008). Some researchers have used LiDAR in combination with 

optical remote sensing datain impervious surface estimation and mapping, Hodgson et 

al, (2003) for example used both digital aerial photographs and LiDAR data for urban 

impervious surface mapping and found that the combined dataset improves the result for 
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all classification approaches. The addition of LiDAR height information improved the 

coefficient of determination value. 

The integration of high-resolution imagery and LiDAR data is well appreciated as it 

yields complementary benefits by providing a more complete scene description enriched 

with both spectral and3-Dsurfaceinformation.This integration of both data sources has 

been exploited to increase the classification performance and to improve the accuracy 

and robustness in automatic building detection, reconstruction and change detection 

techniques (Awrangjeb et al., 2012, Li and Wu, 2013). 

3.2 Related Studies Review 

Effort has been made to group the related studies into three categories of extraction of 

General land cover features, Building extraction and Road extraction. 

3.2.1 Automatic Classification and Extraction of General Land Cover Features. 

Syed et al, (2005): Automatic Classification of Land Cover Features with High 

Resolution Imagery and Lidar Data: AnObject-Oriented Approach 

This automatic classification of land cover features was carried outin the small town of 

Mathoura in southern New South Wales. The study area is a part of Mathoura‘s central 

town and covers around 9600m2. The area was part of a large data sets combine with 

aerial photographs and LiDAR data. The sample area is a good mixer of land cover 

features, which consists of rail line, storage sheds and silos, office building, vegetated 

areas and open space. 

The software eCognition professional version 4.0 was used for the object based 

classification. This included multi-resolution segmentation and knowledge-based object 
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extraction. For comparison, ERDAS Imagine 8.7 was used for pixel-based maximum 

likelihood classification and image processing including image co-registration and 

resampling.         

The OBIA began with the multi-resolution segmentation. In the segmentation process, 

for each image object a meaningful statistic is calculated in an increased uncorrelated 

feature space using shape, texture and topological features and this creates image object 

primitives. Finally, scaleparameter of 15 was chosen to create local homogeneity and to 

keep global heterogeneity. Similarly, shape factor, compactness and smoothness were 

assigned 0.275, 0.3 and 0.7 respectively. 

The next was the class hierarchy which creates the knowledge base for the classification. 

It was developed through inheritance hierarchy, which refers to the physical relations 

between the classes. Initially, vegetation and non-vegetation were the parent classes and 

they further divided into grass, tree and colour, non-colour classes as child classes and 

later, vegetation class became a parent class and grass and tree were the child classes as 

seen in Figure3.1. 

 
Figure 3.1: Feature classes, Source: Syed (2005) 

 

The final stage calculated the classification based on spectral properties. Since the 

generated image objects hold more spectral information compared to pixels‘ digital 
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numbers, the object oriented classifier offers a huge variety of derivative spectral 

features (Hofmann, 2001). Brightness and spectral ratios of the image objects were 

calculated using all image layers. Textural features were calculated using standard 

deviations of layer values, spectral mean values of sub-objects, and average spectral 

differences of sub-objects. Contrast information were generated though spectral 

differences to neighbouring objects and super-objects. Colour Surface was the sub-class 

ofnon-vegetation class. This class was defined by the object‘s brightness and the ratio of 

the blue band. 

The classification based on DEM properties was carried out with the understanding that 

it is the relative height and not the absolute.  In eCognition this property can be modelled 

by describing the difference in elevation to neighbouring objects (Hofmann, 2001).An 

image object was represented as open space if its mean difference of nDSM was smaller 

or equal to 1.2m and the definition of roof was the opposite of the open space.  

In this study, a shadow object is classified, as a grey roof shadow if its border to 

neighbour-object relation for grey object is larger or equal to 0.025m. A shadow object 

is classed as tree shadow if its border to vegetation neighbour-object is larger or equal to 

0.02m. 

For the pixel-based classification, statistics were generated for the high resolution image. 

After running the maximum likelihood classification scheme with equal prior 

probability, the classified image was generated with eight types of land cover features, 

the same as the number for the object-oriented classification. 



79 
 

The figures 3.2 a & b are the result from the pixel-based and object based classification 

methods. The main difference is the sharpness of the features, which look clearly better 

delineated in the object-oriented classification due to the combined use of the LiDAR 

derived DSM with multi-spectral image. The problem of the pixel based is clearly 

shown in the open space and roof classes as well as the shadow classes which were 

clearly defined using the object based because of the additional contextual information. 

 
Figure 3.2a&b: Pixel based and object based classification respectively, Source: Syed 

(2005) 

Yongmin (2011): Object-Based Classification of an Urban Area through 

aCombination of Aerial Image and Airborne Lidar Data 

This study area is located in Chon-an, a city in South Korea and the study was carried 

out to classify an urban area through a combination of aerial image and airborne LiDAR 

data. The area was selected because it has various land covers and roof types making it 

difficult to classify using a single data. The aerial image and airborne LiDAR data were 

simultaneously acquired and used to solve this problem. The two data were registered 

and resampled to 0.25m spatial resolution. 
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Building extraction using LiDAR data is conducted through nDSM. The nDSM was 

used as not only the threshold for extraction of building information but also as an 

additional band in the process of pre-classification. The difference in height between last 

return and first return provides information about forest and non-forest cover. The input 

bands for classification included intensity and elevation information of LiDAR data, in 

addition to red, green, and blue bands of the aerial image and pre-classification was used 

to extract vegetation information. For the extraction of building objects, three conditions 

(see figure) were set out: 

i. nDSM>2 m  

ii. subtracted return information ≤1 m  

iii. ≠Vegetation area. 

Initial segmentation is achieved by applying the modified SRG procedure, which 

integrates geometric structural and multispectral information to provide homogenous 

image regions with accurate and closed boundaries. The final segmentation result was 

obtained through a region adjacency graph (RAG)-based region-merging process, which 

merges the initial segments via a homogeneity cost measure that combines regional 

spectral and texture information.  Post-processing operation was done using 

morphological filtering and filling the boundaries made during the segmentation process. 

A closing method is used in this step, and kernel size was 3×3. There was elimination 

the objects that have areas smaller than 10 m2 to minimize the errors in the aerial image. 

After this process, building objects are finally extracted as building shapes in the aerial 

image. The last step was the classification of the aerial image using an SVM (Support 
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Vector Machine). The SVM is an appropriate method of high-resolution multispectral 

image classification because it works well with small training data sets. The idea in this 

step is to conduct the SVM on the non-building areas of the aerial image. The bands 

used for classification  

 

Figure 3.3: The flowchart for extraction of buildings. Source: Yongmin(2001) 

The bands used for classification are the red, green, and blue bands of the aerial image 

and intensity and elevation information from the LiDAR data. The entire process 

involved the building objects extracted from LiDAR data through three thresholds, the 

segmentation of the aerial image, the extracted building objects of the aerial image 

derived by applying the definite rule after overlaying and the removal of small areas was 

applied to fill the boundaries and remove some errors. 

The result showed that the method extracted well, buildings that are higher than 2m in 

study area by using an aerial image and LiDAR data, and the described classification 

process. Also building areas covered by shade were well extracted using the LiDARdata. 
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However, some vegetation areas were extracted as building class because they were not 

classified to vegetation class in the pre-classification step. This is due to the fact that the 

aerial image did not have Near Infrared band (NIR). 

Bandyopadhyay, (2013):Classification and Extraction of Trees and Buildings from 

Urban Scenes Using Discrete Return LiDAR and Aerial Color Imagery 

LiDAR point clouds and the aerial color (RGB) imagery of Downtown Rochester were 

collected during fall 2011. Two different regions of Downtown Rochester were selected 

to test the classification algorithm. Region 1 is a residential area of size 150x143 m, with 

smaller size buildings and many trees, whereas Region 2 consists of large commercial 

buildings and it covers an area of 360x 260 m. 

The density of the LiDAR point cloud is approximately 10 -15 points/m2. The LiDAR 

dataset contains the x, y, z location for each return, along with the return intensity;return 

number, number of returns, and vendor classification (ground, non-ground, or noise). 

The spatial resolution of color (RGB) imagery is 0.15m. The RGB imagery was 

orthorectified and processed into the same Universal Transverse Mercator (UTM) 

coordinate system as the LiDAR data. The LiDAR data was preprocessed.  After 

preprocessing the LiDAR point clouds, the next step was to remove points below 1.5 m 

height. Thus the ground, roads, and small objects such as vehicles, shrubs, shades etc. 

were removed from the LiDAR data set and the remaining points consist of mainly 

buildings and/or vegetation points. Segmentation based on smoothness constraints was 

then applied to the remaining LiDAR points. Since building rooftops exhibit a regular 

pattern or flat surface compared to vegetation, this resulted in building regions that were 
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separated from the rest of the points. However parts of tree canopies sometimes were 

included in the segmentation result; these were eliminated using the NDVI map that is 

introduced later. Once building points were detected, they were removed from the point 

clouds. In the next step a vegetation mask was used to detect all the vegetation points. 

The figure below shows the workflow of the classification method. 

 
Figure 3.4: Workflow of classification method. Source: Bandyopadhyay, (2013) 

NDVI map was produced from LiDAR point clouds and color (RGB) imagery. For each 

LiDAR point we found the closest pixel from the RGB image and assigned the red value 

to that LiDAR point, thus for each point we calculated the NDVI value using equation. 

Vegetation mask was also produced from RGB image. As a validation of the NDVI 

approach they have created another vegetation mask from the RGB image, utilizing the 

three bands from the color image and calculating two different indices. The table below 

shows the producers accuracy, users accuracy and the overall accuracy. From the table, 

we can observe that the classification accuracy for the building class is greater than 85%. 

But for vegetation class the Producer‘s accuracy is comparatively low, near 81% for 

both regions. 
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Table 3.1: Prod. Accuracy, User Accuracy & Overall Accuracy,  

 
Source:Bandyopadhyay, (2013) 

The classification algorithm, based on the fusion of LiDAR point clouds and color RGB 

imagery resulted in a good classification result for both buildings and vegetation in an 

urban environment. On average the classification accuracy for both vegetation and 

buildings is greater than 85%, which can further be improved by correctly registering 

RGB imagery and LiDAR point clouds. An NDVI map, created by using the red channel 

of RGB and the intensity return of LiDAR proves to be very good indicator between 

vegetation and other classes. 

Kokje, (2013): A simplified approach for classifying urban land cover using data 

fusion 

This work demonstrates a simplified approach for classifying urban land cover using 

data fusion. The study area is Auckland city, specifically the core of the central business 

district (CBD). 

The imagery was acquired from Worldview-2 (DigitalGlobe) multispectral imagery on 

30th October 2010, covering approximately 25 km² of central Auckland is used as 

primary data source. 2005-06 LiDAR data was provided by New Zealand Aerial 

Mapping Ltd. (NZAM). The data supplied in LAS point cloud format comprising both 
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ground and above ground points at an average density of 1 point/m².is used as 

complementary datasets to satellite imagery. 

An object-based feature identification approach, multi-resolution segmentation 

algorithm in eCognition environment is applied. nDSM data offering object elevation 

information is considered as main segmentation parameters supported by spectral 

information (NDVI, ZABUD and red spectral channel) applied to group various urban 

features based on homogeneity criteria. A hybrid supervised and Rule-set based 

parametric classification is performed on the intermediate (ground, and above-ground) 

classes identified, to obtain various land features (see figure). For data segmentation and 

classification, nDSM and slope derived from LiDAR data in conjunction with spectral 

components significantly improved the segmentation process, yielding better pixels 

grouping in spectrally complex impervious areas. Figure 3.5 shows the workflow. 

 

Figure 3.5: Methodology opted for the land feature identification. Source: Kokje, (2013) 
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Additionally, effect of shadows on segmentation region is reduced dramatically by 

applying active LiDAR nDSM data devoid of any shadows. Feature classification 

process was based on the proposition that the entire image objects (features) in a given 

area can be divided into ground and above-ground based on the elevation. Using this 

condition, intermediate classes (ground and above-ground) are derived from nDSM 

threshold. 

In a stepwise classification approach, features categorised as ground are classified using 

sample based standard nearest neighbour (SNN) feature space optimisation. Due to 

spectral and spatial complexities associated with features in above-ground class, 

individual parametric rules are applied to extract trees and buildings (low, med and high 

rise) 

 
Figure 3.6: Various land features under intermediate class ‗ground‖ is recognized. 

Source: Kokje, (2013) 
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Figure 3.7: Sub classification of intermediate ground and above ground classes, yielding 

land features. Source: Kokje, (2013) 

Initial analytical tests confirm accuracy of 93% for objects classified under transitional 

ground feature class. 

Li, (2007): Fusion of VHR Imagery and LiDAR data for Object Oriented Urban 

Land Cover Classification Based on SVM 

This study used lidar data and VHRimagery forland cover OBIA classification based on 

Support Vector Machine (SVM) and the study area is in Odense of Danmark. 

The SVM method separates the classes with a hyperplane surface to maximize the 

margin among them (see figure 1), and m is the distance between 1 H and 2 H, and H is 

the optimum separation plane which is defined as:   w.x + b = 0, where x is a point on 

the hyperplane, 'w' is a n-dimensional vector perpendicular to the hyperplane, and 'b' is 

the distance of the closest point on the hyperplane to the origin. When multi-class SVM 

is concerned, three basic methods are available to solve the classification: One-Against-

All (OAA), One-Against-One (OAO), and Directed-Acyclic-Graph (DAG). 
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Figure 3.8: The flowchart of object-oriented classification based on SVM. Source: Li, 

(2007) 

 

The LIDAR data and VHR aerial imagery had 0.4-m spatial resolution. The digital 

surface model was created from the first and last returns LIDAR data by applying height 

thresholds. Then the DSM image and VHR aerial image were geo-referenced to the 

same coordinate and projection with 376 by 339 pixels size. Seven land cover classes 

were identified for the study: 1 road, 2 building, 3 shadow of building, 4 tree, 5 shadow 

of tree, 6 grass, 7 bare land. 

During the classification stage, a data preprocessing was carried out: the textural features 

(variance, contrast) of aerial imagery were calculated using Gray Level Co-occurrence 

Matrix (GLCM) filtering, and the texture and spectral information of HR aerial imagery 

were fused with the LIDAR derived DSM imagery to get multi-source image 

information.  

The result showed that different shadow species are easier to distinguish when both 

aerial images and LIDAR data are used together. The results also show that the overall 
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accuracy of pixel-based SVM is 82.92%, whereas the overall accuracy of the object-

oriented classification based on SVM is 95.97%. The overall accuracy is improved by 

13.05%. The user‘s accuracy of each class using object-oriented classification is higher 

than the pixel-based SVM method. In particular, the land cover class, building and road, 

are obviously distinguished by the object-oriented classification method by fusing of 

DSM information of LIDAR data and spectral, textural information of aerial imagery.   

In their conclusion they noted that SVM classification method could solve sparse 

sampling, non-linear, high dimensional data, and global optimum problems. The fusion 

of multi-source data could obtain more accurate information concerning features better 

than when a single data is used.  

Jia, (2015):Object-based Land Cover Classification with Orthophoto and LIDAR 

Data 

This used object-based land cover classification with orthophoto and LiDAR data. The 

study area is a subset area of city Örebro in Sweden. The two data were provided by the 

Swedish national mapping and DSM, DTM and intensity image derived from LiDAR 

data. The LiDAR data of this study area was generated in March 21st, 2012 with the 

spatial resolution in 1m and point density in 0.5 to 1 point per square meter. Orthophoto 

were produced from the aerial photograph that was collected by the camera Microsoft 

Vexcel UltraCam Eagle (UCE) in August 27th, 2012. The orthophoto image had four 

spectral bands, Red, Green, Blue (RGB) and Infrared (IR) with the resolution in 25cm. 

From the orthophoto, seven surfaces aimed at discovering critical features in 

classification were derived. These were, DSM and NDSM, near-infrared (NIR) value, 
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Ratio Green, Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Water Index (NDWI) and Land & Water Mask (LWM).  

DTM was produced from laser data. DSM was generated from linear array imaging by 

using image matching algorithm. NDSM as the normalized DSM was obtained by 

subtracting the DTM from the DSM. 

Four surfaces were derived from LiDAR data, which were DTM, DSM, Fp-Lp image 

and intensity image. DTM was provided from the elevation model by extracting points 

on the ground surface from LiDAR point cloud. DSM was rasterized from LiDAR data 

by first return. Fp-Lp image was calculated by the difference of DSM between first pulse 

and last pulse, with spatial resolution in 1 meter. This has the capability to discriminate 

permeable objects e.g. vegetation. Consequently, the permeable objects always had the 

Fp-Lp value greater than zero which is useful to extract trees which have similar height 

with buildings from build-up area. In this study, only single and first pulse was used to 

obtain the intensity image, with a 2m resolution. This is because single and first pulse 

could reflect the land cover object surface on the surveyed area whereas the last pulse of 

multiple returns was useful for buildings delineate.   

The software eCognition Developer 8.0 was used for the object-classification procedure 

of this study while Quantum GIS 2.0 (QGIS) was applied for design the layout and 

presenting the result image. Four land cover types were considered focusing on the 

essential land cover types in geographical database, forest (high vegetation), water, open 

land, and building. The rest of elements on the map were assigned to unclassified. 
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Firstly, surface derivation was implemented from provided orthophoto and LiDAR data. 

NDSM, Fp-Lp image and intensity image were generated for the classification process. 

Secondly, objects were created based on input dataset by using segmentation algorithm. 

Thirdly, spectral and spatial related features were experimented for each class i.e. forest, 

water, open land, building based on orthophoto, LiDAR and their surface derivation. 

Based on this, the features and the threshold to represent corresponding objects were 

found and rules for classifying object were decided. Classifications were performed 

based on orthophoto and lidar data, both alone and integrated, by following the rule set 

respectively. On the other hand, SVM classification algorithm was also performed based 

on the same data dataset as decision tree classification algorithm. Finally, corresponding 

samples in each class were selected for assessing the accuracy of classification results.  

 

Figure 3.9: The workflow of object-based decision tree classification process. Source: 

Jia, (2015) 

 

The results were generated in two different classification algorithms, i.e. decision tree 

and SVM.For othophoto alone, the overall classification accuracy was 89.2%. Regarding 

producer‗s accuracies, forest achieves 95.5% classification accuracies, while the other 

classes get over 85% accuracies. Building is misclassified as forest and water. Of forest, 

the only source of omission error is from water. As for user‗s accuracies, all classes have 
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good results with accuracy over 90%.  about 7.3% of open land are misclassified as 

water. 5.5% areas of building are misclassified as open land and water. These 

classification errors are caused by the similar spectral features of land cover types in 

orthophoto. 

With regard to LiDAR classification dataset, the overall accuracy achieves 88.6%.  

Additionally, the four classes yielded over 88% average producer‗s accuracies. Water 

achieved the highest of 90.3% and building has the second of 89.2% and it is confused 

mainly with forest. Forest is 85.1% with misclassified areas mostly in open land which 

has a good accuracy in 88.6%. As for user‗s accuracies, building is classified with 99% 

accuracy with a few commission errors from forest. Water achieves a good accuracy as 

well (97.4%). Forest has the lowest user‗s accuracy due to commission errors from 

building and water basically. Open land reach 94.7% accuracy and some areas are 

confused with water. With the height value and intensity data, the LiDAR classification 

dataset achieved such optimal results without very high resolution. 

Concerning of integration dataset, the classification results reach highest overall 

accuracy in 95.2% comparing with others  producer‗s accuracies, building and open land 

achieve over 95% classification accuracies, while forest and water reach over 91% 

accuracy. Building is classified with 97.1%. Only small areas of open land and water are 

misclassified as building. On the side of user‗s accuracies, none of the four classes are 

down below 95%. Forest achieves the highest accuracy in 99%, while a small part of 

forest is misclassified as openland. Water has almost the same accuracy as forest, with 

the value of 98.9% accuracy.  
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The integration showed remarkable accuracy improvement. The overall accuracy 

improved expressively from 89.2% (orthophoto classification dataset) and 88.6% (lidar 

classification dataset) to 95.2%. Based on the study, the integration of orthophoto and 

lidar data could achieve satisfied classification results with very high agreement. 

Dinis, (2009): Hierarchical Object-Based Classification of Dense Urban Areas by 

Integrating High Spatial Resolution Satellite Images and LiDAR Elevation Data 

This is a hierarchical object-based classification of dense urban areas by integrating high 

spatial resolution satellite images and LiDAR elevation data. The study area, located 

within the Lisbon Municipality.  

The satellite data consist of two pan-sharpened QuickBird images dated 13 April 2005 

and 11 March 2007, with a spatial resolution of 0.6 m and 4 spectral bands. The sun 

azimuth and elevation of the 2005 image are 149°.6 and 57°.3, respectively, while for 

the 2007 image those values are 161°.4 and 46°.0, respectively.  

All images have been orthorectified with sub-pixel accuracy, using Rational Polynomial 

Coefficients (RPCs) with 29 GCP‘s and validated with 22 checkpoints. For 

orthorectification, a Digital Terrain Model (DTM) was generated from the 1998 

municipality vector cartographic map at scale 1:1000 with a spatial resolution of 0.5 m. 

A 2006 LiDAR Digital Surface Model (DSM) with a 1-meter spatial resolution was 

provided by LOGICA, covering only partially the extent of the municipality of Lisbon. 

Elevation and intensity of the first and last pulse returns from a TopoSys II 83 kHz 

LiDAR instrument, flown on a helicopter, were recorded for each laser pulse, with an 

average measurement density of 20 points per m2. The provided DSM was produced 
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using only the last pulse returns, meaning that only data from the surface that was last hit 

by the laser pulse was considered. A surface cover height model (nDSM) was generated 

by subtracting the DTM from the DSM, to be used as ancillary data in the classification 

process. 

Orthorectified photographs with 4 spectral bands were acquired on 16 August 2007 and 

provided by the Portuguese Geographical Institute (IGP) and used to collect the 

reference data used for the accuracy assessment of the map. All data was converted to 

the PT-TM06/ETRS89 coordinate system and the vertical datum of the DSM and the 

DTM is the maregraph of Cascais. 

The Definiens Professional 5.0 software was used to conduct the object-oriented images 

analysis. Images orthorectification was undertaken in the PCI Geomatica V9.1 

(OrthoEngine) since Definiens does not support those capabilities. 

The methodology started with a hierarchical information extraction process involving 

three steps. First, the dark objects (water and shadows) and non-dark object were 

separated. Then, the non-dark objects were classified using the 2007 QuickBird image. 

Finally, shadows were classified using the 2005 QuickBird image.Vegetation and non-

vegetation features are differentiated. Under the vegetation class, grass, shrubs and trees 

were extracted, while under the non-vegetation class, transport units, buildings and bare 

soil were discriminated andthe common shadows between 2005 and 2007 were 

classified using contextual rules. The Definiens Professional 5.0 software was used for 

the segmentation which had two steps. The 2007 QuickBird image segmentation was 

applied, with a scale parameter of 75, a color parameter of 0.9 and a shape parameter of 
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0.1, whilst the 2005 QuickBird image was processed at a finer scale of 25, the weights 

for colour and shape were kept as 0.9 and 0.1, respectively. A threshold value of 180 

was set to extract water and dark objects (water and shadow) and a Spectral Shape Index 

(SSI) was used to distinguish water from the black body mask.  

Vegetation and non-vegetation features were separated using a NDVI. The NDVI was 

calculated based on the formula: NDVI = (NIR-Red)/(NIR+Red) and the threshold was 

set to 0.36, through a pixel-based histogram analysis. Three different features, namely 

trees, shrubs and grass, were discriminated under the vegetation features. The non-

vegetation features were further divided, using the nDSM, in high (nDSM> 1.91 m) and 

low (nDSM≤ 1.91 m) features. These high features were separated afterwards into 

buildings and high crossroads using a shape function. The hierarchical rule-based 

classification is better explained with the diagram below.For the classification of the 

shadowed areas, a new threshold was set using the spectral and spatial information of the 

2005 satellite image. a shadow object with a relative border to a transportation unit≥ 0.6 

is classified as transportation unit; and a shadow object with a relative border to tree= 1 

(i.e. totally surrounded) is classified as tree.  

Overall accuracy: 87%; Kappa coefficient: 0.84 was achieved. 
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Figure 3.10: The hierarchical rule-based classification. Source: Dinis, (2002) 

Dupuy, (2012): OBIA for Combining Lidar and Multispectral Data to Characterize 

Forested Areas andLand Cover in Tropical Region. 

This research combined LiDAR data and multispectral data to characterize forested 

areas and land cover using OBIA classification method. The study area is Mayotte, an 

island of the Comoro Archipelago located at the entrance of the Mozambique Channel.  

The data used are a Digital Surface model (DSM) and a Digital Terrain Model (DTM) 

built with a spatial resolution of 1m x 1m was produced by IGN (French Geographic 

Institute) using an adaptive triangulated irregular network algorithm from the software 

TerraScan (Terrasolid Ltd, Finland). Two types of multispectral images were acquired 

on the study zone: orthophotos (0.5 m pixels) required for precisely delimiting small 

objects and Spot 5 XS satellite images (10 m pixel) for better discriminating vegetation 

covers using both short wave and near infra-red information (Muller, 1997). All 

multispectral images were re-sampled to the same resolution of the DCM using the cubic 

convolution interpolation algorithm. 
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The methodology was based on an object-based procedure in three successive 

segmentation/classification levels implemented with the eCognition Developer 8 

software using the multi-resolution segmentation algorithm. The workflow is presented 

below. 

Table 3.2: Segmentation parameters for each OBIA level. 

 
Source:Dupuy, (2012) 

 

Figure 3.11: Workflow of the OBIA procedure. Source: Dupuy, (2012) 

(i) Level 1: The first segmentation/classification step consists in masking and classifying 

the studied zone according to existing thematic data. The studied zone is thus segmented 

according to the limits of thematic data entities. Then, the resulting image objects are 

assigned – or not – to a thematic class using Boolean rules. 
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(ii) Level 2: Height classification - The second segmentation/classification step consists 

in classifying cover heights on non-thematic objects of level 1. Within the boundaries of 

the first segmentation level, a second segmentation level was based on the DCM and the 

Max and High Pass filters. The researcher obtained a quite good delineation between (i) 

the two forest stands observed in the field (forest area with low height canopy and high 

height canopy); and (ii) forest areas, shrub cover and low vegetation. The resulting 

image objects are first assigned according to 4 height classes (• 1.5 m;] 1.5 – 5m];] 5 – 

10m [; • 10 m) using Boolean rules based on DCM values. 

(iii) Level 3: Land cover classification: The third segmentation/classification level aim is 

two-fold: (i) to classify the different forested types objects discriminated at level 2 

according to their composition (deciduous or evergreen); and (ii) to classify the two 

lowest height class objects discriminated at level 2 and the eroded area objects extracted 

at level 1 following the land cover categories defined in the research. Only one 

segmentation level, based on limits built in level 2 and multispectral information, was 

required to satisfy this double aim. 

