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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

Many important results in traditional time series analysis follow from 

the assumption that the population being sampled or investigated is 

normally distributed with a common variance. When the relevant theoretical 

assumptions relating to a selected method of analysis are approximately 

satisfied, the usual procedures can be applied in order to make inferences 

about unknown parameters. In situations where the assumptions are 

seriously violated, several options are available of which transformation of 

data has recently attracted the most attention. To transform data, one 

performs a mathematical operation on each observation, then use these 

transformed data in a statistical analysis of interest. In time series analysis 

using the multiplicative model, the six most popular transformations are 

logarithm, inverse, square-root, square, inverse-square-root, and inverse-

square transformations. Before now, studies had been carried out on the 

effect of a particular transformation on the error component of the 

multiplicative time series model with the overall aim of establishing the 

conditions for the successful application of a particular transformation. 

Iwueze(2007), Otuonye et al.(2011), Nwosu et al. (2013), Ohakwe et al. 

(2013) and Gabriel et al. (2014) had established the conditions for the 

successful applications of logarithm, square-root, inverse square and  
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inverse square transformations respectively . The details of the results of 

their findings would be discussed later. 

1.2 THE LEFT TRUNCATED NORMAL DISTRIBUTION 

The normal or Gaussian distribution is one of the most widely used 

probability distributions. Bell-shaped distributions such as the normal and t - 

distributions are usually encountered in a large number of applications. A 

normally distributed random variable in theory assumes values in the range 

  to   . However, there are cases where this random variable is 

constrained to lie only on the negative or positive region of the cartesian 

coordinates, which is often called the right or left truncation of the random 

variable. This restriction necessitated the derivation of distributions under 

the right or left truncation of the random variable. One such example is the 

error term of the multiplicative time series model which is assumed to be  

  whose square root is constrained to the positive real numbers 

(Otuonye et al (2011)). 

Consider the normally distributed random variable X with a 

probability density function  f x  specified as 

 
2

1 1 1
exp ,     ,   0

22

x
f x x 

 

   
        

   

                       (1.1) 

In many applications, the random variable X which has  21,N   distribution 

does not admit values less than or equal to zero (Iwueze (2007)). Hence, we 

disregard or truncate all values of 0x to take care of the region of x > 0. If 

the values of 0x   cannot be observed due to censoring or truncation, the 
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resulting distribution is a left-truncated normal distribution whose 

probability density function denoted by  *f x  is obtained  by (Iwueze,2007) 
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and 
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(Iwueze, 2007) 

1.3 TIME SERIES ANALYSIS 

Time-series as a stochastic process is an ordered sequence of observations (a 

collection of observations made sequentially in time). Usually, the values 

are evenly distributed across the time domain (Dunham, 2002).There are 

two types of time series namely univariate and multivariate. Univariate time 

series is a time series where only one variable is measured over time, 

whereas multivariate time series are those, where more than one variable are 

measured simultaneously. Multivariate time series analysis is a powerful 
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tool for the analysis of multivariate time series data. The application is 

widespread. Examples are found in the medical field (Crabtree et al. 1990), 

and engineering  (De Vries and Wu, 1978).Time series data provide useful 

information about the physical, biological, social and economic systems 

such as share prices, school enrollments, amount of pollutants in the 

environments, rainfall, number of SARS(Severe Acute Respiratory 

Syndrom) cases over time, blood pressure measurements over time 

 The intrinsic nature of a time series is that its observations are 

dependent or correlated. The order of the observations is therefore 

important. Hence, statistical procedures and techniques that rely on 

independence assumptions are no longer applicable and different methods 

are needed. Future values may be predicted from past observations. If future 

values of a time series are exactly determined by some mathematical 

functions, the time series is said to be deterministic. If the future values can 

be described only in terms of a probability distribution, the time series is 

said to be non-deterministic or simply a statistical time series. A time series 

data set is a realization or sample function from a certain stochastic process. 

We may consider a time series as a sequence of random variables, x1, x2, 

x3,..., where the random variable x1 denotes the value taken by the series at 

the first time point, the variable x2 denotes the value for the second time 

period, x3 denotes the value for the third time period, and so on. In general, 

a collection of random variables,
tX , t Z  indexed by t is referred to as a 
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stochastic process. The observed values of a stochastic process are referred 

to as a realization of the stochastic process.  

Time series analysis refers to principles and techniques which deal 

with analysis of observed data,
tX , t 1,2,...,n , usually analysed to find a 

model that describes the true underlying generating random 

process,
tX , t Z ; and to obtain the future values. 

1.4  COMPONENTS OF TIME SERIES 

Typically, a time series comprises four components                               

(Chatfield, 2004), namely 

1. Trend component (Tt ) - Trend is a long term movement in a time 

series. It is the underlying direction (upward or downward) and rate 

of change in a time series. The reasons for trend analysis are (i) to 

obtain the trend values and (ii) to measure local fluctuations. 

2. Seasonal component (St ) - It is the component of variation in a time 

series which is dependent on the time of the year. It describes any 

regular fluctuations with a period of less than one year. There are 

several reasons for examining the seasonal effects namely 

 (i)  to remove seasonal effect from the series in order to study its other 

constituents uncontaminated by seasonal elements.  

(ii)   to compare a variable at different points of the year as a purely intra-

year phenomenon. 
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 (iii)  to ―correct‖ the current figure for seasonal effects, for example to 

state what the unemployment in a month would have been if 

customary seasonal influences had not increased them. 

3. Cyclic component (Ct ) -This refers to the long term oscillations or 

swings about the trend. These cycles as they are sometimes called 

may or may not be periodic. That is, they may or may not have 

exactly similar patterns after equal intervals of time. An important 

example of cyclical movement is the so called business cycles 

representing intervals of prosperity, recession, depression and 

recovery. Only long period sets of data will show cyclical fluctuations 

of any appreciable magnitude.  

4.  Irregular component (et ) – Random or chaotic noisy residuals left 

over when other components of the series (trend, seasonal and 

cyclical) have been accounted for. 

 

1.5 DESCRIPTIVE TIME SERIES ANALYSIS 

Methods of time series analysis constitute an important area in 

statistics (Chatfield, 2004)). Time series analysis comprises of methods that 

attempt to analyse a time series data, often either to explain the underlying 

context of the data points (Where did they come from? What generated 

them?) or to make forecasts.  Time series analysis involve the use of a 

model to forecast or predict future events based on known past events. 
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 Methods for time series analyses are often divided into three classes: 

descriptive methods, time domain methods and frequency domain methods.  

Frequency domain methods centre on spectral analysis and recently wavelet 

analysis (Percival and Walden, 2000, Priestly, 1981), which are regarded as 

model-free analysis.  Time domain methods (Box et al., 1994; Wei, 1989) 

have a distribution-free subset consisting of the autocorrelation and cross-

correlation analysis. 

Descriptive methods (Chatfield, 2004, Kendal and Ord, 1990) involve 

the separation of an observed time series into components representing 

trend, the seasonal, cyclical and irregular components.   

Decomposition models as given in Iwueze et al. (2011) are typically 

additive or multiplicative, but can also take other forms such as pseudo-

additive/mixed (combining the elements of both the additive and 

multiplicative models) 

Additive model:     (1.5) 

Multiplicative model:                     (1.6) 

Pseudo-additive/Mixed model:   (1.7) 

where tX  is the observed time series for t = 1, 2, . . ., n, tT  is the trend at 

time t, tS , the seasonal component at time t, tC , the cyclical component at 

time t, and te , the irregular/residual component at time t.  If short periods of 

time are involved, the cyclical component is assumed to be superimposed 
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into the trend (Chatfield, 2004) and the observed time series 

 ntX t ...,,2,1,   can be decomposed into the trend-cycle 

component  tM , seasonal component  tS  and the irregular/residual 

component  te . Thus models (1.5) through (1.7) become 

Additive model:   t t t tX M S e                    (1.8) 

Multiplicative model:  * *t t t tX M S e                        (1.9) 

Pseudo-additive/Mixed model: *t t t tX M S e                (1.10) 

Considering that most of the data set we encounter in practice are of 

short period of time, therefore we shall be interested in models (1.8) through 

(1.10). It is important to note that the pseudo-additive model is used when 

the original time series contains very small or zero values (Iwueze et al., 

2011). For this reason we shall discuss only the additive and the 

multiplicative models. 

Adopting the traditional method of decomposition, the first step is to 

estimate and eliminate tM  for each time period from the actual data either 

by subtraction from model (1.8) or division of model (1.9) by Mt.                 

The de-trended series is obtained as ˆ
t tX M  for model (1.8) or 

ˆ
t

t

X

M
 for 

model (1.9). In the second step, the seasonal effect is obtained by estimating 

the average of the de-trended series at each season.  
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The de-trended, de-seasonalized series is obtained as ˆˆ
t t tX M S   for 

model (1.8) or 
ˆˆ

t

t t

X

M S
 for model (1.9).   This gives the residual or irregular 

component. Having fitted a model to a time series, one often wants to see if 

the residuals are purely random. For detailed discussions on residual 

analysis, see Box et al. (1994) and Ljung and Box (1978). 

It is always assumed that the seasonal effect when it exists has period, 

s. That is, it repeats after s time periods. 

 ,t s tS S  for all t               (1.11) 

For model (1.8), it is convenient to make further assumption that the sum of 

the seasonal components over a complete period is zero. 

 
1

0
s

t j

j

S 



                   (1.12) 

Similarly, for model (1.9), the convenient variant assumption is that the sum 

of the seasonal components over a complete period is s. 

1

s

t j

j

S s



                   (1.13) 

 It is also assumed that the irregular component te  is a Gaussian 

 2

10,N   white noise for model (1.8) while it is a Gaussian  2

21,N   white 

noise for model (1.9). 

            After the estimation of the components of the multiplicative model 

(1.9), there is need to assess the model adequacy by checking whether the 
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model assumptions are satisfied. The component of the time series used for 

this assessment is the irregular component or the residual series, 
te . The 

basic assumption is that  is a Gaussian  2

21,N   white noise. That is ’s 

are uncorrelated random shocks with unit-mean and constant variance. For 

any fitted time series model, the residuals which are the error component are 

the estimates of these unobserved white noise. To check whether the errors 

are normally distributed, one can construct a histogram of the standardized 

residuals and compare it with the standard normal distribution using the chi-

square goodness of fit test or any other test of normality such as Turkey, 

Kolmogorov-Smirnov, Andersen Darling tests of normality and so on. The 

hypotheses are as follows; 

    H0: the residual series follow a normal distribution   

against 

  H1: the residual series do not follow a normal distribution 

The vertical scale on the graph resembles the vertical scale found on normal 

probability paper. The horizontal axis is a linear scale. The line forms an 

estimate of the cumulative distribution function for the population from 

which data are drawn. Numerical estimates of the population parameters, µ 

and , the normality test value, and the associated p-value are displayed 

with the plot. 

 



11 
 

 To check whether the variance is constant, we examine the residual plot or 

use the appropriate test of homogeneity of variance such as Bartlett and 

Levene’s test of homogeneity of variance. The tests are used to test if k 

samples have equal variances. The Bartlett’s test is sensitive to departures 

from normality, that is, if your samples come from non-normal distributions, 

then Bartlett’s test may simply be testing for non-normality. Both tests are 

designed to test for equality of variances across groups against the 

alternative that variances are unequal for at least two groups. 

The hypothesis for the tests are as follows: 

 : = = … =  

:  ≠  for at least one pair ( i , j ) 

 The test statistics for the Bartlett’s test is given by: 

T =  

where  

 is the variance of the yearly group 

N is the total sample size 

 is the sample size of the ith group 

K is the number of groups 
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 is the pooled variance 

The pooled variance is a weighted average of the group variances and it is 

defined as:  

 =  

The variances are judged to be unequal if 

T >  

where α is the level of significance. 

The Levene’s test is an alternative to the Bartlett’s test. The Levene’s test is 

less sensitive than the Bartlett’s test to departures from normality. 

The test statistics for the Levene’s test is given by: 

W =   

where  

=  and 

is the mean of the ith group 

 are the group means of the  

 is the overall mean of the  
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The Levene’s test rejects the hypothesis that the variances are equal if  

W > .  

Many important results in statistical analysis follow from the 

assumption that the population being sampled or investigated is normally 

distributed with a common variance and additive error structure. When the 

relevant theoretical assumptions relating to a selected method of analysis are 

approximately satisfied, a statistical method can be applied in order to make 

inferences about unknown parameters of interest. In situations where the 

assumptions are violated, several options are available (Sakia, 1992), 

namely; 

(i) Ignore the violation of the assumptions and proceed with the analysis as 

if all assumptions are satisfied. 

(ii) Decide what is the correct assumption in place of the one that is violated 

and use a valid procedure that takes into account the new assumption. 

(iii) Design a new model that has important aspects of the original model 

and satisfies all the assumptions, e.g. by applying a proper transformation to 

the data or filtering out some suspect data points which are considered 

outliers. 

(iv) Use a distribution-free procedure that is valid even if various 

assumptions are violated. 

For more details on the above listed options, see Graybill (1976). 
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Most researchers, however, have opted for (iii) which has attracted 

much attention to data transformation as documented by Thoeni (1967) and 

Hoyle (1973).  In this study our interest would center on transformation as a 

remedy for situations where the assumptions for parametric data analysis are 

violated. 

 

1.6   THE BUYS-BALLOT TABLE 

 A Buys-Ballot Table (see Table 1.1) summarizes seasonal time series 

data. Each row is one period (usually a year), and each column is a season 

of the period/year (4 quarters, 12 months, etc).  A cell,  ,i j in Table 1.1 

contains the observation made during the period i at the season j.  

To analyse the data, it is important to include the period and seasonal 

totals  . .i jT and T , period and seasonal averages  . .i jX and X , period and 

seasonal standard deviations  . .
ˆ ˆ

i jand  as part of the terms in Buys-Ballot 

Table. We also include the grand total  ..T , grand mean  ..X  and pooled 

standard deviation  ˆ ..
 
in Table 1.1.  

Wold (1938) credited the arrangements in Table 1.1 to Buys-Ballot (1847). 

The stability of the variance of the time series can easily be assessed by 

observing the row standard deviations. 
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Table 1.1 Buys-Ballot Table for Seasonal Time Series 
Periods Seasons Total Average Std Dev 

1 2 ... j … s 
.iT  

.iX  .
ˆ

i  

1 
1X  2X   

jX   
sX  1.T  

1.X  1.̂  

2 
sX 1  sX 2   

sjX    
sX 2  2.T  

2.X  2.̂  

                 

i  
 siX 11    siX 12   

 

 
 sijX    

 sisX 1  .iT  
.iX  .

ˆ
i  

                 

M 
 smX 11     

 smjX 1   
 smX 11   .mT  

.mX  .
ˆ

m  

Total 
.1T  

.2T
.2T   

. jT   
.sT  

..T    

Average 
.1X  .2X   

. jX   
.sX   

..X   

Std Dev 
.1̂  .2̂   

.
ˆ

j   
.

