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CHAPTER ONE 

INTRODUCTION 

1.1 Back Ground of the Study  

Generally, the asynchronous machines are basically alternating current (a.c) electrical 

machine, which run at speed other than the synchronous speed of the rotating magnetic field 

developed by the stator currents in the stator windings. Like other electrical machines, the 

asynchronous machines are reversible, in that they can operate at a time as either motors or 

generators. The mode of operation of the machine is principally determined by the rotating 

magnetic field in relation to the rotor. Strictly speaking, all asynchronous machines are based 

on induction principle. Categorically, asynchronous machines are of two types viz; 

i) the Normal induction motor(I M) 

ii) the Transfer-field reluctance machine (TFM) 

   

1.1.1 The transfer field reluctance Machine  

In its broad definition, a reluctance machine is an electric machine in which torque is 

produced by the tendency of a movable part to move into a position where the inductance of 

an energized phase winding is a maximum. 

Structurally, the transfer field machine is basically a reluctance machine. It differs from the 

simple reluctance machine in two important aspects viz; 

i) it has two set of windings instead of one, as obtainable in simple reluctance machine  

ii) each winding has a synchronous reactance which is independent of rotor position, 

while the winding reactance of simple reluctance machine varies cyclically (L.A Agu 

1984). 
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The transfer field machine comprises basically a stator, with current carrying windings which 

produce a rotating magnetic field as in normal induction motor and a second member, the 

rotor, which is magnetically anisotropic; meaning that the reluctance to the passage of flux 

along one axis is a minimum and along a second axis, at ninety electrical degree to the first is 

maximum. The operation of the machine depends on the tendency of the low-reluctance axis 

to align itself with the axis of the rotating magnetic field. In its most elementary form, it 

comprises two identical salient-pole machines whose rotors are mechanically coupled 

together but with their axis displaced by 0.5π electrical radians. 

The main windings are connected in series, while the auxiliary winding are connected in 

series but transposed between the two machine sections. There are no windings on the rotor of 

either of the composite machines. 

This machine induces negative sequence e.m.fs of frequency (2s-1) ω0 in the auxiliary 

windings which will in turn circulate a current excluded from the supply. 

The interaction of the main and auxiliary winding magnetomotive forces (mmfs), will produce 

an interference wave with beat frequency ω, which is equal to the rotor frequency. Hence a 

reluctance torque is developed in the rotor as a result of its interaction with the interference 

wave and this creates a turning effect on the rotor segment of the machine. This however 

gives the implication that a transfer-field machine is an energy converter and like the normal 

induction motoris asynchronous and may or may not be self starting depending on the 

machine type and the nature of a.c supply. The transfer-field machine is very useful in control 

systems, electrical gear, low speed drives etc. It has the outstanding advantage that its 

auxiliary winding terminals which correspond to rotor conductors in normal induction motor 

is available without requiring slip-rings or current collection gear, thereby making it applicable 
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in harsh environment. More interestingly, the machine can also be used to supply a d.c load 

through rectifier, a function which has not been performed satisfactorily by induction motor, 

because the output wave forms of induction motors tend to be increasingly distorted as the 

load current increases.  

1.2 Statement of Problem  

This research work becomes imperative due to; 

i. the major set backs of the existing three phase transfer field motor without rotor winding, 

which includes the low output torque, low output power and lower power factor. 

ii. these poor output characteristics of the motor make it very much inferior to those of 

conventional three-phase induction motor counterpart of comparable size and rating. This 

is the attribute of its excessive leakage reactance. 

 

1.3 Aim and Objectives of the research work. 

The aim of this dissertation is to improve the performance indices of a three-phase transfer 

field reluctance motor through induced rotor current. 

The objectives are to; 

i. develop models of the machine necessary to explain its behaviour under steady-

state and dynamic state conditions. 

ii. derive mathematical equations necessary for the formation of the machine’s 

equivalent circuits 

iii. derive the machine’s output characteristics equations from the equivalent circuits. 

iv. establish the machine’s circuit parameters necessary for the output characteristic 

plots through simulations for the analysis of the machine’s output. 
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1.4 Significance of the research work 

The significant of this research work lies on the improvement of the performance 

characteristics of the existing three phase transfer field reluctance motor by the introduction of 

rotor windings to the salient poles structures. These characteristics include; the output torque, 

power factor and starting current. 

It is common knowledge that a low speed machine will find numerous applications in 

domestic and industrial appliance requiring low speed drives, such as grinding machines for 

perishables etc. 

1.5 Motivation  

This work is motivated by the fact that the new configuration of three phase transfer field 

relucantce motor has the potential of replacing the induction motor counterpart which 

incorporates inverters for low speed operations for industrial and domestic purposes.  

1.6 Scope of the research work  

The study circles within the analysis of the effect of the introduction of rotor windings on 

three-phase transfer field reluctance motor, followed by derivation of mathematical 

models/equations necessary for the formulation of machines equivalent circuits. Simulations 

of the derived equations from the models for analysis of the motor characteristics and 

comparison of its characteristics with those of the existing three phase transfer field reluctance 

motor without rotor winding were made, so also the presentation and discussion of the 

achieved results. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 The Brief history of invention of induction motor(IM) 

The induction motor is a well known machine with a long history of invention. The basic 

principles of electromagnetic induction were discovered in the early 19
th

 century by Oersted, 

Guass and Faraday.   

The first electric motors were simple electrostatic devices created by the Scottish monk 

Andrew Gordon in the 1740s. The theoretical principle behind the production of mechanical 

force by the interactions of an electric current and magnetic field (Amperes force law) was 

discovered later by Andre-Marie Ampere in 1820. 

The conversion of electric energy into mechanical energy by electromagnetic means was 

demonstrated by British Scientist Michael Farady in 1821. He discovered the electromagnetic 

induction law around 1831 and Maxwell formulated the laws of electricity (Maxwell’s 

equations) around 1860. This discovery and formulation, led to the invention of the induction 

motor generally credited to two Persons namely Galileo Farraris (1885) and Nicola Tesla 

(1886) (Ion Boldea et al 2011). Their induction machines are as shown in fig 2.1 and fig 2.2 

respectively 
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Fig 2.1 – Ferrari’s induction motor   Fig 2.2 – Tesla’s induction motor    

Both motors have been supplied from a two-phase a-c power source and thus contained two 

phase concentrated coil windings 1 – 1
1 

and 2 – 2
1
 on the ferromagnetic stator core. In 

Ferrari’s patent, the rotor was made of a copper cylinder while in the Tesla’s Patent, the rotor 

was made of a ferromagnetic cylinder provided with a short –circuited winding (P. Alger 

1970). 

Though the contemporary induction motors have more elaborate topologies and their 

performance is much better, the principle has remained basically the same. 

The three-phase a-c power grid capable of delivering energy at a distance to induction motors 

and other consumers was put forward by Dolivo-Dobrovolsky around 1880. In the year 1889-

1890, he introduced first ever cage rotor version of three phase induction motor. Interestingly, 

these type of motors are used till date for commercial purposes. Driven by his own invention, 

Dobrovolsky made a claim that motor by Tesla was unfit for practical use due to two phased 

pulsations. 
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In the year 1892, Westing House was successful in achieving his first induction motor that 

could be used practically. He developed GOHertz induction motor Lien 1893, but all of these 

early motors were two phased motors.  

The General Electric started producing three phased induction motor by the year 1894. In 

some years time, in 1896, Westing house and General Electric signed agreement for 

production of squirrel cage rotor. 

In 1905, Alfred Zehaden described linear induction motor that could be used in the lift or 

trains in a patent form. It took around thirty years from then for Kemper to build the linear 

induction motor for use in 1935. This motor was further improvised by Laithwaite.  

He was the one to introduced first ever full sized working model of the induction motor. It is 

amazing to witness how conventional motors have progressed to be strong-horse powered 

motors today. 

Basically the induction motor converts electric power to mechanical power in its rotor 

(rotating part). Its power is supplied to the rotating device by means of electromagnetic 

induction (Gupter, 2009). It is used in a wide variety of applications as a means of converting 

electric power to mechanical work. It is without doubt the work horse of electric power 

industry (Broad Way 1973). The reasons are its low cost, simple and rugged construction, 

absence of brushes (which are needed in most d.c. motors) and lastly and most importantly, its 

speed can be readily controlled by modern power electronic devices. In its normal working 

range, the speed of the induction motor remains reasonably constant, varying slightly with 

load. Hence, it is seen as a constant speed motor. Its major demerit is the inherent low lagging 

power factor. Another distinguishing feature of such motor is that they are singly excited 

machines, although such machines are equipped with both field and armature windings. In 
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such a machine, the field (stator) winding is connected to an a.c. supply and there is no 

electrical connection from the armature (rotor) to any source of supply. Currents are made to 

flow in the armature conductors by induction, which interacts with the field produced by the 

field winding and thereby producing a net unidirectional torque. Such motor are also called 

asynchronous motors as they run at a speed other than the synchronous speed of rotating filed 

developed by the stator currents. Like other electrical machines, the asynchronous machine is 

reversible meaning that it can either run as a generator or a motor at a time, depending on the 

nature of its slip. When run faster than its synchronous speed, an induction motor runs as an 

induction generator (Theraja 2002). It converts the mechanical energy it receives into 

electrical energy and this energy is released by the stator.  

However, induction motor can be reversed as induction generator without running it faster 

than synchronous speed by connecting capacitor which makes it operate with leading power 

factor, or by allowing its rotor to be rotated by a prime mover. However, induction generators 

have restricted applications as a source of power supply.  

In terms of the rotor type and constructional arrangements, induction motor can be classified 

into two types viz; Squirrel cage and Wound rotor induction motor. 

The squirrel cage rotor windings are perfectly symmetrical and have the advantage of being 

adaptable to any number of pole pairs. The distribution of currents due to electromagnetic 

induction in the rotor bars varies from bar to bar sinusoidally and depends upon the position 

and time, assuming sinusoidal distribution of radial flux density in space and also the applied 

voltage to be varying sinusoidally with time. There is no possibility of adding any external 

resistance in the rotor circuit since the rotor winding is permanently short-circuited in the cage 

construction. 
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In wound rotor induction motor, the rotor is wound with an insulated winding similar to that 

of the stator except that the number of slots is smaller and fewer turns per phase of a heavier 

conductor are used. Some motors are provided with brush lifting and slip-ring short-circuiting 

arrangement for starting and running conditions. Since the connection of the wound secondary 

to the external terminal is made through slip-rings and brushes, so wound secondary motors 

often are caled slip-ring induction motors. 

More-still, induction motor can also be classified depending upon the type of input supply. 

These are;  

(i) Poly phase (usually three phase) induction motor  

(ii) Single phase induction motor 

2.2 The Poly Phase induction motor 

The poly-phase induction motors are majorly the three phase type. The most popular ac motor 

for applications exceeding a few horse power is the three-phase induction motor. It is simple, 

extremely reliable, powerful for its size and has few moving parts. The field of the induction 

motor is in the stator, and the armature is on the rotor. The field has pairs of pole pieces onto 

which stator coils are wound. The simplest three-phase induction motor is the two-pole motor, 

which has pairs of poles, one pair for each phase.  

The motor comprises a stator and a rotor mounted on bearings and separated from the stator 

air gaps. The stator consists of a magnetic core made up of laminations carrying slot-

embedded conductors which constitute the stator windings. These windings can be connected 

in either a delta or three – or four wire star scheme. (See plates 4 and 5). the rotor of induction 

motor is cylindrical and carries either conducting bars short-circuited at both ends by end 

rings (See plate 6(a/b) or a poly phase winding connected in a predetermined manner with 
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terminals brought out of slip rings for external connections and short circuited (see plate 

7(a/b). 

2.2.1 Operation of three-Phase induction motor 

For the principle of operation of three-phase induction motor, let us consider a two-pole, 

three-phase, star connected, symmetrical induction motorshown in fig. 2.3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.3: Two pole 3 – phase, star-connected symmetrical induction machine 
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The fundamental idea behind the operation of an induction motoris simple. In this work, 

qualitative description of the principles of operation of the machine is adopted. A three phase 

induction motorof the type provided in fig 2.3, comprises two major parts namely the stator 

and the rotor. 

The phase displacement between the voltages applied on the stator windings produces a 

travelling MMF or rotating magnetic field in the uniform air gap. 

This field links the short-circuited rotor winding and the relative motion induces short-circuit 

currents in them, which move about the rotor in exact synchronism with the rotating magnetic 

field. Obviously, any induced current will react in opposition to the flux linkages producing it, 

resulting herein a torque on the rotor in the direction of the rotating field. This torque causes 

the rotor to revolve so as to reduce the rate of change of flux linkages reducing the magnitude 

of the induced current and the rotor frequency. 

If the rotor were to revolve at exactly synchronous speed, there would be no changing flux 

linkages about the rotor coils and no torque would be produced. However, the practical motor 

has friction losses requiring some electromagnetic torque, even at no load, and the system will 

stabilize with the rotor revolving at slightly less than synchronous speed. A mechanical shaft 

load will cause the rotor to decelerate, but this increases the rotor current, automatically 

increasing the torque produced, and stabilizing the system at a slightly reduced speed. 

The difference in speed between rotor and rotating magnetic field is termed “slip”. Slip varies 

from a fraction of one percent at no-load to a maximum value of three or four percent under 

full load conditions for most properly designed machines. The speed change between no-load 

and full-load is so small that the squirrel-cage motor is often termed a constant –speed 

machine.  
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2.2.2 Induced Rotor Voltage 

From the fundamental theory on rotating fields, passing balanced three-phase currents through 

a balanced three-phase winding can produce a rotating MMF wave. Speed of rotation is set by 

supply frequency and the number of poles in the machine. In an induction machine, the air-

gap of the machine is designed to be constant, therefore the rotating MMF will produce a 

rotating flux density. The stator flux density can be defined in terms of either mechanical or 

electrical quantities as (T.A Lipo et al 1985);  

 

In the above equation, 𝜙m and 𝜙e are arbitrary phase angle in mechanical and electrical angles 

respectively. They are normally set to zero. θ is the location at which the flux density wave 

form is observed. At a given location, the flux density varies sinusoidally with time and at a 

given time, it varies sinusoidally with location. To understand fully the workability of an 

induction machine, we need to consider the flux density seen by a conductor on the rotor. 

 

 

 

 

Fig 2.4; Image of a rotating MMF wave  

In the image of a rotating MMF wave shown above, there is a rotor conductor at position θm = 

α. If the rotor is stationary then the rotor will observe the stator flux density as (T.A Lipo et al 

1985); 

 

Bs = B Cos 
𝑝 

2
[ 𝜃𝑚 − ∅𝑚 − 𝜔𝑠𝑡  = B cos  (𝜃𝑒 +  ∅𝑒 − 𝜔𝑠𝑡             (2.1) 
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Bc = Bs Cos  
𝑃

2
(𝛼 − 𝜔𝑠𝑡)         (2.2) 

Assuming the rotor is rotating at mechanical speed, 𝜔𝑚 , the location of the conductor 

becomes;  

θm = α + ωmt          (2.3) 

The flux density seen by the conductor becomes;  

Bc = Bs cos   
𝑃𝑛

2
{𝛼 +  𝜔𝑚 − 𝜔𝑠 𝑡}    

    = Bs cos   
𝑃𝑛

2
(𝛼−𝑠𝜔𝑠𝑡)   

   = Bs cos   
𝑃𝑛

2
 𝛼−

𝑃𝑛

2
𝑠𝜔𝑠𝑡  

   = Bs cos   
𝑃𝑛

2
 𝛼− 𝑠𝜔𝑒𝑡  

  = Bs cos   
𝑃𝑛

2
 𝛼− 𝜔𝑠𝑙𝑡         (2.4) 

Where;  

Bs = stator flux density  

Bc = flux density as seen by the conductor  

Pn = number of pole  

𝜔e = supply frequency in rad/s  

ωsl = sωe = slip frequency in rad/s  

Now the voltage induced in a conductor of length L, moving with velocity V, perpendicular to 

a magnetic field density B is given by (I. Mckenzie et al 1971);  

e = BLV sin 90
0
 = BLV        (2.5) 
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The relative velocity Vr of conductor through the magnetic field is given by; 

Vr = rωsl = rsωe         (2.6) 

Therefore the voltage induced in the rotor conductor is obtained by substituting equations 

(2.4) and (2.6) into equation (2.5) which gives;  

e = r L sωe Bs cos  
𝑃𝑛

2
 𝛼− 𝑠𝜔𝑒𝑡        (2.7) 

where;  r is the radius of the conductor  

 

2.2.3   Rotor Current and field 

Without the knowledge of the full details of the rotor circuit some assumptions about the 

circuit can be made to enable us understand the behaviours of the induction machine. The 

assumption is that the motor conductor is part of a circuit with constant resistance RR and 

inductance LR, (T.A. Lipo et al 1985).  

Now if the slip is low (s → o), then the reactance associated with the inductance will be 

negligible and is given by the expression; 

XR = SωeLR          (2.8) 

In this case, though induced voltage is small, the induced current may be significant, since the 

conductors are short-circuited, and so, RR is low. Also the currents will be approximately in 

phase with the induced voltage. If the slip is high (S → 1), then the rotor reactance will be 

significant due to the increase in induced voltage, rotor current will be high but will lag the 

induced voltage significantly due to the inductance of the rotor (Fitzgerald A.E. et al 2003). 

The flux density produced by a set of a.c. currents rotates at a speed given by; 
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Ns = 
120𝑓𝑒

𝑃𝑛
   rpm         (2.9) 

In the case of rotor currents, equation (2.9) gives the speed of rotation relative to the 

conductors. However, the actual speed of rotation of the flux density will be given by;  

ωr  =  ωs (1-s) rad/s.          (2.10) 

That is, the rotor magnetic field rotates at synchronous speed. 

We can get a better understanding of the relative position of the rotor and stator fields by 

drawing phasor diagrams. The phasor diagram of the stator flux density can be drawn from 

either a stator reference frame where it rotates at electrical speed, ωe or from the rotor 

reference frame, where it rotates at electrical speed sωe. 

 

 

 

Fig. 2.5 

We first consider the case where slip s is low. Under this condition induced current lags 

induced voltage slightly while the rotor flux density is almost 90
0
 electrically behind the stator 

flux density. This is as illustrated in fig 2.6 below;  

 

 

 

 

 

Fig 2.6: Phasors for rotor induced voltage, current and flux density at low slip 
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From fig 2.6, it is seen that at low slip, the angle between the flux density phasors is almost 

90
0
. The rotor torque will be approximately proportional to induced voltage and therefore 

proportional to slip. When the slip is very high, mechanical speed is close to zero.  

Under this condition, rotor current lags induced voltage and the angle between rotor nad stator 

flux densities is much greater. This is illustrated in figure 2.7 

 

   

 

 

 

 

From the torque equation, even though the magnitude of the induced currents is higher and 

the rotor flux density phasor has a high magnitude, torque will not necessarily be higher than 

it is at low slip (Fitzgerald A.E et al 2003). 

2.2.4 The inductance matrix and transformation of stator quantities to arbitrary q-d-o 

reference frame  

The winding arrangement of a 2-pole, 3-phase, star connected symmetrical induction motoris 

shown in figure 2.3. The stator windings are identical with equivalent turns, (Ns) and 

resistance (rs). The rotor windings which may be wound or forged as a squirrel cage winding 

can also be approximated as identical windings with equivalent turns (Nr) and resistance (rr)  

The air gap of an induction motoris uniform and the stator and rotor windings may be 

approximated as having a sinusiodally distributed windings  
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Fig 2.7: Phasors for rotor induced voltage, current and flux density at high slip  
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The stator inductance Ls is given as, 

𝐿𝑠=

 
 
 
 
 L

Ls
 +L 

A
 – L

B
 Cos 2 θr               - ½   L 

A
 – L 

B
Cos 2 (θr-

π

3
)         – ½  L 

A
 – L 

B
Cos 2 (θr-

π

3
)

-½   L 
A
 – L 

B
Cos 2  θr-

π

3
            L

Ls
 +L 

A
 – L

B
 Cos 2  θr-

2π

3
     – ½L 

A
 – L 

B
Cos 2( θr+π)

-½   L 
A
 – L 

B
Cos 2  θr+

π

3
          – ½L 

A
 – L 

B
Cos 2( θr+π)          L

Ls
 +L 

A
 – L

B
 Cos2  θr+

2π

3
  
 
 
 
 

   (2.11) 

Where; LLs +L A – LB cos 2 θr = Lasas = Stator self inductance in winding a  (2.12) 

LLs +LA – LB cos 2 (θr−
2𝜋

3
) = Lbsbs = Stator self inductance in winding b             (2.13)  

 LLs + LA– LB cos 2  (θr+ 
2𝜋

3
) = Lcs cs = Stator self inductance in winding c            (2.14) 

- ½ LA – LB cos 2 (θr−
𝜋

3
) = Lasbs                   (2.15) 

- ½ LA – LB cos 2 (θr+
𝜋

3
) = Las  cs                 (2.16) 

- ½ L A – LB cos 2 (θr +π) =  Lbs cs                (2.17) 

From equation 2.11, it is evident that all stator self inductances are equal.  

That is; Las as = Lbs  bs = Lcs  cs = Lcs cs and Las as = LLs + Lms         (2.18) 

Where;   

LLs = Stator leakage inductance, Lms = Stator magnetizing inductance  

The stator magnetizing inductance, (Lms,) corresponds to LA in equation (2.12) through 

equation (2.14), and is mathematically expressed as;  

Lms =  
𝑁𝑆

2
 

2

 
𝜋𝜇 𝑜𝑟𝑠𝑙

𝑔
             (2.19) 

Where; Ns = stator equivalent turns, µo = permeability of free space, rs = stator resistance, rs = 

stator winding length  
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g = length of uniform gap  

Like the stator self inductances, the stator – to stator mutual inductances are also equal.  

This implies that; 

Las bs = Las cs= Lbs cs= - ½ Lms                 (2.20) 

This corresponds to – ½ LA in equation (2.15) through equation (2.17) with LB = 0. 

Consequently, equation 2.11 is now rewritten as;  

𝐿𝑠 =  

𝐿𝐿𝑆 + 𝐿𝑚𝑆                −½ L𝑚𝑠            −½ L𝑚𝑠  
 −½ L𝑚𝑠                   𝐿𝐿𝑆 + 𝐿𝐿𝑆             −½ L𝑚𝑠

 −½ L𝑚𝑠                 −½ L𝑚𝑠                   𝐿𝐿𝑆 + 𝐿𝑚𝑠  
                        (2.21) 

In a related manner, the rotor inductance matrix is obtained as; 

𝐿𝑟 =  

𝐿𝐿𝑟 + 𝐿𝑚𝑟           −½ L𝑚𝑟               −½ L𝑚𝑟  
 −½ L𝑚𝑟            𝐿𝐿𝑟 + 𝐿𝐿𝑟          −½ L𝑚𝑟

 −½ L𝑚𝑟             −½ L𝑚𝑟                𝐿𝐿𝑟 + 𝐿𝑚𝑟  
                              (2.22a) 

Whereas in stator, the rotor self inductances are equal that is,  

Lar ar = Lbr br = Lcr cr = LLr + Lmr       (2.22b) 

The rotor magnetizing inductance, Lmr is given as;  

Lmr =  
𝑁𝑆

2
 

2

 
𝜋𝜇 𝑜𝑟𝑙

𝑔
         (2.23) 

The rotor – to-rotor mutual inductances are equal and expressed as; 

Lar br = Lar cr= Lbr cr= - ½ Lmr        (2.24) 

The mutual inductances between the stator and the rotor windings are obtained as follows; 
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i) The mutual inductances Las ar = Lbs br and Lcs cr are equal, and is given by the 

expression; 

Las ar = Lbs br = Lcs cr = Lsr cr = Lsr cos θr      (2.25) 

ii) The mutual inductances Las br, Lbs cr and Lcs ar are equal; and is given by the 

expression Las br =  Lbs cr = Lcs ar = Ls cos (θr+
2𝜋

3
)     (2.26) 

iii)  The mutual inductances Las cr, Lbs ar and Lcs br are equal; and is given by the 

expression;  

Las cr = Lbs ar = Lcs br = Lsr cos (θr−
2𝜋

3
)        (2.27) 

Equation (2.25) through equation (2.27), gives one expression for the mutual inductance 

between the stator and the rotor windings of an induction motorexpressed as; 

𝐿𝑠𝑟 = 𝐿𝑠𝑟

 
 
 
 
    Cos θr                            Cos   θr+

2π

3
                       Cos  𝜃𝑟 −   

2π

3
  

Cos  θr −   
2π

3
                 Cos θr                                        Cos  θr +

2π

3
 

𝐶𝑜𝑠  𝜃𝑟 +
2𝜋

3
                 𝐶𝑜𝑠  𝜃𝑟 −

2𝜋

3
                 𝐶𝑜𝑠 𝜃𝑟  

 
 
 
 

         (2.28) 

The Lsr on the right hand side of equation (2.28) represents the amplitude of the mutual 

inductances between the stator and rotor windings and is given by the expression; 

Lsr =  
𝑁𝑠

2
   

𝑁𝑟

2
  

𝜋𝜇 𝑜𝑟𝑙

𝑔
             (2.29) 

2.2.5– Transformation to arbitrary q-d-o reference frame  

The voltage equation in machine variables for the stator and the rotor of a star-connected 

symmetrical induction motorshown in figure 2.3 are expressed as follows;  
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Vas = ias rs + pλas 

Vbs = ibs rs + pλbs          (2.30) 

Vcs = ics rs + pλcs 

Similarly, for the rotor voltage equations;  

Var = iar rr + pλar 

Vbr = ibr rr + pλbr          (2.31) 

Vcrs = icr rr + pλcr 

In both equations, P = d/dt, the s subscripts denotes variables and parameters associated with 

the stator circuits and the r subscripts denotes variables and parameters associated with the 

rotor circuits. Both rs and rr are diagonal matrices each with equal non zero elements (Krause 

et al 1995).  