According to the confusion matrix, 84% of the control objects were correctly classified. 

This global accuracy is confirmed by the kappa index value of 80, which means that 

80% of the objects would appear well classified according to any completely random 

validation process. Highly accurate results (•80%) were obtained for forest types 

(defined by the structure and heterogeneity), for shrub and low vegetation and fern 

eroded area classes.  The poorest accuracy was for bare soil on eroded area (69%) and 

herbaceous on eroded area (58%) classes because of (i) confusion between these two 
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classes due to their similar spectral behavior; and (ii) radiometric heterogeneity of data 

source used for the discrimination of these classes (orthophotos). 

In conclusion, acquisition of satellite data (with more radiometrically homogenous 

image) with higher spatial resolution (QuickBird 0.5 m pixels or Pleiades 0.5 m pixels 

for example) at suitable acquisition period (October) would be better for enhancing 

discrimination between evergreen and deciduous forest types. 

Kiani, (2014): Urban Area Object-Based Classification by Fusion of Hyperspectral 

and Lidar Data 

This is a research that investigated hyperspectral and LiDAR data fusion to generate 

accurate LC/LU maps with object based classification method. The dataset was co-

registered and geo-referenced and was acquired over the University of Houston campus 

with its neighboring urban area. 

The data used for this research were got from Data Fusion Technical Committee (DFTC) 

of the IEEE Geoscience and Remote Sensing Society (GRSS). They were two datasets – 

a hyperspectral image and a LiDAR derived Digital Surface Model (DSM), both at the 

same spatial resolution (2.5m). The hyperspectral imagery has 144 spectral bands in the 

380 -1050 nm spectral region. Training and test samples provided by DFTC, include 

fifteen different classes as follows: healthy grass, stressed grass, synthetic grass, soil, 

water, tree, road, highway, railway, parking lot, car, tennis court, running track, 

residential and commercial buildings classes. 

The first step in the methodology was to preprocess the data. Preprocessing of 

hyperspectral image include cloud shadow removal and dimension reduction and 
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extraction of nDSM from LiDAR data. Next step include image segmentation by 

applying a multi-resolution segmentation algorithm resulted in shadowed and no 

shadowed area separation. In this research Nonparametric Weighted Feature Extraction 

(NWFE) method was used which only ten features was applied. In this research a 

targeted segmentation strategy has been implemented that extracts each class by using 

data layer lead to highest separation with its neighboring objects of respective class. In 

addition to this strategy, various segmentation algorithms according to classes‘ 

geometric behavior, such as multi threshold, chessboard and multi-resolution 

segmentations, can be implemented to create meaningful objects. A suitable information 

layer for each class is obtained through first ten NWFE features spectra analysis. 

An iterative classification process was used in this research. At first step, considering 

generated nDSM data, classes with highest spectral and elevation distinction and no 

specific geometric structure was extracted. For this data type classes such as vegetation, 

soil, water and synthetic grasses were classified. At second step, classes with similar 

spectral behavior but different and specified geometric features were extracted. Road, 

highway, railway, parking lot, car, tennis court, running track, residential and 

commercial buildings classes are categorized at this step. For extracting highway, road, 

railway and parking lot classes shape features include Length/Width, Area, Density and 

Compactness were used as well as spectral features. In addition to spectral features, for 

running track and tennis court classes respectively Ecliptic fit and Rectangular Fit 

features were used. 
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In order to separate commercial from residential classes, geometric features like Area, 

volume and class-related features such as Proximity, Distance between buildings, spatial 

distribution, Closeness and Distance to parking lot and also elevation features were 

utilized. Finally, for roof parking classification, geometric features, Rectangular Fit and 

Area in addition to extracted slope map for ramp identification were applied.   

Results indicate an overall accuracy of about 97%.  Classification results including 

producer‘s accuracy, user‘s accuracy, Kappa coefficient and overall accuracy is shown 

in the table below. Using LiDAR mitigate misclassification between roads and buildings 

and also healthy grass and trees.This classification method is performed at one level in 

an iterative Segmentation-Classification-Merging (SCM) process. 
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Figure 3.12: The iteration stages of the methodology. Source: Kiani, (2014) 

This novel design takes advantage of classification at one level with keeping hierarchical 

model characteristics.  Hierarchical model behavior retrieved by iterative procedure as in 

each iteration, one or two objects based on their spectral and geometric characteristics 

are classified. Applying segmentation and classification algorithms in accordance with 

behavior and condition of objects in image scene is one advantage of this method. 

Zou, (2016): Object Based Image Analysis Combining High Spatial Resolution 

Imagery and Laser Point Clouds for Urban Land Cover 

This is a study utilizing object based image analysis combining high spatial resolution 

imagery and laser point clouds for urban land cover. The study area is the 

photogrammetric test site Vaihingen/Enz of Institut für Photogrammetrie, Stuttgart 

University in Germany. eCongition Developer software (eCognition, 2014) to execute 

the image segmentation and image classification based on an OBIA approach. 

For the datasets, the image consists of two state-of-theart airborne image datasets, 

consisting of very high resolution colour-infrared TOP tiles and corresponding digital 

surface models (DSM). The DSM is generated via dense image matching with Trimble 

INPHO 5.3 software, and the TOP mosaic is generated with OrthoVista module in 

Trimble INPHO software (ISPRS Report, 2013). The TOPs are 8 bit TIFF World format 

with three bands: near infrared, green and red bands. The DSM is a TIFF World format 

with one band and the grey levels are encoded as 32 bit float values. The ground 

sampling distance (GSD) of both the TOP and the DSM is 9cm with the same grid. 
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The LiDAR data was captured with a Leica ALS50 system. Inside an individual strip the 

average point density is 4 points/m2. The laser datasets are LAS 1.2 file format and each 

point with XYZ coordinate, intensity, elevation, number of returns, returns number, scan 

angle, class and source ID information. These laser datasets are made available as 

ancillary data for classification.The methodology can be seen in the workflow below as 

having 4 major steps.  

 
Figure 3.13: Workflow of OBIA classification with ancillary data. Source: Zou, (2016) 

The first step is to pre-process in order to obtain parcel map of water bodies and to 

create a normalized digital surface model (nDSM) from the point clouds.  The second 
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step is multi-resolution image segmentation. Image objects primitives are created via 

multi-resolution image segmentation integrating scale parameter, the colour and shape 

properties and compactness criterion. The third step is image objects classification. The 

image objects classes of interest typically discerned in urban classification are assigned 

to six different classes: water bodies, low vegetation/grass, tree, low building, high 

building and road. . A rule set of knowledge decision tree is created for classification 

with specific attributes e.g. vegetation index feature (NDVI, ratio of green), object shape 

feature (length/width, shape index, area), object statistics feature (difference in height, 

brightness) and ancillary feature of point clouds (intensity, class, elevation, number of 

returns, returns number).The forth step is to assess the validity of classification results. 

Accuracy assessment is performed by comparing randomly distributed sampled points 

with the classification results. 

In summary, multi-resolution segmentation to create image objects primitives from 

image pixels. A group of parameters were selected, which scale parameter is equal to 30, 

shape parameter 0.3 and compactness parameter 0.5. The weighting of NIR image layer 

has been increased to 2, and the weightings of other image layers such as red, green are 

increased to 1. The thematic layer of water bodies with parcel boundary is used to be 

candidates for segmentation. The weighting of water body layer is increased to 1. The 

weighting of nDSM layer is increased to 1. Six categories in urban classification are 

defined as water bodies, low vegetation/grass, tree, low building, high building and road. 

A knowledge base of classification rules is constructed to classify each object into 

certain class. Objects characteristics such as NDVI, ratio of green, thematic attribute, 
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point cloud-related attribute, spatial relation and statistical measures are utilized to create 

the knowledge rules for classification. Ancillary data such as water bodies with parcel 

boundary and height information of building or tree derived from nDSM is also used to 

create the knowledge rules, forming process tree. 

The accuracy assessment of the classification results for six classes is performed using a 

total number of 200 randomly distributed sampling point data. The overall accuracy 

(OA) of OBIA classification reaches 89.5% in the study area and the Kappa coefficient 

is recorded as 0.865. The research concluded that object based image analysis (OBIA) 

approach is proved to be an effective and convenient way to combine high spatial 

resolution imagery and LiDAR auxiliary data for classifying urban land cover. The use 

of LiDAR datasets and nDSM are very helpful for the separation of tree and low 

vegetation, building and road using the height information. 

Hermosilla, (2012): Land-use Mapping of Valencia City Area from Aerial Images 

and LiDAR Data 

This research was carried out for land-use mapping of Valencia city area from aerial 

Images and LiDAR data. Valencia is a compact city composed by a central historical 

area surrounded by buildings of different typologies, 

Imagery and LiDAR data were acquired in the frame of the Spanish National Plan of 

Aerial Orthophotography (PNOA). The images were collected in August 2008 and they 

have 0.5 m/pixel spatial resolution, 8 bits radiometric resolution and four spectral bands: 

red, green, blue and near infrared. LiDAR data were acquired in September 2009 with a 

nominal density of 0.5 points/m2 using a RIEGL LMS-Q680 laser scanner device. A 
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normalised digital surface model (nDSM), i.e., the difference between the digital surface 

model (DSM) and the digital terrain model (DTM), representing the physical heights of 

the elements present over the terrain, was generated from LiDAR data. 

The methodology of the land use classification was carried out in five steps: class 

definition; sample selection; descriptive feature extraction; object classification; and 

evaluation.  

Land-use class definition was performed based on the specifications of the Land Cover 

and Land Use Information System of Spain (SIOSE) database. The legend was 

composed of seventeen classes, discriminating between ten urban land use classes and 

seven agricultural classes. The urban classes and there sample plots defined were: 

historical buildings (264 samples), urban buildings (225), open urban buildings (142), 

semi-detached houses (90), detached houses (153), industrial/warehouse buildings (139), 

religious buildings (30), commercial buildings (24), public buildings (173), including 

schools, universities, sport facilities and civic and governmental buildings, and gardens 

and parks (57). The agricultural classes defined were: arable lands (92), citrus orchards 

(141), irrigated crops (81), carob-trees orchards (63), rice crops (74), forest (39) and 

greenhouses (43). 
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Figure 3.14: Legend of seventeen classes, Source: Hermosilla (2012) 

For the feature extraction, object features were computed using the object based image 

analysis software FETEX 2.0. The computed features provided information regarding 

spectral, texture, structural, geometrical, three-dimensional and context based properties. 

Classification was performed using decision trees constructed with the C5.0 algorithm 

combined with the boosting technique. The overall accuracy of the classification was 

84.8%, and the kappa coefficient 0.83. These were considered to be sound results, 

especially considering the large number of classes defined (17) and the structural 

similarities between some classes, e.g., semi-detached houses and detached houses. 
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Hamedianfar, (2014): Detailed Urban Object-based Classification from 

Worldview-2 Imagery and LiDAR data: Supervised vs Fuzzy Rule-based. 

This paper investigates the comparative assessment of object-based classifications 

including fuzzy rule-based and supervised Support Vector Machine (SVM) to perform 

detailed characterization of urban classes. The study area is a part of Universiti Putra 

Malaysia (ranged from upper left longitude 3°00‘14.48‖N and latitude 101°42‘14.71‖E, 

lower right longitude 3°00‘00.71‖N and latitude 101°42‘44.12‖E, of WGS84 coordinate 

system).  

The data used were Worldview–2 Imagery and LiDAR Data. Digital Elevation Model 

(DEM) was subtracted from Digital Surface Model (DSM) to create normalized Digital 

Surface Model (nDSM). Both WV-2 and nDSM are geometrically corrected to UTM 

projection, zone 47N and Kertau48. Pan-sharpening (Zhang 2002) of WV-2 image was 

performed to provide more de-tailed visualization about impervious features. To 

improve the accuracy of image classification, a multi-band file was generated including 

WV-2, nDSM, Normalized Difference Vegetation Index (NDVI). 

The first classification was done using supervised object based by Support Vector 

Machine (SVM). SVM is popular in remote sensing data analysis due to its ability to 

deal with small training data sets. Supervised classification utilizes training data to 

allocate unknown objects to known classes. Radial Basis Function (RBF) was employed 

as a kernel for SVM. The cross validation determined the optimal parameter of C = 0.5 

and γ = 0.0078 with 5-fold function rate = 99% (Hamedianfar and Shafri 2013).   
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The second part of the classification was done using rule based approach. Rule-based 

classification is a feature extraction approach that allows rule set creation to map 

particular features class based on its spectral, spatial and textural characteristics. Rules 

are created based on human knowledge and reasoning about specific land-cover types 

(ENVIZoom 2010). For example, dark building has a low NDVI, roads are elongated, 

buildings are rectangle in shape, water has a low mean value in NIR band, and 

vegetation has a high NDVI and trees are highly textured compared to grass. In this 

study, s-type membership function was employed to deal with fuzzy nature of urban 

environment (Jin & Paswaters 2007). Standard confusion matrix was used to perform the 

accuracy assessment of image classifications and ground truth data was collected by 

ground survey.  

The result showed that SVM classifier achieved the overall accuracy and kappa 

coefficient of 85.02% and 0.82, respectively. Although feature height information was 

added to spectral, spatial and textural information; SVM classifier could not produce an 

accurate result from impervious surfaces. Utilization of height information was useful to 

separate the heterogeneous spectra of rooftops from roads and sidewalks. The classes of 

grass and trees were well extracted by the classifier by the use of textural, spectral, and 

elevation attributes. Pond was classified with high user and producer accuracies, but its 

misclassification can be seen with dark metal roofs showing that classifier could not 

make use of elevation information to separate these two classes effectively. The table 

below shows summary of the performance of the SVM classifier. 
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Table 3.3: Accuracy assessment of supervised SVM object-based classification,  

 
Source: Hamedianfar, (2014) 

For the rule based classification, after performing segmentation and merging steps, fuzzy 

rule-based classifier with S type membership function was utilized to build the optimal 

rule-sets. The rule set is done in order to cope with the spatial and spectral diversity of 

the urban features. Fuzzy logic allows well approximation of human reasoning as well as 

the probabilities to assign image objects to their related feature classes. The overall 

accuracy and Kappa coefficient were reported to be 93.07% and 92%, respectively. 

Several attributes were used to differentiate metal roofs from other features. Firstly, 

nDSM applied to discriminate metal roofs from low elevated features such as roads and 

grass. Concrete tile roofs showed to be the most heterogeneous impervious surface. 

Different spatial, spectral, texture and elevation were used to extract these rooftops. 

There was an improvement made in mapping of concrete tile roofs compared to 

supervised SVM classifier result. NDVI was assisted in elimination of spectrally and 

spatially similar features as well as vegetated areas. Then, tx-entropy was applied to 

differentiate asbestos roofs from roads and this made it possible to overcome the mixed 

object of this class with concrete tile roofs and roads classes. In order to discriminate 
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roads, NDVI was used to remove the vegetation. Then, nDSM was applied to 

differentiate road from elevated features. After that, costal band was useful to get rid of 

spectrally similar features such as dark roof tops and water bodies. To extract sidewalks, 

different attributes were tested. Firstly, NDVI was used to remove building and 

vegetation. Then, NIR2 and mindir were used to differentiate sidewalks from dark 

rooftops and roads. The table below shows the performance of the rule based method. 

Table 3.4: Accuracy assessment of rule-based object-based classification,  

 
Source: Hamedianfar, (2014) 

The supervised classification showed misclassification between impervious surfaces and 

this is because supervised classification cannot effectively differentiate the spatial and 

spectral diversity of roof types, roads and sidewalks.  Developed object-based rule-sets 

produced better classified image compared to supervised SVM. 

Aguilar, (2012):Optimizing Object-Based Classification in Urban Environments 

Using Very High Resolution Geoeye-1 Imagery 

This is a study titled ―Optimizing Object-Based Classification in Urban Environments 

using Very High Resolution Geoeye-1 Imagery‖. The study area comprises the little 

village of Villaricos, Almería, Southern Spain, including an area of 17 ha. The working 
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area is centered on the WGS84 coordinates (Easting and Northing) of 609,007 m and 

4,123,230 m. 

For the data, over the study site an image of GeoEye-1 from the imagery archive of 

GeoEye was acquired. It was captured in reverse scan mode on 29 September 2010, 

recording the panchromatic (PAN) band and all four multispectral (MS) bands (i.e., R, 

G, B and NIR). The image products were resampled to 0.5 m and 2 m for the PAN and 

MS cases respectively. For these products, the pancharpened image with 0.5 m GSD and 

containing the four bands from MS image was attained using the PANSHARP module 

included in PCI Geomatica v. 10.3.2 (PCI Geomatics, Richmond Hill, Ontario, Canada). 

Finally, two orthoimages (PAN and pansharpened) were computed using the 

photogrammetric module of PCI Geomatica (OrthoEngine). Rational function model 

with a zero order transformation in image space, 7 DGPS ground control points and a 

very accurate LiDAR derived digital elevation models (which is going to be detailed 

later) were used for obtaining both orthoimages In this work SAVI index was used. It 

was computed by SAVI algorithm from PCI Geomatica, and a new image was 

calculated from Red and NIR bands included in pansharpened orthoimage. 

The LiDAR data was taken on August 28th, 2009, as a combined photogrammetric and 

LiDAR survey at a flying height above ground of approximately 1000m using a Leica 

ALS60 airborne laser scanner which derived DEM with a grid spacing of 1m. 

Normalized Digital Surface Model (nDSM) was generated by subtracting DEM from 

DSM as well as orthoimages with 15cm GSD were attained from this flight by 

Intergraph Z/I Imaging DMC (Digital Mapping Camera).       
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The methodology started with a multiresolution segmentation and object-based image 

analysis software used in this research was eCognition v. 8.0. The segmentation was 

always developed using the four equal-weighed bands from pansharpened orthoimage. 

Furthermore, the compactness was assigned a weight of 0.5 and the shape was fixed at 

0.3. Following this way, 2723 image objects (IOs) were detected. Only 1894 IOs from 

the initial 2723 could be visually identified as meaningful objects (see Table 3.5). The 

hand-made or manual classification was developed into ArcGis v. 9.3 using the available 

datasets (orthoimages from GeoEye-1 and DMC, MDE, DSM, nDSM, SAVI). A subset 

of 945 well-distributed IOs were selected to carry out the training phase of the classifier 

used in this work (i.e., nearest neighbour) while the remaining 949 IOs, also well-

distributed in the working area, were used for the validation or accuracy assessment 

phase. In this work, an object-based supervised classification has been used, being 

nearest neighbour the classifier chosen. 

Table3.5:  Image objects after the segmentation process. 

 
Source: Aguilar, (2012) 

For the feature extraction and selection, in addition to the four features (Red, Green, 

Blue and Infrared bands from pansharpened GeoEye-1 orthoimage) used for creating the 

IOs at the segmentation phase, other 43 features, were used for supervised classification.   
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The result and conclusion showed that: 

1.- Using seven basic features of mean layer values such as Blue, Green, Red, Infrared, 

Pan, Brightness and Maximum difference, a vegetation index as the Soil Adjusted 

Vegetation Index (SAVI), and the normalized Digital Surface Model or Object Model 

(nDSM), the best overall accuracy (79.39 %) was reached. This result improved even 

those carried out using 45 features, being the last strategy much more time consuming in 

terms of CPU.  

2. nDSM was the most important feature for detecting buildings, as it had already 

reported by many authors working with other sources of images, such as Ikonos, 

WorldView-2, or digital aerial images.    

3. The inclusion of SAVI index was related with the detection of vegetation, and, 

together with NDBI, was a good strategy for the classification of roads 

4. A percentage of 10% of training areas was enough for attaining good accuracies using 

object-based supervised classification with the nearest neighbour classifier. 

Singh, (2015): Land Information Extraction with Boundary Preservation for High 

Resolution Satellite Image 

This study was based on using high resolution satellite image to extract land 

information. The study area is located in Burghausen, Germany which is a Rapid Eye 

image with 5m resolution. This image contains various details such as buildings, roads, 

agricultural fields, forest area, river which we have to extract with their proper boundary.   
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The methodology started with edge detection which is the most important part of edge 

detection and it means to detect the pixel changing boundaries. Objects in satellite 

images do no not have sharp edges and this gives problem to regular edge detection 

techniques so in order to get a better result in this study, the new edge detection 

algorithm which is written in MATLAB was used. 

e-Cognition Developer 8.1 was used to define the land objects. The first step was to 

merge the edge detection result with the original image and then apply the multi 

resolution segmentation with a scale to define the objects boundary. After applying the 

above steps Rule Based Algorithms are written in e-Cognition which is based on the 

Feature Selection. The five classes of Forest, River, Roads, Agriculture Fields and 

Buildings have the following results. 

 
Figure 3.15a: Forest extraction - Object with Brightness<60, Assign Class=Forest 
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Figure 3.15b: River extraction - (a) Object with Brightness value- 132<Brightness<138 

Assign Class=River ( b). River object with Standard Deviation (S.D)> 30 Marked 

Unclassified   

 
Figure 3.15c: Road extraction - (a) Object with Elliptical Fit < 0.1 Assign Class=Roads,  

(b). Merge Road Object and Road with area < 11000 Pixel Marked as Unclassified 

 

 
Figure 3.16d: Agricultural field extraction - (a). Unclassified Object with Brightness < 

175 and S.D. < 30 Assign Class=Agriculture Fields, (b). Forest Object with Asymmetry 

> 0.89 Assign Class=Agriculture Fields 
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Figure 3.15e: Building extraction – (a) Feature Selection Assign Class=Buildings, (b). 

Merge Object assigned as Buildings and Forest. Source Fig 23a-23e: Singh, (2015) 

 

The accuracy assessment was done with the error matrix and Overall Classification 

Accuracy of 94% and Kappa coefficient of 0.919 were realized.  

Ronczyk, (2012): Object-based Classification of Urban Land Cover Extraction 

Using High Spatial Resolution Imagery 

Object-based Classification of Urban Land Cover Extraction using High Spatial 

Resolution Imagery was carried out in Székesfehérvár, a city situated in central Hungary 

and one of the largest settlements in Transdanubia. The city and its surroundings were 

the most dynamically growing regions of Hungary in the 1990's. 

The study used the following remote sensing data:  

• WorldView2 satellite image (2011)  

• Airborne photographs (2008, 2009)  

• LIDAR data (2008) 

Table3.6:Data details (WorldView2, Aiborne photographs and LIDAR datasets),  
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Source: Ronczyk, (2012) 

 

Other datasets used in addition are other data sources used for investigation: Field 

reference data (GPS), Vector data from Cadastre maps, Attribute data gained from the 

municipalities and other statistical data. 

The main objective of this study was to develop a methodology to generate land cover 

classes of urban area from high spatial resolution satellite images through object-based 

classification. eCognition software was used not only the spectral information but also 

the shape, compactness and other parameters can be employed to extract objects. To 

extract buildings a combination of spectral (WorldView2) and LIDAR data contains 

elevation information were applied an object-oriented approach, which allowed context 

consideration during the classification process was used. 

For the classification in this study only the two generalized first and second levels were 

used. The rule set (algorithm) was developed to identify land covers of urban area using 

the 2 m spatial resolution WorldView2 image.  The process considered spectral value 

and spatial characteristics of objects and it is included the following steps:  

i. Segmentation  
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ii. Feature extraction  

iii. Object classification  

iv. Refinement of classification based on spectral value and spatial characteristics of 

objects  

v. Final identification of categories  

vi. Accuracy assessment 

The algorithm spectral difference was used to refine existing segmentation results by 

merging spectrally similar image objects. The diagram 3.16 below is the segmentation 

scheme.    

 
Figure 3.16: Segmentation scheme. Source: Ronczyk, (2012) 

The following list of features was used during the classification process: 

 

Table 3.7: List of features used 

 
Source: Ronczyk, (2012) 
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The classification of urban areas was done in two levels. In the first one the main 

categories of land cover were determined by taking advantage of spectral properties of 

WorldView2 image. In the second level during the building extraction the elevation data 

was used as the most relevant characteristic of buildings. Additionally the spectral and 

context features were employed to clarify the classification (see table) 

In the result, the outcome of our research confirms the original assumption that 

additional data like LIDAR can effectively improve the classification result of VHR 

data. 

Table 3.8:Result of classification. 

 
Source: Ronczyk, (2012) 

The accuracy assessment shows that over all accuracy for worldview2 based 

classification and worldview2 and LiDAR based classification were 71% and 82% 

respectively. Urban ecosystem presents a wide structural diversity and consequently 

spectral variability therefore the process of classification needs not only spectral 

information but other information like context or geometry as well. 
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Rampi, (2014): Wetland Mapping in the Upper Midwest United States: An Object 

Based Approach Integrating LiDAR and Imagery Data. 

This study investigated the effectiveness of using high resolution data to map wetlands 

in three ecoregions in Minnesota. Two data sources were used to investigate the 

effectiveness of integrating multiple datasets to map wetlands in the three study areas. 

These sources included LiDAR data and orthorectified digital aerial photography (0.5 

m). The half-meter orthorectified imagery used for Swan Lake and the Minnesota River 

while was collected in 2011 while another half meter orthorectified imagery collected in 

2009 was used for the Thompson Reservoir St. Louis River watershed. 

The wetlands were mapped by using an OBIA approach through the creation of rule sets 

for each study area. The software package Definiens eCognition Developer version 8.8.0 

was used to develop the three rule sets. The first subsection of the methods used in this 

study describes the data preparation performed for each study area. The next subsection 

explains the design of the rule set created for each study area. Finally, the last subsection 

addresses the accuracy assessment procedures used to evaluate results in each study 

area. Before the creation of the three rule set, four data preparation we performed. For 

the LiDAR, the following raster layers were created: a digital surface model (DSM), a 

LiDAR intensity layer, the compound topographic index (CTI). These raster layers were 

chosen because of their topographic information, which is useful to differentiate wetland 

from other cover classes and were done for each study area. 

Second, after calculating all the LiDAR layers, they used the MosaicPro tool from the 

ERDAS Image 2011 software to mosaic the orthorectified aerial imagery for each study 
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area. Third, once all the previous LiDAR and imagery layers were prepared, they used a 

watershed boundary shapefile layer for each study area to subset all the raster layers in 

ERDAS Image version 2011. Finally, the researcher produced a tile generation for each 

study area. The tile generation was carried out in ERDAS Image version 2011, using the 

Dice tool with the following parameters: tile size of 3,000 m × 3,000 m and an overlap 

of 300m between adjacent tiles on all four sides. Each study area had a tile stack of four 

LiDAR product layers (DEM, DSM, CTI, and Intensity) and four bands of imagery 

layers. 