ˆ
s    

..̂  

  

where 

 

s

i. j i 1 s
j 1

T X , i 1,2,...,m
 



   (i
th

 periodic total) 

 

m

.j j i 1 s
i 1

T X , j 1,2,...,s
 



  (j
th

seasonal total) 

 m = number of periods 

   s = number of seasons 

 n = ms = number of observations 

 

s
i.

i. j i 1 s
j 1

T1
X X , i 1,2,...,m

s s
 



  
                  

(i
th

 periodic average) 

 

m
. j

. j j i 1 s
i 1

T1
X X , j 1,2,...,s

m m
 



  
                   

(i
th

 seasonal average) 

m s

.. i. . j

i 1 j 1

T T T
 

  
                                         

(Grand total) 
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m s

i. . j

i 1 j 1 ..
..

T T
T

X
ms ms ms

 
  

 
                              (Grand mean) 

  
2

. .1
1

1
ˆ

1

s

i ij i s
j

X X
s


 



 



                         

(i
th

 periodic standard deviation) 

  
m 2

. j . jj i 1 s
i 1

1
ˆ X X

m 1


 


 



                       
(j

th 
seasonal standard deviation) 

1.7.         USES OF THE BUYS-BALLOT TABLE IN TIME SERIES 

ANALYSIS 

          Some of the main uses of the Buys-Ballot Table as contained in 

Iwueze et al. (2011) are as follows; 

1. Choice of Appropriate Transformation: This is simply achieved 

by obtaining a linear regression model of the logarithm of the 

periodic standard deviations on the logarithm of the periodic means 

where the value of the slope coefficient determines the choice of the 

appropriate transformation as given in Table 1.2. 

2. Assessment of trend: For this purpose, we plot the periodic/annual 

means of the Buys-Ballot Table from where we examine and select 

the appropriate trend-curve rather than plotting the entire series. 

3. Choice of appropriate model: For this purpose, the relationship 

between the seasonal averages  . jX , j= 1,2, . . .,s  and the seasonal 

standard deviations  ˆ
. jσ , j= 1,2, . . .,s   gives an indication of the desired 

model. An additive model is appropriate when the seasonal standard 
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deviations show no appreciable/decrease relative to any increase or 

decrease in the seasonal means. On the other hand a multiplicative 

model is usually appropriate when the seasonal standard deviations 

show appreciable increase/decrease relative to any increase/decrease 

in the seasonal means Iwueze and Nwosu (2014) 

 

1.8. DATA CLASSIFICATION AND TRANSFORMATION IN 

TIME SERIES ANALYSIS 

 

Data classification is defined by Dunham (2002) as mapping data into 

predefined classes. According to Tarek (2013), data transformation is 

synonymous with the feature-based classification. Hence, the feature-based 

time series classification techniques work on transforming the sequential 

data/time series data into feature-set before using the classification 

algorithm (Xing et al, 2010). For a time series data set, there are various 

literature on the procedures for choice of appropriate transformations among 

which are: Bartlett (1947), Box and Cox (1964), Akpanta and Iwueze (2009) 

and Iwueze et al (2011). 

Data transformation is the application of  a deterministic 

mathematical function to each observation/number in a data set – that is 

each data point xi is replaced with the transformed value yi = f(xi), where f is 

a function . Generally, there are a several reasons for data transformation 

such as: for easy visualization, improvement in interpretation, variance 

stabilization, ensuring a normally distributed data, additivity of the seasonal 
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effect, reducing the effect of outliers, making a measurement scale more 

meaningful, and to linearize a relationship. However, for time series data, 

the three major reasons for data transformation are as follows;  

(a) Variance Stabilization: A transformation may be used to produce 

approximately equal spreads, despite marked variations in level, which 

again makes data easier to handle and interpret. Each data set or subset 

having about the same spread or variability is a condition called 

homoscedasticity; while its opposite is called heteroscedasticity. Examples 

of variance stabilization transformations are the Box-Cox transformation or 

the Bartlett’s Transformation.. 

(b) Ensuring a Normally Distributed Data: In most areas of statistics 

including time series, the fundamental assumption is that the distribution is 

Gaussian or normal. The main diagnostic tool which is used in time series 

(time domain and frequency domain approaches) is the autocorrelation 

function which is unique for stationary normal processes. 

(c)  Additivity of the Seasonal Effect: A transformation converts seasonal 

effects that have a multiplicative pattern to one that has an additive pattern 

for easy analysis and interpretation. 

 The most popular and common transformations are the power 

transformations such as 
21 1

log , , , , ,e t t t

t t

X X X
X X and 2

1

tX .  
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The logarithm transformation converts the multiplicative model (1.9) to 

additive model (1.8) while the other listed transformations of the 

multiplicative model (1.9) are shown in Table 1.2. The logarithm 

transformation of the multiplicative model (1.9) is given by 

 * * *log log log logt e t e t e t e t t t tY X M S e M S e         (1.14) 

where 

 
tY   Transformed observed time series 

 
*

tM   Transformed trend-cycle component 

 
*

tS   Transformed seasonal component 

and 

 
*

te   Transformed error component 

 

Table 1.2: Transformations of the Purely Multiplicative Model 

tY  *

tM  *

tS  *

te  Model for tY  Assumption 

on *

tS  

Assumption 

on *

te  

log e tX

 

log e tM

 

log e tS

 

log e te

 

Additive *

1

0
s

j

S


   * 2

1~ 0,te N 

1, 0.1   

tX  tM  tS  te  Multiplicative *

1

s

j

S s


   * 2

2~ 1,te N 
 

2, 0.3   

1/ tX  1/ tM  1/ tS  1/ te  Multiplicative *

1

s

j

S s


   * 2

2~ 1,te N 
 

1, 0.1   
2

tX  
2

tM  
2

tS  
2

te  Multiplicative *

1

s

j

S s


   * 2

2~ 1,te N 
 

1, 0.027   

1/ tX  1/ tM  1/ tS  1/ te

 

Multiplicative *

1

s

j

S s


   * 2

2~ 1,te N 
 

(Condition 

yet to to be 

obtained)
 

21/ tX  21/ tM  21/ tS  21/ te  Multiplicative *

1

s

j

S s


   * 2

2~ 1,te N 
 

1, 0.070   
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It is clear from Table 1.2, that only the logarithm transformation alters the 

assumptions placed on the seasonal and error components of the purely 

multiplicative model. 

  The essence of data transformation as used in time series analysis is 

to ensure that the data approximately meet the assumptions of a statistical 

inference procedure that is to be applied.  

 The basic assumptions of interest are that the error component has unit 

mean and constant variance, and is normally distributed. Thus for a 

transformation to be successful, these basic assumptions must be maintained 

or achieved after any transformation.  

  Studies on the conditions for achieving successful transformations on 

the trend-cycle and seasonal components of the purely multiplicative model 

for the six listed transformations in Table 1.2 had been carried out while for 

the error component, the logarithm, square root, inverse, square and Inverse 

Square had been investigated leaving out only inverse square root yet to be 

studied.  

 

 

 

 

 

 

 

 

 

 

 



21 
 

1.9. STATEMENT OF THE PROBLEM 

The need for a satisfactory data transformation has been established by 

some authors such as Turkey (1957), Box and Cox (1964), Osborne (2002), 

Akpanta and Iwueze (2009), Iwu et al (2009),  Fink et al., (2009), Osborne 

(2010),Vidakovic (2012), Watthanacheewakul (2012), Otuonye et al (2011), 

Nwosu et al.  (2013) and Ohakwe et al. (2013). Every multiplicative time 

series data is classified into one of the following power transformations, 

21 1
log , , , ,e t t t

t t

X X X
X X and 2

1

tX .  

 Results for successful transformation of the error component of the 

multiplicative time series data obtained for the power transformations such 

as 2

2

1 1
log , , ,e t t t

t t

X X X and
X X  cannot be used for any time series data that 

requires inverse square root transformation. According to Ruppert (1999), 

the use of any transformation requires that the effect of such transformation 

on the error structure should be taken into consideration. Hence, the need 

for this study is to determine condition for successful inverse square root 

transformation of the error component of the multiplicative time series 

model. 

        This study shall provide a statistical framework for successful inverse 

square root transformation without the rigor of calculating the periodic 

means and standard deviations as obtained in Bartlett (1947). 
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1.10.            AIM AND OBJECTIVES OF THE STUDY 

The main aim of this study is to investigate the effect of inverse-square-root 

transformation on the error component of the multiplicative time series 

model with a view to establish the condition for successful inverse-square-

root transformation. The objectives are as follow: 

(i) to derive the probability density function of the inverse-square-root 

transformed error component, *

t

t

1
e

e
  of the multiplicative time 

series model. 

(ii) to establish the theoretical  values of mean(µ) and variance(
2
) of the 

transformed component. 

(iii) to determine if there is/are the relationship(s) between the basic 

parameters u  and 2σ  of the untransformed component,  and the 

inverse-square-root transformed component,   with regard to the 

model assumptions, and thereby identify the condition for the 

existence of their relationships if it exists. 
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CHAPTER TWO 

LITERATURE REVIEW 

In data transformation; Winer (1968) as cited in Fink (2009), viewed 

the job of the data analyst, strangely enough, as to find a random error. 

When all systematic variability has been removed from data, the leftover – 

or residual or disturbance or error will be random, without pattern; the 

analyst knows that the analysis is complete when random error has been 

found. To find random error, data often need to be transformed (Fink, 2009) 

and this is the subject of this study. 

          Data transformation has a long history (Box and Cox, 1964) and was 

already in review essays in the 1960s (Kruskal, 1968). Turkey (1977) 

worked on Exploratory Data Analysis with emphasis on data transformation 

and he created new interest in this area. Cohen (1990) stated that 

Exploratory Data Analysis by Turkey (1977) is an inspiring account of how 

to effect graphic and numeric analyses of the data at hand so as to 

understand them. 

It is not an overstatement to say that statistics is based on various 

transformations of data. Basic statistical values such as sample mean, 

variance, z-scores, etc., are all transformed data (Vidakovic, 2012).  

According to Vidakovic (2012), transformations in statistics are utilized for 

several reasons, but unifying arguments are that transformed data 
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(i) are easier to report, store and analyze; 

(ii) comply better with a particular modeling framework; and 

(iii) allow for additional insight to the phenomenon not available in the 

domain of non-transformed data. 

 Vidakovic (2012) further emphasized that the words transformation 

and transform are often used interchangeably, however the semantic 

meaning of the two words seem to be slightly different. For the word 

transformations, the synonyms are alterations, evolution, change, and 

reconfiguration. On the other hand the word transform carries the meaning 

of a more radical change in which the nature and/or structure of the 

transformed object are altered. Hence it is natural that processes which alter 

the data leaving them unreduced in the same domain should be called 

transformations (for example Box-Cox and Batlett’s transformations) and 

the processes that radically change the nature, structure, domain and 

dimension of data should be called transforms (for example Fourier 

transforms). 

 In some parametric tests, the basic assumption is that the data are 

normally distributed or the sample size is large (Watthanacheewakul; 2012). 

If the data do not obey normality, then the nonparametric tests are chosen to 

analyse the data. However the power of nonparametric test is usually less 

than the power of parametric test (Watthanacheewakul, 2012). Hence, the 

need to continue with parametric tests after transformation. Turkey (1957) 



25 
 

suggested that when analyzing data that violate the assumptions of a 

conventional method of analysis, there are two choices namely, transform 

the data to fit the assumptions or develop some new robust methods of 

analysis. Montgomery (2001) suggested that transformations are used for 

three purposes namely, stabilizing response variance, making the 

distribution of the response variable closer to a normal distribution, and 

improving the fit of the model to the data. Moreover, the relationship 

between the standard deviation and the mean can be used to determine the 

appropriate transformation. Furthermore, it is possible to transform the data 

using a family of transformations already extensively studied over a long 

period of time e.g. Bartlett, Box and Cox transformations. A well-known 

family of transformations often used is the power transformations proposed 

by Box and Cox (1964). Moreover, Akpanta and Iwueze (2009) had also 

shown that Bartlett’s transformation is also a power transformation as would 

be discussed in the next Section. 

 Data transformations are not only important in time series analysis 

but in all areas of statistical modeling where there are some basic 

assumptions required for the applications of the conventional methods of 

analysis. For instance, in the words of Ruppert(1999), ―data transformations 

such as replacing a variable by its logarithm or by its square-root are used to 

simplify the structure of the data so that they follow a convenient statistical 

model‖ .Ruppert (1999) further stated that ―Transformations have one or 



26 
 

more objectives including: (i) inducing a simple systematic relationship 

between a response and predictor variables in regression; (ii) stabilizing a 

variance, that is inducing a constant variance in a group of populations or in 

the residuals after a regression analysis; and (iii) inducing a particular type 

of distribution, e.g. normal or symmetric distribution. The second and third 

goals as suggested by Ruppert (1999) are concerned with simplifying the 

―error structure or random component of the data‖. However, he also stated 

that transformation should not be used blindly to linearize a systematic 

relationship since if the errors of the data set before a transformation are 

homoscedastic then it is likely to be heteroscedastic after transformation. 

Ruppert (1999) concluded that any use of transformation requires that the 

effect of the transformation on the error structure should be understood. 

According to Osborne (2002), data transformations are the 

applications of mathematical modifications to the values of a variable. He 

expressed that caution should be exercised in the choice of the type of 

transformation to be adopted so that the fundamental structure of the series 

is not distorted and thereby rendering the interpretation very difficult or 

impossible.  

 Bartlett (1947) used the simple relation between grouped means and 

standard deviations of a data set to find simple transformations which make 

the variance independent of the mean, in which case the data are likely to 

follow a normal distribution with uniform variance. Akpanta and Iwueze 
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(2009) had shown how to apply Bartlett’s transformation technique to time 

series data using the Buys-Ballot Table (see Table 1.1) without considering 

the time series model structure. The relationship between the periodic 

standard deviations and periodic means is what is needed. If we take random 

samples from a population, the means and standard deviations of these 

samples will be independent (and thus uncorrelated) if the population has a 

normal distribution (Hogg and Craig, 1978). Akpanta and Iwueze (2009) 

showed that for Bartlett’s transformation for time series data, if we regress 

the natural logarithms of the group standard deviations  ˆ
i .σ ,i =1,2, .. .,m on 

the natural logarithms of group means  i .X ,i =1,2, .. .,m , the slope, β  of the 

relationship 

 ˆ  e i . e i . ilog σ = α+βlog X +e , i = 1,2, ...,m      (2.1) 

determines the appropriate transformation (see Table 2.1), where  ’s are the 

error. 

For non-seasonal data that require transformation, we split the 

observed time series , 1,2,...,tX t n  chronologically into m fairly equal 

different parts and compute  . , 1,2,...,iX i m  and  .
ˆ , 1,2,...,i i m   for the 

parts. For seasonal data with the length of the periodic intervals, s, the Buys-

Ballot table naturally partitions the observed data into m periods or rows for 

easy application. Akpanta and Iwueze (2009) also showed that Bartlett’s 

transformation may also be regarded as the power transformation 
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 1

log , 1

, 1
t

e t
Y

t

X

X


















               (2.2) 

The summary of transformations for various values of   and data 

admissibility are given in Table 2.1 

 

Table 2.1: Bartlett’s Transformation for some values of  . 