For a magnetically linear system, the flux linkages can be expressed as;  

 
𝜆𝑠
𝑎𝑏𝑐

𝜆𝑟
𝑎𝑏𝑐   =  

𝐿𝑠𝑠
𝑎𝑏𝑐

𝐿𝑟𝑟
𝑎𝑏𝑐    

𝐿𝑠𝑟
𝑎𝑏𝑐

𝐿𝑟𝑟
𝑎𝑏𝑐     

𝑖𝑠
𝑎𝑏𝑐

𝑖𝑟
𝑎𝑏𝑐    wb.turn       (2.32) 

For an idealized inductance machine, six first order differential equations are used to describe 

the machine, one differential equation for each machine winding. The stator-to- rotor coupling 

terms are functions of rotor position and hence when the rotor rotates, the coupling terms vary 

with time (Chee-mum-ong 1997). 

In the analysis of induction machine, it is also desirable to transform the abc variables with 

the symmetrical rotor windings to the arbitrary q do reference frame (Krause et al 1995). 
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The transformation equation from the abc quantities to the q do reference frame is given by 

(Chec-mum-ong 1997). 

 

𝑓𝑞
𝑓𝑑
𝑓𝑜

  =  𝑇𝑞𝑑𝑜  (𝜃)   

𝑓𝑎
𝑓𝑏
𝑓𝑐

                      (2.33) 

Where the variable f can be the phase voltage, current or flux linkages of the machine. 

 𝑇𝑞𝑑𝑜  (𝜃)  = 
2

3
 

 
 
 
 
 

 

cosθ             cos    θ −
2π

3
       cos  θ+

2π

3
  

𝑠𝑖𝑛𝜃         𝑠𝑖𝑛  𝜃 −
2𝜋

3
           𝑠𝑖𝑛  𝜃 +

2𝜋

3
 

1

2
                     

1

2
                               

1

2
        

 

 
 
 
 
 

    (2.34) 

and the inverse of equation (2.34) is  

 𝑇𝑞𝑑𝑜  (𝜃) 
−1

  =  

𝑐𝑜𝑠𝜃                      𝑠𝑖𝑛θ                    1  

sin  θ −
2𝜋

3
      sin  θ −

2𝜋

3
      1

cos  θ +
2𝜋

3
       sin  θ +

2𝜋

3
      1 

                     (2.35) 

2.2.6 Voltage equations in q-d-o reference frame  

From equation (2.30), the stator winding abc voltage equations can be expressed as; 

𝑉𝑠
𝑎𝑏𝑐

 = 𝑟𝑠
𝑎𝑏𝑐    𝑖𝑠

𝑎𝑏𝑐
  + 𝑝𝜆𝑠

𝑎𝑏𝑐                                                                     (2.36) 

Applying the transformation,  𝑇𝑞𝑑𝑜  (𝜃) , to equation (2.36), yields;  

𝑉𝑠
𝑞𝑑𝑜

 = 𝑇𝑞𝑑𝑜  (𝜃)  𝑟𝑠
 𝑎𝑏𝑐  𝑇𝑞𝑑𝑜  (𝜃) 

−1
  𝑖𝑠

𝑞𝑑𝑜   +  𝑇𝑞𝑑𝑜  (𝜃)  𝑝 𝑇𝑞𝑑𝑜  (𝜃) 
−1

  𝜆𝑠
𝑞𝑑𝑜          (2.37) 

The above equation (2.37), simplifies to ;  

𝑉𝑠
𝑞𝑑𝑜

 =𝑟𝑠
𝑞𝑑𝑜

  𝑖𝑠
𝑞𝑑0

 + 𝜌𝜆𝑠
𝑞𝑑0 + ω –

0 1 0
1 0 0
0 0 0

 𝜆𝑠
𝑞𝑑𝑜

      (2.38) 
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Where;   𝑟𝑠
𝑞𝑑𝑜

 =  𝑟𝑠  
1 0 0
0 1 0
0 0 1

 ; p = d/dt; ω= 
𝑑𝜃

𝑑𝑡
 

Similarly, the rotor quantities must be transformed into the same q-d-o frame. Now the 

transformation angle for the rotor phase quantities is (θ-θr). When the transformation Tqdo (θ-

θr) is applied to the rotor voltage equation in the same manner as the stator, we have;  

𝑉𝑟
𝑞𝑑𝑜

 =𝑟𝑟
𝑞𝑑𝑜

  𝑖𝑟
𝑞𝑑𝑜

 + 𝑝𝜆𝑟
𝑞𝑑𝑜

 +(ω-ωr)  –
0 1 0
1 1 0
0 0 0

 𝜆𝑟
𝑞𝑑𝑜

           (2.39) 

2.2.7 Flux Linkage in q-d-o reference frame  

From equation (2.32), the stator and rotor flux linkages are given as; 

𝜆𝑠
𝑎𝑏𝑐  =𝐿𝑠

𝑎𝑏𝑐   𝑖𝑠
𝑎𝑏𝑐  +𝐿𝑠𝑟

𝑎𝑏𝑐   𝑖𝑟
𝑎𝑏𝑐              (2.40) 

𝜆𝑟
𝑎𝑏𝑐  =𝐿𝑟𝑠

𝑎𝑏𝑐   𝑖𝑠
𝑎𝑏𝑐  +𝐿𝑟𝑟

𝑎𝑏𝑐   𝑖𝑟
𝑎𝑏𝑐                  (2.41) 

The stator flux linkages in q-d-o reference frame are obtained by applying Tqdo (θ) to equation 

(2.40) to give; 

𝜆𝑠
𝑞𝑑𝑜

 =  𝑇𝑞𝑑𝑜  (𝜃)   𝐿𝑠𝑠
𝑎𝑏𝑐   𝑖𝑠

𝑎𝑏𝑐  + 𝐿𝑠𝑟
𝑎𝑏𝑐   𝑖𝑟

𝑎𝑏𝑐   

=  𝑇𝑞𝑑𝑜  (𝜃) 𝐿𝑠𝑠
𝑎𝑏𝑐   𝑇𝑞𝑑𝑜

−1(𝜃) 𝑖𝑠
𝑞𝑑𝑜

 + 𝑇𝑞𝑑𝑜  (𝜃) 𝐿𝑟𝑠
𝑎𝑏𝑐   𝑇𝑞𝑑𝑜

−1(𝜃) 𝑖𝑟
𝑞𝑑𝑜

          (2.42) 

Equation (2.42) simplifies to (Chee – Mum ong 1997); 

 

𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆0𝑠

  =  

LLs+ 
3

2
Lss             0                 0 

0                      LLs+
3

2
 Lss       0

  0                         0                     LLs

   

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖𝑜𝑠

 +  

3

2
𝐿𝑠𝑟        0         0 

0          
3

2
 𝐿𝑠𝑟     0

0             0             0

  

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖𝑜𝑟

      (2.43) 

In a similar manner, if the transformation, Tqdo (θ – θr) is applied to equation (2.41) the rotor 

q-d-o flux linkage becomes;  
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𝜆𝑟
𝑞𝑑𝑜

 =  𝑇𝑞𝑑𝑜  (𝜃 − 𝜃𝑟) 𝐿𝑟𝑠
𝑎𝑏𝑐  𝑇𝑞𝑑𝑜  (𝜃 − 𝜃𝑟) 

−1
  𝑖𝑠

𝑞𝑑𝑜
 +  𝑇𝑞𝑑𝑜  (𝜃 − 𝜃𝑟) 𝐿𝑟𝑟

𝑎𝑏𝑐  𝑇𝑞𝑑𝑜  (𝜃 −

𝜃𝑟) −1  𝑖𝑟
𝑞𝑑𝑜

          (2.44) 

Equation 2.44 can be simplified as;  

 

𝜆𝑞𝑟

𝜆𝑑𝑟

𝜆0𝑟

 =  

3

2
𝐿𝑠𝑟        0         0 

0          
3

2
 𝐿𝑠𝑟     0

0             0             0

  

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖𝑜𝑠

  +    

𝐿𝐿𝑟 +
3

2
𝐿𝑟𝑟        0             0 

0               𝐿𝐿𝑟 +
3

2
 𝐿𝑟𝑟     0

0                  0               𝐿𝐿𝑟

   

𝑖𝑞𝑟
𝑖𝑑𝑟
𝑖𝑜𝑟

             (2.45) 

Merging equation (2.43) and (2.45). gives the stator and rotor flux linkage equations in  q-d-o 

reference frame as depicted in equation (2.46)  

 
 
 
 
 
 
 
𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆0𝑠

𝜆 𝑞𝑟

𝜆 𝑑𝑟
𝜆 0𝑟  

 
 
 
 
 
 

 
 
 
 
 
 
 
LLs+Lm             O                   O                  Lm                O                       O   

0                LLs+Lm                 O                 O                    Lm                O 
O                        O                      LLs              O                     O                 O

Lm                      O                     O                𝐿 Lr+Lm        O                    O 

0                   Lm                     O                 O               𝐿 Lr+Lm           O

O                  O                          O                  O                      O                 𝐿 Lr  
 
 
 
 
 
 

 
 
 
 
 
 
𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖𝑎𝑠
𝑖 𝑞𝑟
𝑖 𝑑𝑟
𝑖 𝑎𝑟  

 
 
 
 
 

  (2.46) 

In equation (2.46), the primed quantities are rotor values referred to the stator side and are 

related thus; 

𝜆 𝑞𝑟  = 
𝑁𝑠

𝑁𝑟
 𝜆𝑞𝑟            (2.47) 

𝑖 𝑑𝑟  = 
𝑁𝑠

𝑁𝑟
 𝜆𝑑𝑟  

 𝑖 𝑞𝑟  = 
𝑁𝑟

𝑁𝑠
 𝑖𝑞𝑟            (2.48) 

𝑖 𝑑𝑟  = 
𝑁𝑟

𝑁𝑠
 𝑖𝑑𝑟  

Also from equation (2.46), Lm is the magnetizing inductance on the stator side and can be 

expressed as;  
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Lm = 
3

2
 𝐿𝑠𝑠  = 

3

2
 
𝑁𝑟

𝑁𝑠
𝐿𝑠𝑟  =

3

2

𝑁𝑠

𝑁𝑟
𝐿𝑟𝑟        (2.49) 

 

2.2.8 Steady – State analysis of 3-phase induction motor 

In steady state operation of the three phase induction motor(IM), the derivative terms in the 

voltage equations become zero. 

Referring to equation (2.42) earlier expressed as;  

𝑉𝑠
𝑞𝑑𝑜

 =𝑟𝑠
𝑞𝑑𝑜

  𝑖𝑠
𝑞𝑑𝑜

 + 𝑝𝜆𝑠
𝑞𝑑𝑜

 + ω  –
0 1 0
1 0 0
0 0 0

 𝜆𝑠
𝑞𝑑𝑜

    and substituting, 

 𝑟𝑠
𝑞𝑑𝑜

 = rs 
1 0 0
0 1 0
0 0 1

 , gives; 

 

𝑉𝑞𝑠
𝑉𝑑𝑠

𝑉𝑜𝑠

   =  

𝑟𝑠  0 0
0 𝑟𝑠  0
0  0 𝑟𝑠

   

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖0𝑠

   + p 

𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆0𝑠

    –
0 𝜔 𝑂
𝜔 0 0
0 0 0

  

𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆0𝑠

                (2.50) 

Equation (2.50) suggests that;  

𝑉𝑞𝑠  = 𝑟𝑠  𝑖𝑞𝑠  + p𝜆𝑞𝑠  + ω𝜆𝑑𝑠  

𝑉𝑑𝑠  = 𝑟𝑠 ids + p𝜆𝑑𝑠  + ω𝜆𝑞𝑠          (2.51) 

𝑉0𝑠 = 𝑟𝑠 𝑖𝑜𝑠  + p𝜆𝑜𝑠   

Also considering equation (2.35) in the same way as above gives;  

𝑉 𝑞𝑠  = 𝑟 𝑟  𝑖 𝑞𝑟 + p𝜆 𝑞𝑟  + (ω-ωr) 𝜆 𝑑𝑟  

𝑉 𝑑𝑠  =  𝑟 𝑟  𝑖 𝑑𝑟 + + p𝜆 𝑑𝑟  - (ω-ωr) 𝜆 𝑞𝑟        (2.52) 

𝑉 𝑎𝑠  =  𝑟 𝑟  𝑖 𝑎𝑟+ p𝜆 𝑎𝑠  



25 

When the derivation terms (P=d/dt) are set equal to zero and is applied to the stator and rotor 

voltage equation (2.51) and (2.52) for the q-axis, we have;  

𝑉𝑞𝑠  = 𝑟𝑠 𝑖𝑞𝑠  + ω𝜆𝑑𝑠          (2.53) 

𝑉 𝑞𝑟   = 𝑟 𝑟  𝑖 𝑞𝑟 +  (ω-ωr) 𝜆 𝑑𝑟                 (2.54) 

Since q and d are in space quadrature, if we apply the transformation Fab = jFqs to equation 

(2.53) and (2.54), we have;  

𝑉𝑞𝑠  = 𝑟𝑠 𝑖𝑞𝑠  + jω𝜆𝑞𝑠          (2.55) 

𝑉 𝑑𝑟  =  𝑟 𝑟  𝑖 𝑞𝑟 + (ω-ωr) 𝜆 𝑞𝑟                    (2.56) 

From equation (2.46), the stator flux linkage along the q-axis is; 

𝜆𝑞𝑠  = (LLs + 𝐿𝑚 ) iqs + Lm 𝑖 𝑞𝑟  

      =  LLs iqs + Lm iqs + Lm 𝑖 𝑞𝑟  

 𝜆𝑞𝑠  = LLs iqs + Lm (iqs+ 𝑖 𝑞𝑟 )                 (2.57) 

Also, the rotor flux linkage along the q-axis, is,  

𝜆 𝑞𝑟  = Lm iqs (𝐿𝐿𝑟
  + Lm) 𝑖 𝑞𝑟  

      =  Lm iqs + 𝐿𝐿𝑟
 + 𝑖 𝑞𝑠 + Lm 𝑖 𝑞𝑟  

𝜆 𝑞𝑟  = 𝐿𝐿𝑟
   iqr + Lm (iqs +𝑖 𝑞𝑟 )                                                                        (2.58) 

Substituting equation (2.57) back into equation (2.55), we have; 

Vqs = rs iqs + jω  𝐿𝐿𝑠𝑖 𝑞𝑟  +  𝐿𝑚  (𝑖𝑞𝑠 + 𝑖 𝑞𝑟  )      

= 𝑟𝑠  𝑖𝑞𝑠  + jω 𝐿𝐿𝑠  𝑖𝑞𝑠  + jω 𝐿𝑚  (𝑖𝑞𝑠 +  𝑖 𝑞𝑟 ) 
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 Vqs = 𝑟𝑠 𝑖𝑞𝑠 + 𝑗𝑋𝐿𝐿𝑠  𝑖𝑞𝑠  + 𝑗𝑋𝐿𝑚  (𝑖𝑞𝑠 +  𝑖 𝑞𝑟 )     (2.59) 

But from equation (2.56), we have that;  

𝑉 𝑞𝑟  = 𝑟 𝑟 𝑖 𝑞𝑟  + j (ω-ωr) 𝜆 𝑞𝑟  

𝑉 𝑞𝑟  =  𝑟 𝑟 𝑖 𝑞𝑟  + jsω 𝜆 𝑞𝑟  

=  𝑟 𝑟 𝑖 𝑞𝑟+ jsω  𝐿𝐿𝑟
  +  𝐿𝑚  (𝑖𝑞𝑠 + 𝑖 𝑞𝑟    

=  𝑟 𝑟 𝑖 𝑞𝑟+ jsω 𝐿𝐿𝑟
  𝑖 𝑞𝑟  +  𝑗𝑠𝜔 𝐿𝑚  (𝑖𝑞𝑠 +  𝑖 𝑞𝑟 ) 

𝑉 𝑞𝑟  =  𝑟 𝑟 𝑖 𝑞𝑟+ js 𝑋 𝐿𝐿𝑟  𝑖 𝑞𝑟+ jsxLm  (𝑖𝑞𝑠 +  𝑖 𝑞𝑟 )              (2.60) 

Where s = slip of the induction motor. 

If we let us suppose that the q-axis is aligned with phase a of the induction motor such that; 

𝑉𝑞𝑠  =𝑉𝑎𝑠 ; 𝑉 𝑞𝑟=𝑉 𝑎𝑟  

𝑖𝑞𝑠  = 𝑖𝑎𝑠 ; 𝑖 𝑞𝑟 = 𝑖 𝑎𝑟 , then equation (2.59) boils down to;  

𝑉𝑎𝑠  = 𝑟𝑠  𝑖𝑎𝑠 + 𝑗𝑋𝐿𝑠    + j𝑋𝐿𝑚   (𝑖𝑎𝑠 +  𝑖 𝑎𝑠  )                (2.61) 

Similarly, equation (2.60) yields;  

𝑉 𝑎𝑟  =  𝑟 𝑟  𝑖 𝑎𝑟 +  𝑗𝑠𝑋 𝐿𝐿𝑟   𝑖 𝑎𝑟 + jsXLm (𝑖𝑎𝑠 +  𝑖 𝑎𝑟 )                (2.62) 

Dividing equation (2.62) through by the slip(s), we have; 

𝑉 𝑎𝑟  

𝑠
 = 

𝑟 𝑟 

𝑠
 𝑖𝑎 𝑟+  𝑗𝑋 𝐿𝐿𝑟  𝑖 𝑎𝑟  + jXLm (𝑖𝑎𝑠 +  𝑖 𝑎𝑟 )                (2.63) 

Equations (2.61) and (2.63) are used to draw the steady state equivalent circuit of an induction 

motor as depicted in figure (2.8) 
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Fig 2.8 – Per phase equivalent circuit of an induction motor 

Normally, for an induction motor, (squirrel cage type) the rotor conductors (windings) are 

short-circuited. Hence, rotor voltage 𝑉𝑎𝑟   is equal to zero. The per phase equivalent circuit of 

figure (2.8) with the rotor short circuited, yields; 

 

 

Fig 2.9 – Per phase equivalent circuit of an induction motor at run condition with (s<1) 

the rotor short circuited  

To account for the copper loss   𝑖 𝑎𝑟    𝑟
2  in the rotor circuit, figure (2.17) is redrawn as shown 

in fig (2.10)  

 

 

Fig 2.10 – Per phase equivalent circuit of an induction motor which account for copper 

loss   𝒊 𝒂𝒓 𝒓
𝟐 in the rotor circuit. 

With reference to figure 2.9, under run condition of the motor the rotor speed (nr)>0, and s<1. 

Hence the load resistance  𝑟 𝑟  is affected by slip (s). 

 

 

Vas 

jXLs rs j𝑋 Lr 

𝑟 𝑟
𝑠

 

𝑖 𝑎𝑟  

(ias + 𝑖 𝑎𝑟 ) 

jXm 

𝑖𝑎𝑠  + 

- 

Vas 

jXLs rs j𝑋 Lr 

𝑟 𝑟
𝑠

 (1 − 𝑠) 

𝑖 𝑎𝑟  

(ias + 𝑖 𝑎𝑟 ) 

jXm 

𝑖𝑎𝑠  
𝑟 r 

+ 

- 

𝑖𝑎𝑠  

+ 

-  

Vas 

jXLs rs j𝑋 Lr 

𝑟 𝑟
𝑠

 
𝑖 𝑎𝑟  

(ias + 𝑖 𝑎𝑟 ) 

jXm 𝑉 𝑎𝑟
𝑠
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2.2.9 Power across air gap, output power and Electromechanical torque  

With reference to the equivalent circuit o fig 2.9, the power, crossing the terminals of the 

shunt mutual inductance (jXm) is the electrical power input per phase minus the stator losses 

(stator copper and iron loss). It is the power that is transferred from the stator to the rotor 

through the air-gap magnetic field. This is known as the power across the air gap(Pg).  Its 3-

phase value (Pg) is given by (Eleanya et al 2017); 

Pg = 3( 𝑖 𝑎𝑟 )2
 
𝑟 𝑟

𝑠
 Watts          (2.64) 

Similarly, rotor Copper loss (Pcr) as in figure 2.10 = 3( 𝑖 𝑎𝑟 )2 𝑟 𝑟  Watts  (2.65) 

From equations (2.64) and (2.65); 

Power across the air gap Pg = 
𝑃𝑐𝑟

𝑠
 

                                       Pcr = sPg Watts       (2.66) 

The mechanical (gross) Output power (Pm) of the motor is obtained by subtracting equation 

2.66 from 2.64 as below;  

Pm = Pg – Pcr =   3( 𝑖 𝑎𝑟 )2
 
𝑟𝑟

𝑆
 - 3( 𝑖 𝑎𝑟 )2

 rr  

     = 3( 𝑖 𝑎𝑟 )2   
𝑟𝑟

𝑆
  (1-s) Watts        (2.67) 

Similarly, the electromagnetic torque (Te) developed by the motor is given by; 

Te = 
𝑃𝑔

𝜔𝑟
 =    

 1−𝑠 𝑃𝑔

𝜔𝑠(1−𝑠)
 =   

𝑃𝑔

𝜔𝑠
    

 Te = 
3( 𝑖 𝑎𝑟 )2 

𝑟 𝑟
𝑠

𝜔𝑠
   N-m        (2.68) 
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Where ωr = 2πnr = rotor speed in mechanical radian per second, ωs = 2πns = synchronous 

speed in mechanical radian per second  

More-still, the mechanical net power or shaft power (Psh) = Pm – mechanical losses (friction 

and windage losses) 

 Output or shaft torque (Tsh) of the motor is given by; 

 Tsh = 
𝑃𝑠𝑕

(1−𝑠)𝜔𝑠
 N-m                      (2.69 

Equation (2.68) is an interesting and significant result according to which torque is obtained 

from the power across the air gap by dividing it with synchronous speed (ωs) in rad/s as if 

power was transferred at synchronous speed.  

2.2.10  Torque/slip characteristics of an induction motor. 

The torque – slip performance indices of an induction motor can be studied for better if the 

per-phase equivalent circuit of figure 2.9 is slightly modified as in fig 2.11 below;  

 

 

 

Fig 2.11 – Modified per –phase equivalent circuit of an induction motor at run 

condition.  

The expression for torque-slip characteristics is easily obtained by finding the Thevenin 

equivalent of the circuit of figure 2.11, to the left of ab, as shown below  

 

b 

a 

Vas 

𝑟 𝑟
𝑠

 
(ias + 𝑖 𝑎𝑟 ) 

𝑖 𝑎𝑟  j𝑋 Lr 

jXm 

jXLs rs 𝑖𝑎𝑠  + 

- 
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ZTH      = RTH + jXTH 

 = (rs+ jXLs) // jXm 

= 
 𝑟𝑠+𝑗𝑋 𝐿𝑠  𝑗𝑋𝑚

(𝑟𝑠+𝑗𝑋 𝐿𝑠+𝑗𝑋𝑚 )
    

=  
 𝑟𝑠+𝑗𝑋 𝐿𝑠  𝑗𝑋𝑚

(𝑟𝑠+𝑗(𝑋𝐿𝑠+𝑋𝑚 ))
  Ω        (2.70) 

Assuming XLs + Xm >>> rs then;  

ZTH =  
𝑟𝑠 𝑋𝑚

𝑋𝐿𝑠+𝑋𝑚

+  
𝑗𝑋 𝐿𝑠 𝑋𝑚

𝑋𝐿𝑠+𝑋𝑚

  Ω        (2.71) 

 RTH = 
𝑟𝑠 𝑋𝑚

𝑋𝐿𝑠 +𝑋𝑚

  (real component of ZTH) 

(2.72) 

    XTH = 
𝑗𝑋 𝑙𝑠  𝑋𝑚

𝑋𝐿𝑠+ 𝑋𝑚

  (imaginary component of ZTH)      

Similarly, VTH =  
𝑗𝑋𝑚

(𝑟𝑠+𝑗𝑋 𝐿𝑠+𝑋𝑚 )
  Vas volts      (2.73)  

For negligible value of rs compared to j(XLs +Xm); 

VTH =  
𝑗𝑋𝑚

(𝑗𝑋 𝐿𝑠 +𝑋𝑚 )
  Vas volts         (2.74) 

Hence, the circuit of figure (2.11), reduces to that of figure (2.12), in which it is convenience 

to take VTH as the reference voltage.  