Each rule set consisted of four main components: (a) image processing, (b) segmentation 

and classification, (c) export operation, and (d) cleanup operation. In the image 

processing stage, nDSM was calculated as well as the computation of the Green Ratio 

Vegetation Index (GRVI) using the eCognition developer software tools for object 

features. In the segmentation and classification phase, preliminary objects were created 

using multi resolution segmentation algorithm. The following parameter values were 

created: scale 30, shape 0.3, and compactness 0.5. A weight value of 1 was given to the 

three visible optical bands and a weight value of 2 to the NIR band. The NIR band was 

given a higher weight value because of its ability to spectrally separate potential non-

water objects from water objects. The second step was to refine those objects by 

applying a spectral difference segmentation algorithm, based on a maximum spectral 

difference value. The third step was to classify the preliminary objects into temporary 

classes, including wet versus dry, bright versus dark, and short versus tall. We used the 

following attributes of each dataset to create the temporary classes: min, max, and mean 
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threshold values of the CTI, nDSM, intensity, NIR band, imagery brightness, and GRVI. 

The following threshold values: NIR ≤45, GRVI ≤0.9, and CTI ≥10.78 were used. These 

threshold parameters were determined through a series of trial-and error efforts in 

combination with photo-interpretation to determine whether different ―wet classes‖ 

(potential wetland classes) across the three different ecoregions were sufficiently 

separated from dry classes (potential non-wetland classes). 

The imagery brightness, intensity, and GRVI layer were used to classify bright versus 

dark objects using the spectral difference segmentation algorithm with a maximum 

spectral difference parameter of 12. The nDSM layer was used to separate short versus 

tall objects using the contrast split segmentation algorithm with the following 

parameters: a minimum threshold value of 2, a max threshold value of 5, and a step size 

of 1. Finally, they used contextual information from the different temporary classes to 

achieve the final desired classes and they included wetlands, agriculture, forest, and 

urban classes. The following accuracy assessment estimators were computed in ERDAS 

Imagine for each study area: overall accuracies, producer‘s accuracy, user‘s accuracy, 

and kappa coefficient. 

Overall accuracy results for the OBIA classification were consistently high (90 to 93 

percent), throughout the three study areas as can be seen in the following tables. 
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Table3.9a: OBIA classification error matrix for Minnesota river-headwater study area.  

 
Source: Rampi, (2014) 

 

 

Table 3.9b: OBIA classification error matrix for swan lake study area. 

 
Source: Rampi, (2014) 

 

 

Table 3.9c:OBIA classification error matrix for Thompson reservoir St. Louis River 

study area. 

 
Source: Rampi, (2014) 

For Minnesota River-Headwater study area using the OBIA method the overall accuracy 

was 90 percent, with a kappa score of 0.84 and low errors of commission and omission. 
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For the Swan Lake study area the overall accuracy was 93 percent with a kappa score of 

0.90, and with low errors of commission and omissions for the majority of the classes. 

For the Thompson Reservoir St. Louis River study area the overall accuracy was 91 

percent with a kappa value of 0.87, and with low errors of commission and omissions for 

all the classes. 

The results of this study reinforced previous findings regarding the value and importance 

of high resolution data to improve wetland classification accuracy. Previous studies have 

concluded that high resolution data including LiDAR, aerial, and satellite imagery are 

very advantageous to distinguish between wetlands and non-wetlands classes. This study 

demonstrated that an OBIA approach is more suitable than traditional pixel-based 

methods to take advantage of the high resolution data available to map wetlands 

(Dechka et al., 2002; Halabisky et al., 2011; Knight et al., 2013; Maxa and Bolstad, 

2009). The OBIA approach used in this study incorporated contextual, spectral, and 

shape information that came from homogenous objects instead of pixel units. 

Gilani, et al (2015):Fusion of Lidar Data and Multispectral Imagery for Effective 

Building Detection Based on Graph and Connected Component Analysis 

The study is in Australia and the dataset covers two urban areas in Queensland, 

Australia: Aitkenvale (AV) and Hervey Bay (HB). The AV data set has a point density 

of 29 points/m2 and comprises of a scene that covers an area of 214m x 159m. This 

scene contains 63 buildings, out of those four are between 4 to 5 m2 and ten are between 

5 to 10 m2 in area. The HB data set has one scene and covers 108m x 104 m and 

contains 25 buildings. 
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The research present a graph based algorithm, which combines multispectral imagery 

and airborne LiDAR information to completely delineate the building boundaries in 

urban and densely vegetated area. 

The methodology is described in six different steps as can be seen from the workflow 

below. The first step is a data preprocessing phase where they separate LiDAR points 

cloud, generate DEM, compute image entropy, NDVI and extract image line segments. 

The proposed method first divides the input LiDAR data into ground and non-ground 

points.  

 
Figure 3.17: Work flow of proposed building detection technique. Source: Gilani, (2015) 

The extracted image lines are classified into several classes e.g. ground, ridge, and edge. 

The line segments that belong to ‗edge‗ and ‗ridge‗ classes are of interest because these 

lines are either close or fall within the area of elevated objects. The second phase begins 

with the process of Connected Component Analysis (CCA) where the number of objects 
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present in the test scene is identified followed by initial boundary detection and 

labelling. Additionally, a graph from the connected components is generated, where each 

black pixel corresponds to a node. An edge of a unit distance is defined between a black 

pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to 

a neighbouring white pixel, if any. This phenomenon produces a disconnected 

components graph, where each component represents a prospective building or dense 

vegetation (a contiguous block of black pixels from the primary mask). In the third 

phase, a clustering process clusters the segmented lines, extracted from multispectral 

imagery, around the graph components, if possible. In the fourth step, NDVI, image 

entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and 

isolated building's occluded parts. Finally, the initially extracted building boundary is 

extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate the 

building and to maximise the boundary reach towards building edges.  

The proposed technique is evaluated using two Australian data sets: Aitkenvale and 

Hervey Bay, for object-based and pixel-based completeness, correctness, and quality. 

The automatic extraction of accurate building boundaries is important geo-spatial 

information that is indispensable for several applications. The most challenging factor 

confronted in boundary delineation is building shape variability and surrounding 

environment complexity. In order to deal with various building types, this research 

presents a new method for automatic building detection through an effective integration 

of LiDAR data and multispectral imagery. The technique used here detected buildings 

larger than 50m
2 

and 10m
2 

in the Aitkenvale site with 100% and 91% accuracy, 
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respectively, while in the Hervey Bay site it performs better with 100% for buildings 

larger than 10m
2 
in area. 

3.2.2 Application of VHR and LiDAR in Building Extraction 

Lee (2015):Object-oriented Classification of Urban Areas Using Lidar and Aerial 

Images 

In this paper, object-based classification of urban areas is used based on a combination 

of information from LiDAR and aerial images. The study area is Ocean City, located in 

the northern part of the coastal area of Maryland, U.S. This varied terrain is suitable for 

classification combining LiDAR and aerial imagery. 

The dataset consists of stereo images and LiDAR data. An RC20 camera was used to 

acquire panchromatic aerial images; the camera model is UA9II 3043 and its calibrated 

focal length is 152.74 mm. The Airborne Topographic Mapper (ATM) laser system was 

used to acquire digital elevation data. The vertical accuracy of better than 10cm has been 

achieved.  

The proposed method is based on integrating information from LiDAR and aerial 

images for object-oriented classification of urban areas. MATLAB was used for local 

maxima filtering and for the conversion from point data to images. ERDAS IMAGINE 

was used for the coordinate transformation and multiresolution segmentation to 

implement object-oriented classification. The method follows five major steps. First, 

LiDAR points on the building are extracted using the local maxima filter. Second, the 

building segmentation data from the LiDAR points are converted into images. Third, the 
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coordinate systems are unified. Fourth, multi-resolution segmentation and classification 

are implemented. The final step is accuracy assessment. 

To provide information on the building location, LiDAR points on the building should 

be extracted from original LiDAR data. The local maxima filter extracts points over a 

threshold given by a minimum height plus a threshold value. In this paper, the threshold 

value was 6m, which is roughly equivalent to a two-story building or house. The size of 

the filter was 30m by 30m, since this exceeds the largest building and is an appropriate 

size for detecting only points on the building. 

Figure shows the classification of an aerial image and building segmentation data from 

LiDAR in the residential area.    

 
Figure3.18: Classification of an aerial image and building segmentation data from lidar 

in the residential area. Source: Won Hee (2015) 

The overall accuracies reach 96.37% and 97.54% in the commercial and residential 

areas, respectively. The overall accuracies of the pixel based classification using only 

aerial imagery are 76.47% and 71.15% in the commercial and residential areas, 

respectively. Overall accuracy has been improved by combining aerial image with 
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LiDAR. LiDAR data provides supplementary data to the aerial image for the 

information about building areas. LiDAR offers accurate position and height 

information, but includes less information on the features‘ geometrical shapes. Thus, the 

extraction of building points was used to provide supplementary data on the features‘ 

geometrical shapes in this study. 

Tee, (2004):Object-Based Building Detection from Lidar Data and High Resolution 

Satellite Imagery 

This a study carried out for building detection using OBIA to classify LiDAR data and 

HR image. It was carried out in an area in Hsin-Chu Science-based Industrial Park of 

north Taiwan. LIDAR data acquired by Leica ALS 40 and QuickBird satellite images. 

The ground resolutions of QuickBird panchromatic and multispectral satellite image are 

0.7m and 2.8m, respectively. 

This work is composed of two major parts and these are Segmentation and 

Classification. The first step in the methodology was the data preprocessing which was 

carried out in two steps, which are interpolation of LIDAR data and space registration. 

The triangulated irregular network (TIN) approach was applied to rasterize the LiDAR 

data to DSM and DTM both with a pixel size of 0.5m. Space registration was done to 

establish the spatial relationship between the LIDAR data and the satellite images. 

Ground control points were used to reconstruct the mathematical model for space 

registration. This made the two data to be co-registered in the same georeferenced 

system. 
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For the building detection is to extract the building regions, two steps were employed – 

the region based segmentation and the object based classification as can be seen in the 

flowchart below.  

 

Figure 3.19: Flowchart of building detection. Source: Tee, (2004) 

After the segmentation, the next step was object based classification. At this level, all 

regions separated during segmentation were candidates for classification. An object-

based classification considering the characteristics of elevation, spectral, texture, 

roughness, and shape information is performed to detect the building regions. 

i. The elevation was achieved by subtracting the DTM from the DSM to get nDSM 

(Normalised DSM) which describes the height information above ground. This enabled 

the researcher to set elevation threshold to separate objects (like trees and buildings) 

above ground from the ground. 
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ii. Spectral information comes from the multispectral data which includes blue, green, 

red, and near infrared bands. The NIR is useful in separating vegetation from non-

vegetation using NDVI. 

iii. Texture was used to separate the building and vegetation where the objects have 

similar spectral response. The Grey Level Co-occurrence Matrix (GLCM) for texture 

analysis. GLCM is a matrix of relative frequencies for pixel values occur in neighboring 

processing windows.  The researcher selected the entropy and homogeneity to compute 

the co-occurrence probability. 

iv. Roughness of the LiDAR was also used to classify the vegetation regions and non-

vegetation ones because the surface roughness is similar to the texture information of 

spectral data (Mass, 1999). 

v. Shape attribute includes size and length-to-width ratio so an area attribute was used to 

filter out those small objects. 

The result showed that general land cover classification was 92% and when only 

building detection was considered, the accuracy result was 89%. The undetected 

buildings were small ones and that is because they are low and therefore have less 

texture information. The study recommended that further investigation of small 

buildings detection is needed. 

Uzar, (2013):Automatic Building Extraction Using Lidar and Aerial Photographs 

This is a study that presents an automatic building extraction approach using LiDAR 

data and aerial photographs from a multi-sensor system. It is a suburban neighborhood 
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located in the northwest of the city of San Bernardino, California, United States of 

America. The study area was chosen because the data set was collected simultaneously 

with the multi-sensor system onboard the same airplane and contained different types of 

land cover within a small area, 

The input information consists of a DSM, an intensity image and a color infrared 

orthoimage of the study area generated with the data set obtained from LiDAR, 

GPS/IMU and a digital camera on the same platform. The NDVI, Slope and Hough 

images were used in the segmentation and classification steps. A gridded DSM with a 

0.2-m-resolution intensity image with a ground sampling distance (GSD) of 0.2m and an 

orthoimage with a GSD of 0.2m was produced using the data set from the multi-sensor 

system. Table below shows a summary of the dataset. 

Table 3.10: Dataset details 

 

 
Source: Uzar, (2013) 

The object-oriented image analysis method used in this research has two major steps: 

segmentation and classification. The determined object primitives (such as spectral 

characteristics, scale parameter, shape, completeness, brightness, contrast difference and 

statistical parameters) in the segmentation were constantly altered in the analysis and 

classification steps until they became the target object class.  
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The segmentation, analysis and classification steps of the proposed object-oriented 

image analysis method included subsequent steps allowing the refinement or 

improvement of the segmentation locally for a specific class, such as building, ground or 

vegetation. The flow diagram below shows the segmentation being alternated iteratively 

between local segmentation modifications on the one hand and local object analysis and 

classification on the other hand. The rule-based classification was carried out because it 

offers the possibility to automate the entire classification process with decision rules 

based on determined object primitives combined with fuzzy logic operators at different 

levels of analysis. The entire object-oriented image analysis for automatic building 

extraction was performed in Definiens eCognition Developer 8.64 with defined rule sets.    

 
Figure 3.20: Flowchart for Methodology. Source: Uzar, (2013) 

For the generation of classes, a hierarchical classification method was developed for the 

proposed automatic building extraction. Instead of focusing on building extraction at an 

early stage of the classification steps, a classification of the data in the following 

vegetation, ground and building classes was first performed. Building regions were then 
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derived from the classification results. Figure 3.21 is the hierarchical classification 

scheme. 

 
Figure 3.21: The hierarchical classification scheme, Uzar, (2013) 

NDVI was used to differentiate vegetation with set out threshold, while the ground and 

non-ground classes were differentiated using the DSM of the study area, which 

contained the height information of the buildings and other objects elevated from the 

bare ground. The building extraction had five major steps:  

i. nDSM was created to exclude the influence of topography using the difference 

between the DSM of the non-ground class and the average point heights in the ground 

class. 

ii. Second, objects in the nDSM with heights above 1 m were classified as initial 

building 1 

iii. Third, the multi-resolution segmentation was performed using the initial building 1 

class, the orthoimage and the generated Hough image. The parameters of scale, shape, 

compactness, smoothness and color were taken into consideration in multi-resolution 

segmentation. 
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iv. Fourth, the contrast split segmentation was utilized using the intensity image 

generated from the LiDAR data, and the initial building 3 class was generated as a result 

of the classification with the determined building intensity threshold. 

v. Finally, the building class was acquired after morphological operations (opening and 

closing), and the non-building class was renamed as the other class.   

The two performance accuracy methods used produced the following results: Error 

Matrix had an overall accuracy of 93% and Kappa values of 88% were obtained as a 

result of the performance evaluation. The second method was the completeness and 

correctness analyses of the automatic extracted buildings, which showed 95.02% 

completeness and 96.73% correctness. 

Ramesh, (2009): High Resolution Satellite Images and Lidar Data for Small-Area 

Building Extraction and Population Estimation 

This is a 2009 Master‘s thesis using high resolution satellite images and LiDAR data for 

small-area building extraction and population estimation. The study area is located in the 

eastern part of the city of Denton, Texas. 

The IKONOS image data for this study was acquired on January 3rd 2000, including a 

1-m resolution panchromatic band and four 4-m resolution multispectral bands. LiDAR 

data used for this study was acquired on September 4th, 2001. LiDAR Data was 

collected during leaf-on season and was post-processed to a point spacing of 3-5 meters. 

LiDAR data were used to create a DEM and a Digital Surface Model (DSM), which 
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allows for creation of a Normalized Digital Surface Model (nDSM) by subtracting DEM 

from DSM. 

The six major steps involved in the process of estimating population are: 

(1) Preprocessing LiDAR data  

(2) Preprocessing IKONOS data  

(3) Object-based classification and extraction of residential buildings  

(4) Deriving population indicators, volume of the buildings, area of the buildings and the 

building count  

(5) Regression modeling and  

(6) Accuracy assessment 

This can be seen in the methodology flowchart below. 

 
Figure3.22: Flowchart of Methodology. Source: Ramesh, (2009) 
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The pre-processing of the LiDAR data involved the generation of the DEM and the 

DSM from the acquired bare earth and reflected LiDAR points. The 29 tiles of LiDAR 

DEMs and DSMs covering the study area are imported to ArcGIS and a point shape file 

is created. Inverse Distance Weight (IDW) is used to interpolate the point shape file to 

create raster and all 29 individual tile raster are mosaicked to create respective DEM and 

DSM raster. 

The acquired IKONOS multispectral data has 4- meter spatial resolution while the 

panchromatic image is a single band image with 1 meter spatial resolution. As a 

preliminary processing, IKONOS MS image is pan sharpened using IHS fusion 

technique using ESRI‘s ArcGIS software tool to produce MS image that has the 

resolution of PAN image. 

eCognition software was employed in this study to classify high resolution multispectral 

data, IKONOS with LiDAR elevation data as an ancillary input. This research work 

aims at attaining higher classification accuracy thereby increasing the accuracy of 

population estimation model. Two classes, buildings and non-Buildings were identified 

using various shape indices mentioned below and general spectral characteristics. 

Using multi-resolution segmentation, the image is divided into meaningful objects. Each 

object is then studied for its spectral and shape characteristics to distinguish between the 

two major classes - buildings and non-Buildings. Trees and other grasslands are 

removed by using its high vegetative index. Barren lands and other short shrubs are 

removed from its very low height property. Various shape indices are used to distinguish 

between building and non-building features. Building objects have certain unique 

characteristics which help us define such indicator parameters. The image objects for 
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residential buildings are extracted and exported to a vector shapefile. Using ESRI‘s 

ArcGIS software, 30 different building shapefiles obtained from eCognition are merged 

to a single polygon file that has the residential building information for the entire study 

area. 

In this study, the whole study area is divided into 30 tiles to process the data faster and 

also to define more specific shape indices. As the study area has mixed topography from 

low to high density residences and vast farmlands, specifying local height thresholds and 

shape index thresholds enables to extract buildings more accurately. 

 

Alhaddad, (2008): Satellite Imagery and Lidar Data for Efficiently Describing 

Structures and Densities in Residential Urban Land Uses Classification 

This paper examines the utility of high-resolution remote sensing image and airborne 

laser altimetry data for mapping residential land uses within the spatial limits of 

Barcelona City Council (Spain). The chosen area is Barcelona, which is the regional 

capital of Catalonia, lying in the north-east of Spain. This study will examine in a simple 

way the relation between building site coverage ratio (BCR) and floor area ratio (FAR) 

to estimate building density of a city from two aspects, the buildings stretching on the 

surface and growing along the third dimension. 

Two Remote sensing data sets were used for the study. One is subset of an SPOT5 

scene, recorded on 2004. It is a fusion product of the four multispectral bands (10m 

spatial resolution) and the panchromatic band (2.5m spatial resolution), resulting in four 

multispectral ban with 2.5m spatial resolution. The multispectral bands cover blue, 

green, red and part of the near infrared of the electromagnetic spectrum. The second data 
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set is from an airborne laser scanner (ALS), acquired on 23rd July 2002, at flying height 

above ground of 1325m and average point density of 1 point/m2. Two models were 

extracted from this – the first is digital surface model (nDSM), containing height 

information above ground and the other is a different model between first and last pulses 

(∆HFL), which has a height of zero for sealed areas and height similar to that of the 

nDSM in green areas, thus aiding the identification of trees (Kressler, Steinnocher, 

2006). 

In the methodology, pixel-based approach as implemented in ENVI 4.2 was used for the 

classification of the satellite image. This was used to identify standing areas of 

buildings. The next was to use airborne laser scanner (ALS) to calculate the building 

heights. The results of the classification were eleven classes mapping the urban 

morphology – Residential, Industrial, Streets, Forest, Green Open, Irrigated fields, Dry 

Lands, Shallow water, Deep water and Shadow. 

Here LiDAR provides the opportunity to identify land use types such as roads and 

buildings with high degree of accuracy. The nDSM information greatly improves the 

differentiation between roads and buildings. A correlation of LiDAR with corresponding 

building height is used to assess building height classes. Nine different height classes (1-

3, 3-6… 15 and more floors) were derived. 

Both the BCR and the FAR results in a local distribution of building density are shown 

in Figures 8 and 9. Diagram 1 presents the statistical results of the FAR and BCR based 

on the entire grid of all the cells in the selected study area. The results also indicate that 

the variation of BCR is more than that of FAR. The Diagram shows that 90% of all cells 

have FAR value less than 0.0062 (H < 50m), while more than 76% of the cells are 
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between 0.6 and 1 (F between 60m2 and 100m2) for BCR. New development within 

existing and already developed urban areas of a city generally has a higher BCR and 

lower FAR. 

 
Figure3.23a: 3D simulation illustrates the frequency distributions for BCR for all cells 

grid inside the sample area. Source: Alhaddad, (2008) 

 

Figure3.23b: 3D simulation illustrates the frequency distributions for FAR for all cells 

grid inside the sample area. Source: Alhaddad, (2008) 

 

 

Figure 3.24: Cells gave unique serial number; the diagram presents BCR and FAR 

relation based on entire cells.Source: Alhaddad, (2008) 
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In conclusion, the use of LiDAR and pansharpened SPOT data sets allows an easy 

separation of the basic land cover types present in the study area. LiDAR data are 

especially beneficial for the separation of flat sealed areas from buildings, while optical 

data allows a good separation of vegetation and seal areas, then the integration of the 

classification results with the information provided by LiDAR to extract the building 

form to be adopted to obtain the BCR with high accuracy results. 

Rahman, (2013): Extraction of Urban Building Heights from Lidar Data: An 

Integrated Remote Sensing and Gis Approach 

In this paper, a combination of IKONOS and LiDAR data is used and processed through 

integrated remote sensing-GIS based method to extract individual building heights in the 

urban central part of Norman, Oklahoma. This area was chosen because it contains 

various types of commercial and residential buildings with variable heights and ages 

along with diverse features. 

For this study, two separate data sets were used. First, a LiDAR data was obtained freely 

from the City of Norman‘s GIS Department. Using the dataset, a digital surface model 

(DSM) representing elevations of trees, buildings, and other surface features was created 

in ArcGIS v. 9.3 by using the inverse distance weight (IDW) interpolation technique 

with grid cell size of 0.3 m on the first return points received by the LiDAR sensor. 

Along with the LiDAR data, Norman‘s GIS Department also provided a digital elevation 

model (DEM). By calculating the differences between the DEM and DSM, a normalized 

digital surface model (nDSM) showing the heights of buildings and other features were 
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also created. Secondly, a high resolution IKONOS image provided by the GeoEye 

foundation was also used in the study. Table 3.11 below is the characteristics of the data. 

Table3.11: Characteristics of the dataSource: Rahman, (2013) 

 
Source: Rahman, (2013) 

Using the IKONOS image and the SPEAR Vegetation Delineation tool of ENVI v. 4.8 

image processing software, the pixels containing trees and vegetation were first detected 

and separated. This was done to be able to extract the trees and their heights. The 

SPEAR Vegetation tool uses normalised difference vegetation index (NDVI) to find 

pixels containing trees and vegetation. Pixels containing healthy vegetation will result in 

high NDVI values closer to 1 while not healthy vegetation will yield lower NDVI 

values. Negative NDVI values will indicate no vegetation. In this study, pixels with 

NDVI values exceeding 0.249 were considered to contain trees and vegetation. These 

same areas/pixels in the nDSM data containing the vegetation were then subtracted from 

the nDSM resulting in the nDSM having only residential and commercial facilities. 

The nDSM was then exported into an ArcGIS v. 9.3 shapefile containing polygon 

outlines of the buildings. Field survey showed that many buildings were more than 2m 

high and because many polygons which were not vegetation, residential or commercial 

buildings were created in the analysis, they needed to be separated and excluded from 

the analysis. The zonal statistics function of ArcGIS (to calculate the minimum and 

maximum heights of the polygons from the nDSM) was used and polygons with 
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maximum heights below 2m were eliminated. The areas of each polygon were also 

calculated and any polygon with an area below 21m
2
 was eliminated from the analysis as 

well. This final step resulted in polygon outlines corresponding to individual houses and 

buildings along with their minimum, maximum, and average heights from the nDSM 

data set. 

The accuracy of this methodology was assessed with a random sample of 100 buildings. 

Their heights were measured through field survey and compared with the results from 

the LiDAR data in order to assess the accuracy of heights obtained by the LiDAR data. 

A GIS shapefile created in 2012 with the building outlines were used as reference and 

they were compared with the outlines generated by the proposed building extraction 

method. The quality assessment result revealed that 75.32% of the buildings were 

detected and the areas of 68% of them were determined accurately. This moderate result 

can be attributed to the branches of trees surrounding the buildings and houses. The 

study area contains wide variety of urban trees and vegetation with different shapes and 

sizes. To overcome this issue and improve the detection of individual buildings in 

building blocks, this study recommends that future studies should be carried out using 

LiDAR data along with high resolution satellite imagery collected over the area during 

winter leaf-off condition. 

Demir, (2012): Extraction of Buildings and Trees Using Images and Lidar Data 

This work focuses on the 3D building roof modeling and the test site is in Vaihingen, 

Germany. The dataset include DMC digital images with NIR, R, G, B channels and raw 

LiDAR point cloud. DMC images have 8 cm GSD. LiDAR points have a density of 
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5pts/m2. After generation of the DTM and subtracting it from the DSM, we get the 

normalized DSM (nDSM). Using the nDSM and a threshold of 1.5m, we get the above-

ground objects. 

 

Figure 3.25: Flowchart of the building detection. Source: Demir, (2012) 

In the first approach which is multispectral classification, a pixel-based supervised 

classification is used to detect buildings. The available channels are NIR (Near 

InfraRed), R (red), G (green), B (blue). The used classes are buildings, bare ground, 

roads, shadows, grass and trees. Principal components (PC), NDVI and saturation are 

added channels. NIR, R, PC1 (1st PC), NDVI, saturation are selected using divergence 

analysis to do a maximum likelihood classification using ERDAS software. Using the 

height information from the nDSM, the mixed building and ground class could be 

separated. There is a 94% correct classification in this method. 

The second one uses blobs and NDVI for classification. ISODATA clustering of the 

NDVI image extracts the vegetation and no vegetation regions. Finally, the intersection 

of no vegetation regions and blobs extracts the buildings. The correctness of the 

buildings is calculated as 91%. 