S/N   Required Transformation Data admissibility 

1 0  No transformation tX     

2 1

2
 tX  tX 0

 

3 1 log e tX  
tX 0  

4 3

2
 

1

tX
 tX 0

 

5 2  1

tX
 tX 0

 

6 3  
2

1

tX
 tX 0

 

7 1  2

tX  tX     

Source: Akpanta and Iwueze (2009). 

(b) The Box-Cox transformation technique 

Turkey (1957) as contained in Sakia (1992) introduced a family of 

power transformations such that the transformed values are monotonic 

function of the observations over some admissible range, and is given by 

 
, 1

log , 1
t

tY

e t

X

X

 













       (2.3) 
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for 0tX  . However, this family has been modified by Box and Cox (1964) 

to take account of the discontinuity at 0  , such that 

 

1
, 0

log , 0

t

t
Y

e t

X

X








 
 
 













        (2.4) 

and for unknown   

    21 1 2
, ,..., , ....,t

T

n nY X X X X                    (2.5) 

where X is a matrix of values of regressor, θ is a vector of unknown 

parameters associated with the transformed values and ε  is a vector of 

random errors that is multivariate normal(MVN) with zero mean and 

variance-covariance matrix, 
2

nσ I   2

nε ~ MVN 0,σ I . The transformation 

(2.4) is valid for only 0tX   and therefore modifications are needed to be 

made to accommodate the negative observations. Box and Cox (1964) 

proposed the shifted power transformation with the form 

 

 

 

1
2

1
1

2 1

, 0

log , 0

t

t

Y

e t

X

X







 














 

     (2.6) 
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where  is the transformation parameter and  is chosen such that 

2tX   . Box and Cox (1964) further proposed maximum likelihood as 

well as Bayesian methods for the estimation of .  

 However, as a matter of simplicity of applications and considering 

that the subject of this study is a multiplicative time series model whose 

observed time series data, 0, for 1,2,...,tX t n  ,  we would explore 

the Bartlett’s technique as stipulated in the literature. 

Studies on the effects of transformations on the various components 

of the multiplicative time series model are not new in the literature. The 

overall aim of such studies is to establish the conditions for successful 

transformations. A successful transformation is achieved when the desirable 

properties of a data set remains un-changed after transformation. 

 Iwu et al (2009) studied the effect of some transformations namely; 

logarithm, inverse, inverse-square, square-root, inverse-square-root and 

square on the trend-cycle components of the multiplicative time series 

model (1.9) when it is exponential, linear and quadratic and the following 

findings were established. For the exponential trend curve given by 

bt

tM ae  , the logarithm transformation  bt

e tlog M = α +λ t ae  converts the 

exponential trend-curve into linear and the estimate of   of the transformed 

series can be obtained by applying the corresponding transformation on the 

parameter, a. However, the estimate of the parameter   is the same as that 
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of the original series, b. For other transformations  bt t

tM ae e


   , 

1 3
, ,2,3, 1

2 2
and   (Note that 1   is for logarithm transformation), the 

estimate of the parameter   can be obtained by multiplying the constant b 

by the power of
tM . That is b  , where 

1 3
, ,2,3, 1

2 2
and    for the 

square-root, inverse-square-root, inverse, inverse-square and square 

transformations respectively. For the linear trend-cycle component given by 

tM a bt  , the power transformation is given by  tM a bt
   . In order 

to approximately preserve the original form of linear trend, for 2 0.99R  , 

where R
2
 is the coefficient of determination, 

 Iwu et al (2009) established that  0.006 , 0.016a b     for the logarithm 

transformation, and  0.008 , 0.083   a b ,  0.003 , 0.006   a b , 

 0.006 , 0.019   a b ,  0.004 , 0.009   a b and  0.002 , 0.003   a b for 

square-root, inverse, square, inverse-square-root and inverse-square 

transformations respectively where  , / , 0a b b a a   , a and b are the 

intercept and slope of the linear trend, 
tM a bt  . Also in order to 

approximately preserve the original form of the quadratic trend-cycle 

component given by 2

tM a bt ct   whose power transformation is given 

by  2

tM a bt ct


    , the restriction    2, /a b k b c   for some real 

constant k must be adopted ( Iwu et al, 2009). 
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 Similarly, Iwueze et al. (2008) had studied the effect of some 

transformations on the seasonal component of the multiplicative time series 

model. In the study, they constructed interval for the seasonal indices of the 

purely multiplicative time series model  , 1,2,...,jS j s  required for 

successful data transformation. By successful transformation in this context, 

they meant the ability to obtain the seasonal indices of the transformed 

series  * , 1,2,...,jS j s directly from those of the original series by merely 

taking the equivalent transformation of , 1,2,...,jS j s . They investigated this 

problem for all the distinct indices for all s values and for the equality of 

some indices when s = 2, 3 and 4. Results obtained were shown to be 

applicable to given patterns of equality of indices for s = 6, 8, 9, 10 and 12. 

They went ahead to emphasize that as far as the appropriate transformation 

is chosen for a particular time series data, the established intervals would be 

of great help in determining the seasonal indices of the transformed series. 

 Finally, the effect of logarithm (Iwueze, 2007), square-root (Otuonye 

et al., 2012), inverse (Nwosu et al., 2013) and square (Ohakwe et al.,2013)) 

transformations on the error component of the multiplicative time series 

model had been carried out. The overall aim of such studies is to establish 

the conditions for successful transformations. A successful transformation in 

this context is achieved when the desirable properties/assumptions placed on 

the error component remains unchanged after transformation. The basic 



33 
 

assumptions of interest for this study are; (i) Normality (ii) Unit mean and 

(iii) constant variance (which may or may not be equal to initial variance 

before transformation). Consequently, Iwueze (2007) investigated the effect 

of logarithmic transformation on the error component (et) of a multiplicative 

time series model where (  2~ 1,te N  ) and observed that the logarithm 

transform; Y = Log et is normally distributed with mean zero and the same 

variance 
2
 for < 0.1  

Otuonye et al. (2012) observed that the square root transform; tY e  

is normally distributed with unit mean and variance, 4 
2
 for 0.3  , where 

σ
2
 is the variance of the original error component before transformation. 

Nwosu et al. (2013) discovered that the inverse transform 
1

t

Y
e

  is 

normally distributed with mean, one and the same variance provided 0.1    

Furthermore, the conditions for successful square transformation in 

time series modelling, was obtained by Ohakwe et al. (2013) to be 

for 0.027  . The probability density function of the square transformed left-

truncated  2

11,N    error component of the multiplicative time series model 

and the functional expressions for its mean and variance were established. 

Also, the mean and variance of the square transformed left-truncated 

 2

11,N   error component and those of the untransformed component were 

compared for the purpose of establishing the interval for σ where the 
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properties of the two distributions are approximately the same in terms of 

equality of means and normality. Finally, they established that the two 

distributions are normally distributed with means  1.0 correct to 1 decimal 

place and variance in the interval 0 < σ < 0.027. 

Finally, it must be remarked that studies on the effects of 

transformation of the components of multiplicative time series model are 

not new in the literature. The overall aim of such studies is to establish the 

conditions for successful transformation. A successful transformation except 

the logarithm transformation is achieved for the trend-cycle component 

when the original structure of a data set remains unchanged after 

transformation. For example, in the same way that a linear trend-cycle 

component is expected to remain linear after transformation, a quadratic 

trend-cycle component should also remain quadratic after transformation. 

Furthermore, the seasonal component (indices) of the transformed series is 

expected to be obtained directly by applying the chosen transformation on 

the original seasonal indices. Similarly the error component that is initially 

assumed to be  2

11,N   should also remain  2

21,N  , even though 
2

1  may or 

may not be equal to
2

2 . 

In this chapter, we have reviewed the relevant literature related to this 

study.  In the subsequent Chapters, we would study the distribution and 

other relevant properties of the left-truncated  2N 1,  error term under 
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inverse-square-root transformation and investigate the conditions for 

achieving successful transformation on the purely multiplicative time series 

model. 
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CHAPTER THREE 

METHODOLOGY 

   

In this chapter, the change of variable or transformation technique is 

used to derive the probability density function of the inverse-square-root 

transformed error component (  *

tf e ) from which the functional expressions 

for the mean (  *

tE e ) and variance (  *

tVar e ) are established.  We shall 

also derive the probability density function of the transformed error term 

 and investigate its normality. Furthermore, the functional 

expressions of the mean, median and variance of   which form the 

properties of the distribution of   are obtained.  

 Graphs of the probability density functions (pdf’s) of the 

untransformed and inverse-square-root transformed error component would 

be used to investigate for what values of  are curves of the probability 

density functions satisfy the bell-shaped characteristic of normal distribution 

with the property of being symmetrical about the mean,   = 1. 

 The Rolle’s theorem would be applied to obtain the value of  for 

which the value of the probability density function of the inverse-square-

root transformed error component is maximum with the aim of finding the 

mode of the transformed distribution.   
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  Furthermore, computations of the derived functional expressions of 

mean (  *

tE e ) and variance (  *

tVar e ) of the inverse-square-root 

transformed error component and those of the untransformed component 

(E(et)  and  Var (et)) for various values of the standard deviation,  are made 

with the aim of obtaining the values of , where the means of the 

transformed and untransformed are equal to one. Also simulated data 

generated from N(1, 
2
) for et and subsequently transformed to *

t

t

1
e

e
 are 

also used to obtain the region, where the normality conditions are satisfied 

for the two variables et and *

te  using the Anderson Darling test. 

PROBABILITY DENSITY FUNCTION OF THE INVERSE-

SQUARE-ROOT TRANSFORMED ERROR COMPONENT. 

 

Consider the transformed error term 

 , where  and the probability density function  

given by  

 

2
1 1

2
* ,  0

1
2 1

x

e
f x x



 


 
  

 

   
  
   

  

             (3.1)  

Under the transformation Y , and using change of variable technique;  

  and , we obtain the probability density function (p.d.f) of ,   

, where  is the Jacobian of the inverse transformation, 
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That is                     

                     

                                               (3.2) 

We shall show that  is a probability density function (pdf): 

Now, 
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Hence,  g y is the probability density function (p.d.f) of y, which is the pdf 

of inverse square root of transformed error, . 

 

 

3.1 INVESTIGATING THE NATURE OF THE FUNCTION  g y  

WITH REFERENCE TO  *f x  

Using the pdf of the two variables  the graphs 

 *f x  and  g y  in Equations (3.1) and (3.2) for values of  

are shown in Figures 3.1 to 3.8 respectively. 
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Figure 3.1. Curve Shapes for  = 0.06 

 

 

 

 

 

Figure 3.2. Curve Shapes for  = 0.085  
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Figure 3.3. Curve Shapes for  = 0.095  

 

 

 

Figure 3.4. Curve Shapes for  = 0.15 

 

f*(x) 

g(y) 

g(y) 

f*(x) 

,x y  

,x y  

   *g y f x  

   *g y f x  



42 
 

 

Figure 3.5. Curve Shapes for  = 0.25 

 

 

Figure 3.6. Curve Shapes for  = 0.30 
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Figure 3.7. Curve Shapes for  = 0.40 

 

 

 

Figure 3.8. Curve Shapes for  = 0.50 

We observe a significant departure from normality to positive skewness of 

the curve of g(y) for larger values of  for example for   = 0.25, 0.3, 0.40 

and 0.50 (Figures 3.5, 3.6, 3.7 and 3.8 respectively). However the exact 
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,x y  

   *g y f x  
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point at which there is a departure from normality of the curves are yet to be 

investigated in subsequent sections. 

From Figures 3.1 through 3.8, it can be observed that the curve g(y) 

has one maximum point for all values of  . Hence, we obtain the values of 

that satisfy the normality condition using Rolle’s Theorem. (Smith and 

Minton, 2008) which states that, if  is continuous on the interval [a, b] 

and differentiable on the interval (a, b) with f (a) =f (b), then, there exists a 

number  such that   0'f c  . 

Now, 

 

 

                                                       (3.3) 

  

We shall show that g is continuous as: 

(i)  is defined for  

(ii)  exists 

(iii)  

Since g is continuous in . Taking the derivative of g 
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 



   
         

    

 
                

  

 

 

    (3.4) 

 

  

 

 
 

 

Thus,              (3.5) 

 

By Roll’s theorem;  

 

 
 

 

 

 
 

        (3.6) 
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If we let  in Equation (3.6), we have 

 

       (3.7) 

 

Solving Equation 3.7, we obtain 

 

Hence, 

 

and 

 

Therefore, the probability density function g(y) attains its maximum at  

 

The computation of   for various values of standard deviation   is 

shown in Table 3.1 in the Appendix stipulated   ≈ 1. 

The summary of the values of   for different values of  is given in 

Table 3.2. (see Appendix on page 89). 

This shows that g(y) is symmetric about 1 with Mean  median  Mode 1 

when 0 <  (for three decimal places) and  (for 1 

decimal place).  
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3.5       3- D  PLOT  OF  f x   AND  g y  

Furthermore, in order to ascertain the interval,    (0, 0.15], we make a 3-

D plot of the untransformed (f*(x)) and the inverse-square-root transformed 

(g(y)) distributions for values of  = 0.01, 0.02, 0.03, . . . , 0.48, 0.49, 0.50 

and for fixed values of  X = Y = 0.00, 0.1, 0.2,…, 1.1. 

 The plot is given in Figure 3.9. The aim of the plot is to determine the point 

at which normality exists among the variables. Based on the property of 

Gaussian distribution, the point at which bell-shape is spotted on the graph 

is the point at which normality exists. 

Based on the plot, normality was found to exist for  ≤ 0.15 

 

 

Figure 3.9:  3-D Plots of f*(x) and g(y) for fixed values of , X and Y  
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3.6 USE OF SIMULATED ERROR TERMS 

The region where the following conditions; 

(i) Mean = Median  1.0 

(ii)  Normality is accepted using Anderson Darling test are satisfied,  

was obtained using the simulated data generated from  21,N  for te .  

Subsequently, transform to obtain * 1
  for  0.05 0.15t

t

e
e

    

Values of the required statistical characteristics were obtained for each 

variable te and *
te  as shown in Tables 3.3 to 3.7 respectively.  For each 

configuration of (n = 100, 0.05  ), 1000 replications were 

performed for values  in steps of 0.005. For want of space the results of the 

first 25 replications are shown for the configurations, (n = 100,  = 0.06), 

(n=100,=0.08), (n=100,=0.1), (n=100,=0.15),  (n=100,=0.15) and  

(n=100,=0.2). Since the values of skewness  1   and kurtosis  2  are not 

sufficient to confirm normality; we shall use Anderson Darling’s test for 

normality. 
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Summary of results: 

The following results were obtained from the investigations carried out on 

* 1
t

t

e
e

 . 