 

 

 

Fig 2.12 – Thevenin equivalent of 3 – phase induction motor circuit model  

 

 

+ 

- 

VTH 

RTH a XTH 

b 

j𝑋 Lr 

𝑟 𝑟
𝑠

 

𝑖 𝑎𝑟  
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From figure 2.12; 

𝑖 𝑎𝑟 = 
𝑉𝑇𝐻

  𝑅𝑇𝐻 +
𝑟𝑟
𝑠
 +𝑗   𝑋𝑇𝐻 +𝑋𝐿𝑟   

     Amperes      (2.75) 

Putting equation (2.75) into (2.68) we obtain;  

Te =
3𝑟 𝑟

𝑆𝜔𝑠
 

 𝑉𝑇𝐻  2

 𝑅𝑇𝐻 +
𝑟𝑟
𝑠
 

2
+𝑗   𝑋𝑇𝐻 +𝑋𝐿𝑟  2

  N-m       (2.76) 

Table 2.1 – The machine parameters  

Parameter 

Ls = Lr 

rs = 𝑟 r 

V 

F 

P 

Value 

5.79mH 

1.10Ω 

220V 

50Hz 

2 

    

Further-still, equation (2.76) is the expression for torque developed as a function of voltage 

and slip.  

2.2.11  Efficiency/slip characteristics of a conventional 3-phase induction motor 

With reference to squirrel cage induction motor type, the resistance is fixed, and less 

compared to its reactance. There is no provision for addition of external resistance efficiency 

(ε) of the machine is given by; 

ε = 
𝑃𝑜𝑤𝑒𝑟  𝑂𝑢𝑡𝑝𝑢𝑡

𝑃𝑜𝑤𝑒𝑟  𝑖𝑛𝑝𝑢𝑡
         (2.77) 

For the per-phase equivalent circuit of an induction motorof fig 2.11 



32 

The input impedance looking at the input terminals is given by; 

Z = rs + jXls +  
 𝑗𝑋𝑚𝑞    𝑗𝑋𝑙𝑟 + 

𝑟
𝑟  

𝑠
   

 
𝑟
𝑟  

𝑠
 +𝑗   𝑋𝑚 +𝑋𝑙𝑟  

        (2.78) 

The current in the main (stator) winding; ias = 
𝑉𝑎𝑠

𝑍
              (2.79) 

The current in the rotor winding is given by; 𝑖𝑎 𝑟   =  
𝑗𝑋𝑚  

 
𝑟
𝑟  

𝑠
 +𝑗   𝑋𝑚 +𝑋𝑙𝑟  

 𝑖𝑎𝑠            (2.80) 

Copper losses in the stator and rotor windings = 3 𝑟𝑟    𝑖𝑎𝑠 + 𝑖𝑎 𝑟   2                (2.81) 

For the machine; 

Input power = Output power + copper losses in stator and rotor windings, excluding windage 

and frictional losses.         (2.82) 

Adding equation 2.67 to equation 2.82, we have;  

Input power =  3 𝑟𝑟    
1−𝑠

𝑠
   𝑖𝑎 𝑟 

2 +  3 𝑟𝑟   𝑖𝑎𝑟 + 𝑖𝑎 𝑟 
2 

  = 3 𝑟𝑟   
1−𝑠

𝑠
  𝑖𝑎 𝑟 

2 +  𝑖𝑎𝑟 + 𝑖𝑎 𝑟 
2             (2.83) 

 From equation 2.77;  

Efficiency ɛ = 
3 𝑟𝑟   

1−𝑠

𝑠
    𝑖𝑎 𝑟 

2  

3 𝑟𝑟 [  
1−𝑠

𝑠
   𝑖𝑎 𝑟 

2+  𝑖𝑎𝑟 +𝑖𝑎 𝑟 
2]

 

                   = 
  

1−𝑠

𝑠
    𝑖𝑎 𝑟 

2  

  
1−𝑠

𝑠
   𝑖𝑎 𝑟 

2+  𝑖𝑎𝑟 +𝑖𝑎 𝑟 
2
       (2.84) 
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2.2.12 Power factor/Slip characteristics of a conventional 3-phase induction motor 

From the Thevenin equivalent of a 3-phase induction motorcircuit model of fig 2.12, the 

machine’s power factor (cosθ) is given as; 

Power factor (cos θ)  = 
𝑅𝑒𝑎𝑙  (𝑍)

 𝑅𝑒𝑎𝑙   𝑍 2+ 𝐼𝑚𝑎𝑔  𝑍 2  
 

                                 =  
𝑅𝑇𝐻 + 

𝑟𝑟 
𝑠

 (𝑅𝑇𝐻 + 
𝑟𝑟 
𝑠

)2+ 𝑋𝑇𝐻 +𝑋𝐼𝑟   2  

     (2.85) 

2.2.13 Rotor current (𝒊𝒂𝒓 )-Slip(s) Characteristics of Conventional 3-Phase induction 

Motor.  This can be explained using equation 2.75. 

 

2.2.14    The dynamic Model of 3-Phase induction motor 

The dynamic analysis of a 3-phase induction motor can be done using, three particular cases 

of the generalized mode in arbitrary reference frames. They are of general interest and they 

include; 

i) Stator reference frame model 

ii) Rotor reference frame model  

iii) Synchronously rotating reference model  

The dynamic analysis of the induction motor is carried out in the d-q-rotor reference frame. 

As earlier derived in the steady state analysis of equations (2.51) and (2.52), the stator and 

rotor voltage equation in the arbitrary reference frames are expressed as; 
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Vqs = rs iqs + Pλqs + ωλds     

Vds = rs ids + Pλds – ωλqs 

Vos = rs ids + Pλ0s  

𝑉 𝑞𝑟  = 𝑟 𝑟 𝑖 𝑞𝑟  + P𝜆 𝑞𝑟  + (ω-ωr) 𝜆 𝑑𝑟               (2.86) 

𝑉 𝑑𝑟  = 𝑟 𝑟 𝑖 𝑑𝑟  + P𝜆 𝑑𝑟  - (ω-ωr) 𝜆 𝑞𝑟  

𝑉 𝑜𝑟  =rr ior + Pλor 

 

While the stator and rotor flux linkages in the arbitrary reference frame are given as; 

λqs = (LLs + Lm)iqs + Lm 𝑖 𝑞𝑟  

λds = (LLs + Lm)ids + Lm 𝑖 𝑑𝑟  

𝜆 𝑞𝑟  = LLs ios 

𝜆 𝑞𝑟  = (𝐿 𝐿𝑟 + 𝐿𝑚) 𝑖 𝑞𝑟  + Lm iqs             (2.87) 

𝜆 𝑑𝑟  = (𝐿 𝐿𝑟 + 𝐿𝑚) 𝑖 𝑑𝑟  + Lm ids 

𝜆 𝑞𝑟  = LLr ior 

With equations (2.86) and (2.87), the dynamic equivalent circuits of an induction motor in the 

arbitrary reference frame is as shown in figure 2.15. 

 

 X 

 X 
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Substituting the flux linkage values into the voltage equations gives; 

Vqs = (rs+ LsP) iqs + ωLs ids + Lm P𝑖 𝑞𝑟  + ωLm 𝑖 𝑑𝑟  

Vds = ωLs iqs (rs+ LsP) ids + ωLm 𝑖 𝑞𝑟  + Lm P𝑖 𝑑𝑟  

Vos = (rs + LLs P) ias 

𝑉 𝑞𝑟  = Lm P iqs + (ω-ωr) Lm ids + (𝑟 𝑟  + 𝐿 𝑟  𝑃)𝑖 𝑞𝑟  + (ω-ωr) 𝐿 𝑟  𝐿 𝑑𝑟       (2.88) 

𝑉 𝑑𝑟  = (ω-ωr) Lm iqs + Lm P ids - (ω-ωr) 𝐿 𝑟  𝑖 𝑞𝑟  + (𝑟 𝑟 + 𝐿 𝑟𝑃)𝑖 dr  

𝑉 𝑜𝑟  = (𝑟 𝑟 +  𝐿𝐿𝑟𝑃) 𝑖 0𝑟  

Where, Ls = LLs + Lm, 𝐿 𝑟 = 𝐿 𝐿𝑟  + Lm 

 

From equation (2.87) through equation (2.88), it can be observed that only leakage inductance 

and phase resistances influence the zero-sequence voltages and currents unlike in the d-q-

component variables which are influenced by the self and mutual inductances and phase 

Fig 2.17 – Dynamic equivalent circuit for 3-phase symmetrical induction machine in 

an arbitrary reference frame  
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resistances. Again in a balances 3-phase machine, the sum of the three-phase current is zero 

which leads to a zero sequence current of zero value (R.krishnan, 2001). 

This therefore implies that the analysis can be carried out with the voltage and flux linkage 

equations ignoring the Zero-sequence components. And when this is done, the flux linkage 

equation of (2.87) can be rewritten as;  

 
 
 
 
 
𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆 𝑞𝑟

𝜆 𝑑𝑟  
 
 
 
 

 = 

 
 
 
 
 

 LLs+Lm                          0                                 Lm                  0

0                                  LLs+Lm                       0                       Lm

Lm                                    0                               L Lr+Lm                0

      0                                        𝐿𝑚                                   0                       L Lr+Lm  
 
 
 
 

 
 
 
 
𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖 𝑞𝑟
𝑖 0𝑟  

 
 
 

  (2.89) 

The voltage equation for the induction motor in the arbitrary reference frame becomes; 

 
 
 
 
 
𝑉𝑞𝑠
𝑉𝑑𝑠

𝑉 𝑞𝑟

𝑉 𝑑𝑟  
 
 
 
 

 = 

 
 
 
 
 

 rs+LsP                          ωLs                          𝐿𝑚P                              ωLm    

  -ωL𝑠                                  rs+LsP                     -ωLm                       LmP        

                LmP                   (ω-ωr)Lm                     r s+L rP                 (ω-ωr)L r          

-(ω-ωr)Lm                                    LmP                     - (ω-ωr)L r             r r+L rP      
 
 
 
 

 

 
 
 
 
𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖 𝑞𝑟
𝑖 𝑑𝑟  

 
 
 

 (2.90)            

In q-d-rotor reference frame ω=ωr. 

Substituting this into equation (2.90), we have; 

 
 
 
 
 
𝑉𝑞𝑠
𝑉𝑑𝑠

𝑉 𝑞𝑟

𝑉 𝑑𝑟  
 
 
 
 

 = 

 
 
 
 
 

 rs+Ls𝑃                         𝜔𝑟Ls                                LmP              𝜔𝑟𝐿𝑚     

  −𝜔𝑟𝐿𝑠                                 rs+Ls𝑃                       −𝜔𝑟𝐿𝑚               𝐿𝑚𝑃        

LmP                                 0                                  r r+𝐿 r𝑃          0      

 0                                    𝐿𝑚𝑃                                0                    r r+𝐿 r𝑃  
 
 
 
 

 
 
 
 
𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖 𝑞𝑟
𝑖 𝑑𝑟  

 
 
 

     (2.91) 

The transformation from a-b-c to q-d-o variables is still the same and given as;  

[Tabc] = 2 3     

 
 
 
 
 cos 𝜃𝑟       cos   𝜃𝑟 −

2𝜋

3
       cos  𝜃𝑟 +

2𝜋

3
 

sin 𝜃𝑟         sin   𝜃𝑟 −
2𝜋

3
        sin  𝜃𝑟 +

2𝜋

3
 

1

2
                      

1

2
                             

1

2  
 
 
 
 

     (2.92) 

The inverse matrix is;  



37 

[Tabc]
-1

 = 

 
 
 
 

cos 𝜃𝑟                                Sin 𝜃𝑟                 1

cos  𝜃𝑟 −
2𝜋

3
            sin   𝜃𝑟 −

2𝜋

3
          1

              cos  𝜃𝑟 −
2𝜋

3
            sin   𝜃𝑟 +

2𝜋

3
        1        

 
 
 

    (2.93) 

The electromagnetic torque for the d-q-rotor reference is expressed as; 

Te =
3

4
  PnLm (iqs 𝑖 𝑑𝑟  − 𝑖𝑑𝑠  𝑖 𝑞𝑟 )         (2.94) 

Also, the electromechanical (rotor) dynamic equation is given by; 

Te = J 
𝑑𝑤𝑚

𝑑𝑡
   + TL + Bωm                   (2.95) 

Where; 

J = moment of inertia of motor, TL = Load torque, B = friction coefficient of the load and 

motor, ωm = mechanical rotor speed.  

 

2.2.15    Dynamic Simulation of the motor  

The dynamic simulation of the 3-phase induction motoris carried out with parameters and 

constants for a slip, 220v, 4 pole, 3-phase, 50Hz star-connected induction motor as tabulated 

below;  

 

2.2 Review of Related Literature 

Reluctance machine in the familiar form is a three phase machine with a salient pole rotor.  

The machine has a squirrel cage which is included only for the purpose of enabling it to start 

as an asynchronous machine and then pull into synchronism at full speed. It delivers output 

torque or power only at synchronous speed (Ijeomah et al 1994). 
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Under certain conditions, a reluctance machine can operate stably synchronous without any 

cage or winding on the rotor. This was first noted by Gorges Han. He observed the stable 

operation of a Poly-Phase induction motor at one-half normal speed by means of unbalanced 

impedance in the secondary circuit (Georges 1896). He equally observed that operation of an 

induction motorwith electric asymmetry, which is achieved by loading the rotor winding of a 

wound rotor induction motorwith unbalanced load results in a drive running close to half 

synchronous speed. This effect, later called “Gorges Phenomenon” was most pronounced 

when a phase of the rotor circuit was open-circuited. The torque/speed characteristics was 

determined and its determination implies that depending on loading, the reluctance machine 

can run asynchronously at close to half-speed or synchronously at half-speed. Due to some 

draw-backs of his scheme, his finding failed to attract industrial acceptance. 

An attempt to improve Georges work was carried out by Schenfer (Schenfer 1926). He 

attempted using the machine as a half-speed industrial drive. He placed two windings on the 

stator, feeding them separately, one with a balanced three-phase a.c and the other with d.c. 

The rotor had short-circuited windings to enhance starting. The machine thus started 

synchronously and was then synchronized at half-speed by the stationary field established by 

the d.c.  

Further development generally centered around synchronous operation, each adopting 

Schenfer’s method and developing a different and more effective and/or economical means of 

feeding both the a.c and d.c for synchronous operation.  

Russel and Norseworthy adopted the machine for synchronous operation and improved 

Schenfer’s scheme by employing a single stator winding to carry the two currents (d,c, and 

a.c) simultaneously. In the synchronous operation as described above, a drive comparable to 
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conventional synchronous machine was achieved with high output and power factor 

(Norsworthy K.H 1958).       

In the preceding schemes described so far, the unbalance impendence results in the electrical 

asymmetry in the secondary circuit. On the other way round, this electrical asymmetry can be 

brought about by using rotors, whose reluctance to the passage of flux along one axis is a 

maximum and a minimum along a second axis of 
𝜋

2
 electrical radians to the first. 

A synchronous operation of the reluctance machine attracted little attention and industrial 

acceptance due to the following operational lapses; 

(i) Undesirable (2s-1)wo frequency harmonics induced in the mains supply by the 

operation  

(ii) Poor output and low power factor 

(iii) Excessive vibration and noise. 

A configuration which improved the industrial acceptance of the half speed machine by 

coupling two machine elements mechanically together and appropriately connecting their 

winding in parallel to the supply, was developed by Broadway. Broadway’s scheme combined 

both electrical and magnetic asymmetry in the secondary (Broadway 1973). Owing to the 

combination of both electric and magnetic asymmetry in Broadway’s machine, the machine 

was able to produce an output characteristics in both synchronous and asynchronous modes 

comparable to conventional induction motorcounterpart. Broadway and Co. endeavoured to 

adapt the machine as a feasible variable speed industrial drive by operating it asynchronously. 

This they did by coupling rotors of two identical cage machines and feeding their stator 

windings in parallel. 
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Operating at ∝ + 𝛽 = 𝜋/2 rad, the (2s-1)𝜔o harmonic existed only in the loop formed by the 

stator windings. Thus, it was effectively eliminated from the supply. The output characteristics 

were enhanced while vibration and noise were considerably reduced. At slip, s = 1/2 the set, with 

d.c excitation incorporated, operates as a synchronous machine. Within the range 1 < s < 1/2 

it operates as a motor, and as a generator in the 1/2 < s < 8 range if the rotor shaft is driven 

beyond the half-speed synchronous point by a mechanical drive system. 

The set’s operation resembles that of an induction motorwith its entire operational mode 

compressed within 0 ≤ S ≤ 1 instead of -1≤ S ≤1. Thus, although each unit of the set 

operates on reluctance principle, their combined operation markedly differs from a normal 

reluctance machine. As distinct from the conventional polyphase reluctance machine 

therefore, this machine is described as "Reluctance Effect Machine" or briefly, REM- 

Broadway and Co. discovered that the machine was self-starting even without the rotor cage. 

However, the electrical asymmetry in the rotor circuit enhanced the performance of the 

machine, and in fact provided the larger proportion of the total machine output. 

 

Though successful on synchronous operation, the scheme still depended on the complex 

technique of feeding both a.c and d.c through a single stator winding. Consider the conflicting 

current limiting requirements for a.c and d„ c. The reactance of a winding is normally higher 

than its resistance and effectively limits the a.c. This does not however apply to the d.c which 

is only sensitive to coil resistance. 

Thus, the set losses its flexibility in order to achieve a winding design effective for both a.c 

and d.c. Although external resistors could be incorporated in the d.c circuit as current limiter, 

they result in high operational losses. 
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For asynchronous operation, the terminals of the. stator winding are not accessible for control 

as in wound rotor induction motors. Thus, control or speed adjustments was not easily 

achieved. 

To achieve all of the advantanges of the Broadway set and also overcome the adverse effect 

of high leakage reactance in reluctance effect machines Agu, L. A. proposed a set of two 

equivalent reluctance machines. This is an evolution of a new configuration of a two element 

machine popularly known as the “Transfer-field reluctance machine”. This was configured to 

operate asynchronously as coupled poly-phase reluctance machine. In this scheme, there are 

two stator windings in each machine elements known as main and auxiliary windings (Agu 

L.A. 1997). The Agu’s configuration, unlike Broadway’s version has no rotating (rotor) 

conductors (windings).  

In furtherance to the existing configuration of the new machine, study on the contribution of 

the net torque of the machine by the constituent elements was carried out (Agu L.A. et al 

2002), so also the magnetic of the machine in its idealized form (Anih L.U 2009). 

All the studies on this machine quoted so far have been centered on steady state analysis 

derived from circuit theory approaches (Anih L.U et al 2009). For a more general analysis, a 

d-q-o modeling is necessary. 

Some authors studied the dynamic models of synchronous machines with two poly phase 

windings in a stator displaced by an arbitrary angle. Fuchs and Rosenberg derived the d-q 

equations (Fuch’s E.F. et al 1974), while Schiferl and Ong included the effect of mutual 

leakage inductances and performed an analog simulation for the machine supplying an ac and 

a rectifier load simultaneously (Schiferl R.F. et al 1983). 
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In the steady-state performance of the double-wound machine was reported as a high voltage 

generator (Touma-Holmberg. M et al 2000), while Obe E.S. and Senjyu T, presented a d-q 

model using space vector approach (Obe E.S et al 2006). The work presented by the two 

researchers couples two of such machine and interconnects their windings. They also studied 

the machines dynamic and steady-state behavior as a low speed motor. The effect of mutual 

leakage coupling first introduced in Schiferl R.F and Ong C.M’s work is ignored here since 

these values are always very low when the windings are symmetric. The torque enhancement 

of a reluctance effect machine by slip-frequency secondary voltage injection was reported by 

Ijeomah (Ijeomah et al 1994). In their scheme, the enhancement technique used include;  

(i) Secondary voltage injection scheme 

(ii) Double fed operation scheme  

Additionally, the enhancement of the output power and power factor of a transfer field 

machine operating in the synchronous mode by direct capacitance injection in the auxiliary 

winding of the machine was reported by Obe and Anih (E.S. Obe et al 2014). It was shown 

that by proper turning of the injected capacitance, the torque and output power of the machine 

is markedly enhanced at improved power factor. Such turning of the capacitive load, the  
𝑥𝑑

𝑥𝑞
 

ratio can be theoretically varied from zero to infinity without manipulation of the rotor 

geometry at very good power factor including unity. 

Most recently, the enhancement of the output power of transfer field machine by introduction 

of parallel path winding was reported by Eze and Anih (Eze I.N. et al 2016). In their study, 

additional identical main and auxiliary windings were respectively introduced on both halves 

of the machine elements. The scheme is conceived to reduce the excessive leakage reactance 

of the machine. 
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2.3    Summary of Review of Related Literature 

Ijeomah (1996) evolved a configuration which enhanced the output power of the conventional 

transfer field motor by injecting slip frequency voltage in the auxillary winding. The injected 

voltage in the auxillary winding is made to be in time phase with the induced voltage in the 

auxillary windings, thus leading to enhanced circulating current in the winding.  The 

enhanced current actually made the main winding to draw an additional current for mmf 

balance. The scheme enhanced the maximum power and hence maximum torque of the 

machine but with negligible effect on the starting torque. This is due to its cageless nature, for 

all cageless machines produce lower load (rotor) currents.  

Obe and Anih (2001) enhanced the output power of transfer field machine by balanced 

capacitance injection technique into the auxillary winding to neutralize reactance. The scheme 

improved the power factor, and hence maximum torque. However, there was no significant 

improvement in the starting torque. 

The enhancement of the output power of transfer field machine by introduction of parallel 

path windings to both the stator and rotor sections as reported by Eze and Anih (2001), though 

is conceived to reduce the excessive leakage reactance of the machine and thus enhance both 

the maximum torque and starting torque. This is to the detriment of the stator and rotor sizes 

and weights due to increase in their slots for their windings.  
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CHAPTER THREE 

Research Methodology  

The new configuration of 3-phase transfer field reluctance motor is intended to minimize the 

excessive leakage reactance associated with the existing three phase transfer filed motor. To 

achieve the afore-mention goal, the following methods were adopted, viz; 

(1) Method – Analytical calculation  

Tool  - Matlab plots  

Procedure: 

(i) Development of mathematical model of the motor, necessary to explain its behaviour 

under steady-state and dynamic state condition 

(ii) Derivation of mathematical equations from the model, necessary for the formation of the 

machine’s equivalents circuit diagrams  

(iii) Derivation of the machine’s output characteristics equations from the equivalent circuit 

diagrams 

(iv) Establishment of the machines circuit parameters.  

(v) Simulation of the derived equations as in (iii) and (iv) 

(vi) Generation of the machine plots (graphs) from (v) for analysis of the machine’s output 

characteristics  

(2) Modification Method:  Here, the existing three-phase transfer field motor without rotor 

windings is modifed by optimizing the rotor design. This is achieved by introducing rotor 

windings at the rotor sections of the machine sets (M/C A and M/C B). The idea is that 

when resistance (in the form of coils) are added to the rotor circuit the rotor power factor 

is improve, which inturn results in improved starting torque. This of course increases the 



45 

rotor impedance and therefore decreases the value of rotor current, but the effect of 

improved power factor predominates and the starting torque is increased (V.K Mehta et al 

2000). To bring down the effect of such reduction in rotor-induced current, the main 

windings of the machine sections are connected in series and then connected to the utility 

supply. The auxiliary and cage (rotor) windings of both machine sections are connected in 

parallel but transposed between the two sections of the machine halves and short circuited. 

The fact that when impedances are connected in parallel, the resultant impedance will be 

lower than the least impedances and when impedances are reduced, higher current will flow 

into the circuit and output power increases, thereby resulting in higher electromagnetic torque 

which forms the basis of research methodology of this study.         

The analytical method adopted to achieve the results in this work follows the chronological 

order as below; 

(i) Analysis of three-phase transfer field reluctance motor (T.F.M) without rotor 

windings. 

(ii) Analysis of three-phase transfer field reluctance motor with the introduction of 

rotor windings  

(iii) Analysis and comparism of results. 
 

3.2 Analysis of the three-phase transfer field reluctance motor (T.F.M) without rotor 

windings 

The three-phase transfer field reluctance machine is a new breed of electrical machine which operates 

under synchronous and asynchronous mode. It has the dual characteristics of both machines depending 

on the mode of operation. 

3.2.1 Motor description/Physical Configuration  

The transfer field reluctance motor (TFM) as shown in Plate 1, comprises a two stack 

machine in which the rotor is made up of two identical equal halves whose pole axes are 𝜋 2   

radians out of phase in space. They are housed in their respective induction motor type stators. 
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There are no windings in the rotor. The stator has two physically isolated but magnetically 

coupled identical windings known as the main and auxiliary windings. The axes of the main 

windings are the same in both halves of the machine, whereas the axes of the auxiliary 

windings are transposed in passing from one half of the machine to the other. Both sets of 

windings are distributed in the stator slots and occupy the same slots for perfect coupling and 

have the same number of poles. The two sets of windings of the transfer field machine are 

essentially similar and may be connected in parallel which of course double its output. 

The stator and rotor of the machine are wound for the same pole number and both are star 

connected as in fig 3.1. 