146 
 

The third approach is the filtering of LiDAR point cloud and NDVI for the 

classification. The LiDAR DTM (non-interpolated) is used to detect the above-ground 

objects. The LiDAR DTM is derived from the raw LiDAR point cloud by using the 

SCOP++ LiDAR package. The buildings are voids and the trees have low density (< 2 

points / m2) in the LiDAR DTM, thus buildings and trees are estimated. Using the 

vegetation class from the NDVI classification as a mask, removes trees, while the 

remaining objects (buildings) are deleted, if their area is smaller than 25m2. The 

correctness of the buildings is 81 %. 

The fourth approach detects trees from raw LiDAR point cloud. The detection of the 

trees is not always convenient when using image data, because roof surfaces may be 

covered by trees or may contain a green surface. Then, these surfaces are detected as 

vegetation using any image classification process. Usage of the LiDAR data avoids this 

kind of problems since the detection is based on the geometry of the objects. In the 

LiDAR data, the vertical point density is generally much higher at trees than at open 

terrain or buildings. We start from the above-ground objects, which were detected with 

the LiDAR data filtering of section in the last method. Then, the RANSAC method 

(Schnabel et al., 2007) is applied on all above-ground points to find planar surfaces, 

which belong to the buildings. This method has correctness of 80%. First, dilation is 

applied on the detected buildings to include most LiDAR points, which belong to 

buildings and the dilation threshold is set as 2m. 
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3.2.3 Application of VHR and LiDAR in Roads Extraction 

Rahimi, (2015): Automatic Road Extraction Based on Integration of High 

Resolution Lidar and Aerial Imagery 

This paper proposesa new unsupervised fully-automatic road extraction method, based 

on the integration of the high resolution LiDAR and aerial images of a scene using 

Principal Component Analysis (PCA). The researcher used images of an area in 

Zeebruges, Belgium, which were acquired on March 13th, 2011. They used its high 

resolution LiDAR and RGB aerial images. The LiDAR image has a spatial resolution of 

10 cm, while the aerial image‘s spatial resolution is 5 cm. Therefore, they down sampled 

the aerial image to have the same resolution as the LiDAR image. 

This method discriminates the existing roads in a scene; and then precisely delineates 

them. Hough transform is then applied to the integrated information to extract straight 

lines; which are further used to segment the scene and discriminate the existing roads. 

The flow chart below explains the method. 

 
Figure3.26: The method showing the process within the green rectangle is repeated for 

every road segment. Source: Rahimi, (2015) 
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As a first step, in order to integrate the height and color information, we use the PCA 

(Pearson, 1901, Hotelling, 1933) method and convert the 4 information bands (i.e., R, G, 

B, height)into 4 principal components. Among the resulting components, we select the 

one which provides the largest distinction between the roads and their neighboring 

objects. In the next step, a Hough transform (Hough, 1962) is applied to the selected 

component in order to extract straight lines. The lines are then intersected to segment the 

scene into different regions. Using the LiDAR and the aerial images, we verify whether 

the segments contain road parts, and discard the ones which do not. Since the roads‘ 

color and height are usually more homogeneous than their surrounding objects (e.g. 

Buildings), we suppose that the pixel value deviation of the segments containing road 

parts is smaller than those of the other segments. Thus, we discard the segments with the 

pixel value deviations larger than a certain threshold. Additionally, using the LiDAR 

image, the segments with average height values larger than a certain threshold are 

removed. 

After extracting the road segments, we merge the segments which belong to the same 

road. The points within each segment are then projected on a perpendicular plane to the 

segment‘s main orientation, so that the majority of the points are able to generate the 

road‘s profile. As a final step, the edges at the round corners, which usually occur at the 

road intersections, are refined. 

As an integration technique, PCA is used on the 4 available information bands, namely 

R, G, B, and height. The most road discriminating principal component is then used in 

Hough transform to extract the possible locations of the roads as straight lines. Using 



149 
 

these lines, the scene is segmented into various regions. The segments containing a road 

part are then detected and merged to shape the road network in the scene. The roads are 

then delineated using a projection-based method, and their round corners are further 

refined. For a quantitative evaluation, the extracted roads are compared to ground truth 

data using RMS and angular displacement measures. Experimental results demonstrate 

that our proposed method detects and delineates the roads precisely in a given scene. 

Hu, (2004):Automatic Road Extraction from Dense Urban Area by Integrated 

Processing of High Resolution Imagery and Lidar Data 

This paper focuses on the integrated processing of high resolution imagery and LIDAR 

(Light Detection and Ranging) data for automatic extraction of grid structured urban 

road network. In early 2002, Optech International, Toronto completed a flight mission of 

acquiring the LiDAR data of Toronto urban area using its ATLM 3200. The LiDAR 

dataset provided is around downtown region. 

The test data set is color ortho-imagery with 0.5 m resolution and LiDAR data of 

Toronto downtown area. The first and last returns LiDAR range and intensity data were 

collected. The dataset contains about 10.6 million points and has a density of about 1.1 

points/m2. The DTM was generated using the last-return LiDAR range data, and also 

obtain the height data by subtracting the DTM from the range data. The high resolution 

imagery is obtained from ortho-rectified aerial image of the same area. The image 

resolution is 0.5m. To do integrating processing, it is resampled into 1m resolution and 

is manually registered with the LiDAR data in geometry. 
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Figure 3.27: Workflow for the road extraction. Source: Hu, (2004) 

Segmentation of LiDAR data and high resolution imagery: In reflectivity, the spectral 

signature of asphalt roads significantly differs from vegetation and most construction 

materials. The reflectivity rate of asphalt with pebbles is 17% for the infrared laser, and 

no other major materials have a close reflectivity rate. In height, pavements are attached 

to the bare surface and appear as smooth ribbons separating the street blocks in a city.   

Therefore, integrating intensity and height data may produce reliable road detection 

results. Using height information, the built-up areas with higher elevations than their 

surroundings will be safely removed; while using the (first-return) intensity information, 

the vegetated areas are easily removed. After segmentation of the LiDAR data, the 

possible road areas and other areas are converted to a binary image. Parking lots are kept 

because of same reflectance and low heights as roads, and bridges and viaducts are 

removed because of their large heights. 

From the true colour high resolution imagery, the grass lands and tree areas can be 

separated from the open areas. First, because the roads and parking areas are covered 

and coated by concrete or rainproof asphalt, the saturation of the pixels of the areas is 
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low while in the grass lands and tree areas it is high and the hue tends to be ‗green‘. So 

using a threshold the grass lands and tree areas can be separated from the low saturation 

areas. Subtracting the grass lands and tree areas, we can obtain the areas containing 

candidate road stripes and parking areas.    

Extract Road Stripes by Iterative Hough Transform:Modified Hough transfer method is 

used to directly detect the candidate stripes of the streets from the segmented LiDAR 

data – the binary image. Hough transformation is frequently used for extracting straight 

lines. 

Verification of road stripes and parking areas: The detected primary streets by Hough 

transform are possible streets and just straight line equations (parameters). To form a 

real street ‗grid‘, we should identify the candidates and remove some wrong segments. 

The first step is to overlay the straight lines onto the binary image. To verify a parking 

area, we employ the vehicle clue to confirm the area. The vehicles are extracted by a 

pixel based classification method. Some samples of vehicles are provided by manual 

digitization, and they are used for learning the pixel intensity value of the vehicles. In 

the study, the open areas contain roads and parking lots. We assume a region with nearly 

squared shape and big area has high possibility of being parking lots. A morphologic 

operation is applied to the binary image to detect the big open areas. Combining the 

analysis result of shape and vehicle clue from LiDAR data and the optical imagery, we 

compute the ‗score‘ of an open area of being a parking lot. The high score indicates the 

high possibility of being parking lot. By computing the length of the segment which 

goes through the parking area, the segments mostly lay in the parking areas are removed. 
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In conclusion, using LiDAR data, the difficulty of resolving the occlusion of roads in 

optical images is eliminated. It demonstrates the potential and power of using lidar data 

to extract information from complicated image scenes. To obtain more reliable results, 

image analysis (to detect contextual objects: grasslands, parking lots, vehicles etc.) for 

contextual information extraction is integrated into the whole procedure. It greatly 

improves the final results in correctness and accuracy. The work described in this paper 

clearly indicates that involving multiple source of information will definitely improve 

the extraction results in the complicated scene. 

Ural, (2015): Road and Roadside Feature Extraction Using Imagery and Lidar 

Data for Transportation Operation 

This studyestablished a framework that used data from multiple sources, including one-

foot resolution color infrared ortho-photos, airborne LiDAR point clouds, and existing 

spatially non-accurate ancillary road networks for road and roadside feature extraction. 

The study area selected for this work is the Union township, Clinton County, IN, USA. 

The data employed include one-foot resolution CIR (Color Infrared) orthophotos, 

LiDAR point clouds, and the LiDAR derived DEMs (Digital Elevation Model, bare 

ground model) at a resolution of five feet. They also generated a DSM (Digital Surface 

Model) and an nDSM (normalized DSM) using the LiDAR point clouds of the study 

area. They used the existing road network dataset acquired from INDOT (Indiana 

Department of Transformation) database to generate an approximate buffer around the 

road lines. 
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The methodology is laid out in the following workflow. First, there is a preprocessing 

step for preparing the datasets to be analyzed. Then, these datasets are employed in 

feature extraction, paved surface classification, medial axis extraction, paved surface 

reconstruction, and cross section information extraction processes. 

 

Figure 3.28: Flowchart of methodology. Source: Urala, (2015) 

They applied SVM (Support Vector Machine) classifiers as part of a pixel based 

approach for the classification of the paved surface. SVM classification creates a 

maximum-margin hyper-plane in a transformed input space and splits the classes by 

maximizing the distance to the nearest clean split samples. A very common 

misclassification that occurs while extracting the paved road surface by classifying CIR 

orthophotos is the classification of some of the buildings contagious to the roads due to 

their spectral similarity. A common alternative approach is to employ NDVI 

(Normalized Difference Vegetation Index) to mask the nDSM so that only high objects 

that are not vegetation remain to be used to filter the image classification results. 
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Classification results provide an irregularly shaped noisy raster sampling of the road 

surface. The road extent needs to be defined in order to determine the clear zones within 

which the features will be extracted; therefore the road has to be reconstructed. This was 

done through some morphological operations as well as cleaning and generalization. 

Cross-sections corresponding to the center of each center line segment based on the 

reconstructed paved road. The DEM was used to calculate the slope along the cross-

section lines. 

The first step in the filtering is the extraction of building and trees while the second 

filtering was for low points which were not considered as buildings. 3D airborne LiDAR 

point clouds were used to extract the features within clear zones and ground filtering 

was done. The final result shows that the method was able to extract 90% of the roads 

and complimentary information was extracted. 

Hu et al (2014): Road Centerline Extraction in Complex Urban Scenes from 

LiDAR Data Based on Multiple Features 

This paper proposes to use multiple features to detect road centerlines from the 

remaining ground points after filtering. The method consists of three major steps, i.e., 

spatial clustering based on multiple features using an adaptive mean shift to detect the 

center points of roads, stick tensor voting to enhance the salient linear features, and a 

weighted Hough transform to extract the arc primitives of the road centerlines. 

Vaihingen and Toronto data were provided by the ISPRS Test Project on Urban 

Classification and 3-D Building Reconstruction. The LiDAR data for Vaihingen were 

captured by a Leica ALS50 system, and the point density is 4 points/m2. The LiDAR 
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data for Toronto were acquiredbyOptech,Inc., andthepointdensityisapproximately 6 

points/m2. The workflow below shows the step by step method adopted in this work. 

 
Figure 3.29: Workflow of methodology. Source: Hu (2014) 

The initial step, i.e., filtering, is to classify the point clouds into ground and non-ground 

classes. They adopted the multidirectional ground filtering algorithm for this purpose.It 

combines the elevation differences and slopes of neighboring points in various directions 

to filter the ground points. The subsequent steps include:1) spatial clustering using an 

adaptive mean shift to detect the center points of roads; 2) stick tensor voting to enhance 

the salient linear features; and 3) the Hough transform to detect the arc primitives of the 

road centerlines. In short and to reflect its key implementation steps, the proposed 

method is denoted by Mean shift, Tensor voting, Hough Transform (MTH). The final 

road networks are formed by connecting the extracted road primitives. 

Thecompletenessofthe road network extraction on the Vaihingen data and the Toronto 

data are 81.7% and 72.3%, respectively, and the correctness are 88.4% and 89.2%, 
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respectively. This, in turn, implies that finding quality road primitives are an important 

prerequisite for a successful road network extractor, and the proposed method did 

contribute to this end. 

3.2.4 Application of VHR and LiDAR for Vegetation Mapping 

Machala, (2013): Forest Mapping Through Object-based Image Analysis of 

Multispectral and LiDAR Aerial Data 

This study was carried out for forest mapping using LiDAR and multispectral data 

through OBIA.  The study area is situated in the Czech Republic, in the region of South 

Moravia near the north-east edge of the City of Brno (Fig. 1). The research area covered 

8 km2 (i.e. 800 ha) of land and included a large part of the town of Bílovice nad 

Svitavou. 77 % of the area is covered by forest and the rest consists mainly of urban and 

agricultural areas. The forests in the research area consist of broadleaf as well as 

coniferous trees. 

Image data were acquired by an aerial digital camera. The image is composed of four 

optical bands - Red, Green, Blue and Near-Infrared, with spatial resolution of 0.6 x 0.6 

metres and radiometric resolution of 16 Bits. In addition, the Digital Terrain Model 

(DTM) and Digital Surface Model (DSM) with spatial resolutions of 1 x 1 meter and 

radiometric resolutions of 32 Bits were both derived from an airborne LiDAR scanner. 

The LiDAR device Leica ALS50-II has average point density of 2.5 points / m2. Both, 

multispectral as well as LiDAR data were captured 13. 6. 2009 which is during the 

vegetation (leaf-on) season. 
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eCognition Developer 8.64 software was used for this study and the classification 

process was carried out on the basis of the three data sets – Multispectral image, DTM 

and DSM. Two classes, vegetation and non-vegetation were distinguished first, using a 

Normalised Difference Vegetation Index (NDVI). The multi-resolution segmentation 

was used to create the objects on the bases of these parameters: 

1. Scale parameter – 40 

2. Shape criterion – 0.15 

3. Compactness criterion - 0.65 

More than 80,000 individual objects were created with this segmentation following 

which non-vegetated areas were then classified into three further classes: water, clear-

cuts (not all yet which were present in the whole area) and built-up areas. A new level of 

segmentation was created to classify the vegetated areas, and the results of both 

segmentations were synchronised at the end. The Image layer weights were tailored for 

the best differentiation of forested areas, with the emphasis being put mainly on the NIR 

band. The weight of DSM was multiplied too, because of the much smaller differences 

in its value range in comparison with the other bands while the weight of the DTM was 

set at zero as it would have no effect on the segmentation result. For this new level of 

segmentation, the scale parameter was set to 80, the shape criterion was set to 0.55 and 

the compactness criterion to 0.75. All those parameters were empirically found to ensure 

the best results for delineation of desired classes. 

The vegetation class was re-classified into forest and non-forest (which included fields, 

meadows, gardens, solitary trees, etc.) before supervised Nearest Neighbour (NN) 
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classification was then used for a detailed classification of the forest areas which was the 

aim of the study. 73 customized arithmetic features were created and the correlations 

between customized features were computed by STATISTICA 9.0 software. Because 

the number of values in the eCognition file was enormous, the correlation result was not 

satisfactory so factor analysis was used to obtain the required information. Finally 26 

arithmetic features were selected for defining the feature space. When the definition of 

feature space was complete and the training sites were selected for each particular class, 

the NN classification was performed under the following classes - broadleaf; coniferous; 

mixed (image objects containing broadleaf as well as coniferous trees in approximately 

equal number); young (for forest areas which had been recently deforested - these areas 

were either not yet re-afforested but covered by some kind of vegetation (e.g. grass or 

weeds), or were afforested but the young trees were too small to be identified); 

plantation (in one area the trees were planted strictly according to a square grid, with 

large distances between them); clear-cuts (the rest of the clear-cuts present in the 

research area, subsequently merged with those delineated already before); bare ground 

(referring to areas which were not fully covered by any type of vegetation, but were not 

clear-cuts); and shadow (a temporary class, later to be re-classified into one or other of 

the other classes). The classification flow chart is shown in figure below. 
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Figure3.30: Classification flow chart. Source: Machala, (2013) 

For the result, two maps were produced. First map shows the results of assigning the 

forested areas to one of the following seven groups: Broadleaf, Coniferous, Mixed, 

Young, Plantation, Clear-cuts and Bare Ground. In addition, the non-forested areas were 

delimited and assigned to one of these classes: Water, Non-Forest and Built-up Areas.. 

Ground truth data was collected to verify the result. The overall accuracy of the forest 

NN classification was calculated to be nearly 90%. The value of the Kappa Index of 

Agreement (KIA) was calculated to more than 85% in this case. 

Verlic, (2014): Tree Species Classification using WorldView-2 Satellite Images and 

Laser Scanning Data in a natural Urban Forest 

An object-based image analysis of a combination of high-resolution WorldView-2 

multi-spectral satellite imagery and airborne laser scanning (LiDAR) data was tested for 

classification of individual tree crowns of five different tree species. The study area is 

urban forests within the City of Ljubljana. The purpose of this study was to assess a 

straightforward method of object-based image analysis (OBIA) (Blaschke, 2010) with a 

combination of WV2 imagery and LiDAR data for successful classification of individual 
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crowns of five different tree species in the dominant layer of natural, mixed, 

heterogeneous urban forest in Ljubljana, Slovenia. 

Aerial imagery and laser scanning data were recorded simultaneously on 24.3.2011 from 

a helicopter on a windless day to avoid errors in fused images due to moving tree 

crowns. Additional aerial images were taken in summer, when tree leaves were fully 

leafed-out and thus enabled a visual distinction among the tree species. The images were 

processed into a true orthophoto imagery which was used in the field work for detailed 

identification of individual trees, in the manual digitization of tree-crown polygons of 

trees selected in the field, as well as for the visual verification of the classification 

results. 

The WorldView-2 (WV2) satellite image used in the study was acquired on August 1, 

2010, in the peak of vegetation period. The satellite imagery consists of an 8-band 

multispectral image with resolution of approximately 2 meters and a panchromatic 

image with 0.5 m resolution. The panchromatic and multispectral images were first 

orthorectified using RPC and an accurate laser scanning digital surface model (with 1 m 

resolution). The orthoimages were generated only where the laser scanning digital 

surface model (DSM) was available. Then to maintain the high spatial resolution of the 

panchromatic images and the high spectral resolution of multispectral images, they were 

combined into a pansharpened image with a resolution of 1 m using the modified 

Intensity-Hue-Saturation (IHS) method. The pansharpened image was then used for the 

classification. 
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The tree data for tree species classification were obtained from a virtual network of 

circular 2000 m2 plots in a 100 x 100 meter grid in the forest. On each of the 332 plots, 

a coniferous and a deciduous tree were recorded. A field manual for each plot was 

prepared for locating each plot in the field. It contained a section of the true orthophoto 

image, DCM and a digital model of terrain (DMT) derived from laser scanning data. 

DCM shows stand canopy model and DMT shows a detailed ground relief model. In 

total 608 trees of 15 different tree species were recorded. For further analysis 574 trees 

were selected – 304 coniferous trees and 270 deciduous trees of tree species whose 

sample consisted of more than 30 units (Baldeck and Asner, 2014), namely the Norway 

spruce, Scots pine, European beech, Sessile and Pedunculate oak and Sweet chestnut. 

For the OBIA, Example-based Feature Extraction was performed in Exelis VIS ENVI 5 

software applying support vector machine model (SVM). After a trial and error with 

various combinations, the optimal parameters of the segmentation were set. In addition 

to the original 8 bands, Red-Edge normalized difference vegetation index (Red-Edge 

NDVI) calculated from Red-Edge and Red band, and DMC layer were stacked into a 10-

band image for the five tree species supervised classification. Confusion matrix was 

used to calculate the accuracy of the classification. In the first step of classification the 

area on the image was masked by laser scanning height data to include only areas with 

heights between 15 and 50 m to remove the lower (also ground) vegetation influence 

and reduce the abundance of data,  In the second step, training samples of the five tree 

species were included as a reference. 
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The overall accuracy of the classification was 58 % and Kappa Coefficient was 0.431. 

The highest accuracy was for Norway spruce, where producer‘s accuracy was 80 % and 

user‘s accuracy was 69 %. Most S. chestnut crowns were misclassified as Oaks (73 %). 

Table3.12: Classification accuracy assessment: Producers and users accuracy for the five 

trees.  

 
Source: Verlic, (2014) 

3.3 Discussion of the Reviews 

A total of thirty (30) articles were reviewed and they conducted their studies using 

OBIA classification method which has proved to achieve better results when VHR 

images are used. eCognition software has also been found to be the most popular 

because it is a powerful development environment for OBIA.eCognition Developer can 

be applied for all common remote sensing tasks such as vegetation mapping, features 

extraction, change detection and object recognition. The object based approach 

facilitates analysis of all common data sources, such as medium to high resolution 

satellite data, high to very high resolution aerial photography, LiDAR, radar and 

hyperspectral data. Different techniques and algorithms have also been applied under a 

general principle depending on the feature class targeted. However it‘s important to state 

that the principles were based on the basic steps in general classification methodology. 

These are data preprocessing, segmentation, classification and accuracy evaluation. 
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LiDAR provides detailed information regarding geometries such as spatial distances, 

heights, and canopy penetration but lacks any information concerning details of the 

electromagnetic spectrum.  Spectral provides highly detailed electromagnetic 

information to the point of material identification, but it is limited to two dimensions 

without spatial information in the ‗z‘ or height dimension. These studies have taken 

advantage of their complementary qualities to carry out various feature extractions. 

With the values LiDAR provides of elevation and intensity, classification is possible 

with the point cloud alone. In a study by the University of Cambridge and University of 

Wales, they created land cover type classification employing elevation, intensity, and 

also point distribution frequency. The classification method used a series of criteria 

based on height, intensity, and distribution which was then processed in the geographic 

information system ArcGIS and they achieved an accuracy of 95%. Integration of high-

resolution image with LiDAR data gives a better description of earth surface and 

facilitates improved feature extraction. Researchers combined the multispectral data with 

LiDAR in object-based feature extraction and classification. 

Yongmin et al, (2011) studied the effect of airborne elevation information on the 

classification of an aerial image in an urban area. This classification procedure used 

elevation and intensity information obtained from the LiDAR data, as well as the red, 

green, and blue bands obtained from the aerial image. As a result, a method using the 

combination of an aerial image and the airborne LiDAR data shows higher accuracy and 

improved classification, especially with regard to building objects, than results that rely 

solely on an aerial image. 
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Hu et al, (2004) conducted a study where he employed high resolution imagery and 

LIDAR (Light Detection and Ranging) data for automatic extraction of grid structured 

urban road network in Toronto down town area. The experimental results in the typical 

dense urban scene indicate it is able to extract the roads much more reliable and accurate 

by the integrated processing than by using imagery or LiDAR separately. It saliently 

exhibits advantages of the integrated processing of the multiple data sources for the road 

extraction from the complicated scenes. There are several recent algorithms available 

that makes the use of airborne LIDAR data for road feature extraction. Hu et al (2014) 

proposed a method which detects road center lines from airborne LIDAR data which 

consist of three steps spatial clustering based on multiple features using an adaptive 

mean shift method to detect center point of roads, Stick Tensor Voting to enhance salient 

linear features and weighted Hough Transform to extract the arc primitives of road 

center lines.   

Another prominent issue which researchers had to contend with is the issue of shadow 

due to the high density of urban features but the study carried out by Haitao et al (2007) 

proved that object oriented SVM classification of high resolution image and LiDAR data 

has been effective in correctly identifying various kinds of shadows. Also, Dinis et al 

(2002) developed a methodology using multitemporal set of HR image and LiDAR data 

to separate shadowed areas. This was a simple approach, such as a bimodal histogram 

splitting, combined with a Spectral Shape Index provided an efficient way of separating 

shadows from non-shadows.Researchers combined the multispectral data with LiDAR in 

object-based feature extraction and classification. 
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Zuo et al, (2016) successfully conducted a research and proved that the use of LiDAR 

datasets and nDSM are very helpful for the separation of tree and low vegetation, 

building and road using the height information. The overall accuracy (OA) of OBIA 

classification reaches 89.5% in the study area and the Kappa coefficient is recorded as 

0.865. In another study, Hermosilla,et al (2012) used aerial image and LiDAR to map 

Valencia city and achieved. They achieved overall accuracy of the classification was 

84.8%, and the kappa coefficient 0.83. These were considered to be sound results, 

especially considering the large number of classes defined. 

In Seyd et al (2005) study, the goal of the study was to automatically classify land cover 

features using high-resolution imagery and LiDAR derived DSM data, and the object-

oriented approach did this effectively. Results indicate that object-oriented approaches 

have great potential for integration of LiDAR and high-resolution imagery for multi-

sensor classification. Haitao et al, (2007) carried out his study using OBIA for the 

classification of LiDAR data and high resolution image and based it on Support Vector 

Machine (SVM). The result showed that different shadow species are easier to 

distinguish when both aerial images and LIDAR data are used together. The results also 

show that the overall accuracy of pixel-based SVM is 82.92%, whereas the overall 

accuracy of the object-oriented classification based on SVM is 95.97%. Tiwari et al 

(2009) explored an integrated approach to extract road automatically using airborne laser 

scanning altimetry and high resolution data in Amsterdam, Netherlands and achieved an 

accuracy of over 90%. Many methods have been developed to detect urban road network 

from high resolution images (Hu et al, 2007; Long & Zhao, 2005; Zhu et al, 2005). High 
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resolution allows more fine details to be seen, a better differentiation of road types and a 

more accurate geographic location. 

These studies have successfully proved that High Resolution (HR) imagery has the 

advantage of high user interpretability, rich information content, sharpness, high image 

clarity, and integrity, which provides the unique tool for classification. It is also clear 

that it is no longer convenient to classify high resolution imagery with pixel-based 

classification method (e.g. Maximum Likelihood) because of its limitations and 

considerable difficulties dealing with the abundant information of HR data. 

3.4 Gap Identified 

As mentioned earlier the 30 studies reviewed conducted these studies with the standard 

protocol for classification of high resolution images and LiDAR data for feature 

extraction. The techniques and algorithms only change with respect to the feature class 

targeted. It can also be noted that none of the studies were donewithin Nigeria and a 

majority of them were concentrated within the urban and suburban setting. Urban areas 

in the developed world are known to have paved road surfaces but it is not unlikely that 

thesuburban areas where some of these studies were carried out could have a 

fewstretches of roads which are made of neither asphalt nor concrete or even paved in 

any form. None of the studies gave consideration to the mapping of such earth roads and 

it is not safe to assume that all the roads are paved. 