1. The curve shapes are normally distributed about 1 for  ≤ 0.15. 

2. By Rolles theorem, 

a. Mode 1   Mean for  ≤ 0.045 to 2 decimal places 

b. Mode 1   Mean for  ≤ 0.145 to 1 decimal place 

3. From the simulated random errors, when  ≤ 0.2 

a. Median   Mean   1 

               

 

4. The p-value of the Anderson Darling’s test statistic strongly supports the 

non-normality of  *
te
  at     0.15.       

 

 From the results of the investigations of the distributions of the error term 

 te  of the multiplicative time series model and the inverse square root 

transformed error term  *
te  it is clear that the condition for successful inverse 

square root transformation is  < 0.15. Thus the two error terms te  and *
te are 

normally distributed with mean 1 but with the variance of inverse square root 
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transformed error term being one quarter of the variance of the untransformed error 

component when  < 0.15. That is     * 1
  
4

t te eVar Var , for   < 0.15.  

This is the same relationship obtained by Otuonye et al. (2011) under square root 

transformation. 

 

3.7    THE MEAN AND VARIANCE OF TRANSFORMED ERROR        

TERM, Y  

 

By definition, the mean of Y, E(Y) is given by: 

   
0

, E y yg y dy



                                                      (3.8) 
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              (3.9) 

Using negative Binomial expansion theorem to expand the term   

 

   (3.10) 

Since  

  (3.11) 
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 Evaluating each term in Equation (3.12, we have: 

 

 

 

 

 

Hence,

 

 

 

Also, 
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Thus, using equations (3.13), (3.14) and (3.15) in equation (3.12) we have 
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Now, 

 

where  
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Using negative Binomial expansion on , defined as  

 

 

. . .  
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Evaluating the terms in Equation (3.20) we have 

 

 

 

 

            (3.23)  

 and  
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Using Equations (3.21) (3.22), (3.23) and (3.24) in Equation (3.20) we have: 

 

 

 

 

 

We observe that 

(i)  Subsequent terms in the series for  respectively all have   

as a factor. 

(ii)   for  correct to 4 decimal places. (See Table 3.7. column 3 

in the Appendix). 

(iii) Conditions (i) and (ii) above imply that all subsequent terms for 

 are all zeros for . 
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Thus,  

                                         (3.26) 

and 

  

Thus  

 

                             
  
 

  
 

 
 

  
  

2 2

2 2 2 21 1
(1) (1)σ σ

1 1
σ σ

9σ 1+ Pr χ < σ 1+ Pr χ <
Var(Y) = 1 -

8[1-Φ - ] 32[1-Φ - ]
    (3.27) 

 

 

3.8  THE NUMERICAL COMPUTATIONS OF THE MEAN AND 

VARIANCE OF THE PROBABILITY DENSITY FUNCTION G(Y) OF 

THE INVERSE SQUARE ROOT TRANSFORMED ERROR TERM. 
 

Using the expressions for and  in Equations 3.26 and 3.27 respectively, 

we now compute values of  and  for  .  

Table 3.7 (Appendix) shows the values of , and Var(Y). For this computation 

we write 

 

 

 

and  
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 
 
 

2 2
9σ σ B

Var(Y) = 1-
8A 32A

            

         

where     

 

               

 

From Table 3.7(appendix), columns 4 and 5: A = 1 and B = 2 for < 0.22, 

therefore the mean E(Y) and the Var (Y) can equivalently be obtained using the 

expressions 

                    (3.28) 

and  
 
 
 

2 22
1

4

3σ
Var -

8

9σ
Y =

8
< 0.22.                (3.29) 

  

as confirmed by the simulated data in Tables 3.3 to 3.6 (Appendix) 

    

From Table 3.7 in the Appendix, we observe the following within feasible region 

of investigation,  ≤ 0.22  

i.   * 1tE e    correct to 1 decimal place (d.p) when  ≤ 0.22 

ii.      * 1

4
ttVar e Var e

 
Correct to the nearest whole number within the feasible 

region of study,  ≤ 0.22. 
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3.9 MEDIAN OF THE INVERSE- SQUARE-ROOT TRANSFORMED  

ERROR COMPONENT  

 

Having shown in Section 3.4 using the Rolles Theorem that the mode ≈ mean ≈  

1.0 (to 1 dp) for 0 <  ≤ 0.15, hence  we wish to find the region where the value of 

median is also one since the measures of central tendency, mean, median and mode 

are equal for a normally distributed random variable. 

 The median of a random variable Y of the discrete or continuous type is a 

value m such that  
1

2rp Y m  . Recall that for a continuous random variable y, 

we have the relation.    rp y mrp Y m   , since   0rp Y m  . This implies that 

if y is continuous and    
1

2
rp y mrp Y m    , then m is the median of Y. 

Thus, we say that m is the median of Y if and only if 

i.  
1
2y m

p y


  when Y is discrete, 

ii.      
1
2

m

F m P Y m dyP y


     when Y is continuous. 

  

2

2 2
1 1 1

2

3

2

1
2 1

y
e

g y

y



  


 
 
 
 
 

 

  
  
   



 

 

      
0

1
2

m

P y mF m g y dy      
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2
21 1

2

3
0

1

2

2

12 1

ym

dye

y



  


 
   

  
  
  
     

 

  

 

2
21 1

23

0

2 1

21
2 1

ym

dyy e 

  


 
   

  
  
   

  

     (3.30) 

Let   

 
2 2

1
1

1y y
u

 





          (3.31) 

therefore, when   

0,y u   and when 
2 1, my m u


     (3.32)   

Thus, 

 
1

21uy 


         (3.33) 

and 

 
3

21
1

2
u dudy  


        (3.34) 

Now, 

   
2

3
2

2

2

1

1
1

2

3
1 2

21
2 1

2 1
u

m

F m u duu e








 










   
   

     
   

  






 

   
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 
2

2

1

12
21

2 1

1

m

u
F m due


 


 





  
  
   

 

     (3.35) 

which implies that 

2 1 1

211

1 m
P u






 
 
     

  
  

  




 

  

2 1 1
1

211

1 m
P u





  
  

         
  

  


  

 

  

2

1

2

11

11

m




 
 

  
 

 
 
  
 

 



 

                  (3.36) 

where  
22 1 1m

P u
m

 

   
     

  


  


, therefore from (3.36) we obtain 

2 1 1

2

1
1

m


 



    
         


                (3.37) 

In (3.37), we are interested in the values of  for which
 
 
 

1
Φ - = 0

σ
. For this purpose 

we obtain the values of , 0.001,0.002,....,0.499,0.500for 
 

 
 

1
Φ -

σ
 and discovered that 
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 
 
 

1
Φ - = 0

σ
 to 4 decimal places for 0.256  . Within the interval (0, 0.15) 

2 1

2

1m



 
 
 
 


  

From the standard normal table, 

 
2 1

0.5
m



 
 
 
 


     when  

2

0
1m








 

2 1 0m    

thus 

 1m  

 For  ≤ 0.256, the distribution of the inverse square of the error term of the 

multiplicative time series model is normal with median equal to one. Finally it is 

important to note that 0 <  ≤ 0.15    ≤ 0.256, thus the median of the inverse-

square-root transformed error component is equal to one within the region, 0 <  ≤ 

0.15 of its successful application. 
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CHAPTER FOUR 

ANALYSIS OF DATA AND DISCUSSIONS 

 

4.1: INTRODUCTION 

In this chapter, a real life data shall be used to validate the properties of the 

Inverse-square-root transformed error component of the multiplicative time series 

model. The results to be validated in this chapter are the major findings of this 

study listed as follows; 

(i)  The interval for the successful application of inverse-square root 

transformation is 0 <  ≤ 0.15, where  is standard deviation of the untransformed 

error component. 

(ii) The variance-ratio of the transformed error component to that of the 

untransformed error component is approximately four and 

(iii) The mean of the transformed error ≈ the median of the transformed error 

component ≈ 1.0 

The steps of analysis of the study data, Xt are to: 

(i) confirm the applicability of the multiplicative time series model on Xt  

(ii) justify that the inverse-square-root transformation is appropriate for Xt. 

 



65 
 

(iii) decompose the time series data,  Xt to obtain et  

(iv) obtain the mean, median and variance of  te  and verify  its normality 

using Anderson-Darling test. 

(v) use the inverse-square-root transformation of  Xt to obtain  Yt and 

decomposition  of  Yt  to obtain the residual series (error component), 

*
te  

(vi) obtain the mean, median and standard deviation of  *
te  respectively, and 

verify its normality using Anderson-Darling test. 

(vii) compare the properties of te  and *
te . 

The appropriate data transformation would be assessed using the Bartlett’s 

transformation technique as applied by Akpanta and Iwueze (2009). This method is 

achieved by obtaining a linear relationship between  the natural logarithm of the 

periodic (yearly) standard deviations and the natural logarithm of the periodic 

mean. The slope of the linear relationship obtained is used to determine the 

appropriate transformation to be adopted. For the inverse-square-root 

transformation, a slope of 1.5 or approximately 1.5 is required. The 

appropriateness of data transformation and the type of transformation to be made 

will provide the medium for choice of transformation. 
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4.2                                  DESCRIPTION OF DATA 

Data on the Monthly interest rates Government Bond Yield 2-year securities,  

Reserve Bank of Australia, Jan 1976 – Dec 1993 is used for this study (see 

Column 2 of Table 4.1in the Appendix). The data were obtained from the Time 

Series Data Library exported from datamarket.com. The time plot is shown in 

Figure 4.1.  

Time (t)

Xt

198176154132110886644221

17.5

15.0

12.5

10.0

7.5

5.0

Time Series Plot of Xt

 

Figure 4.1: Time series plot of the Data, Monthly interest rates Government 

Bond Yield 2-year securities, Reserve Bank of Australia. Jan 1976 – Dec 1993 

 

4.2.1                                         CHOICE OF MODEL 

The choice of a multiplicative model for this series is clear. As given in 

Table 1.2, except the logarithm transformation, all the other common power 

transformations still leaves the model multiplicative. To put it simply, 
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multiplicative model is appropriate for all series that requires the application of all 

other forms of transformations listed in Table 1.2 except the logarithm 

transformation that automatically converts a multiplicative model to an additive 

model, thus a multiplicative model is appropriate for the data of this study. 

Furthermore, using the plots of the periodic means and standard deviations ( see 

Table 4.2, Figures 4.2 and 4.3) it is clear that the graph of the standard deviations 

is mimicking that movement of the means which also suggests the use of 

multiplicative model. 

Table 4.2:   Periodic means and standard deviations and their natural logarithms. 
Year 

i.X  

 PeriodicMean  

i.̂  

 Periodic St d. dev.  

1 8.5175 0.12462 

2 9.7342 0.25875 

3 8.7967 0.09029 

4 9.6200 0.49360 

5 11.5342 0.58775 

6 13.8225 0.73632 

7 15.1750 1.45438 

8 12.8417 1.10820 

9 12.2417 0.45569 

10 14.0250 0.98269 

11 13.9667 0.89502 

12 13.1583 1.08896 

13 12.1750 0.95762 

14 15.1417 0.45419 

15 13.4625 0.86553 

16 9.9375 1.32341 

17 7.2542 0.79557 

18 5.6333 0.42498 
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Figure 4.2: Time Series Plot of the Periodic Means of the Study Data 

 
 

                                    

                      Standard Deviation 
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Figure 4.3: Time Series Plot of the Periodic Standard Deviations of the Study 

Data 
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4.2.2 DETERMINATION OF THE APPROPRIATE TRANSFORMATION 

For the choice of appropriate transformation, we obtain the natural logarithm 

of the periodic (yearly) means and standard deviations of Xt (see Table 4.3). 

Thereafter, the natural log of the periodic standard deviations are plotted against 

that of periodic means (see Figure 4.4) Table 4.3: Natural Log of the Periodic 

Means and Standard Deviations. 

Table 4.3: Natural Log of  the Periodic Means and Standard Deviations 

Year 
e i.Log X  e i.

ˆLog   

1 2.14212 -2.08251 

2 2.27564 -1.35188 

3 2.17437 -2.40478 

4 2.26384 -0.70604 

5 2.44531 -0.53146 

6 2.62630 -0.30609 

7 2.71965 0.37458 

8 2.55270 0.10274 

9 2.50485 -0.78595 

10 2.64084 -0.01746 

11 2.63667 -0.11091 

12 2.57706 0.08522 

13 2.49938 -0.04330 

14 2.71745 -0.78924 

15 2.59991 -0.14441 
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16 2.29632 0.28021 

17 1.98158 -0.22869 

18 1.72870 -0.85572 

 

LOGMEAN

LO
GS

TD

2.82.62.42.22.01.81.6

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

S 0.693817

R-Sq 23.7%

R-Sq(adj) 18.9%

LOGSTD =  - 3.830 + 1.370 LOGMEAN

 

Figure 4.4: Fitted Regression Line plot of the Natural Logarithms of periodic 

Standard Deviation against that of the Periodic Means.  

We obtained the regression line using minitab as 

   

ˆe i.

1.4920 0.6152

, i = 1,2, . . .,18Log σ = +
i .1.37X-3.830  

where the values in brackets under the coefficients are their respective standard 

deviations. Here, the slope β̂ = 1.37which is not exactly 1.5 as required by the 

Bartlett’s transformation technique for the inverse-square-root transformation. 

Hence, we shall test whether the slope, β̂ = 1.5  

 



71 
 

4.2.3 : Test for the significance of the theoretical value of the slope coefficient   

To test whether the estimated value of the slope is significantly different          

from the Bartlett’s value of the slope for the inverse-square-root transformation     

(β = 1.5), we test the null hypothesis  

0H : 1.5  , against the alternative 1H : 1.5   

using the test statistic  given by 

 t  = 
  n 2

ˆ 1.5

ˆStd Error
,t







where ˆ 1.37,   ˆStd Dev 0.6152  . Thus t  = - 0.2113 and  

the statistical table value is 0.025 ,16 = ± 2.10t . Since |0.2113| < 2.10, we therefore 

accept that ˆ 1.5  , which shows that the inverse-square-root transformation is 

appropriate for the data. 

 

4.2.4 Decomposition of the Data on Monthly interest rates Government Bond  

Yield 2-year securities, Reserve Bank of Australia. Jan 1976 – Dec 1993. 

  

Having justified the use of inverse-square-root transformation and the 

appropriateness of the multiplicative model in Section 4.2.1 and 4.2.2, we now 

decompose the data on the Monthly interest rates Government Bond Yield 2-year 

securities, Reserve Bank of Australia into its components namely: trend, seasonal 

and residual/irregular components. 
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 We shall determine the appropriate trend-curve to adopt among the two 

likely fits, linear and quadratic trend-curves using three accuracy measurements 

namely, Mean Absolute percentage Error (MAPE), Mean Absolute Deviation 

(MAD) and Mean Squared Deviation (MSD). 