  

Fig 3.1    Connection diagram for a three phase transfer field reluctance motor without 

rotor windings 

 

 

 B  A 
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3.2.2   The Machine Model  

The per-phase coupled coil representation of the Transfer Field reluctance motor is shown in 

fig 3.2 below  

 

 

 

 

 

 

Fig 3.2: Per phase coupled coil representation of a T.F. Motor without rotor windings 

Each machine half is similar in features to the conventional synchronous machine. The major 

unorthodox characteristics of the machine are;  

i) the stator and rotor are arranged in two identical halves; and hence the machine may be 

treated as two separate reluctance machines whose stator windings are connected in 

series. 

ii) there are no windings in the rotor 

iii) the pole axes of the two pole half are mutually in space quadrature    

iv) there is second set of poly-phase stator windings (auxiliary windings) whose conductor 

side are shifted electrical by 180
0
 (anti-series), by passing through one section of the 

machine to another. The main and the auxiliary windings are identical in all respects and 

Auxiliary  winding 

(Transposed and  

Short-circuited)  

Machine B  

Rotor shafts  

Machine  A  

xmaA xaA 
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occupy the same electrical position in the stator slot, thus ensuring a perfect coupling 

between the windings. 

3.2.3    Principle of Operation and analysis  

The analysis of the three-phase transfer-field reluctance motor derived from the studies on 

coupled machines (Anih L.U. et al 2001). 

In its operation, when the main windings of machine A is connected to an a.c supply voltage, 

V, with the auxiliary windings open circuited, it draw a magnetizing current Io at the supply 

frequency ωo.  

This magnetizing current produces an magnetomotive force  (mmf) distribution on both units 

of the machine (A and B) which may be expressed as (Anih L.U. et al 2008);  

Magnetizing (mmf) mo = Mo cos (x – ωo t)       (3.1) 

Where; m0 = Instantaneous value of the magnetizing mmf 

    Mo = Peak amplitude of the instantaneous magnetizing mmf  

x = Angular distance measured from the reference axis, which is taken as the center 

line of the stator poles  

t = Time in seconds  

ω0 = Supply angular frequency.  

The air-gap permeance of the rotor in one unit machine, say unit A, may be expressed as;  

PA = Po + PV Cos 2 (x-ωt)         (3.2) 

Where;  

PA = Rotor permeance distribution for unit area of air-gap of machine A half. 

Pv = the amplitude of the variable part of the permeance distribution.  

ω = the speed of rotor of unit machine  
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Similarly, the air-gap rotor permeance distribution in unit B machine, whose pole axis is in 

space quadrature with unit A machine may be expressed as;  

PB = Po + Pv Cos 2 (x –ωt – 90
0
) 

     = Po - Pv Cos 2 (x –ωt)        (3.3) 

The flux density produced by this mmf at the instant when its axis coincides with the pole axis 

of the rotor of machine A is given by;  

BAO = mo PA 

 = M0 cos (x-ωot) [Po + PV Cos 2 (x-ωt)] 

= Mo Po Cos (x-ωot) + Mo PV Cos (x-ωot) Cos 2 (x-ωt) 

= Mo Po Cos (x-ωot) + 0.5 Mo PV Cos [x – (2ω - ωo)t] + 0.5 Mo PV  

   Cos  (3x- ωt – ωt) + third harmonics       (3.4) 

  

Similarly, the corresponding flux density distribution produced in machine B is expressed as;  

BBO = Mo Po Cos (x-ωot) – 0.5 Mo Po Cos [x + (ωo - 2ω)t]  

            + third space harmonics         (3.5) 

It should be noted at this juncture that the first components of equations (3.4 and 3.5) will 

induce emfs E1 in the main windings which is additive and tend to oppose the voltage supply. 

The e.mf’s they induce in the auxiliary windings cancel out. These e.m.fs are equal in 

magnitude and in time phase.  

The second components of equations (3.4 and 3.5), will induce voltages E2, in the main 

windings which are equal and opposite and in consequence, cancel each other (anti-phase).  
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However, in the auxiliary winding, these induced voltages, E2 will add up because of the 

transposition of the auxiliary windings.  See fig 3.3 for illustration. 

  

 

 

 

Fig 3.3   Induced voltage, E1, E2  in the main and auxiliary winding  

The direction of emf E1 induced in the main winding conductor in both halves of the machine 

A, B such as 𝒂𝟏 and 𝒂 𝟏 by this flux is as shown in fig 3.3 in full lines. These emfs E1 are both 

equal in magnitude and in time phase in both sections of the machine and will oppose the 

supply voltage V in both sections.  

 

 

 

 

 

 

 

Fig 3.4a  - Section A part of the 

machine showing the induced e.m.f s 

in the stator windings  

Fig 3.4b  - Section Ba part of the machine 

showing the induced e.m.f s in the stator 

windings  (Source-Anih/Agu 2008) 
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The emfs induced by the third space harmonics cancel out if the windings are star connected. 

If however, the windings are desired to be connected in delta, the winding pitch must be 

chosen such that the emf induced by harmonics of flux is eliminated. 

The average value of the second components of the flux in equation (3.4 and 3.5); 

ie ± 0.5 Mo Po Cos [x + (ωo - 2ω)t] = 0  

More-still, the average of this flux as seen by the auxiliary windings, whose conductors are 

transposed between the two machine halves is expressed as; 

BAO – BBO = 0.5 Mo PV Cos [x+ (ωo - 2ω)t]             (3.6) 

This flux density distribution rotates in the negative clockwise direction for ω < 
𝜔𝑜

2
 

The direction of emf E2 induced in the auxiliary windings by this flux will be in anti-phase in 

both halves of the machine (see fig 3.3), because of the transposition of the auxiliary windings 

as shown in the dotted circles in fig 3.4b It therefore follows that in section A half, E2 will be 

diametrically opposed to E1 and in section B half E2 will be in phase with E1 (see fig.3.3) 

3.2.4 Short Circuiting of the Auxiliary Winding  

If the terminals (XY) of fig 3.2 is bridged as in fig 3.3, it is said to be short –circuited. If this 

occurs, emf will be induced in it (auxiliary windings), at (ωo - 2ω) frequency, and is given by;  

ea = E2m cos [(ωo - 2ω) t – 0.5 π)        (3.7) 

Where;  

ea = Instantaneous voltage induced in the auxiliary windings  

E2m = Peak amplitude of the instantaneous voltage (ea) 

E2 = r.m.s value of the instantaneous voltage induced in the auxiliary windings 
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This induced emf of equation (3.7), will circulate current (ia) say at the same frequency  in the 

short – circuited winding and this induced current is inversely proportional to its leakage 

impedance and is expressed as;  

ia = 
𝐸2𝑚  𝐶𝑜𝑠    𝜔𝑜− 2𝜔 𝑡−0.5𝜋 

{𝑟𝑎
2+[ 𝜔𝑜− 2𝜔 𝐿]2}

1
2 

  tan
-1

  
  𝜔𝑜− 2𝜔 𝐿

𝑟𝑎
  

     = I2m Cos [( 𝜔𝑜 −  2𝜔 t – 0.5π –𝜙] [tan
-1

  
  𝜔𝑜− 2𝜔 𝐿

𝑟𝑎
     (3.8) 

Where,  

I2m = Peak amplitude of the instantaneous current in the auxiliary windings (ia)  

ra = Resistance of the auxiliary windings 

L = Inductance of the auxiliary windings 

𝜙 = Impedance angle = tan
-1

  
  𝜔𝑜− 2𝜔 𝐿

𝑟𝑎
  

The distribution of mmf in the auxiliary winding of machine A say, due to this current (ia) has 

the form;  

ma = M2 Cos [x +  𝜔𝑜 −  2𝜔 t – 0.5 π-𝜙]      (3.9) 

Where;  

ma = instantaneous mmf distribution in the auxiliary winding  

m2 = Peak value of the instantaneous mmf distribution in the auxiliary winding  

Similarly, in machine B, the corresponding auxiliary winding mmf will be expressed as; 

ma = - M2 Cos [x +  𝜔𝑜 −  2𝜔 t + 0.5 π-𝜙]      (3.10) 

Equation 3.10 arises due to transposition of auxiliary winding as in fig 3.2/3.3.  

The flux density distribution in machine A half due to its rotating mmf is given by; 

B2A = ma [Po + Pv Cos 2 (x – ωt)] 
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       = M2 Cos [x +  𝜔𝑜 −  2𝜔 t – 0.5 π-𝜙] (Po + Pv Cos 2 (x - ωt)]      (3.11) 

Similarly, in machine B half, the corresponding flux density distribution is given by; 

B2B = - ma [Po Pv Cos 2 (x - ωt)]        

      = -m2 Cos [x +   𝜔𝑜 −  2𝜔 t - 0.5 π-𝜙] [Po Pv Cos 2 (x - ωt)]       (3.12) 

Hence, the total flux density over the two machine halves is the combination of equation 3.10 

and 3.12. This is given by;  

B2T = B2A + B2B  

         = M2 Cos [x +  𝜔𝑜 −  2𝜔 t – 0.5 π-𝜙] [Po + Pv Cos 2 (x – ωt)]  

– M2 Cos [x +  𝜔𝑜 −  2𝜔 t – 0.5 π-𝜙] {Po + Pv Cos 2 (x + ωt)]     (3.13) 

= M2 Pv Cos (x – ωot + 0.5 π+𝜙) + third space harmonics      (3.14) 

In both equation (3.4, 3.5 and 2.14), the third harmonics are eliminated because the machine 

is star connected (see fig 3.1)  

The presence of (ia) in the auxiliary winding leads to an additional current (im) to be drawn by 

the primary in a manner similar to what is obtainable in transformers and induction motors, in 

order to neutralize the effect of the auxiliary current (ia). The primary flux needed to 

neutralize the secondary flux is produced by the primary current (im).  

 

3.2.5 Magnetomotive Force (mmf) Balance of the Machine  

The auxiliary winding load current mmf (ia) has been given in equation (3.8). The flux of the 

ma linking the primary winding has been expressed in equation (3.9). 

 This flux must be opposed and balanced by the primary load current flux. The primary (main 

winding) mmf is expressed as;  
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mm = M1 Cos (x – ωot  - α)         (3.15) 

The self-flux of mm is given by; 

 mm Po = M1 P0 Cos (x-ωot –α)          (2.16) 

For mmf balance;  

B2T = mm Po 

Also, mm po =  -B2T 

 M1 Po Cos (x-ωot – α ) = - M2 Pv Cos (x - ωot + 0.5 π + 𝜙) 

                                       = M2  Pv Cos (x- ωot - 0.5 π + 𝜙)    (2.17) 

 M1 Po = M2 Pv                   (2.18) 

Assuming α = 0.5 π - 𝜙, 

 mm = M1 Cos (x- ωot - 0.5 π + 𝜙)        (2.19) 

Where,  

mm = Instantaneous mmf distribution of the primary (main) winding of the machine  

M1 = Peak amplitude of the instantaneous mmf distribution of the primary (main) winding.  

The role of primary and auxiliary windings can be exchanged. If we now use the auxiliary 

winding as the primary winding and vice-versa, and if the mmf is M2, then the primary, now 

the secondary (auxiliary) will have mmf (M1).  

 M1Pv = M2Po           (2.20) 

Combining equations (3.17 and 3.19) we have; |M1| = |M2|     (2.21) 

Fig 3.5, at a certain instant in time shows the mmf distribution phasors in the two halves of 

the Transfer Field Machine.  
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In machine A, M1 and M2 are equal in magnitude but in anti-phase, whilst in machine B, M1 

and M2 are equal in magnitude and in phase because of  the transposition of the machine 

windings (see fig 3.3) 

3.2.6 Per Unit Slip (s)  

The slip of the primary (main) winding field with respect to the rotor is expressed as;  

sm = ωo – ω 

But generally, s =   
𝜔𝑜−𝜔

𝜔𝑜
 

 ω = ωo (1-s) 

 sm = ωo – [ωo (1-s)] 

 = ωo – ωo + sωo  

 =  sωo           (3.22) 

Similarly, the corresponding auxiliary winding field slip (Sa) with respect to the rotor is given 

by;  

  sa = ωo – ωo  

         = [ωo (1-s)] – ωo  

         =  ωo – sωo  – ωo 

                 = -  sωo          (3.23) 

Equation (3.22 and 3.23) give the implication that the main winding mmf M1 and the 

excitation current mmf  Mo will rotate at the speed (Sωo) with respect to the rotor whilst the 

auxiliary winding mmf  M2 will rotate at the speed (- Sωo) with respect to the rotor. Thus, the 

Fig 3.5a – Half Part (Machine A) of the 

TF Machine, showing mmfs, Mo, Mi, M2 

(Anih/Agu 2008) 

Fig 3.5b – Half Part (Machine A) of the 

TF Machine, showing mmfs. Mo, Mi, 

M2 (Anih/Agu 2008) 
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combination of Mo and  M1 gives Mo + M1  = 𝑀 , rotating at the same speed as M2 relative to 

the rotor but in the opposite direction.  

 
 

3.2.7  Mechanism of Torque Production in TF Machine  

When the terminals (X Y) of fig 2.2 is not bridged (under open circuit condition), the machine 

does not develop torque. This is on the account of; 

i) the absence of a rotor winding which would produce induction motor type torque  

ii) the impedance of the winding does not change with rotor angular position, so there 

is no reluctance torque. 

However, the component of the primary winding flux that induces e.m.f in the auxiliary 

winding rotates in the negative sense relative to the rotating magnetizing mmf of the primary 

(main) winding. That is, M0 and M1 rotate at the speed Sω0 while the auxiliary current mmf 

M2 rotates at the same speed relative to the rotor but in the opposite sense. Let us examine as 

instance in time when the  axes of the magnetizing mmf Mo concides with the d – axis of the 

rotor – pole in machine A and hence with q – axis of the machine B, both being in space 

quadrature. The magnetizing flux in machine A will be maximum, and that in machine B, is 

negligible compared to that of machine A. The effective magnetizing flux would therefore be 

almost entirely of that produced by machine A. In fig, 3.6a, shows section A part of the 

machine. The mmf phasor M1 and M2 are shown to be equal in magnitude but in phase 

opposition and with the resultant of Mo and M1 producing 𝑀 , which rotates at the speed Sωo, 

whislt M2 rotates at – sω0. The resultant mmf in section A part of the machine (MRa =  𝑀  + M2) 

acts at the leading pole tip of the rotor as shown in fig 3.6a. In section B half of the machine, 

the direction of M2 phasor would have reversed due to the transposition of the auxiliary 

winding.  
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Therefore, the phasors M1 and M2 will now be in phase and the resultant mmf (MRB = 𝑀 +M2) 

acts at the leading rotor pole tip. Since in both halves of the TF Machine A, B respectively, 

their resuctant mmfs, MRA and MRB act at   the leading pole tips. Consequently, their 

targential components will exert a  reluctance torque in the positive anticlockwise sense in 

both halves of the TF Machine which will pull the rotor forward.  

  

Fig 3.6a Machine A part of the TF machine 

showing the resultant mmf (MRA) acting on 

the leading rotor pole tip.  

Fig 3.6b Machine A part of the TF 

machine showing the resultant mmf 

(MRB) acting on the leading rotor pole 

tip.  
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Obviously, the intensity of the resultant mmfs and hence flux is greater in machine B than in 

machine A at this instant t0 say as shown in fig 3.6a and b. 

Thus, machine B produces the greater proportion of the net torque of the TF machine. As time 

progresses, M2 and M1 will be moving apart in machine B, thus weakening the resultant mmf 

MRB, but moving closer in machine A, thereby strengthening the resultant mmf MRA and 

hence flux at this instant t2 say. The combination of M1 and M2 will coincide at a point 

leading the axis of the rotor pole by 𝜙 after each of them has traveled a distance of 0.5π 

electrical radians. 

Since torque is directly proportional to the square of mmf and hence flux, each section of the 

T.F machine that produces the greater proportion of the flux will produce the greater 

proportion of the net torque that transfer cyclically from one machine half to the other.  When 

the torque in one machine half is increasing, the torque from the other half is decreasing while 

the net torque remains constant. Infact, when the torque in one half is maximum, it will be 

zero in the other. This phenomenon can be explained quantitatively by considering the 

combination mmfs in the air gaps of each machine half of the TF machine. 

In section A machine half, the combination mmfs is expressed as;b 

MmfsA = Mo cos (x-ωot) + M1 cos (x-ωot - 0.5π –𝜙 + 𝜙)  

     + M2 cos (x+(ωo – 2ω) – 0.5π –𝜙)             (3.24) 

= 𝑀    cos (x-ωot – σ) + M2 cos [x + (ωo – 2ω) t – 0.5π – 𝜙            (3.25) 

= (𝑀  – M2) cos (x- ωot - σ) + M2 cos (x- ωot – σ)  

     + M2 cos [x + (ωo - 2ω) – 0.5π– 𝜙)              (3.26) 

= (𝑀  – M2) cos (x - ωot- σ) + 2 M2 cos [x- ωt  - 0.5 (σ + 𝜙 +0.5π)]   
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       cos [(ω – ωo)t – 0.5 (σ – 𝜙 – 0.5π)]                   (3.27) 

Where σ = Primary input power factor angle. 

The torque component of equation (3.27) is a wave that rotates round the air gap at the speed 

of the rotor ω, whose amplitude is modulated as slip frequency by cos [(ω-ω2)t-0.5 (σ-𝜙- 

0.5π)], can consequently impart a reluctance torque on the rotor in the forward anticlockwise 

direction. 

The first component of equation 3.27 cannot produce torque since it rotate at a speed different 

from that of the rotor.  

Similarly, the mmf combination in section B half of the machine is given by; 

MmfsB = (𝑀 -M2) cos (x-ωot – σ) + 2M2 sin [x-ωt – o.5 [(σ+𝜙 + 0.5π)] sin [(ω-ωo)t  

                – 0.5 (σ-𝜙-o.5π)]         (3.28) 

Just as in equation (3.27), the second component of equation (3.28) is a wave that rotates 

round the air-gap at the speed of the rotor ω, hence can impart a reluctant torque on the rotor. 

It can be inferred from the two equations, (3.27 and 2.28) that the amplitude of each torque 

producing mmf in the two halves of the machine has same space phase displacement with 

respect to the corresponding rotor axis. The variations of the amplitudes of the waves are in 

time quadrature. The out ward interpretation of this is that the torque swings cyclically 

between the two sections of the machine, while the net torque remains constant.  

The machine’s self-starting characteristics can be inferred from the gross mmfs in both halves 

of the machine, that is equations (3.26 and 3.27) which are non-zero at starting (ie at ω = 0) 

(L.U Aniih/ L.A. Agu 2008). 

3.2.8  Effect of Auxiliary Winding Power Factor 

Assuming the auxiliary winding is loaded such that the power factor is reversed as in fig.3.7, 

it will be discovered that the axes of the resultant mmfs MRA and MRB in both halves of the 
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machine will intersect at the trailing rotor poles tips as shown in fig, 3.7, and thus leading to 

an electromagnetic torque in the opposite direction to the rotation of the rotor. 

The machine in this case will require an external mechanical agency as a prime mover and 

this corresponds to generator operation mode. 

 

 

 

 

 

 

 

 

 

 

 

3.2.9 The dynamic model of 3-phase transfer field machine  

For the stator windings of the three-phase TF machine, the mathematical model of the voltage 

equation is given by; 

 VA = rA iA + PλA        (3.29) 

 VB =   rB iB + PλB        (3.30) 

 VC =   rC iC + PλC        (3.31) 

Where  VA = VR (Red) 

   VB = VY (yellow) 

Fig 3.7(a) The mmf phasor of machine A 

part of the T.F machine, illustrating 

generator operation  

Fig 3.7(b) The mmf phasor of machine B 

part of the T.F machine, illustrating 

generator operation  
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VC = VB (Blue) are the three phase balance voltage which rotate at the supply 

frequency (ω) at the main winding.  

For the rotor, the flux linkages rotate at the speed of the rotor (ωr). 

Therefore  for the auxiliary winding of the machine, we have;  

Va = ra ia + ρλa          (3.32) 

Vb = rb ib +  ρλb         (3.33) 

Vc = rc ic +  ρλc         (3.34) 

Equations (3.29 – 3.34) can be written in a compact form as; 

VABC = rABC iABC + ρλABC        (3.35) 

Vabc = rabc iabc + ρλ abc         (3.36) 

where ; 

ρ = d/dt (derivative term, as usual) 

(VABC)
T
 = [VA, VB,   VC]        (3.37) 

 (Vabc)
T
 = [Va, Vb,   Vc]        (3.38) 

rABC = diag ([rA rB rC])         (3.39) 

rabc = diag ([ra rb rc])         (3.40) 

In the above two equations (3.37) and (3.38), “ABC” subscript denotes variables and 

parameters associated with the main winding and the subscript “abc” denotes variables and 

parameters associated with the auxiliary winding. Both rABC and rabc are diagonal matrices 

each with equal non zero element. For a magnetically linear system, the flux linkages may be 

expressed as (Anih L.U. 2009); 

 
𝜆𝐴𝐵𝐶

𝜆𝑎𝑏𝑐
     =        

𝐿𝐺𝐺      𝐿𝐺 𝐻   

𝐿𝐻𝐺     𝐿𝐻𝐻
          

𝑖𝐴𝐵𝐶

𝑖𝑎𝑏𝑐
  wb turn      (3.41) 
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Where,  

λABC = (λA, λB, λC,)
t
 

λabc = (λa, λb, λc,)
t
 

iABC = (iA, iB, iC,)
t
         (3.42) 

iabc = (ia, ib, ic,)
t
 

The super-script t of equation (3.42) denotes the transpose of the array. 

The inductance matrices term LGG , LGH, and LHH are obtained from inductance sub-matrices 

L11, L12, L21 and L22 for machines A and B, defined as;  

L =  
𝐿11   𝐿12

𝐿21  𝐿22
  

L11 =  

𝐿𝐴𝐴       𝐿𝐴𝐵       𝐿𝐴𝐶  
𝐿𝐵𝐴       𝐿𝐵𝐵        𝐿𝐵𝐶

𝐿𝐶𝐴      𝐿𝐶𝐵        𝐿𝐶𝐶

  

L12 = +  
𝐿𝐴𝑎      𝐿𝐴𝑏       𝐿𝐴𝑐  
𝐿𝐵𝑎     𝐿𝐵𝑏      𝐿𝐵𝑐

𝐿𝐶𝑎      𝐿𝐶𝑏      𝐿𝐶𝑐

         (3.43) 

L21 = + 

𝐿𝑎𝐴      𝐿𝑎𝐵       𝐿𝑎𝐶

𝐿𝑏𝐴       𝐿𝑏𝐵        𝐿𝑏𝐶

𝐿𝑐𝐴      𝐿𝑐𝐵        𝐿𝑐𝐶

  

L22 =  
𝐿𝑎𝑎      𝐿𝑎𝑏        𝐿𝑎𝑐  
𝐿𝑏𝑎     𝐿𝑏𝑏       𝐿𝑏𝑐

𝐿𝑐𝑎      𝐿𝑐𝑏         𝐿𝑐𝑐

  

Where; 

L = The augmented matrix, for the inductance matrix for machine A and B 

L11 and L22 are “self” inductances of main and auxiliary windings respectively.  

L12 and L21 are the “mutual” inductances between the main and auxiliary windings. 

LGG is obtained by adding L11 for machine A and L11 for machine B. 

This will yield;  

LGG 

 
 
 
 
  2LLs+Lmd+ Lmq                - 

1

2
 Lmd+Lmq         - 

1

2
 Lmd+Lmq   

- 
1

2
 Lmd+Lmq                     2LLs+Lmd+ Lmq a       - 

1

2
 Lmd+Lmq 

- 
1

2
 Lmd+Lmq                       - 

1

2
 Lmd+Lmq           2LLs+Lmd+ Lmq  

 
 
 
 

     (3.44) 
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LGH is obtained by adding L12 for machine A to L12 for machine B to give  

LGH = (Lmq – Lmd)  

cos 2 θr                 cos 2 θr-α             cos 2 θr+α 

cos 2 θr-α                 cos 2 θr+α          cos 2 θr

cos 2 θr+α                  cos 2 θr              cos 2 θr-α 

       (3.45) 

Where α = 
2𝜋

3
 

By applying the same method, LHG and LHH are obtained. So far the main and auxiliary 

windings in both machine halves are identical, LGG is observed to be equal to LHH. So also 

LGH and LHG. Owing to this observation of equality, auxiliary winding parameters do not 

change values when they are referred to the main winding.  

Equations (3.44) and (3.45) resemble the inductance expressions for a wound rotor induction 

machine, even though the individual machine making up the composite machine possesses 

salient pole rotors with no conductors. 

3.2.10    Machine Model in arbitrary q-d-o reference frame 

In order to remove the rotor position dependence on the inductance seen in equation (3.45), 

the voltage equations (3.35) and (3.36) need to be transferred to q-d-o reference frame. 