This is an observed gap which the reviewer considersimportant especially in the context 

of Nigeria where the proposed study will be carried out. Roads have long been important 

for development and prosperity and are essential for many applications such as urban 
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and rural planning, transportation management, vehicle navigation, emergency response, 

security etc. This will help in no small measure to facilitate planning of various 

development and services for such rural areas which have most of the roads 

unpaved.Suffice to mention that it will also be a very helpful approach to solving 

security problems especially in these days of kidnapping and related crimes. The rural 

roads which are mostly unpaved are escape routes as well as access to hiding places as 

criminals hardly settle or hide in urban areas after committing crimes. The mapping of 

such earth roads will greatly assist the security coordination of various stake holders. 

This review started with an introduction of the subject matter which is the general 

importance of regularly updating geospatial information especially those that provide 

landuse/landcover information, since they provide key information for land management 

and environmental planning. Traditionally, LULC databases have been updated by 

means of photo-interpretation of aerial and satellite images and by field visit. These 

techniques are lengthy, subjective and costly. Digital image processing has therefore 

provided a very convenient and cost effective means of solving this problem. 

This review investigated the current methods of extracting information from high 

resolution remote sensing images. Thirty (30) related studies were reviewed in terms of 

their techniques and algorithm viz. the respective images and feature classes being 

processed. The review targeted high resolution images and LiDAR data which are 

complemented by each other in ensuring best classification results. The review also 

looked closely at object based image analysis as opposed to the pixel based 

classification. While pixel-based image analysis is based on the information in each 
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pixel, object-based image analysis is based on information from a set of similar pixels 

called objects or image objects. More specifically, image objects are groups of pixels 

that are similar to one another based on a measure of spectral properties (i.e., color), 

size, shape, and texture, as well as context from a neighborhood surrounding the pixels. 

In conclusion, this review is able to confirm the significant potential of LiDAR and high 

resolution data to extract urban classes. LiDAR data assists in reduction of vertical and 

horizontal heterogeneities. Combining attributes of high resolution images with nDSM 

provided an effective separation of spectrally similar image objects. No doubt that  the 

spatial resolution of remotely sensed data has improved, multispectral images are 

insufficient for urban classification due to confusion in discriminating between trees and 

grass, misclassification of buildings caused by diverse roof compositions and shadow 

effects, and difficulty in distinguishing cars on roads. However, the incorporation of 

LiDAR data, especially nDSM, significantly improves accuracy.Most of the studies 

show that LiDAR data in conjunction with hyperspectral imagery are not only capable of 

detecting individual trees and estimating their tree metrics, but also identifying their 

species types using the developed algorithms. The integration of these two data sources 

has great potential to take the place of traditional field surveys. 

Finally this study identified a gap which has to do with non-consideration for the 

existence and classification of earth roads even in the suburban areas where the studies 

were carried out. The proposed study will attempt to fill the gap as it will be a major 

boost to planning of infrastructure and supply of various services including the 

coordination of security matters. 
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CHAPTER FOUR 

METHODOLOGY 

4.0 Introduction 

This chapter discusses the methodology adopted in this research study. It specifically 

focuses on the data available for use, the software and hardware input, data processing 

and the various approaches adopted for the analysestailored towards achieving the aim 

of the research through the already stated objectives and research questions. 

4.1 Data Requirements 

The data used for this study came from both primary and secondary sources as follows: 

4.1.1 Primary data includes:- 

(i) DGPS coordinate positions of selected points in the study area (see Appendix 4) 

(ii) Handheld GPS points (appendix 5) 

4.1.2 Secondary data include:- 

(1) Geoeye-1 image of the study area acquired 2012 

(ii) LiDAR data of the study area acquired 2012 

(iii) 1:125,000 base map of the study area 

(iv) Google image of study area (appendix 6) 

4.2 Hardware and Software Requirements 

The following hardware and software were used: 

4.2.1 Hardware 

(i) HP laptop with configuration of 2GB RAM, 300GM Hard disk and 3.00GHZ 

microprocessor speedused for all computer/software manipulations. 

(ii) HP Designjet AO Scanner for conversion of paper maps into digital formats. 
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(iii) HP Deskjet 3636 Series A4 Printer for printing of reports, maps and images. 

(iv) 500GB External Hard disk for storage of data and other information. 

(v) Garmin 78s Handheld GPS for capturing geographic location of points in the field. 

(vi) Digital Camera for taking pictures in the study area. 

4.2.2 Software 

(i)  eCognition 9 Developer Software (For execution of OBIA) 

(ii) ArcGIS 10.1 GIS Software Package (For execution of GIS processes) 

(iii) Erdas Imagine 9.2 software ( For execution of Pixel Based Classification) 

(iv) Microsoft Excel 2013 (Used to display statistical information) 

(v) Microsoft Word 2007 (Used for preparing the report) 

(vi) Microsoft PowerPoint 2007 (Used for presentation) 

4.3 Data Sources 

4.3.1 Base Map 

The base maps covering the study area wassourced from the Surveyor General‘s office 

Ministry of Lands & Survey, Port Harcourt, Rivers State, Nigeria. 

4.3.2 GeoEye-1 Image 

GeoEye-1 imagery was launched on 6th September 2008 from Vandenberg Airbase and 

is owned and operated by DigitalGlobe, It is one of the latest in a series of commercial 

very high spatial resolution EO satellites. GeoEye-1 collects four-band multispectral 

images (see table 4.1) at nadir, with 0.41 m panchromatic (black & white) and 1.65 m 

multispectral (colour) resolution and has a revisiting capability of 1-3days depending on 

latitude. The panchromatic band is resampled to 0.5 m, which is used with the 
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information from the multispectral image to produce the pan-sharpened imagery with the 

final full-colour image of 0.5 m resolution (Land info World Mapping, LLC 2013). 

The 0.5m High Resolution Geoeye-1 multispectral image captured on 23
rd

 December, 

2012 was obtained from Shell Petroleum Development Company, Port Harcourt, Nigeria 

through an education support scheme. The Geoeye-1 image (figure 4.1) is four band 

multi-spectral image of the study area, with Blue (450-510nm), Green (510-580nm), 

Red (655-690nm) and NIR (780-920nm) bands. 

Table 4.1: Characteristics of GeoEye-1 imagery 

 

Prior to delivery the image was pre-processed and as a result no further geometric or 

radiometric adjustments were performed. The image is in UTM Projection Zone 32, 

defined using spheroid of Clarke 1880 and datum of Minna, Nigeria.  
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Figure 4.1: GeoEye-1 Image 

4.3.3 LiDAR data 

The LiDAR data (figure 4.2)was also obtained from Shell Petroleum Development 

Company Limited, Port Harcourt Nigeria and was captured in December 2012 with the 

raw data already processed to DSM and DTM from source. This meant that the usual 

process of generating the DTM and DSM had been performed from source. 

Consequently, there were no LiDAR intensity valuesor cloud points supplied with the 

LiDAR data. The DTM, DSM andGeoEye-1 image were already processed and geo-

referenced whichmeant the only data processingrequiredwas georectifyingthe geoeye 

images using the LiDAR data andgeneratingthe Normalised Digital Surface Model 

(nDSM). The height valueto be usedin this research is the normalised DSM (nDSM) and 

this is an ideal value in image classification for isolating tall features like buildings and 

trees from surroundings. The nDSM = DSM-DTM and this process was carried out 

within the ArcGIS environment. The nDSM was calculated by subtracting the DTM 
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from the DSM using Raster Calculator in ArcGIS. The nDSM represents the absolute 

heights of non-ground objects such as buildings and trees, above the ground. 

 
Figure 4.2: LiDAR data 

4.4 Data Processing 

Remotely sensed data are most often provided in their recorded raw form with various 

degrees of distortion (mostly radiometric and geometric) making them less valuable for 

classification processes (Varshney & Arora 2004). Consequently, an array of data 

processing procedures, called pre-processingare usually undertaken before land cover 

extraction process could proceed (Campbell & Vynne 2011). Campbell (2006) 

emphasized the role of pre-processing, in enhancing the quality of satellite imagery. Pre-

processing includes georeferencing, mosaicking, sub-setting, and radiometric 

normalization. Geometric and radiometric corrections are mostly concerned with 

improving image quality (Chuvieco, Li & Yang 2010). Several studies have focused on 

optimizing preprocessing workflows to improve data quality and ensure good land cover 
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extraction. For example Leiss et al. (1995) reported that classification errors induced by 

insufficient radiometric and geometric precision can be reduced by appropriate 

geometric and radiometric correction. 

Based on the images supplied, seven study sites were proposed within the image scene, 

each with varying levels of urbanization. In addition, areas not affected by cloud cover 

and those that coincided with the LiDAR data were key considerations in selecting these 

study sites. The image was also subset with the intention of having a good mix of real 

world shadows, urban sprawl with both small and tall buildings, water areas, vegetation, 

bare soil, and impervious surfaces. These study sites were subsequently clipped from the 

GeoEye-1 image and geo-rectified using the LiDAR data. This process of geo-

rectification was performed using the georeferencing tool in ArcGIS 10.1 desktop 

software. Figure 4.3 presents the study sites and the geo-rectified GeoEye-I extracts. 

 

Figure 4.3: Study sites and the geo-rectified GeoEye-I extracts. 
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The aim of this research is to evaluate the object based classification over the traditional 

pixel based in classifying VHR and to access the advantage of the integration of nDSM 

data to Very High Resolution (VHR) image classification of urban features. Figure 4.4 is 

the flowchart used to achieve the objectives 

 
Figure 4.4: Flowchart of the Methodology 
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4.5 ProcedureAdopted in Achieving Objective Number One. 

4.5.1 Objective One: To carry out mapping of urban features within the study area 

usingPixel and Object based analysis techniques. 

4.5.2 Research Question 1: Does object the based method of classification achieve 

higher accuracy than the pixel based method in land cover classification usingVHR 

image? 

The first step was to achieve a pixel based classification by carrying out a supervised 

classification of the VHR image using Eradas 9.2 software after which OBIA of the 

VHR image was carried out within the eCognition environment. This was done for all 

the seven study sites. 

4.5.3 Part A of Objective One - Pixel Based Classification in Erdas Imagine 

The supervised classification adopted at this stage was performed using ERDAS 

Imagine 9.2 processing software.Classification is the process of sorting out pixels into 

finite number of individual classes or categories, of data based on data file values. The 

choice of a supervised classification was because the process is more closely controlled 

by the researcher and also the researcher has a prior knowledge of the study areas of 

interest.In a supervised classification, the analyst selects and digitizes polygons (training 

areas) and places these polygons in an AOI (Area of Interest) layer from which to create 

the signature files. In Imagine, an individual training site is delineated as an "area of 

interest" and given a class name. The pixels within the training site are used to generate 

a "signature." This process is repeated to gather several training sites for each class. 

The step by step procedure adopted in the supervised classification is as follows: 
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1. Open Erdas from the start menu and create a workshop folder, Start >Programs> 

Erdas imagine 

2. Select File -> Open -> Raster Layer from the Viewer menu bar, or click the Open icon 

on the Viewer toolbar to display the image file to be classified. 

3. In the Select Layer To Add dialog File name section (figure 4.5), select subset image, 

which is located in the <IMAGINE_HOME>/directory. This is the image file that is 

going to be classified. 

 
Figure 4.5: Select layer to add dialogue, Source: ERDAS IMAGINE Tour Guides (2008) 

4. Click the Raster Options tab at the top of the dialog, and then set the Layers to Colors 

to 4, 5, and 3 (Red, Green, and Blue, respectively) – colour combination 

5. Click the Fit to Frame option to enable it. 

6. To open the signature editor, click the Classifier icon on the ERDAS IMAGINE icon 

panel, then the Classifier menu displays. 
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Figure 4.6: Viewer, Classifier menu and Signature editor of Erdas 9.2., Source: ERDAS 

IMAGINE Tour Guides (2008) 

7. Select Signature Editor from the Classification menu to start the Signature Editor. 

The AOI tools allow you to select the areas in an image to be used as signatures. These 

signatures are parametric because they have statistical information. 

8. Select AOI -> Tools from the Viewer menu bar. The AOI tool palette displays, then 

click the polygon icon in the AOI tool palette. 

9. In the Viewer, draw a polygon around the green area you just magnified. Click to 

draw the vertices of the polygon. Middle-click or double-click to close the polygon to 

show a bounding box surrounds the polygon, indicating that it is currently selected. 

Effort was made to select at not less than five signatures for each class which were later 

merged. 
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10. In the example below (Fig.4.7) the respective classes have been merged to 4 classes 

by selecting and holding the shift key and left clicking in the Class # column. 

 
Figure4.7:Merged selected classes, Source: ERDAS IMAGINE Tour Guides (2008) 

11. Register the spectral signature of the defined classes and save the file. 

12. Apply the supervised classification and open the classified image in a new viewer. 

13. Open another viewer to view the classified image. 

13. Recode the classified image and display the recoded image, Interpreter>GIS 

analysis>Recode, and save. 

14. Change the colour of the recoded image and save as classified image. 

15. In remote sensing, accuracy assessment is mandatory (Matsakis et al. 2000, Foody 

2002), and is important for providing information about the quality of the product of 

classification as well as furnishing the norms for comparing the performance of different 

classification methods. Therefore accuracy assessment was performed on the thematic 
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information. Accuracy assessment compares two sources of information; pixels or 

polygons from a classification map developed from remotely sensed data and ground 

reference test information (Jensen 2005). A confusion matrix or error matrix which 

consists of some rows and columns was used to check the relationship between the two 

sources in this research. A typical confusion matrix for the accuracy assessment is 

shown in table 4.2. 

Table 4.2: Typical Confusion matrix 

 
Source: Jensen, 2005 

 

4.5.4 Part B of Objective One - OBIA ofVHR Image in eCognition 

The software eCognition Developer version 9 was used for OBIA. The 64-bit software 

was used for the import and manipulation of the subset image, multi-resolution 

segmentation, development of a rule-based classification and accuracy assessment. 

eCognition software was also used to define the arithmetic expressions to calculate the 

NDWI and SSI used in the study. These indices are used to differentiate water and 

shadows respectively. 

Object based analysis typically involves the segmentation of the image scene, 

classification of the object primitives into classes and accuracy assessment.During the 

sub-setting of the study area image, one major consideration was that normally, image 
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files that are large in size are difficult to process during segmentation. Therefore effort 

was made to reduce the subset images to sizes that would take less memory and time 

during segmentation.  

The general OBIA procedure followed during the classification is as follows:The general 

procedure was in the following sequence, load and display raster data, perform image 

segmentation, create a simple class hierarchy, insert the nearest neighbor classifier into 

the class description, classify, and perform classification quality assessment. Image 

objects were created using multiresolution segmentation by first starting up with a single 

pixel and merges neighbouring segments until a heterogeneity threshold is reached 

(Benz et al., 2004). By specifying user-defined scale parameter, colour/shape and 

smoothness/compactness weights, the heterogeneity threshold is achieved. It is 

important to note that image segmentationis scale dependent. This to a great extent 

determines the overallclassification accuracy (Zhang, 2014). Zhang and Feng (2005) 

notedthat the final decision of selecting scale parameters is often based on the discretion 

of the operator‘s visual inspection of the image. 

1. To load image - go the Windows Start menu and Click Start > All Programs> 

eCognition Developer 9 > eCognition Developer. Select rule set mode and click ok then 

the default eCognition display appears (figure 4.8).  
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Figure4.8: eCognition Start-up interface, (Source: eCognition reference book, 2011) 

 
Figure4.9: Default eCognition display, (Source: eCognition reference book, 2011) 

The next stage was to create a new project by choosing File > New Project on the main 

menu bar (figure 4.9).Navigate the folder containing the subsets, select Image.img > 

Open (the particular subset), then select from the appropriate file in the files type (figure 

4.10). 

Double-Click on Image Layer Alias and rename the all layers name - Double-Click on 

Layer Alias Rename the all the layers name Layer 1 (Blue), Layer 2 (Green), Layer 3 

(Red), Layer 4 (Near IR) etc. and save the project. 
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Figure 4.10: New project created, (Source: eCognition reference book, 2011) 

Using the ‗Layer Mixing‘ drop down menu thenumber of layers to be mixed in the 

display was selected. Edit the Image Layer Mixing is one kind of band combination 

process which makes it possible to have a better view of the image. To open the ‗Edit 

Image Layer Mixing‘, do one of the following: 

• From the View menu, select Image Layer Mixing 

• Click View > Image Layer Mixing on the main menu bar, or Click on the Edit Image 

Layer Mixing button in the View Settings toolbar. Choose a layer mixing and click ok 

Figure 4.11). 
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Figure 4 11: Edit Image Layer Mixing dialog box, (Source: eCognition reference book, 

2011) 

2. Image segmentation. The fundamental step of any eCognition image analysis is to do 

segmentation of a scene representing an image into image object primitives. A good 

classification result begins with a good segmentation. Segmentation begins by setting up 

a process tree which contains script you produce to control the processes (algorithms) 

which run and the order in which they are executed. 

To insert a process, right-click within the process tree window and the process tree menu 

will appear. Select ‗Append New‘ and the ‗Edit Process dialog will appear, change the 

name to Process template and click ok (figure 4.12).  
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Figure 4.12: Edit process dialog, (Source: eCognition reference book, 2011) 

(a) Insert a Segmentation Parent Process right-click‘ of the process you have just created 

and select ‗Insert Child‘, this will create a new process under your previous process. Edit 

the name of the new process to be segmentation and click ok.To insert a Child Process ( 

Multiresolution Segmentation), Select the inserted Segmentation Process and Right-

Click on it and choose ‗Insert Child‘ from the context menu. Click Algorithm > Select 

Multiresolution Segmentations and give it a name – Level 1. See Figure 4.12 

(b) Change the image layer weights 

(c) Trial and error process was employed to achieve the optimal segmentation 

parameters for each subset after which the ‗execute‘ button was clicked to execute the 

segmentation (figure 4.13). 
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Figure 4.13: Segmentation dialog box showing parameters, (Source: eCognition 

reference book 2011) 

 

3. Classification: The objective here was to classify the GeoEye image into land cover 

classes after segmentation. At this state a decision has been made on the land classes 

which include the following classes: Buildings, Forest, Open surface, Paved roads, 

Unpaved roads, Rangeland and Water bodies. The rule based method of classification 

was employed by using feature sets in a rule set including nDSM, NDVI, NDWI etc. 

The next stage was to export the result. Usually the classification result is exported from 

Definiens into a GIS for further processing or the production of a map. To select the 

classes to export you again edit the Image Object Domain. The name of the outputted 

shapefile has been defined as ‗Classification‘ while the features to be exported are the 

area (of the image object) and the class name. Area is found under Object Features > 

Shape > Generic while class name is found under Class-Related features > Relations to 



187 
 

Classification > Class name. An example of the rulebased process tree will look like 

figure 4.15. 

 
Figure 4.15: Process tree for segmentation, (Source: Kulkarni, 2012)  

4.6 Procedure used to achieve Objective Two 

4.6.1 Objective two: To statistically compare the results obtained from the two 

techniques and evaluate the capabilities of the nDSM to optimize the accuracy of 

urban features extraction. 

4.6.2 Research Question2: Does the addition of nDSM from LiDAR datato the VHR 

image improve the classification accuracy of urban land cover? 

The first step was to carry out a similar to OBIA operation in objective one but with the 

addition of nDSM. Consequently, the statistical evaluation was done byusing kappa 

statistics and overall accuracy andwhile test of the hypothesiswas used for 

validation.The kappa coefficient is an effective statistical tool for comparing and 

analysing two independent experiments. A confusion matrix (or error matrix) is usually 

used as the quantitative method of characterizing image classification accuracy. The 
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details of the comparism are shown in chapter five (sub-head 5.10 - 5.12) which contain 

the results. 

Table 4.3: Sample of a Confusion Matrix. Source: Lillesand et al. (2004) 

 
 

The second part of objective two was achieved by carrying out another OBIA on the 

VHR but the key difference between this procedure and the earlier OBIA procedure is 

the addition of nDSM. During rule set build up, nDSM was used to split the resulting 

image objects into elevated and non-elevated features using a threshold value. The 

addition of nDSM to the VHR image in the classification was to see the overall effect in 

the final accuracy. 

The MRS was used given its ability to produce meaningful desired objects. The MRS 

algorithm starts with a single image object of one pixel and repeatedly merges it in 

several iterations, in pairs, to form larger units, as long as an upper threshold of 

homogeneity is not exceeded locally. The algorithm uses a scale factor to stop the object 

from getting too heterogeneous so that homogenous areas result in larger objects and 
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heterogeneous areas result in smaller objects. After the segmentation, sample classes 

were selected which were used to train the classifier.  The rule set was used for 

classification into the land cover classes based on the land cover scheme of this research. 

The classified image was exported to GIS environment for further processing and for 

map production. 

In the context of information extraction by image analysis, accuracy ―measures the 

agreement between a standard assumed to be correct and a classified image of unknown 

quality.‖ (Campbell, 2007). Classification error occurs when a pixel (or feature) 

belonging to one category is assigned to another category. The following errors are put 

into consideration when carrying of accuracy assessment. 

Therefore the accuracy assessment was calculated on the basis of the following 

measures: 

1. Producer‘s accuracy: How well a certain area can be classified (omission error) 

2. User‘s accuracy: Reliability, probability a pixel class on the map represents the 

category on the ground (commission error) 

3. Overall accuracy: Dividing the total number of correct pixels (diagonal) by the total 

number of pixels in the error matrix. 

4. Kappa: Measure of agreement between the classified map and the reference data. This 

agreement is based on the major diagonal of the error matrix and a chance agreement 

(row and column values). Strong agreement occurs if the 'k' is greater than 0.80. 
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Moderate agreement occurs when 'k' values fall between 0.4 and 0.8 and poor agreement 

occurs with 'k' values less than 0.40 (Jensen, 2005). 

 

4.6.3 Procedure in Accuracy assessment 

1. The Create Random Point, the Tool in the Data Management Tools of Arc 

Toolbox was used to generate random points using the classified images as Constraining 

Features.The result is a shape file of the location of points to be used for accuracy 

assessment 

2. The generated points were overlaid on the VHR image and each point was 

assigned its true classification using visual analysis. The value was input into the 

attribute table of the generated points.The result is a shape file layer containing the True 

Land use of each point. 

3. The Extract Value to Points tool in the Spatial Analyst Tools of Arc Toolbox was 

then used to extract the values classified for each point on the classified image. The 

result is a table containing the reference Value (Land use) vs Classified Value (Land 

use) 

4. The Create Pivot Table was then used to convert the reference vs classified table 

into a matrix. The result is a matrix representation of reference value vs classified Value 

5. The values in the matrix were entered into an Excel worksheet from which the 

various calculations of producer accuracy, user accuracy, overall accuracy and kappa 

statistics was done. 
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Summary of accuracy results are shown in section 5.10.1 while the error matrix tables 

and tables of quantitative values of the classified LC/LU are shown in Appendix 7 and 

Appendix 8 respectively.  

4.7 Procedure Adopted in Achieving Objective Three 

Objective Three: To combine the GeoEye-1 image and nDSM from LiDAR in the 

3-D analysis of the study area. 

4.7.1 Research Question 3: Does the addition of LiDAR derived nDSM to the VHR 

image effective in the 3-D analysis of features extracted? 

3-D dimensional representation of geographic information in computers is known as 

Virtual Geographic Environment (VGE). To achieve the objective, the 3D visualization 

of the study area was done in the 3D environment of ArcScene. The Geoeye subset was 

added to the interface and subsequently the Layer properties were used to set the height 

value of the cells in the Geoeye subset from the elevations in the nDSM to define how 

the Geoeye subset will be displayed in 3D. In order to enhance the view, the vertical 

exaggeration, illumination azimuth and illumination elevation were adjusted. Results are 

presented as figures 5.52b, 5.53-5.58 on pages 252 to 255. 

A similar operation was carried out for Akabuka subset but without the addition of the 

LiDAR derived nDSM so as to answer research question three. The result which is now 

displayed as 2-D representation,figure 5.52aon page 252 together with the Akabuka 3-

D result, showed a great difference in their VGE. 3-D models provide better ways to 

represent, understand, manage and communicate our natural world. 

4.8 Procedure used in Achieving Objective Four 
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4.8.1 Objective Four: To develop a technique for the extraction of unpaved roads 

After careful study of the rulesets developed for the extraction of various land cover 

types for the study area, there was need to refine the extracted unpaved roads.  

Consequently, an algorithm for the extraction of unpaved roads which has been 

successfully tested on all seven sites was developed as:  

 

Unpaved Road = ndvi< 0 AND intensity > 0.5 AND  asymmetry > 0.85 AND  

ndsm < 2m  AND nir  > 100  

 

Where; 

ndviis the mean normalized vegetation index of features on the imagery. Unpaved 

roads exhibit the characteristics of non-vegetated areas whose ndvi values are less than 0 

intensityis the Intensity Colour Space components of features on the imagery. 

Unpaved roads comprise sand that appears bright in terms of colour. 

asymmetryis the degree of linearity of image features on a scale of 0-1. Unpaved roads 

are curvilinear manmade structures. 

ndsmdescribes the relative surface height of features. Unpaved roads are low features. 

niris the mean reflectance of features on the imagery on a scale of 0-255. Sandy soils 

increase the radiance emergent from roads in the near infrared proportion of the 

electromagnetic spectrum. 

The 5 parameters altogether form a spectral, spatial, colour and signature for detecting 

unpaved roads.  

 

4.8.2 Procedure 
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In order to improve the accuracy of the extraction of unpaved roads, first the vegetation 

coverage in the images was masked out from the original VHR image through logical 

queries with the NDVI threshold of vegetation (NDVI > 0).  The Extract by Attributes 

tool (see figure 4.18) and the Extract by Mask tool (see figure 4.19) in the Spatial 

Analyst Toolbox of ArcGIS 10.3 were used to achieve this. This was done in order to 

improve the segmentation process by reducing the homogeneity present in the image, 

and hence delimit better image objects shapes. The remaining pixels in the image 

correspond to the non-vegetated surface which contains unpaved roads. The research 

resorted to the use of ArcGIS for this operation because eCognition does not provide for 

a way to produce a new image layer from an existing image using a set of image 

properties. The respective steps are as follows: 

4.8.1.1 Produce the NDVI image using the Raster Calculator Tool 

 

Figure 4.16: Raster Calculator Tool in ArcGIS 
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Similar operation was carried out for all seven subsetsand figure 4.17 is for Akabuka 

subset where the resulting NDVI image was classified into -1 – 0 and 0 -1 indicating 

non-vegetated and vegetated areas. 