ˆ


n

t t

t =1 t

X - X1
MAPE = x 100

n X
 

ˆ
n

t t

t =1

1
MAD = X - X

n
 

 ˆ
n 2

t t

t =1

1
MSD = X - X

n
 

Where Xt, ˆ
tX  and n are the actual data, fitted trend-curve and number of data 

points respectively. 

 

The fitted linear and quadratic trend curves are given in Figures 4.5 and 4.6 

respectively while their accuracy measures are given in Table 4.3. 

 

Table 4.4: Accuracy Measures for the Fitted Linear and Quadratic Trend Curves 

Accuracy Measure Linear Trend Quadratic Trend 

MAPE 24.5064 12.4829 

MAD 2.3891 1.3495 

MSD 7.9343 2.5042 
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It is important to mention that Minitab version 18 package was used for 

model fitting and generation of the values of MAPE, MAD and  MSD. Based on 

the results of Table 4.4, it is clear that the quadratic trend-curve is the appropriate 

fit and its curve is given in Figure 4.6. The quadratic trend-curve equation is given 

by 

 X 2

t = 6.3510 + 0.1442*t -0.0007*t       (4.1) 

 

Index

X
t

198176154132110886644221

17.5

15.0

12.5

10.0

7.5

5.0

Accuracy Measures

MAPE 24.5380

MAD 2.3949

MSD 7.9771

Variable

Actual

Fits

Trend Analysis Plot for Xt
Linear Trend Model

Yt = 11.6480 - 0.00116329*t

 

Figure 4.5: Linear trend fit for the Data on Monthly interest rates 
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The results of the decomposition of the time series data on the 

 

The results of the decomposition of the time series data on the monthly 

interest rate into the trend, seasonal and irregular components are shown in Table 

4.1(see columns 3, 4 and 5) for the trend, seasonal and irregular components 

respectively for the untransformed data.  

The Mean (  ˆ
tE e ), Median, Standard Deviation and Variance of the 

Irregular component/Residual series ( ˆ
te ) are;  t

ˆE e 0.9992 , median = 0.9719,       

 = 0.1444 and 
2
 = 0.0209 as given in Table 4.5. 

The irregular/error component was assessed for normality using the Kolmogorov - 

Smirnov test of normality. The result of the test is given in Figure 4.7 and it 

Time, t 

X t 

198 176 154 132 110 88 66 44 22 1 

17.5 

15.0 

12.5 

10.0 

7.5 

5.0 

Accuracy Measures 
MAPE 12.4829 
MAD 1.3495 
MSD 2.5042 

Variable 
Actual 
Fits 

Trend Analysis Plot for 
Quadratic Trend Model 

 = 6.35102 + 0.144196*t - 0.000670124*t**2 

tX  

tY  

Figure 4.6: Quadratic trend fit for the Data on Monthly interest rates 

Government Bond Yield 2-year securities, Reserve Bank of Australia. Jan 

1976 – Dec 1993 

tX  
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suggests that the residual/irregular component is not normally distributed at 10% 

level of significance which suggests lack of fit. This may be evidence that the data 

were also not normally distributed. The non-normality of the original data was 

confirmed using Anderson Darling test (value of the test statistic 2.827) and    p-

value < 0.005). That is the null hypothesis that the data were normally distributed 

is rejected, hence the need for a transformation is evident. 

The summary of the descriptive statistics of te and *

t
e  is given in Table 4.5 

 

 

 

 

 

Table 4.5:  Summary of the descriptive statistics of te and *

t
e

 from the real life 

- data and from the functional expresion obtained in Chapter 3. 
 

Error 

component 

Mean Median Standard 

Deviation 

KS test 

Statistic 

p-value 

of the KS 

test 

Decision  
 
ˆ

ˆ

t

*
t

Var

Var

e

e
 

 

te  0.9992 0.9719 0.1444 0.099  < 0.01 Reject Normality 

At 1% level of 

significance  

 

3.72  ≈ 4.0 

*

t
e  1.0004 1.0092 0.0749 0.065 0.034 Do not reject 

normality at 1% 

level of 

significance 
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et

P
e

rc
e

n
t

1.501.251.000.750.50

99.9

99

95

90

80

70
60
50
40
30

20

10

5

1

0.1

Mean

<0.005

0.9992

StDev 0.1444

N 216

AD 2.827

P-Value

Probability Plot of et
Normal 

  

 

For want of space, the inverse-square-root transformed data denoted as Yt is  

 

4.2.5: Time Series Analysis of the Inverse-Square-Root Transformed Data of 

Monthly interest rates Government Bond Yield 2-year securities, Reserve 

Bank of Australia. Jan 1976 – Dec 1993. 

 

The inverse-square root transformed data are also presented in Table 4.1     

(Column 6), while its plot is given in Figure 4.8. The decomposed components of 

the transformed data, Yt   are also presented in  Table 4.1 (columns 7, 8 and 9) in 

the Appendix. 

Figure 4.7: Normality Test for the Irregular Component of the Untransformed 

Interest Rate Data  



77 
 

Figure 4.8: Time Series Plot of the Inverse-Square-Root Transformed Monthly 

Interest rateData 
 

Similarly as was done for the untransformed data, we determined the trend-

curve of best fit for the transformed data using the accuracy measures- MAPE, 

MAD and MSD as given in Table 4.6.  

Table 4.6: Accuracy Measures for the Fitted Linear and Quadratic Trend Curves of 

the Inverse-Square-Root Transformed Data. 

 

Accuracy Measure Linear Trend Quadratic Trend 

MAPE 11.8085 6.3500 

MAD 0.0365 0.0192 

MSD 0.0019 0.0006 

 

Time, t 

Y t 

198 176 154 132 110 88 66 44 22 1 

0.45 

0.40 

0.35 

0.30 

0.25 

Time Series Plot of  
tY  

tY  
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From Figure 4.8, the trend curve of the transformed series can either be linear or 

quadratic, therefore the two curves were fitted (see Figures 4.9 and 4.10) and the fit 

with smaller accuracy measures in Table 4.6 is selected. Based on the results in 

Table 4.6, the appropriate trend-curve is quadratic given by 

 * 2

tM = 0.3759 -0.0022*t+0.00001*t         (4.2) 

 

Index

Y
t

198176154132110886644221

0.45

0.40

0.35

0.30

0.25

Accuracy Measures

MAPE 11.8159

MAD 0.0365

MSD 0.0019

Variable

Actual

Fits

Trend Analysis Plot for Yt
Linear Trend Model

Yt = 0.291632 + 0.000102058*t

 
Figure 4.9: Linear Trend Curve of the Inverse-square-Root Transfromed Data on 

the monthly Interest Rate  
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Figure 4.10: Quadratic Trend Curve of the Inverse-square-Root Transfromed Data 

on the monthly Interest Rate  

The mean   ˆ *

t
E e , median, standard deviation,  and variance, 

2
 of the Irregular 

component/Residual series for inverse-square-root transformed series are respectively 

given by  ˆ 1.0004*

tE e , median = 1.0092,  = 0.0749, and 
2
 = 0.0056. 

The Kolmogorov-Smirnov normality test was also carried out on the 

error/irregular component of the inverse square root transformed data. The results 

obtained using Minitab 18 software is shown in Figure 4.11. From the normal 

probability plot, it is observed that the inverse-square root transformation 

normalized the original error component of the data which was not initially normal 

(Normality of the error component is true at 1%, 2% and 3% levels of 

Time, t 

Y  

198 176 154 132 110 88 66 44 22 1 

0.45 

0.40 

0.35 

0.30 

0.25 

Accuracy Measures 
MAPE 6.34996 
MAD 0.01923 
MSD 0.00055 

Variable 
Actual 
Fits 

Trend Analysis Plot for  
Quadratic Trend Model 

 = 0.375938 - 0.00221330*t + 0.0000106763*t**2 

tY  

tY  

tY  
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significance). Thus the error component of the transformed data has mean ≈ 1.0 

and variance 0.0056. Hence,  *

te ~ N 1, 0.0056 . 

Figure 4.11: Kolmogorov-Smirnov Normality Test for the Error Component 

Inverse-Square-Root Transformed Data  

 

4.2.6                                      VALIDATION OF RESULTS 

In this section, the functional expressions obtained in Chapter 3 for the mean, 

mode and variance of inverse square root transformed error term in equations 

(3.28), (3.7) and (3.29) respectively are now used to obtain the descriptive statistics 

of the inverse-square root transformed error component. 

From the equivalent results established for the mean and variance of the 

transformed error component (Equations 3.28 and 3.29), we obtain 

2

ˆ
3

1
8


 *

teMean of      =       
 

2
3 0.1444

1
8

  = 1 0.0026 = 1.0026 ≈ 1.0 
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where  11 1    and  2

2 1
(1)1 Pr 2


    for  ≤ 0.15  

Variance of ˆ *

t
e     

2 4

ˆ
9

4 64

  
 
 
 

*

tV e =      

        =     
  4

2

9*0.1444

64

0.1444

4

 
 
 

  

        =      0.0052 – 0.000061   =   0.0052  

which compares favourably with the sample estimate of 0.0056 obtained for the 

error component using the study data. 

Relationship between the variance of transformed and untransformed for the 

study data is given as 

 
 *ˆ

ˆ

t

t

e

V e

V
   

0.0209

0.0056
= 3.72 4.0  

     * 1

4
t tV e V e  

Hence, the theoretical relationship obtained in Chapter 3, compares favourably 

with the descriptive statistics obtained using the real life data (correct to 1 d.p.) 

From the analysis of the real life data, it is evident that the application of 

inverse-square-root transformation normalized the untransformed error component 

t̂e  that was initially non-normal. Furthermore, the mean of the inverse-square-root 

transformed error component is 1, and the standard deviation is σ = 0.0749  which is 
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in line with the result obtained from the simulated data (see Table 3.5 in the 

Appendix). Furthermore the mean and median of the transformed error component 

were both found to be approximately equal to 1.0, thus a successful transformation 

is achieved when 0 < σ < 0.15 and the    ˆ ˆ t
*
t Var

1
Var e e

4
. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 INTRODUCTION 

In this Chapter, the summary of the findings of this study, contribution to 

knowledge, conclusion, recommendations and suggestions for further research 

would be given. 

5.2 SUMMARY OF THE FINDINGS 

 The findings of this study are; 

(i) the distribution of the inverse-square-root transformed error component of 

the multiplicative time series model was established and is given by 

 
 


 


 

  
  

  
   





  


2

1 1- -1
2 22 2σ y

e , 0 < y <
3 1y σ 2π 1-Φ -

σ
g y =

0, - < y 0

   (5.1) 

with mean  *
tE e  

     when  
   

2

2
2 1
1 σ1

σ

3σ
= 1 + 1+ Pr χ < , σ 0.22

16 1-Φ -
   and  

   
       

*

t

for

e 



        
       

        

2 2
2 2

1 12 21 1
σ σ

Var

σ 0.22

σ 1 9σ 1
Var Y = 1+Pr χ < 1 - 1+Pr χ <

8[1-Φ σ 32[1-Φ σ   (5.2)   
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(ii) The distribution function g(y) is symmetric about a unit mean for values of 

standard deviation,  (0, 0.15). 

(iii) It was observed that the functional form of E ( *
t̂e ) and Var ( *

t̂e ) confirmed 

the mean of *
t̂e  to be 1 and the variance, Var ( *

t̂e ) is approximately equal 

to 
1

4
Var( t̂e ).    

(iv)  For inverse square root transformation to be applied on the error term of 

the multiplicative time series model without any violation of the basic 

assumptions, the standard deviation must be less than 0.15.  

5.3  CONCLUSION  

 We investigated the distribution and properties of the left-truncated  2N 1,σ  

error term, et , of the multiplicative time series model under inverse-square-root 

transformation with a view to establish the condition for the transformed error 

term,
 

*

t

t

1
e

e
 , to be normally distributed with  mean, 1. It was found that the 

normality of *

te is attained for σ 0.15  the functional forms of   *

tE e  and  *

tVar e  

confirmed the mean of *

te  to be 1 with    *

t t

1
Var e Var e

4
 , wheneverσ < 0.15 . 

Hence σ < 0.15  is the recommended condition for successful inverse square root 

transformation. 
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5.4 RECOMMENDATION 

We recommend that for successful and valid inverse square root transformation 

in time series data the standard deviation of the error component must lie in the 

interval (0, 0.15). 

 

5.5     CONTRIBUTION TO KNOWLEDGE 

In this study, we have established the conditions for a successful inverse square 

root transformation of the error term of the multiplicative time series model which 

include:  

 (i) the establishment of the distribution and properties of the Left-truncated 

 2N 1,  error term under inverse square root transformation.  

and 

(ii) the establishment of the interval   σ 0,0.15  for a successful and valid 

inverse-square-root transformation of the multiplicative time series. 

 

5.6 SUGGESTIONS FOR FURTHER RESEARCH 

The following are suggestions for further research; 

(i) The effect of the inverse-square-root transformation on the error component 

of the multiplicative error model whose distribution is assumed to be 
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non-normal such as Gamma, Weibull, etc are suggested for investigations 

to establish if the results of this study will also be valid. 