The technique is to transform all the state variables to an arbitrary reference frame. Equation 

(3.41) is then rewritten in q-d-o frame as;  

 
(𝜆𝑄     𝜆𝐷     𝜆𝑂)

(𝜆𝑞      𝜆𝑑    𝜆𝑜)
 

𝑇

  =  
𝐾𝐺𝐿𝐺𝐺   𝑘𝐺 

−1     𝐾𝐺𝐿𝐺𝐻   𝑘𝐻 −1

𝐾𝐺𝐿𝐺𝐻   𝑘𝐺 
−1    𝐾𝐺𝐿𝐻𝐻   𝑘𝐻 −1      

(𝐼𝑄   𝐼𝐷    𝐼𝑂)

(𝐼𝑞     𝐼𝑑    𝐼𝑜)
   (3.46) 

Here, KG = 
2

3
  

Cos 𝜙        𝐶𝑜𝑠  𝜙 − 𝛼         𝐶𝑜𝑠 (𝜙 + 𝛼)

Sin 𝜙        𝑆𝑖𝑛   𝜙 − 𝛼           𝑆𝑖𝑛 (𝜙 + 𝛼)
1

2
                             

1

2
                       

1

2
         

     (3.47) 

KH          = 
2

3
   

Cos 𝛽      𝐶𝑜𝑠  𝛽 − 𝛼      𝐶𝑜𝑠 (𝛽 + 𝛼)

Sin 𝛽        𝑆𝑖𝑛  𝛽 − 𝛼       𝑆𝑖𝑛 (𝛽 + 𝛼)
1

2
                        

1

2
                       

1

2
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Where, θr = rotor position  

   β = speed of rotation of the arbitrary reference frame.  

As β = 2θr = θ, as in equation (3.45), the time varying inductance frame, the voltage equation 

will be totally eliminated.  

Hence, the voltage equations (3.35) and (3.36) will after the transformation yield; 

VQ = ωλD + ρλQ + rIQ         (3.48) 

VD = ωλQ + ρλD + rID         (3.49) 

VO = ρλO + rIO          (3.50) 

Doing like-wise for the rotor quantities (auxiliary windings) yield;  

Vq = (ω-2ωr) λd + ρλq + rIq        (3.51) 

Vd = (ω-2ωr) λq + ρλd + rId        (3.52) 

Vo = (ω-2ωr) ρλo + rIo         (3.53) 

Also, the flux linkages of equation (3.45) are expressed as; 

λQ = (2L1 + Lmq +Lmd)IQ – (Lmd - Lmq)Iq 

     = 2 L1 IQ + Lmq IQ + Lmd IQ - Lmd Iq+ Lmq Iq 

     = 2 L1 IQ + Lmq IQ + Lmd IQ+ Lmd IQ- Lmd IQ- Lmd Iq+ Lmq Iq 

       = 2 L1 IQ + 2Lmd IQ + Lmq IQ- Lmd IQ- Lmd Iq+ Lmq Iq 

       = 2(L1 + Lmd) IQ + [IQ (Lmq+Lmd) + Iq (Lmq - Lmd)] 

       = 2 (L1 + Lmd) IQ+ (IQ+Lq) (Lmq - Lmd) 

 λQ = 2(L1 + Lmd) IQ+ (IQ+Iq) (Lmq - Lmd)      (3.54) 

Similarly  

λD = (2L1+ Lmq + Lmd) ID + (Lmd - Lmq) Id  
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 λD = 2(L1+ Lmq) ID + (ID - Id) (Lmd - Lmq)      (3.55) 

λO = 2L1 IO          (3.56) 

Also 

λq = (2L1+ Lmq+ Lmd) Iq - (Lmd - Lmq) IQ  

  = 2(L1+ Lmd) Iq + (Lmq - Lmd) (IQ+Iq)       (3.57) 

λd = (2L1+ Lmq+ Lmd) Id + (Lmd - Lmq) ID 

  = 2(L1+ Lmq) Id + (Lmd - Lmq) (ID+Id)       (3.58) 

ƛO = 2L1IO          (3.59) 

As before, equations (3.54 – 3.56) represent the flux linkages of the main winding circuit 

while equations (3.57 – 3.59) represent the flux linkages of the auxiliary winding, and r in 

equations (3.48 – 3.53) is the sum of the resistances of the main or auxiliary windings in both 

machine halves. 

Hence, equation (3.54) can be put into equation (3.48), and equations (3.58) into equation 

(3.51) to yield;  

VQ = ωλD + ρ [2(L1+ Lmd) IQ +  (Lmq - Lmd) (IQ+Iq)] + rIQ 

= ωλD + jω [2(L1+ Lmd)] IQ +  jω (Lmq - Lmd) (IQ+Iq) + rIQ    (3.60) 

 Vq = (ω-2ωr) λd + [2(L1 + Lmd) Iq] + (Lmq - Lmd) (IQ+Iq)] + rIq 

 Vq = (ω-2ωr) λd + jω [2(L1+ Lmq)] Iq  +jω (Lmq - Lmd) (IQ+Iq) + rIq  (3.61) 
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Equation (3.60) and (3.61) result the T equivalent circuit shown below in figure 3.8. 

 

 

 

 

 

Fig 3.8    Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer 

field reluctance motor in the q-variable. 

Applying the same method to equation (3.55) and (3.49) and then equations (3.57) and (3.52) 

we have;  

VD = - ωλQ + ρ [2(L1+ Lmq) + (Lmd - Lmq) (ID+Id)] + rID  

= - ωλQ + jω2 (L1+ Lmq) ID + jω (Lmd- Lmq) (ID+Id) + rID    (3.62) 

Vd = - (ω - 2ωr) λq +  [2(L1+ Lmq) Iq + (Lmd - Lmq) (ID+Id)] + rId   

     = - (ω - 2ωr) λq + jω2 (L1+ Lmq) Iq + jω (Lmd - Lmq) (ID+Id)] + rId   (3.63) 

Equations (3.62) and (3.63) result the Tequivalent circuit shown below in figure 3.9. 

 

 

 

 

 

Fig 3.9    Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer 

field motor in the d-variables 

 

+ 

- 

VQ 

r IQ + - 
ωλD Jω2 (L1+Lmd) 

jω2 (L1+Lmd) 

+ - 
(ω-2ωr)λd 

r 
+ 

- 

Vq 

(IQ + Iq) 

Jω (lmq – Lmd) 

Iq 

+ 

- 

VD 

r 
ID 

ωλD Jω2 (L1+Lmq) (ω-2ωr) λq 

 

r + 

- 

Vd 

(ID+ Id) 

Jω (Lmd – Lmq) 

Id  -+ + - 
Jω2 (L1+Lmq) 
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More still, from equation (3.50) and (3.54) 

Vo = ρλo + rIo 

     = ρ(2L1  Io) + rIo         (3.64) 

Vor = ρλo+ rIo 

= ρ(2L1 Io) + rIo         (3.65) 

Equations (3.64) and (3.65) result the T equivalent circuit shown in fig 3.10. 

 

 

 

Fig 3.10 Arbitrary reference frame equivalent circuit for a 3 – phase symmetrical 

transfer field reluctance motor in the 0 – variable  

3.2.11  q-d-o Torque Equation 

The expression for electromagnetic torque is obtained from energy considerations and derived 

to be (Anih L.U 2009); 

Te = 
𝑃𝑛

2
  𝐾𝐺  

𝐼𝐴
𝐼𝐵
𝐼𝐶

  

𝑇

  
𝜕

𝜕𝜃
  𝐿𝐺𝐻    𝐾𝐺  

𝐼𝑎
𝐼𝑏
𝐼𝑐

        (3.66) 

Equation (3.66) can be shown to yield;  

Te = 
3

4
 Pn (Lmd – Lmq) (IQ Id – Iq ID)       (3.67) 

Equation (3.67) shows that currents in both the main and auxiliary windings contribute 

positively to torque production, therefore, there is no copper penalty limitation of space for 

auxiliary winding conductor is utilized. 

+ 

- 

Vo 

r IO j2L1 j2L1 

Vor 

r IO 

- 

+ 
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The electromechanical (rotor) dynamic equation for the machine is expressed as; 

J
𝑑𝜔𝑚

𝑑𝑡
  =  Te - TL         (3.68) 

Where;  

Pn = Number of poles 

TL = motor shaft load torque in N-m 

Te = Electromagnetic torque in N-m 

J = Moment of inertia of motor in kg – m
2
 

ωm = Mechanical rotor speed in rads
-1

 

 

3.2.12 Steady state analysis of 3-phase transfer field reluctance motor model in 

arbitrary q-d-o reference frame  

The steady state equivalent circuit of a three-phase transfer field machine may be derived 

from the d-q-o equivalent circuit. This can be achieved with the understanding that all the 

derivative terms of equation (3.48) through equation (3.54) are set to zero, and the following 

relations exist between the q-axis and d-axis variables.  

FD = jFQ (Main winding circuit) 

Fd = - jFQ (Auxiliary winding circuit) 

VQ = VA, IQ = IA, Vq = Va, Iq = Ia  

As the machine is half speed type with synchronous speed ω
1
 = 

𝜔

2
; the per slip 𝑠  is given by;  

𝑠  = 
𝜔 −𝜔𝑟

𝜔 
          (3.69) 

= 
𝑂.5𝜔−𝜔𝑟  

𝑂.5𝜔
 

= 
𝜔−2𝜔𝑟  

𝜔
 

 𝑠 ω = ω-2ωr          (3.70) 
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But for the normal induction motorcounterpart;  

s = 
𝜔−𝜔𝑟  

𝜔
 

 ωr =  ω-sω          (3.71) 

Putting equation (3.71) into equation (3.70), yields;  

𝑠  = 2s – 1          (3.72) 

It can be recalled from equations (3.48 – 3.54) that; 

VQ  = ωλD + ρλQ + rIQ 

= ωλD + (0)λQ + rIQ 

= ωλD + rIQ 

 VQ  = ωλD+ rIQ 

= jω [2 (L1+ Lmq) ID + (Lmd - Lmq) (ID+Id)] + rIQ  

= j[2 (x1+ xmq) ID + (xmq - xmd) (ID+Id)] + rIQ  

 VA = [j2(x1+ xmq)+r] IA +  j (xmd - xmq) (IA+Ia)      (3.73) 

Similarly  

Vq = (ω-2ωr) λd +  λd + rIq   

     = (ω-2ωr) λd + (0)λq + rIq 

     = (ω-2ωr) λd + rIq 

= 𝑠 ω λd+ rIq 

= 𝑗𝑠 ω [2(L1+ Lmq)) Id + (Lmd - Lmq) (ID+Id)] + rIq 

= j𝑠  [2(x1+ xmq)) Id + (xmd - xmq) (ID+Id) + rIq 

Dividing both sides by 𝑠 , we have; 

 
𝑉𝑞

𝑠 
 = j [2(x1+ xmq)) Id + (xmd - xmq) (ID+Id) + 

𝑟𝐼𝑞

𝑠 
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 
𝑉𝑎

𝑠 
 = [j2(x1+ xmq)Ia] + j(xmd - xmq) (IA+Ia) +

𝑟𝐼𝑎

𝑠 
   

= [2j(x1+ xmq) + 
𝑟

𝑠 
 ]Ia + j(xmd - xmq) (IA+Ia)] 

Referring to equation (3.72);  

 
𝑉𝑎

2𝑆−1
  = [j2(x1+ xmq) + 

𝑟

2𝑠−1
] Ia + j [(xmd - xmq) (IA+Ia)]    (3.74) 

Equations (3.73) and (3.74) result a per phase T – equivalent circuit as shown in figure 3.11. 

 

 

 

 

Fig 3.11   Per phase steady state T – equivalent circuit of a 3-phase transfer field 

reluctance motor, using the q-variable.  

The rotor (auxiliary) is usually short circuited and hence from figure 2.36,  
𝑉𝑎

2𝑆−1
 = 0 

Also, 
𝑟

2𝑆−1
 = r + 

2𝑟(1−𝑠)

2𝑆−1
        (3.75) 

Hence, figure 3.11 can be redrawn for better as in figure 3.12 to suit equation (3.75) as below. 

 

 

 

 

 

𝑟

2𝑠 − 1
 

 
+ 

- 

VA 

r Jω2 (X1+Xmq) Jω2 (X1+Xmq) + 

- 

Ia 

𝑉𝑎
2𝑠 − 1

 

 

Jω2 (Xmd-Xmq) 

(IA+ Ia) 

IA 
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Figure 3.12 Per phase steady state T - equivalent circuit of a 3-phase transfer field   

reluctance motor.  

N-B - Figure 3.12 can also be obtained using the d-variable of equation (3.49) and (3.52). 

 

3.2.13 Power across air – gap, Torque and power output in 3-phase Transfer field 

reluctance motor   

With reference to the equivalent circuit of figure (3.12), the power crossing the terminals (ab) 

in the circuit is the electrical power input per phase minus the stator losses (stator copper and 

iron losses) and hence, is the power that is transferred from the stator (main windings) to the 

rotor (auxiliary windings) through the air-gap magnetic field. This is known as the power 

across the air gap. Its 3-phase value is symbolized as PG. 

From figure 3.12, 

PG  = 3(Ia)
2
  

𝑟

2𝑆−1
         (3.76) 

The Auxiliary winding copper loss Pc(aux) = 3(𝐼𝑎)    𝑟
2      (3.77) 

 From equations (3.76) and (3.77); 

PG =   
𝑃𝑐  (𝑎𝑢𝑥 )

2𝑆−1
          

- 

VA 

r 
IA 

J2 (X1+Xmq) 

b 

r Ia 

J (Xmd - Xmq) 

2𝑟(1 − 𝑠)

2𝑠 − 1
 

J2 (X1+Xmq) + + 

- 

Im = (IA + Ia) 

a 
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 Pc (aux) = (2S-1)PG        (3.78) 

If equation (3.77) is subtracted from equation (3.76), we have;  

PG – Pc (aux) = Pm (Mechanical output (gross) power) 

 Pm = [ 3(Ia)
2
 

𝑟

2𝑆−1
] - [ 3(Ia)

2
r] 

    = 6(Ia)
2     𝑟(1−𝑠)

2𝑆−1
 

 Pm = 2PG (1-s)          (3.79) 

From the equations established so far, it is evident that high slip (s) operation of the transfer 

field machine would be highly inefficient, hence, transfer field motor just as the induction 

motor counterpart are therefore designed to operate at low slip at full load. 

3.2.14 Torque/Slip characteristic of a 3-phase transfer field reluctance motor without 

rotor windings  

The torque- slip characteristic of a 3-phase transfer field reluctance motor without rotor 

windings can be studied for clarity if the per phase steady-state equivalent circuit of figure 

(3.12) is modified as shown fig 3.13 below; taking x1 + xmq = xq 
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Fig 3.13 (a and b) – Modified per phase steady-state T- equivalent circuit of a 3-phase 

transfer field reluctance motor without rotor windings.  

From figure 3.13a, the VTH   (voltage across a-b) is given by; 

VTH = 
𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 )

𝑗   𝑋𝑚𝑑 −𝑋𝑚𝑞  + (𝑟+𝑗2𝑋𝑞)
  VA     volts  

        = 
𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 )

𝑟+𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞)
 VA       volts      (3.80) 

If r<< j (xmd-xmq+  2xq), then equation (3.80) becomes; 

VTH = 
𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 )

𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞)
  VA         volts        (3.81) 

VTH = 
(𝑋𝑚𝑑 −𝑋𝑚𝑞 )

 (𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞)
 VA        volts  

Also ZTH = 
𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 )(𝑟+𝑗  2𝑋𝑞)

𝑗   𝑋𝑚𝑑 −𝑋𝑚𝑞  + (𝑟+𝑗2𝑋𝑞)
 

 = 
𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 )(𝑟+𝑗2𝑋𝑞)

𝑟+𝑗 (𝑋𝑚𝑑 −𝑋𝑚𝑞  +2𝑋𝑞)
        (3.82) 

(a) 

+ 

- 

r IA 
J2xq 

b 

r 
Ia 

Im 

j(Xmd+Xmq) 

J2xq 

2𝑟(1 − 𝑆)

2𝑠 − 1
 

a 

VA 

VA 

(b) 

+ 

- 

r IA 
J2xq 

b 

Ia 

j (Xmd+Xmq) 

𝑟

2𝑠 − 1
 

J2xq a 

Im 
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If r<< j (rmd-xmq) +  2xq), then equation (3.82) become; 

ZTH = 
𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 )(𝑟+𝑗2𝑋𝑞)

𝑗  (𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞 )
 

 = 
 (𝑋𝑚𝑑 −𝑋𝑚𝑞 )(𝑟+𝑗2𝑋𝑞)

 (𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞)
 

          = 
𝑟  𝑋𝑚𝑑 −𝑋𝑚𝑞  + 𝑗2𝑋𝑞 (𝑋𝑚𝑑 −𝑋𝑚𝑞 )

 𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞   
 

= 
𝑟  𝑋𝑚𝑑 −𝑋𝑚𝑞   

 (𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞)     +    
 𝑗 (2𝑋𝑞(𝑋𝑚𝑑 −𝑋𝑚𝑞 )

   (𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞)      (3.83) 

But ZTH = RTH (Real Component) + XTH (Imaginiry component) 

Hence, RTH =  
𝑟 (𝑋𝑚𝑑 −𝑋𝑚𝑞 )

 𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞
                  (3.84) 

             XTH  = 
𝑗 [ 2𝑋𝑞(𝑋𝑚𝑑 −𝑋𝑚𝑞  ]

 𝑋𝑚𝑑 −𝑋𝑚𝑞 +2𝑋𝑞
                 (3.85) 

The circuit of figure (3.13), then reduces to that of figure 3.14, in which it is convenient to 

take VTH as the reference voltage  

 

 

 

 

Fig 3.14 Thevenin equivalent of 3 – phase transfer field reluctance motor circuit model 

From figure 3.14, 

Ia = 
𝑉𝑇𝐻

 𝑅𝑇𝐻 +
 𝑟

2𝑠−1
 + 𝑗 (𝑋𝑇𝐻 +2𝑥𝑞)

 Amperes       (3.86) 

 (Ia)
2 

 = 
 𝑉𝑇𝐻  2

 𝑅𝑇𝐻 +
𝑟

2𝑠−1
 

2
+ (𝑋𝑇𝐻 +2𝑥𝑞)2

 Amperes        (3.87) 

The expression for the steady state electromagnetic torque is given by; 

VTH 

RTH + j XTH 

b 

J2Xq 

 
a Ia 

𝑟

2𝑠 − 1
 + 

- 
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Te = 
𝑃𝑚

𝜔𝑟
 =  

6 𝐼𝑎  
2𝑟

𝜔𝑟
   

1−𝑠

2𝑠−1
  

=  
6 𝐼𝑎  

2𝑟

𝜔 (1−𝑠)
   

1−𝑠

2𝑠−1
 =  

6 𝐼𝑎  
2𝑟

𝜔(2𝑠−1)
       N-m      (3.88) 

Hence, putting equation (3.87) into equation (3.88) yields;  

Te = 
6

𝜔
  

 𝑉𝑇𝐻  2

 𝑅𝑇𝐻 +
𝑟

25−1
 

2
+ (𝑋𝑇𝐻 +2𝑥𝑞)2

  
𝑟

2𝑠−1
        N-m        (3.89) 

 

3.2.15  Torque/Slip characteristics of a conventional 3-phase transfer field reluctance 

motor  

The torque/slip characteristic of the motor is analysis using equation 3.89 for the Matlab plot, 

as shown in figure 4.1a. 

3.2.16 Efficiency/Slip characteristics of 3-phase transfer field reluctance motor 

without rotor windings  

The efficiency/slip relationship for a conventional 3-phase transferred field reluctance motor 

without rotor windings can be investigated using the per phase steady-state equivalent circuit 

of a 3-phase transfer field machine of fig 3.13(b).  

From fig 3.13(b); 

The input impedance looking through the input terminals is; 

Z = r + j2xq +  
𝑗  𝑋𝑚𝑑 − 𝑋𝑚𝑞  (𝑗2𝑥𝑞+ 

𝑟

25−1
)

𝑟

25−1
+ 𝑗 (2𝑥𝑞+ 𝑋𝑚𝑑 − 𝑋𝑚𝑞  )

       (3.90) 

Also, the current in the main winding (IA) is given by; 

IA = 
𝑉𝐴

𝑍
                (3.91) 

The current in the auxiliary winding is given by; 

Ia  =   
𝑗  𝑋𝑚𝑑 − 𝑋𝑚𝑞  

𝑟

25−1
+ 𝑗(2𝑥𝑞+ 𝑋𝑚𝑑 − 𝑋𝑚𝑞  )

 IA       (3.92) 
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The copper losses in the main and auxiliary windings = 3r(IA + Ia)
2
             (3.93) 

Input power = Output power + the copper losses, excluding windage and friction losses.  

From equation 3.79, 

The machine input power = 6r (
1−𝑠

2𝑠−1
) (Ia)

2
 + 3r(IA + Ia)

2
   

                                          = 3r  2(
1−𝑠

2𝑠−1
)  𝐼𝑎 

2 +  𝐼𝐴 + 𝐼𝑎 
2           (3.94) 

Hence, the machine Efficiency ɛ = 
𝑜𝑢𝑡𝑝𝑢𝑡  𝑝𝑜𝑤𝑒𝑟

𝑖𝑛𝑝𝑢𝑡  𝑝𝑜𝑤𝑒𝑟
 = 

2(
1−𝑠

2𝑠−1
)  𝐼𝑎  2

2(
1−𝑠

2𝑠−1
)  𝐼𝑎  2+ 𝐼𝐴+𝐼𝑎  2

      (3.95) 

 

3.2.17  Power factor/Slip characteristics of 3-phase transfer field reluctance motor 

without rotor windings   

From the Thevenin equivalent of a 3-phase transfer field machine circuit model of fig 3.14, 

the machine’s power factor (cosθ) is given by;  

Power factor (cos θ) = 
𝑅𝑒𝑎𝑙  (𝑍)

 𝑅𝑒𝑎𝑙  (𝑍)2+ 𝐼𝑚𝑎𝑔  (𝑍)2  
            3.96 

                             = 
𝑅𝑇𝐻  + 

𝑟

2𝑠−1

   𝑅𝑇𝐻  + 
𝑟

2𝑠−1
 

2
+   𝑋𝑇𝐻 + 2𝑥𝑞 

2
 

            3.97 

 

3.2.18  Auxiliary current (Ia)-slip(s) Characteristics of conventional 3-phase transfer 

field machine. 

Using equation 3.86, a plot of auxiliary current (Ia) against slip(s) is obtained as in figure 4.4a. 
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3.3 ANALYSIS OF THREE-PHASE TRANSFER-FIELD RELUCTANCE MOTOR 

WITH THE INTRODUCTION OF ROTOR WINDINGS  

3.3.1 Introduction/Background  

The ultimate feature of every electrical rotating machine, be it a generator or a motor is its 

output characteristics. It is the yard-stick upon which the machine is evaluated. Obviously, the  

output characteristics of all three phase transfer field reluctance motors are much inferior to 

that of a three-phase induction motor of comparable size and ratings. 

 This is the attribute of their low direct axis reactance to quadrature axis reactance ratio, 

coupled with the excessive leakage reactance from the quadrature axis reactance. These are as 

a result of the salient nature of their rotor pole structures. To ameliorate these set-backs, their 

rotor designs need to be improved. The new configuration of three phase transfer field 

reluctance motor is intended to minimize the excessive leakage reactance for a better output 

performance of the motor. 

In this study, the rotor windings are wound at the periphery of the rotor pole structures 

connecting the two machine sets (A and B). Just as in the auxiliary windings, the rotor 

windings are transposed between the machine sets, and then connected then in parallel with 

the auxiliary windings.  

The use of short-circuited rotor windings, would lead to considerable improvements in its 

performance. The rotor windings do not only give rise to an increase in the induced e.m.f but 

also augment output power by effectively lowering the synchronous reactance of the output 

windings, thus leading to a higher output and greater synchronous stability. Hence, there is the 

necessity to raise the output of the cage-less three phase transfer field machine by way of 
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using circuits on the structure (shaft), so as to augment the effect of saliency (E.S Obe and A. 

Binder 2011). 

Additionally, the windings in the rotor of a three-phase transfer field reluctance motor could 

go a long way to improving its performance characteristics and a better ability to preserve the 

voltage wave shape following a sudden addition or removal of load than does a three-phase 

transfer field reluctance motor without rotor windings. Also, the  three-phase transfer field 

reluctance motor without rotor windings is only capable of yielding less than half the rated 

power while the T.F machine with a rotor windings is able to produce more than two-thirds of 

the rated power. This is due to the inability of the three-phase transfer field reluctance motor 

without rotor windings to excite at capacitance value high enough to circulate the rated 

current in the machine windings. Unlike the T.F motors with windings at the rotor, the 

counterpart without rotor windings produces a lower voltage and lower load current and, 

hence can only yield lower power. 

In its normal running condition, the operation of the transfer field motor is asyndronous, that 

is, the rotor speed is different from that of the field. It follows therefore that the winding 

impedances will be influenced by closed electric circuit in the rotor (L.A Agu 1984). A short 

circuited full rotor cage or poly-phase winding will reduce the effective reactance of the 

primary winding in the same way that it would in a conventional induction motoroperating at 

a slip. The rotor winding being almost wholly inductive; the rotor current produce a field 

which is nearly totally demagnetizing with respect to the applied primary field; additional 

primary current is drawn from the supply to balance the rotor current. In terms of the supply 

therefore, the primary reactance is effectively reduced. If the rotor is connected to a capacitive 

load such that the rotor current is leading, the rotor field will act in the direction of the applied 
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field, and the total current drawn from the supply will be reduced. So in supply terms, this 

will amount to an increase in primary reactance.  