 
Figure 4.17: Akabuka NDVI Image 

4.8.1.2. The extract by attribute tool 
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Figure 4.18: Extract by Attribute interface 

 

4.8.1.3. The extract by mask tool 

 

Figure 4.19: Extract by Mask Interface 

 

4.8.1.4. The resulting image 
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Figure 4.20: The resulting Image 

4.8.1.5 Segmentation and Classification in eCognition 

Afterwards, the resulting image was subjected to multi-resolution segmentation and the 

algorithm was implemented in the ruleset. A user defined segmentation parameters for 

optimal result was set as scale 20, shape 0.1 and compactness 0.8 (See figure 4.21). The 

segmentation process produced the segmented image in figure 4.22. This was classified 

using the new algorithm to produce the refined unpaved road maps presented as figures 

5.44- 5.50 in the result section 5.6of chapter five(5).  
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Figure 4.21:  Unpaved roads Refinement Ruleset used for all subsets 

 

 

Figure 4.22: Akabuka Segmented Image 

4.9 Procedure Used to Achieve Objective Five 

Objective four: To produce an up-to-date map of the study sites. 

Bearing in mind that the LiDAR and VHR image data available for this data date back to 

2012, so there was need to update the map produced from the analyses so as torepresent 

the current realities on ground as much as possible. Consequently, the latest satellite 

image available on Google map of the study area (see Appendix 6) and ground truth 

point data (see Appendix 5) collected from the study area were used to update the map. 
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A visit to the ministry of works and housing was useful in gathering some information 

for this purpose. 

4.9.1 Procedure for Map Update using available satellite image on Google  

1. The satellite imagery used for the update was saved as a JPEG Format from 

Google Earth.  

2. The satellite imagery was then georeferenced using the 2012 Geoeye image 

through image-image georeferencing 

3. The classified images exported as Vector Shapefiles from eCognition was loaded 

on ArcMap interface 

4. The classified image was then compared with the Google Earth image to identify 

areas where there are changes. 

5. Areas where there are changes were then digitized using the Editor Tool by 

placing markers around the newly identified features.  

6. The following procedure was then followed using Microsoft Excel 2007 software 

to format the GPS coordinates of features collected from the field.  

a. Formatting the GPS data into 4 columns namely: S/N, longitude, latitude and 

Description.  

b. Saving the document to *.XLSX format   

7. The field data was imported to ArcMap by following this procedure:  
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a. Navigation to where the excel file was stored and adding it to the software 

interface. 

b. Selection of the coordinate system of the field data.  

c. Saving of the field data permanently as an ESRI Shapefile format  

8. Markers were placed around the field data using the Editor Tool to digitize the 

surveyed features into the respective land use layer. The final updated map is presented 

on page 257 as figure 5.61a placed side by side with the old map shown as figure 5.61b. 

4.10 Conclusion 

Objective ‗one‘ was carried out to verify the advantage of OBIA classification method 

over the traditional pixel method in classifying VHR images. The integration of the 

LiDAR derived nDSM into the classification was to evaluate its capability to optimize 

the classification accuracy. The idea as stated earlier is to evaluate the advantage 

gainedby introducing the height component (nDSM) from the LiDAR data into the 

classification. 

CHAPTER FIVE 

DATA ANALYSIS, RESULTS AND DISCUSSION 

5.0 Introduction 

This section reports on the data analysis undertaken to achieve the objectives, the 

various results and the discussion following the results. For the key objective, three 

independent analyses were carried out. The first is the pixel based classification of VHR 

in Erdas Imagine 9.2, the Object based classification of VHR in the eCognition software 
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and finally the Object based classification of VHR with the addition of the nDSM as 

ancillary data from the LiDAR data. At the end the results were compared in other to 

answer the relevant research questions research questions. Seven subsets were mapped 

out from the study area for analysis and they include – Akabuka, Egbeda, Ikiri, Obido, 

Ogbogwu, Omoku and Osiakpu. The land cover types to classify were also consistently 

outlined for the three classification methods so that a basis for comparison could be 

created. The selected classes were Buildings, Forest, Rangeland, Paved roads, Unpaved 

roads, Water, Bare land and Shadow. 

5.1 Pixel Based Supervised Classification in Erdas 9.2 Software 

Supervised Maximum Likelihood Classifier (MLC) classification was carried out in all 

the subsets.The first stage in a supervised classification process is to collect reference 

training sites for each land cover type in order to generate training signatures. These 

signatures were generated using the Area of Interest (AOI) and Region Grow tools. 

These signature files were subsequently used as inputs to a MLC. If a pixel satisfies a 

certain set of criteria, then the pixel is assigned to the class that corresponds to those 

criteria. 

The approach involved was in the following sequence. The seven subsets from the study 

area were in turn imported into ERDAS 9.2 colour composite operations were performed 

using red for near infra-red band, green for the red band and blue for the green band 

(RGB 4/3/2). The properties of the band are so described in the table below.  

Table 5.1: Properties of Bands 

Band Properties 

Band 2: 0.52 – 0.60m (green) This band corresponds to the green 
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reflectance of healthy vegetation and it 

occupies the region between the blue and 

red chlorophyll absorption bands 

Band 3: 0.63 – 0.69m (red) This red chlorophyll absorption band of 

healthy green vegetation is one of the most 

important bands for vegetation 

discrimination. In addition, it is useful for 

soil-boundary and geological boundary 

mapping. 

Band 4: 0.76 – 0.90m (near infrared) This band is especially responsive to the 

amount of vegetation biomass present in a 

scene. It is useful for identification of 

vegetation types, and emphasizes soil-crop 

and land-water contrasts 

Source: Jensen, (2004 

This False Colour Composite (FCC) for all study sites was used to create the classified 

image. The Anderson et al. (1976) classification scheme was employed in this exercise 

to classify the GeoEye subsets into Buildings, Forest, Rangeland, Paved roads, Unpaved 

roads, Water, Bare land and Shadow. 

Reference training sites were collected for each land cover type in order to generate 

training signatures by using the Area of Interest (AOI) and Region Grow tools. From the 

AOI tool palette, select the ‗create polygon AOI icon‘. The cursor is used to digitize and 

create the sample of the particular class for the classifier. This procedure was used to 

collect as many samples as possible for each land cover class. This resulted in the dialog 

box which contained a cell Array of created signatures as can be seen for Akabuka 

subset in figure 5.1 
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Figure 5.1: Akabuka created classes in signature editor.  

After the creation of the samples for the various land classes, from the Signature Editor 

Menu Bar select File/Save, name the signature created (Akabuka.sig) and click ok.  

From the Signature Editor Menu bar, select Classify/Supervised then enter the Input 

Raster File and the Input Signature File. For the Output Classified File, 

Akabuka_super.img was entered. Maximum likelihood algorithm was used as the 

classification technique. Select Maximum Likelihood and click ok and after the process, 

click ok again. To recode the new Akabuka_super.img image use Image Interpreter|GIS 
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Analysis|Recode. This process will combine same types of land use into a single one, for 

example, water 1 and water 2 should be combined to form water. This operation will 

create an output image in the viewer which appropriate colours were assigned. Finally, 

the classified images are converted to vector and exported to ArcGIS 10.3 for further 

processing. 

5.2 Presentation of Supervised Classification Results 

The results of the supervised classification of the respective seven subsets of the study 

area are presented below as figures 5.2 – 5.8 in the following order, Akabuka, Egbeda, 

Ikiri, Obido, Ogbogwu, Omoku and Osiakpu. 

The accuracy assessment which has been calculated using error matrix is presented in 

section 5.7. Specifically, the accuracy assessment summary of pixel based method has 

been presented in table 5.11a on page 266. 



204 
 

 
Figure5.2: Akabuka Supervised Classification Map 
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Figure 5.3: Egbeda Supervised Classification Map 
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Figure 5.4: Ikiri Supervised Classification Map 

 

 

 

 



207 
 

 
Figure 5.5: Obido Supervised Classification Map 
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Figure 5.6: Ogbogwu Supervised Classification Map 
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Figure 5.7: Omoku Supervied Classification Map 
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Figure 5.8: Osiakpu Supervised Classification in Erdas 
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5.3 OBIA of VHR in eCognition 9.0 Developer Software 

The seven subsets from the study area were analyzed using the Object based method in 

eCognition environment on the basis of the same land cover scheme classified in 

supervised pixel based method. The general procedure involves generating image object 

primitives or segments using the spectral and contextual informationto achieveoptimal 

homogeneity of the segments. The Multiresolution segmentation as implemented in the 

eCognition software was used.This algorithm locally minimizes the average 

heterogeneity of image objects and maximizes their respective homogeneity for a given 

variance threshold   of   image   objects   (eCognition, 2014). This required the input of 

scale, shape and compactness parameters and the optimal values were achieved through 

trial and error and visual inspection, see table 5.2.  The shape factor adjusts spectral 

homogeneity versus shape of objects, whereas the compactness factor balancing the 

compactness and smoothness determines the object shape between smooth boundaries 

and compact edges. The color/shape and the compactness/smoothness parameters are 

together known as homogeneity criterion (eCognition Reference Book, 2011). The scale 

parameter limits the maximum heterogeneity for combining adjoining image objects 

(eCognition Reference Book, 2011). 

The scale parameter is an abstract value to determine the maximum possible change of 

heterogeneity caused by fusing several objects. It controls the object size to user‘s 

requirement and it‘s considered the most crucial parameter of image segmentation. 

‗‘There is no consistent means to establish if a given segmentation is appropriate or 

more correct than another due to a lack of a formal and accepted conceptual foundation 

to support the belief that a segmentation-derived object is an understandable 
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representation of a structural or functional unit of the landscape‘‘ (Lein 2011: 11). This 

study therefore used the visual and subjective qualitative method to assess the specific 

arrangement of objects and how well they represent the target feature. Care was taken 

during the segmentation in order to avoid over segmentation or under segmentation. In 

implementing the ruleset, image feature descriptive characteristics of spectral, textural, 

structural and shape were used with threshold values for the classification.By visually 

interpreting different image segmentation results, scale parameters were chosen to create 

local homogeneity and to keep global heterogeneity. Similarly, a ratio of smoothness to 

compactness weight was defined for each of the subsets. Table 5.2 contains the various 

segmentation parameters used for the respective study sites. 

The nDSM from LiDAR really helps in separating the tall features from the short 

features and the RGB values from the VHR image offer excellent visual and spectral 

analysis. 

Table 5.2: Segmentation parameters 
Study Sites Scale Shape Compactness 

Akabuka 50  0.1 0.8 

Egbeda 50 0.1 0.8 

Ikiri 50 0.1 0.8 

Obido 35 0.1 0.8 

Ogbogu 35 0.1 0.8 

Omoku 80 0.1 0.8 

Osiakpu 35 0.1 0.8 
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Table 5.3 containsa range of selected object features used in the rule set classification 

process. From the table it can be seen that the nDSM which is an ancillary data derived 

from LiDAR was notadded to the first OBIA which used only the VHR image for the 

classification.LiDAR data was crucial to separate features with different elevation 

values, especially for the non-vegetated features. 

Table 5.3: Feature sets used in the rule set classification 

Land use VHR only VHR and nDSM 

Built-up NDVI < 0 and Rectangular 

Fit > 0.3 

Height > 2, Rectangular Fit > 0.3 

and NDVI < -0.5 

Open 

Surface 

NDVI < 0 and Asymetry < 

0.6 

Height < 2, Assymetry < 0.8 and 

NDVI < 0 

Paved 

Roads 

NDVI < 0, Mean NIR < 100 

and Asymetry > 0.6 

Height < 2, Assymetry > 0.8, NDVI 

< 0, NIR < 70 

Unpaved 

Roads 

NDVI < 0, Mean NIR > 100 

and Asymetry > 0.6 

Height < 2, Assymetry > 0.8, NDVI 

< 0, NIR > 70 

Water NDWI > 0.5 and NDVI < 0 Height < 2 and NDWI > 0.9 

Rangeland NDVI > 0 and < 0.3 Height < 2 and NDVI > 0 and < 0.5 

Forest NDVI > 0.3 Height > 2 and NDVI > 0.5 

Shadow Adjacent NIR = 1 and Mean 

BLUE/Image BLUE < 1 

Adjacent NIR = 1 and Mean 

BLUE/Image BLUE < 1 

 

eCognition contains one algorithm called the assign class algorithm, it is an algorithm of 

assigning classes using rules, giving conditions and unique values for each classes, 

somewhat making a decision tree or a rule-based feature separation. For example, NDVI 

was most important for differentiating trees from buildings. Similarly, brightness was 

used to classify shadow, whereas NDWI was used to differentiate water bodies and 

impervious surfaces. nDSM, was used to differentiate between high and low features. 

Additionally, the features length/width, border to, distance to, and texture were used. 

The respective thresholds applied are shown in the process trees. 
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In this research, shadows were classified by selecting objects whose Near Infrared 

Reflectance are the reverse of objects that share borders with it and objects whose Blue 

reflectance to the image scene are very low. The remaining objects were classified into 

vegetated objects and non-vegetated objects using NDVI threshold value. Non-vegetated 

objects with very high water index are classified as water using NDWI. Furthermore, 

non-vegetated objects with high linearity are classified as Roads objects, which were 

subsequently classified into Paved Roads that have very low Near Infra-Red reflectance 

compared to Unpaved Roads. Non-vegetated objects that have well defined boundaries 

are classified as Buildings while vegetated objects with very high vegetation index are 

classified as Forest.  Finally, the rest of the non-vegetated objects that do not fall in the 

category Buildings, Roads and Water are classified as Open Surfaces while vegetated 

objects with lower vegetation index are classified as rangeland.  

The segmemntation and classification processes (see figures 5.9 – 5.22) from the OBIA 

technique eCognition screen using only VHR image are presented.Finally, the resulting 

classified maps for all seven subsets are also diaplayed as figures 5.23- 5.29. 

The accuracy assessment which has been calculated using error matrix is presented in 

section 5.7. Specifically, the accuracy assessment summary of OBIA method using only 

the VHR image has been presented in Appendix 7. 
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5.3.1 Akabuka OBIA Classification Ruleset using VHRimage only. 

 

 
Figure 5.9: Akabuka segmentation parameter and classification ruleset 

 
Figure 5.10 a: Akabuka VHR Image   Figure5.10b:Akabuka Segmented Image  
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5.3.2 EgbedaOBIAClassification Rulesetusing VHR image only 

 

 
Figure 5.11: Egbedasegmentation parameter and classification ruleset 

 

 
Figure 5.12 a: Egbeda image                      Figure5.12b: Egbeda segmented image  
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5.3.3 Ikiri OBIA Classification rulesetusing VHR image only 

 
Figure 5.13: Ikiri segmentation parameter and classification ruleset 

 

 
Figure 5.14 a: Ikiri subset image              Figure 5.14b: Ikiri Segmented image  
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5.3.4 Obido OBIA Classification Rulesetusing VHR image only 

 

 
Figure 5.15: Obido segmentation parameter and classification ruleset 

 

 
Figure 5.16 a: Obido subset image                Figure 5.16b: Obido Segmented image 
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5.3.5 Ogbogu OBIA Classification Rulesetusing VHR image only 

 

 
Figure5.17: Ogbogu segmentation parameter and classification ruleset 

 
Figure 5. 18a: Ogbogu imageFigure 5.18b: Ogbogu Segmented image 
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5.3.6 Omoku OBIA Classification Rulesetusing VHR image only 

 

 
Figure 5.19: Omoku segmentation parameter and classification ruleset 

 
Figure5.20a: Omoku subset image               Figure 5.20b: Omoku Segmentation image 
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5.3.7 Osiakpu OBIA Classification Rulesetusing VHR image only 

 

 
Figure 5.21: Osiapku segmentation parameter and classification ruleset 

 

 
Figure 5.22a: Osiapku subset image         Figure 5.22b: Osiakpu Segmentation image  
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5.4 Result Presentationof OBIA Classification using VHR Image only 

The resulting maps from the OBIA technique which used only the Geo-eye image are 

displayed in figures 5.23 – 5.29. The classification results were assessed qualitatively, 

through visual interpretation and quantitatively, using a confusion matrix.The accuracy 

assessment which has been calculated using error matrix is presented in section 5.7. 

Specifically, the accuracy assessment summary of OBIA method combining nDSM and 

VHR image has been presented in Appendix 7. 
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Figure 5.23: Resulting LU/LC map of Akabuka OBIAusingVHR image only 
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Figure 5.24: Resulting LU/LC map of Egbeda OBIA using VHRimage only 
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Figure 5.25: ResultingLU/LC map of Ikiri OBIA using VHR image only 
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Figure 5.26: Resulting LU/LC map of Obido in OBIA using VHR image only 

 
Figure 5.27: Resulting LU/LC map of Ogbogu OBIA usingVHR image only 
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Figure 5.28: Resulting LU/LC map of Omoku OBIA using VHR image only 
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Figure5.29:  Resulting LU/LC map of Osiapku OBIAusing VHR only 
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5.5 OBIA combiningVHR imageand nDSM in eCognition 9.0 Software  

The procedure adopted here is similar to the procedure adopted in sub head 5.3 except 

that Normalised Digital Surface Model derived from LiDAR was added in the rule set 

with a threshold value. (See Table 5.3). Normalized Digital Surface Model (nDSM) is 

used to model the height above the ground surface of structures and vegetation. This 

surface value is derived by subtracting the DSM from the DTM. In the multi-resolution 

segmentation process, the influence of the nDSM and the multi-spectral bands on object 

generation was controlled by layer weight, scale parameters, the amount of colour and 

shape factors. The segmented image was also classified using the classificationrule set to 

extract the land cover classes. 

5.5.1 Akabuka OBIA Classification Rulesetusing VHRand nDSM  

 
Figure5.30: Akabuka segmentation parameter and classification ruleset with nDSM 
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5.5.2 Egbema OBIA Classification Rulesetusing VHR and nDSM  

 
Figure5.31: Egbeda segmentation parameter and classification ruleset with nDSM 

5.5.3 Ikiri OBIA Classification Ruleset using VHR and nDSM  

 
Figure5.32: Ikiri segmentation parameter and classification ruleset with nDSM 
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5.5.4 Obido OBIA Classification Ruleset using VHR and nDSM  

 
Figure 5.33: Obido segmentation parameter and classification ruleset with nDSM 

5.5.5 Ogbogu OBIA Classification Ruleset using VHR and nDSM  

Figure5.34: Ogbogu segmentation and classification ruleset with nDSM 
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5.5.6 Omoku OBIA Classification Ruleset using VHR and nDSM  

 
Figure 5.35: Omoku segmentation parameter and classification ruleset with nDSM 

5.5.7 Omoku OBIA Classification Ruleset using VHR and nDSM 

 

Figure 5.36: Osiakpu segmentation parameters and classification rule-set with nDSM 
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5.6 Result Presentation OBIA Combined nDSM and VHR Image 

The resulting maps from the OBIA technique which used only the Geo-eye image are 

displayed in figures 5.37 – 5.43. The classification results were assessed both 

qualitatively, through visual interpretation of the classified images against results from 

other methods, and quantitatively, using a confusion matrix. 

 

 
Figure5.37: Resulting LU/LC map of AkabukaOBIAusing VHR with nDSM 
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Figure5.38: LU/LC map of EgbedaOBIA using VHR with nDSM 
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Figure5.39: LU/LC map of Ikiri OBIA using VHR with nDSM 
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Figure 5.40: LU/LC map of ObidoOBIA using VHR with nDSM 
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Figure 5.41: LU/LC map of OgboguOBIA using VHRand nDSM 
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Figure 5.42: LU/LC map of OmokuOBIA using VHR with nDSM 
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Figure 5.43: LU/LC map of OsiakpuOBIA using VHR with nDSM 
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5.7 The Refined unpaved roads Result 

The final maps representing the refined unpaved roads using the developed algorithm in 

Objective three (3) have been presented below for the seven (7) subset study sites. 

 

-  

Figure 5.44: Refined Akabuka Unpaved Roads 
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Figure 5.45: Refined Egbeda Unpaved Roads 
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Figure 5.46: Refined Ikiri Unpaved Roads 
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Figure 5.47: Refined Obido Unpaved Roads 

 

Figure 5.48: Refined Ogbogwu Unpaved Roads 
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Figure 5.49: Refined Omokwu Unpaved Roads 
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Figure 5.50: Refined Osiakpu Unpaved Roads 
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5.8 The 3D Representation Results 

The 3D visualization of the study area was done in the 3D environment of ArcScene. 

The Geoeye subset was added to the interface and subsequently the Layer properties was 

used to set the height value of the cells in the Geoeye subset from the elevations in the 

nDSM to define how the Geoeye subset will be displayed in 3D. To enhance the 3D 

view, the vertical exaggeration was set to 1.5, illumination azimuth to 3150 (NW) and 

illumination elevation to 450 from the Scene properties (see diagram). 

 
Figure 5.51: ArcScene settings to enhance illumination 

The observer position was set to the south and the scene was captured to a JPEG format 

for presentation in this research. 
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Figure5.52a: Akabuka 2D representation        Figure 5.52b: Akabuka 3D representation 

 

 

 
Figure 5.53: Egbeda 3D representation 

 

 

 



248 
 

 
Figure 5.54: Ikiri 3D representation 

 

 
Figure 5.55: Obido 3D representation 
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Figure 5.56: Ogbogu 3D representation 

 
Figure 5.57: Omoku 3D representation 
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Figure 5.58: Osiakpu 3D representation 

5.9 Updated Map of Study Area 

In order to achieve objective four, the entire study area map was updated using the 

Google map image (see appendix 5) and some handheld GPS positions of selected points 

thought to have existed after the images were captured (see Appendix 4).However 

before this was done, an object based classification was carried out in the ecognition 

software environment. Several segmentation parameters were tested and objective 

visualization was employed for each result before achieving the optimal values which 

appeared to best reveal the real world features in the entire study area.  The approved 

segmentation values were scale 150, shape 0.3 and compactness 0.8. The standard rule 

set for this research study was also inputted for the rule based classification. Figures 

5.58 and 5.59 are the segmentation/classification rule set and the segmented image of the 

entire study area. 
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Figure 5.59: Segmentation parameters and classification rule set. 

 

 

 
Figure 5.60: OBIA Segmented image of the study area. 
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Figure 5.61a: Updated map of the study area    Figure. 5.61b:Old map of the study area 

5.10 Accuracy Assessment Results 

There is no classification created from remote sensing data that can be completely 

accurate as errors originate from different sources including the classification algorithm 

itself (Steele et al. 1998, Smits et al. 1999). This makes it compelling that the user needs 

to know how accurate these products are by carrying out accuracy assessment of every 

remote sensing classification. One of the most common ways of representing accuracy 

assessment information is in the form of an error matrix, or contingency table 

(Congalton 1991, Congalton and Green 1998). Error matrix provides a detailed 

assessment of the how much the reference data and the classified data agree at specific 

locations. In addition to this assessment by error matrix, a number of descriptive and 

analytical statistical techniques, based on the error matrix, have been proposed (Okeke 
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andKarneli, 2006). These include the overall accuracy, user‘s and producer‘s accuracy, 

and various forms of kappa coefficients of agreement. 

The tables in Appendix 7 (seven) contain the results of the accuracy assessment based 

on Producer‘s accuracy, User‘s accuracy, Overall accuracy and Kappa coefficient. 

Producer‘s accuracy and user‘s accuracy are related to commission and omission error, 

respectively. Commission error refers to misclassification that occurs because pixels of 

another class are labeled by the user as belonging to the class of interest. Omission error 

takes place when pixels belong to the ground truth class, but are assigned to a different 

class (Conchedda et al. 2008). 

They are arranged correspondingly for the seven (7) study sites and the respective 

experiments of Pixel based OBIA with VHR and finally OBIA with VHR and LiDAR 

nDSM. 

Figures 5.62 a-c and Tables 5.4 a-c in section 5.10.1 are the summaries of the overall 

accuracyand kappa (as bar chart and tables) for the three independent experiments for 

the seven study sites while figure 5.63 is a bar chart showing all three independent 

experiments for all the study sites. This representation was done in order to appreciate 

the consistency in the results. 

All error matrix tables are displayed in Appendix 7 from tables AP7.1a,b&c – tables 

AP7.7a,b&c while Quantitative Values of the LU/LC classes achieved from different 

methods are displayed in Appendix 8 from tables AP8a – AP8g. 
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5.10.1 Summary of Overall Accuracy and Kappa Coefficient 

Table 5.4 a: Summary of Pixel Method Overall Accuracy and Kappa Coefficient 

PIXEL BASED 

STUDY SITES OVERALL ACCURACY (%) KAPPA 

AKABUKA 71 0.654 

EGBEDA 77 0.728 

IKIRI 72 0.670 

OBIDO 72 0.669 

OGBOGU 74 0.692 

OMOKU 71 0.659 

OBIAKPU 70 0.647 

Average 74.43% 0.674 

 

 

 
Figure 5.62 a: Bar chart for pixel based results. 
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Table 5.4 b: Summary of OBIA (VHR) Method Overall Accuracy and Kappa 

Coefficient 

OBIA WITH VHR 

STUDY SITES  OVER-ALL  %  ACCURACY  KAPPA 

AKABUKA 81 0.769 

EGBEDA 87 0.839 

IKIRI 81 0.776 

OBIDO 81 0.776 

OGBOGU 83 0.806 

OMOKU 82 0.791 

OBIAKPU 82 0.786 

Average 82.43% 0.791 

 

 

\

 
Figure 5.62 b: Bar chart for OBIAVHR results 
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Table 5.4c: Summary of OBIA (VHR & nDSM) Method, Overall Accuracy and Kappa 

Coefficient 

OBIA WITH VHR & NDSM 

STUDY SITES OVER-ALL  %  ACCURACY  KAPPA 

AKABUKA 92 0.899 

EGBEDA 93 0.912 

IKIRI 91 0.894 

OBIDO 90 0.885 

OGBOGU 94 0.927 

OMOKU 93 0.916 

OBIAKPU 92 0.903 

Average 91.14% 0.905 

 

 
Figure 5.62 b: Bar chart for OBIAVHR &nDSM results 
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Figure 5.63: Bar Chart of Quantitative Values of the LU/LC classes achieved from 

different methods applied 
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5.11 Hypotheses Tests 

One method of evaluating research questions in a quantitative research is through the 

process of hypothesis testing. A hypothesis test is a statistical test that is used to 

determine whether there is enough evidence in a sample of data to infer that a certain 

condition is true for the entire population. A hypothesis test examines two opposing 

hypotheses about a population: the null hypothesis and the alternative hypothesis. The 

null hypothesis is the statement being tested. Usually the null hypothesis is a statement 

of "no effect" or "no difference". The alternative hypothesis is the statement you want to 

be able to conclude is true.Two research questions have been set in this research and the 

hypothesis test will be used to evaluate them. 

In this research, the T-test statistics has been selected for use. It is very likely that the T-

test is most commonly used Statistical Data Analysis procedure for hypothesis testing 

since it is straightforward and easy to use. Additionally, it is flexible and adaptable to a 

broad range of circumstances. 