(ii)  Since we only used simulations to establish that the Variance of the 

untransformed error component to that of the transformed is 4, we also 

suggest its establishment analytically. 
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0.010 0.99992502 0.00007500 0.155 0.94470721 0.05529300 

0.015 0.99970031 0.00030000 0.160 0.94163225 0.05836800 

0.020 0.99932659 0.00067300 0.165 0.93852446 0.06147600 

0.025 0.99880501 0.00119500 0.170 0.93538739 0.06461300 

0.030 0.99813720 0.00186300 0.175 0.93222440 0.06777600 

0.035 0.99732519 0.00267500 0.180 0.92903869 0.07096100 

0.040 0.99637147 0.00362900 0.185 0.92583333 0.07416700 

0.045 0.99527886 0.00472100 0.190 0.92261120 0.07738900 

0.050 0.99405059 0.00594900 0.195 0.91937505 0.08062500 

0.055 0.99269018 0.00731000 0.200 0.91612748 0.08387300 

0.060 0.99120149 0.00879900 0.205 0.91287093 0.08712900 

0.065 0.98958860 0.01041100 0.210 0.90960772 0.09039200 

0.070 0.98785584 0.01214400 0.215 0.90634001 0.09366000 

0.075 0.98600775 0.01399200 0.220 0.90306986 0.09693000 

0.080 0.98404899 0.01595100 0.225 0.89979918 0.10020100 

0.085 0.98198438 0.01801600 0.230 0.89652976 0.10347000 

0.090 0.97981881 0.02018100 0.235 0.89326328 0.10673700 

0.095 0.97755725 0.02244300 0.240 0.89000132 0.10999900 

0.100 0.97520469 0.02479500 0.245 0.88674534 0.11325500 

0.105 0.97276613 0.02723400 0.250 0.88349669 0.11650300 

0.110 0.97024653 0.02975300 0.255 0.88025665 0.11974300 

0.115 0.96765082 0.03234900 0.260 0.87702640 0.12297400 

0.120 0.96498387 0.03501600 0.265 0.87380702 0.12619300 

0.125 0.96225045 0.03775000 0.270 0.87059952 0.12940000 

0.130 0.95945523 0.04054500 0.275 0.86740484 0.13259500 

0.135 0.95660279 0.04339700 0.280 0.86422383 0.13577600 

0.140 0.95369754 0.04630200 0.285 0.86105729 0.13894300 

0.145 0.95074378 0.04925600 0.290 0.85790594 0.14209400 

0.150 0.94774567 0.05225400 0.295 0.85477043 0.14523000 

   

0.300 0.85165139 0.14834900 

 

Table 3.2: Conditions For  

Decimal places  
3  
2  
1  
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Table 3.3: Simulation Results When   = 0.06 

 

X= te   2
1, , 0.06N     

Y=
* 1

,t

t
t

e
ee    2

1, , 0.06N   

 

Mean StD Variance Median  AD p-value Mean StDev Variance Median 

AD p-value  

 
*

Var

Var

t

t

e

e

 

1 0.06 0.0036 0.9927  .235 .788 1.0013 0.0303 0.000918 1.0037 .206 .867 4 

1 0.06 0.0036 1.0009  .183 .908 1.0013 0.0302 0.000914 0.9995 .298 .580 4 

1 0.06 0.0036 1.0002  .195 .889 1.0013 0.0303 0.000916 0.9999 .275 .654 4 

1 0.06 0.0036 1.0029  .234 .790 1.0013 0.0303 0.000917 0.9985 .334 .505 4 

1 0.06 0.0036 1.0037  .178 .918 1.0013 0.0302 0.000915 0.9982 .312 .546 4 

1 0.06 0.0036 1.0045  .435 .294 1.0013 0.0301 0.000908 0.9978 .364 .433 4 

1 0.06 0.0036 1.0037  .178 .918 1.0013 0.0302 0.000915 0.9982 .312 .546 4 

1 0.06 0.0036 1.0013  .137 .976 1.0013 0.0302 0.00091 0.9993 .213 .851 4 

1 0.06 0.0036 0.9941  .196 .888 1.0013 0.0302 0.000911 1.003 .302 .569 4 

1 0.06 0.0036 1.0017  .250 .739 1.0014 0.0304 0.000924 0.9991 .453 .266 4 

1 0.06 0.0036 1.0004  .200 .880 1.0013 0.0302 0.000915 0.9998 .314 .540 4 

1 0.06 0.0036 1.0045  .435 .294 1.0013 0.0301 0.000908 0.9978 .364 .433 4 

1 0.06 0.0036 0.9991  .183 .908 1.0013 0.0303 0.000916 1.0005 .214 .846 4 

1 0.06 0.0036 0.9983  .250 .739 1.0013 0.0301 0.000908 1.0009 .206 .866 4 

1 0.06 0.0036 1.001  .209 .859 1.0013 0.03 0.000901 0.9995 .241 .767 4 

1 0.06 0.0036 1.0028  .195 .889 1.0013 0.0302 0.000913 0.9986 .284 .625 4 

1 0.06 0.0036 1.0031  .141 .972 1.0013 0.0302 0.000911 0.9985 .208 .862 4 

1 0.06 0.0036 0.9975  .310 .550 1.0013 0.0299 0.000894 1.0012 .232 .795 4 

1 0.06 0.0036 1.0006  .262 .699 1.0014 0.0304 0.000924 0.9997 .385 .387 4 

1 0.06 0.0036 0.9983  .182 .911 1.0013 0.0302 0.000913 1.0009 .318 .531 4 

1 0.06 0.0036 0.9958  .150 .962 1.0013 0.0303 0.000916 1.0021 .218 .835 4 

1 0.06 0.0036 0.9938  .290 .606 1.0013 0.0299 0.000896 1.0031 .185 .906 4 

1 0.06 0.0036 0.9931  .450 .270 1.0013 0.03 0.000903 1.0035 .336 .503 4 

1 0.06 0.0036 0.995  .199 .882 1.0013 0.0301 0.000907 1.0025 .390 .376 4 

1 0.06 0.0036 0.9987  .216 .841 1.0013 0.0302 0.000914 1.0006 .315 .538 4 

1 0.06 0.0036 0.9942  .311 .546 1.0013 0.03 0.000899 1.0029 .165 .940 4 

NB     i. 2 = (0.3752) = 0.00135                 ii. 2. 
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Table 3.4:   Simulation Results when  = 0.1 

X= te   21, , 0.1N     
Y= 

* 1
,t

t
t

e
ee    21, , 0.1N   

 

Mean StD Variance Median  AD p-value Mean StD Variance Median 

AD p-value 
 

 *

Var

Var

t

t

e

e
 

1 0.1 0.01 0.9878  .235 .788 1.0038 0.0514 0.00265 1.0061 .298 .582 4 

1 0.1 0.01 1.0016  .183 .908 1.0038 0.0511 0.00262 0.9992 .457 .260 4 

1 0.1 0.01 1.0003  .195 .889 1.0038 0.0513 0.00263 0.9998 .428 .306 4 

1 0.1 0.01 1.0049  .234 .790 1.0038 0.0513 0.00264 0.9976 .502 .201 4 

1 0.1 0.01 1.0062  .178 .918 1.0038 0.0512 0.00262 0.9969 .495 .211 4 

1 0.1 0.01 1.0074  .435 .294 1.0038 0.0509 0.00259 0.9963 .424 313 4 

1 0.1 0.01 1.0062  .178 .918 1.0038 0.0512 0.00262 0.9969 .495 .211 4 

1 0.1 0.01 1.0022  .137 .976 1.0038 0.0509 0.00259 0.9989 .357 .450 4 

1 0.1 0.01 0.9902  .196 .888 1.0038 0.051 0.0026 1.005 .464 .251 4 

1 0.1 0.01 1.0029  .250 .739 1.0038 0.0516 0.00267 0.9986 .685 .071 4 

1 0.1 0.01 1.0007  .200 .880 1.0038 0.0512 0.00262 0.9997 .495 .210 4 

1 0.1 0.01 1.0074  .435 .294 1.0038 0.0509 0.00259 0.9963 .424 .313 4 

1 0.1 0.01 0.9984  .183 .908 1.0038 0.0513 0.00263 1.0008 .326 .516 4 

1 0.1 0.01 0.9971  .250 .739 1.0038 0.0509 0.00259 1.0014 .272 .664 4 

1 0.1 0.01 1.0016  .209 .859 1.0037 0.0505 0.00255 0.9992 .359 .445 4 

1 0.1 0.01 1.0047  .195 .889 1.0038 0.0511 0.00261 0.9977 .446 .277 4 

1 0.1 0.01 1.0052  .141 .972 1.0038 0.051 0.0026 0.9974 346 .477 4 

1 0.1 0.01 0.9959  .310 .550 1.0037 0.0502 0.00252 1.0021 .278 .642 4 

1 0.1 0.01 1.0011  .262 .699 1.0038 0.0516 0.00266 0.9995 .554 .150 4 

1 0.1 0.01 0.9971  .182 .911 1.0038 0.0511 0.00261 1.0014 .499 .205 4 

1 0.1 0.01 0.9931  .150 .962 1.0038 0.0513 0.00263 1.0035 .368 .424 4 

1 0.1 0.01 0.9897  .290 .606 1.0037 0.0503 0.00253 1.0052 .221 .827 4 

1 0.1 0.01 0.9884  .450 .270 1.0037 0.0506 0.00256 1.0058 .366 .428 4 

1 0.1 0.01 0.9917  .306 .559 1.0038 0.0508 0.00258 1.0042 .547 .156 4 

1 0.1 0.01 0.9979  .199 .882 1.0038 0.0511 0.00261 1.0011 .497 .207 4 

1 0.1 0.01 0.9904  .216 .841 1.0037 0.0504 0.00254 1.0048 .226 .815 4 

NB     i.   
2 
= 0.375 (.01) = 0.00375                 ii.   

2
. 
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Table 3.5:   Simulation Results when  = 0.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X= te   2
1, , 0.15N     

Y= 
* 1

,
t

t

t

e

ee    2
1, , 0.15N   

 

Mean StD Variance Median AD p-value Mean StDev Variance Median AD p-value 

 

 *

Var

Var

t

t

e

e
 

1 0.15 0.0225 0.9818 .235 .788 1.0089 0.0803 0.00645 1.0092 .582 .126 3 

1 0.15 0.0225 1.0024 .183 .908 1.0088 0.0791 0.00626 0.9988 .761 .046 4 

1 0.15 0.0225 1.0005 .195 .889 1.0088 0.0798 0.00637 0.9997 .756 .047 4 

1 0.15 0.0225 1.0073 .234 .790 1.0088 0.0798 0.00636 0.9964 .857 .027 4 

1 0.15 0.0225 1.0093 .178 .918 1.0088 0.0792 0.00628 0.9954 .842 .029 4 

1 0.15 0.0225 1.0111 .435 .294 1.0087 0.0788 0.0062 0.9945 .646 .089 4 

1 0.15 0.0225 1.0093 .178 .918 1.0088 0.0792 0.00628 0.9954 .842 .029 4 

1 0.15 0.0225 1.0034 .137 .976 1.0087 0.0786 0.00618 0.9983 .656 .085 4 

1 0.15 0.0225 0.9853 .196 .888 1.0087 0.0788 0.00621 1.0075 .785 .040 3 

1 0.15 0.0225 1.0043 .250 .739 1.0089 0.0804 0.00646 0.9979 1.109 .005 4 

1 0.15 0.0225 1.001 .200 .880 1.0088 0.0793 0.00628 0.9995 .860 .026 4 

1 0.15 0.0225 1.0111 .435 .294 1.0087 0.0788 0.0062 0.9945 .646 .089 4 

1 0.15 0.0225 0.9976 .183 .908 1.0088 0.0796 0.00633 1.0012 .596 .119 4 

1 0.15 0.0225 0.9957 .250 .739 1.0087 0.0788 0.00621 1.0022 .486 .221 4 

1 0.15 0.0225 1.0025 .209 .859 1.0086 0.0775 0.00601 0.9988 .620 .104 4 

1 0.15 0.0225 1.007 195 889 1.0088 0.0791 0.00626 0.9965 .779 .042 4 

1 0.15 0.0225 1.0077 141 .972 1.0087 0.0787 0.00619 0.9962 .635 .095 4 

1 0.15 0.0225 0.9938 .310 .550 1.0085 0.077 0.00593 1.0031 .450 .271 4 

1 0.15 0.0225 1.0016 .262 .699 1.0089 0.0799 0.00639 0.9992 .880 .023 4 

1 0.15 0.0225 0.9957 .182 .911 1.0087 0.0789 0.00622 1.0022 .838 .030 4 

1 0.15 0.0225 0.9896 .500 .962 1.0088 0.0798 0.00636 1.0052 .701 .065 4 

1 0.15 0.0225 0.9846 .290 .606 1.0085 0.077 0.00593 1.0078 .398 .361 4 

1 0.15 0.0225 0.9826 .450 .270 1.0086 0.0781 0.00609 1.0088 .545 .157 4 

1 0.15 0.0225 0.9876 .306 .559 1.0087 0.0782 0.00611 1.0063 .868 .025 4 

1 0.15 0.0225 0.9968 .199 .882 1.0088 0.079 0.00624 1.0016 .860 .026 4 

1 0.15 0.0225 0.9856 .216 .841 1.0085 0.0772 0.00596 1.0073 .419 .322 4 

NB: (i)   The p-value is less than 0.05 in 50% of the cases                               iii.   
2 

= (0.375) (0.0225) = 0.0084                

       (ii)  The ratio of the two variances is less than 4 in 8% of the cases.       iv.  
2
.. 
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Table 3.6:   Simulation Results when  = 0.2 

te   2
1, , 0.2N     

* 1
,

t

t

t

e

ee    2
1, , 0.2N   

 

Mean StD Variance Median AD p-value Mean StDev Variance Median 

 
AD 

p-value  

 *

Var

Var

t

t

e

e
 

1 0.2 0.04 0.9757 .235 .788 1.0167 0.1147 0.0132 1.0124 1.176 <0.005 3 

1 0.2 0.04 1.0032 .183 .908 1.0162 0.1107 0.0123 0.9984 1.220 <0.005 3 

1 0.2 0.04 1.0007 .195 .889 1.0165 0.1127 0.0127 0.9997 1.315 <0.005 3 

1 0.2 0.04 1.0097 .234 .790 1.0164 0.1124 0.0126 0.9952 1.435 <0.005 3 

1 0.2 0.04 1.0124 .178 .918 1.0163 0.1109 0.0123 0.9939 1.353 <0.005 3 

1 0.2 0.04 1.0148 .435 .294 1.0161 0.1105 0.0122 0.9927 1.097 .007 3 

1 0.2 0.04 1.0124 .178 .918 1.0163 0.1109 0.0123 0.9939 1.353 <0.005 3 

1 0.2 0.04 1.0045 .137 .976 1.0161 0.1095 0.012 0.9978 1.117 .006 3 

1 0.2 0.04 0.9803 .196 .888 1.0161 0.11 0.0121 1.01 1.276 <0.005 3 

1 0.2 0.04 1.0057 .250 ..739 1.0166 0.1133 0.0128 0.9971 1.734 <0.005 3 

1 0.2 0.04 1.0013 .200 .880 1.0163 0.111 0.0123 0.9994 1.418 <0.005 3 

1 0.2 0.04 1.0149 .435 .294 1.0161 0.1105 0.0122 0.9927 1.097 .007 3 

1 0.2 0.04 0.9968 .183 .908 1.0164 0.112 0.0125 1.0016 1.072 .008 3 

1 0.2 0.04 0.9943 .250 .739 1.0162 0.1107 0.0123 1.0029 .915 0.019 3 

1 0.2 0.04 1.0033 .209 .859 1.0157 0.1072 0.0115 0.9984 1.026 0.010 3 

1 0.2 0.04 1.0094 .195 .889 1.0162 0.1109 0.0123 0.9953 1.293 <0.005 3 

1 0.2 0.04 1.0103 .141 .972 1.0161 0.1097 0.012 0.9949 1.084 0.007 3 

1 0.2 0.04 0.9917 .310 .550 1.0156 0.1066 0.0114 1.0042 .768 0.045 3 

1 0.2 0.04 1.0021 .260 .699 1.0165 0.1119 0.0125 0.9989 1.371 <0.005 3 

1 0.2 0.04 0.9942 .182 .911 1.0162 0.11 0.0121 1.0029 1.331 <0.005 3 

1 0.2 0.04 0.9862 .150 .962 1.0165 0.1128 0.0127 1.007 1.267 <0.005 3 

1 0.2 0.04 0.9795 .290 .606 1.0156 0.1064 0.0113 1.0104 .745 0.051 3 

1 0.2 0.04 0.9768 .450 .270 1.0159 0.109 0.0119 1.0118 .933 .017 3 

1 0.2 0.04 0.9835 .306 .559 1.0159 0.1084 0.0118 1.0084 1.348 <0.005 3 

1 0.2 0.04 0.9958 .199 .882 1.0162 0.1101 0.0121 1.0021 1.402 <0.005 3 

1 0.2 0.04 0.9808 .216 .841 1.0156 0.1066 0.0114 1.0097 .766 .045 3 

NB: (i)   The p-value is less than 0.05 in all the cases iii. 2 = 0.015                 

(ii) The ratio of the two variances is less than 4 in all the cases. iv.  * 23
1

8
tE e   . 
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Table 3.7: Values of E(Y) and Var(Y) for [0.01,0.5] 