The rotor winding can be split into two separate d-axis and q-axis windings. The d-axis 

winding has its axis along the direct axis of the salient pole rotor, and the q-axis winding has 

its axis along the quadrature axis of the salient pole rotor. The d-axis and q-axis have been 

shown in fig 3.15. The direct (d)-axis and quadrature (q)-axis flux path involve two small air 

gaps and two large air gaps respectively. The first is path of minimum reluctance, where as 

the second is the path of maximum reluctance (Smarajit Ghosh (2007).  

 

 

Fig 3.15   Direct (d) axis and quadrature (q) axis of two-pole salient pole rotor 

A single phase d-axis rotor winding will have no influence on the reactance of the primary 

winding, the latter’s axis concides with the q-axis of the rotor, but will have the must effect 

when the winding axis concides with the rotor d-axis. Similarly, a q-axis rotor winding will 
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have the most effect on the quadrature axis reactance of the primary winding and non on the 

direct axis reactance. If the current induced by the primary winding in the d-axis rotor 

magnetic field will assist the primary field; ansd so, for given applied voltage the primary 

current will be less than it would be if the rotor coils were absent. The primary winding d-axis 

rotor winding, lagging power factor (pf) currents in the d-axis rotor winding will reduce the 

primary d-axis reactance. The primary q-axis reactance is lowered by induced reactive 

currents in the q-axis rotor windings. It can be deduced therefore that a combination of d-axis 

rotor winding with leading power factor (pf) currents and q-axis rotor windings, with lagging 

power factor (pf) current will raise the effective Xd to Xq ratio of the transfer field (TF) 

machine. 

3.3.2   The three-phase transfer field reluctance motor with rotor windings descriptions 

The structural arrangement of the motor under study is shown in fig 3.16. Unlike the existing 

three phase transfer field reluctance motor without rotor windings counterpart, the three-phase 

transfer field reluctance motor with rotor windings comprised two identical poly-phase 

reluctance machine with moving conductors (rotor windings), whose salient poles rotor are 

mechanically coupled together, such that their d-axis are in space quadrature. As depicted in 

fig 3.16, the stator windings, are integrally wound. Each machine element has three sets of 

windings. Two sets out of the three sets of windings of the machine are identical and are 

housed in the stator. These are called the main (primary) and the auxiliary windings. The main 

windings of the machine carry the excitation current, while the auxiliary windings, carry the 

circulating current. The (2s-1) ω0 low frequency current is confined in the auxiliary winding 

without interfering with the supply. The main windings of the machine sets are connected in 

series while the auxiliary windings, though also in the stator are transposed between the two 

machine stacks. They are wound for the same pole number and both are star connected. The 
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third set of windings known as the rotor (cage) windings are wounded at the periphery of the 

rotor shaft connecting the two machine sets. Just as in the auxiliary windings, the rotor (cage) 

windings are also transposed between the two machine stacks and then connected in parallel 

with the auxiliary windings (see fig 3.17a). 

 

 

 

 

 

 

 

 

 

 

 

a) Fig 3.16: Connection diagram for three phase transfer field reluctance motor 

with rotor winding 
 

3.3.3: Steady state analysis of the configured 3-phase transfer-field reluctance motor 

with rotor windings.  

The steady state analysis of the configured motor can be done, using the schematic diagram of 

figure 3.17 below; 

Main 

Winding  

Auxiliary 

winding 

R 

(A) 

Y (B) 

B 

(C) 

M/C  B M/C  A 

Rotor 

winding  
MACHINE  SHAFT  
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Fig. 3.17(a)- Per phase schematic diagram of 3-phase transfer field reluctance motor 

with rotor windings.   

 

 

 

 

 

 

 

i2 

i1 

R2 R3 

Ld2 

R1 

R2 
R1 R3 

Ld1 Ld3 

Lq2 

Lq1 
Lq3 

V1 

V2 

V3 

M/C A 

M/C B 

I3 



83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.17(b) Modified per phase schematic diagram of the three-phase transfer field 

reluctance motor with rotor windings under rotor stand-still condition, that is slip(s)=1, 

Nr=0  
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Fig 3.17(c) Modified per phase schematic diagram of the three-phase transfer field 

reluctance motor with rotor windings under run condition, that is slip = (2s-1).  

Where, V1 = Main winding voltage  

 V2 = Auxiliary winding voltage 

 V3 = Cage (rotor) winding voltage  

Ld1 = L d2 = L d3 = Ld = Direct axis inductances  

Lq1 = L q2 = L q3 = Lq = Quadrature axis inductances  

R1 = R2 = R3 = R = Resistance of the machine windings  

i1 = Current at the main windings 

i2 = Current at the Auxiliary windings 

V2 

    xq 

R1 

V1 
    xd 

(i2 + i3) xd 
~

  

~

  

~

  

~

  
~

  

~

  

i1 

(i2 + i3) xq 

(i1 + i3) (2s-1) xd 

    xd 

R1 
R2 
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(i1 + i2) (2s-1)xd 

R3 

    xq     xq 

V3 

i2 

i3 

R2 R3 

(i1 + i3) (2s-1) xq (i1 + i2) (2s-1)xq M/c B 

M/c A 
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i3 = Current at the rotor windings 

Also , L12, L13. L21 L23 L31 and L32 are the mutual couplings between coil 1, 2,  and 3 at the 

direct axis.  

Similarly, 𝐿12 , 𝐿13 , 𝐿21 , 𝑙23 , 𝐿31  and 𝐿32  are the mutual couplings between coil 1, 2, and 3 at 

the quadrature axis.  

Hence  L12 = L13 = L21 = L23 = L31 =  L32 =  k  𝐿𝑑 𝐿𝑑  = Ld  

Similarly, 𝐿12 = 𝐿13 = 𝐿21 = 𝐿23 =  𝐿31  = 𝐿32  =  k  𝐿𝑞 𝐿𝑞  = Lq 

Owing to the fact that the pole structure of the machine is salient in nature as in fig, Ld ≠ Lq. 

that is; 

 

 

 

 

Fig 3.18 – The Salient pole structure of the three-phase transfer field reluctance motor 

with d-axis and q-axis positions  

From figure 3.18,  

But Ld = N
2
Pd = 

𝑁2

𝑆𝑑
 

 Lq = N
2
Pq = 

𝑁2

𝑆𝑞
         (3.98) 

 Sd = 
𝑙𝑑

𝜇𝐴
 

 Sq= 
𝑙𝑞

𝜇𝐴
 

 

From fig 3.18, Iq > ld, at constant μA and N, 

d – axis  

q - axis 

ld 

lq 
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Sq  > Sd 

 Ld > Lq 

Where  

 ld  = Direct axis air-gap length  

 lq = Quadrature axis air gap length  

Pd, Sd = Direct axis permeance and reluctance respectively  

Pq, Sq = Quadrature axis permeance and reluctance respectively  

Ld = Direct axis inductance  

Lq = Quadrature axis inductance  

Taking the voltage equation of the machine sections of fig 3.17b, we obtain; 

V1 = (R1 + R1) i1 + Ld 
𝑑𝑖1

𝑑𝑡
 + Lq 

𝑑𝑖1

𝑑𝑡
 + L12 

𝑑𝑖2

𝑑𝑡
 - 𝐿12  

𝑑𝑖2

𝑑𝑡
 + L13 

𝑑𝑖3

𝑑𝑡
 - 𝐿13 

𝑑𝑖3

𝑑𝑡
 

V1 = (R1 + R1) i1 + Ld 
𝑑𝑖1

𝑑𝑡
 + Lq 

𝑑𝑖1

𝑑𝑡
 + Ld

𝑑𝑖2

𝑑𝑡
 - Lq 

𝑑𝑖2

𝑑𝑡
 + Ld 

𝑑𝑖3

𝑑𝑡
 -Lq 

𝑑𝑖3

𝑑𝑡
 

V1 = 2R1 i1 + jωLd i1 + jωLq i1 + jωLd i2 – jωLq i2 + jωLd i3 – jωLq i3 

V1 = 2R1 i1 + jxd i1 + jxq i1 + jxd i2 - jxq i2 + jxd i3 - jxq i3 

V1 = 2R1 i1 + j(xd + xq – (xd - xq) i1 + j(xd - xq)i1+ (xd - xq)i2+ j(xd - xq)i3 

 V1  = 2R1 i1 + j (2xq)i1 +(xd - xq) (i1 + i2 + i3)     (3.99) 

 

V2 = (R2 + R2)i2 + Ld
𝑑𝑖2

𝑑𝑡
 + Lq 

𝑑𝑖2

𝑑𝑡
 + L21 

𝑑𝑖1

𝑑𝑡
 - 𝐿2𝑖  

𝑑𝑖1

𝑑𝑡
 + L23 

𝑑𝑖3

𝑑𝑡
 - 𝐿23 

𝑑𝑖3

𝑑𝑡
 

V2 = (R2 + R2) i2 + Ld 
𝑑𝑖2

𝑑𝑡
 + Lq 

𝑑𝑖2

𝑑𝑡
 + Ld

𝑑𝑖1

𝑑𝑡
 - Lq 

𝑑𝑖1

𝑑𝑡
 + Ld 

𝑑𝑖3

𝑑𝑡
 -Lq 

𝑑𝑖5

𝑑𝑡
 

V2 =  2R2 i2 + (2s -1) [ jωLd i2 +j𝜔𝐿𝑞 i2 + jωLd i1 – jωLq i1 + jωLd i3 – jωLq i3] 

V2 = 2R2 i2 + (2s -1) [ jxd i2 + jxq i2 + jxd i1 - jxq i1 + jxd i3 - jxq i3] 

V2 = 2R2 i2 + (2s -1) [ j(xd + xq – (xd - xq)) i2 + j(xd - xq)i2+ j(xd - xq)i1+ j(xd - xq)i3] 
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V2  = 2R2 i2 +  (2s -1) [ j (2xq) i2 +j (xd - xq) (i2 + i1 + i3)      

  
𝑉2

2𝑠−1
  =  

2𝑅2  𝑖2

2𝑠−1
  + j (2xq)i2 + j(xd- xq) (i1 + i2 + i3)            (3.100) 

Also, V3 = (R3 + R3)i3 + Ld 
𝑑𝑖3

𝑑𝑡
 + Lq 

𝑑𝑖3

𝑑𝑡
 + L31

𝑑𝑖1

𝑑𝑡
 - 𝐿31  

𝑑𝑖1

𝑑𝑡
 + L32 

𝑑𝑖2

𝑑𝑡
 - 𝐿32 

𝑑𝑖2

𝑑𝑡
  

 V3  = (R3 + R3)i3 + Ld
𝑑𝑖3

𝑑𝑡
 + Lq 

𝑑𝑖3

𝑑𝑡
 + Ld 

𝑑𝑖1

𝑑𝑡
 – Lq 

𝑑𝑖1

𝑑𝑡
 + Ld 

𝑑𝑖2

𝑑𝑡
 - Lq

𝑑𝑖2

𝑑𝑡
 

V3 =  2R3 i3 + (2s -1) [ jωLd i3 + jωLq i3 – jωLq i1 + jωLd i1 – jωLq i2 + jωLd i2] 

V3 = 2R3 i3 + (2s -1) [ jxd i3 + jxq i3 + jxd i1 - jxq i1 + jxd i2 - jxq i2] 

=  2R3 i3 + (2s -1) [j(xd + xq –( xd - xq))i3+j( xd - xq) i3 + j( xd - xq)i1 + j( xd - xq)i2 

= 2R3 i3 + (2s -1) [j(2xq)i3 +  j( xd - xq) (i3 + i1 + i2 ) 

  
𝑉3

2𝑠−1
  =  

2𝑅3  𝑖3

2𝑠−1
  + j(2xq) i3+ j(xd- xq) (i1 + i2 + i3)            (3.101) 

Equations 3.99 – 3.101 result an equivalent circuit of fig 3.19 below  

 

 

 

 

 

 

 

Fig. 3.19(a) 

 

 

 

 

 

V1 

2R1 
j 2xq 

i1 
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Since the rotor and auxiliary windings are short circuited, 
𝑉3

2𝑠−1
 =0, 

𝑉2

2𝑠−1
 = 0. Hence, fig. 3.19a 

yields; 

 

 

 

 

 

 

 

From fig 3.19b, So far R1 = R2 = R3 = R, 

Z2↑↑ z3 =  
 

2𝑅

2𝑠−1
 +  𝑗2 𝑥 𝑞   

2𝑅

2𝑠−1
 +  𝑗2 𝑥 𝑞 

 
2𝑅

2𝑠−1
 + 𝑗2 𝑥 𝑞+  

2𝑅

2𝑠−1
 +  𝑗2 𝑥 𝑞 

  

= 
  

2𝑅

2𝑠−1
 +  𝑗2 𝑥 𝑞  

2

2[ 
2𝑅

2𝑠−1
 +  𝑗2 𝑥 𝑞 ]

 

= 

2𝑅

2𝑠−1
 +𝑗2 𝑥 𝑞  

2
 

= 
2𝑅

2(2𝑠−1)
 + 

𝑗2 𝑥 𝑞

2
 

Z2↑↑ z3 = 
𝑅

2𝑠−1
 + 𝑗 𝑥 𝑞               (3.102) 

 

Hence, fig 3.19b can be redrawn as below;  
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Fig. 3.19c 

Also, 
2𝑅

2𝑠−1
 = R + 

2𝑅 (1−𝑠)

2𝑠−1
              (3.103) 

Hence, Fig 3.19c becomes;  

 

 

 

 

 

                                                

       (d) 

Fig 3.19(a) – Per-phase steady state equivalent circuit of 3-phase transfer field     

 Reluctance motor with rotor windings  

(b) Per phase steady state equivalent circuit of the motor 3-phase transfer field     

 Reluctance motor with rotor windings when V2 and V3 are short circuited. 

  (c|d) – The modified equivalent circuits of the 3-phase transfer field     

 Reluctance motor with rotor windings  

From fig 3.19d,  

 

V1 

2R 
i1 

j2xq 

i1 + i23 

i23 
j x q 

  R 
  2s -1 

j (xd - xq) 

(C) 

i1 + i23 

j (xd - xq) 

V1 

2R 
j 2xq 

b 

a i23 i1 
j xq R 

  2R (1-s) 
  2s -1 
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VTH =  
𝑗  𝑥𝑑−𝑥𝑞 

𝑗  𝑥𝑑−𝑥𝑞 +  2𝑅+𝑗2 𝑥𝑞 
 𝑉1  

=  
𝑗  𝑥𝑑−𝑥𝑞 

2𝑅+𝑗  (𝑥𝑑−𝑥𝑞+2𝑥𝑞) 
 𝑉1             (3.104) 

If 2R <<j (xd – xq + 2 xq), we have; 

VTH =  
𝑗  𝑥𝑑−𝑥𝑞 

 𝑗 (𝑥𝑑−𝑥𝑞+2𝑥𝑞) 
 𝑉1 

 VTH  =    
𝑥𝑑−𝑥𝑞

𝑥𝑑+𝑥𝑞
 𝑉1  volts        (3.105) 

 

Also 

ZTH = 
𝑗   𝑥𝑑−𝑥𝑞 (2𝑅+𝑗2 𝑥𝑞 )

𝑗   𝑥𝑑−𝑥𝑞 (2𝑅+𝑗2 𝑥𝑞 )
       

            (3.106) 

= 
𝑗   𝑥𝑑−𝑥𝑞 (2𝑅+𝑗2 𝑥𝑞)

2𝑅+𝑗  (𝑥𝑑−𝑥𝑞+2𝑥𝑞)
 

 

If 2R <<< j (xd – xq + 2 xq), then; 

ZTH = 
𝑗   𝑥𝑑−𝑥𝑞 (2𝑅+𝑗2 𝑥𝑞 )

𝑗  𝑥𝑑−𝑥𝑞+2𝑥𝑞 
   

             (3.107) 

= 
  𝑥𝑑−𝑥𝑞  2𝑅+𝑗2 𝑥𝑞 

 𝑥𝑑+𝑥𝑞 
 

But (xd – xq) (2R + j2 xq) = 2R (xd – xq) + j(2xq (xd – xq))  

   = 2R (xd – xq) + j(2xq xd – 2xq xq))       (3.108) 

 ZTH = 
2𝑅  𝑥𝑑−𝑥𝑞 

(𝑥𝑑+𝑥𝑞)
 +

𝑗  2𝑥𝑞  𝑥𝑑− 2 𝑥𝑞 
2
 

(𝑥𝑑+𝑥𝑞)
 

But ZTH = RTH + XTH 

Hence RTH = 
2𝑅 (𝑋𝑑−𝑋𝑞  )

(𝑋𝑑+𝑋𝑞  )
 - Real value of ZTH                  (3.109) 

XTH =  
𝑗 (2xq xd−2(xq )2) 

(𝑋𝑑+𝑋𝑞  )
 = 

𝑗2𝑥𝑞  (𝑋𝑑−𝑋𝑞  )

(𝑋𝑑+𝑋𝑞  )
 - Imaginary value of ZTH        (3.110) 

Hence fig 3.19d reduces to;  
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Fig 3.19(e) Thevenin equivalent of three phase transfer field reluctance motor with rotor 

winding circuit model  

From fig 3.19e,  

i1 = 
𝑉𝑇𝐻

𝑍𝑇𝐻
 = 

𝑉𝑇𝐻

 𝑅𝑇𝐻 + 𝑅+ 
2𝑅(1−𝑠)

2𝑠−1
 + 𝑗  (𝑋𝑇𝐻 +𝑋𝑞)

 

= 
𝑉𝑇𝐻

 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 + 𝑗  (𝑋𝑇𝐻 +𝑋𝑞 )

               (3.111) 

 𝑖1
2 = 

 𝑉𝑇𝐻  2

[ 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 + 𝑗  (𝑋𝑇𝐻 +𝑋𝑞)]2

 

=  
 𝑉𝑇𝐻  2

 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 

2
+  (𝑋𝑇𝐻 +𝑋𝑞)2

               (3.112) 

 

3.3.4 Power Across Air –gap, Torque and Power Output in three-phase transfer field 

reluctance motor with rotor winding  

With regards to the equivalent circuit of fig 3.19(d), the power crossing the terminal ab in the 

circuit is the power that is transferred from the stator windings to then auxiliary and cage 

windings, through the machine air-gap magnetic field. This is called the power across the air 

gap or simply air-gap power, whose three phase value is shown below;  

PG = 3 (i23)
2
 

𝑅

2𝑠−1
 Watts               (3.113) 

Auxiliary/rotor windings copper Pc (aux/rotor) = 3(i23)
2
R           (3.114) 

j xq R 

   + 

    - VTH 

i1 
ZTH 

a 

b 

  2R (1-s) 
  2s -1 
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Putting equation 3.114 into equation 3.113, we have;  

PG = 
𝑃𝑐(𝑎𝑢𝑥 /𝑟𝑜𝑡𝑜𝑟 )

2𝑠−1
 

 Pc (aux/rotor) = (2s-1) PG Watts            (3.115) 

But Mechanical Output (gross) Power (Pm) of the machine is given by; 

Pm = PG – Pc (aux/rotor) 

 Pm =  3(𝑖23)2
 

𝑅

2𝑠−1
  -  3(𝑖23)2

 
𝑅  

= 6 (i23)
2 
R 

(1−𝑆)

2𝑠−1
 Watts 

Pm = 2PG(1-s) Watts         (3.116) 

From equation 3.115 and 3.116, it can be inferred that high slip operation of the machine will 

favour auxiliary/rotor winding copper losses Pc(aux/rotor) at the detriment of the mechanical 

output (gross) Power (Pm), and would make the machine highly inefficient. Hence, the 

machine is particularly designed to operate at low slip, even at full load. 

3.3.5 Torque/slip Characteristic of 3-phase transfer field reluctance motor with rotor 

windings  

From fig 3.19e, The expression for the steady-state electromagnetic torque of the machine is 

given as below;  

Te = 
𝑃𝑚

𝜔𝑚
 = 

𝑃𝑚

𝜔 1−𝑠 
         (3.117) 

= [6 (i23)
2 
R 

(1−𝑆)

2𝑠−1
 x 

1

𝜔 1−𝑠 
] 

= 
6(𝑖23 )2𝑅

𝜔 (2𝑠−1)
 

= 
6(𝑖23 )2𝑅

𝜔 (2𝑠−1)
 N-m          (3.118) 

Putting equation 3.112 into equation 3.118, we have; 

Te = 
6

𝜔
  

𝑅

2𝑠−1
   

 𝑉𝑇𝐻  2

 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 

2
+ (𝑋𝑇𝐻 +𝑋𝑞)2

  N-m      (3.119) 
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Equation 3.119 is the expression for torque developed as a function of voltage (VTH) and slip 

(s). 

3.3.6  Efficiency/slip characteristics of the 3-phase transfer field reluctance motor with 

rotor windings. 

The efficiency/slip relationship for the 3-phase transfer field reluctance motor with rotor 

windings can be studied for better, using the per phase steady-state equivalent circuit of the 

machine as in fig 3.19d 

The input impedance looking through the input terminals is; 

Z = 2R + j2xq +  
𝑗  𝑋𝑑−𝑋𝑞  (𝑗𝑥 𝑞+

𝑅

2𝑠−1
 )

𝑅

2𝑠−1
+ 𝑗 (𝑥𝑞+  𝑋𝑑−𝑋𝑞 )

  

     = 2R + j2xq +  
𝑗  𝑋𝑑−𝑋𝑞  (𝑗𝑥 𝑞+

𝑅

2𝑠−1
 )

𝑅

2𝑠−1
+ 𝑗𝑥𝑑

       (3.120) 

The current I1 in the main winding;  

 iI = 
𝑉1

𝑍
          (3.121) 

Similarly, the current in the auxiliary and rotor windings (i23) is given by;  

i23 =  
𝑗  𝑋𝑑−𝑋𝑞 

𝑅

2𝑠−1
+𝑗(𝑥𝑞+  𝑋𝑑−𝑋𝑞  

 𝑖1              (3.122) 

The copper losses in the main, auxiliary and rotor winding = 3 2𝑅 𝑖1 
2 +  𝑅 𝑖23 

2    

           =3𝑅 2 𝑖1 
2 +   𝑖23 

2      (3.123) 

But, Input Power = Output Power + Copper losses in the main, auxiliary and rotor winding, 

excluding windage and friction losses; 

 Input Power = 6R  
1−𝑠

2𝑠−1
   𝑖23 

2 + 3R (2(i1)
2
 + (i23)

2
)  

                       = 3R  2  
1−𝑠

2𝑠−1
   𝑖23 

2 +  2 𝑖1 
2+ 𝑖23 

2           (3.124) 

 The machine efficiency (ɛ) = 
2 

1−𝑠

2𝑠−1
   𝑖23  2

2 
1−𝑠

2𝑠−1
   𝑖23  2+ 2 𝑖1 2+ 𝑖23  2

          (3.125) 
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3.3.7 Power factors/Slip characteristic of the 3-phase transfer field reluctance motor 

with rotor windings  

From the Thevenin equivalent of the configured machine of fig 3.19d the machine’s power 

factor (cosθ) is given by;  

Power factor (cosθ) = 
𝑅𝑒𝑎𝑙  (𝑍)

 𝑅𝑒𝑎𝑙  (𝑍)2+𝐼𝑚𝑎𝑔  (𝑍)2  
 

   = 
𝑅𝑇𝐻 +

𝑅

2𝑠−1

 (𝑅𝑇𝐻 +2𝑠−1
𝑅 )2+  𝑋𝑇𝐻 +𝑋𝑞 

2
       (3.126) 

 

3.3.8 Rotor current (i23) – Slip(s) characteristic of 3-phase transfer field reluctance 

motor with rotor windings 

Using equation 3.111, a plot of rotor current (i23) against slip(s) can be obtained. 

3.4 Dynamic Model of 3-Phase transfer Field reluctance motor with rotor windings  

For us to derive the dynamic equations of the circuit model of the configured transfer field 

reluctance machine it is paramount to take a look at the variation of inductances with rotor 

position since the rotor has salient poles. In general, the permeance along the d and q axes is 

not the same. 

Since the rotor is of salient poles, its mmfs are always directed along the d and q axes. Also, 

the direction of the resultant mmf of the stator windings relative to these two axes will vary 

with the power factor. A common approach to handling the magnetic effect of the stator’s 

result an mmf is to resolve it along the d and q axes, where it could be dealt with 

systematically. Let us consider the magnetic effect of current flowing in phase aof the stator. 

The resolved components of the a-phase mmf Fa, will produce the flux components:   

𝜙d = Pd Fa  sin θr and 𝜙q = Pq Fa cos θr along the d and q axes respectively. 
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Where P = peameance 

The linkage of these resolved flux components with the a-phase windings is; 

λaa = Ns (𝜙d Sin θr + 𝜙q cos θr) Wb turn.  