The procedure used here is the independent sample T-test. This procedure is used when 

the population mean and standard deviation are unknown, and 2 separate groups are 

being compared. We therefore have to determine the sample mean and sample standard 

deviation or variance. To successfully achieve this, Efron and Tibshirani (1993) 

recommended between 25 and 200 random sample reference for the estimation of 

standard error soa total of 28 sample reference data were taken from each of the seven 

study sites for the three experiments (See Appendix 2):-  

i. Pixel based,  

ii. OBIA with VHR and  
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iii OBIA with VHR and nDSM. 

5.11.1 T-Test for Two Independent Samples with Unknown Equal Population 

Variances 

Let N1 and N2represent two independent populations with means U1 and U2 respectively. 

Also let their population variances be𝜎1
2 𝑎𝑛𝑑 𝜎2

2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜎1
2 = 𝜎2

2. 

Now let n1 and n2denote samples of the two populations with sample mean 𝑥 1 and 𝑥 2 and 

sample variance s
2

1 and s
2

2 respectively.  

Where    𝑥 i  = (𝑛
𝑖=1 xi -𝑥  )/n   and  

s
2

i =   (𝑛
𝑖=1 xi - 𝑥 )

2
/n-1        for  I = 1, 2 

 

We can conduct a two tailed test of a null hypothesis: 

H0: μ1 = μ2 or μ1 – μ2 = 0 

Against an alternative hypothesis 

H1: μ1 ≠ μ2 or μ1 – μ2 ≠ 0 

A t-statistic assumed to be normally distributed is calculated using the formula. 

tcal=(𝑥 -𝑥 2)–(μ1–μ2)/(s
1
1/n1+s

2
2/n2)

1/2  
(1) 

 

Where (𝑥  - 𝑥 2) is the difference in sample means and  

(s
1

1/n1 + s
2
2/n2)

1/2 
is a pooled standard error 

Since μ1 – μ2= 0, equation 1 can be expressed as 

tcal =  (𝑥  - 𝑥 2) / (s
1

1/n1 + s
2
2/n2 )

1/2
                                                                               (2) 

A critical t-value is read from the statistical table at α level of significance with degree 

of freedom equals (n1 + n2 - 2). So that for a two-tailed critical t-value we may denote as 
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tcri = t(n1+n2-2);α/2 We then compare absolute tcal, ie, |tcal| and tcri values to make a 

decision. 

Decision rule is to reject the null hypothesis H0, and choose the alternative hypothesis H1 

if, 

 |tcal| > tcri  

And conclude that the two population means μ1 and μ2 are not equal and statistically 

different. 

Otherwise, we do not reject H0 if  

|tcal| < tcri  

And conclude that the two populations have same mean and not statistically different 

from each other. 

Also a 95% Confidence Interval (C.I.) of the null hypothesis can be constructed using: 

95% C.I. = (𝑥 S - 𝑥 H) – or + 1.96(S.E) where S.E. is the pooled standard error. We do not 

reject the null hypothesis if zero (0) lies in the constructed interval, otherwise we reject 

and conclude that there is a significant difference in the two means compared  

5.11.2 Evaluation of Hypotheses 

5.11.2.1 Null Hypothesis 1: There is no significant difference between the accuracies of 

object based and pixel based methods of classification using high spatial resolution 

imagery. 

To evaluate the first null hypothesis stated for this study, consider the mean, variance 

and size of the sampling distribution of the Pixel Method denoted by 𝑥 S,s
2

S and 
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nSrespectively. Also consider its counterpart OBIA Method with mean (𝑥 H), variance 

(s
2

H) and size (nH). 

 From the study nS = nH = 28 and, 

𝑥 S = (28
𝑆=1 xS -𝑥 S)/n = 0.635 + 0.621 + --- + 0.654 / 28 

𝑥 S = 19.04/28 = 0.68. 

𝑥 H = (28
𝐻=1 xH -𝑥 H)/n = 0.769 + 0.741 + --- + 0.815 / 28 

𝑥 H = 22.12/28 = 0.79. 

s
2

S =  (28
𝑆=1 xS - 𝑥 S)

2
/ nS-1 

     = (0.635 – 0.68)2 + (0.621 – 0.68)2 + --- + (0.654 – 0.68)2 / 28 -1 

     = 0.051 / 27 

s
2

S = 0.001875 

s
2

H =   (28
𝐻=1 xH - 𝑥 H)

2 
/ nH-1 

     = (0.769 – 0.79)2 + (0.741 – 0.79)2 + --- + (0.815 – 0.79)2 / 28 -1 

     = 0.0303 / 27 

s
2

H= 0.001124 

Now for a two-tailed test of the null hypothesis  

H0: μH = μN or μH – μN = 0 

Against an alternative hypothesis 

H1: μH≠μN or μH – μN≠ 0 

The two-tailed critical t-value at 5% (α) level of significance with nS + nH – 2 degrees of 

freedom is given by 

tcal = (𝑥 S - 𝑥 H) – ( μS – μH) / (s
1

S/nS + s
2

H/nH )
1/2

 

 = (0.68 – 0.79) – (0) / (0.001875 / 28 + 0.001124 / 28)
1/2
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 = - 0.11 / (0.000067 + 0.00003)
1/2

 

 = -0.11 / (0.000097) 
1/2 

 = 0.11 / 0.0097 

tcal = -11.34 

 | tcal |= 11.34 

The two-tailed critical t-value at α = 5% level of significance with D of F = (nS + nH– 2) 

is given by 

tcri = t nH + nN – 2; α/2 = t28+28-2; 0.05/2 

tcri = t 56 – 2; 0.025  =  t54; 0.025   

tcri = 2.0049  (from statistical tables see appendix 1) 

Hence |tcal| > tcri 

11.34  > 2.0049 

For the above hypothesis we construct 

C.I. =  (x ̅S - x ̅H) – or + 1.96(S.E) 

       = ( 0.68 – 0.79) – or + 1.96 (0.0097) 

       = -0.11 – or + 0.019 

Since zero does not lie in the C.I., we reject Ho. 

Lastly, the probability that t is less than -11.34 is read from statistical tables and 

presented as: 

P(t <= -11.34 = 6.5(10)-16 which is approximately zero, indicating a very high 

significant difference in the two averages compared. 

5.11.2.2 Decision: Considering the t- test, C.I. and probability values, we reject the null 

hypothesis in favour of the alternative hypothesis and conclude that there is a significant 
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difference in the population means of the Pixel and OBIA methods. It implies that the 

Pixel method has mean (0.68) lower than OBIA mean (0.79). Thus OBIA yields a better 

outcome than the Pixel method. 

5.11.2.3 Null Hypothesis 2: The addition of nDSM does not significantly improve the 

accuracy of high resolution image classification of urban area. 

To evaluate the second hypothesis proposed by the study, we again consider the sample 

mean (𝑥 H), variance (s
2

H) and size (nH) of OBIA method with those of its counterpart 

OBIAnDSM with sample mean (𝑥 N), variance (s
2

N) and size (nN). 

Similarly, nH = nN = 28 from the study and   

𝑥 H = 0.79; s
2

H = 0.001124 as earlier obtained. 

But for OBIAnDSM sample we have; 

𝑥 N =  (28
𝑁=1 xN)/n 

 

𝑥 N = 
0.903+0.88+⋯+0.903

28
 

 

𝑥 N = 
25.48

28
  = 0.91 

s
2

N=  (28
𝑁=1 xN - 𝑥 N)

2
/ nN-1 

s
2

N = 
(0.903−0.91)2+(0.88−0.91)2+⋯+ (0.903−0.91)2

28−1
 

s
2

N = 
0.0129

27
 = 0.000477 

A two-tailed test of the null hypothesis 

H0: μH = μN or μH – μN = 0 

Against an alternative hypothesis 

H1: μH≠μN or μH – μN≠ 0 
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tcal = (𝑥 H - 𝑥 N) – ( μH – μN) / (s
2

H/nH + s
2

N/nN)
1/2

 

tcal = 
 0.79−0.91 −(0)

 0.001124 /28)+(0.000477 /28)
 

tcal = 
−0.12

 0.00004)+(0.000017 )
 

tcal = 
−0.12

 0.000057 )
 

tcal = 
−0.12

0.008
  = -15 

The two-tailed critical t-value at α = 5% level of significance with D of F = (nH + nN – 2) 

is given by 

tcri = t nH + nN – 2; α/2 = t28+28-2; 0.05/2 

tcri = t 56 – 2; 0.025  =  t54; 0.025   

tcri = 2.0049        (from statistical tablessee appendix 1) 

Hence |tcal| > tcri 

             15 > 2.0049 

Again for the above hypothesis 2 we construct 

C.I. = (𝑥 S - 𝑥 H) – or + 1.96(S.E) 

       = (0.79 – 0.91) – or + 1.96 (0.008) 

       = (-0.11 – 0.016, -0.11 + 0.016) 

C.I. = (-0.136, -0.104) 

Since zero does not lie in the C.I., we reject H0. 

The probability that t is less than -15 is read from statistical tables and presented as: 

P(t <= -15 = 9.2(10)
-21 

which is approximately zero, indicating a very high significant 

difference in the two averages compared.   
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5.11.2.4 Decision: We therefore reject the null hypothesis of no significant difference in 

the kappa mean values of OBIA and OBIAnDSM considering the t- test, C.I. and 

probability values. Thus we conclude that there is a significant difference in the average 

kappa values of OBIA and OBIAnDSM. The implication is that OBIAnDSM performed 

better since its average kappa value of 0.91 is significantly higher than that of OBIA 

with an average value of 0.79.  

5.11.2.5 Null Hypothesis 3: Ho2 the addition of LiDAR derived nDSM to the VHR 

image is not effective in the 3-D analysis of features extracted. 

This hypothesis has been tested by visual inspection of the theVirtual Geographic 

Environment (VGE) experiment carried out in sub-head 4.7 and results displayed as 

figures 5.52a and 5.52b. The visual inspection clearly shows figure 5.52b as a 3-D 

display of Akabuka study site due to the addition of LiDAR derived nDSM while the 

figure 5.52a which had no nDSM showed a 2-D display of the site. 

5.11.2.6  Decision: Since the addition of nDSM created a 3-D visualization of the site 

and the reverse was the case when excluded, we therefore reject the null hypothesis. 

5.12 Comparison of Results 

The summary of the results from the three experiments are displayed in tables a, b and c. 

for Pixel based, OBIA using VHR and OBIA using VHR and nDSM respectively. Each 

of the tables contain overall accuracy and kappa coefficient for each of the 7 (seven) 

study sites. The two OBIA achieved higher overall classification accuracies and higher 

individual LU/LC classes (―producer‘s accuracy‖ and ―user‘s accuracy‖) over the 
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Maximum Likelihood classifier of pixel-based approach. The details of the result from 

tables a, b and c show that the pixel based method has overall accuracy ranging from 

70% to 77% and Kappa from 0.647 to 0.728, while OBIA using VHR image alone has 

overall accuracy ranging from 81% to 87% with Kappa 0.769 to 0.839 and finally, 

OBIA using VHR image and nDSM has overall accuracy ranging from 90% to 94% and 

Kappa from 0.885 to 0.927.  Also from tables 5.11a, 5.11b and 5.11c, the average 

overall accuracy for the three independent experiments is 72.43% for the pixel based 

method, 82.43% for the OBIA using VHR image while 91.14% represents the average 

overall accuracy achieved in the OBIA using VHR and nDSM. Similarly, the average 

Kappa results are 0.674, 0.791 and 0.905 respectively for the three experiments. A 

careful look at the results will show a consistent increase in the overall accuracy as well 

as the Kappa coefficient from the pixel based method to the OBIA method using VHR 

and nDSM. A Kappa statistic of > 80% suggests a strong agreement, while 40% to 80% 

is a moderate agreement. Thus, strong agreements were achieved in OBIA methods, 

while a moderate agreement was observed in pixel-based method. 

The pixel based method is only based on pixel value of spectral value whereas object 

based method is based on spectral value, shape, texture, and context information for 

processing images. OBIA has showed more capability to deal with the complexity of the 

VHR image. From visual inspection of the classification results from the two methods, 

you can judge by visual clarity which the OBIA maps have over the pixel based maps. 

The comparison between the two object based processes which used VHR image alone 

and the other which used VHR in addition to nDSM also reveals a significant difference 
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in the results. The result showed 8.71% increase when nDSM was added to the process. 

Adding ancillary data to spectral bands of VHR imagery over urban areas is critical for 

classifying spectrally similar classes such as buildings and other tall features. 

Tables from5.12a-g contain values of the distribution of the land cover classes in the 

study sites. A careful look at the land cover classes distribution in the selected urban 

study sites the forest class has the highest coverage in all the seven study sites. In terms 

of relative distribution of the building class, Omoku has the highest with a 

corresponding high shadowcontent resulting from more urban structures than the other 

study sites. These results also show high accuracy for all vegetation extraction 

whichindicates the very high potential of object-based classification of VHR imagery for 

extracting vegetation areas using the well-known index of NDVI. The selection of the 

threshold values for NDVI is critical in classifying vegetation areas. 

The high accuracy values achieved in the general feature extraction for unpaved roads 

may have been as a result that most sections of the paved road have been covered by 

earth or top soil thereby giving such sections of the paved road to look more like 

unpaved road surfaces. This was clearly revealed during ground truthing.However, 

visual evaluation of results from the developed algorithm showed that the algorithm 

gave better performance. Future works shall focus more on the development of a 

filtering technique that can successfully differentiate unwanted patches from extracted 

unpaved road in the result. 
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CHAPTER SIX 

 

SUMMARY, CONCLUSION AND RECOMMENDATION 

 

6.1 Summary 

The focus of this study was basically to examine the use of OBIA method in VHR and to 

evaluate the integration of LiDAR data derived nDSM inthe optimization of the 

accuracy of extraction of urban land cover information from high resolution GeoEye-1. 

Seven study sites in Rivers State of Nigeria were subset from the available image and 

used for this study. Geoeye-1 image and LiDAR data of the study area acquired in 2012 

were the only latest data available for the study. The aim of the study was to carry out a 

comprehensive mapping and analysis of internal urban features with a view to 

evaluating the supremacy of object-based analysis over pixel-based analysis techniques. 

Three independent classifications were carried out. The first was pixel-based supervised 

classification of the land cover features using the Geoeye-1 image in the Erdas 

imagine9.2 software, while second and third experiments were OBIA carried out within 

the eCognition developer software. The second experiment was conducted using the 

VHR image alone while the third had the addition of the LiDAR derived nDSM for 

optimization purpose. In eCognition this property can be modelled by describing the 

difference in elevation to neighbouring objects (Hofmann, 2001). The pixel based 

method and the object based methods used MLC and KNN classifiers respectively. 

Object-based classification can fully utilize background user knowledge by readily 

applying spatial concepts to the classification approach (Benz et al. 2004). By including 
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contextual information, rather than only spectral information, object-based classification 

offers the opportunity to maximize accuracy and minimize the likelihood of producing 

results significantly affected by the ―salt-and-pepper effect.‖ However, the initial 

segmentation of imagery into objects does not always prevent the ―salt-and-pepper 

effect‖ (Blaschke 2010). If the user does not utilize the appropriate segmentation 

approach and apply suitable spatial information to the classification, spectral 

characteristics of image objects may produce the ―salt-and-pepper effect‖ only at a larger 

minimum mapping unit (Matinfar et al. 2007). The use of spatial or contextual 

information from neighborhood pixels remains a major setback to pixel-based method. 

On the other hand, object-based methods allow integration of different object features, 

such as spectral values, shape, and texture. One of the strength of the object-based 

classification is the ability to combine spectral and spatial information for extracting 

target objects. 

6.2 Conclusion 

Most traditional classification approaches are based exclusively on the digital number of 

the pixel itself. Thereby only the spectral information is used for the classification. As a 

result, the use of spectral based classification methods has been repeatedly reported to 

create confusion among the classes. The concept is that important semantic information 

necessary to interpret an image is not represented in single pixels, but in meaningful 

image objects and their mutual relations.only the spectral information is used for the 

classification. High spatial resolution sensors involve a general increase of spatial 

information and the accuracy of results may decrease on a per-pixel basis. In order to 
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realize the full potential of the VHR image data, object-oriented image analysis is 

implemented with the software eCognition. The two OBIA experiments showed better 

results than the pixel based method consistently for the seven study sites. TheOBIA 

experiments(VHR only and VHR/nDSM) used spectral information that was not used in 

the pixel-based method. The visual appearances of the OBIA results clearly reveal its 

superiority over the pixel based classification method. 

The impact of the nDSM on the classification process could be evaluated at 

approximately 9% increase in accuracy. The findings of this research indicate that the 

combination of the nDSM and GeoEye-1 satellite imagery constitutes an improved and 

effective approach for extracting detailed information of urban areas. Height information 

considerably increases the accuracy of land cover information. Therefore, producing 

land cover maps with an additional nDSM is more appropriate because it would 

optimize the accuracy. Consequently, this study and previous research studies have 

found that the addition of high resolution nDSM with VHR imagery always improved 

the accuracy of urban land cover feature extraction regardless of the site in 

question.Height information considerably increases the accuracy of land cover 

information. Therefore, producing land cover maps with an additional nDSM is more 

appropriate because it would optimise the accuracy, reduce the cost and the time. 

The OBIA framework consists of multiresolution segmentation followed by hierarchical 

rule-based classification.The method offers a practical, fast, and easy to use (within 

eCognition) framework for classifying VHR imagery of urban areas. Despite the spectral 

and spatial complexity of land cover types, the method resulted in the overall accuracy 
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of up to an average of 82.43% when only VHR image was used and average of 

91.14%when nDSM was added. This level of accuracy is very promising and the 

addition of nDSM shows the great potential of combining vector data, VHR imagery, 

and object-based image analysis for classification of urban areas. 

The developed algorithm for the extraction of unpaved roads, on visual evaluation, can 

be seen to give a more refined map of the extracted unpaved roads (figure 5.44- 5.50) 

when compared with the unpaved road extracted during the general features extraction. 

However, future works shall focus more on the development of a filtering technique that 

can successfully differentiate unwanted patches from extracted unpaved road in the 

result. 

6.3 Recommendations 

Technological advances and increasing availability of high-resolution satellite imagery 

offer the potential for more accurate land cover classifications and analyses, which could 

greatly improve the detection and quantification of land cover/ land use changes, but 

these images are often expensive and difficult to acquire, which prohibits or reduces 

their use. However, effort must be made for easier access to low-cost, multiband, high-

resolution satellite imagery as this would greatly facilitate conservation management and 

decision-making. 

Object based images classification method has proved to be very effective in analyzing 

or extraction land cover features when using very high resolution images and ecognition 

software has also proved to one of the best software for OBIA. Therefore effort must 

also be made by research institutes and government to collaborate with software 
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provider companies towards making it available and affordable to researchers. For now 

it remains one of the most expensive software for analyzing high resolution remote 

sensing images.  

A successful and accurate classification begins with a successful and accurate 

segmentation and a successful and accurate segmentation is determined by using the 

optimal segmentation parameters. Therefore I will strongly recommend that further 

studies should focus on developing an algorithm that will enable 

researchersautomatically determine optimal segmentation parameters. The current 

popular method of trial and error cum visual inspection is subjective and leaves room for 

mistakes or inaccurate segmentation (over segmentation or under segmentation) which 

takes its toll on the final result or accuracy of classification. 

Future studies will strive to develop more filtering technique that can successfully 

eliminate unwanted patches from extracted unpaved road in the result. 
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CHAPTER SEVEN 

CONTRIBUTION TO KNOWLEDGE 

This research further corroborates the results of previous studies (Dinis et al. 2009, 

Kongo 2015) that have combined satellite imagery with height information from LiDAR 

to extract urban land cover. It has developed and tested OBIA technique as well as the 

conventional pixel based approach to define and map LU/LC patterns in the study area 

of Rivers State, Nigeria. This work has emphasized that the OBIA approach has proved 

to be an advanced solution for image analysis, since the accuracies were improved at 

different study sites applied compared with those of pixel-based approach. The study 

pointed out that the OBIA yielded more accurate results than the classical per-pixel 

approach especially when analyst‘s expert knowledge is presented.Its also proved that a 

suitable segmentation parameter may not necessarily be suitable for use in another 

image even if its taken by same satelite due to factors like size of the site, sun elevation, 

topography, acquisition time, etc.  

The experiments thatcombined the nDSM with the GeoEye-1 image as well as when 

only the GeoEye-1 image was used have confirmed the huge advantage in the 

integration of LiDAR derivednDSM to the classification of VHR image. This integration 

of nDSM improved the accuracy by about 9%. This was because the nDSM value was 

able to clearly discriminate or separate high and low features using feature thresholds 

thereby making it clear that height information considerably increases the accuracy of 

land cover information. Furthermore, it has also been successfully shown that rule based 

method of classification is a viable method and the rule set is transferable to other sites 
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as has been shown to work successfully in a all seven study sites that make up the study 

area. The range and consistency of accuracy levels achieved in the respective OBIA for 

the subsets demonstrates the great potential of the transferability of the rule-set to other 

areas of the same VHR imagery. This study and previous research have found 

thatcombining the high resolution nDSM with RS imagery always improved the 

accuracy of urban land cover regardless of the site used for the experiment. 

A good representative value to evaluate the classification accuracy performance is the 

Kappa statistic, which shows the measure of agreement between the classification result 

and the reference data, i.e. overall accuracy, and the chance agreement (Jensen, 2005). 

This research has also helped to verify statistically the reliability of the Kappa statistics 

as efficient accuracy parameters in validating remote sensing data over a given reference 

data. It also provides guidelines on the types of features (e.g., texture, shape, size, 

brightness) and ranges of thresholds which are suitable for classifying specific land 

cover types.The development of unpaved road refinement algorithm is a major step 

towards giving attention to the extraction of unpaved roads as a way to support security 

and survellance in these times of kidnapping and insurgency. 

The digital map of the study area remains a viable document for information in the 

understanding of the distribution of land cover classes within the study area and would 

be very helpful to planners and decision makers. 
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Appendix 1: T-Distribution Table 
One Sided 75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95% 

Two Sided 50% 60% 70% 80% 90% 95% 98% 99% 99.5% 99.8% 99.9% 

1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6 

2 0.816 1.080 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60 

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92 

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767 

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496 

60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 

80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416 

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390 

120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 

 
0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 
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Appendix 2: Summary of Kappa Values used for Hypotheses Test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subsets Pixel VHR VHR/nDSM 

Akabuka 0.635 0.769 0.903 

Akabuka 0.621 0.741 0.880 

Akabuka 0.693 0.789 0.904 

Akabuka 0.668 0.778 0.909 

Mean 0.654 0. 769 0.899 

Egbeda 0.690 0.845 0.917 

Egbeda 0.758 0.853 0.916 

Egbeda 0.731 0.835 0.927 

Egbeda 0.731 0.824 0.886 

Mean 0.728 0.839 0.912 

Ikiri 0.676 0.781 0.878 

Ikiri 0.666 0.801 0.920 

Ikiri 0.738 0.810 0.918 

Ikiri 0.611 0.718 0.863 

Mean 0.673 0.778 0.895 

Obido 0.648 0.731 0.878 

Obido 0.692 0.800 0.858 

Obido 0.721 0.799 0.913 

Obido 0.622 0.776 0.892 

Mean 0.671 0.777 0.885 

Ogbogwu 0.724 0.819 0.946 

Ogbogwu 0.608 0.759 0.902 

Ogbogwu 0.710 0.831 0.944 

Ogbogwu 0.734 0.820 0.915 

Mean 0.694 0.807 0.927 

Omoku 0.661 0.779 0.913 

Omoku 0.655 0.794 0.941 

Omoku 0.669 0.807 0.908 

Omoku 0.650 0.783 0.900 

Mean 0.659 0.791 0.916 

Osiakpu 0.617 0.759 0.894 

Osiakpu 0.636 0.762 0.896 

Osiakpu 0.684 0.812 0.917 

Osiakpu 0.654 0.815 0.903 

Mean 0.648 0.795 0.894 

Mean of 

Mean 0.675 0.794 0.905 
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Appendix 3: GPS  

 

OBSERVATIONS USED TO VALIDATE THE ALREADY GEOREFERENCED 

DATA 

ADJUSTMENT REPORT 

1 Coordinate System 
 

1.1  Name of Coord. System 

NIG MID BELT 

1.2  Base Parameter 

Major Semi-axis a 6378249.1450 

Flattening  f 1/293.46500000 

1.3  Projection Parameter 

M0 = 0.99975000 Projection Ratio 

H = 0.0000 Projection Height 

Bm = 0 Average long. on Projection plane  

B0 = 04:00:00 Origin long.  