 
2
 

2

1

2e 


 

 

A 

 

B E(Y) Var(Y) 

 

Var(X) VarY/VarX 

0.01 0.0001 0.0000000 1.00000 2.00000 1.00004 0.0000250 0.000100 4.00023 

0.02 0.0004 0.0000000 1.00000 2.00000 1.00015 0.0001000 0.000400 4.00090 

0.03 0.0009 0.0000000 1.00000 2.00000 1.00034 0.0002249 0.000900 4.00203 

0.04 0.0016 0.0000000 1.00000 2.00000 1.00060 0.0003996 0.001600 4.00360 

0.05 0.0025 0.0000000 1.00000 2.00000 1.00094 0.0006241 0.002500 4.00563 

0.06 0.0036 0.0000000 1.00000 2.00000 1.00135 0.0008982 0.003600 4.00812 

0.07 0.0049 0.0000000 1.00000 2.00000 1.00184 0.0012216 0.004900 4.01106 

0.08 0.0064 0.0000000 1.00000 2.00000 1.00240 0.0015942 0.006400 4.01445 

0.09 0.0081 0.0000000 1.00000 2.00000 1.00304 0.0020158 0.008100 4.01831 

0.10 0.0100 0.0000000 1.00000 2.00000 1.00375 0.0024859 0.010000 4.02263 

0.11 0.0121 0.0000000 1.00000 2.00000 1.00454 0.0030044 0.012100 4.02741 

0.12 0.0144 0.0000000 1.00000 2.00000 1.00540 0.0035708 0.014400 4.03266 

0.13 0.0169 0.0000000 1.00000 2.00000 1.00634 0.0041848 0.016900 4.03839 

0.14 0.0196 0.0000000 1.00000 2.00000 1.00735 0.0048460 0.019600 4.04459 

0.15 0.0225 0.0000000 1.00000 2.00000 1.00844 0.0055538 0.022500 4.05127 

0.16 0.0256 0.0000000 1.00000 2.00000 1.00960 0.0063078 0.025600 4.05844 

0.17 0.0289 0.0000000 1.00000 2.00000 1.01084 0.0071075 0.028900 4.06610 

0.18 0.0324 0.0000002 1.00000 2.00000 1.01215 0.0079524 0.032400 4.07425 

0.19 0.0361 0.0000010 1.00000 2.00000 1.01354 0.0088417 0.036100 4.08290 

0.20 0.0400 0.0000037 1.00000 2.00000 1.01500 0.0097750 0.040000 4.09204 

0.21 0.0441 0.0000119 1.00000 2.00000 1.01654 0.0107515 0.044099 4.10166 

0.22 0.0484 0.0000326 1.00000 1.99999 1.01815 0.0117706 0.048397 4.11170 

0.23 0.0529 0.0000785 0.99999 1.99999 1.01984 0.0128315 0.052893 4.12211 

0.24 0.0576 0.0001699 0.99998 1.99997 1.02160 0.0139334 0.057584 4.13277 

0.25 0.0625 0.0003355 0.99997 1.99994 1.02344 0.0150757 0.062467 4.14353 

0.26 0.0676 0.0006134 0.99994 1.99988 1.02535 0.0162574 0.067536 4.15420 

0.27 0.0729 0.0010503 0.99989 1.99979 1.02734 0.0174777 0.072787 4.16456 

0.28 0.0784 0.0016993 0.99982 1.99964 1.02940 0.0187356 0.078210 4.17440 

0.29 0.0841 0.0026181 0.99972 1.99944 1.03154 0.0200304 0.083797 4.18349 

0.30 0.0900 0.0038659 0.99957 1.99914 1.03375 0.0213609 0.089537 4.19162 

0.31 0.0961 0.005501 0.90769 1.99988 1.03604 0.0227263 0.095419 4.19861 

0.32 0.1024 0.007576 0.91959 1.99979 1.03840 0.0241254 0.101431 4.20432 

0.33 0.1089 0.010139 0.93148 1.99964 1.04084 0.0255573 0.107562 4.20865 

0.34 0.1156 0.013230 0.94335 1.99944 1.04335 0.0270208 0.113799 4.21155 

0.35 0.1225 0.016880 0.95521 1.99914 1.04594 0.0285147 0.120132 4.21299 

0.36 0.1296 0.021110 0.96706 1.99874 1.04860 0.0300380 0.126551 4.21301 

0.37 0.1369 0.025931 0.97889 1.99822 1.05134 0.0315895 0.133044 4.21167 

0.38 0.1444 0.031348 0.99071 1.99756 1.05415 0.0331678 0.139605 4.20904 

0.39 0.1521 0.037354 1.00252 1.99673 1.05704 0.0347717 0.146224 4.20525 

0.40 0.1600 0.043937 1.01431 1.99573 1.06000 0.0364000 0.152895 4.20041 

0.41 0.1681 0.051077 0.90769 1.99453 1.06304 0.0380513 0.159613 4.19467 

0.42 0.1764 0.058750 0.91959 1.99312 1.06615 0.0397242 0.166372 4.18817 
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Table 3.7 Continues 
0.43 0.1849 0.066926 0.95521 1.98758 1.06934 0.0414173 0.173168 4.18106 

0.44 0.1936 0.075574 0.96706 1.98527 1.07260 0.0431292 0.179999 4.17349 

0.45 0.2025 0.084658 0.97889 1.98273 1.07594 0.0448585 0.186862 4.16560 

0.46 0.2116 0.094142 0.99071 1.97996 1.07935 0.0466036 0.193756 4.15753 

0.47 0.2209 0.103989 1.00252 1.97696 1.08284 0.0483629 0.200678 4.14941 

0.48 0.2304 0.114162 1.01431 1.99988 1.08640 0.0501350 0.207628 4.14138 

0.49 0.2401 0.124623 0.90769 1.99979 1.09004 0.0519182 0.214607 4.13355 

0.50 0.2500 0.135335 0.91959 1.99964 1.09375 0.0537109 0.221613 4.12603 
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Table 4.1:  Time Series Decomposition Table for The Monthly Interest Rates 

Government Bond Yield 2-Year Securities, Reserve Bank of Australia. Jan 

1976 – Dec 1993. 

 
T Xt *ˆ

tM  
*ˆ
tS  

*ˆte  Yt *ˆ
tM  

*ˆ
tS  

*ˆte  

1 8.46 6.4945 1.00904 1.29096 0.343807 0.373735 0.99673 0.92294 

2 8.50 6.6367 1.02472 1.24985 0.342997 0.371554 0.98857 0.93381 

3 8.50 6.7776 1.02025 1.22925 0.342997 0.369394 0.99047 0.93747 

4 8.47 6.9171 1.00158 1.22257 0.343604 0.367255 1.00016 0.93545 

5 8.47 7.0552 1.00564 1.19379 0.343604 0.365138 0.99702 0.94384 

6 8.47 7.1921 0.99741 1.18074 0.343604 0.363042 1.00214 0.94443 

7 8.48 7.3276 0.99608 1.16183 0.343401 0.360968 1.00365 0.94787 

8 8.48 7.4617 1.00873 1.12663 0.343401 0.358915 0.99498 0.96160 

9 8.54 7.5945 0.99702 1.12786 0.342193 0.356883 1.00001 0.95883 

10 8.56 7.7260 0.98500 1.12482 0.341793 0.354872 1.00637 0.95705 

11 8.39 7.8561 0.98262 1.08685 0.345238 0.352883 1.00695 0.97158 

12 8.89 7.9849 0.97193 1.14551 0.335389 0.350916 1.01299 0.94350 

13 9.91 8.1123 1.00904 1.21065 0.317660 0.348969 0.99673 0.91327 

14 9.89 8.2384 1.02472 1.17151 0.317982 0.347044 0.98857 0.92685 

15 9.91 8.3632 1.02025 1.16144 0.317660 0.345140 0.99047 0.92923 

16 9.91 8.4866 1.00158 1.16588 0.317660 0.343258 1.00016 0.92528 

17 9.90 8.6087 1.00564 1.14355 0.317821 0.341397 0.99702 0.93373 

18 9.88 8.7294 0.99741 1.13474 0.318142 0.339557 1.00214 0.93493 

19 9.86 8.8488 0.99608 1.11866 0.318465 0.337739 1.00365 0.93950 

20 9.86 8.9669 1.00873 1.09008 0.318465 0.335942 0.99498 0.95276 

21 9.74 9.0836 0.99702 1.07547 0.320421 0.334167 1.00001 0.95886 

22 9.42 9.1990 0.98500 1.03962 0.325818 0.332412 1.00637 0.97396 

23 9.27 9.3130 0.98262 1.01298 0.328443 0.330680 1.00695 0.98638 

24 9.26 9.4257 0.97193 1.01079 0.328620 0.328968 1.01299 0.98613 

25 8.99 9.5371 1.00904 0.93419 0.333519 0.327278 0.99673 1.02242 

26 8.83 9.6471 1.02472 0.89322 0.336527 0.325609 0.98857 1.04548 

27 8.83 9.7558 1.02025 0.88714 0.336527 0.323962 0.99047 1.04878 

28 8.83 9.8631 1.00158 0.89384 0.336527 0.322336 1.00016 1.04386 

29 8.82 9.9691 1.00564 0.87977 0.336718 0.320731 0.99702 1.05299 

30 8.83 10.0738 0.99741 0.87880 0.336527 0.319147 1.00214 1.05220 

31 8.83 10.1771 0.99608 0.87105 0.336527 0.317585 1.00365 1.05579 

32 8.79 10.2791 1.00873 0.84773 0.337292 0.316045 0.99498 1.07261 

33 8.79 10.3797 0.99702 0.84937 0.337292 0.314525 1.00001 1.07237 

34 8.69 10.4790 0.98500 0.84190 0.339227 0.313027 1.00637 1.07684 

35 8.66 10.5770 0.98262 0.83324 0.339814 0.311551 1.00695 1.08319 
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Table 4.1 Continues 

T Xt ˆ x

tM  ˆ x

tS  ˆ x

te  Yt ˆ y

tM  ˆ y

tS  ˆ y

te  

36 8.67 10.6736 0.97193 0.83574 0.339618 0.310095 1.01299 1.08116 

37 8.72 10.7689 1.00904 0.80248 0.338643 0.308661 0.99673 1.10074 

38 8.77 10.8628 1.02472 0.78786 0.337676 0.307249 0.98857 1.11173 

39 9.00 10.9554 1.02025 0.80521 0.333333 0.305858 0.99047 1.10032 

40 9.61 11.0467 1.00158 0.86857 0.322581 0.304488 1.00016 1.05925 

41 9.70 11.1366 1.00564 0.86612 0.321081 0.303139 0.99702 1.06235 

42 9.94 11.2252 0.99741 0.88781 0.317181 0.301812 1.00214 1.04868 

43 9.94 11.3124 0.99608 0.88214 0.317181 0.300506 1.00365 1.05165 

44 9.94 11.3983 1.00873 0.86451 0.317181 0.299222 0.99498 1.06536 

45 9.95 11.4829 0.99702 0.86910 0.317021 0.297959 1.00001 1.06397 

46 9.94 11.5661 0.98500 0.87250 0.317181 0.296717 1.00637 1.06220 

47 9.96 11.6479 0.98262 0.87021 0.316862 0.295497 1.00695 1.06490 

48 9.97 11.7285 0.97193 0.87462 0.316703 0.294297 1.01299 1.06233 

49 10.83 11.8077 1.00904 0.90898 0.303869 0.293120 0.99673 1.04007 

50 10.75 11.8855 1.02472 0.88264 0.304997 0.291963 0.98857 1.05672 

51 11.20 11.9620 1.02025 0.91772 0.298807 0.290828 0.99047 1.03732 

52 11.40 12.0372 1.00158 0.94557 0.296174 0.289715 1.00016 1.02213 

53 11.54 12.1111 1.00564 0.94750 0.294372 0.288622 0.99702 1.02297 

54 11.50 12.1835 0.99741 0.94634 0.294884 0.287552 1.00214 1.02331 

55 11.34 12.2547 0.99608 0.92900 0.296957 0.286502 1.00365 1.03272 

56 11.50 12.3245 1.00873 0.92502 0.294884 0.285474 0.99498 1.03817 

57 11.50 12.3930 0.99702 0.93072 0.294884 0.284467 1.00001 1.03661 

58 11.58 12.4601 0.98500 0.94352 0.293864 0.283481 1.00637 1.03006 

59 12.42 12.5259 0.98262 1.00908 0.283752 0.282517 1.00695 0.99744 

60 12.85 12.5904 0.97193 1.05010 0.278964 0.281574 1.01299 0.97802 

61 13.10 12.6535 1.00904 1.02601 0.276289 0.280653 0.99673 0.98769 

62 13.12 12.7152 1.02472 1.00694 0.276079 0.279753 0.98857 0.99827 

63 13.10 12.7757 1.02025 1.00504 0.276289 0.278874 0.99047 1.00026 

64 13.15 12.8348 1.00158 1.02294 0.275764 0.278017 1.00016 0.99174 

65 13.10 12.8925 1.00564 1.01039 0.276289 0.277180 0.99702 0.99977 

66 13.20 12.9489 0.99741 1.02203 0.275241 0.276366 1.00214 0.99380 

67 14.20 13.0040 0.99608 1.09627 0.265372 0.275572 1.00365 0.95948 

68 14.75 13.0577 1.00873 1.11982 0.260378 0.274800 0.99498 0.95229 

69 14.60 13.1101 0.99702 1.11697 0.261712 0.274050 1.00001 0.95497 

70 14.60 13.1612 0.98500 1.12621 0.261712 0.273320 1.00637 0.95147 

71 14.45 13.2109 0.98262 1.11314 0.263067 0.272613 1.00695 0.95833 

72 14.50 13.2592 0.97193 1.12516 0.262613 0.271926 1.01299 0.95336 

73 14.80 13.3063 1.00904 1.10229 0.259938 0.271261 0.99673 0.96140 

74 15.85 13.3520 1.02472 1.15845 0.251180 0.270617 0.98857 0.93890 

75 16.20 13.3963 1.02025 1.18529 0.248452 0.269994 0.99047 0.92906 

76 16.50 13.4393 1.00158 1.22580 0.246183 0.269393 1.00016 0.91370 

77 16.40 13.4810 1.00564 1.20970 0.246932 0.268813 0.99702 0.92135 
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Table 4.1 Continues 