     = Ns Fa (Pd sin
2
θr + Pq cos

2
θr) 

     = Ns Fa (
𝑝𝑑+𝑝𝑞

2
 -

𝑝𝑑−𝑝𝑞

2
 cos 2θr)        (3.127) 

Similarly, the linkage of the flux component, 𝜙d and 𝜙q by the b - phase winding that is 
2𝜋

3
 

ahead may be written as: 

λba = Ns Fa (Pd sin θr sin (θr - 
2𝜋

3
) + pq cos θr cos (θr - 

2𝜋

3
)) 

           = Ns Fa (−
𝑝𝑑+𝑝𝑞

4
 -

𝑝𝑑−𝑝𝑞

2
 cos 2(θr - 

𝜋

3
))       (3.128) 

Based on the functional relationship of λaa with the rotor angle, θr, we can deduce that the self 

inductance of the stator a-phase winding, excluding the leakage has the form; 

Laa = Lo – Lms cos 2 θr H 

Where; 

Lo = 
𝐿𝑚𝑑 +𝐿𝑚𝑞

2
  and Lms = 

𝐿𝑚𝑑 +𝐿𝑚𝑞

2
 

Those of the b – and c – phases, Lbb, Lcc are similar to that of Laa but with θr replaced by (θr - 

2𝜋

3
) and (θr+ 

2𝜋

3
), respectively.  

Similarly, it can be deduced from equation 3.35, that the mutual inductance between the a and 

b phase of the stator is of the form,  

Lab = Lba = 
𝐿𝑜

2
 - Lms cos 2 (θr - 

2𝜋

3
) H       (3.129) 

Similarly, expression for Lbc and Lac can be obtained by replacing θr with (θr - 
2𝜋

3
) and (θr+ 

2𝜋

3
) 

respectively.  
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Since a conventional T.F. effect machine is composed of two components with two windings 

each, if the parameter referring to the main winding is inscrived with the subscript A, B, C (ie 

phase quantities) while that referring to the auxiliary winding will have subscript a, b, c, the 

the dynamic model can be derived as follows:  

VABC = rABC iABC + PλABC 

 Vabc = rabc iabc + Pλabc         

VdqrABC = rdqrABC idqrABC + PλdqrABC       (3.130) 

 Vdqrabc = rdqrabc idqrabc + Pλdqrabc 

Where P 
𝑑

𝑑𝑡
, λ = flux  

RABC = diag [(rA rB rC)] and rabc = diag  [(ra rb rc)] 

The flux linkages are expressed as;  

λABC = LGG iABC + LGH iabc 

λabc = LHG iABC + LHH iabc        (3.131) 

where LGG, LGH, LHG and LHH are inductance matrices obtained from the inductance sub 

matrices of the two components machines as shown below. 

Let L11 be the self inductance of the main winding and L22 be the self inductance of the 

auxiliary winding; then the mutual inductance between the main and the mutual inductance 

between the main and the auxiliary winding will be L12 or L21 as the case may be; 

Now; L11 =  

𝐿𝐴𝐴 𝐿𝐴𝐵 𝐿𝐴𝐶

𝐿𝐵𝐴 𝐿𝐵𝐵 𝐿𝐵𝐶

𝐿𝐶𝐴 𝐿𝐶𝐵 𝐿𝐶𝐶

    L12 = ±   
𝐿𝐴𝑎 𝐿𝐴𝑏 𝐿𝐴𝑐

𝐿𝐵𝑎 𝐿𝐵𝑏 𝐿𝐵𝑐

𝐿𝐶𝑎 𝐿𝐶𝑏 𝐿𝐶𝑐

  

L21 = ±  

𝐿𝑎𝐴 𝐿𝑎𝐵 𝐿𝑎𝐶

𝐿𝑏𝐴 𝐿𝑏𝐵 𝐿𝑏𝐶

𝐿𝑐𝐴 𝐿𝑐𝐵 𝐿𝑐𝐶

    L12 = ±   
𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

  

So far the main and the auxiliary winding are identical, 

LGG = L11 (Machine A) + L11 (Machine B) 

       = 𝐿11
𝐴  +𝐿11

𝐵  
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The individual inductance expressions are as follows; 

LAA =La1 + La2 cos 2 θr 

LAB = LBA = - ½  La1 ±  La2 cos (2 θr – α) 

LAC = LCA = - ½  La1 ±  La2 cos (2 θr + α) 

LBC = LCB = - ½  La1 ±  La2 cos 2 θr  

LBB =  ½  La1 ±  La2 cos (2 θr - α) 

LCC =  ½  La1 ±  La2 cos (2 θr + α) 

Laa =  ½  La1 ±  La2 cos 2 θr 

 Lab = Lba =  ½  La1 ±  Lb2 cos (2 θr - α) 

Lbc = Lcb =  ½  Lb1 ±  Lb2 cos 2 θr  

Lbb  =  ½  Lb1 ±  Lb2 cos (2 θr - α) 

Lcc  =  ½  La1 ±  Lb2 cos (2 θr + α) 

LAa = LaA =  ½  Lb12 ±  Lb12 cos 2 θr  

LAb = LbA =  ½  La12 cos α ± Lb12 cos (2 θr - α) 

LAc = LcA =  ½  La12 cos α ± Lb12 cos (2 θr + α) 

LBa = Lab =  ½  La12 cos α ± Lb12 cos (2 θr - α) 

LBb = LbB =  ½  La12 cos α ± Lb12 cos (2 θr + α) 

LBc = LcB =  ½  La12 cos α ± Lb12 cos 2 θr  

LCa = LaC =  ½  La12 cos α ± Lb12 cos (2 θr + α) 

LCb = LbC =  ½  La12 cos α ± Lb12 cos 2 θr  

LCc = LcC =  ½  La12 cos α ± Lb12 cos (2 θr - α) 

Where , α = 
2𝜋

3
, and; La11 = La22 = La12 = ½ (Lmd + Lmq) 

   Lb11 = Lb22 = Lb12 = ½ (Lmd - Lmq) 

However, the expressions for the individual inductances above, can further be used for the 

inductance matrix for the main windings for both machines A and B. 

For machine A, the inductance matrix for the main winding is; 

𝐿11=
𝐴

 
 
 
 
 
 𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 cos 2 𝜃𝑟                − 

1

2
𝐿𝑜 − 𝐿𝑚𝑠 cos 2  𝜃𝑟 −

𝜋

3
                     −

1

2
𝐿𝑜 − 𝐿𝑚𝑠 cos 2  𝜃𝑟 +

𝜋

3
   

− 
1

2
𝐿𝑜 − 𝐿𝑚𝑠 cos 2  𝜃𝑟 −

𝜋

3
       𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 cos 2  𝜃𝑟 +

2𝜋

3
            − 

1

2
𝐿𝑜 − 𝐿𝑚𝑠 cos 2  𝜃𝑟 − 𝜋  

– 
1

2
𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 +

𝜋

3
           −  

1

2
𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 − 𝜋                      𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠  cos 2  𝜃𝑟 −

2𝜋

3
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For machine B, the inductance matrix for the main winding is; 

𝐿11=
𝐵

 
 
 
 
 
 𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 cos 2 𝜃𝑟                −  

1

2
𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 −

𝜋

3
                     −

1

2
𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 +

𝜋

3
   

− 
1

2
𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 −

𝜋

3
            𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 +

2𝜋

3
            − 

1

2
𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 − 𝜋  

– 
1

2
𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 +

𝜋

3
          𝐿𝑜 + 𝐿𝑚𝑠 cos 2  𝜃𝑟 − 𝜋                      𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠  cos 2  𝜃𝑟 −

2𝜋

3
       

 
 
 
 
 

 

Hence LGG  = 𝐿11
𝐴  +𝐿11

𝐵   
2𝐿𝐿𝑆 + 2𝐿𝑂                  – 𝐿𝑂                         – 𝐿𝑂

−𝐿𝑂                  2𝐿𝐿𝑆 + 2𝐿𝑂                − 𝐿𝑂

−𝐿𝑂                         − 𝐿𝑂                          2𝐿𝐿𝑆 + 2𝐿𝑂 

   

Where LLs = leakage inductance, and Lo = 
𝐿𝑚𝑑 +𝐿𝑚𝑞  

2
  

LGG=

 
 
 
 
 2𝐿𝐿𝑆 + 𝐿𝑚𝑑 + 𝐿𝑚𝑞                −  

1

2
  𝐿𝑚𝑑 + 𝐿𝑚𝑞               −  

1

2
  𝐿𝑚𝑑 + 𝐿𝑚𝑞       

− 
1

2
  𝐿𝑚𝑑 + 𝐿𝑚𝑞          2𝐿𝐿𝑆 + 𝐿𝑚𝑑 + 𝐿𝑚𝑞         −  

1

2
  𝐿𝑚𝑑 + 𝐿𝑚𝑞  

 − 
1

2
  𝐿𝑚𝑑 + 𝐿𝑚𝑞        −  

1

2
  𝐿𝑚𝑑 + 𝐿𝑚𝑞          2𝐿𝐿𝑆 + 𝐿𝑚𝑑 + 𝐿𝑚𝑞  

 
 
 
 

         (3.132) 

Now for mutual inductance  

For machine A, the mutual inductance matrix is given as; 

𝐿12 
𝐴 = 

 

𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 cos 2 𝜃𝑟                   𝐿𝑜 − 𝐿𝑚𝑠 cos   2𝜃𝑟 − 𝛼         𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 cos   2𝜃𝑟 + 𝛼  
 

𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 cos   2𝜃𝑟 − 𝛼           𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 cos  2𝜃𝑟 + 𝛼             𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 cos  2𝜃𝑟

𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 cos   2𝜃𝑟 + 𝛼        𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 cos 2𝜃𝑟            𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠cos  2𝜃𝑟 − 𝛼 

  

Likewise, for machine B, the mutual inductance matrix is given as; 

𝐿12 
𝐵 = 

 

𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 cos 2 𝜃𝑟                   𝐿𝑜 + 𝐿𝑚𝑠 cos   2𝜃𝑟 − 𝛼         𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 cos   2𝜃𝑟 + 𝛼  
 

𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 cos   2𝜃𝑟 − 𝛼           𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 cos  2𝜃𝑟 + 𝛼             𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 cos  2𝜃𝑟

𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 cos   2𝜃𝑟 + 𝛼        𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 cos 2𝜃𝑟            𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 cos  2𝜃𝑟 − 𝛼 

  

But LGH =𝐿12 
𝐴 + 𝐿12 

𝐵   
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 𝐿𝐺𝐻 =  

−2𝐿𝑚𝑠 cos 2 𝜃𝑟                  − 2𝐿𝑚𝑠 cos   2𝜃𝑟 − 𝛼        − 2𝐿𝑚𝑠 cos   2𝜃𝑟 + 𝛼  
 

−2𝐿𝑚𝑠 cos   2𝜃𝑟 − 𝛼           − 2𝐿𝑚𝑠 cos  2𝜃𝑟 + 𝛼            − 2𝐿𝑚𝑠 cos  2𝜃𝑟

−2𝐿𝑚𝑠 cos   2𝜃𝑟 + 𝛼        − 2𝐿𝑚𝑠 cos 2𝜃𝑟            − 2𝐿𝑙𝑠cos  2𝜃𝑟 − 𝛼 

  

 𝐿𝐺𝐻 = −2𝐿𝑚𝑠  

cos 2 𝜃𝑟                  cos   2𝜃𝑟 − 𝛼       cos   2𝜃𝑟 + 𝛼  
 

cos   2𝜃𝑟 − 𝛼           cos  2𝜃𝑟 + 𝛼            cos  2𝜃𝑟

cos   2𝜃𝑟 + 𝛼        cos 2𝜃𝑟            cos  2𝜃𝑟 − 𝛼 

  

But 𝐿𝑚𝑠 =  
𝐿𝑚𝑑 −𝐿𝑚𝑞  

2
 

 - 2Lms = 
2(𝐿𝑚𝑑 −𝐿𝑚𝑞 ) 

2
 = s 

 𝐿𝐺𝐻  = 𝐿𝑚𝑞 − 𝐿𝑚𝑑  

cos 2 𝜃𝑟                  cos   2𝜃𝑟 − 𝛼       cos   2𝜃𝑟 + 𝛼  
 

cos   2𝜃𝑟 − 𝛼           cos  2𝜃𝑟 + 𝛼            cos  2𝜃𝑟

cos   2𝜃𝑟 + 𝛼        cos 2𝜃𝑟            cos  2𝜃𝑟 − 𝛼 

     (3.133)  

Where, α = 
2𝜋

3
 

Since the main and auxiliary winding for machine A and B are identical, LHG  and LHH will be 

the same as LGH and LGG respectively. 

 

3.4.1 – Rotor Winding Inductance 

The stages of transformation of the voltage equations are to first transform the a.b.c. phase 

variables into q-d-o frame where the quantities are in stationary reference fame. Secondly is 

to convert the stationary reference q-d-o frame into the rotor reference frame ie dr and qr. 

Since the rotor of this machine is salient pole, the axis of the rotor quantities are already in the 

q and d axis, so that the q-d-o transformation need only by applied to the stator quantities. 

3.4.2 The Machine Model in Arbitrary q-d-o Reference Frame 

In order to remove the rotor position dependence on the inductances seen in equation 3.133, 

the voltage equations in equation 3.130 need to be transferred to q-d-o reference frame. The 

technique is to transform all the stator variable to an arbitrary reference frame. 
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Here, all the stator variable will be transform to the rotor. In the voltage equations for the 

main and auxiliary windings of the transfer field machine of equation 3.130, there is no need 

to include the rotor equation here since our intension is to adopt rotor reference frame. 

 

Hence, the voltage equations of equation 3.130 will after the transformation yield (Chee-

Mumo, 1997); 

VQ = ωλD + ρλQ + riQ 

VD = ωλQ + ρλD + riD         (3.134) 

VO = ρλO + riO 

Doing like – wise for the auxiliary and cage (rotor) windings, we have,  

Vq = (ω-2ωr) λd + ρλq + riq          

Vd = (ω-2ωr) λq+ ρλd+ rid 

Vo = ρλo+ rio          (3.135) 

𝑉𝑞𝑟  = (ω -2ωr)  𝜆𝑑𝑟  + 𝜌𝜆𝑞𝑟  + 𝑟𝑞𝑟  𝑖𝑞𝑟  

𝑉𝑑𝑟  = (ω -2ωr)  𝜆𝑞𝑟  + 𝜌𝜆𝑑𝑟  + 𝑟𝑑𝑟  𝑖𝑑𝑟  

 

3.4.3 Transformation of flux Linkages  

The ABC and abc subscripts denote variables and parameters associated with the main and 

auxiliary windings respectively. Both rABC and rabc are diagonal matrices each with equal non 

zero elements. For a magnetically linear system, the flux linkages may be expressed as; 

 
𝜆𝐴𝐵𝐶

𝜆𝑎𝑏𝑐
  =  

𝐿𝐺𝐺    𝐿𝐺𝐻

𝐿𝐻𝐺   𝐿𝐻𝐻
   

𝑖𝐴𝐵𝐶

𝑖𝑎𝑏𝑐
 Wb turns       (3.135) 

Where G = main winding, H = Auxiliary winding. 

To transform the above equation in respect to the cage winding, we have as follows, 

 
 
 
 
𝜆𝐴𝐵𝐶

𝜆𝑎𝑏𝑐

𝜆𝑑𝑞𝑟 1

𝜆𝑑𝑞𝑟 2 
 
 
 

 =  

𝐿𝐺𝐺       𝐿𝐺𝐻        𝐿𝐺𝑅𝐴       𝐿𝐺𝑅𝐵  
  𝐿𝐻𝐺       𝐿𝐻𝐻        𝐿𝐻𝑅𝐴       𝐿𝐻𝑅𝐵

𝐿𝑅𝐴𝐺       𝐿𝑅𝐴𝐻        𝐿𝑅𝐴𝑅𝐴       𝐿𝑅𝐴𝑅𝐵

𝐿𝑅𝐵𝐺       𝐿𝑅𝐵𝐻        𝐿𝑅𝐵𝑅𝐴       𝐿𝑅𝐵𝑅𝐵

  

𝑖𝐴𝐵𝐶

𝑖𝑎𝑏𝑐
𝑖𝑑𝑞𝑟 1

𝑖𝑑𝑞𝑟 2

     (3.137) 
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The inductance matrix terms LGG, LGH, LHG and LHH are obtained from inductance sub-

matrices L11, L12, L21 and L22 for machine A and B.  

LGRA is the mutual inductance matrix between main winding of machine A and rotor winding 

of machine A. 

LGRB is the mutual inductance matrix between main winding of machine B nd rotor winding 

of machine B. 

LHRA is the mutual inductance matrix between auxiliary winding of machine A and rotor 

winding of machine A 

LHRB is the mutual inductance matrix between auxiliary winding of machine B nd rotor 

winding of machine B. 

LRARA is the inductance matrix of rotor winding of machine A. 

LRARB is the mutual inductance matrix between the rotor winding of machine A and the rotor 

winding of machine B. 

Similar definitions apply to other inductance matrix terms in equation 10 

3.4.4 – Stator Winding inductances  

To reduce the mathematical complexities of equation 3.136, it is rewritten in q-d-o frame as;  

 
𝜆𝑄  𝜆𝐷  𝜆𝑂  

𝜆𝑞  𝜆𝑑  𝜆𝑜  
 

𝑇

=  
𝐾𝐺  𝐿𝐺𝐺  𝐾𝐺

−1     𝐾𝐺  𝐿𝐺𝐻  𝐾𝐻
−1 

𝐾𝐻  𝐿𝐻𝐺  𝐾𝐺
−1     𝐾𝐺  𝐿𝐻𝐻  𝐾𝐻

−1  
𝑖𝑄  𝑖𝐷  𝑖𝑂  

𝑖𝑞  𝑖𝑑  𝑖𝑜  
     (3.138) 

Where KG = 
2

3
  

𝑐𝑜𝑠𝜃         cos⁡ 𝜃 − 𝛼        cos⁡ 𝜃 + 𝛼  
𝑠𝑖𝑛𝜃         sin⁡ 𝜃 − 𝛼        sin⁡ 𝜃 + 𝛼 

1

2
                       

1

2
                                

1

2

     (3.139) 

𝐾𝐺
−1 = 

𝑐𝑜𝑠𝜃               sinθ                    1
cos 𝜃 − 𝛼     sin 𝜃 − 𝛼       1

cos 𝜃 + 𝛼         sin 𝜃 + 𝛼       1
       (3.140) 
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KH = 
2

3
  

𝑐𝑜𝑠𝛽         cos⁡ 𝛽 − 𝛼        cos⁡ 𝛽 + 𝛼  

𝑠𝑖𝑛𝛽         sin⁡ 𝛽 − 𝛼        sin⁡ 𝛽 + 𝛼 
1

2
                       

1

2
                                

1

2

      (3.141) 

𝐾𝐻
−1 = 

𝑐𝑜𝑠𝛽               sin𝛽                    1

cos 𝛽 − 𝛼     sin 𝛽 − 𝛼       1

cos 𝛽 + 𝛼         sin 𝛽 + 𝛼       1
       (3.142) 

 

Where 𝛽 = θ – = Speed of rotation of the arbitrary reference frame  

             θr = Angular rotor position 

Therefore the flux linkage of equation 11 is now expressed as;  

λQ = (2LL + Lmq + Lmd) iQ – (Lmd  – Lmq) (iq + 𝑖𝑞𝑟 ) 

    =  2LL iQ + Lmq iQ + Lmd iQ - Lmd (iq + 𝑖𝑞𝑟 ) + Lmq (iq + 𝑖𝑞𝑟 )  

    = 2LL iQ + Lmq iQ + Lmd iQ + Lmd iQ - Lmd iQ - Lmd (iq + 𝑖𝑞𝑟 ) + Lmq (iq + 𝑖𝑞𝑟 ) 

    = 2LL iQ + 2Lmd iQ + Lmq iQ- Lmd iQ - (iq + 𝑖𝑞𝑟 ) + Lmq (iq + 𝑖𝑞𝑟 ) 

    =  2 (LL + Lmd) iQ  + [iQ(Lmq - Lmd) +(iq + 𝑖𝑞𝑟 ) (Lmq - Lmd)] 

    = 2 (LL + Lmd) iQ  + (iQ + iq + 𝑖𝑞𝑟 ) (Lmq - Lmd) 

 λQ =2 (LL + Lmd) iQ  + (Lmq - Lmd) (iQ + iq + 𝑖𝑞𝑟 )     (3.143) 

Similarly; 

 λD  = (2LL + Lmq + Lmd) iD + (Lmd  – Lmq) (id + 𝑖𝑑𝑟 ) 

=2 (LL + Lmq) iD  + (Lmd - Lmq) (iD + id + 𝑖𝑑𝑟 )      (3.144) 

λO  = 2LL iO          (3.145) 

Also, λq = (2LL + Lmq + Lmd) iq – (Lmd  – Lmq) (iQ + 𝑖𝑞𝑟 ) 

              = 2 (LL + Lmd) iq  + (Lmq - Lmd) (iQ + iq + 𝑖𝑞𝑟 )    (3.146 

         λd  = (2LL + Lmq + Lmd) id + (Lmd  – Lmq) (iD + 𝑖𝑑𝑟 ) 

             =2 (LL + Lmq) id  + (Lmd - Lmq) (iD + id + 𝑖𝑑𝑟 )     (3.147) 

         λo = 2LL io         (3.148) 

Also; 𝜆𝑞𝑟  = (LLqr + Lmq + Lmd) 𝑖𝑞𝑟  – (Lmd  – Lmq) (iQ + iq) 

             = (LLqr + 2Lmd) 𝑖𝑞𝑟  + (Lmq - Lmd) (iQ + iq + 𝑖𝑞𝑟 )                                (3.149) 
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          𝜆𝑑𝑟  = (LLdr + Lmq + Lmd) 𝑖𝑑𝑟  – (Lmd  – Lmq) (iD + id) 

             = (LLdr + 2Lmq) 𝑖𝑑𝑟  + (Lmd - Lmq) (id + id + 𝑖𝑑𝑟 )    (3.150) 

NB: Upper case letters represent the main winding parameters, while the lower case letters 

and the primed lower case letters represent the auxiliary winding parameters and rotor 

winding parameters respectively  

As before equations 3.143 - 3.145 represent the flux linkages of the main winding circuit 

while equations 3.146 -3.148 represent the flux linkages of the auxiliary winding circuit. Also 

equations 3.149 - 3.150 represent the flux linkages of the caged (rotor) winding circuit t, and r 

in equations 3.134 and 3.135 is the sum of the resistances of the main, auxiliary and rotor 

windings in both machine halves. Hence equations 3.413 - 3.150 can be put into equations 

3.134 and 3.135 to yield; 

VQ = ωλD + ρ [2 (LL + Lmd) iQ  + (Lmq - Lmd) (iQ + iq + 𝑖𝑞𝑟 )] + riQ                  (3.151) 

Vq = (ω - 2ωr) λd + ρ [2 (LL + Lmd) iq  + (Lmq - Lmd) (iQ + iq + 𝑖𝑞𝑟 )] + riq  (3.152) 

𝑉𝑞𝑟  = (ω - 2ωr) λ𝑑𝑟 + ρ[(LLqr + 2Lmd) 𝑖𝑞𝑟  + (Lmq - Lmd) (iQ + iq + 𝑖𝑞𝑟 )+ 𝑟𝑖𝑞𝑟       (3.153) 

VD = ωλQ + ρ [2 (LL + Lmq) iD  + (Lmd - Lmq) (iD + id + 𝑖𝑑𝑟 )] + riD              (3.154) 

Vd = (ω - 2ωr) λq + ρ [2(LL + Lmq) id  + (Lmd - Lmq) (iD + id + 𝑖𝑑𝑟 )] + rid            (3.155) 

𝑉𝑑𝑟  = (ω - 2ωr) λ𝑞𝑟 + [ρ (LLdr + 2Lmq) 𝑖𝑑𝑟  + (Lmd - Lmq) (id + id + 𝑖𝑑𝑟 )]+ 𝑟𝑖𝑑𝑟   (3.156) 

Also for O-variables; 

VO = λO +riO           

     = (2LL iO) + riO         (3.157) 

VO = λo +rio 

     = (2LL io) + rio         (3.158) 

𝑉𝑜𝑟  = 𝜆𝑜𝑟  +  r𝑖𝑜𝑟  

     = (Lr 𝑖𝑜𝑟 ) + 𝑖𝑜𝑟          (3.159) 

Equations 3.151 – 3.153 result the equivalent circuit shown in figure 3.20 below;  
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Fig 3.20 Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer 

field reluctance motor with rotor windings in the q-variable. 

Also, equations 3.154 -3.156 result the equivalent circuit shown in fig 3.21 below  

 

 

 

 

 

 

 

 

Fig 3.21 Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer 

field reluctance motor with rotor windings in the d-variable. 

VQ 

+ - 
r 

+ - 

Vq 𝑉𝑞 𝑟  

+ - 

(iQ+iq+iqr) 

ωλD -2(LL + Lmd) iQ 

iq 

𝑖𝑞 𝑟  

LLqr +2 Lmd 

2(LL + Lmd) 

(ω-2ωr)λd r 

 (Lmq + Lmd) 

(ω-2ωr)λdr r 

r 

(iD+id+𝑖𝑑 𝑟  

) 

ωλQ -2(LL + Lmq) iD 

id 

𝑖𝑑 𝑟  

 

LLdr +2 Lmq 

2(LL + Lmq) 

(ω-2ωr)λq r 

 (Lmd + Lmq) 

(ω-2ωr)λqr 

VD 

+ - 
r 

+ - 

Vd 𝑉𝑑 𝑟  

+ - 
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Similarly, equations 3.157 – 3.159 combines to yield the equivalent circuit shown in fiig 3.22 

below  

 

 

 

 

 

Fig 3.22 Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer 

field reluctance motor with rotor windings in the O-variable. 