L0 = 08:30:00 Central Meridian 

N0 = 0.0000 Northern Addition 

E0 = 670553.9840 Eastern Addition 

Go to top 

 
2 3D Non-constraint Adjustment  

2.1  Adjustment Parameter 

Base WGS-84 

Alternate amount 2 

X square check (a=95%) Pass 

Free 0 

 

 

file:///C:\Users\ETEJE%20S%20O\Desktop\PHD%20GPS%20OBSERVATION%20FINAL%20FOLDER\FIRST%20EPOCH%20GPS%20OBSERVATIONS\Report\AdjustReport.html%23Top
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2.2  Free adjustment coordinate 

Stati

on 

lat. /RMS  long. /RMS Height/RMS RMS 

(Degree:Minu

te:Second) 
(m) 

(Degree:Minu

te:Second) 
(m) (m) (m) 

RON 

124 

5:17:38.29969

N 
0.0000 

6.42:49.02268

E 
0.0000 155.2435 0.0000 0.0000 

VUN

1 

5:17:48.67782

N 
0.0000 

6:38:37.61656

E 
0.0000 180.9806 0.0000 0.0000 

VUN

2 

5:14:41.37944

N 
0.0000 

6:37:46.42431

E 
0.0000 170.9909 0.0000 0.0000 

VUN

3 

5:12:46.92391

N 
0.0000 

6:40:10.91417

E 
0.0000 191.0375 0.0000 0.0000 

VUN

4 

5:13:07.86869

N 
0.0000 

6:43:26.75669

E 
0.0000 165.0087 0.0000 0.0000 

VUN

5 
5:112467844N 0.0000 

6:46:55.88316

E 
0.0000 182.4478 0.0000 0.0000 

VUN

6 

5:07:43.94442

N 
0.0000 

6:45:35.16682

E 
0.0000 176.2576 0.0000 0.0000 

Go to top 

 
 

3 2D Constraint Adjustment  

3.1 Adjustment Parameter 

Alternate amount 3 

Reference factor 
 

x(north)Move(Offset) 2.6391m 

y(east)Move(Offset) -6.4374 m 

Scale 0.0000ppm 

Rotate 0.0000 s 

 

 

file:///C:\Users\ETEJE%20S%20O\Desktop\PHD%20GPS%20OBSERVATION%20FINAL%20FOLDER\FIRST%20EPOCH%20GPS%20OBSERVATIONS\Report\AdjustReport.html%23Top
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3.2  2D Adjustment Distance  

Start point 
End 

Point 

North(x)/RMS East(y)/RMS 2D Distance RMS 
Relativ

e error 

(m) (m) (m) (m) 
 

RON 124 
VUN

1 341.567 
0.00

0 -7742.183 0.000 7749.714 0.000 
1: 

0 

 

VUN

2 -5408.143 
0.00

0 -9336.162 0.000 10789.436 0.000 
1: 

0 

 

VUN

3 -8937.668 
0.00

0 -4895.792 0.000 10190.716 0.000 
1: 

0 

 

VUN

4 -8311.462 
0.00

0 1138.557 0.000 8389.083 0.000 
1: 

0 

 

VUN

5 -11499.420 

 

7571.400 0.000 13768.179 0.000 

1: 

0 

 

VUN

6 -18273.830 
0.00

0 5066.576 0.000 18963.203 0.000 
1: 

0 

 

3.3  2D Coordinate 

Statio

n 

North(x)/RMS 

(m) 

East(y)/RMS 

(m) 

RMS 

(m) 

Error Ellipse 

E(m) F(m) 

ET(Degree:

Minute:Seco

nd) 

RON 

124 143325.569 ***** 472551.573 ***** 
 

VUN1 143667.136 0.000 464809.390 0.000 0.000 0.000 0.000 0:00:00 

VUN2 137917.426 0.000 463215.411 0.000 0.000 0.000 0.000 0:00:00 

VUN3 134387.901 0.000 467655.781 0.000 0.000 0.000 0.000 0:00:00 

VUN4 135014.107 0.000 473690.130 0.000 0.000 0.000 0.000 0:00:00 

VUN5 131826.149 0.000 480122.973 0.000 0.000 0.000 0.000 0:00:00 

VUN6 125051.739 0.000 477618.149 0.000 0.000 0.000 0.000 0:00:00 
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Appendix 4: GPS Established Stations 
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Appendix 5: Coordinates of Ground truth Features 

LAT LONG Description 

5.354923764 6.765995317 New classroom block. 

5.354921663 6.765986874 New school building. 

5.354924426 6.765983052 New primary school building. 

5.350562459 6.761664779 Excavated area 

5.352046875 6.762405485 New market square. 

5.231845315 6.750994664 Tarred road at village sq in Egbeda 

5.232059201 6.748878264 Unpaved road hall in Egbeda 

5.233630674 6.746739043 Obugwor 

5.235125586 6.750715435 Structure at village sq in Egbeda 

5.237303068 6.753543869 town hall in imenyi Egbeda 

5.239083365 6.753379611 Ebakwu hall 

5.238560054 6.754651518 Omuikega 

5.238822922 6.747920662 Ngbuoturu 

5.267427538 6.733030576 New road in Ubimini 

5.271579104 6.733917047 links new residential houses 

5.273471670 6.734283906 large open space  in Ubimini 

5.349522586 6.652424522 Umualinwa street Omoku 

5.351124759 6.652087505 The play Ground along Creek road  

5.353112383 6.651488598 Creek road 

5.348125401 6.653335062 Akor street Omoku 

5.351438560 6.654562733 Okpoli Lane Omoku 

5.350907719 6.653684283 Abua street Omoku 

5.354202301 6.652899357 Toby Street Umuegbu 

5.348634981 6.652966097 Osakwe street Omoku 

5.349498407 6.652915548 Akor street Omoku 

5.352095372 6.653343712 Oboburu street Omoku 

5.354245014 6.654899072 Osere street Omoku 

5.350886266 6.654492410 Abua street Omoku 

5.347456014 6.653504742 Akor street Omoku 

5.348666311 6.653799292 Osakwe street omoku 

5.347154849 6.654270720 Court road Near Ezeali Palace 

5.346298155 6.653134447 Ukposi Lane Omoku 

5.351031915 6.654385781 Abua street Omoku 

5.347143570 6.653176211 Ukpesi street Omoku 

5.352420177 6.661232606 Albert Akogu's 

5.347737103 6.653074574 Umuodogwu Lane Omoku 

5.343359188 6.651989427 Iheukwu street Omoku 

5.343562804 6.651520171 Cemetary road Omoku 

5.344016961 6.651188691 Oba road 

5.342363452 6.651451000 Okolo Close off Cemetry road 

5.343088157 6.652531665 Iheukwu street Omoku 
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5.343962280 6.652837319 Church road 

5.345052078 6.651316722 Adah Lane 

5.343724723 6.650354725 Agburu street Omoku 

5.338495251 6.648384140 Eze Obohias Palace Omoku 

5.333281743 6.652169486 Safari Guest House along Ahodda road 

5.359405261 6.677126493 Old Comm. Hall Ebogoro, along Ebogoro/Omoku road 

5.333833792 6.702610479 Egbida Health Centre 

5.310323233 6.703135625 Sch. road Osiakpu 

5.292475711 6.702073921 Eliete/Omoku road 

5.275706838 6.700371259 Ohiugua/Elehia road 

5.276744398 6.645065859 Hospital road Obigwe 

5.295787149 6.652417305 Ahuda/Omoku road 

5.311369973 6.653144164 Main road 

5.238078968 6.651591642 elf Staff Quater's along Omoku road 

5.234437807 6.642413808 palace of Adama Nwangwet Ogbogu 

5.231815157 6.642589578 Ogbogu Health Centre along Omoku road 

5.212832493 6.642436624 Eti-Oha road Akabuka 

5.211161549 6.641523379 Akabuka Health Centre along Omoku road 

5.211438649 6.642658701 Menjor road Akabuka 

5.209168872 6.638710437 Community Pri. Sch. along School road Akabuka 

5.211742915 6.640512720 Obiohuru Play Ground Akabuka 

5.347041381 6.655173393 Customary Court Hall Omoku 

5.346245988 6.652008723 Umuebe street Omoku 

5.236268666 6.698585210 Akabta/Obiozumini road  

5.238784125 6.698209201 Akabta/Obiozumini road 
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Appendix 6: Study Area Google Earth Image 
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APPENDIX 7 : ERROR MATRIXES 

Table AP7.1a, b & c: AKABUKA Error Matrixes 

Land use/cover BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 58 5 7 9 10 4 0 93 62 

Open Surface 6 54 7 2 6 3 0 78 69 

Paved Roads 2 1 55 3 7 2 0 70 79 

Unpaved Roads 4 9 8 71 4 2 0 98 72 

Forest 7 3 6 1 63 3 0 83 76 

Rangeland 5 5 3 3 10 62 0 88 70 

Water 0 0 0 0 0 0 0 0 #DIV/0! 

Grand Total 82 77 86 89 100 76 0 510 

 Producer's Accuracy 71 70 64 80 63 82 #DIV/0! 

  

          Overall Accuracy 71 

        Overall Kappa index 0.654 

     
363 

   

Land use/cover BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 66 3 6 5 7 1 0 88 75 

Open Surface 4 61 5 1 5 2 0 78 78 

Paved Roads 4 1 65 1 3 2 0 76 86 

Unpaved Roads 1 6 5 78 4 0 0 94 83 

Forest 4 2 4 1 72 1 0 84 86 

Rangeland 3 4 1 3 9 70 0 90 78 

Water 0 0 0 0 0 0 0 0 #DIV/0! 

Grand Total 82 77 86 89 100 76 0 510 

 Producer's Accuracy 80 79 76 88 72 92 #DIV/0! 

  

          Overall Accuracy 81 

        Overall Kappa index 0.769 

     
412 

   

Land use/cover BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 77 2 3 2 3 0 0 87 89 

Open Surface 2 67 1 1 3 2 0 76 88 

Paved Roads 2 1 77 0 1 1 0 82 94 

Unpaved Roads 1 3 2 84 1 0 0 91 92 

Forest 2 1 3 1 91 0 0 98 93 

Rangeland 0 3 0 1 1 73 0 78 94 

Water 0 0 0 0 0 0 0 0 #DIV/0! 

Grand Total 84 77 86 89 100 76 0 512 

 Producer's Accuracy 92 87 90 94 91 96 #DIV/0! 

  

          Overall Accuracy 92 

        Overall Kappa index 0.899 

     
469 
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Tables AP7.2a, b & c –EGBEDA Error Matrixes 

(a) Pixel Based BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 58 4 4 4 4 6 0 80 73 

Open Surface 6 59 6 2 4 1 0 78 76 

Paved Roads 2 4 57 1 7 1 0 72 79 

Unpaved Roads 4 6 1 61 2 1 0 75 81 

Forest 4 3 0 2 59 2 0 70 84 

Rangeland 6 7 1 4 4 63 0 85 74 

Water 0 0 0 0 2 0 0 2 0 

Grand Total 80 83 69 74 82 74 0 462 

 Producer's Accuracy 73 71 83 82 72 85 #DIV/0! 

  

          Overall Accuracy 77 

        Overall Kappa index 0.728 

     
357 

   

(b) OBIA - VHR BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 67 3 1 2 1 5 0 79 85 

Open Surface 3 68 3 2 2 0 0 78 87 

Paved Roads 2 3 63 1 4 1 0 74 85 

Unpaved Roads 4 3 1 68 1 1 0 78 87 

Forest 0 3 0 1 69 2 0 75 92 

Rangeland 4 2 1 0 4 65 0 76 86 

Water 0 1 0 0 1 0 0 2 0 

Grand Total 80 83 69 74 82 74 0 462 

 Producer's Accuracy 84 82 91 92 84 88 #DIV/0! 

  

          Overall Accuracy 87 

        Overall Kappa index 0.839 
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(c) OBIA - VHR &nDSM BU OS PR UR F R W G/ Total User's Acc. 

Buildings 76 2 0 2 0 3 0 83 92 

Open Surface 1 78 3 1 2 0 0 85 92 

Paved Roads 2 2 63 1 3 1 0 72 88 

Unpaved Roads 1 0 2 69 1 0 0 73 95 

Forest 0 0 0 1 74 2 0 77 96 

Rangeland 0 0 1 0 2 68 0 71 96 

Water 0 1 0 0 0 0 0 1 0 

Grand Total 80 83 69 74 82 74 0 462 

 Producer's Accuracy 95 94 91 93 90 92 #DIV/0! 

  

          Overall Accuracy 93 

        Overall Kappa index 0.912 

     
428 
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Tables AP7.3 a, b & c: IKIRI Error Matrixes 

(a) Pixel Based BU OS PR UR F R   W Grand Total User’sAccuracy 

Buildings 54 2 3 2 3 2 6 72 75 

Open Surface 3 61 8 2 6 0 9 89 69 

Paved Roads 2 1 56 4 9 4 1 77 73 

Unpaved Roads 3 7 4 60 9 3 9 95 63 

Forest 3 2 5 1 60 3 7 81 74 

Rangeland 4 5 1 5 7 60 1 83 72 

Water 1 4 5 2 3 1 60 76 79 

Grand Total 70 82 82 76 97 73 93 573 

 Producer's Accuracy 77 74 68 79 62 82 65 

  

          Overall Accuracy 72 

        Overall Kappa index 0.670 

     
411 

   

(b) OBIA - VHR BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 61 2 2 2 3 1 5 76 80 

Open Surface 2 68 5 0 3 0 6 84 81 

Paved Roads 1 1 65 2 4 2 1 76 86 

Unpaved Roads 2 2 2 65 7 1 9 88 74 

Forest 1 2 1 1 70 2 3 80 88 

Rangeland 3 3 2 4 7 66 1 86 77 

Water 0 4 5 2 3 1 68 83 82 

Grand Total 70 82 82 76 97 73 93 573 

 Producer's Accuracy 87 83 79 86 72 90 73 

  

          Overall Accuracy 81 

        Overall Kappa index 0.776 

     
463 

   

(c) OBIA - VHR &nDSM BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 67 2 1 1 2 0 2 75 89 

Open Surface 2 74 2 0 0 0 4 82 90 

Paved Roads 0 1 76 2 2 1 0 82 93 

Unpaved Roads 0 1 1 70 4 1 4 81 86 

Forest 0 0 1 0 85 1 3 90 94 

Rangeland 1 1 0 1 1 70 1 75 93 

Water 0 3 1 2 3 0 80 89 90 

Grand Total 70 82 82 76 97 73 94 574  

Producer's Accuracy 96 90 93 92 88 96 85 

 

 

         

 

Overall Accuracy 91 

       

 

Overall Kappa index 0.894 

     
522 
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Tables AP7.4 a, b & c: OBIDO Error Matrixes 

(a) Pixel Based BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 55 3 2 6 2 1 8 77 71 

Open Surface 10 54 6 2 6 2 10 90 60 

Paved Roads 3 0 56 3 8 1 2 73 77 

Unpaved Roads 6 4 6 63 5 1 5 90 70 

Forest 1 2 4 3 57 2 2 71 80 

Rangeland 3 6 2 5 5 60 3 84 71 

Water 3 7 5 2 1 3 62 83 75 

Grand Total 81 76 81 84 84 70 92 568 

 Producer's Accuracy 68 71 69 75 68 86 67 

  

          Overall Accuracy 72 

        Overall Kappa index 0.669 
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(b) OBIA - VHR BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 64 3 2 2 1 1 6 79 81 

Open Surface 6 59 3 2 4 0 8 82 72 

Paved Roads 1 0 64 3 5 1 2 76 84 

Unpaved Roads 5 3 3 70 3 0 2 86 81 

Forest 1 2 3 2 67 1 1 77 87 

Rangeland 1 4 2 3 2 65 3 80 81 

Water 3 5 4 2 2 2 70 88 80 

Grand Total 81 76 81 84 84 70 92 568 

 Producer's Accuracy 79 78 79 83 80 93 76 

  

          Overall Accuracy 81 

        Overall Kappa index 0.776 
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(c) OBIA - VHR &nDSM BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 75 3 1 1 0 1 2 83 90 

Open Surface 1 67 2 0 2 0 5 77 87 

Paved Roads 1 0 71 3 3 1 0 79 90 

Unpaved Roads 2 0 3 77 2 0 0 84 92 

Forest 0 1 1 1 76 1 1 81 94 

Rangeland 0 3 2 2 0 65 3 75 87 

Water 2 2 1 0 1 2 81 89 91 

Grand Total 81 76 81 84 84 70 92 568 

 Producer's Accuracy 93 88 88 92 90 93 88 

  

          Overall Accuracy 90 

        Overall Kappa index 0.885 

     
512 
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Tables AP7.5 a, b & c: OGBOGWU Error Matrixes 

(a) Pixel Based BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 61 4 2 6 1 3 10 87 70 

Open Surface 6 58 7 3 6 2 6 88 66 

Paved Roads 2 1 58 3 3 10 1 78 74 

Unpaved Roads 9 4 5 65 3 2 2 90 72 

Forest 5 2 5 1 68 3 5 89 76 

Rangeland 4 6 1 2 4 59 1 77 77 

Water 1 3 3 2 3 2 61 75 81 

Grand Total 88 78 81 82 88 81 86 584 

 Producer's Accuracy 69 74 72 79 77 73 71 

  

          Overall Accuracy 74 

        Overall Kappa index 0.692 
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(b) OBIA - VHR BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 70 2 2 2 0 3 4 83 84 

Open Surface 4 65 6 2 2 0 4 83 78 

Paved Roads 2 3 66 2 2 6 2 83 80 

Unpaved Roads 5 2 2 71 2 2 2 86 83 

Forest 2 2 3 1 76 2 1 87 87 

Rangeland 4 2 0 3 3 67 1 80 84 

Water 1 2 2 1 3 1 72 82 88 

Grand Total 88 78 81 82 88 81 86 584 

 Producer's Accuracy 80 83 81 87 86 83 84 

  

          Overall Accuracy 83 

        Overall Kappa index 0.806 

     
487 

   

 

(c) OBIA - VHR &nDSM BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 83 1 2 0 0 2 1 89 93 

Open Surface 1 74 0 1 2 0 2 80 93 

Paved Roads 0 1 77 1 0 3 0 82 94 

Unpaved Roads 2 0 0 79 1 2 0 84 94 

Forest 0 1 3 1 82 1 1 89 92 

Rangeland 1 1 0 0 0 78 1 81 96 

Water 1 0 1 0 3 0 78 83 94 

Grand Total 88 78 83 82 88 86 83 588 

 Producer's Accuracy 94 95 93 96 93 91 94 

  

          Overall Accuracy 94 

        Overall Kappa index 0.927 

     
551 
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Tables AP7.6 a, b & c: OMOKU Error Matrixes 

(a) Pixel Based BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 61 4 3 8 3 5 6 90 68 

Open Surface 8 58 5 2 6 2 1 82 71 

Paved Roads 3 1 55 5 7 8 6 85 65 

Unpaved Roads 2 2 7 58 5 0 6 80 73 

Forest 3 1 5 2 62 2 10 85 73 

Rangeland 5 3 2 7 4 65 3 89 73 

Water 2 7 3 3 2 3 57 77 74 

Grand Total 84 76 80 85 89 85 89 588 

 Producer's Accuracy 73 76 69 68 70 76 64 

  

          Overall Accuracy 71 

        Overall Kappa index 0.659 

     
416 

   

(b) OBIA - VHR BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 70 3 3 5 1 4 3 89 79 

Open Surface 1 63 3 1 3 2 1 74 85 

Paved Roads 3 1 67 1 2 3 4 81 83 

Unpaved Roads 2 1 4 70 5 0 3 85 82 

Forest 2 0 2 2 72 2 7 87 83 

Rangeland 4 3 0 4 4 70 2 87 80 

Water 2 5 1 2 2 2 69 83 83 

Grand Total 84 76 80 85 89 83 89 586 

 Producer's Accuracy 83 83 84 82 81 84 78 

  

          Overall Accuracy 82 

        Overall Kappa index 0.791 

     
481 

   

 

(c) OBIA - VHR &nDSM BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 80 1 2 1 1 2 2 89 90 

Open Surface 0 71 1 0 2 1 2 77 92 

Paved Roads 2 0 75 0 0 0 1 78 96 

Unpaved Roads 1 1 1 80 2 0 1 86 93 

Forest 1 0 1 1 83 2 4 92 90 

Rangeland 0 0 0 2 0 77 1 80 96 

Water 0 3 0 1 1 1 78 84 93 

Grand Total 84 76 80 85 89 83 89 586 

 Producer's Accuracy 95 93 94 94 93 93 88 

  

          Overall Accuracy 93 

        Overall Kappa index 0.916 

     
544 
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Tables AP7.7 a, b & c: OSIAKPU Error Matrixes 

(a) Pixel Based BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 60 5 4 3 3 5 5 85 71 

Open Surface 10 61 3 4 6 2 2 88 69 

Paved Roads 2 1 57 7 5 13 9 94 61 

Unpaved Roads 8 6 2 64 3 2 5 90 71 

Forest 8 2 7 2 61 2 2 84 73 

Rangeland 8 4 3 5 10 64 2 96 67 

Water 4 4 2 0 2 3 60 75 80 

Grand Total 100 83 78 85 90 91 85 612 

 Producer's Accuracy 60 73 73 75 68 70 71 

  

          Overall Accuracy 70 

        Overall Kappa index 0.647 
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(b) OBIA - VHR BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 78 4 3 1 2 5 5 98 80 

Open Surface 4 69 1 2 1 0 2 79 87 

Paved Roads 1 1 64 4 1 8 4 83 77 

Unpaved Roads 4 1 1 73 3 1 4 87 84 

Forest 3 2 5 2 75 1 2 90 83 

Rangeland 6 3 3 3 8 73 0 96 76 

Water 4 3 1 0 0 3 68 79 86 

Grand Total 100 83 78 85 90 91 85 612 

 Producer's Accuracy 78 83 82 86 83 80 80 

  

          Overall Accuracy 82 

        Overall Kappa index 0.786 

     
500 

   

 

(c) OBIA - VHR &nDSM BU OS PR UR F R W Grand Total User's Accuracy 

Buildings 88 1 2 0 2 2 2 97 91 

Open Surface 3 77 1 2 0 0 2 85 91 

Paved Roads 1 1 73 1 1 2 2 81 90 

Unpaved Roads 0 0 0 79 1 0 2 82 96 

Forest 0 1 0 1 84 0 2 88 95 

Rangeland 5 2 1 2 2 85 0 97 88 

Water 3 1 1 0 0 2 75 82 91 

Grand Total 100 83 78 85 90 91 85 612 

 Producer's Accuracy 88 93 94 93 93 93 88 

  

          Overall Accuracy 92 

        Overall Kappa index 0.903 

     
561 
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APPENDIX 8: Quantitative Values of the LU/LC classes achieved from different 

methodsapplied 

Table AP8a: AKABUKA LU/LC Quantitative Values of Classes 

 
OB (VHR & nDSM) OB (VHR) PIXEL (ML) 

Land Use Area % Area % Area % 

Buildings 21.57 18.08 25.26 21.17 16.60 13.91 

Forest 48.35 40.52 8.81 7.38 40.16 33.66 

Open Surfaces 13.13 11.00 7.50 6.29 23.26 19.50 

Paved Roads 2.41 2.02 6.21 5.20 3.71 3.11 

Rangeland 12.04 10.09 52.06 43.63 19.46 16.31 

Unpaved Roads 7.60 6.37 12.18 10.21 6.34 5.31 

Water 0.17 0.14 0.00 0.00 0.00 0.00 

Shadow 14.04 11.77 7.3 6.12 9.79 8.20 

TOTAL 119.31 100.00 119.31 100.00 119.31 100.00 

 

Table AP8b: EGBEDA LU/LC Quantitative Values of Classes 

 

OB (VHR & nDSM) OB (VHR) PIXEL (ML) 

Land Use Area % Area % Area % 

Buildings 69.66 11.46 89.54 14.73 56.11 9.23 

Forest 309.24 50.86 91.72 15.08 266.89 43.89 

Open Surfaces 48.16 7.92 2.70 0.44 65.77 10.82 

Paved Roads 20.87 3.43 39.01 6.42 13.39 2.20 

Rangeland 62.66 10.30 280.18 46.08 147.09 24.19 

Unpaved Roads 21.56 3.55 28.99 4.77 35.15 5.78 

Water 0.00 0.00 0.00 0.00 0.00 0.00 

Shadow 75.92 12.49 75.92 12.49 23.65 3.89 

TOTAL 608.07 100.00 608.07 100.00 608.07 100.00 

 

Table AP8c: IKIRI LU/LC Quantitative Values of Classes 

 

OB (VHR & nDSM) OB (VHR) PIXEL (ML) 

Land Use Area % Area % Area % 

Buildings 2.94 4.95 4.57 7.68 2.56 4.31 

Forest 46.13 77.52 24.27 40.79 28.28 47.52 

Open Surfaces 2.66 4.47 2.42 4.06 6.56 11.01 

Paved Roads 1.15 1.94 1.53 2.58 0.58 0.97 

Rangeland 3.48 5.84 22.75 38.23 9.14 15.36 

Unpaved Roads 2.16 3.63 3.03 5.09 2.52 4.24 

Water 0.98 1.65 0.93 1.57 0.83 1.40 

Shadow 0 0.00 0 0.00 9.04 15.19 

TOTAL 59.51 100.00 59.51 100.00 59.51 100.00 

Table AP8d: OBIDO LU/LC Quantitative Values of Classes 
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OB (VHR & nDSM) OB (VHR) PIXEL (ML) 

Land Use Area % Area % Area % 

Buildings 8.03 8.22 22.88 23.40 2.16 2.21 

Forest 27.33 27.95 15.48 15.84 17.78 18.18 

Open Surfaces 20.65 21.12 3.19 3.26 20.03 20.48 

Paved Roads 1.82 1.86 2.34 2.40 1.27 1.30 

Rangeland 20.59 21.06 33.17 33.93 43.09 44.08 

Unpaved Roads 5.07 5.18 6.91 7.07 5.88 6.01 

Water 3.40 3.48 2.89 2.96 2.73 2.79 

Shadow 10.89 11.14 10.89 11.14 4.84 4.95 

TOTAL 97.77 100.00 97.77 100.00 97.77 100.00 

 

 

Table AP8e: OGBOGWU LU/LC Quantitative Values of Classes 

 
OB (VHR & nDSM) OB (VHR) PIXEL (ML) 

Land Use Area % Area % Area % 

Buildings 75.07 6.80 173.83 15.76 71.64 6.49 

Forest 437.49 39.66 370.16 33.56 376.09 34.09 

Open Surfaces 179.15 16.24 88.19 8.00 150.25 13.62 

Paved Roads 41.03 3.72 59.08 5.36 56.00 5.08 

Rangeland 139.30 12.63 167.33 15.17 310.44 28.14 

Unpaved Roads 65.03 5.89 78.45 7.11 51.86 4.70 

Water 9.52 0.86 9.52 0.86 6.97 0.63 

Shadow 156.52 14.19 156.52 14.19 79.85 7.24 

TOTAL 1103.10 100.00 1103.09 100.00 1103.09 100.00 

 

Table AP8f: OMOKU LU/LC Quantitative Values of Classes 

 

OB (VHR & nDSM) OB (VHR) PIXEL (ML) 

Land Use Area % Area % Area % 

Buildings 370.32 13.24 386.42 13.81 313.89 11.22 

Forest 831.10 29.71 831.09 29.70 849.24 30.35 

Open Surfaces 208.60 7.46 260.00 9.29 547.79 19.58 

Paved Roads 87.27 3.12 166.61 5.96 159.13 5.69 

Rangeland 712.33 25.46 526.33 18.81 690.42 24.68 

Unpaved Roads 187.96 6.72 217.71 7.78 132.42 4.73 

Water 13.96 0.50 23.36 0.83 5.46 0.20 

Shadow 386.30 13.81 386.30 13.81 99.48 3.56 

TOTAL 2797.84 100.00 2797.84 100.00 2797.84 100.00 
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Table AP8g: OSIAKPU LU/LC Quantitative Values of Classes 

 

OB (VHR & nDSM) OB (VHR) PIXEL (ML) 

Land Use Area % Area % Area % 

Buildings 5.47 6.18 5.44 6.14 3.94 4.46 

Forest 50.78 57.36 17.82 20.13 45.28 51.15 

Open Surfaces 5.85 6.61 12.86 14.53 1.30 1.47 

Paved Roads 0.92 1.04 2.83 3.20 1.58 1.79 

Rangeland 5.75 6.50 28.08 31.72 21.91 24.75 

Unpaved Roads 3.65 4.13 5.39 6.09 3.05 3.44 

Water 0.74 0.84 0.74 0.84 0.76 0.86 

Shadow 15.36 17.35 15.36 17.35 10.70 12.09 

TOTAL 88.53 100.00 88.53 100.00 88.53 100.00 

 

 