T Xt ˆ x

tM  ˆ x

tS  ˆ x

te  Yt ˆ y

tM  ˆ y

tS  ˆ y

te  

78 16.40 13.5213 0.99741 1.21604 0.246932 0.268255 1.00214 0.91855 

79 16.35 13.5603 0.99608 1.21047 0.247310 0.267718 1.00365 0.92041 

80 16.10 13.5979 1.00873 1.17375 0.249222 0.267202 0.99498 0.93742 

81 13.70 13.6342 0.99702 1.00783 0.270172 0.266708 1.00001 1.01298 

82 13.50 13.6692 0.98500 1.00266 0.272166 0.266234 1.00637 1.01581 

83 14.00 13.7028 0.98262 1.03976 0.267261 0.265783 1.00695 0.99862 

84 12.30 13.7351 0.97193 0.92138 0.285133 0.265352 1.01299 1.06076 

85 12.00 13.7661 1.00904 0.86389 0.288675 0.264943 0.99673 1.09315 

86 14.35 13.7957 1.02472 1.01508 0.263982 0.264556 0.98857 1.00936 

87 14.60 13.8239 1.02025 1.03518 0.261712 0.264189 0.99047 1.00015 

88 12.50 13.8509 1.00158 0.90105 0.282843 0.263844 1.00016 1.07183 

89 12.75 13.8765 1.00564 0.91367 0.280056 0.263521 0.99702 1.06593 

90 13.70 13.9007 0.99741 0.98812 0.270172 0.263219 1.00214 1.02422 

91 13.45 13.9236 0.99608 0.96979 0.272671 0.262938 1.00365 1.03324 

92 13.55 13.9452 1.00873 0.96325 0.271663 0.262678 0.99498 1.03942 

93 12.60 13.9654 0.99702 0.90493 0.281718 0.262440 1.00001 1.07345 

94 12.00 13.9843 0.98500 0.87117 0.288675 0.262223 1.00637 1.09391 

95 11.00 14.0018 0.98262 0.79951 0.301511 0.262028 1.00695 1.14274 

96 11.60 14.0180 0.97193 0.85140 0.293610 0.261854 1.01299 1.10689 

97 12.05 14.0329 1.00904 0.85100 0.288076 0.261701 0.99673 1.10440 

98 12.35 14.0464 1.02472 0.85802 0.284555 0.261569 0.98857 1.10045 

99 12.70 14.0586 1.02025 0.88544 0.280607 0.261459 0.99047 1.08356 

100 12.45 14.0694 1.00158 0.88350 0.283410 0.261371 1.00016 1.08415 

101 12.55 14.0789 1.00564 0.88640 0.282279 0.261303 0.99702 1.08350 

102 12.20 14.0871 0.99741 0.86829 0.286299 0.261257 1.00214 1.09351 

103 12.10 14.0939 0.99608 0.86191 0.287480 0.261233 1.00365 1.09647 

104 11.15 14.0994 1.00873 0.78397 0.299476 0.261229 0.99498 1.15219 

105 11.85 14.1035 0.99702 0.84273 0.290496 0.261247 1.00001 1.11195 

106 12.10 14.1063 0.98500 0.87083 0.287480 0.261287 1.00637 1.09328 

107 12.50 14.1078 0.98262 0.90171 0.282843 0.261347 1.00695 1.07478 

108 12.90 14.1079 0.97193 0.94079 0.278423 0.261430 1.01299 1.05134 

109 12.50 14.1067 1.00904 0.87816 0.282843 0.261533 0.99673 1.08503 

110 13.20 14.1041 1.02472 0.91332 0.275241 0.261658 0.98857 1.06407 

111 13.65 14.1002 1.02025 0.94886 0.270666 0.261804 0.99047 1.04380 

112 13.65 14.0950 1.00158 0.96690 0.270666 0.261971 1.00016 1.03302 

113 13.50 14.0884 1.00564 0.95286 0.272166 0.262160 0.99702 1.04127 

114 13.45 14.0805 0.99741 0.95770 0.272671 0.262371 1.00214 1.03704 

115 13.35 14.0712 0.99608 0.95248 0.273690 0.262602 1.00365 1.03843 

116 14.45 14.0606 1.00873 1.01880 0.263067 0.262855 0.99498 1.00585 

117 14.30 14.0487 0.99702 1.02093 0.264443 0.263129 1.00001 1.00498 

118 15.05 14.0354 0.98500 1.08862 0.257770 0.263425 1.00637 0.97234 

119 15.55 14.0208 0.98262 1.12868 0.253592 0.263742 1.00695 0.95488 
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Table 4.1 Continues 

T Xt ˆ x

tM  ˆ x

tS  ˆ x

te  Yt ˆ y

tM  ˆ y

tS  ˆ y

te  

120 15.65 14.0048 0.97193 1.14974 0.252780 0.264080 1.01299 0.94493 

121 14.65 13.9875 1.00904 1.03798 0.261265 0.264440 0.99673 0.99124 

122 14.15 13.9689 1.02472 0.98853 0.265841 0.264821 0.98857 1.01545 

123 13.30 13.9489 1.02025 0.93456 0.274204 0.265223 0.99047 1.04381 

124 12.65 13.9276 1.00158 0.90684 0.281161 0.265647 1.00016 1.05823 

125 12.70 13.9049 1.00564 0.90822 0.280607 0.266092 0.99702 1.05770 

126 12.80 13.8809 0.99741 0.92452 0.279508 0.266559 1.00214 1.04634 

127 14.50 13.8555 0.99608 1.05063 0.262613 0.267047 1.00365 0.97982 

128 15.10 13.8289 1.00873 1.08247 0.257343 0.267556 0.99498 0.96668 

129 15.15 13.8008 0.99702 1.10104 0.256917 0.268086 1.00001 0.95833 

130 14.30 13.7715 0.98500 1.05419 0.264443 0.268638 1.00637 0.97815 

131 14.25 13.7408 0.98262 1.05540 0.264906 0.269211 1.00695 0.97722 

132 14.05 13.7087 0.97193 1.05449 0.266785 0.269806 1.01299 0.97612 

133 14.70 13.6753 1.00904 1.06529 0.260820 0.270422 0.99673 0.96766 

134 15.05 13.6406 1.02472 1.07670 0.257770 0.271059 0.98857 0.96196 

135 14.05 13.6045 1.02025 1.01225 0.266785 0.271718 0.99047 0.99129 

136 13.80 13.5671 1.00158 1.01556 0.269191 0.272398 1.00016 0.98807 

137 13.25 13.5284 1.00564 0.97393 0.274721 0.273099 0.99702 1.00895 

138 13.00 13.4883 0.99741 0.96630 0.277350 0.273822 1.00214 1.01072 

139 12.85 13.4469 0.99608 0.95937 0.278964 0.274566 1.00365 1.01232 

140 12.60 13.4041 1.00873 0.93187 0.281718 0.275331 0.99498 1.02836 

141 11.80 13.3600 0.99702 0.88587 0.291111 0.276118 1.00001 1.05429 

142 13.00 13.3145 0.98500 0.99124 0.277350 0.276926 1.00637 0.99519 

143 12.35 13.2678 0.98262 0.94729 0.284555 0.277755 1.00695 1.01741 

144 11.45 13.2196 0.97193 0.89115 0.295527 0.278606 1.01299 1.04713 

145 11.35 13.1702 1.00904 0.85407 0.296826 0.279478 0.99673 1.06556 

146 11.55 13.1193 1.02472 0.85914 0.294245 0.280372 0.98857 1.06161 

147 10.85 13.0672 1.02025 0.81385 0.303588 0.281287 0.99047 1.08967 

148 10.90 13.0137 1.00158 0.83626 0.302891 0.282223 1.00016 1.07306 

149 12.30 12.9589 1.00564 0.94383 0.285133 0.283180 0.99702 1.00991 

150 11.70 12.9027 0.99741 0.90914 0.292353 0.284159 1.00214 1.02663 

151 12.05 12.8452 0.99608 0.94179 0.288076 0.285160 1.00365 1.00655 

152 12.30 12.7863 1.00873 0.95364 0.285133 0.286181 0.99498 1.00136 

153 12.90 12.7261 0.99702 1.01669 0.278423 0.287224 1.00001 0.96935 

154 13.05 12.6646 0.98500 1.04612 0.276818 0.288289 1.00637 0.95413 

155 13.30 12.6017 0.98262 1.07408 0.274204 0.289374 1.00695 0.94104 

156 13.85 12.5375 0.97193 1.13658 0.268705 0.290481 1.01299 0.91317 

157 14.65 12.4720 1.00904 1.16410 0.261265 0.291610 0.99673 0.89888 

158 15.05 12.4051 1.02472 1.18394 0.257770 0.292759 0.98857 0.89066 

159 15.15 12.3369 1.02025 1.20366 0.256917 0.293930 0.99047 0.88248 

160 14.85 12.2673 1.00158 1.20863 0.259500 0.295123 1.00016 0.87915 

161 15.70 12.1964 1.00564 1.28005 0.252377 0.296337 0.99702 0.85420 
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Table 4.1 Continues 

T Xt ˆ x

tM  ˆ x

tS  ˆ x

te  Yt ˆ y

tM  ˆ y

tS  ˆ y

te  

162 15.40 12.1241 0.99741 1.27349 0.254824 0.297572 1.00214 0.85451 

163 15.10 12.0505 0.99608 1.25799 0.257343 0.298828 1.00365 0.85804 

164 14.80 11.9756 1.00873 1.22515 0.259938 0.300106 0.99498 0.87052 

165 15.80 11.8993 0.99702 1.33178 0.251577 0.301405 1.00001 0.83467 

166 15.80 11.8217 0.98500 1.35687 0.251577 0.302726 1.00637 0.82578 

167 15.00 11.7427 0.98262 1.29998 0.258199 0.304068 1.00695 0.84329 

168 14.40 11.6624 0.97193 1.27039 0.263523 0.305431 1.01299 0.85172 

169 13.80 11.5808 1.00904 1.18095 0.269191 0.306816 0.99673 0.88025 

170 14.30 11.4978 1.02472 1.21370 0.264443 0.308222 0.98857 0.86788 

171 14.15 11.4135 1.02025 1.21516 0.265841 0.309649 0.99047 0.86678 

172 14.45 11.3279 1.00158 1.27360 0.263067 0.311098 1.00016 0.84547 

173 14.10 11.2409 1.00564 1.24731 0.266312 0.312568 0.99702 0.85456 

174 14.05 11.1525 0.99741 1.26307 0.266785 0.314059 1.00214 0.84766 

175 13.75 11.0629 0.99608 1.24779 0.269680 0.315572 1.00365 0.85147 

176 13.30 10.9718 1.00873 1.20170 0.274204 0.317106 0.99498 0.86907 

177 13.00 10.8795 0.99702 1.19848 0.277350 0.318661 1.00001 0.87035 

178 12.55 10.7858 0.98500 1.18128 0.282279 0.320238 1.00637 0.87589 

179 12.25 10.6907 0.98262 1.16612 0.285714 0.321836 1.00695 0.88164 

180 11.85 10.5944 0.97193 1.15082 0.290496 0.323456 1.01299 0.88658 

181 11.50 10.4967 1.00904 1.08577 0.294884 0.325097 0.99673 0.91004 

182 11.10 10.3976 1.02472 1.04180 0.300150 0.326759 0.98857 0.92918 

183 11.15 10.2972 1.02025 1.06133 0.299476 0.328442 0.99047 0.92058 

184 10.70 10.1955 1.00158 1.04783 0.305709 0.330147 1.00016 0.92583 

185 10.25 10.0924 1.00564 1.00992 0.312348 0.331873 0.99702 0.94398 

186 10.55 9.9880 0.99741 1.05901 0.307875 0.333621 1.00214 0.92085 

187 10.25 9.8822 0.99608 1.04130 0.312348 0.335390 1.00365 0.92791 

188 10.30 9.7751 1.00873 1.04458 0.311588 0.337180 0.99498 0.92876 

189 9.60 9.6667 0.99702 0.99607 0.322749 0.338992 1.00001 0.95208 

190 8.40 9.5569 0.98500 0.89233 0.345033 0.340825 1.00637 1.00594 

191 8.20 9.4458 0.98262 0.88347 0.349215 0.342679 1.00695 1.01204 

192 7.25 9.3333 0.97193 0.79922 0.371391 0.344555 1.01299 1.06406 

193 8.35 9.2195 1.00904 0.89757 0.346064 0.346452 0.99673 1.00216 

194 8.25 9.1044 1.02472 0.88430 0.348155 0.348371 0.98857 1.01093 

195 8.30 8.9879 1.02025 0.90514 0.347105 0.350310 0.99047 1.00038 

196 7.40 8.8700 1.00158 0.83295 0.367607 0.352272 1.00016 1.04337 

197 7.15 8.7509 1.00564 0.81248 0.373979 0.354254 0.99702 1.05884 

198 6.35 8.6304 0.99741 0.73768 0.396838 0.356258 1.00214 1.11153 

199 5.65 8.5085 0.99608 0.66665 0.420703 0.358283 1.00365 1.16995 

200 7.40 8.3854 1.00873 0.87485 0.367607 0.360330 0.99498 1.02534 

201 7.20 8.2608 0.99702 0.87419 0.372678 0.362398 1.00001 1.02836 

202 7.05 8.1350 0.98500 0.87982 0.376622 0.364487 1.00637 1.02675 

203 7.10 8.0078 0.98262 0.90232 0.375293 0.366597 1.00695 1.01666 
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  Table 4.1 Continues 

T Xt ˆ x

tM  ˆ x

tS  ˆ x

te  Yt ˆ y

tM  ˆ y

tS  ˆ y

te  

204 6.85 7.8792 0.97193 0.89448 0.382080 0.368729 1.01299 1.02292 

205 6.50 7.7493 1.00904 0.83126 0.392232 0.370883 0.99673 1.06104 

206 6.25 7.6181 1.02472 0.80062 0.400000 0.373057 0.98857 1.08461 

207 5.95 7.4856 1.02025 0.77909 0.409960 0.375253 0.99047 1.10300 

208 5.65 7.3516 1.00158 0.76732 0.420703 0.377471 1.00016 1.11435 

209 5.85 7.2164 1.00564 0.80611 0.413449 0.379709 0.99702 1.09211 

210 5.45 7.0798 0.99741 0.77179 0.428353 0.381970 1.00214 1.11904 

211 5.30 6.9419 0.99608 0.76649 0.434372 0.384251 1.00365 1.12633 

212 5.20 6.8026 1.00873 0.75779 0.438529 0.386554 0.99498 1.14018 

213 5.55 6.6620 0.99702 0.83557 0.424476 0.388878 1.00001 1.09153 

214 5.15 6.5201 0.98500 0.80189 0.440653 0.391223 1.00637 1.11922 

215 5.40 6.3768 0.98262 0.86180 0.430331 0.393590 1.00695 1.08580 

216 5.35 6.2322 0.97193 0.88324 0.432338 0.395978 1.01299 1.07782 

Note: The superscripts x and y is used to denote the component of the original series X and 

that of the inverse-square-root transformed series, Y 

 

 