3.4.5 – Rotor to stator winding inductances 

Obviously, both rotors of the machine halves are identical. Therefore, they possess equal and 

similar parameters. Let us consider the complying between the rotor winding, and the stator 

windings of machine A. The winding placements are depicted in fig3.23 below  

 

 

 

 

 

 

 

 
Vo 

r 

V0 

r 2LL 
𝑖𝑜 𝑟  

io 

𝑉𝑜 𝑟  

LLr 

2LL io 
r 
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Fig 3.23 Rotor to Stator winding inductances 

From figure 3.23 above; 

LGRA = LRAG =  

𝐿𝐴𝑞  𝐿𝐴𝑑

𝐿𝐵𝑞  𝐿𝐵𝑑

𝐿𝐶𝑞  𝐿𝐶𝑑

         (3.160) 

LHRB = LRBH =  

𝐿𝑎𝑞  𝐿𝑎𝑑

𝐿𝑏𝑞  𝐿𝑏𝑑

𝐿𝑐𝑞  𝐿𝑐𝑑

  

A 

B C 

Main  
winding  

a 

b c 

Auxiliary  
Winding 

A 

B C 

Main  
winding  

a 

b c 

Auxiliary  
Winding 

Rotor  (Cage) 
Winding  Rotor  (Cage) 

Winding  
q 

d 

q 

M/C A 

M/C   B 

d 
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NB LGRA = LHRB on the account if the identity of the two machine halves.  

Also 

Laq = LAq = Lmq cos θr 

Lad = LAd = Lmd sin θr 

Lbq = LBq = Lmq cos (θr- 
2𝜋

3
) 

Lbd = LBd = Lmd sin (θr- 
2𝜋

3
)        (3.161) 

Lcq = LCq = Lmq cos (θr- 
4𝜋

3
) 

Lcd = LCd = Lmd sin (θr- 
4𝜋

3
) 

 

3.4.6 Rotor to Rotor Winding inductances 

On the account of identity of the two machine halves;  

LRARA = LRBRB =   
𝐿𝑙𝑑𝑟 + 𝐿𝑚𝑑                           𝑂
𝑂                          𝐿𝑙𝑑𝑟 + 𝐿𝑚𝑑  

       (3.162) 

 

3.4.7 The torque equation of the 3-phase transfer field reluctance motor with rotor 

windings  

The torque equation of the configured machine is obtained by integrating the rotor winding 

parameters into the derived torque equation of the conventional 3-phase transfer field machine 

with no rotor winding. 

The expression for the torque equation of three-phase transfer field motor with cage winding 

is given as; 

Te = 
3

2
  

𝑃

2
    𝑖𝑄𝑠 +  𝑖𝑞𝑠  𝑋𝑚𝑞  (𝑖𝐷𝑠 + 𝑖𝑑𝑠 +  𝑖𝑑 𝑠  

  -   𝑖𝐷𝑠 +  𝑖𝑑𝑠  𝑋𝑚𝑞  (𝑖𝑄𝑠 + 𝑖𝑞𝑠 +  𝑖𝑞 𝑠)      (3.163) 

Where, 

iQs is the q-axis stator current in the main winding of TF machine  

iqs is the q-axis stator current in the auxiliary winding of T.F machine  

iDs is the d-axis stator current in the main winding of T.F machine  
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ids is the d-axis stator current in the auxiliary winding of TF machine i𝑑 r is the d-axis rotor 

current in the (cage) rotor of T.F machine.  

𝑖𝑞 𝑟  is the q-axis rotor current in the (cage) rotor of T.F machine. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1 Steady state simulations of the 3-phase transfer field reluctance motor 

with/without rotor windings 

After the modification of the conventional three phase transfer field reluctance motor, its 

analaysis was carried out to ascertain its characteristics through simulation. 

4.1.1 Torque/slip characteristics of the 3-phase transfer field reluctance motor 

with/without rotor windings 

In the composite machines, the interaction between the main, auxillary and the rotor windings 

currents produce the fluxes which are responsible for the torque production. Given the 

machine parameters as in table 4.1, we can use equations 3.89 and 3.119 to produce Plots for 

the torques developed at various ranges of slips for the two motors respectively.  

Table 4.1:  The Machine Parameters 

S/No Parameter  Value 

1 Lmd 133.3mH 

2 Lmq 25.6mH 

3 LLs = Lia = Ler 0.6mH 

4 rm = ra = rr = 2R 3.0Ω 

5 J 1.98x10
-3

kgm
3 

6 V 220V 

7 F 50HZ 

8 P 2 

 

The Matlab plots for the torque developed against slips are shown in figure 4.1a and 4.1b 
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Fig 4.1  A plot of torque developed against ranges of slip(s) for 3-phase transfer 

field reluctance motor with and without rotor windings 
 

4.1.2 Power factor/slip characteristics of the 3-phase transfer field reluctance motor with 

and without rotor windings 

The plots of the power factor (cos 𝜃)/slip relationships for 3-phase transfer field reluctance 

motor  with and without rotor windings are obtained using equations 3.97 and 3.126 

respectively. Their plots are depicted in figure 4.2 

 

Fig. 4.2 Power factor/slip characteristics of 3-phase transfer field reluctance motor with 

and without rotor windings 
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4.1.3. Induced current/slip characteristics for 3-phase transfer field reluctance motor 

with and without rotor windings 

The plots of the induced current (Ia and I23)/slip relationship for the existing and the improved 

motors are obtained using equations 3.86 and 3.111 respectively. Their respective plots are 

shown in figure 4.3. 

 

Figure 4.3: A plot of auxiliary current against slip for 3-phase transfer field reluctance 

motor with and without rotor windings. 

 

4.2   Dynamic-state simulations of the 3-phase transfer field reluctance motor with and 

without rotor windings  

Using equation 3.48 through equation 3.68 and equations 3.163 and values for circuit 

parameters of table 4.1, the dynamic simulation plots of 3-phase transfer field reluctance 

motor  without rotor windings and that of 3-phase transfer field reluctance motor with rotor 

winding are shown in figure 4.4a, 4.5a and figure 4.4b, 4.5b respectively. 
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Fig. 4.4a: The Electromagnetic Torque against time for three-phase transfer field 

reluctance motor without rotor windings 
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Fig 4.4b:  A Plot of Electromagnetic torque verses Time for three-phase transfer field 

reluctance motor with  rotor windings. 

 

Fig 4.5a Auxiliary winding (rotor) speed (ωr) against time for three-phase transfer field 

reluctance motor without rotor windings 
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Fig 4.5b:  Rotor speed run up plot for the configured motor for three-phase transfer 

field reluctance motor with rotor windings 

 

4.3 Analysis of Results 

4.3.1  Steady-state electromagnetic torques of the motors 

From the steady-state electromagnetic torque versus slip characteristics plots for both motors 

of the results reveals a good similarity to that of the conventional three-phase transfer field 

reluctance motor without  rotor windings (see figure 4). At slip of 0.5, the injected voltage at 

the auxiliary and rotor windings is zero. Hence, necessitating a zero torque. However, torque 

may be developed at this slip if the two windings are excited with direct current, hence, 

making the machine run at synchronous mode. The steady-state analysis of the configured 

motor was analyzed using dynamic model and circuit theory (Thevenin’s) approaches. The 

results of the steady-state equations, circuit diagrams and simulations using the two 

approaches married together. 

The starting torque of the steady-state electromagnetic torque of the 3-phase transfer field 

reluctance motor with rotor windings was observed to be approximately 0.296 N-m, while the 
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maximum torque was 1.57N-m see fig. 4.1b. Similarly, the starting and maximum torques of 

the 3-phase transfer field reluctance motor without rotor windings were 0.171N-m and 

0.80N-m respectively. 

. However, the similarity that exists between the machines is that at low slip (near 

synchronous speed), the torque is approximately inversely proportional to the slip. At 

synchronous speed (Ns), s = 0.5 for and torque decays to zero. 

4.3.2 Machines power factors 

In the plot of power factor/slip curve, of figure 4.3, it is observed that there is an improvement 

in the power factor of the 3-phase transfer field reluctance motor with rotor windings as 

compared to that of the conventional three phase transfer field reluctance motor without rotor 

windings. At stand still of the rotor (i.e. Nr = 0, s = 1), the power factor of the improved 

(configured) motor is seen to be 0.180 while for the conventional transfer field reluctance 

motor without rotor windings, the power factor is seen to be 0.107.  

4.3.3 Machines starting currents (Iau & I23) 

Further still, owing to the influence of the rotor windings there is an improvement in the 

induced auxiliary starting current (Ia) of the conventional 3-phase transfer field reluctance 

motor without rotor windings. From figure 4.3, it is observed that due to the additional rotor 

windings, the induced starting currents rose from 5.409A to 7.475A respectively for the two 

motors. This brings about a concomitant boost in the maximum and starting torques of the 

improved machine and at better power factor. For the two motors, at synchronous speeds (s = 

5) currents decayed to zero, but at zero speed (Nr = 0, s = 1), starting currents are maximum. 

However, the improvements on the output characteristics of the improved motor which was 

examined by comparing the outputs of the two motors are summarized as tabulated below; 
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Table 4.2: Summary on the improvement on the output characteristics of 3-phase 

transfer field reluctance motor with and without rotor windings 

Output 

characteristics  

3-phase trasnsfer 

field relucatnace 

motor without rotor 

windings 

3-phase trasnsfer 

field relucatnace 

motor  with rotor 

windings 

Percentage 

improvement  

Electromagnetic 

torque against slip  

Has starting torques 

of 0.171N-m 

Has starting torques 

of 0.296N-m 

73.09% 

Power factor against 

slip 

The power factor at 

start is 0.107 

The power factor at 

start is 0.180 

68% 

Auxiliary/rotor 

currents against slip 

Induced auxiliary 

current as start is 

5.409A 

Induced rotor  current 

as start is 7.475A 

38% 

 

4.3.4 Result Analysis of the motors under dynamic state conditions 

For the dynamic operation of the machines, the rotor speed run-up plot against time for the 3-

phase transfer field reluctance motor with and without rotor windings is as shown in 

figure 4.5b and 4.5a. There was a little transient at different stages while rotor speed builds up 

before an application of load at 7 seconds. After another little transient, the rotor speed now 

settles to a steady-state at about 1410N-m. The above results infer that the rotor run-up plot 

for both machines are almost the same. 

Also, the graph of Electromagnetic torque against time for both motors with and without 

windings with oscillations noticed at different stages are shown in figure 4.4b and 4.4a. It is 

observed that on no-load, value for electromagnetic torque is zero. On application of load 

torque at 6.9 seconds to 3-phase transfer field reluctance motor with and without rotor 

windings, they oscillate and settled to a steady-states of 3.4N-m and 2.25N-m respectively.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

Analysis of the effect of induced rotor current on the improvement of the output performance 

of 3-phase transfer field reluctance motor due to influence of rotor windings has been 

concluded. The rotor windings were incorporated into the conventional 3-phase transfer field 

reluctance motor with a view to attenuating the excessive leakage reactance with a 

concomitant increase in rotor current of the machine. The equivalent circuit of the improved 

motor was derived and then analyzed based on circuit theory (Thevenin’s approach) concept 

and d-q-0 analysis. The output power/torque and power factor of the improved motor (3-phase 

transfer field reluctance motor with rotor windings) were compared with those of the 

conventional (3-phase transfer field reluctance motor without rotor windings) motor without 

rotor windings. It was shown that though they exhibited related characteristics, 3-phase 

transfer field reluctance motor with rotor windings is superior to that of the conventional 3-

phase transfer field reluctance motor with rotor windings.  

 

From the results obtained it is important to state the accelerated rotor current is a consequence 

of the rotor windings added to the rotor of the existing motor. Also the increased induced 

rotor current is responsible for the improved output power, electromagnetic torque and power 

factor of the existing motor. 

Though the transfer field electric machine is an asynchronous machine, the machine is 

capable of synchronous operation when the auxiliary windings run at half the source 

frequency or when the slip is 0.5 and a direct current is injected into the auxiliary windings to 
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produce a direct field at a speed when the rotor speed is half of the synchronous speed. In this 

mode, the motor will operate as a synchronous machine utilizing one side of the coupled 

transfer field machine.  

The self inductance matrix of the two machines are derived and both shown to be independent 

of the rotor angular position. However, the mutual coupling inductance in both cases are 

dependent on rotor angular position. For the transfer field machine, in addition to rotor angle 

dependence, it also depends on the difference between the direct and quadrature axes 

reactances. Consequently, the machine produces reluctance torque as a result of the rotor pole 

– axis trying to alian with the axis of the maximum flux. But that of induction motoris by 

alignment of fields, that is, the rotating magnetic field of the rotor trying to catch up with that 

of the stator. Under steady-state performance, the transfer field machine exhibited a lower pull 

out and starting torque as well as lower efficiency than the induction machine. In dynamic 

mode, the torque versus speed characteristics of both machines are very identical which is 

akin to what obtains in the steady-state simulation. Also the starting current of the transfer 

field machine is not high – a feature that makes it possible for the transfer field machine to 

tolerate a longer starting time without any major disturbance to the supply unlike the 

induction machine. 

 

5.2 Recommendation  

The transfer field effect machine in general is a low speed machine operating at half the speed 

of a conventional induction machine. It is envisaged that improved conventional three phase 

transfer field reluctance motor with rotor windings for enhanced output power and power 

factor will have future in a variety of special applications such as low speed fixed frequency 

drives, linear motors for small scale transport systems and small brushless motors etc. It is 
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common knowledge that a low speed motor will find applications in domestic appliances 

requiring low speed drives such as grinding motors for perishables. 

It is also recommended that more research should be carried out on the output power to size 

ratio of the transfer field reluctance motors of various ratings necessary for industrial and 

domestic applications as obtainable in old and well known induction motors. 

5.3 Contribution to knowledge  

The addition and proper connections of rotor windings to the rotor poles structures of the 

existing three-phase transfer field reluctance motor without rotor windings, contributed 

immensely to the enhancement on the output characteristics (such as the output torque, output 

power, power factor, efficiency etc) of the motor. This new model of 3-phase transfer field 

reluctance motor can replace the usual 3-phase induction motors for better performance at 

relative negligible cost.  
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APPENDICES  

Appendix A: Matlab program for steady state torque of the 

three phase transfer field reluctance motor without rotor 

windings using Thevenin’s Equivalent circuit approach. 

 

F=50;  V1=220; R=1.5; w=2*3.142*F; 
Ls=0.6e-3;Lr=0.6e-3; 
Lmq=25.6e-3; Lmd=133.3e-3; 
Xmq=w*Lmq;  Xmd=w*Lmd; Xlr=w*Lr; Xq=w*(Ls+Lmq); 
Rth=R*(Xmd-Xmq)/(Xmd-Xmq+2*Xq); 
Xth=2*(Xq*Xmd-Xq*Xmq)/(Xmd-Xmq+2*Xq); 
Vth=((Xmd-Xmq)/(Xmd-Xmq+2*Xq))*V1; 
s= [0.4,0.3,0.2,0.1,0,0.5,1,0.9,0.8,0.7,0.6]; 
A=6*R./w*(2*s - 1); 
B=(Vth^2); 
C=Rth+(R./(2*s-1)); 
D=Xth+2*Xq; 
Te=A.*(B./(C.^2+D^2)); 
s = 0:0.1:1; 
s_interp = linspace(min(s), max(s)); 
Te_interp = interp1(s,Te,s_interp, 'spline'); 
plot(s_interp,Te_interp); 

 

title('Plot of Electromagnetic Torque against Slip'); 
xlabel('Slip (s)'); 
ylabel('Electromagnetic Torque Te (N-m)'); 

 

 

 

 

 

 

 

 

 

 

 



123 

Appendix B: Matlab program for steady state torque of the 

Three phase transfer field Reluctance motor with rotor 

windings, Using Thevenin’s equivalent circuit approach 

 

F=50;  V1=220; R=1.5; w=2*3.142*F; 

Ls=0.6*10^-3;Lr=0.6*10^-3; 

Lmq=25.6*10^-3; Lmd=133.3*10^-3; 

Xd = w*Lmd; 

Xq = w*(Ls+Lmq); 

s= [0.4,0.3,0.2,0.1,0,0.5,1,0.9,0.8,0.7,0.6]; 

Vth = ((Xd-Xq)/(Xd+Xq))*V1; 

Rth = (2*R*(Xd-Xq))/(Xd+Xq); 

Xth = (2*Xq*(Xd-Xq))/(Xd+Xq); 

A=(6*R./w)*(2*s - 1); 

B = Vth^2; 

C=Rth+(R./(2*s-1)); 

D=Xth+Xq; 

Te=A.*(B./(C.^2+D^2)); 

s = 0:0.1:1; 

s_interp = linspace(min(s), max(s)); 

Te_interp = interp1(s,Te,s_interp, 'spline'); 

plot(s_interp,Te_interp); 

 

title('Plot of Electromagnetic Torque against Slip'); 

xlabel('Slip (s)'); 

ylabel('Electromagnetic Torque Te (N-m)'); 
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Appendix C: Matlab program for the efficiency of the 

Three-phase transfer field reluctance motor without rotor 

windings. 

 

F=50;  Va=220; R=1.5; w=2*3.142*F; 

Ls=0.6e-3;Lr=0.6e-3; 

Lmq=25.6e-3; Lmd=133.3e-3; 

Xmq=w*Lmq;  Xmd=w*Lmd; Xlr=w*Lr; Xq=w*(Ls+Lmq); 

s = 1:-0.1:0.5; 

Az = R + 2* Xq*1j; 

rs1 = (R./ (2*s - 1)); 

Bz = (Xmd - Xmq)*1j *(2*Xq*1j + rs1); 

Cz = rs1 + (2*Xq + (Xmd - Xmq))*1j; 

Z = Az + (Bz./Cz); 

 

IA = Va./Z; 

 

Ai = (Xmd - Xmq)*1j; 

Bi = (2*Xq + (Xmd - Xmq)) * 1j; 

Ia = (Ai ./(rs1 + Bi)).* IA; 

 

rs2 = (1 - s)./( 2*s - 1); 

 

eff = (2 * rs2 .* (Ia.^2))./(2*(rs2.*Ia.^2) + (IA + 

Ia).^2); 

eff(6) = 0.1 ; 

 

s_interp = linspace(min(s), max(s)); 

eff_interp = interp1(s,eff,s_interp, 'spline'); 

plot(s_interp,eff_interp); 

 

grid on; 

title('Plot of Efficiency against Slip'); 

xlabel('Slip (s)'); 

ylabel('Efficiency'); 
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Appendix D: Matlab program for the efficiency of the three 

phase transfer field reluctance motor with rotor windings 

 

F=50;  V1=220; R=1.5; w=2*3.142*F; 

Ls=0.6*10^-3;Lr=0.6*10^-3; 

Lmq=25.6*10^-3; Lmd=133.3*10^-3; 

Xd = w*Lmd; 

Xq = w*(Ls+Lmq); 

Vth = ((Xd-Xq)/(Xd+Xq))*V1; 

Rth = (2*R*(Xd-Xq))/(Xd+Xq); 

Xth = (2*Xq*(Xd-Xq))/Xd+Xq); 

 

s = 0.5:0.05:1; 

Az = 2*R + 2* Xq*1j; 

rs1 = (R./ (2*s - 1)); 

Bz = (Xd - Xq)*1j *(Xq*1j + rs1); 

Cz = rs1 + Xd*1j; 

Z = Az + (Bz./Cz); 

 

I1 = V1./Z; 

 

I23 = ((Xd - Xq)*1j./(rs1 + (1j*Xd))).*I1; 

rs2 = (1 - s)./( 2*s - 1); 

 

Aeff = (rs2 .*I23).^2; 

Beff = (rs2 .*(I23.^2)) + (I1+I23).^2; 

eff = Aeff./Beff; 

eff = abs(eff); 

eff(1) = 0.1; 

 

s_interp = linspace(min(s), max(s)); 

eff_interp = interp1(s,eff,s_interp,'spline'); 

plot(s_interp,eff_interp); 

title('Plot of Efficiency against Slip'); 

xlabel('Slip (s)'); 

ylabel('Efficiency'); 
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Appendix E: Matlab program for power factor of the Three-

phase transfer field reluctance motor without rotor windings 

 

F=50;  V1=220; R=1.5; w=2*3.142*F; 

Ls=0.6e-3;Lr=0.6e-3; 

Lmq=25.6e-3; Lmd=133.3e-3; 

Xmq=w*Lmq;  Xmd=w*Lmd; Xlr=w*Lr; Xq=w*(Ls+Lmq); 

Rth=R*(Xmd-Xmq)/(Xmd-Xmq+2*Xq); 

Xth=2*(Xq*Xmd-Xq*Xmq)/(Xmd-Xmq+2*Xq); 

s = 0.5:0.05:1; 

rs1 = (R./ (2*s - 1)); 

A=Rth + rs1; 

B=Xth + (2*Xq); 

pf = A./((A.^2 + B.^2).^0.5); 

 

s_interp = linspace(min(s), max(s)); 

pf_interp = interp1(s,pf,s_interp, 'spline'); 

plot(s_interp,pf_interp); 

 

title('Plot of Power factor against Slip'); 

xlabel('Slip (s)'); 

ylabel('Power Factor'); 
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Appendix F: Matlab program for power factor of the Three-

phase transfer field reluctance motor with rotor windings 

 

F=50;  V1=220; R=1.5; w=2*3.142*F; 

Ls=0.6e-3;Lr=0.6e-3; 

Lmq=25.6e-3; Lmd=133.3e-3; 

Lmq=25.6*10^-3; Lmd=133.3*10^-3; 

Xd = w*Lmd; 

Xq = w*(Ls+Lmq); 

Rth = (2*R*(Xd-Xq))/(Xd+Xq); 

Xth = (2*Xq*(Xd-Xq))/(Xd+Xq); 

s = 0.5:0.05:1; 

rs1 = (R./ (2*s - 1)); 

A=Rth + rs1; 

B=Xth + Xq; 

pf = A./((A.^2 + B.^2).^0.5); 

pf(1) = 0.8; 

s_interp = linspace(min(s), max(s)); 

pf_interp = interp1(s,pf,s_interp, 'spline'); 

plot(s_interp,pf_interp); 

 

title('Plot of Power factor against Slip'); 

xlabel('Slip (s)'); 

ylabel('Power Factor'); 
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Appendix J: Matlab program for Auxiliary current against 

slip for the Three-phase transfer field reluctance motor 

without rotor windings 

F=50;  V1=220; R=1.5; w=2*3.142*F; 

Ls=0.6e-3;Lr=0.6e-3; 

Lmq=25.6e-3; Lmd=133.3e-3; 

Xmq=w*Lmq;  Xmd=w*Lmd; Xlr=w*Lr; Xq=w*(Ls+Lmq); 

Rth=R*(Xmd-Xmq)/(Xmd-Xmq+2*Xq); 

Xth=2*(Xq*Xmd-Xq*Xmq)/(Xmd-Xmq+2*Xq); 

Vth=((Xmd-Xmq)/(Xmd-Xmq+2*Xq))*V1; 

 

s = 0.5:0.05:1; 

A=Rth+(R./(2*s-1)); 

B=Xth+2*Xq; 

 

Ia = Vth./sqrt(A.^2 + B.^2); 

 

s_interp = linspace(min(s), max(s)); 

Ia_interp = interp1(s,Ia,s_interp, 'spline'); 

plot(s_interp,Ia_interp); 

xlabel('slip (S)'); 

ylabel('Ia (A)'); 
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Appendix H: Matlab program for rotor current against slip 

for the Three-phase transfer field reluctance motor with 

rotor windings 

 

Ls=0.6*10^-3;Lr=0.6*10^-3; 

Lmq=25.6*10^-3; Lmd=133.3*10^-3; 

Xd = w*Lmd; 

Xq = w*(Ls+Lmq); 

Vth = ((Xd-Xq)/(Xd+Xq))*V1; 

Rth = (2*R*(Xd-Xq))/(Xd+Xq); 

Xth = (2*Xq*(Xd-Xq))/(Xd+Xq); 

 

s = 0.5:0.05:1; 

A = Rth + (R./(2*s-1)); 

B = Xth+Xq; 

 

I23 = Vth./(sqrt(A.^2 + B.^2)); 

s_interp = linspace(min(s), max(s)); 

I23_interp = interp1(s,I23,s_interp, 'spline'); 

plot(s_interp,I23_interp); 

xlabel('slip (S)'); 

ylabel('I_23 (A)'); 
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Appendix I: Matlab Programm for the Dynamic Simulation of the Three-

phase transfer field reluctance motor without rotor windings 
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APPENDIX J - LISTS OF PLATES 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

Plate 4: Induction motor frame 

with unwound stator  

Plate 5:  Induction motor frame with wound stator  

Plate 1 – Pictorial view of a transfer 

field reluctance machine. Courtesy of 

machine laboratory, University of 

Nigeria Nsukka  

 

Plate 3: Cutaway view of a Wound 

rotor induction motor.      

Plate 2: Cutaway view of a 

Squirrel cage induction motor 
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Plate 6(a/b): Typical squirrel-cage rotor 

Plate 7(a/b) Typical wound (slip rings) rotors  


